
Shapelet Transforms for Univariate and
Multivariate Time Series Classification

Aaron George Bostrom

A thesis submitted for the

degree of Doctor of Philosophy

University of East Anglia

School of Computing Sciences

May 2018

c©This copy of the thesis has been supplied on condition that anyone who

consults it is understood to recognise that its copyright rests with the

author and that use of any information derived there from must be in

accordance with current UK Copyright Law. In addition, any quotation or

extract must include full attribution.

Abstract

Time Series Classification(TSC) is a growing field of machine learning research.

One particular algorithm from the TSC literature is the Shapelet Transform

(ST). Shapelets are phase independent subsequences that are extracted from

time series to form discriminatory features. It has been shown that using the

shapelets to transform the dataset into a new space can improve performance.

One of the major problems with ST, is that the algorithm is O(n2m4), where

n is the number of time series and m is the length of the series. As a problem

increases in size, or additional dimensions are added, the algorithm quickly

becomes computationally infeasible.

The research question addressed is whether the shapelet transform be

improved in terms of accuracy and speed. Making algorithmic improvements

to shapelets will enable the development of multivariate shapelet algorithms

that can attempt to solve much larger problems in realistic time frames.

In support of this thesis a new distance early abandon method is proposed.

A class balancing algorithm is implemented, which uses a one vs. all multi

class information gain that enables heuristics which were developed for two

class problems. To support these improvements a large scale analysis of

the best shapelet algorithms is conducted as part of a larger experimental

evaluation. ST is proven to be one of the most accurate algorithms in TSC

on the UCR-UEA datasets. Contract classification is proposed for shapelets,

where a fixed runtime is set, and the number of shapelets is bounded. Four

search algorithms are evaluated with fixed run times of one hour and one

day, three of which are not significantly worse than a full enumeration.

Finally, three multivariate shapelet algorithms are developed and compared

to benchmark results and multivariate dynamic time warping.

Acknowledgements

First and foremost I would like to thank my supervisor, Dr. Anthony Bagnall,

whose continued patience and support has proved invaluable throughout

this process. I would like to thank my friends and colleagues at UEA and

especially those in the time series classification group who have supported

me.

I would also like to extend my thanks to Dr. Ji Zhou, and his team over

at the Earlham Institute, he has supported my development as a researcher

during my write up period, and I look forward to working with the group as

I begin the next stage of my career.

Most importantly I would like to thank my beautiful fiancé Amy Fellows,

who has been the mental and physical support I have needed during my PhD,

patiently putting up with the long nights, and strange working hours, and of

course my cat Nacho for staying up with me.

Finally I would like to thank my good friends, to my teacher Paul Fretter,

my friends George Beard, Adam Garner, Hilton Pashley, Sophie Farenden,

James Large, James Macnamara, Leo Wilkins, Joshua Ball, Danny Reynolds

and Pratik Gurung you have been a source of laughter and fun and have

helped me immensely and I cannot thank you all enough.

List of Figures

2.1 sDist diagram taken from Time-Series Shapelets [114]. 25

2.2 Simple orderline with two classes 27

2.3 Image taken from Logical Shapelets [79]. 29

2.4 Image taken from Fast Shapelets [83]. 34

2.5 Early Abandon of a time series (T) and a shapelet (S) being

compared using the sDist function. In the illustration on the

left, S an T are pairwise compared using Euclidean distance.

In the diagram on the right, S and T are compared using Eu-

clidean distance which has an early abandon point illustrated.

The diagram is taken from [115] 39

2.6 Fully calculated orderline with two classes. 42

2.7 Partially calculated orderline with two classes. The series that

have not been calculated are placed in best case positions. . . 42

2.8 A simple diagram of a two dimensional time series comparison

using Independent and Dependent dynamic time warping. The

image on the (left) is DTWD and the image on the (right) is

DTWI . Image taken from [99] 49

3.1 An example Critical Difference (CD) diagram demonstrating

how to interpret the results from a pairwise comparison of five

classifiers over multiple datasets. 53

3.2 An example outline image created converted into a time series. 61

3.3 An example of the four classes for both Accelerometer data

from the MVMotion dataset. 66

1

3.4 A list of the datasets in the multivariate time series archive.

Number of instances is denoted by n, number of dimensions

is denoted by d, length of series is denoted by m, and number

of classes is denoted by c . 67

4.1 Critical difference of published results from Table 4.1 71

4.2 An example orderline split for two shapelets. Orderline (a)

discriminates between class 1 and the rest, however orderline

(b) has the higher information gain. 73

4.3 An example of Euclidean distance early abandon where the

sDist scan starts from the beginning (a) and from the place

of origin of the candidate shapelet (b). 77

4.4 Number of classes plotted against the difference in error be-

tween the full shapelets and the binary shapelets. A positive

number indicates the binary shapelets are better. The dotted

line is the least squares regression line. 80

4.5 The critical difference diagram of Table 4.3 84

4.6 The Average total opCounts performed for the 7 different

shapelets improvements. Average amount of work reduced,

shown with the best and worst dataset. (Oliveoil,SyntheticControl) 88

4.7 Normalised shapelet lengths with respect to series length for

all shapelets in the set used in the transformation process . . 89

4.8 Normalised shapelet lengths with respect to series length

for final shapelets for the datasets UWaveGestureLibraryX,

UWaveGestureLibraryY and UWaveGestureLibraryZ 91

4.9 The critical difference diagram of Table 1, (ST is an abbrevia-

tion for ST HESCA) . 96

4.10 The critical difference diagram of the best 9 algorithms from

[8]. These algorithms are described in section 2.2. 96

2

5.1 All datasets able to fully enumerate the shapelet set in one

day runtime. We demonstrate the calculated opcounts and

timing estimate against the recorded data on the full transform

with no optimisations, and the full transform with current

state-of-the-art optimizations. 106

5.2 The proportion of accuracy relative to the full search. As the

sampling on the shapelet search areas increase the accuracy

becomes worse and the variance increases. This demonstrates

how random sampling breaks down in the extreme case. . . . 110

5.3 A heatmap demonstrating the quality of shapelets found in a

single series from ItalyPowerDemand 113

5.4 A critical difference diagram comparing the four search algo-

rithms, with a runtime of one hour, and the Shapelet Trans-

form via error. Three additional critical difference diagrams

compare the four search algorithms by, balanced accuracy, f

score and AUROC. 120

5.5 A set of four pairwise scatter plots demonstrating the accuracy

of the respective search algorithms with a runtime of one hour

compared with the Shapelet Transform 121

5.6 A critical difference diagram comparing the four search algo-

rithms, with a runtime of one day, and the Shapelet Transform

via error. Three additional critical difference diagrams com-

pare the four search algorithms by, balanced accuracy, f score

and AUROC. 122

5.7 A set of four pairwise scatter plots demonstrating the accuracy

of the respective search algorithms with a runtime of one day

compared with the Shapelet Transform 123

5.8 A pair of critical difference diagrams presenting the preliminary

results of comparing 3 types of random subsampling with ST 124

5.9 A set of four box and whiskers plots showing the quality

of shapelets collected for each of the fourteen classes in the

heartbeatBIDMC dataset. 126

3

6.1 Examples of Class 1 and Class 8 with their respective X, Y

and Z multivariate series from the UWaveGesture dataset . . 129

6.2 Class Labels for the UWaveGesture dataset. Image taken from

[73]. 129

6.3 An example of extracting a single shapelet from a many di-

mensional series, and comparing it to a different series of the

same dimension . 136

6.4 An example of extracting a ShapeletD from a many dimen-

sional series, and comparing it to a different series. Orange is

the extracted shapelet, and blue is either the time series the

shapelet is extracted from, or being compared too. 139

6.5 We present an illustrative example of extracting a ShapeletI

from a many dimensional series, and comparing it to a different

series. Orange is the extracted shapelet, and blue is either the

time series the shapelet is extracted from, or being compared

too. 141

6.6 Accuracy and balanced accuracy of 10 algorithms using five

simple classifiers. These algorithms are RotationForest(RotF),

RandomForest (RandF), Support Vector Machine using a

quadratic kernel (SMO), Multi-Layer Perceptron (MLP) and

1 nearest neighbour with dynamic time warping (1NN DTW).

We use the notation C to denote concatenation, and E to

denote ensembled across dimensions. 142

6.7 Accuracy and Balanced Accuracy 144

6.8 Two critical difference diagrams comparing the three shapelet

algorithms with the three multivariate dynamic time warping

algorithms. 145

6.9 Four critical difference diagrams showing Accuracy, Balanced

Accuracy, AUROC and log likelihood of the best 12 algorithms. 149

6.10 Two critical difference diagrams showing accuracy and bal-

anced accuracy of the three multivariate DTW algorithms,

the three timed shapelet algorithms and 1NN DTW on con-

catenated data . 150

4

6.11 Four classes for the MVMotionA dataset 151

6.12 Box and Whiskers plots of the quality of shapelets broken

down by class . 152

5

List of Tables

2.1 Timing Results for ST, LS FS and STree in milliseconds. . . . 44

3.1 Number of datasets by problem type 59

3.2 Electric Device Datasets . 60

3.3 ECG Datasets . 60

3.4 Image Datasets . 61

3.5 Motion Datasets . 62

3.6 Sensor Datasets . 63

3.8 Spectograph Datasets . 64

3.9 Distribution of Problem sizes 64

3.7 Simulated Datasets . 64

4.1 Published Results for LS, FS and ST 71

4.2 Number of data sets the binary shapelet beats the full shapelet

split by number of classes. 81

4.3 Table of the accuracies for the 4 variations of the shapelet

algorithm, classified using HESCA 83

4.4 A table of the seven different parameters used to measure the

reduction in number of operations performed by the shapelet

transform . 85

4.5 A Table showing the percentage of operations performed for

each of the 7 parameter sets which are compared to a complete

exhaustive search without optimisations. 87

6

4.6 Number of operations as fraction of the maximum amount of

work, Averaged for all datasets 88

4.7 Parameter Settings and ranges for Fast Shapelets and Learn

Shapelets. Consistent with original authors parameters 93

4.8 Two tables for the skipping parameters. (a) contains length

skipping, and (b) contains position skipping values 94

5.1 One hour dataset list . 108

5.2 One day dataset list . 109

5.3 Table of average Accuracy conducted over 10 folds along with

the standard deviation . 125

6.1 A table of results for the Full searches for the three shapelet

algorithms, and the three dynamic time warping algorithms . 146

6.2 A table of results showing the results for the one hour run-

times of the three shapelet algorithms using random shapelet

selection and the three dynamic time warping algorithms. The

standard deviation across the 30 folds is in brackets. 147

1 The average accuracies for the Shapelet Transform, Learn

Shapelets and Fast Shapelets averaged over a 100 resamples

for the 85 UCR datasets . 161

2 Two tables presenting a comparison of the overlapping fold 0

datasets and the old ST results presented in [70]. 163

7

List of Algorithms

1 FindBestShapelet(T,min,max) 27

2 checkCandidate(T, S) . 27

3 sDist(T, S) . 28

4 FindKBestShapelets(T, min,max, k) 30

5 TransformDataset(T,kShapelets) 33

6 FindBestShapelet(Set of timeseries T) 35

7 FindBestShapelet(Set of timeseries T) 36

8 sDistCached(u, l, StatsA,B) 41

9 BinaryShapeletSelection(T, min, max, k) 74

10 sDist(shapelet S,series Ti) 78

11 FindKBestShapeletsWithSkipping(T, min,max, k, p, q) . . . 94

12 TabuSearch(T, Ti, min, max, ShapeletsToEvaluate) 116

13 MagnifySearch(T, Ti, min, max, ShapeletsToEvaluate) . . . 118

14 FindBestIndependentShapelets(MT,min,max) 135

15 checkCandidate(MT, shapelet, d) 135

16 sDistD(MT,MShapelet, i,m, dimensions, l) 138

17 sDistI(MT,MShapelet, i,m, dimensions, l) 140

8

Contents

List of Algorithms 1

List of Figures 1

List of Tables 6

1 Introduction 14

1.1 Introduction . 14

1.2 Motivation . 15

1.3 Contributions . 16

1.4 Thesis Organisation . 18

2 Technical Background and Related Work 20

2.1 Time Series Classification . 20

2.2 Time Series Classification Algorithms 21

2.2.1 Whole series . 21

2.2.2 Intervals . 22

2.2.3 Shapelets . 22

2.2.4 Dictionary based . 22

2.2.5 Combinations . 23

2.2.6 Model based . 23

2.3 Shapelets . 23

2.4 Shapelet Tree . 24

2.4.1 Information Gain . 25

9

2.4.2 Shapelet Quality . 26

2.4.3 Brute Force Search . 27

2.5 Logical Shapelets . 28

2.6 Shapelet Transform . 29

2.6.1 Changes from Shapelet Tree to Shapelet Transform . . 30

2.6.2 Alternative Quality Measures 30

2.6.3 Data Transformation 32

2.7 Fast shapelets . 33

2.8 Learn Shapelets . 35

2.9 Fused Lasso Generalized eigenvector method 36

2.10 Random Shapelet Tree and Random Shapelet Forest 37

2.11 Efficiency Improvements . 38

2.11.1 Early Distance Abandon and Precomputing 38

2.11.2 Entropy Pruning . 41

2.11.3 Similar shapelet abandon 42

2.12 Shapelet Search improvements 43

2.13 Timing Experiments . 43

2.14 Applications of Shapelets . 44

2.15 Issues With Current Approaches 45

2.16 Multivariate Time Series Classification 46

2.17 Multivariate Dynamic Time Warping 48

2.18 Multivariate Shapelet Algorithms 49

3 Experimental Methodology 51

3.1 Comparing Classifiers . 51

3.2 Performance Statistics . 54

3.3 Standard Classification Algorithms 55

3.3.1 C4.5 Decision Tree . 56

3.3.2 Support Vector Machine 56

3.3.3 Random Forest . 57

3.3.4 Rotation Forest . 58

3.4 Resampling Datasets . 58

3.5 Univariate Datasets . 59

10

3.6 Multivariate Datasets . 64

4 Improving the accuracy and reducing the runtime of the

Shapelet Transform 68

4.1 Introduction . 69

4.2 Comparison of Published Results 70

4.3 Multi-class information gain 72

4.4 Changing the shapelet evaluation order 75

4.5 Heterogeneous ensemble of standard classification algorithms 78

4.6 Results . 80

4.7 Analysing the individual Improvements 81

4.8 Measuring heuristic speed up techniques 84

4.9 Shapelet Distribution . 89

4.10 Resampling Experiments . 91

4.10.1 Results . 95

4.11 Conclusion . 97

5 Sampling the Shapelet Space 100

5.1 Introduction . 100

5.2 Quantifying the time for enumeration 102

5.3 Sampling Shapelets . 109

5.4 Contract Sampling Algorithms for Shapelet Space 111

5.4.1 Skipping search . 111

5.4.2 Random search . 112

5.4.3 Tabu search . 114

5.4.4 Magnify Search . 116

5.5 Experimental Comparison . 118

5.5.1 Subsampling Random Shapelet search 123

5.6 Case Study: HeartbeatBIDMC 124

5.7 Conclusion . 126

6 Multivariate Shapelet Transforms 128

6.1 Introduction . 128

6.2 Benchmark Experiments . 130

11

6.3 Scaling the Shapelet Transform for Multivariate data 132

6.4 Independent Shapelets . 133

6.5 Finding Multidimensional Shapelets 136

6.5.1 Multidimensional Dependent Shapelets 137

6.5.2 Multidimensional Independent Shapelets 139

6.6 Evaluation . 141

6.6.1 Shapelets . 142

6.6.2 Comparing multivariate approaches with simple classi-

fiers . 148

6.7 Case Study: MVMotionA . 150

6.8 Conclusion . 152

7 Conclusions and Future Work 155

7.1 Discussion of Contributions 156

7.2 Future Work and Extensions 158

Appendices 160

8 Bibliography 166

12

List of Publications

As First Author

• A. Bostrom and A. Bagnall. Binary shapelet transform for multiclass

time series classification. Proc. 17th International Conference on Big

Data Analytics and Knowledge Discovery (DAWAK), 2015

• A. Bostrom, A. Bagnall, and J. Lines. Evaluating improvements to

the shapelet transform. Knowledge Discovery and Data Mining, in

Workshop on Mining and Learning from Time Series, 2016

• A. Bostrom and A. Bagnall. Binary shapelet transform for multiclass

time series classification. Transactions on Large-Scale Data and Knowl-

edge Centered Systems XXXII: Special Issue on Big Data Analytics

and Knowledge Discovery, pages 24–46, 2017

• A. Bostrom and A. Bagnall. A Shapelet Transform for Multivariate

Time Series Classification. ArXiv e-prints, 2017

As Co-author

• A. Bagnall, J. Lines, J. Hills, and A. Bostrom. Time-series classification

with COTE: The collective of transformation-based ensembles. IEEE

Transactions on Knowledge and Data Engineering, 27:2522–2535, 2015

• A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh. The great

time series classification bake off: a review and experimental evaluation

of recent algorithmic advance. Data Mining and Knowledge Discovery,

pages 1–55, 2016

13

Chapter 1

Introduction

1.1 Introduction

Shapelets are subsequences of time series that are phase independent discrim-

inatory features for Time Series Classification (TSC). TSC is a growing area

of machine learning research. We consider time series data to be any ordered

real-valued data. Time series classification is a specialization of the general

classification problem. We define classification as: given a set of inputs x

and outputs y, can we find a mapping from x to y? We define y as a set

of unique labels where y ∈ {1, ..., C}. We assume that y = f(x) for some

unknown function f , and the goal of classification is to learn f from a set of

labelled inputs so that ŷ = f̂(x). Informally the goal is to learn from the

labelled training data so that we can predict class membership of unknown

series.

