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LEAF-RECONSTRUCTIBILITY OF PHYLOGENETIC NETWORKS*

LEO VAN IERSEL ' AND VINCENT MOULTON #

Abstract. An important problem in evolutionary biology is to reconstruct the evolutionary
history of a set X of species. This history is often represented as a phylogenetic network, that is, a
connected graph with leaves labelled by elements in X (for example, an evolutionary tree), which is
usually also binary, i.e. all vertices have degree 1 or 3. A common approach used in phylogenetics to
build a phylogenetic network on X involves constructing it from networks on subsets of X. Here we
consider the question of which (unrooted) phylogenetic networks are leaf-reconstructible, i.e. which
networks can be uniquely reconstructed from the set of networks obtained from it by deleting a
single leaf (its X -deck). This problem is closely related to the (in)famous reconstruction conjecture
in graph theory but, as we shall show, presents distinct challenges. We show that some large classes
of phylogenetic networks are reconstructible from their X-deck. This includes phylogenetic trees,
binary networks containing at least one non-trivial cut-edge, and binary level-4 networks (the level
of a network measures how far it is from being a tree). We also show that for fixed k, almost all
binary level-k phylogenetic networks are leaf-reconstructible. As an application of our results, we
show that a level-3 network N can be reconstructed from its quarnets, that is, 4-leaved networks
that are induced by N in a certain recursive fashion. Our results lead to several interesting open
problems which we discuss, including the conjecture that all phylogenetic networks with at least five
leaves are leaf-reconstructible.

Key words. phylogenetic trees, phylogenetic networks, graph reconstruction, reconstruction
conjecture

AMS subject classifications. 05C60, 92D15

1. Introduction. An important problem in evolutionary biology is to recon-
struct the evolutionary history of a set of species. This commonly involves construct-
ing some form of phylogenetic network, that is, a graph (often a tree) labeled by a
set X of species, for which some data (e.g. molecular sequences) has been collected.
Over the past four decades several ways have been introduced to construct phyloge-
netic trees (see e.g. [4]) and, more recently, methods have been developed to construct
more general phylogenetic networks (see e.g. [7, 8]).

One particular approach for constructing phylogenetic networks involves building
them up from smaller networks. This approach is particularly useful when it is only
feasible to compute networks from the biological data on small datasets (e.g. when
using likelihood approaches). The problem of building trees from smaller trees has
been studied for some time (where it is commonly known as the supertree problem; cf.
e.g. [16, Chapter 6]) but the related problem for networks has been only considered
more recently (see e.g. [9, 10] focussing on directed phylogenetic networks and [18]
focussing on pedigrees). Even so, this problem can be extremely challenging.

*Submitted to the editors 16 January 2017.

Funding: Part of this work was conducted while Vincent Moulton was visiting the TU Delft
on a visitors grant funded by the Netherlands Organization for Scientific Research (NWO). Leo van
Iersel was partially supported by NWO, including Vidi grant 639.072.602, and partially by the 4TU
Applied Mathematics Institute.

TDelft Institute of Applied Mathematics, Delft University of Technology, The Netherlands
(1.j.j.v.iersel@gmail.com)

fSchool of Computing Sciences, University of Fast Anglia, Norwich, United Kingdom
(v.moulton@uea.ac.uk)

This manuscript is for review purposes only.


mailto:l.j.j.v.iersel@gmail.com
mailto:v.moulton@uea.ac.uk

(2 BN SO, B G

RSO G R

v Ut Ot
D Ot

J

U o W N

[«

P IES BEES BTN BRSSP RN
N 3

oo

2 LEO VAN IERSEL AND VINCENT MOULTON

In this paper, we shall present a unified approach to constructing phylogenetic net-
works from smaller networks. We shall consider unrooted phylogenetic networks (cf.
[6]). Essentially, these are connected graphs with leaf-set labelled by a set X; they are
called binary if the degree of every vertex is 1 or 3. For such networks, we focus on the
problem of reconstructing a phylogenetic network from its X -deck, roughly speaking,
this is the collection of networks that is obtained by deleting one leaf and supressing
the resulting degree-2 vertex. We call a network that can be reconstructed from its
X-deck leaf-reconstructible. See Sections 2 and 3 for formal definitions.

Intriguingly, the problem of reconstructing a graph from its vertex deleted subgraphs
has been studied for over 75 years (it was introduced in 1941 by Kelly and Ulam [3]),
where it is known as the reconstruction conjecture. In particular, this conjecture states
that every finite simple undirected graph on three of more vertices can be constructed
from its collection of vertex deleted subgraphs. This conjecture remains open, but
has been shown to hold for several large and important classes of graphs [3]. Even so,
as we shall see, although determining leaf-reconstructibilty of a phylogenetic network
is closely related to the reconstruction conjecture, there are several key differences
which mean that they need to be treated as quite distinct problems.

We now summarize the contents of the rest of the paper. In the next section, we
present some preliminaries concerning phylogenetic networks. In Section 3, we then
formally define leaf-reconstructibility and explain why this concept is distinct from the
notion of end-vertex reconstructibilty a well-studied concept in graph reconstruction
theory (see [3, p.237]). (While the notions end-vertex and leaf have the same meaning,
the difference comes from the fact that end-vertex reconstructibility is applied to
graphs without leaf-labels, while leaf-reconstructibility is applied to networks where
the leaves are labelled.) In addition, we show that certain key features of a binary
phylogenetic network (such as its level and reticulation number) can be reconstructed
from its X-deck.

In Section 4, we then show that a large class of phylogenetic networks, which we
call decomposable networks are leaf-reconstructible. These are networks containing at
least one cut-edge not incident to a leaf. To show this we first show that any phyloge-
netic tree with at least 5 leaves is leaf-reconstructible. We also note that phylogenetic
trees with 4 leaves are not leaf-reconstructible. Our result concerning decomposable
networks is analogous to a result by Yongzhi [21] who showed that the graph recon-
struction conjecture can be restricted to considering 2-connected graphs.

The fact that decomposable networks are reconstructible implies that we can restrict
our attention to leaf-reconstructibility of simple networks, that is, non-decomposable
networks. An important feature of a phylogenetic network N is its level, which mea-
sures how far away the network is from being a phylogenetic tree (in particular, trees
are level-0 networks). By considering certain subconfigurations in simple networks,
in Section 5, we prove that, for fixed k, almost all binary level-k networks are leaf-
reconstructible.

In Section 6, we then turn to the problem of computing the smallest number of ele-
ments in the X-deck of a leaf-reconstructible network that are required to reconstruct
it, which we call its leaf-reconstruction number. This is analogous to the so-called re-
construction number of a graph (cf. [1] for a survey on these numbers). In particular,
we show that the leaf-reconstruction number of any phylogenetic tree on 5 or more
leaves is 2, unless it is a star-tree in which case this number is 3. We also show that
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LEAF-RECONSTRUCTIBILITY OF PHYLOGENETIC NETWORKS 3

this implies that the leaf-reconstruction number of any decomposable phylogenetic
network with at least 5 leaves is 2.

In Section 7, we turn our attention to low-level networks, showing that all binary level-
4 networks with at least five leaves have leaf-reconstruction number at most 2. The
proof uses several lemmas that could be useful in studying the leaf-reconstructibility
of higher-level networks.