Classification relies on finding or deriving explanatory features, either

through a probabilistic approach, or by measuring similarity to form group-

ings and define decision boundaries. In traditional classification, and in

simpler models, such as näıve bayes, attributes are often treated as inde-

pendent of one another. However, in TSC problems the ordering of the

attributes can be critical in deriving explanatory features, and in being able

to discriminate between classes. There has been a large amount of research

14

into algorithms for time series classification, some of which we review in

chapter 2. Recently a large scale experimental evaluation [8] compared the

best algorithms from the literature and found that transformation based

approaches performed better on average. One of the best algorithms in this

study was the shapelet transform [70].

1.2 Motivation

The shapelet transform (ST) was proposed in [70] where it was adapted

from the the shapelet tree algorithm [114]. Shapelets are phase independent

subsequences that are found within the time series data and they are covered

in great detail in chapter 2. ST was shown to be a significant improvement

over the tree based implementation, as the model was uncoupled from a

decision tree and a better classification algorithm was paired with this

shapelet transformed data.

One of the major problems with the shapelet tree algorithm, and sub-

sequently the shapelet transform algorithm, was the run time. Shapelets

were originally created because they capture phase independent features.

These features could also be mapped back to the original series to derive

data driven rules that could be interpreted by a human. The problem with

this approach is that to find the global best features, a full enumeration of

all subsequences in the datasets is required, which is very time consuming.

There are three major motivations for this thesis. Firstly, to improve the

classification accuracy of the shapelet transform by extracting better quality

shapelets. In [72] different quality measures were evaluated for extracting

shapelets. These methods can be problematic on multi-class problems when

the number of classes is very high. The distribution of shapelets that can

be found is largely dependent on the underlying class distribution of the

training data. Where there is an imbalance in the distribution of classes

in a dataset, this can adversely affect the number of shapelets found, as

such we may need to compensate for this an evenly distribute the number of

shapelets on a per class basis.

The second motivation for this thesis is to drastically reduce the runtime

15

of the shapelet transform. The current runtime complexity of the shapelet

transform is O(n2m4) where n is the number of time series and m is their

length. In chapter 2 we cover the early abandon techniques already proposed

in the literature, the objective is to improve upon existing techniques. In

other areas of Computer Science research time constrained algorithms exist

for approximating difficult to solve problems. Shapelet finding could be an

ideal candidate for heuristic search algorithms and time constrained learning.

The third motivation is to adapt ST for multivariate time series classi-

fication. Multivariate time series data is becoming widespread, where the

number of sensors and devices are able to capture vast quantities of data.

One particular area of multivariate time series classification research is elec-

troencephalography (EEG). Critically, very little shapelet based research

has been conducted on multivariate data. Shapelets as a technique are only

defined in the univariate case, the motivation is to define shapelets for the

multivariate case, and leverage off the previous improvements to efficiency to

enable multivariate TSC. The time complexity problem is only exacerbated

as more data points are added. No free lunch theorem is present in many

fields, and time series classification is no exception [111]. No single algorithm

will generalise well to all problems and tailor made algorithms for multi-

variate time series classification are required. However, we are motivated

to assess current simpler approaches to see where they can compete with

more hand-crafted solutions and provide benchmark results with which to

compare.

1.3 Contributions

To provide support for this thesis, large scale experimentation were conducted

and novel algorithms are proposed. The contributions of this thesis are as

follows:

• Binary shapelet transform for multi-class time series classifi-

cation. We present our novel algorithm for balancing binary shapelets,

which leverages existing speed up techniques on multi-class problems.

16

A revised evaluation order is shown to reduce the number of funda-

mental operations required in the average case compared to existing

speed up techniques. A study of the multi-class datasets found in the

UCR-UEA archive [23] found that the balanced shapelets improve the

shapelet transform on multi-class problems. We present the concept of

a shapelet transform that uses balancing and binary shapelets when

the number of classes is greater than two, or otherwise reverts to the

original. This work is reported in chapter 4 and published in [15, 16].

• The great time series classification bake off. This was a large

experimental evaluation undertaken by the research group at UEA.

An endeavour to implement the 20 most common algorithms from the

TSC literature under a common framework and evaluate them on 8500

datasets. The contribution presented in this thesis in chapter 4 and

used extensively in further comparisons in chapter 5 was implementing

and testing the Learn Shapelets and Fast Shapelets algorithm on 8500

problems [83, 40] and comparing them with the Shapelet Transform

presented in the first portion of chapter 4. These results were published

in [8] where the Shapelet Transform was only beaten by COTE, of

which the shapelet transform is a constituent. The Shapelet results

contributed to the building of the COTE ensemble and the changes

made to ST contributed in part to the improvements seen from the

previous iteration which was presented in [6].

• Evaluating the shapelet transform. A converted Fast Shapelet

algorithm is presented as a transform instead of a decision tree, and

shown that it is significantly better than the tree implementation.

However, the Fast Shapelet Transform is significantly worse than the

Shapelet Transform, although it is considerably faster. We then present

a contract shapelet algorithm where the stride parameters can be

derived from a given time limit. These stride parameters enable the

shapelet search to avoid areas of the search space and constrain it to a

fixed runtime. It is shown that heuristically evaluating the search space

is not significantly worse than a full enumeration and the work published

17

in [18] is improved upon by considering more complex heuristic search

techniques in chapter 5.

• Shapelet Transform for Multivariate Time Series Classifica-

tion. Three novel approaches to multivariate time series classification

are described. These multidimensional shapelet algorithms are bench-

marked against a number of common machine learning algorithms on

multivariate datasets. Univariate classification algorithms are adapted

to the multivariate data by either concatenating the dimensions into

a single series or by forming a homogeneous ensemble on each dimen-

sion. We have sourced and processed 24 datasets from the literature

and converted them into a common format for use with the WEKA

framework, building a foundation for the MTSC community to expand

upon. The work and results are publicly available and are published in

e-print [17], whilst also being under review.

1.4 Thesis Organisation

The remainder of this thesis is organised as follows. In chapter 2 a review

of the time series classification literature, with a large emphasis on shapelet

research is presented. In chapter 3 we describe the datasets we use to

benchmark with, the way in which we conduct large scale experiments and

some of the statistics we use to present and analyse our results. In chapter 4

we outline our first contribution, which aims to reduce the runtime of the

shapelet transform and increase the classification accuracy on multi-class

problems. In the second portion of chapter 4 we discuss our contribution

to the work [8] and how these form the core of experimental methodology

for later contributions, as well as the benchmark which we aim to maintain

in chapter 5. The aims of chapter 5 are to build on the success of previous

work and apply heuristic techniques from both the literature and a novel

approach to finding shapelets in a fixed time frame. The final contribution is

presented in chapter 6 where the speed up techniques developed in previous

work are used in conjunction with the three novel shapelet approaches to

18

multivariate time series classification. This thesis is concluded in chapter 7

where the contributions are discussed and future work is considered.

19

Chapter 2

Technical Background and

Related Work

This chapter introduces some of the technical background used in this thesis.

We introduce the problem of time series classification (TSC) and present a

review of shapelet based techniques. The aims of this project are to improve

Shapelet based classification as it was identified as one of the best time series

classification algorithms from within the literature.

In this chapter we present a review of the history of the algorithm, and

the various changes and optimisations published since its creation.

2.1 Time Series Classification

There are many types of problems that exist in time series data mining

including clustering, classification, querying, forecasting and indexing. In

this thesis the sole aim is to focus on shapelet based techniques for time

series classification, where the class label is a constant singular value per

series.

We define a set of n time series as

T = {T1, T2,, Tn}

20

where each series consist of m real-valued attributes

Ti =< t1, t2, ..., tm >

and a class value ci.

Many TSC algorithms are based on measuring similarity between series.

There are three major types of similarity in time series classification. These

are similarity in time, similarity in shape, and similarity in change. Similarity

in time is predominantly found using nearest-neighbour techniques with either

Euclidean Distance (ED), or Dynamic Time Warping (DTW) [75, 51, 101,

85, 59, 60, 21]. Similarity in change is where the features of a dataset are

embedded in the autocorrelation structure of the time series. An example is

an Autoregressive Moving Average Model (ARMA) [25, 3]. Finally, there

is similarity in shape. This is the major focus of this thesis. If the shape is

local and embedded in the time series, subsequence techniques are needed

[40, 114, 70, 83, 79].

2.2 Time Series Classification Algorithms

Bagnall et al. [8] conduct a thorough analysis of a large portion of the

algorithms presented in the literature. The major algorithms are broadly

separated into six simple groupings. The techniques are grouped into the

following categories:

2.2.1 Whole series

Whole series algorithms tend to be based around adaptations and extensions

of either the Euclidean distance (ED) or Dynamic Time Warping (DTW) [86].

These algorithms are paired with a nearest neighbour classifier and have seen

relative success in large scale experimental comparisons [8]. Many variations

of dynamic time warping exist and are covered thoroughly in [8]. Weighted

Dynamic Time Warping (WDTW) was presented in [51] where they add a

penalty to the warping distance. Time Warp Edit (TWE) was proposed to

give a stiffness parameter to the warping [75]. Move-Split-Merge (MSM) is a

21

metric that is similar to other edit distance algorithms [101]. Other metrics

include Edit distance with Real Penalty (ERP) [22] and Longest Common

SubSequence (LCSS) [48]. Wang et al. [107] found that over 38 datasets 8 of

these measures were not significantly better than DTW.

2.2.2 Intervals

Interval algorithms are described as finding phase dependent features. One

of the main interval based approaches is Time Series Forest (TSF) [30].

The main problem with the phase dependent models is that the feature

space is very large, they overcame this by using a random forest type

approach. Each tree is generated with
√
m random intervals. These intervals

are used to generated summary statistics which are used to build the tree,

and classification is majority voting within the ensemble. Time Series Bag

of Features (TSBF) [12] and Learned Pattern Similarity (LPS) [11] were

proposed as extensions to TSF by the same group at Arizona University. On

the UCR archive these methods were found to be not significantly better

than each other.

2.2.3 Shapelets

These algorithms find phase independent subsequeneces from within the time

series. Essentially these algorithms select subsets of contiguous features and

build standard classification models on the features. Shapelets are the main

focus of this thesis and the remaining sections in this chapter are dedicated

to a large scale review of the shapelet based literature.

2.2.4 Dictionary based

Dictionary based classifiers are broadly based around the Bag Of Patterns

model (BOP) which was proposed by [68]. BOP is a dictionary based

classifier built on SAX [67]. SAX is covered in greater detail in section 2.7.

The distribution of the SAX words in a series produce a histogram of the

counts. The same data transformation is applied to new series, and a

nearest neighbour of the histograms is used to classify. Symbolic Aggregate

22

approXimation-Vector Space Model (SAXVSM) combines SAX and a vector

space model that is common in Information Retrieval. SAXVSM forms

frequencies over classes rather than series, and uses Term-Frequency Inverse

Document Frequency (TFIDF) to weight these histograms [95]. Bag of SFA

symbols (BOSS) is different to BOP and SAXVSM in that is uses a Discrete

Fourier Transform (DFT) instead of a Piecewise Aggregate Approximation

(PAA) on each window [93] . The series are truncated using Multiple

Coefficient Binning (MCB) rather than the fixed interval approaches of the

previous sections. From the literature on the published 19 UCR datasets

used, BOP and SAXVSM were not significantly better than each other, and

both are significantly worse than BOSS.

2.2.5 Combinations

These algorithms combine one or more of the above approaches into a single

classifier.

2.2.6 Model based

These types of algorithms are not well represented in the literature but they

include auto-regressive models [9, 25], hidden Markov models [100] and kernel

models [24]. These algorithms tend not to be used in classification [74].

2.3 Shapelets

Shapelets are a subsequence of a time series designed for finding local phase

independent similarity. They were first proposed in [114] and have been

a prominent area of TSC research since. We define a subseries of a time

series of length l as a contiguous set of values from within a series Ti. Any

contiguous series in a time series can be a shapelet, and so the maximum

number of distinct shapelets in a single series is (m− l + 1).

23

2.4 Shapelet Tree

The shapelet tree algorithm was one of the first algorithms in TSC aimed at

finding similarity in shape [114, 115]. The brute force algorithm for finding

shapelet and evaluating shapelets is presented in algorithm 1. The algorithm

searches through the entire set of subseries within a dataset, evaluating the

quality of each subseries, recording the best. The best subseries is selected as

the shapelet which is then used as splitting rule in the decision tree, and the

process continues on each sub-tree. The data is subdivided by the shapelet

at each node until either a maximum depth is reached, or a sub-tree dataset

contains all of one class.

Quality and Distance Measures

Information Gain is used to measure the quality of a single shapelet [97].

To calculate information gain a measure of similarity between shapelets

and between a shapelet and a series is required. Euclidean distance is used

to measure the similarity of two equal length series. Euclidean distance is

defined in Equation 2.1, where A and B are series and they are of length l .

dist(A,B) =

√√√√ l∑
i=1

(Ai −Bi)2 (2.1)

In order to measure the distance between two series that are different

lengths we need to define a separate function. sDist(S, T) is a function that

uses a sliding window on the longer series, in this case T , where the width of

the sliding window is set to that of the shorter series. Each subseries in T

is compared to the input subseries S. As these subsequences are the same

length, they are compared using the Euclidean distance. This generates a

set of distances W which contains m− l+ 1 distance values. sDist finds the

best matching location in the longer series, and thus the smallest distance

is considered the best. To illustrate this point, if S is extracted from T ,

sDist(S, T) should return 0 as the best matching location should be itself.

24

sDist(S, T) = minw∈W (dist(s, w))

Figure 2.1: sDist diagram taken from Time-Series Shapelets [114].

2.4.1 Information Gain

To evaluate the quality of a single shapelet, information gain [97] is used as

a measure of how well it can separate two classes. Initially we present the

formula for calculating information gain, and entropy, we then apply this to

shapelets with a worked example.

Given a dataset D, with two classes C1 and C2, the proportion of time

series which belong to class C1 is p(C1) and the proportion which belong to

C2 is p(C2), we define the entropy of D as:

E(D) = −p(C1)log(p(C1))− p(C2)log(p(C2))

To determine the information gain we need to calculate the best split in

the dataset D, we create two subsets D1 and D2 by splitting D and then

calculating the entropy of D1 and D2 respectively. The entropy is calculated

in proportion to the whole, so calculating the fraction of classes in D1 as

f(D1) and the fraction of classes in D2 as f(D2), the entropy of the split is:

Ê(D) = f(D1)H(D1) + f(D2)H(D2)

Given the definition of Entropy and how entropy of a given split is

calculated. Information gain can be defined as the difference in the entropy

25

of the original set compared to the entropy of the two subsets.

I = E(D)− Ê(D)

2.4.2 Shapelet Quality

The quality of a shapelet is determined by using the distance from the

shapelet candidate to every series in the dataset. This generates a list of

n distance values, which is called an orderline. An orderline consists of

a pair of values, the distance value, and the class label for the respective

series, and is sorted in ascending order based on the distance value. An ideal

shapelet should produce small distance values when compared to time series

of the same class and large distance values with other classes. The optimal

configuration for an orderline is where all of the distance and value pairs in

the orderline that are the same as shapelets class are located in D1 and all

other pairs are located in D2.

A given orderline O should contain n distance and class value pairs. The

orderline is sorted by the distance into ascending order. The number of

splitting points that will generate unique information gain values is n− 1.

The shapelet algorithm calculates the information gain for all split points,

selecting the maximum information gain, and corresponding split point. For

clarity, a worked example is described. An orderline of 6 distances with 4 of

class B and 2 of class R is illustrated in Figure 2.2. The optimal split point

is shown with a dashed line. The orderline splits the 6 distances into two

sets. There are 3 total distances on the left and there are 3 total distances

on the right. The left hand side contains the elements in D1 of the equation.

This side is simpler as there is only class B present which means there is

only 3 of class B. The right hand side contains the elements in D2 of the

equation, there are both classes B and R, where there are 2 of class R, and 1

of class B. In Equation 2.2 the maximum informatio gain of the orderline

from Figure 2.2 is calculated. The first section of the equation calculates

the portion each class contributes towards the total set. This could also be

described as the ideal entropy.

26

I = [−(4/6)log(4/6)− (2/6)log(2/6)]

−(3/6)[−(3/3)log(3/3)]

+(3/6)[−(2/3)log(2/3)− (1/3)log(1/3)]

(2.2)

Figure 2.2: Simple orderline with two classes

2.4.3 Brute Force Search

Algorithm 1 FindBestShapelet(T,min,max)

Where T is a set of Time Series.
best quality, quality
best shapelet, shapelet
for Ti in T do

for l = min to max do
for p = 0 to |Ti| − l + 1 do
shapelet = T li,p
quality =checkCandidate(T,shapelet)
if quality > best quality then
best quality = quality
best shapelet = shapelet

return best Shapelet

Algorithm 2 checkCandidate(T, S)

Where T is a set of time series and S is a shapelet candidate.
Where O is an orderline.
for Ti in T do
dist = sDist(S, Ti)
O∪ < dist, ci >

return informationGain(O)

27

Algorithm 3 sDist(T, S)

Where T is a time series and S is a shapelet candidate.
l = |S|
min dist =∞
for p = 0 to |T | − l + 1 do
dist = dist(S, T lp)
if dist < min dist then
min dist = dist

return min dist

The brute force search defined in algorithm 1 is slightly modified in

contrast to the version in the the original paper [115]. This is to make it

more in line with the implementation. The original algorithm description

precomputed and stored all the possible shapelet candidates in a set. Instead

the algorithm finds and evaluates each shapelet individually.

2.5 Logical Shapelets

Logical shapelets were an adaptation to the shapelet tree algorithm, Mueen

et al. [79] proposed a statistics caching optimisation which is discussed

in greater detail in subsection 2.11.1. The aim of logical shapelets is to

combine shapelets to form more complex rules to better handle difficult

to separate problems. The algorithm is a combination of shapelets used

in conjunction with each other for determining the class separation on the

orderline. In Figure 2.3 we illustrate one of the motivating examples which

was presented in the original paper. In the diagram the first class (yellow)

has two independent shapes that represent the class, but only where they

appear together. The problem with distinguishing this from the other class

is that the shapelets occurrence is independent from one another, therefore

they cannot be represented as single shapelet and individually they cannot

separate either class, thus producing a poor information gain value. The

splits that are detected are then divided into either broken or non-linearly

separable shapelets. These broken shapelets are evaluated with the logical

shapelets, where additional shapelets are searched for to try and achieve a

28

better splitting.

Figure 2.3: Image taken from Logical Shapelets [79].

2.6 Shapelet Transform

The shapelet transform was proposed in [70] and further expanded upon

in [47, 72]. A number of significant changes to the original algorithm were

proposed, these included: separating the shapelet finding process from the

classification model, considering alternative similarity measures and further

speed up techniques to the sDist function. As was discussed earlier, the

original shapelet algorithm was embedded in a decision tree, finding the best

shapelet at each node recursively subdividing the data. This results in the

brute force search being performed a number of times at each node, which

makes it intractable on large problems. The shapelet transform algorithm

does not change the brute force, but requires it is done only once. Separating

the shapelet finding algorithm from classification meant that a number of

the drawbacks of decision trees could be avoided. Decision trees are often

out performed by other classifiers and they have a tendency to over fit unless

post-pruned. The shapelet transform performs a data transformation by

finding a set of k shapelets and creating a new dataset of k features per

series. In algorithm 4 the single pass shapelet search for the k best shapelets

29

is proposed.

Algorithm 4 FindKBestShapelets(T, min,max, k)

Where T is a set of Time Series.
KShapelets = ∅
for Ti in T do
seriesShapelets = ∅
for l = min to max do

for p = 0 to |Ti| − l + 1 do
quality = checkCandidate(T,T li,p)

seriesShapelets = seriesShapelets ∪ {Tl
i,p,quality}

sort(seriesShapelets)
removeSelfSimilar(seriesShapelets)
kShapelets = merge(k, kShapelets, seriesShapelets)

2.6.1 Changes from Shapelet Tree to Shapelet Transform

Algorithm 4 describes the shapelet transform. This section describes the

changes from the shapelet tree algorithm in more detail. The brute force

search algorithm is the same as the one presented in algorithm 1. The

tuning parameter k is the size of the final shapelet set, the other change

is the forming of the shapelet set. As we consider each shapelet we create

a list, which after each series has been considered, is sorted, and the self

similar shapelets are pruned, and merged into the k best shapelets list. This

process happens for each series. Self similar shapelets are formally defined

in [47]. Informally, self similar shapelets are overlapping subsequences of

varying lengths and starting positions. This ensures the best quality and

longer non-overlapping shapelets are only considered when merging into the

kShapelets set.

2.6.2 Alternative Quality Measures

Lines and Bagnall [72] proposed a number of alternative measures for assessing

the quality of shapelets [72]. One of the problems with information gain is that

the entropy pruning speed up, presented earlier in subsection 2.11.1, is not

efficient on multi-class problems. Calculating the best possible configurations

30

of a two class problem is possible in constant time because the orderline is

2 dimensional. To find the best possible configuration of multiple classes

becomes untenable and does not improve speed. Three alternative distance

measures were proposed in [72], these were Kruskal-Wallis, F-statistic(F-stat)

and Mood’s median [78, 62].

Given a set of n samples F-stat is used to analyse the variance in the

difference of means. The statistic is used in Shapelets to test the variability

of the distance between Shapelets and series, where low variability of series

in the same class, and high variability between classes yields a good shapelet.

The set of distances O, our orderline is still required, thus the F-stat is not

a complexity improvement, but it has been shown to be more effective than

IG. Given our orderline of distances, we sort the distances and their class

membership into separate sets, Oi, we also calculate the average distance in

Oi as Ōi and the average distance to all series as Ō. We denote the number

of classes as C and n is the number of series. We calculate the F-stat value

by:

F =

∑
i

(Ōi − Ō)2/(C − 1)

C∑
i=1

∑
dj∈Oi

(dj − Ōi)2/(n− C)

Kruskal-Wallis is a non-parametric test which determines whether two

groups are from a distribution with the same median [62]. Given our orderline

of distance we sort the distances and their class membership into separate

sets, Oi we also need a corresponding set of ranks, R, where the set of

distances in Oi also correspond to Ri. We denote the average rank as R̄ and

the average rank of the ith class as R̄i.

K =
12

n(n+ 1)

C∑
i=1

|Ri|(R̄i − R̄)2

The final alternative quality measure proposed by [72] is Mood’s median.

Similar to Kruskal-Wallis, Mood’s median is a non parametric test which

wants to determine whether two groups are from a distribution with the same

31

median. Unlike Kruskal-Wallis and the other alternative quality measures,

Mood’s median does not require the Orderline to be sorted. The measure

first starts by creating a contingency table where the counts of each class

above or below the median are recorded. It was shown that the median

can be found in O(n) time [49]. Where o is the observations, and e is the

expected.

M =

C∑
i=1

2∑
j=2

(oij − eij)2

eij

2.6.3 Data Transformation

The major change from the Shapelet Tree algorithm to the shapelet Transform

was the data transformation process. The data transformation is formally

defined in algorithm 5. Given a set of a time series T and a set of k shapelets

kShapelets the algorithm calculates the minimum distance between each

series and each shapelet. A n x k matrix is constructed from these distance

values, in addition to the class values which are appended to the end of the

series. The main aim of creating a transformation was to separate the shapelet

finding process from the classification process. The main reason for this is that

it has been widely shown that there are significantly better classifiers than

decision trees and in [47] changing to a support vector machine significantly

improved classification accuracy. It was shown that when discriminatory

features are not in the time domain it is easier to leverage greater performance

than creating more complex classification techniques. It was also shown

that transformed data can significantly improve the accuracy of more simple

classifiers. It was then shown in [47] that this data transformation was a

significant improvement in accuracy on the previous tree-based approaches.

32

Algorithm 5 TransformDataset(T,kShapelets)

Where T is a set of Time Series.
Where kShapelets is a set of shapelets.
n = |T|
k = |kShapelets|
Where F is a matrix of size n x k
i = 1
for Ti in T do
j = 1
for S in kShapelets do
Fij =sDist(Ti, S)
j + j + 1

return F

2.7 Fast shapelets

Fast shapelets were proposed as a classifier in 2013 [83]. The algorithm is

a direct improvement upon the original shapelet selection algorithm and

employs a number of techniques to speed up the finding and pruning of

shapelet candidates [70]. The major changes made to the shapelet algorithm

is the introduction of symbolic aggregate approximation (SAX) [108, 67]

as a means for reducing the length of each series as well as smoothing

and discretising the data. The other major advantage of using the SAX

representation is that shapelet candidates can be pruned by using a collision

table metric which highly correlates with Information Gain to reduce the

amount of work performed in the quality measure stage.

The FS algorithm is made up of a number of major components. FS

embeds the shapelet discovery within a decision tree. The decision tree has

been omitted in the algorithmic description in algorithm 6 to improve clarity.

The first stage of the shapelet finding process is to create a list of SAX

words [108, 67]. The basic concept of SAX is a two stage process. Firstly,

using piece-wise aggregate approximation (PAA) is used to transform a time

series into a number of smaller averaged sections, reducing the length and

smoothing the series. This aggregated series is then normalized using z

33

Figure 2.4: Image taken from Fast Shapelets [83].

normalization. With a given alphabet size, in the case of fast shapelets 4, a

Gaussian distribution is split into 4 equally likely sections.

a < −0.67,−0.67 ≥ b < 0, 0 ≤ c < 0.67, d > 0.67

These four sections discretise the aggregate series into a word. This is

shown in Figure 2.4, where part of a series is converted in a SAX word, the

figure also demonstrates how a SAX word represents multiple overlapping

shapelets because of the aggregation process.

These discretised series are then reduced using random projection, which,

given some higher dimension SAX words, reduces their dimensionality by

masking a number of letters. The SAX words are randomly projected a

number of times, the projected words are hashed and a frequency table for

all the SAX words is built [20].

From this frequency table a new set of tables can be built which represent

how frequent the SAX word is with respect to all the classes. A score for

each SAX word can be calculated based on these grouping scores, and this

value is used for assessing the distinguishing power of each SAX word. From

this scoring process a list of the top K SAX shapelets can be created. These

top K SAX shapelets are transformed back into their original series, where

the shapelet quality assessment, which was discussed in further detail in

section 2.4, can take place. The best shapelet then forms the splitting rule

in the decision tree, identical to the method used in the Shapelet ()Tree.

34

Algorithm 6 FindBestShapelet(Set of timeseries T)

1: bsfShapelet, shapelet
2: topK = 10
3: for length← 5 to m do
4: SAXList =FindSAXWords(T, length)
5: RandomProjection(SAXList)
6: ScoreList =ScoreAllSAX(SAXList)
7: shapelet =FindBestSAX(ScoreList, SAXList, topK)
8: if bsfShapelet < shapelet then
9: bsfShapelet = shapelet

10: return bsfShapelet

2.8 Learn Shapelets

Learn shapelets (LS) is an algorithm proposed in [40]. The learn shapelets

algorithm is distinctly different from previous shapelet methods in that it

does not perform an enumerative search. Learn shapelets uses a gradient

descent approach to the shapelet finding problem. A set of initial random

shapelets are clustered using k-means. The centroids from these clusters are

then refined, using a stochastic gradient descent.

One of the main issues with the learn shapelets method is that the

shapelets found are not guaranteed to exist within the training data, and

often do not. One of the major benefits of the shapelet tree algorithm,

and subsequently the shapelet transform, was that the shapelets are within

the data, and provide interpretable features. One of the major reasons

for separating the shapelet finding method from the tree based approaches

within the shapelet transform was that models built on simpler classifiers were

decreasing the performance of shapelets. Learn shapelets classification model

is stochastic gradient descent, which is only capable of linearly separating

problems.

Algorithm 7 describes learn shapelets. The algorithm begins by finding

a number of subsequences in the original training data which require two

tuning parameters, defined as R and L. These parameters affect shapelet

finding, for example, if we define R = 3 and L = 0.2 (which are typical

35

parameters used in the original experiments) we would find shapelets that are

20%, 40% and 60% of the series. The parameters affect the accuracy and the

amount of work the algorithm performs. L alters the length of subsequences

considered and R affects the coverage of the shapelets, and broadens the

search space.

These initial subsequences are then clustered using K-Means in a similar

manner to [116]. These subsequence clusters each contain a centroid, which

may not be present in the original training data. With the set of centroids a

gradient descent model is applied to each. Each shapelet is refined through

a defined derivative function, minimizing the entropy loss. This process

continues for a max number of iterations, or until the model converges. To

increase the success of the learning method, the algorithm has since been

refined to use the Adagrad method for on-line learning [31].