In practice, most methods for constructing phylogenetic networks from smaller net-
works to date have focussed on using networks with small numbers of leaves (in the
rooted case, often 3-leaved networks). In Section 8, by using a recursive argument
and our previous results, we show that any level-3 network can be reconstructed from
its set of quarnets. Essentially, these are 4-leaved networks which are obtained from
N by selecting 4 leaves in the network, removing all other leaves and suppressing
degree-2 vertices, multi-edges and biconnected components with two incident cut-
edges. Our result on quartnets is analogous to results presented in [12] for level-2
rooted phylogenetic networks.

Several variants of the reconstruction conjecture have been considered in the litera-
ture (see [3]). We can also consider variants for phylogenetic networks. In Section 9,
we consider the problem of reconstructing a phylogenetic network from its collec-
tion of edge-deleted subgraphs, showing that in this setting we can sharpen the leaf-
reconstructibility bounds that we previously obtained. We then conclude in the last
section by discussing the problem of reconstructing directed phylogenetic networks,
as well as various open problems.

2. Preliminaries. In this section, we present some preliminaries concerning
phylogenetic networks (cf. [6])

Let X be a finite set with | X| > 2.

DEFINITION 2.1. A phylogenetic tree on X is a tree with no degree-2 vertices in which
the leaves (degree-1 vertices) are bijectively labelled by the elements of X .

A biconnected component of a graph is a maximal 2-connected subgraph and it is
called a blob if it contains at least two edges.

DEFINITION 2.2. A phylogenetic network on X is a connected graph N such that
contracting each blob (one by one) into a single vertex gives a phylogenetic tree on X.

A bipartition A|B of X, with A, B # ) is a split of a phylogenetic network N if N
contains a cut-edge e such that the elements of A and B are the leaf-labels of the two
connected components of N — e. If this is the case, we also say that the split A|B is
induced by e. From the definition of a phylogenetic network it follows that each of its
cut-edges induces a split and no two cut-edges induce the same split. Moreover, the
phylogenetic tree obtained by contracting each blob of NV into a single vertex is the
unique phylogenetic tree that has precisely the same splits as N. This phylogenetic
tree is denoted T'(IV), see Figure 1 for an example.

A cut-edge is called trivial if at least one of its endpoints is a leaf. A phylogenetic
network with at least one nontrivial cut-edge is called decomposable. We call a phy-
logenetic network simple if it has precisely one blob.

This manuscript is for review purposes only.
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4 LEO VAN IERSEL AND VINCENT MOULTON

a € €
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T(N) N,

Fi1G. 1. A binary phylogenetic network N, the phylogenetic tree T(N), and two elements of the
X-deck of N: the phylogenetic network N, and the pseudo-network Ne.

DEFINITION 2.3. A pseudo-network on X is a multigraph with no degree-2 vertices in
which the leaves (degree-1 vertices) are bijectively labelled by the elements of X.

Hence, each phylogenetic tree is a phylogenetic network and each phylogenetic network
is a pseudo-network. We let L(N), V(N), E(N) denote, respectively, the set of leaves,
vertices and edges of a pseudo-network N. In addition, the phylogenetic tree T'(N) is
defined as the phylogenetic tree obtained by contracting each blob of N into a single
vertex and suppressing any resulting degree-2 vertices. Two pseudo-networks N, N’
are equivalent, denoted N ~ N’ if there exists a graph isomorphism between N and N’
that is the identity on X.

A pseudo-network is called binary if every non-leaf vertex has degree 3. Note that
our definition of a binary phylogenetic network is slightly different from the one pre-
sented in [6], and has the advantage that for fixed X, there are only finitely many
phylogenetic networks with fixed level and leaf-set X (essentially because the num-
ber of phylogenetic trees with leaf set X is finite cf. [16]). Note also that a binary
phylogenetic network is simple precisely when it is not decomposable and not a star
tree. However, this is not the case for nonbinary networks (because then there can be
blobs that overlap in a single vertex).

3. X-decks and leaf-reconstructibility. In this section we introduce the con-
cept of leaf-reconstructibility. We begin by defining the X-deck for a phylogenetic
network on X.

Given a phylogenetic network N and a vertex v € V(N), the pseudo-network N, is
the result of deleting vertex v from IV, together with its incident edges, and suppress-
ing resulting degree-2 vertices. See Figure 1 for an example. Given a phylogenetic
network N on X and U C V(N), the U-deck of N is the multiset {N,, | u € U}.

This manuscript is for review purposes only.
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LEAF-RECONSTRUCTIBILITY OF PHYLOGENETIC NETWORKS 5

b d b c

Fi1G. 2. A pair of phylogenetic networks that are not leaf-reconstructible (and not even V(N)-
reconstructible) but that are end-vertex reconstructible (when ignoring the leaf-labels).

Y Y

T z z T

Fic. 3. A pair of phylogenetic networks that are not end-vertex reconstructible (when ignoring
the leaf-lables) but that are leaf-reconstructible.

A U-reconstruction of a network N on X is a network N’ on X with V(N') = V(N)
and N] ~ N, for all w € U. We call a phylogenetic network N U-reconstructible if
every U-reconstruction of IV is equivalent to N. The U-reconstruction number of a
network NV on X is the smallest k for which there is a subset U’ C U with |U'| = k
such that N is U’-reconstructible.

We are usually interested in the case that U C X. For the case that U = X, we will
also refer to X-reconstruction, X-reconstructible and X-reconstruction number as
leaf-reconstruction, leaf-reconstructible and leaf-reconstruction number, respectively.
It could also be interesting to take U = V' (N), but we shall not consider this possibility
in this paper.

If N is a binary network on X and z € X then N can be obtained from N, by
attaching x to some edge e, i.e., to subdivide e by a new vertex v and adding a vertex
labelled z and an edge between v and z. For example, the network IV in Figure 1 is
{e}-reconstructible since it can be uniquely reconstructed from N, by attaching leaf e
to one of the multi-edges. Hence, this network has leaf-reconstruction number 1.
The networks in Figure 2 are not leaf-reconstructible since both networks have the
same X-deck.

REMARK 1. At first sight it might appear that leaf-reconstructibility of a phylogenetic
network could be equivalent to end-vertex reconstructibility (where one tries to recon-
struct a graph from the deck obtained by deleting only its end-vertices, i.e. leaves,
cf. [3, p.237]). However, these are distinct concepts. For example, the phylogenetic
networks in Figure 3 are leaf-reconstructible. However, considered as graphs (with no
labels), they are not end-vertex reconstructible, as they both have the same end-vertex
deck (the multiset of graphs obtained by deleting a single leaf) [15, p.313]. Conversely,
the networks in Figure 2 are end-vertex reconstructible but not leaf-reconstructible.
Leaf-reconstructibility is also different from reconstructibility, because the latter aims
at reconstructing a graph from subgraphs obtained by deleting any vertex (not neces-
sarily a leaf) and without suppressing any resulting degree-2 vertices.

This manuscript is for review purposes only.
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6 LEO VAN IERSEL AND VINCENT MOULTON

We call a class N of phylogenetic networks leaf-reconstructible if each N € N is
leaf-reconstructible. Class N is weakly leaf-reconstructible if, for each network N €
N, all leaf-reconstructions of N that are in A are equivalent to N. Class N is
leaf-recognizable if, for each network N € N, every leaf-reconstruction of N is also
in V.