Algorithm 7 FindBestShapelet(Set of timeseries T)

1: Parameters: K,R,Lmin,η,λ
2: S ← InitKMeans(T,K,R,Lmin)
3: W ← InitWeights(T,K,R)
4: for i← maxIter do
5: M ← updateModel(T,S,α,Lmin, R)
6: L ← updateLoss(T,M,W)
7: W,S← updateWandS(T,M,W,S, η,R, Lmin, L, λW , α)
8: if diverged() then
9: i = 0

10: η = η/3

2.9 Fused Lasso Generalized eigenvector method

The Fused LAsso Generalised eigenvector method (FLAG) was proposed

in [50]. The algorithm is a very recent attempt at optimising the shapelet

searching method, by considering methods that have been used in computer

vision and bioinformatics. They argue that the shapelet search space is

sparse, and as such they can use sparse modelling to find shapelets. In [104]

they demonstrate that using a fused lasso function to model the sparsity

36

of the space, they can also take into account the properties of time series

data, because it encourages successive parameter feature estimates to be

similar. They demonstrate that using a total-variation regulariser and a `1

regulariser they make the solution both blocky and sparse. Shapelets tend to

exist in groups, that are separated by regions of poor shapelets. By forming a

solution that is blocky and sparse the algorithm aims to model this property.

2.10 Random Shapelet Tree and Random

Shapelet Forest

The random shapelet tree and subsequent random shapelet forest were

proposed in [55, 57, 56]. These methods seek to exploit some of the successes

of random forest and in general ensembles of homogeneous classifiers.

The random shapelet tree is a simplistic approach to the shapelet finding

problem, but exploits the structure of shapelets in time series. Shapelets

tend to be present in clusters of similar quality, both in position and length.

A shapelet of length 11, position 2, contains mostly the same values as a

shapelet of length 12 in position 3. The definition of a shapelets means that

a good shapelet should appear in all the series of the same class. Therefore,

the sDist distance value is low for all series of the same class for a given

shapelet, and the distance is high for series of other classes. Karlsson

et al. [55] demonstrate that randomly selecting shapelets instead of fully

enumerating can produce comparable accuracies whilst evaluating a fraction

of the search space. citekarlsson16generalized then extend the algorithm

to build forests of shapelet trees, in the same manner as a Random Forest,

called Random Shapelet Forest (RSF). The data is partitioned into random

subsets, which also reduces the the runtime of each tree, as the number

of shapelet combinations, and the distance calculations required is much

smaller.

37

2.11 Efficiency Improvements

This section will cover the assorted optimisations that have been proposed

for the shapelet tree and shapelet transform in the literature. The shapelet

optimizations can be broadly separated into two categories. Either the

improvements reduce the average case complexity of the enumerative search

by reducing the number of operations performed when evaluating a shapelet

candidate or by being able to avoid calculations all together. Alternative

improvements reduce the worst case complexity by increasing the worst case

memory requirements by caching statistics [83, 79, 70, 38].

2.11.1 Early Distance Abandon and Precomputing

A number of heuristic speed up techniques were proposed [115, 83, 79, 47]

to deal with the large volume of calculations required to find the best

shapelet. However, even with the speed up techniques proposed shapelet

algorithms are still not capable of enumerating the very large datasets, such

as StarLightCurves from the UCR-UEA repository [23]. The first speed

up technique is relatively simple. The sDist function defined earlier in

algorithm 3 has a worst case bounding of O(m2), and is called n times, per

shapelet. Whilst the sliding window function is calculating the difference

between the current shapelet and the subsequence, the function keeps track of

the smallest distance found so far. Whilst comparing the two subsequences,

the algorithm is calculating the sum of the individual positions in both

respective series. If the partial square sum becomes greater than the square

of the smallest distance found so far, that particular series cannot be a

good match and the distance calculation can be early abandoned. This

early abandon technique was explained in the original paper [114], and is

demonstrated in Figure 2.5. Ideally finding good matches to a shapelet early

in the sDist function, the amount of work that can be avoid is potentially

very large. Early abandon techniques have been shown that whilst they do

not reduce the overall worst case time complexity of an algorithm they are

still very effective in reducing the average case runtime [114]. Part of the

38

contributions in this thesis (see chapter 4) improves upon this technique and

so it is pertinent to describe it in detail here.

Figure 2.5: Early Abandon of a time series (T) and a shapelet (S) being
compared using the sDist function. In the illustration on the left, S an T
are pairwise compared using Euclidean distance. In the diagram on the right,
S and T are compared using Euclidean distance which has an early abandon
point illustrated. The diagram is taken from [115]

Mueen et al. [79] proposed the caching of summary statistics to offset the

large time requirements for calculating the distance of a shapelet to a series,

the technique makes the trade off of memory in favour of speed, and reduces

the run time complexity of the distance function from O(m2) to constant

time. Each shapelet and the subsequences it is compared with during the

distance calculation need to be length-normalized, using z normalization, this

is to ensure that differences in scale and offset do not affect any similarity in

shape [59]. Given two series A and B of length m The normalised Euclidean

distance is calculated by:

nDist(A,B) =

√√√√ 1

m

∑m

i=1

((
Ai − Ā
σA

)
−
(
Bi − B̄
σB

))2

(2.3)

To calculate this normalised Euclidean distance requires O(m) time,

Mueen proposed that with 5 sufficient statistics it is possible to calculate the

distance in constant time [92].

Given two series A and B the main five statistics are the sum of values

and the squared sum of values, for each series, and the pairwise sum of

products of the two series, which are presented in Equation 2.4. The mean

39

and variance for each series can be calculated simply from these statistics,

which are shown in Equations 2.5 and 2.6.

m∑
i=1

Ai,

m∑
i=1

Bi,

m∑
i=1

A2
i ,

m∑
i=1

B2
i ,

m∑
i=1

AiBi (2.4)

Ā =
1

m

∑
A (2.5)

σ2
A =

1

m

∑
A2 − Ā2 (2.6)

With these statistics positive correlation and normalised subsequence

distance can be calculated (shown in Equation 2.7).

C(A,B) =

(∑m
i=1AiBi −mĀB̄

mσAσB

)
(2.7)

dist(A,B) =
√

2(1− C(A,B) (2.8)

When calculating the orderline for any single shapelet a large proportion of

the calculations overlap and there is unnecessary redundancy. Given two time

series A and B, any length and starting position in A is considered a potential

shapelet, a number of the calculations for overlapping Euclidean distance

calculations could be used, but because the subsequences are zNormalised

this is not immediately possible. The sum of products(SA, SB) and the sum

of products squared(S2
A, S2

B) are recorded, and a final Matrix is constructed

which stores each configuration of the sum of products for the subsequences

in A and B (M). These arrays are indexed using the positions for A and

B, and so depending on which sets of statistics are required, the distance

calculation can be extracted. The sDist function is redefined using this

methodology in algorithm 8.

In algorithm 8 the distance calculation is performed according to the

redefined normalise distance. The cached statistics are extracted as the loop

iterates for each position in the single time series.

Ā =
SA[u+ l − 1]− SA[v − 1]

l

40

Algorithm 8 sDistCached(u, l, StatsA,B)

min =∞
for v ← 1 to |B| − |A|+ 1 do
dist =

√
2(1− C(A,B)

if dist ≤ min then
min = dist

return min

B̄ =
SB[u+ l − 1]− SB[v − 1]

l

σA =
S2
A[u+ l − 1]− S2

A[v − 1]

l
− Ā2

σB =
S2
B[u+ l − 1]− S2

B[v − 1]

l
− B̄2

2.11.2 Entropy Pruning

The second speed up technique proposed in [114] was early entropy pruning.

The distance between the shapelet and all other series is calculated to form

the orderline, which is used in the information gain calculation. Instead of

calculating the whole set of distances required, which is one of the most

expensive operations in the shapelet algorithm, an upper bound for the

information gain is calculated. The information gain is calculated as each

new distance value is calculated in sDist, the data series that have not been

compared with the current shapelet are placed on the orderline in the ideal

position that would maximise entropy. In Figure 2.6 a complete set of series

is calculated where for a single shapelet nm2 operations have been performed.

In Figure 2.7 four of the distances have been calculated, and four have been

placed in the best configuration.

As each distance is calculated the orderline places any distances not

calculated in the optimal position. Series which are the same class as the

shapelet are placed on the far left (0 distance) and the other class is placed on

the right. The entropy pruning calculates an upper bound on the information

41

gain, which can be compared to the information gain of the best shapelet

found so far. If the upper bound would not result in a change of best shapelet

found, then the algorithm can early abandon calculating entire series as even

in the best case scenario, the current shapelet would be worse. In the case of

the shapelets in the Shapelet Transform, the last shapelet in the kShapelets

list is used as the entropy pruning threshold. Part of the contributions in

this thesis (see chapter 4) improve upon the concept of this technique and so

it is pertinent to describe it in detail here.

Figure 2.6: Fully calculated orderline with two classes.

Figure 2.7: Partially calculated orderline with two classes. The series that
have not been calculated are placed in best case positions.

2.11.3 Similar shapelet abandon

Mueen et al. [79] also proposed a novel pruning technique in [79]. Given a

shapelet Si,l they ask the question, “how good can Si+1,l be?”. In the special

case where the distance from the first shapelet to the second shapelet is 0.

dist(Si,l, Si+1,l) = 0

In this case we know that the information gain for the second shapelet is also

going to be identical, and so it can be pruned. In a more realistic scenario the

42

first and second shapelets will be very similar. If the second shapelets quality

can be identified, then it would be possible to generate an upper bound.

Mueen defines the distance between two shapelets as dist(Si,l, Si+1,l) = R

and that the sDist between a time series is sDist(Si+1,l, Tj), he suggests that

by triangular equality sDist can be as low as sDist(Si+1,l, Tj)− R and as

high as sDist(Si+1,l, Tj) + R. By this reasoning, the next shapelet in the

series has a range of quality of −R to +R from its current position. They

describe a set of operations with a given orderline for the shapelet Si,l the

best case movement of the distances on the orderline for Si+1,l such that an

upper bound on its information gain can be calculated. With this upper

bound we can then decide whether we want to commit to the much more

costly process of evaluating its true Information Gain.

2.12 Shapelet Search improvements

There have been a number of algorithms that have sought to improve the

process of finding shapelets, some of the most common algorithms were

described in detail in previous sections [40, 83, 55, 88, 38, 87]. Boosting and

bagging has been applied to random shapelet forests to increase performance

[57, 56]. Minor improvements to the learn shapelets algorithm has been

shown with in [41]. Some of the work on both learn shapelets, and random

shapelet forests has also been applied in the multivariate domain, however

with only a few datasets publicly available experimental analysis is minimal.

2.13 Timing Experiments

To demonstrate the current run times for the most common shapelet algo-

rithms in the literature, seven of the smallest datasets were chosen from

the UCR-UEA repository. The results are present in the Table 2.1. In this

particular set of experiments, the machine used was a raspberry pi 2. This

machine is not designed to run machine learning algorithms in any optimised

way. However, with a very lightweight operating system, and controlled

environment the timings should be reasonably unbiased. Despite a low-power

43

machine, the results will all be relative to each other and should give an

approximate understanding of the speed of each of the four algorithms. The

table demonstrates the speed of the Fast Shapelets algorithm, and is in-line

with the claims made in the literature. It was expected that the Shapelet

Tree would be the slowest, and that Fast Shapelets would be fastest. With

the Shapelet Transform marginally slower than Learn Shapelets. The timings

presented were calculated as the average over five runs.

Dataset ST LS FS STree

CBF 3706568 1000960 45850 6651483
ECGFiveDays 2719910 292173 16722 3518036

ItalyPowerDemand 43051 46596 1304 135659
MoteStrain 326837 103908 5436 438783

SonyAIBORobotSurface2 229204 90518 4992 314740
SonyAIBORobotSurface 166140 66158 4142 225397

TwoLeadECG 395843 111239 3807 530001

Table 2.1: Timing Results for ST, LS FS and STree in milliseconds.

2.14 Applications of Shapelets

The shapelet approach to time series classification has been applied to

numerous problems within the research community. Within the UEA group

they have been used on electric device classification, classification of mutant

worms and classifying hand outlines [47, 71, 70]. In the original paper

the algorithm was applied to leaf outlines [115], further application of the

Shapelet Tree algorithm includes gesture recognition [45] and gait recognition

[96, 114]. In both of these instances marked improvements were seen from

other approaches. In [83] the Fast Shapelets algorithm was used on the outline

of horned lizards and turtle skulls, classifying the species and demonstrating

the interpretable nature of shapelets on outline problems.

For most of the literature, shapelets or similar motif finding algorithms

have been designed and applied to univariate data. The problem of how to

handle shapelets in a multivariate domain is an interesting challenge, both in

44

terms of minimizing workload and producing accurate interpretable results.

McGovern et al. [76] applied a similar technique to shapelets on multivariate

tornado data, attempting to predict weather patterns. Ghalwash et al. [35]

applied shapelets to handle multivariate diagnostic data, which was used

for early predictions. The key problems they encountered were dealing with

phase independent features across the dimensions which remains an open

problem [34].

Shaplet based learning exists outside of classification where examples they

have been used in clustering [47, 116, 105] and similar concepts to shapelets

were explored in early classification [112, 113, 42, 14].

2.15 Issues With Current Approaches

There a number of issues with the current approaches to shapelet finding

and classification. The problems with the shapelet tree were identified and

the shapelet transform was proposed as a way of mitigating the issues with

embedding the shapelet discovery in a decision tree [70]. There are still

a number of issues with the Shapelet Transform, however, which extend

to all enumerative shapelet methods. The first major problem is multi

class information gain is not very effective at separating one shapelet well

from the rest, this is discussed in greater detail chapter 4. The Shapelet

Transform still enumerates the entire problem space and on very large

datasets such as StarlightCurves full enumeration is still untenable. Logical

Shapelets and Fast Shapelets both embed the shapelet discovery and rule

implementation in a decision tree. It was shown in [70] the shapelet tree

method is significantly worse than a transform based approach and so by

extension these methods could benefit greatly from being separate from the

classification process. The SAX method for reducing series length in Fast

Shapelets smooths the series with PAA. This has the effect of smoothing a

series and potentially removing some fundamental shapes within the series.

Learn shapelets generates centroids from some initial shapelets and updates

them in an online method. The shapelets that are generated as a result

of this are often not present in the original dataset, and so lose some of

45

there interpretability, the runtime is unpredictable because of the learning

process. If the algorithm cannot converge a restart and new random shapelets

begins the process again. This also means that the memory footprint can be

variable.

2.16 Multivariate Time Series Classification

Multivariate time series classification (MTSC) has been gaining traction

within the research community. The major issue, until recently, with multi-

variate time series analysis is that as the length of the series and the number

of dimensions increase they become increasingly difficult to analyse in realis-

tic time frames. Whilst this problem may not have been directly solved, as

computing power has increased, the ability to work on larger datasets and

more complex problems has become easier. Paired with the fact that internet

of things (IoT) devices and smart devices are increasingly more common, it

means that this type of data is being collected more widely.

One of the major areas of research within MTSC is activity and gesture

recognition, otherwise known as human activity recognition (HAR). Gesture

and activity recognition is the problem of recognising a particular movement

or action within a time series, where the class defining action is potentially

phase independent, and the signal to noise ratio is often quite high. The

user is potentially performing many different actions, only one of which

we are trying to detect. One of the difficulties in activity recognition is

that the users are potentially already in motion or performing actions that

are potentially similar, for example, some of the classes in UWaveGesture

(down-up/up-down)(clockwise-circle/anti-clockwise circle) [73]. One of the

other difficulties with gesture recognition is that the potential features could

exist in one dimension, in all, or some. For example, given a simple hand

gesture that is recorded by tracking X, Y, and Z movement. The type of hand

gesture may move only through the X and Z planes, with no movement in

the Y. Another example of the same movement will have the same shapelet

in the X and Z, but if the Y channel is noisy this could be a source of

difficulty. Identifying phase inter-independence and intra-dependence is a

46

difficult problem, and identifying which dimensions are noisy and which

contain the signal is also a very difficult challenge when working in the

multivariate domain.