OBSERVATION 1. A class N of phylogenetic networks is leaf-reconstructible if and only
if it is leaf-recognizable and weakly leaf-reconstructible.

We conclude this section by showing that certain features of a binary phylogenetic
network on X can be reconstructed from its X-deck. The reticulation number of a
pseudo-network N is defined as |E(N)| — |V(N)| + 1. The level of N is the maximum
reticulation number of a biconnected component of N. A phylogenetic network is
called a level-k network, with k& € N, if its level is at most k. A phylogenetic network
is called a simple level-k network if it is simple and has level exactly k.

A function f defined on a class A of phylogenetic networks is leaf-reconstructible if
for each N € A and for any leaf-reconstrution M of N we have f(N) = f(M).

PRrOPOSITION 3.1. The functions assigning to each binary phylogenetic network its
number of edges, number of vertices, reticulation number or level are all leaf-recon-
structible.

Proof. Let N be any phylogenetic network and = € L(N).

If |V(N)| = 2, then |V(N,)| = |[V(N)| — 1 and |E(N.)| = |E(N)| — 1. Moreover, the
level and reticulation number of N, are 0, the same as the reticulation number and
level of N.

If [V(N)| > 3, then |[V(N,)| = |[V(N)| — 2 and |E(N,)| = |E(N)| — 2. Moreover,
the level and reticulation number of N, are the same as the reticulation number and,
respectively, level of N.

In both cases, the proposition follows directly. 0

The following is a direct consequence.

COROLLARY 3.2. For each k € N, the class of binary level-k phylogenetic networks is
leaf-recognizable.

4. Decomposable networks. In this section we will consider decomposable
networks, that is, networks with at least one nontrivial cut-edge (that is, a cut-edge
which does not contain a leaf). We start with a few simple observations. Note that,
for |X| < 3, there exists a unique phylogenetic tree on X which is therefore X-
reconstructible. For |X| = 4, no binary phylogenetic tree on X is X-reconstructible,
but all phylogenetic trees T on X are V(T)-reconstructible.

THEOREM 4.1. Any phylogenetic tree with at least five leaves is leaf-reconstructible.

Proof. The class of phylogenetic trees is leaf-recognizable by Corollary 3.2. To show
weak-reconstructibility, suppose that there exist phylogenetic trees T' 7 T” on X such
that 7' and T” have the same X-deck. Then there is at least one nontrivial split
A|B that is a split of, without loss of generality, T but not of 7”. Since |X| > 5,
at least one of A and B contains at least three elements. The other side contains at
least two elements since the split is nontrivial. Assume aq,as,a3 € A and by,bs € B.
Then Tg, has split A\ {a1}|B and Ty, has split A\ {az}|B. Hence, T, and T, have
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the same splits, respectively. This implies that 7’ has a split that can be obtained
from A\ {a1}|B by inserting a;. Since it does not have split A|B, it must have split
A\ {a1}|BU{a1}. Similarly, 7" must have the split A\ {a2}|B U {az}. This leads to
a contradiction because these splits are incompatible (see e.g. [16]). 0

REMARK 2. It is known that any tree is reconstructible [1/]. A proof of this result is
given in [3, p.232], which uses a generalization of Kelly’s Lemma [14]. Kelly’s Lemma
is key to proving several results in graph reconstructibility. We were unable to derive
an analogous result for leaf-reconstructibility — it would be interesting to know if some
such result exists. Note also that trees are known to be end-vertex reconstructible [11].

To extend Theorem 4.1 to decomposable networks, we will use the following observa-
tion.

OBSERVATION 2. For any phylogenetic network N on X and any leaf x € X we have
(T(N))z = T(Ns)

COROLLARY 4.2. The function mapping a phylogenetic network N with at least five
leaves to T(N) is leaf-reconstructible.

Proof. By Observation 2 and Theorem 4.1. ]

THEOREM 4.3. Any decomposable phylogenetic network with at least five leaves is leaf-
reconstructible.

Proof. Let N be the class of phylogenetic networks with at least five leaves and at least
one nontrivial cut-edge. This class is leaf-recognizable since a phylogenetic network
on X belongs to this class if and only if every element of its X-deck has at least four
leaves and at most two elements of its X-deck have no nontrivial cut-edges.

It remains to show weak leaf-reconstructibility. Suppose | X| > 5 and let N be a phylo-
genetic network on X with some nontrivial cut-edge e. Let A|B be the split induced
by e. By Corollary 4.2, T(N) is X-reconstructible. Hence, any reconstruction N’
of N contains a unique edge e’ representing split A|B. Since e is nontrivial, there
exist leaves a1,a2 € A and b1,by € B. Pseudo-network N,, contains a unique edge f
inducing split A\ {a1}|B. Since N4, ~ N/ , the connected component of Ny, — f
containing B is equivalent to the connected component of N’ — ¢’ containing B. Call
this connected component Np and let u be the endpoint of f that it contains. Simi-
larly, pseudo-network N, contains a unique edge g inducing split A|B \ {b1} and the
connected component of N, — g containing A is equivalent to the connected compo-
nent of N — ¢’ containing A. Call this connected component N4 and let v be the
endoint of g that it contains. Then, N’ can be obtained from N4 and N by adding
an edge between u and v. Therefore, N’ ~ N. 0

5. Simple networks. When considering leaf-reconstructability of binary net-
works we can, by Theorem 4.3, restrict to simple networks, which are binary net-
works containing precisely one blob. Therefore, in this section we focus on leaf-
reconstructibility of simple binary networks. The class of such networks is clearly
leaf-recognizable since a phylogenetic network on X is contained in this class if and
only if each element of its X-deck is binary and has precisely one blob.

We say that (x,y,z) is a 3-chain of a phylogenetic network N on X if z,y,2 € X
and N contains a path (u,v,w) such that z,y and z are respectively a neighbour
of u,v and w.

This manuscript is for review purposes only.
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LEMMA 5.1. Any simple binary level-k phylogenetic network containing a 3-chain is
leaf-reconstructible if it has at least 4 leaves and at least 5 leaves if k = 1.

Proof. The class N of such networks is leaf-recognizable since a simple binary level-k
phylogenetic network on X, with |X| > 4 and |X| > 5 if k = 1, is contained in N if
and only if at most three elements of its X-deck do not contain a 3-chain.

To show weak leaf-reconstructibility, let N € AN be a phylogenetic network on X
and let (z,y,z) be a 3-chain in N. Since |X| > 4, there exists at least one other
leaf a € X. Consider N, and N,. First observe that N, contains a 3-chain (z,y, z).
In N,, there is a unique edge e between the neighbours of x and z. Moreover, in N,
there is no 3-chain (z,a, z) by the assumption that |X| > 5if k =1. Let N' € N be
a {y,a}-reconstruction of N. Then N’ contains a 3-chain (z,y, z) since N, contains
a 3-chain (z,y,z) and N, does not contain a 3-chain (z,a,z). Hence, N’ can be
reconstructed from N, by attaching y to edge e. Therefore, N’ ~ N. ]

COROLLARY 5.2. Any simple binary level-k phylogenetic network with at least 6k — 5
leaves and k > 2 s leaf-reconstructible.