Despite these potential problems gesture recognition has become one of

the most popular areas of research [103, 64, 32, 52, 61, 58]. Musical instrument

activity recognition is an extension of the general activity recognition problem

and some interesting research has been conducted in this area [36, 102].

Multivariate time series data does not consist solely of activity and

movement based data. There has been a large amount of research into the

health domain, specifically electroencephalogram (EEG) classification, or

balance and mobility sensor data for patients with Parkinsons disease (PD)

[77, 39, 1]. EEG classification is a potentially interesting area of research,

with test subjects looking at different images on a computer screen, and

classifying based on the electrical signals. EEG classification forms part of

human-computer interaction research, with research focusing on whether

meaningful signals, or input, can be data mined from these multivariate time

series.

Some other areas of research have extended to handwriting classifica-

tion [10], similarity between image textures [28] and mining of historical

manuscripts [117].

Most of these research domains have focused on using dynamic time

warping with a nearest neighbour classifier, mainly because until very recently

it was considered the state of the art solution to time series classification

[86]. Specialized approaches to multivariate time series classification include

adaptive dynamic time warping, dependent dynamic time warping, and

independent dynamic time warping algorithms which are covered in greater

detail in section 2.17 [98, 99].

Two-dimensional singular value decomposition was proposed as an unsu-

pervised approach to MTSC, where the covariance matrix of the samples is

formed, and the row-row and column-column features are extracted and used

in a 1-nearest-neighbour classifier [110]. Two-dimensional locality preserving

projections were also proposed where the MTSC samples are projected into

a lower dimensional space and the class features are closer to each other and

47

a 1-nearest-neighbour classifier can be used [109].

One of the major criticisms of recent multivariate time series classification,

is that the algorithms are tested on a handful of datasets, which are not

shared across the research community. Comparing algorithms is very difficult,

and quantifying the improvements over different approaches has not been

performed yet [13]. The other major criticism of time series classification

in general is that source code is often not publicly available and verifying

experiments is not possible. One of the aims of this thesis is to unify the

problem set for multivariate time series classification and provide a framework

to prove advancements in the field. In chapter 6 we discuss in detail the

contributions made to MTSC and the datasets.

2.17 Multivariate Dynamic Time Warping

Three forms of multivariate dynamic time warping have been proposed

recently [98, 24, 99]. The dynamic time warping algorithm is modified to

consider two different types of multivariate similarity. These types of features

are considered independent and dependent of the dimension. Dependent

dynamic time warping (DTWD) was proposed for use in historical text mining

[24] and independent dynamic time warping (DTWI) was later proposed in

addition to adaptive dynamic time warping (DTWA) in [98, 99]. DTWA is

a combination of the two distances with a novel selection criteria. DTWA is

designed to be in the worst case no worse than the better of the two distance

measures on any particular problem. In this section we will explain the

specifics of multivariate dynamic time warping, and the selection criteria for

which method is used on a particular series in DTWA.

DTWD and DTWI are very simple modifications to the DTW algorithm.

Given two dimensional multivariate time series, Q and C which have two

dimensions X and Y . Dependent dynamic time warping finds the shortest

path when combining distances inside the warping window. Independent

dynamic time warping, calculates individual distances for each series and

each dimension, and then combines the distances. This is formally defined in

Equation 2.9 and Equation 2.10. Adaptive dynamic time warping (DTWA)

48

was defined as way to dynamically select which multivariate version of DTW

was best suited to the dataset and demonstrated that in the worst-case

DTWA was no worse than either of its components.

DTWD(Q,C) = DTW (QX , QY , CX , CY) (2.9)

DTWI(Q,C) = DTW (QX , CX) +DTW (QY , CY) (2.10)

Figure 2.8: A simple diagram of a two dimensional time series comparison
using Independent and Dependent dynamic time warping. The image on the
(left) is DTWD and the image on the (right) is DTWI . Image taken from
[99]

2.18 Multivariate Shapelet Algorithms

In section 2.10 the random shapelet forest algorithm was described. This

method has been expanded to consider multivariate time series classification.

The series are treated as independent time series and the forest is built by

splitting the MTSC into separate dimensions [80, 53, 54].

In section 2.8 the Learn Shapelets algorithm is described in detail. Learn

Shapelets was extended to search for single dimension shapelets which are

selected randomly from both the series, length and position. These shapelets

are then tuned in the same manner as the univariate algorithm [41].

Ghalwash et al. [35] showed that extraction of shapelets in multivariate

time series data could be used for early prediction[34]. Multivariate shapelet

detection (MSD) was proposed. The algorithm extracts multiple shapelets

49

and calculates the information gain for each, these multivariate shapelets

are weighted using a modified information gain that prioritise earlier found

shapelets in the series.

50

Chapter 3

Experimental Methodology

In this chapter we present the datasets used for experimentally comparing

the changes made to the Shapelet Transform. In this thesis we compare

many classifiers across multiple datasets. The datasets we use have been

standardised as a set of 85 datasets, that are forever expanding [66, 23]. The

85 datasets were standardised as a joint effort between the University of East

Anglia (UEA) and the the University of California Riverside (UCR). The

aim of having a standardised set of problems is that it makes comparing

classifiers more robust. Until recently most classifiers were compared using

an arbitrary number of datasets that were compared via simple win/loss

counts.

3.1 Comparing Classifiers

To test this thesis more thoroughly we use a statistically rigorous test for

multiple classifiers across many datasets. This procedure was first outlined

in [29] and is designed to test for statistical significance between classifiers.

The test is based on a two-stage rank-sum test using the non-parametric

analysis of variance (ANOVA).

The first stage of the approach is to test the null hypothesis against the

alternative hypothesis. The null hypothesis is that there is no difference

between the average ranks of c classifiers on d datasets. The alternative

51

hypothesis is that at least one classifier’s mean rank is different.

M is a c by d matrix of classification accuracies, where Mi,j is the accuracy

of the ith dataset on the jth classifier. M is formally defined in Equation 3.1.

M =


m11 m12 . . . m1c

m21 m22 . . . m2c

...
...

. . .
...

md1 md2 . . . mdc

 (3.1)

The next stage is to calculate a c by d matrix R which contains the ranks

of the classifiers where ri,j is the rank ith dataset on the jth classifier and the

ranks of equal classifiers are averaged. We formally define R in Equation 3.2.

R =


r11 r12 . . . r1d

r21 r22 . . . r2d

...
...

. . .
...

rc1 rc2 . . . rcd

 (3.2)

From the matrix R the average rank for a single classifier j is calculated by

r̄j =

∑d
j=1 rj

d
. To test the hypothesis the Friedman statistic F is calculated

using Equation 3.3. This is an estimate using a Chi-squared distribution

with (c-1) degrees of freedom. This tests whether there is a difference in the

mean ranks of any of the classifiers.

χ2 =
12d

c(c+ 1)
.

[
c∑
j=1

r̄2
j −

c(c+ 1)2

4

]
(3.3)

Demšar [29] note that χ2 is considered conservative and so proposed

using Equation 3.4 which follows the F distribution.

F =
(d− 1)χ2

d(c− 1)− χ2
(3.4)

The F distribution has (c-1) and (c-1)(d-1) degrees of freedom under

the null hypothesis. If the null hypothesis can be rejected, and one of the

classifiers has an average rank that is significantly different to any of the

52

others, the second stage of the test begins [29]. Demšar [29] perform pair-wise

Nemenyi tests to find the differences between the classifiers. The test for

determining whether two classifiers are significantly different is known as the

critical difference, which is presented in Equation 3.5.

CD =
qa

√
c(c+ 1)

6d
(3.5)

Where qa is calculated by the difference in the range of standard deviations

from the smallest valued sample, and the largest valued sample. Demšar

[29] suggest that, by comparing classifiers in this way, a diagram showing

the differences between the rankings and the significances can be shown.

Classifiers that are no significantly different from one another are shown in

cliques. These cliques are represented by black bars. In Figure 3.1 we present

an example critical difference diagram.

Figure 3.1: An example Critical Difference (CD) diagram demonstrating
how to interpret the results from a pairwise comparison of five classifiers
over multiple datasets.

Figure 3.1 demonstrates five classifier, A,B,C,D and E. To interpret the

results of this critical difference is straightforward and demonstrates their

utility. Classifier A and B are in the same clique, and are not significantly

53

different. However, classifier A is significantly different to C,D, and E.

Classifier B is not significantly worse than A or classifier C, but is significantly

better than D and E. Classifier C is significantly worse than classifier A,

but is not significantly better than B,D and E. Finally D and E are no

significantly worse than each other or classifier C, but are significantly worse

than A and B. This diagram provides a good breakdown of the rankings of

each classifier and how they compare to one another. The cliques give an

understanding of where classifiers are similar in performance and where one

or more classifiers may be better than others.

3.2 Performance Statistics

When using critical difference diagrams we often compare by the error rate,

but we sometimes refer to accuracy as well, which we define as (1− error).
In this section we will define the performance measure we use throughout

this thesis when comparing classifiers. Most commonly we compare by error,

but critical difference diagrams can be formed with any of the statistics we

present in this section. Comparing classifiers by these additional statistics

can reveal different improvements that are more subtle.

We define a dataset D as a set of attribute vectors which are paired

with a class variable, D = {(x1, y1),, (xn, yn)}, where n is the number of

instances within the dataset and the set of class labels is: y ∈ {1, ..., C}.
Classification is the mapping from the space of possible attributes to the

class labels, where we derive a probability distribution over all the values of

the class. This distribution is defined as: p̂. Given the ith instance in the

dataset, the probability distribution is p̂i = {p̂i(y = 1|xi), ..., p̂i(y = C|xi)}.
Given the distribution, the class value is defined as the maximum probability

in the distribution (the most likely). So for the ith instance in a dataset we

derive its class label by:

ŷi = argmax
j=1,..C

p̂(j) (3.6)

A correctness function is defined as f(y, ŷ). If the prediction is correct

54

then it will return a 1, if incorrect it will return 0.

f(y, ŷ) =

1, if y = ŷ.

0, otherwise.
(3.7)

The error is simply calculated by the number of incorrect class labels

predicted, for example if we have 100 cases to predict, and we calculate the

probability distributions for all of them, if we guess 8 incorrectly the error

rate is 0.08 and the accuracy is 0.92.

Sometimes we want to calculate the error with respect to the classes.

We define this as the balanced error. This metric accommodates for class

imbalances in the dataset. To calculate balanced error we calculate the

proportion of each class that is correct and then calculate the sum of the

proportional classes with respect to the class distributions. In Equation 3.8

we define dj where the jth class value is the proportion of correct classes

recorded.

dj =

∑
yi∈D,yi=j f(y, ŷ)∑
yi∈D f(y, j)

(3.8)

The proportion of class j in the dataset is defined as ej . The balanced

error is calculated in Equation 3.9

C∑
j=1

dj · ej (3.9)

3.3 Standard Classification Algorithms

Throughout this thesis we use a number of standard classification algorithms,

often as part of the Heteregenous Ensemble of Standard Classification Al-

gorithms (HESCA) (see section 4.5). In addition to HESCA we also use

these algorithms in chapter 6 for benchmarking on multivariate datasets is

performed where these standard algorithms are used on concatenated data

series and on dimensional ensembles.

55

Though it may seem unintuitive to use standard classification algorithms

on time series data, a large volume of research has been conducted on these

standard algorithms. This is especially poignant when we consider the

shapelet transform. Some of the best algorithms in the literature [8] use

data transformation to transform time series into other domains, where more

standard classification algorithms are potentially more effective.

3.3.1 C4.5 Decision Tree

The C4.5 (also known as J48) is a decision tree classifier which was first

discussed in [82]. The algorithm has been widely used in the literature [33, 65].

Decision trees aim to partition the training data by selecting effective splitting

rules. The criteria for a good splitting rule is that it can separate classes

well. The shapelet tree (see section 2.4) was designed as a form of decision

tree. C4.5 uses gain ratio and information gain (see subsection 2.4.2 to

decide the quality of a split, where the aim is to maximise separation of the

classes. The algorithm is a greedy top down approach where the data is

partitioned around these best splits and the data is split between the two

subsequent nodes created, this process continues recursively splitting the

data until either a maximum depth is reached, or only one class remains in

that partition. The tree is pruned after this process to avoid over-fitting by

removing nodes.

3.3.2 Support Vector Machine

Cortes and Vapnik [26] first introduced Support Vectors Machines(SVM) in

1995. SVMs have been used extensively in general machine learning. The

simplest type of SVM uses a linear kernel, where it is assumed the data is

linearly separable. Given a dataset T with two classes and given C = {1,−1}
the SVM aims to build the function f(T) so that:

f(T) =

c∗ = +1, if ≥ 0

c∗ = −1, if < 0
(3.10)

56

where f(T) is of the form:

f(T) = w.T + b (3.11)

w is the weight vector to f(T) and b is the bias that offsets the weight

vector. The objective of the SVM is too find the best vector that can separate

the two classes. The SVM iteratively updates this vector with respect to the

data until the all the classes are separated from each other. The problem

with this particular form of fitting is that it is prone to over fitting on the

train data. More complex SVMs aim to find the maximum margin between

classes. Other types of optimisations allow for some misclassification during

the training stage which can also reduce the complexity of the polynomial,

and increase generalisation.

For many problems a linear separation is not a good model, and they

require more complex hyperplanes to partition the data. Non-linear kernels

can be specified and in all of our experiments that involve HESCA (see

section 4.5) we use a quadratic kernel as part of the ensemble. However, as

the kernel becomes increasingly more complex fitting the planes becomes

more computationally expensive, and in addition fitting higher order polyno-

mials can result in over fitting as well. These are some of the reasons why

throughout this work we only use linear and quadratic SVMs.

3.3.3 Random Forest

In addition to using heterogeneous ensembles we also consider homogeneous

ensembles. Random forest is one such algorithm that builds an ensemble of

decision tree classifiers [19]. One of the main problems with decision trees is

that they can be prone to over-fitting. Random forest seeks to solve some of

these issues by artificially creating diversity in the train data. The data set

is partitioned into many different subsets by removing different attributes.

A forest is initialised with a fixed number of trees, this is usually 500 trees.

Each of these trees is assigned a random subset of the original data, where a

decision tree is built on this particular partition. Decision trees have been

covered in great detail in this thesis, both in terms of partitioning classes

57

using information gain and how the trees are constructed. In chapter 2 we

also described the random shapelet forest algorithm which is inspired by

Random Forest.

3.3.4 Rotation Forest

Rotation Forest is similar to random forest in many respects [89]. Rotation

forest initially selects subsets of the training data, similarly to random forest.

Each of these subsets is then transformed using principle component analysis

(PCA). PCA is used to transform the data into an alternative representation,

the principle components of which are used train the C4.5 classifier. Both

Rotation Forest and Random Forest use majority voting schemes to create

the predictions.

3.4 Resampling Datasets

In chapter 4 we identified that consistency of datasets between testing of

classifiers in the literature had room for improvement. The UCR-UEA

repository was created as a large collection of datasets to test algorithms on.

One of the major problems with standardised datasets is that the train and

test splits are often arbitrarily created and potentially even made artificially

harder than the problem type should be for particular families of classifiers.