Proof. Leaf-recognizability is clear. Let N be a simple binary level-k phylogenetic
network on X with k£ > 2 and | X| > 6k—5. Deleting all leaves from N and suppressing
all degree-2 vertices gives a 3-regular multigraph G. Since N is simple level-k, |E(N)|—
|[V(N)|+1 =k and hence |E(G)|—|V(G)|+1 = k. Combining this with the fact that,
since G is 3-regular, 3|V (G)| = 2|E(G)| gives that |E(G)| = 3k — 3. Suppose that N
contains no 3-chain. Then it could have at most two leaves per edge of G, implying
that | X| < 6k — 6. Hence, N contains a 3-chain and is therefore X-reconstructible by
Lemma 5.1. ]

COROLLARY 5.3. Any binary phylogenetic network N = (V,E) on X with |X| >
max{6(|E| — |V|) + 1,5} is leaf-reconstructible.

Proof. If N contains a nontrivial cut-edge, then apply Theorem 4.3. If it is simple

level-1, then apply Lemma 5.1. If it is simple level-k with k& > 2 then |E|—|V|+1 =k
and hence | X| > 6k — 5 and therefore we can apply Corollary 5.2. |

We say that almost all phylogenetic networks from a certain class N are leaf-recon-
structible, if the probability that a network drawn uniformly at random out of all
networks in A with n leaves is leaf-reconstructible goes to 1 when n goes to infin-
ity.

COROLLARY 5.4. For any fixed k, almost all binary level-k phylogenetic networks are
leaf-reconstructible.

Proof. All networks with at least five leaves and some nontrivial cut-edge are leaf-
reconstructible by Theorem 4.3. For a simple binary level-k phylogenetic network N =
(V,E) on X, with & > 1 we have (similar to in the proof of Corollary 5.2)

V| =2k —2+2|X].

Hence, when |V| — oo then |X| — oco. When |X| > max{6k — 5,5} then N is
X-reconstructible by Lemma 5.1 and Corollary 5.2. The corollary follows. 0

6. Reconstruction numbers of decomposable networks. In this section,
we shall show that the reconstruction number of a decomposable phylogenetic network
with at least five leaves is at most two.

This manuscript is for review purposes only.
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OBSERVATION 3. Let k > 0. To recognize that a phylogenetic network N is level-k it
suffices to check that any element of its X -deck is level-k.

We start by determining the reconstruction number of binary trees.

The median of three leaves x,y, z € L(T) in a phylogenetic tree T is the unique vertex
that lies on each of the paths between all pairs of leaves in {x,y, z}.

LEMMA 6.1. Any binary phylogenetic tree T with at least five leaves has leaf-recon-
struction number 2.

Proof. The class of phylogenetic trees on X is {z}-recognizable for any z € X by
Observation 3. No phylogenetic tree on X with |X| > 5 is {z}-reconstructible for
any x € X since attaching x to different edges in T, gives different non-equivalent
trees. Hence, the leaf-reconstruction number of such trees is at least 2. It remains to
show that it is exactly 2.

Consider a binary phylogenetic tree T on X with |X| > 5. Take any two leaves x,y €
X such that the distance between them is at least 4. Such leaves exist since | X| > 5.
We will show that 7' can be uniquely reconstructed from 7, and T,. First observe
that any leaf-reconstruction of 7' is binary since T, and T}, are binary and z and y do
not have a common neighbour.

Let w be the neighbour of x in T" and u,v the other two neighbours of w. Then T
has an edge {u,v}.

First assume that neither v nor v is a leaf. Then there exist leaves a, b # y such that
the path between a and b (in T') contains u but not w and there exist leaves ¢,d # y
such the path between ¢ and d (in T') contains v but not w. Then w is the median
of a,b,c and v is the median of a,c,d in T'. Call in T, and T}, the median of a,b,c
also u and the median of a,c,d also v. Then, in T}, the neighbour of z is adjacent
to u and v. Hence, we can reconstruct T from T, by attaching z to the edge {u,v}.

Now assume that u is a leaf. Then there again exist leaves ¢, d # y such that v is on
the path between ¢ and d (in 7). In this case, v is the median of u,c,d in T. Call
the median of u,c,d in T, and T} also v. Then, since the neighbour of z in 7}, is
adjacent to v and v, we can again uniquely reconstruct T from T, by attaching z to

the edge {u,v}. 0

We now consider nonbinary trees.

THEOREM 6.2. Any phylogenetic tree with at least five leaves has leaf-reconstruction
number 2 unless it is a star, in which case it has leaf-reconstruction number 3.

Proof. As in the proof of Lemma 6.1, it is clear that, for any x € X, the class of
phylogenetic trees on X is {x}-recognizable and no phylogenetic tree on X is {z}-
reconstructible if | X| > 5. Consider a phylogenetic tree T on X with | X| > 5.

First consider the case that T is a star. Then, for any z,y € X, there exists a
phylogenetic tree T T on X such that T, ~ T, and T, ~ T,, (T" has two internal
vertices, leaves x and y are adjacent to one of these internal vertices while all other
leaves are adjacent to the other internal vertex). Hence, the X-reconstruction number
of T is at least 3. To see that it is exactly 3, note that any phylogenetic tree that is
not a star has at most two elements in its X-deck that are stars. Hence, since there
exists a unique phylogenetic star tree on X, the reconstruction number of T is 3.

This manuscript is for review purposes only.
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10 LEO VAN IERSEL AND VINCENT MOULTON

Now consider the case that T contains exactly one nontrivial cut-edge {u,v}. Take
one leaf x adjacent to u and one leaf y adjacent to v. First suppose that u has
degree 3. Then v has degree at least 4. Hence, T, is a star tree and T} has exactly
one nontrivial cut-edge {u’,v’'}. Suppose z is adjacent to «’. Then v’ is adjacent to
exactly one other leaf z. Hence, we can uniquely reconstruct T from T}, by attaching x
to the edge incident to z. Now suppose that both u and v have degree at least 3.
Then T, and T}, both have exactly one nontrivial cut-edge. Let z be any leaf adjacent
to the neighbour of  in T},. Then we can uniquely reconstruct 1" from T}, by adding x
with an edge to the neighbour of z.

Finally, assume that 7" has at least two nontrivial cut-edges. Then there exist two
leaves x,y € X such that the distance between them is at least 4. Let w be the
neighbour of x in T" and u, v # x two other neighbours of w.

If w has degree 3, then we can proceed as in the proof of Lemma 6.1.

Now assume w has degree at least 4. Then it has a neighbour z ¢ {u,v,2}. Then there
exist leaves a,b,c ¢ {x,y} reachable by paths from u,v and z respectively that do
not contain w. Therefore, the median of a,b and ¢ in T is w. Hence, we can uniquely
reconstruct T from T, by adding x with an edge to the median of a,b and c. ]

COROLLARY 6.3. Any decomposable phylogenetic network with at least five leaves has
leaf-reconstruction number at most 2.

Proof. Let N be a phylogenetic network that has at least five leaves and at least
one nontrivial cut-edge and let 2 and y be maximum distance apart in T(N). Then
any {z,y}-reconstruction has a nontrivial cut-edge. Moreover, since the distance
between x and y in T(N) is at least 3, T(N) is {x, y}-reconstructable by the proof
of Theorem 6.2. Moreover, by the proof of Theorem 4.3, it now follows that N is
{z, y}-reconstructable. O

7. Low-level networks. In this section we show that all binary networks with

at least five leaves and level at most 4 are leaf-reconstructible and, moreover, have
leaf-reconstruction number at most 2. The proofs are based on the following no-
tions.
DEFINITION 7.1. A binary level-k generator, for k > 2, is a 2-connected S-regular
multigraph G = (V, E) with |E| — |V|+ 1 = k. The underlying generator of a binary
simple level-k network N is the generator obtained from N by deleting all leaves and
suppressing resulting degree-2 vertices. For an edge e of G, we say that a leaf x is on
edge e in N if the neighbour of x is on a path that is suppressed into edge e. If x is
on edge e then we also say that e contains x and we refer to e as the x-edge.

See Figure 4 for all binary level-k generators, for 2 < k < 4.

We say that two cycles are similar if they have the same number of vertices and
the same number of vertices that are neighbours of leaves, and hence also the same
number of generator vertices (i.e. vertices that are not neighbours of leaves).

The following three lemmas show several special cases of simple level-k networks that
are leaf-reconstructible. We will use these lemmas to show that all simple level-4
networks are leaf-reconstructible, if they have at least five leaves.

LEMMA 7.2. Let N be a binary simple level-k network on X, with k > 2 and | X| > 5.
If N contains a cycle C' containing the neighbours of leaves a,b,c and d and either

This manuscript is for review purposes only.
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Fi1G. 4. All binary level-k generators, for 2 < k < 4.

(i) thereis no cycle C' # C in N that is similar to C' and contains the neighbours
of a,b and c; or

(ii) ¢ and d are on the same edge of the underlying generator and there is no
cycle C" # C in N that is similar to C and contains the neighbours of a, b, c
and d in a different order,

then N is {d, e}-reconstructible, for any e € X \ {a,b,c,d}.

Proof. (i) Note that N, has a cycle C, containing the neighbours of a, b, ¢ and d and no
other cycle that is similar to C, and contains the neighbours of a, b, c and d. Assume
without loss of generality that these neighbours are visited in this order. Suppose
that the neighbour of d is the i-th vertex on the path from the neighbour of ¢ to the
neighbour of a on C,. Now consider N4, which contains a cycle Cy containing the
neighbours of a, b and ¢ and no other cycle similar to Cy that contains the neighbours
of a, b and c. Let P be the path from the neighbour of ¢ to the neighbour of a on Cy,
not via the neighbour of b. If the neighbour of e is among the first ¢ vertices of P
then we let f be the i-th edge on P. Otherwise, we let f be the (i — 1)-th edge on P.
Then the unique way to insert d into Ny is by attaching it to edge f.

(ii) Assume without loss of generality that the distance between ¢ and d is 3. Note
that N, has a cycle C, containing the neighbours of a,b, ¢ and d and no cycle that is
similar to C, and contains the neighbours of a, b, ¢ and d in a different order. Assume

This manuscript is for review purposes only.



115
416
417
418
419
420
421
422
423
424
425
126
127
428
429
430

431
132
433
434
435
436

437
138

12 LEO VAN IERSEL AND VINCENT MOULTON

again that C, visits a,b,c and d in this order. Now consider Ny and choose any
cycle Cy containing the neighbours of a,b and c. Let f be the first edge on the path
from the neighbour of ¢ to the neighbour of a along Cy, not via the neighbour of b.
Then the unique way to insert d into Ny is by attaching it to edge f. 0

LEMMA 7.3. Let N be a binary simple level-k network on X, with k > 2 and | X| > 5.
If the underlying generator of N has a pair of multi-edges ey, es then, unless one
of e1,ea contains two leaves and the other one no leaves in N, then N has leaf-
reconstruction number at most 2.

Proof. First suppose that there is exactly one leaf x that is on one of the multi-edges.
Then N, has multi-edges. Since multi-edges are not allowed in phylogenetic networks,
the unique way to insert = into IV, is by attaching it to one of the multi-edges.

Now suppose that there is exactly one leaf x on e; and exactly one leaf a on e;. Let y
be any other leaf. Then NNV, contains a unique 4-cycle containing the neighbours of x
and a, and these neighbours are not adjacent. Since IV, contains a unique 3-cycle C
containing the neighbour of a, the only way to insert z into N, is by attaching it to
the unique edge on C' that is not incident to the neighbour of a.

Now suppose that there are exactly two leaves a, b on e; and exactly one leaf = on es.
Let y € X \ {a,b,z}. Then, N, contains a unique 5-cycle containing the neighbours
of a,b and = and the neighbour of x is not adjacent to the neighbours of a and b.
Since N, contains a unique 4-cycle C containing the neighbours of a and b, the unique
way to insert x into IV, is by attaching it to the unique edge on C that is not incident
to the neighbours of a and b.

Now suppose that there are exactly two leaves a,b on e; and exactly two leaves ¢, d
on eg. This case is handled by Lemma 7.2 (i).

The only remaining possibility is that there is a 3-chain, which is handled by the proof
of Lemma 5.1. d

LEMMA 7.4. Let N be a binary simple level-k network on X, with k > 2 and | X| > 5.
If the underlying generator of N has three pairwise incident edges and N has at least
three leaves on these edges, then N has leaf-reconstruction number at most 2.

Proof. First suppose that all three edges are incident to some vertex v and the other
three endpoints are all distinct. If each edge contains at least one leaf, let a,b, c be
the leaves closest to v on each of the edges. Then N is {a,d}-reconstructible for
any d € X \ {a,b,c}, since we can reconstruct N from N, by attaching a to the
edge that is incident to the vertex v’ that is incident to the b-edge and to the c-edge,
making a the leaf closest to v’ on that edge. Similarly, if one edge contains at least two
leaves a, b and another edge at least one leaf ¢, then N is again {a, d}-reconstructible
for any d € X \ {a,b,c}.

A similar argument can be used to handle the case that the three edges form a triangle.

Finally, suppose that at least two of the three edges are multi-edges. Then, by
Lemma 7.3, exactly two of the three edges form multi-edges, one of them contain-
ing two leaves, the other one no leaves, and the third edge of the three pairwise
incident edges contains at least one leaf. Then again it can be seen that N has
leaf-reconstruction number at most 2 by using a similar argument as above. 0

THEOREM 7.5. Any binary level-4 phylogenetic network with at least five leaves has
leaf-reconstruction number at most 2.

This manuscript is for review purposes only.
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Proof. Let N be such a network. By Corollary 6.3, we may assume that N has no
nontrivial cut-edges, i.e. N is simple.

If N is a simple level-1 network, pick any two x,y that are distance at least 4 apart.
The fact that N is simple is {z,y}-recognizable. Moreover, using the fact that N
has at least five leaves, it can easily be shown that N can be uniquely reconstructed
from N, and IV,,.

Now suppose that IV is a simple level-k network, with k£ > 2.

If N has a 3-chain (z,y,2) and a € X \ {z,y, 2}, then any {y, a}-reconstruction
of N is simple. Moreover, by the proof of Lemma 5.1 it can be concluded that N is
{y, a}-reconstructible. Hence, we may assume that N contains no 3-chains.

If £ = 2, then, considering the unique level-2 generator in Figure 4, we are done by
Lemma 7.3.