To solve some of these issues we wanted to develop a more rigorous

experimental methodology that the time series classification community

could adopt. In [8] we proposed stochastically resampling the datasets

with respect to the original datasets distribution. This ensures that the

original train and test sizes were maintained and the problems time and space

requirements were respected. This means that if in the original splitting of

the dataset key features happened to be in the test set, over a larger sample

size the accuracy of classifiers on those datasets should increase, with the

original split being an outlier. Given the 85 datasets, we chose to resample

each problem 100 times, where we refer to a particular resample as a fold.

Fold 0 is always the original problem and folds 1-99 are resamples where the

58

random seed for the stochastic sampling is the fold number. By ensuring

that fold 0 is the original dataset it means that all of our newly generated

results are comparable with work that does not use this methodology.

The major problem with this method is that instead of 85 datasets,

each classifier is evaluated on 8500 problems, which drastically increases the

amount of experimental work required to compare algorithms.

Multivariate problems are becoming increasingly popular within the

literature we wanted to extend this methodology to the multivariate domain

as well which we discuss in chapter 6.

3.5 Univariate Datasets

In this chapter we introduce the 85 UCR-UEA datasets [4, 23], this archive

was recently increased from originally 41 datasets to the new 85 following a

large scale experimental evaluation [8]. A summary of the types of problems

can be seen in Table 3.1 and in Tables 3.2, 3.3, 3.4, 3.5, 3.6, 3.7 and 3.8 the

break down of the individual problems and there type is shown.

The datasets can be broadly separated into seven categories. These

are image outline; sensor reading; motion capture; spectographs; ECG

measurements; electric devices and simulated datasets. In Table 3.1 we detail

the number of problems in each type.

Image Outline 29
Sensor Reading 16
Motion Capture 14

Spectographs 7
ECG measurements 7

Electric Devices 6
Simulated 6

Total 85

Table 3.1: Number of datasets by problem type

In this section, each dataset will be presented in tables organised by

problem type. These tables will outline the properties of each dataset and

the relevant sizes of the training data. These will include training and test

59

size, series length and the number of classes. The first table is Electric Device

based datasets presented in Table 3.2. The dataset Electric Devices contains

the largest train size of any of the datasets in the UCR-UEA repository.

These types of problem are captured using smart meter devices in homes,

where electricity usage is monitored over different periods of time. These

problems tend to be classification of the device based on electricity usage.

Name Train size Test size Length Num. Classes
Computers 250 250 720 2

ElectricDevices 8926 7711 96 7
LargeKitchenAppliances 375 375 720 3

RefrigerationDevices 375 375 720 3
ScreenType 375 375 720 3

SmallKitchenAppliances 375 375 720 3

Table 3.2: Electric Device Datasets

The next type of problem is electrocardiogram (ECG) type problems

shown in Table 3.3. These types of problem are the signals generated

from heartbeat monitoring equipment, the problems include classification of

different patients, or trying to detect different heart defects that may or may

not be present in the signal.

Name Train size Test size Length Num. Classes
CinCECGtorso 40 1380 1639 4

ECG200 100 100 96 2
ECG5000 500 4500 140 5

ECGFiveDays 23 861 136 2
NonInvasiveFetalECGThorax1 1800 1965 750 42
NonInvasiveFetalECGThorax2 1800 1965 750 42

TwoLeadECG 23 1139 82 2

Table 3.3: ECG Datasets

The image based datasets are the largest group of any problem type

in the archive (shown in Table 3.4). These types of problem are extracted

by calculating the Euclidean distance between the centre of the image and

outline identified. Transforming the outline into a 1D signal (shown in

Figure 3.2). A time series is not only temporal data, but can be any data

that is ordered sequentially.

60

Figure 3.2: An example outline image created converted into a time series.

Name Train size Test size Length Num. Classes
Adiac 390 391 176 37

ArrowHead 36 175 251 3
BeetleFly 20 20 512 2

BirdChicken 20 20 512 2
DiatomSizeReduction 16 306 345 4

DistalPhalanxOutlineAgeGroup 400 139 80 3
DistalPhalanxOutlineCorrect 600 276 80 2

DistalPhalanxTW 400 139 80 6
FaceAll 560 1690 131 14

FaceFour 24 88 350 4
FacesUCR 200 2050 131 14
FiftyWords 450 455 270 50

Fish 175 175 463 7
HandOutlines 1000 370 2709 2

Herring 64 64 512 2
MedicalImages 381 760 99 10

MiddlePhalanxOutlineAgeGroup 400 154 80 3
MiddlePhalanxOutlineCorrect 600 291 80 2

MiddlePhalanxTW 399 154 80 6
OSULeaf 200 242 427 6

PhalangesOutlinesCorrect 1800 858 80 2
ProximalPhalanxOutlineAgeGroup 400 205 80 3

ProximalPhalanxOutlineCorrect 600 291 80 2
ProximalPhalanxTW 400 205 80 6

ShapesAll 600 600 512 60
SwedishLeaf 500 625 128 15

Symbols 25 995 398 6
WordSynonyms 267 638 270 25

Yoga 300 3000 426 2

Table 3.4: Image Datasets

Motion datasets tend to be collected from gyroscope or accelerometer

recording devices. These signals are multivariate time series consisting of X, Y

and Z components of the movement. The Cricket and UWaveGestureLibrary

datasets are covered in more detail in the multivariate datasets section. Until

recently many of the algorithms have solely focused on univariate datasets and

therefore these multivariate datasets are separated into multiple univariate

61

problems, in the case of Cricket and UWaveGesture the dimension is denoted

at the end of the datasets name. In the case of UWaveGestureLibraryAll,

this is a concatenation of the three dimensions in the order X,Y,Z.

Name Train size Test size Length Num. Classes
CricketX 390 390 300 12
CricketY 390 390 300 12
CricketZ 390 390 300 12
GunPoint 50 150 150 2
Haptics 155 308 1092 5

InlineSkate 100 550 1882 7
ToeSegmentation1 40 228 277 2
ToeSegmentation2 36 130 343 2

UWaveGestureLibraryAll 896 3582 945 8
UWaveGestureLibraryX 896 3582 315 8
UWaveGestureLibraryY 896 3582 315 8
UWaveGestureLibraryZ 896 3582 315 8

Worms 181 77 900 5
WormsTwoClass 181 77 900 2

Table 3.5: Motion Datasets

Sensor readings are a typical application of time series classification

(Table 3.6). In these datasets sensors are capturing particular types of

information. In the case of StarlightCurves the dataset consists of many star

light curves, where these are the brightness of a celestial object as a function

of time. StarlightCurves is one of the largest datasets in the repository. The

aim of chapter 5 is to be able to evaluate this dataset in a reasonable time

frame.

62

Name Train size Test size Length Num. Classes
Car 60 60 577 4

Earthquakes 322 139 512 2
FordA 3601 1320 500 2
FordB 3636 810 500 2

InsectWingbeatSound 220 1980 256 11
ItalyPowerDemand 67 1029 24 2

Lightning2 60 61 637 2
Lightning7 70 73 319 7
MoteStrain 20 1252 84 2
Phoneme 214 1896 1024 39

Plane 105 105 144 7
SonyAIBORobotSurface1 20 601 70 2
SonyAIBORobotSurface2 27 953 65 2

StarlightCurves 1000 8236 1024 3
Trace 100 100 275 4
Wafer 1000 6164 152 2

Table 3.6: Sensor Datasets

Bagnall et al. [7] described a simple simulator framework. As part of [8]

many time series classification algorithms were taxonomised into families

that find certain types of features. These taxonomies motivate the need for

creating datasets that can artificially prove the effectiveness of classifiers on

the particular types of problems they are aiming to solve. Furthermore, with

simulated datasets, the signal to noise ratio can be increased to see how certain

families of algorithm perform as the data becomes more noisy. Shapelets

are described as phase independent subsequences, the simulator creates

different phase independent patterns for the number of classes specified,

these are then inserted randomly into time series. Noise is then applied to

the simulated datasets and we can then show that Shapelets should be the

best algorithm on this type of problem. In some preliminary experiments

and testing with sampling methods we were able to use simulated datasets

to check the correctness of search functions as part of the software testing

process. This is because the location of the subsequences were known.

63

Name Train size Test size Length Num. Classes
Beef 30 30 470 5

Coffee 28 28 286 2
Ham 109 105 431 2
Meat 60 60 448 3

OliveOil 30 30 570 4
Strawberry 613 370 235 2

Wine 57 54 234 2

Table 3.8: Spectograph Datasets

Problem size Counts Proportion
1-100 31 36.47

101-500 34 40.00
501-1000 14 16.47
>1000 6 7.06

Table 3.9: Distribution of Problem sizes

Name Train size Test size Length Num. Classes
CBF 30 900 128 3

ChlorineConcentration 467 3840 166 3
Mallat 55 2345 1024 8

ShapeletSim 20 180 500 2
SyntheticControl 300 300 60 6

TwoPatterns 1000 4000 128 4

Table 3.7: Simulated Datasets

The final set of datasets are spectograph problems (see Table 3.8). A

spectrograph is a machine that separates light into a frequency signal. These

problems tend to be food based, in the case of Meat, Ham and Beef the

problems are aimed at detecting whether the particular meat is fraudulent.

Finally, in Table 3.9 the sizes of the problems based on the length of the

time series is presented. In the case of shapelets the length of time series

can have a large effect on the runtime of the algorithm.

3.6 Multivariate Datasets

To evaluate new multivariate methods, and to benchmark against other

algorithms from the literature, a set of multivariate datasets were created

64

and collated from the literature which span a range of different problem

types. In Figure 3.4 a list of the datasets and there respective properties are

shown. The datasets have a range of different sizes, number of instances,

length of the series, the number of series and finally number of classes. One

caveat on the current datasets, is that to simplify and reduce the need for

extensive individual dataset knowledge when benchmarking we have reduced

some problems into sub problems. This is most notable with the AALTD

problems. These were originally from a challenge dataset produced for the

ECML/PKDD Workshop on Advanced Analytics and Learning on Temporal

Data (AALTD). The original aim being to classify six different gestures

using eight spatial sensors placed on an individual, resulting in 3 dimensional

movement information for each sensor. We opted to split the dataset into a

separate classification problem for each sensor. However, this will have the

effect of artificially making the problems more difficult as class discriminating

information may not be contained in a particular sensory dataset, or could

be across multiple sensors.

The aim of this work was to unify the published multivariate datasets

under a common framework using the ARFF format in Weka [43]. The

following datasets were extracted and converted: AALTD; ArabicDigit [44];

Japanese vowels [63]; Cricket, Handwriting, ArticularyWord [99]; PEMS [27];

PenDigits [2]; UWaveGesture [73]; Epilepsy [106].

The final dataset is MVMotion. There are three variants: MVMotionA;

MVMotionG; and MVMotionAG. Data was collected from a 3D accelerometer

and a 3D gyroscope on a mobile device during a particular set of activities.

The general type of problem is Human Activity Recognition (HAR) and is

similar in concept to the Epilepsy dataset. All MVMotion datasets consist of

four classes, which are walking, resting, running and badminton. Participants

were required to record motion a total of five times, and the data is sampled

once every tenth of a second, for a ten second period. We demonstrate

an example of each of the classes, for accelerometer data in Figure 3.3a

and for the gyroscope data in Figure 3.3b. The datasets are constructed,

MVMotionA is X,Y,Z accelerometer data, MVMotionG is X,Y,Z gyroscope

data, and MVMotionAG is both, forming a six dimensional problem.

65

(a) Accelerometer MVMotion datasets

(b) Gyroscope MVMotion dataset

Figure 3.3: An example of the four classes for both Accelerometer data from
the MVMotion dataset.

66

datasets n d m c
AALTD 0 90 3 52 6
AALTD 1 90 3 52 6
AALTD 2 90 3 52 6
AALTD 3 90 3 52 6
AALTD 4 90 3 52 6
AALTD 5 90 3 52 6
AALTD 6 90 3 52 6
AALTD 7 90 3 52 6

ArabicDigit 6599 13 94 10
AWordLL 275 3 145 25
AWordT1 275 3 145 25
AWordUL 275 3 145 25
CricketLeft 84 3 1198 12

CricketRight 84 3 1198 12
HandwritingA 150 3 153 26
HandwritingG 500 3 153 26

JapaneseVowels 270 12 30 9
MVMotionA 40 3 101 4

MVMotionAG 40 6 101 4
MVMotionG 40 3 101 4

PEMS 267 144 964 7
PenDigits 7494 2 9 10

UWaveGesture 120 3 316 8
VillarData 137 3 207 4

Figure 3.4: A list of the datasets in the multivariate time series archive.
Number of instances is denoted by n, number of dimensions is denoted by d,
length of series is denoted by m, and number of classes is denoted by c

.

67

Chapter 4

Improving the accuracy and

reducing the runtime of the

Shapelet Transform

Contributing Publications

• A. Bagnall, J. Lines, J. Hills, and A. Bostrom. Time-series classification

with COTE: The collective of transformation-based ensembles. IEEE

Transactions on Knowledge and Data Engineering, 27:2522–2535, 2015

• A. Bostrom and A. Bagnall. Binary shapelet transform for multiclass

time series classification. Proc. 17th International Conference on Big

Data Analytics and Knowledge Discovery (DAWAK), 2015

• A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh. The great

time series classification bake off: a review and experimental evaluation

of recent algorithmic advance. Data Mining and Knowledge Discovery,

pages 1–55, 2016

• A. Bostrom and A. Bagnall. Binary shapelet transform for multiclass

time series classification. Transactions on Large-Scale Data and Knowl-

68

edge Centered Systems XXXII: Special Issue on Big Data Analytics

and Knowledge Discovery, pages 24–46, 2017

4.1 Introduction

The shapelet transform is an approach to time series classification that finds

and extracts phase independent subsequences. The main algorithm is covered

extensively in chapter 2. The number of shapelets that exist within a single

time series is calculated with respect to the length, m, and the minimum

length and the maximum length. For a single series it has
m∑
l=3

(m − l + 1)

shapelets, which is simplified to
m2 − 3m+ 2

2
. The worst case runtime

complexity for finding shapelets is therefore bounded by m2 for a single

series. When the number of series is defined as n, examining all shapelets

is O(nm2). To evaluate a single shapelet, the algorithm slides the shapelet

along each series in the dataset performing normalisation and Euclidean

distance calculations on these subsequences. This process is also O(nm2)

as the algorithm essentially compares each shapelet to every other shapelet.

Overall the runtime of this algorithm is bounded by O(n2m4) which as m

and n grow large can become impractical to search in a reasonable time

frame.

The UCR-UEA datasets are a set of standardised problems which are

covered in chapter 3 in more detail. One of the largest problems in this

list is StarLightCurves. The attributes for StarlightCurves are m = 1024,

n = 1000. Currently this problem cannot be enumerated. When the shapelet

length parameters are set to min = 3 and max = 1024, the number of

total shapelets to evaluate are 522, 753, 000. The approximate number of

operations overall is in the order of 1018.

The distance calculation techniques presented in the original shapelet

paper [114] and subsequent improvements presented in [79, 70, 84] have

all sought to reduce the average runtime of the algorithms that evaluate

time series and shapelets. The main work in this chapter improves upon

these heuristic methods and improves the accuracy of the shapelet transform

69

when used on multi-class classification problems. These results have been

presented in [15, 16]. Finally we perform a thorough analysis of the current

best shapelet algorithms on a large problem set to establish a benchmark for

future work which was presented in [8].

4.2 Comparison of Published Results

There are three main shapelet algorithms in the literature. These three

algorithms are; the Shapelet Transform (ST) [47], Fast Shapelets (FS) [83]

and Learn Shapelets (LS) [40]. One of the major problems we have identified

when comparing and evaluating to algorithms in the literature is that not all

have been tested on a common set of problems. For example the published

results for Learn Shapelets was evaluated on 45 datasets, Fast Shapelets on

33, and the Shapelet Transform on 75. In Table 4.1 we present the data

for these three algorithms on the intersection of the datasets. We present

the critical difference diagram in Figure 4.1 where we show that both the

Shapelet Transform and Learn Shapelets are not significantly worse than

each other, but are both significantly better than Fast Shapelets.

70

Datasets LS FS ST
Adiac 0.5632 0.4859 0.6777
Beef 0.76 0.5533 0.9
CBF 0.9944 0.9471 0.9822

ChlorineConcentration 0.6514 0.5831 0.6893
Coffee 1 0.9321 1

DiatomSizeReduction 0.9667 0.883 0.8824
ECGFiveDays 1 0.9959 0.993

FaceAll 0.7825 0.5893 0.7544
FaceFour 0.9522 0.9102 0.9091

FacesUCR 0.9413 0.6717 0.9151
Fish 0.9337 0.8028 0.9942

GunPoint 1 0.9393 1
ItalyPowerDemand 0.9695 0.905 0.9582

Lightning2 0.823 0.7049 0.6557
Lightning7 0.8027 0.5972 0.69863

Mallat 0.9543 0.9672 0.9126
MedicalImages 0.7295 0.567 0.6632

MoteStrain 0.9129 0.783 0.8794
OliveOil 0.44 0.7867 0.9333

SonyAIBORobotSurface1 0.8974 0.6855 0.9434
SonyAIBORobotSurface2 0.9184 0.7852 0.8919

SwedishLeaf 0.913 0.7307 0.9376
Symbols 0.9644 0.9324 0.9266

SyntheticControl 0.9927 0.919 0.9967
Trace 1 0.998 1

TwoLeadECG 0.9974 0.9097 0.9912

Table 4.1: Published Results for LS, FS and ST

Figure 4.1: Critical difference of published results from Table 4.1

71

4.3 Multi-class information gain

In chapter 2, four shapelet quality measures were discussed. These were:

f-stat; information gain; Mood’s median; and Kruskal Wallis. In particular

information gain was discussed in detail in section 2.4. All three of the

shapelet based algorithms identified use information gain to assess the quality

of shapelets. However, one of the major problems with information gain

on many class problems is that useful information about a single class can

be lost. Figure 4.2 presents two multi-class orderlines used in the Shapelet

Transform, each of which is evaluating a single shapelet (see subsection 2.4.1).

These two orderlines demonstrate the major problem with information gain

on multi-class problems. They highlight how the way in which the algorithm

currently extracts and evaluates the best shapelets may be incorrect, and

could lead to worse accuracy on the transform. As the number of classes in

a dataset increase it becomes more likely that a single class is difficult to

single out. In the case of Fast Shapelets and the Shapelet Tree algorithm,

this was not a problem as the set of time series that shapelets were extracted

from is reduced at each new depth of the tree. One of the other major

problems with shapelet finding is that if one class dominates the problem

space, and subsequently produces many high quality shapelets, they could

dominate the transform. Whilst overall there would be good accuracy on

one class the transform may perform poorly on other less represented classes.

Datasets that are highly imbalanced will have a naturally high baseline when

using a naive majority vote classifier (zero rule classifier). To mitigate this

problem the number of shapelets found (k) was set very large (10n) and it

was left to the classifier to be able to deal with redundant features. However,

this can lead to very large transforms as the transform becomes a nx10n

matrix. The hypothesis is that by balancing the number of shapelets for

each class, the number of shapelets that are required in the final transform

could be reduced. Overall this should increase the classification accuracy on

multi-class problems, and enable a reduction in the size of k such that the

classification time is reduced.

To improve multi-class classification we create a one-versus-all encoding

72

(a) orderline 1

(b) orderline 2

Figure 4.2: An example orderline split for two shapelets. Orderline (a)
discriminates between class 1 and the rest, however orderline (b) has the
higher information gain.

for the shapelets when constructing the orderline, which in the case of

Figure 4.2 would result in orderline 1 (a) having the higher information gain

of the two. As a by product of creating a two-class classification problem

we can leverage the early abandon entropy pruning presented in the original

shapelet paper on these other problems and therefore reduce the average

runtime.

In algorithm 9 we present the updated shapelet transform that includes

class balancing and the binary shapelets. The main changes are that on

lines 1-3 we create a map of the best shapelets for each class, which is

evenly distributed among all classes, where the value k is the number of total

shapelets to keep, each class is given a proportion of this as k/C. In line 11

we collect the shapelets into a list, and in line 12 they are sorted by their

quality. In lines 14-16 the best quality shapelets are merged with those of

there respective class and stored in a map, where the class value is used as

the key. In the “findDistances” function a set of distances is produced, and

paired with an associated class value from each series. In the case of the

binary class changes that have been proposed this class value is either the

same class as the shapelet (0) or not the same (1).

73

Algorithm 9 BinaryShapeletSelection(T, min, max, k)

Input: A list of time series T, min and max length shapelet to search for
and k,the maximum number of shapelets to find)

Output: A list of k Shapelets
1: numClasses← getClasses(T)
2: kShapeletsMap← ∅
3: prop← k/numClasses
4: for all Ti in T do
5: shapelets← ∅
6: for l← min to max do
7: Wi,l ← generateCandidates(Ti, l)
8: for all subseries S in Wi,l do
9: DS ← findDistances(S,T)

10: quality ← assessCandidate(S,DS)
11: shapelets.add(S, quality)
12: sortByQuality(shapelets)
13: removeSelfSimilar(shapelets)
14: kShapelets← kShapeletsMap.get(T.class)
15: kShapelets← merge(prop, kShapelets, shapelets)
16: kShapeletsMap.add(kShapelets, T.class)
17: return kShapeletsMap.asList()

74

4.4 Changing the shapelet evaluation order

Having introduced our proposed binary classification of shapelets we were

able to leverage entropy pruning (see subsection 2.11.2) because of the two

class classification on multiclass problems. In addition to this speed up, we

wanted to further reduce the number of calculations performed in the sliding

window distance function (sDist). We propose a reordering of the sliding

window function.

Instead of taking the shapelet of length l and sliding it along from position

0 to position m− l + 1, the new method starts from the position in which

the shapelet is found and then by sliding left and right until the left reaches

0, and the right reaches m − l + 1. Figure 4.3 illustrates the difference

between these two distance measures. In the case of the reordered distance

measure, on average more early abandons take place during the distance

calculations. In the worst case, which is where no early abandoning takes

place, this algorithm will perform no more operations than the current. In

algorithm 10 the algorithm is given a shapelet S and a time series T . Given

the start position of the shapelet and its length a subsequence is extracted and

normalised. While the algorithm can still traverse left or right in the sliding

window function the loop continues. The current position is checked to see if

it will exceed either the left most element of the array (position 0) or the

right most position (m− l+ 1). If either the left or right positions are able to

be evaluated this distance calculation is performed, alternating left and right.

These left and right distances are compared with the best distance found

so far to enable early abandoning. Alternating subsequences are continually

evaluated until both a left traversal and a right traversal are no longer

possible, as the start position rarely occurs exactly in the middle of a series,

the left will finish before the right or vice-versa. The algorithm presented is

greatly simplified to illustrate the traversal process. To ensure parity with

other distance measures summary statistics are maintained when traversing

both left and right. This means that online normalization can be performed

in constant time. Maintaining summary statistics for bi-directional traversal

means in the case of a right traversal the left most element is subtracted

75

from the statistics and the new right most element is added. In the case of a

left traversal the opposite is true, the right most element is subtracted and

the left most element is added. In addition to these summary statistics, the

initial shapelet is sorted by the size of the values in the array. Corresponding

indexes are used when performing the euclidean distance calculations to

further increase the number of early abandons possible, this method was

presented in [84].

76

(a) current early abandon

(b) proposed early abandon

Figure 4.3: An example of Euclidean distance early abandon where the
sDist scan starts from the beginning (a) and from the place of origin of the
candidate shapelet (b).

77

Algorithm 10 sDist(shapelet S,series Ti)

1: subSeq ← getSubSeq(Ti, S.startPos, S.length)
2: bestDist← euclideanDistance(subSeq, S)
3: i← 1
4: while leftExists || rightExists do
5: leftExists← S.startPos− i ≥ 0
6: rightExists← S.startPos+ i ≤ Ti.length− S.length+ 1
7: if rightExists then
8: subSeq ← getSubSeq(Ti, S.startPos+ i, S.length)
9: currentDist← earlyAbandonDistance(subSeq, S, bestDist)

10: if currentDist > bestDist then
11: bestDist← currentDist
12: if leftExists then
13: subSeq ← getSubSeq(Ti, S.startPos− i, S.length)
14: currentDist← earlyAbandonDistance(subSeq, S, bestDist)
15: if currentDist > bestDist then
16: bestDist← currentDist
17: i← i+ 1
18: return bestDist

4.5 Heterogeneous ensemble of standard

classification algorithms

The previous shapelet transform was used in conjunction with the Weighted

Ensemble (WE) [46]. The weighted ensemble is a set of simple classification

algorithms formed into a cross-validated weighted ensemble specifically de-

signed for use with the Shapelet Transform. Initially the weighted ensemble

comprised of the classifiers used to evaluate the transform in the original

paper. These classifiers were; C4.5, 1NN, Naive Bayes, Bayesian Network,

Rotation Forest, Random Forest, Support Vector Machine (Linear), and

Support Vector Machine (Quadratic). Since the inception, the weighted

ensemble has been refined and the results have been presented in [65]. The

weighted ensemble was subsequently changed to be called the heterogeneous

ensemble of simple classification algorithms (HESCA), and includes five

classifiers. The algorithms that make up HESCA are: a support vector

78

machine with a polynomial(linear) kernel [81]; a multi-layer perceptron [90];

logistic regression; nearest neighbour with euclidean distance; and a C4.5

decision tree. These five classifiers are deliberately not tuned, as one of the

ideas behind HESCA is that it is easy to leverage off of the diversity of

classifiers that are similar in performance, but drastically different in design.

It was shown in [65] that the heterogeneous ensemble, which includes an

untuned SVM, outperforms on average a computationally expensive tuned

SVM. We formally define HESCA as follows, given a set of k classifiers

M = {M1, ...,Mk}, and the unseen case x. Each of these classifiers will

produce a probability distribution, which must be combined to form the final

ensemble’s probability distribution p̂k(x). HESCA employs a simple expo-

nentially weighted majority vote over the probability distributions of each

classifier. Training consists of defining the weighting of each classifier, for

which we simply use the estimated accuracy found through cross-validation

of the training data.

p̂(y = i|M,x) ∝
k∑
j=1

wαj pj(y = i|M,x) (4.1)

As well as accuracy, one could quite easily use any other performance

metric calculable from a cross validation: balanced accuracy; log likelihood;

area under the receiving operator characteristic; f-score. These have all

been implemented. We opted to use accuracy for both its simplicity to

calculate and motivate, and the fact that in experimentation, it was no

worse than any of the rest. The α parameter used in the exponentiation

is designed to accentuate differences in the classifier’s weightings. When

α = 0, all weightings become equal, while as α tends to ∞, the ensemble

becomes functionally equivalent to the strongest classifier found through

cross validation. α is somewhat arbitrarily set to 4, to avoid a parameter

search.

79

Figure 4.4: Number of classes plotted against the difference in error between
the full shapelets and the binary shapelets. A positive number indicates the
binary shapelets are better. The dotted line is the least squares regression
line.

4.6 Results

In Table 4.2 we present the wins and losses for the Balanced Shapelet

Transform compared with the published results for the Shapelet Transform

on 75 datasets [70]. In addition to this, the full table of results is presented

in the appendix (Table 2). Figure 4.4 presents the regression plot of the

difference in errors between them on the y axis and the number of classes on

the x. The plot shows a minor trend that the difference in error rate between

them increases as the number of classes increases.

80

Number of classes Full Better Binary Better

2 class 6 19
3-5 class 7 13
6-9 class 4 8
>10 class 4 8

All 21 48

Table 4.2: Number of data sets the binary shapelet beats the full shapelet
split by number of classes.

4.7 Analysing the individual Improvements

In Table 4.2 we show that the Binary Shapelet Transform is more effective

than the original Shapelet Transform on multiclass problems. To gain insight

into the changes we made to the algorithm we separated the transform

into four distinct transforms to compare individual sections. Initially we

test the min and max shapelet length heuristic proposed in the original

paper (paramST). We also tested for the default parameters of min = 3

and max = m(ST), we then tested including binary shapelets (binST), and

finally we added balancing onto the transform (BST).

The shapelet transform is deterministic in nature, however HESCA is

not. We perform the accuracy experiments 30 times to collect the mean

and standard deviation. We opted to use the 40 smallest datasets from the

UCR-UEA archive. We defined the smallest datasets by computing a value

based on the shapelets worst case operation count.

In Figure 4.5 we show on the four algorithms that there is no significant

difference between the different approaches. Out of all 40 datasets eighteen

of them are two class problems, for which we think balancing could decrease

accuracy. The binary shapelets without balancing has the lowest of the four

ranks, which suggests that without balancing binary shapelets the overall

accuracy can become worse. The multi class wins and losses are presented in

Table 4.2. On problems with two classes, the balancing and binary shapelets

are not as effective as ST, but they are not significantly worse. On large multi

class problems the Binary and balancing, makes the Shapelet Transform win

81

more often when compared with the original ST.

We propose creating a single classifier called ST HESCA which depending

on the number of class labels either enables binary labels and class balancing

or disables them. Class balancing and binary shapelets are not required

on two class problems and in some cases the balancing can hinder overall

accuracy. In the two class case, one class dominating the transform can be

more effective than dividing the shapelets evenly, and choosing potentially

lower quality shapelets from the other class. Irrelevant of whether the binary

and class balancing are enabled or disabled the transform will still use HESCA

as its base classifier.