If kK = 3, then there are two possible underlying generators, see Figure 4. First suppose
the underlying generator G is not K, and thus has two pairs of multi-edges. Then,
by Lemma 7.3, we may assume that each pair of multi-edges has one edge containing
exactly two leaves. Hence, we are done by Lemma 7.2 (i). Now suppose that G = Kj.
Since |X| > 5, it is straightforward to check that at least one 3-cycle C of G contains
at least three leaves in N. By Lemma 7.2, it contains exactly 3 leaves. There are
two cases (by Lemma 5.1). Either each edge of C' contains exactly one leaf, or one
edge contains two leaves and one edge one leaf. In either case, it is easy to check
that wherever the other two leaves are, we can apply Lemma 7.2 to see that N has
reconstruction number at most 2.

Finally, suppose k = 4. Then there are five possibilities for the underlying generator G,
see Figure 4. If G € {G1, G2, G5} then, by Lemma 7.3, each pair of multi-edges has
one edge containing exactly two leaves and one edge containing no leaves. If G = G,
or G3, then we are done by Lemma 7.2 (i). If G = G», then it is straightforward to
check that, since |X| > 5, there must exist some cycle that satisfies the condition of
Lemma 7.2 (ii).

Now suppose that G = G4. Observe that G4 consists of two disjoint 3-cycles and
three other edges, which we will call the middle edges. For every vertex of G4, at
most two edges incident to this vertex contain leaves by Lemma 7.4. Since |X| > 5, it
is straightforward to check that there is at least one vertex v of G4 with exactly two
leaves a, b on the edges incident to v.

First assume that a is on a middle edge and b is on a triangle edge. Then there is a
unique Hamiltonian cycle C' of G containing the a-edge and the b-edge. First suppose
that there is at least one leaf ¢ € X \ {a,b} on an edge of C. Assume that c is the
first such leaf on the path along C between the neighbour of b and the neighbour of a
not containing v. Let 7 be the distance from the neighbour of b to the neighbour of ¢
on this path. Let d € X \ {a,b,c}. Then N is {c, d}-reconstructible, since the unique
way to insert ¢ into N, is by attaching it to the i-th edge of the path along C from
the neighbour of b to the neighbour of @ not containing v. Now suppose that none
of the leaves in X \ {a,b} are on edges of C. By Lemma 7.4 there are no leaves on
the third edge incident to v. Hence, since | X| > 5, there at least three leaves on the
two edges of G that are not on C' and not incident to v. It is now straightforward to
check that N has reconstruction number 2 by Lemma 7.2 (i).

This manuscript is for review purposes only.
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14 LEO VAN IERSEL AND VINCENT MOULTON

Now assume that a and b are both on the same triangle-edge. Then, if the previous
case is not applicable for any vertex v’ of G4, the only remaining possibility is that
the other triangle also has an edge containg two leaves and we can apply Lemma 7.2.

Now assume that a and b are on different triangle edges (of the same triangle). Then,
if the previous cases are not applicable, all other leaves must be on the other triangle
and we can use Lemma 7.4.

Finally, assume that a and b are both on the same middle edge. Then, if the previous
cases are not applicable, the only remaining possibility is that some other middle edge
also contains two leaves and we can apply Lemma 7.2.

Now consider the last level-4 generator G5 = K3 3. As before, it is straightforward
to check that there is at least one vertex v of G5 with exactly two leaves a,b on the
edges incident to v.

First suppose that a and b are on different edges incident to v. Observe that there
are precisely two Hamiltonian cycles C' and D of G5 containing the a-edge and the
b-edge. Since each leaf is on an edge of at least one of C' and D, at least one edge
of C and D contains a third leaf ¢ € X \ {a,b}. Suppose that ¢ is on an edge
of C. First suppose that all leaves are on edges of C. Then we can use a similar
argument as for the Hamiltonian cycle in G4 to show that N is {c, d}-reconstructible,
for some d € X \ {a,b,c}. If at least one leaf e € X \ {a,b,c} is on an edge that
is not also on D, then we choose the Hamiltonian cycle containing the e-edge, and
choose d # e. Otherwise, all leaves are also on edges of D. Observet that there are
precisely four edges that are on both C' and D, which are two pairs of incident edges.
Since | X| > 5, it then follows by Lemma 7.4 that N has leaf-reconstruction number 2.
Now suppose that at least one leaf e € X \ {a,b, ¢} is not on an edge of C. Then N
is {c, d}-reconstructible, with d € X \ {a,b,c, e}, again using a similar argument as
for the Hamiltonian cycle in G4, choosing the Hamiltonian cycle of G not containing
the e-edge.

Finally, suppose that a and b are on the same edge incident to v. Then, if the previous
case is not applicable for any vertex v’ of G5, the only remaining possibility is that
there is some other edge of G5 containing two leaves and we can apply Lemma 7.2 (ii).0

8. Reconstructing networks from quarnets. We have focussed so far on
reconstructing networks from their X-deck. We could try to use a recursive argument
in order to reconstruct networks from smaller subnetworks, with less than |X| — 1
leaves. However, this approach does not work in general since there are networks for
which no elements of its X-deck are phylogenetic networks, see Figure 5. Nevertheless,
it is possible to apply a recursive approach if we use the following variant of the X-deck
of a network.

DEFINITION 8.1. Given a phylogenetic network N on X and a leaf x € X, the phylo-
genetic network NF is the result of deleting leaf x from N, together with its incident
edge, and applying the following three operations until none is applicable:

(i) suppress a degree-2 vertex;
(i) replace a pair of multi-edges by a single edge;

(iii) collapse a blob with precisely two incident cut-edges into a single vertez.

This manuscript is for review purposes only.
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F1c. 5. An example of a level-1 phylogenetic network N on X such that no elements of its X -
deck are phylogenetic networks. Nevertheless, it is possible to reconstruct N from the quarnets N
and NP.

d

Given a phylogenetic network N on X and X' C X, the phylogenetic X'-deck of N
is the set {NF |z € X'}.

See again Figure 5 for an example. Note that this form of leaf-deletion was introduced
for directed level-1 phylogenetic networks in [10] — see also [9] for more details for
general phylogenetic networks.

All elements of a phylogenetic X-deck are phylogenetic networks by the following
observation, which is easily verified.

OBSERVATION 4. Let N be a phylogenetic network N on X, with | X| >3, andz € X.
Then NF is a phylogenetic network on X \ {x}.

This opens the door to reconstructing networks from smaller subnetworks. A quarnet
is a phylogenetic network with precisely four leaves. The set of quarnets Q(N) of
a phylogenetic network N on X is defined recursively by Q(N) = {N} if |X| = 4
and

Q) = |J evl) if[X]>5.

zeX

Here, the union operation keeps one phylogenetic network from each group of equiva-
lent phylogenetic networks. We say that two sets A/, A/ of phylogenetic networks are
equivalent, denoted N' ~ N’ if there exists a bijection f : N'— N’ with N ~ f(N)
forall N e N.

We say that a network N is reconstructible from its quarnets if every phylogenetic
network N’ with Q(IN)~Q(N’) is equivalent to N. Moreover, a class N of phylo-
genetic networks is quarnet-reconstructible if each N € N is reconstructible from its
quarnets.

Similarly, N is reconstructible from its phylogenetic X -deck if every phylogenetic net-
work N’, whose phylogenetic X-deck is equivalent to the phylogenetic X-deck of N,
is equivalent to N. Moreover, a class A of phylogenetic networks is phylogenetically
reconstructible if each N € N is reconstructible from its phylogenetic X-deck.

This manuscript is for review purposes only.
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a C a C

N M

Fi1G. 6. Two phylogenetic networks that have the same phylogenetic X -deck but not the same X -
deck (even though the X-deck and phylogenetic X-deck of N are equivalent). Network N is neither
X -reconstructible nor reconstructible from its phylogenetic X -deck, while M is X -reconstructible but
not reconstructible from its phylogenetic X -deck.

If two phylogenetic networks on X have equivalent X-decks, then they have equiv-
alent phylogenetic X-decks (but not conversely, see Figure 6). Consequently, if a
phylogenetic network on X is reconstructible from its phylogenetic X-deck, then it is
X-reconstructible. The following proposition, which shows that the converse is also
true in some cases, will permit us to apply results from previous sections.

PROPOSITION 8.2. Let N be a phylogenetic network on X with |X| > 4. If N is Y-
reconstructible for some Y C X with |Y| > 2 and NZD ~ Ny forally €Y, then N is
reconstructible from its phylogenetic X -deck.

Proof. Suppose that there exists a network M that is not equivalent to N but has an
equivalent phylogenetic X-deck. Since N is Y-reconstructible, there exists a y € Y
such that Ny ¢ M,,. Since M;’ ~ N;’ ~ Ny, it follows that M;D o M, and hence that
the neighbour of y in M is in a triangle. Moreover, since IV, has the same reticulation
number as N, M;) also has the same reticulation number as N. Since, in M, the
neighbour of y is in a triangle, M has a higher reticulation number than MZD and N.
Take any z € Y \ {y}. Then, since M7 ~ NP ~ N,, M has the same reticulation
number as N and Mf and hence a lower reticulation number than M. It follows that
the neighbour of z in M is also in a triangle. We distingish two cases.

First assume that the neighbours of y and z are both in the same triangle in M.
Consider any two leaves z,p € X\ {y, z}. Then, the neighbours of y and z are together
in the same triangle in M ~ N7 and in MI;P ~ NZD. On the other hand, neither of the
neighbours of y and z is in a triangle in N, since N ~ N, and NZD ~ N. This is only
possible when N is a simple level-1 network on X = {x,y, z,p}. This contradicts the

assumption that N is Y-reconstructible, with Y C X, and hence X-reconstructible.

Now assume that the neighbours of y and z are in different triangles in M. Then, the
neighbour of z is also in a triangle in M;) ~ Ny. On the other hand, the neighbour
of z is not in a triangle in N, since N7 ~ N,. Hence, in N, the neighbours of y and 2
are part of a 4-cycle. Consider again two leaves x,p € X \ {y,2}. In N7 ~ M” and
in N;D ~ MZ;, the neighbours of y and z are in a triangle or 4-cycle. This is only
possible when, in M, the neighbours of (without loss of generality)  and y are in
one triangle while the neighbours of p and z are in a different triangle, and the two
triangles are adjacent. This implies that there are no other leaves, i.e. X = {z,y, 2, p},
and again N is a simple level-1 network on X. This again leads to a contradiction
since N is X-reconstructible. ]

In particular, we have the following.

This manuscript is for review purposes only.
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a a

F1G. 7. Phylogenetic networks on X = {a, b, c} that are X -reconstructible but not reconstructible
from their phylogenetic X -deck.

COROLLARY 8.3. Let N be a phylogenetic network on X with | X| > 4. If the X-
deck of N consists of only phylogenetic networks, then N is reconstructible from its
phylogenetic X -deck if and only if N is X -reconstructible.

Note that Corollary 8.3 does not hold when |X| = 3, see Figure 7.

THEOREM 8.4. Let N be a class of phylogenetic networks such that each element
of N has at least five leaves and, for each element N of N with at least siz leaves, the
phylogenetic X -deck of N is equivalent to a subset of N'. Then N is phylogenetically-
reconstructible if and only if it is quarnet-reconstructible.

Proof. If N is quarnet-reconstructible then it is phylogenetically-reconstructible since
if two phylogenetic networks N, N’ € N have equivalent phylogenetic X-decks then
it follows directly that Q(N)~Q(N').

Now suppose that N is phylogenetically-reconstructible. We prove by induction on ¢
that each N € N with at most i leaves is quarnet-reconstructible. If i = 5 then the
phylogenetic X-deck of N is equal to Q(N) and therefore N is quarnet-reconstructible.
Now suppose i > 6. Since N is reconstructible from its X-deck and each element of
its X-deck is, by induction, quarnet-reconstructible, N is quarnet-reconstructible. O

First observe that each phylogenetic tree on X with |X| > 5 is reconstructible from
its phylogenetic X-deck by Theorem 4.1 and Proposition 8.2. Hence, the class of
phylogenetic trees with at least five leaves is phylogenetically reconstructible.

However, a similar argument cannot be used to show that even the class of level-
1 networks is phylogenetically reconstructible. Therefore, it is interesting to study
which classes of networks are phylogenetically reconstructible.

THEOREM 8.5. The class of level-3 phylogenetic networks with at least five leaves is
phylogenetically reconstructible.

To prove this theorem, we will first show that an analogue of Theorem 4.3 holds.

THEOREM 8.6. The class of decomposable phylogenetic networks with at least five
leaves is phylogenetically reconstructible.

Proof. The proof is very similar to that of Theorem 4.3. As in that proof, first note
that a phylogenetic network has at least one nontrivial cut-edge if and only if at most
two elements of its phylogenetic X-deck do not. Let IV be some phylogenetic network
on X with at least one nontrivial cut-edge and |X| > 5. Since (T'(N))? = T(NF),

for all x € X, we can reconstruct T'(N) from the phylogenetic X-deck of N. We can
then use exactly the same argument as in the last part of the proof of Theorem 4.3

This manuscript is for review purposes only.
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18 LEO VAN IERSEL AND VINCENT MOULTON

to show that N is reconstructible from its phylogenetic X-deck (see Figure 5 for an
illustration). d

We now prove Theorem 8.5.

Proof. By Theorem 8.6, it suffices to consider simple level-k networks with 1 < k < 3.
For simple level-1 networks, the phylogenetic X-deck is precisely equal to the X-deck
and we are done by Proposition 8.2.

Now consider a simple level-2 network N and its underlying generator G. If the
phylogenetic X-deck of N is not equal to its X-deck then one of the three edges
of G contains exactly one leaf x, another edge of G contains no leaves, and the third
edge of G contains all other leaves X \ {z}. Then N is {y, z}-reconstructible for any
y,z € X \ {z} with distance between them at least 4. Since N}’ = N, and NI’ = N,
we are done by Proposition 8.2.

Therefore, we may assume that IV is a simple level-3 network. Suppose the phyloge-
netic X-deck of N is not equal to its X-deck. Then the underlying generator G of N
is not equal to K, (since K4 does not have any multi-edges). Hence, G is the other
level-3 generator, see Figure 4. Moreover, at least one pair of multi-edges contains
precisely one leaf, say leaf x. The other pair of multi-edges contains at least one leaf y.

If there is at least one leaf z on an edge that is not in a pair of multi-edges, then it
is straightforward to check that, wherever you put leaves p,q € X \ {x,y, 2z}, there
is a cycle containing the neighbours of leaves a,b,c,d satisfying the conditions of
Lemma 7.2(i) and a fifth leaf e such that N = Ny and N = N,, and we are done
by Proposition 8.2.

The only remaining case is that all leaves in X \ {x} are on the pair of multi-edges not
containing x. Then there is again a cycle containing the neighbours of leaves a, b, ¢, d
satisfying the conditions of Lemma 7.2(i) and a fifth leaf e such that N = Ny. How-
ever, if |X| = 5 then the only choice for e is e = z and hence N 7tN,. Nevertheless,
we can use a similar argument as in the proof of Lemma 7.2(i) since N does contain
a unique cycle containing the neighbours of a, b, ¢ and d. ]

COROLLARY 8.7. Any level-8 phylogenetic network is reconstructible from its quar-
nets.

9. Edge-reconstructibility. In this section we shall consider the problem of re-
constructing a phylogenetic network from its edge-deleted networks. We first formalize
this concept (cf. [3, Section 2] for a review of edge-reconstruction in graphs).

Given a phylogenetic network N and an edge e € E(N), the pseudo-network N, is the
result of deleting edge e from N and suppressing resulting degree-2 vertices. The edge-
deck of N is the multiset {N, | e € E(N)}. An edge-reconstruction of a network N
on X is a network N’ on X with E(N’) = E(N) and N, ~ N, for all e € E(N). Note
that by E(N') = E(N) we do not mean that the edges of N are the same pairs of
vertices as the edges of N’, but that there exists a bijection f : E(N) — E(N’) which
we assume to be the identity. We call a phylogenetic network N edge-reconstructible
if every edge-reconstruction of N is equivalent to N.

LEMMA 9.1. Let N be a phylogenetic network on X. If N is leaf-reconstructible then
it is edge-reconstructible.

This manuscript is for review purposes only.
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a c a c
b d d b
a c a c
b d d b

a a
b ¢ d b d ¢

e—e

Fic. 8. Pairs of phylogenetic networks that are not leaf-reconstructible but that are edge-
reconstructible. The dashed edges indicate an edge e such that Ne is not contained in the edge-deck
of the other network of the pair.

Proof. This follows directly from the observation that N, ~ N/ if and only if N, ~ N/,
for each edge ¢ that has an endpoint 2 € X in both N and N'. ]

However, there exist edge-reconstructible networks that are not leaf-reconstructible,
see the examples in Figure 8.

When considering edge-reconstructability of binary networks we can, by Theorem 4.3
and Lemma 9.1, again restrict to simple networks.

We say that (z,y) is a 2-chain of a phylogenetic network N on X if 2,y € X and the
distance between z and y in N is 3.

PROPOSITION 9.2. Any simple binary phylogenetic network on X containing a 2-chain
is edge-reconstructible.

Proof. The fact that N is simple can be recognized by considering three elements
of its edge-deck Ne,, N.,, Ne, such that each of eg, es, es is incident to a leaf. Since
each of N, Ne,, Ne, consists of a simple network and an isolated vertex, any edge-
reconstruction of N is simple.

Suppose that N has a 2-chain (x,y). Let u and v be the neighbours of z and y
in N respectively and e = {u,v}. Let v/ and v’ be the neighbours of x and y in N,
respectively.

This manuscript is for review purposes only.
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First suppose that (x,y) is not a 2-chain in N,. There exists at least one edge f that is
not incident to w or v. Since (z,y) is a 2-chain in Ny, we can uniquely reconstruct N
from N, by subdividing the edges {u', 2} and {v’, y} and creating a new edge between
the subdividing vertices.

Now suppose that (x,y) is also a 2-chain in N.. We say that a network has an zy-
ladder of length k if there exist disjoint paths (x,u1,...,ux) and (y,vy,...,v;) such
that u; and v; are adjacent for 1 < ¢ < k. Let p > 1 be the maximum length of
an xy-ladder in N. Take any such ladder and observe that there exists at least one
edge g that is not incident to any vertex of the ladder. Then the maximum length of
an zy-ladder is p in Ny and is p—1 in N,. Hence, we can again uniquely reconstruct N
from N, by subdividing the edges {u', 2} and {v’, y} and creating a new edge between
the subdividing vertices. 0

The following corollary can be proved in a similar way to Corollaries 5.2 and 5.3.

COROLLARY 9.3.

(i) Any simple binary level-k phylogenetic network on X with k > 2 and |X| >
3k — 2 is edge-reconstructible.

(i) Any binary phylogenetic network N = (V, E) on X with | X| > max{3(|E| —
[V|) + 1,5} is edge-reconstructible.

10. Discussion. In this paper we have introduced the concept of leaf-recon-
structible phylogenetic networks. We have shown that several large classes of phy-
logenetic networks are leaf-reconstructible, and used our results to show that level-3
networks are defined by their quarnets. We conjecture that all unrooted phylogenetic
networks with 5 or more leaves are leaf-reconstructible. We expect that this could
be a difficult conjecture to settle, as with other variants of the graph reconstruction
conjecture.

In another direction, it could be of interest to also consider leaf-reconstructibility of
nonbinary networks. In Theorem 4.1, we showed that nonbinary phylogenetic trees are
leaf-reconstructible, and in Theorem 4.3 that even all decomposable nonbinary phy-
logenetic networks are leaf-reconstructible, but what about non-decomposable non-
binary networks? The following related question could also be worth considering: If
every nonbinary phylogenetic network with at least five leaves is leaf-reconstructible,
then is every graph reconstructible?

In Section 9, we considered edge-reconstructibility, a variant of the leaf-reconstruc-
tibility problem. Another variant that should be considered is leaf-reconstructibility
for directed phylogenetic networks. This is an important class of networks, in which
the networks are directed acyclic graphs, with a single root and leaves labeled by
the set X. In [9] certain examples of directed phylogenetic networks are presented
which indicate that such networks may not be leaf-reconstructible, but it remains
an open problem whether or not this is the case (note that not all digraphs are
reconstructible [17]).

In the longer term, it would be interesting to consider leaf-reconstructibility of net-
works that arise in biological settings. Indeed, even if not every network is leaf-
reconstructible, it may be that counter-examples are somewhat unlikely to occur as
evolutionary histories (e.g. if they are highly symmetric).
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One way to approach this could be to consider random networks. As we have seen
in Corollary 5.4, for any fixed k, almost all level-k phylogenetic networks are leaf-
reconstructible. It would be interesting to know whether or not almost all phyloge-
netic networks on a fixed leaf-set are leaf-reconstructible. In this context, it is worth
noting that almost every graph has reconstructing number three [2]. We have shown
that decomposable and binary level-4 networks with at least five leaves have recon-
struction number at most 2. So, do almost all (binary) phylogenetic networks have
reconstruction number at most 27

Finally, it would be interesting to consider leaf-reconstructibilty of networks that are
generated according to some model of molecular evolution (see e.g. [4] for a review
of such models). This would be somewhat analogous to recent ground-breaking work
on reconstructibility of pedigrees in a stochastic setting [19, 20], and could focus on
models such as those presented in, for example, [13].
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