82

dataSets numClasses paramST ST binST BST
ArrowHead 3 0.766 0.778 0.766 0.777

Beef 5 0.833 0.9 0.767 0.833
BeetleFly 2 0.9 0.95 0.9 0.9

BirdChicken 2 0.7 0.8 0.85 0.85
CBF 3 0.996 0.996 0.968 0.952

Coffee 2 0.964 1.0 1.0 1.0
DiatomSizeReduction 4 0.922 0.866 0.903 0.899

DistalPhalanxOutlineCorrect 2 0.784 0.758 0.741 0.792
DistalPhalanxOutlineAgeGroup 3 0.765 0.796 0.786 0.787

DistalPhalanxTW 6 0.635 0.68 0.647 0.679
ECG200 2 0.84 0.836 0.828

ECGFiveDays 2 0.997 0.994 0.997 0.997
FaceAll 14 0.728 0.762 0.775 0.779

FaceFour 4 1.0 0.886 0.764 0.783
FacesUCR 14 0.92 0.889 0.904 0.919
GunPoint 2 1.0 1.0 1.0 1.0

ItalyPowerDemand 2 0.95 0.953 0.95 0.948
Lightning7 7 0.767 0.711 0.703 0.699

MedicalImages 10 0.615 0.64 0.66 0.681
MiddlePhalanxOutlineCorrect 2 0.599 0.626 0.591 0.584

MiddlePhalanxOutlineAgeGroup 3 0.739 0.789 0.78 0.775
MiddlePhalanxTW 6 0.569 0.551 0.538 0.563

MoteStrain 2 0.887 0.947 0.95 0.951
OliveOil 4 0.933 0.9 0.8 0.833

Plane 7 1.0 1.0 1.0 1.0
ProximalPhalanxOutlineCorrect 2 0.858 0.835 0.834 0.834

ProximalPhalanxOutlineAgeGroup 3 0.921 0.911 0.893 0.904
ProximalPhalanxTW 6 0.8 0.834 0.82 0.821

ShapeletSim 2 0.994 1.0 1.0 1.0
SonyAIBORobotSurface1 2 0.938 0.835 0.827 0.822
SonyAIBORobotSurface2 2 0.892 0.952 0.951 0.94

SwedishLeaf 15 0.916 0.926 0.931 0.937
Symbols 6 0.939 0.909 0.895 0.893

SyntheticControl 6 0.967 0.968 0.985 0.987
ToeSegmentation1 2 0.956 0.965 0.969 0.982
ToeSegmentation2 2 0.838 0.938 0.938 0.946

Trace 4 1.0 0.98 1.0 0.99
TwoLeadECG 2 1.0 1.0 1.0 1.0

Wine 2 0.87 0.815 0.832

Wins 10 12 0 9

Table 4.3: Table of the accuracies for the 4 variations of the shapelet algo-
rithm, classified using HESCA

83

Figure 4.5: The critical difference diagram of Table 4.3

4.8 Measuring heuristic speed up techniques

Our primary aim in this work was to create a shapelet transform that could

handle multi class problems better than the full shapelet transform. In

section 4.6 we demonstrated the improvements that binary shapelets and

class balancing could achieve. In algorithm 10 we described a new heuristic

speed up measure for calculating the distances of a shapelet to the time series

in the dataset. This sliding window distance function is defined as sDist

in the algorithmic description of the shapelet transform in chapter 2. To

measure the efficacy of these heuristic changes we need to define a measure

for evaluating the operations performed by a single transform. We define

this value as the calculation of the Euclidean distance between a shapelet

and subsequence in a time series. In Equation 4.2 we formally define the

84

Algorithm Name Parameters

paramFST min and max set via length heuristic
FST min = 3,max = m

Prune FST and entropy pruning
RoundRobin Prune and round robin ordering

Online RoundRobin and sorting of shapelet indexes by value
ImpOnline Online and algorithm 10

binFST ImpOnline and binary shapelets
BST binFST and algorithm 9

Table 4.4: A table of the seven different parameters used to measure the
reduction in number of operations performed by the shapelet transform

equation for calculating the number of fundamental operations in a shapelet

transform, where n is the number of time series, m is there length, and min

and max are the constraints on the shapelets to evaluate.

opCount = n

max∑
l=min

(m− l + 1)2l(n− 1) (4.2)

We design seven experiments to record the number of operations each

transform makes on a set of the same 40 datasets we previously used in

Table 4.3. We defined 7 sets of parameters for the transforms, and because

the transform is deterministic and we are not measuring accuracy these

experiments were only performed once.

The paramFST test will use the shapelet heuristic for setting min and

max parameters, and no other optimisations. The prune test will use the

heuristic pruning of series based on the best case projected information gain.

The RoundRobin test will build upon the pruning test parameter set, by

additionally alternating between series of different classes to see if evaluation

order. The Online test will build upon the parameter set of RoundRobin

by using the heuristic early abandon techniques by sorting the shapelet

indices before the sDist function, as well as caching and updating summary

statistics. The ImpOnline test will build upon the Online test by using the

updated sDist proposed in algorithm 10. BinFST uses the same parameter

85

set as ImpOnline but will enable binary classification on multi-class problems,

without balancing the classes. Finally the BST test is binFST parameter set

with the class balancing enabled from algorithm 9.

86

datasets ST prune RoundRobin Online ImpOnline binFST BST paramST
ArrowHead 1 0.99 0.98 0.50 0.31 0.30 0.30 0.43

Beef 1 0.68 0.63 0.36 0.23 0.27 0.28 0.02
BeetleFly 1 0.91 0.91 0.58 0.55 0.55 0.56 0.16

BirdChicken 1 0.90 0.90 0.47 0.40 0.40 0.40 0.16
CBF 1 1 1 0.77 0.73 0.73 0.73 0.48

Coffee 1 1.00 1.00 0.45 0.09 0.09 0.09 0.04
DiatomSizeReduction 1 1 1.00 0.36 0.09 0.09 0.09 0.01

DistalPhalanxOutlineAgeGroup 1 1 1 0.47 0.19 0.19 0.19 0.47
DistalPhalanxOutlineCorrect 1 1 1 0.49 0.22 0.22 0.22 0.16

DistalPhalanxTW 1 1 1 0.47 0.19 0.19 0.18 0.32
ECGFiveDays 1 1 1 0.58 0.33 0.33 0.33 0.63

FaceAll 1 1 1 0.72 0.69 0.69 0.69 0.27
FaceFour 1 1.00 1.00 0.69 0.56 0.57 0.57 0.41
FacesUCR 1 1 1 0.74 0.68 0.68 0.67 0.56
GunPoint 1 1.00 1.00 0.59 0.36 0.36 0.36 0.35

ItalyPowerDemand 1 1 1 0.53 0.40 0.40 0.40 0.55
Lightning7 1 1.00 1.00 0.73 0.71 0.71 0.70 0.24

MedicalImages 1 1 1 0.64 0.62 0.62 0.53 0.41
MiddlePhalanxOutlineAgeGroup 1 1 1 0.46 0.16 0.16 0.15 0.46

MiddlePhalanxOutlineCorrect 1 1 1 0.46 0.16 0.16 0.16 0.10
MiddlePhalanxTW 1 1 1 0.45 0.16 0.16 0.16 0.47

MoteStrain 1 1 1.00 0.69 0.58 0.58 0.58 0.32
OliveOil 1 0.59 0.65 0.28 0.01 0.01 0.01 0.01

Plane 1 1 1 0.57 0.45 0.45 0.45 0.88
ProximalPhalanxOutlineAgeGroup 1 1 1 0.44 0.14 0.14 0.14 0.47

ProximalPhalanxOutlineCorrect 1 1 1 0.45 0.14 0.14 0.14 0.10
ProximalPhalanxTW 1 1 1 0.44 0.14 0.14 0.14 0.45

ShapeletSim 1 0.81 0.80 0.69 0.67 0.67 0.68 0.01
SonyAIBORobotSurface1 1 1 1 0.58 0.40 0.40 0.40 0.52
SonyAIBORobotSurface2 1 1 1 0.65 0.56 0.56 0.56 0.60

SwedishLeaf 1 1 1 0.55 0.39 0.39 0.39 0.41
Symbols 1 1 1 0.63 0.60 0.60 0.60 0.42

SyntheticControl 1 1 1 0.77 0.77 0.77 0.77 0.62
ToeSegmentation1 1 0.98 0.98 0.62 0.61 0.61 0.61 0.67
ToeSegmentation2 1 0.94 0.95 0.55 0.56 0.56 0.55 0.60

Trace 1 1 1 0.69 0.63 0.63 0.63 0.77
TwoLeadECG 1 1 1 0.50 0.20 0.20 0.20 0.09

Table 4.5: A Table showing the percentage of operations performed for each of the 7 parameter sets which are
compared to a complete exhaustive search without optimisations.

87

In Table 4.5 we show the percentages for operations performed in the

sDist function for the 7 shapelet variations described earlier. The averages

as a portion of the amount of work done are shown in Table 4.6. This shows

the decreasing amount of work required for each stage of the improvements.

Stats FST Prune RoundRobin Online ImpOnline binST BST paramST
Avg. 1 0.968 0.968 0.554 0.391 0.392 0.389 0.370
Std. 0 0.086 0.086 0.122 0.225 0.225 0.222 0.230

Table 4.6: Number of operations as fraction of the maximum amount of
work, Averaged for all datasets

Figure 4.6: The Average total opCounts performed for the 7 different
shapelets improvements. Average amount of work reduced, shown with
the best and worst dataset. (Oliveoil,SyntheticControl)

88

4.9 Shapelet Distribution

The distribution of the shapelets in the final set is important in understanding

what types of features the shapelet transform is finding and how the algorithm

can be tuned. For each series the number of discrete values for shapelet

length is dependent on the series length. To make the histograms more

comparable, the shapelet lengths are normalized by the series length, and

the counts are discretised into bins based on percentage of total series length.

We selected 100 bins to discretise the data into, where each bin represents

1% of the series length. This enables a more fair comparison of long series

to short series. Datasets with many cases, also have a larger number of

shapelets found. This is because we set k to the number of cases n. Given

that larger datasets have more shapelets, we chose to represent the amount

of shapelets for a particular bin as a proportion of the total shapelets for a

given dataset.

Figure 4.7: Normalised shapelet lengths with respect to series length for all
shapelets in the set used in the transformation process

89

In Figure 4.7 we show the average distribution of the best shapelets

found across all the datasets. The shapelets used to construct this histogram

were constructed from our experiments in section 4.10. The distribution

demonstrates that, against expectation shorter shapelets tend to be found

and have higher quality than longer shapelets. It also highlights the fact that

there is a small proportion, approximately 5%, of the shapelets in the final set

that are the whole series. Lines et al. [70] described a heuristic approach to

selecting minimum and maximum shapelet lengths, as computation power has

increased. We opt to forgo this heuristic and consider the entire problem space

from 3 to m. On closer inspection of the estimation function, the parameters

selected often did not include shapelets that were less than 5% of the total

series or shorter [46]. An example of this is with the UWaveGestureLibrary

datasets.

dataset minLength maxLength

UWaveGestureLibraryX 113 263
UWaveGestureLibraryY 122 273
UWaveGestureLibraryZ 135 238

90

Figure 4.8: Normalised shapelet lengths with respect to series length for final
shapelets for the datasets UWaveGestureLibraryX, UWaveGestureLibraryY
and UWaveGestureLibraryZ

In Figure 4.8, the three datasets final shapelet counts are shown. Approx-

imately 50% of the final shapelet set are found in the region that is less than

5% of the series total lengths. Considering the previous parameters and the

selection algorithm it is reasonable to consider how only evaluating shapelets

in the 35% to 85% range might produce a less representative transform.

4.10 Resampling Experiments

One of the major criticisms of recent time series classification work is that

algorithms are often presented on select problems from the original UCR

repository. The UCR-UEA repository was launched [23] as a larger standard-

ized set of 85 datasets. These datasets are covered in more detail in chapter 3.

As part of [8] and the launching of a larger shared problem set, the aim

was to fully evaluate the best three shapelet methods from the literature.

91

The problem with only evaluating on 85 datasets however, and that which

is typical of machine learning research in general, is that datasets tend to

only have one default train and test split. These splits are often arbitrarily

chosen when the dataset is designed/captured and released. This could have

the consequence of making problems appear more difficult than they are,

or may create biases on certain datasets for particular types of classifiers.

It was proposed that creating 100 re-sampled problems for each dataset,

where the train and test split are merged and stochastically sampled with

respect to the original train/test distribution. This creates a large problem

space to test on as each algorithm will be assessed on 8500 problems, whilst

maintaining the number of cases for each class.

The aim of the second portion of this chapter is to fully evaluate

ST HESCA, Learn Shapelets and Fast Shapelets. Earlier we demonstrated

there was no significant difference between the shapelet transform and learn

shapelets when compared on the overlapping datasets published by Grabocka

et al. [40]. These three algorithms are evaluated on 8500 problems, using the

resampling technique outlined in chapter 3. These results contributed to the

wider study presented in [8], where some of the published work produced by

the other authors is used to evaluate the state of shapelet algorithms within

the broader field of TSC.

One of the principles of this work was to contribute to an open source

framework for time series classification [4]. This included the 85 datasets in

a common format, in this case ARFF, source code for common algorithms

and processing methods for re-sampling, filtering and processing time series

data. Fast Shapelets and Learn Shapelets were both implemented in Java

in conjunction with the WEKA frame work [43]. These methods both had

input from the respective authors to ensure there correctness and in the case

of Learn Shapelets some minor upgrades later proposed but not published

at the time. To standardise the experiments for shapelets and across the

wider work parameter setting was either performed by cross-validation where

appropriate, and often with the original authors guidance, or parameters

were fixed in accordance with the original work. In Table 4.7 we present the

parameters for Fast Shapelets and Learn Shapelets.

92

Parameters CV Folds

LS λ ∈ {0.01,0.1}, L ∈ {0.1,0.2},R ∈ {2,3} 3
FS r = 10, k = 10, l = 16, α = 4 0

Table 4.7: Parameter Settings and ranges for Fast Shapelets and Learn
Shapelets. Consistent with original authors parameters

For Fast Shapelets we mirrored the same parameters as those presented

in [83]. For Learn Shapelets the parameters presented in [40] were varied

dependent on the dataset. We opted to build three different parameter sets

for λ, L and R which were chosen by pooling all parameters used in the

original paper. On some of the largest datasets Learn Shapelets can take a

long time to converge, and with a max run time of seven days on our HPC we

opted to use three fold cross validation to ensure it completed successfully.

For the shapelet transform a small amount of search space reduction was

required on the very large datasets, otherwise a full search would not have

been feasible.

For some of the very large datasets two types of sampling were required.

Firstly, a skipping mechanism with two stride parameters was used. These

were defined for length skipping and position skipping. There is a large

amount of redundancy in the shapelets evaluated in the transform. A

shapelet of length 10, at position 0 and a shapelet of length 11 at position

1 have 9 values in common, although after z-normalisation the numerical

values will be different. Our hypothesis is that with a small amount of

skipping, the number of calculations can be reduced without significantly

reducing accuracy. The most important factor to consider is that in previous

experiments the min and max parameters were set through a shapelet length

heuristic. This heuristic limited the range on the long datasets considerably.

However, through our experiments we show that increasing the range of

lengths available but considering fewer in the same region of the search space

provides significantly better accuracy.

These stride parameters however are a heuristic and will not affect the

worst case complexity of the algorithm. The other issue with the skipping

93

m q

1500 32
1000 16
500 8
250 4

(a)

m p

2000 8
1000 4
500 2

(b)

Table 4.8: Two tables for the skipping parameters. (a) contains length
skipping, and (b) contains position skipping values

parameters is that as they become large this could negatively affect accuracy

as too much of the search space is not evaluated. The modified shapelet

transform that takes the skipping parameters p and q is described in algo-

rithm 11. The criteria used for setting the skipping values are shown in

Table 4.8. These values were chosen fairly arbitrarily, however, in chapter 5

we assess better ways to choose these and the findings are presented in [18].

Table 4.8 contains the cut off points for the different skipping values. For

example if the series was of length 1200, its skipping parameters would be

q = 16, p = 4, rounding down to the nearest length.

Algorithm 11 FindKBestShapeletsWithSkipping(T, min,max, k, p, q)

Where T is a set of Time Series.
kShapelets = ∅
for Ti in T do
seriesShapelets = ∅
for l in {min, ...,max} by q do

for pos in {0, ..., |Ti| − l + 1} by p do
quality = checkCandidate(T,T li,pos)

seriesShapelets = seriesShapelets ∪ {T li,pos,quality}
sort(seriesShapelets)
removeSelfSimilar(seriesShapelets)
kShapelets = merge(k, kShapelets, seriesShapelets)

return kShapelets

In addition to the skipping parameters on some of the very large datasets

sampling was performed to further reduce the shapelet search area. The

94

method for subsampling was aimed at reducing the number of time series,

but without losing less represented classes. The smallest represented class is

found. This class is sampled down to 25 series, the proportion of full size to

sample size is applied to the rest of the dataset. If the sampling would reduce

the dataset to less than 10% of the total size then the sampling is clamped at

10%. Any more than 10% seemed excessive, but this was arbitrarily chosen.

In chapter 5 we further review sampling and its effects on the search space.

The mean accuracy over 100 folds for the three shapelet algorithms

is presented in Table 1 (see appendix). At the bottom of the table we

demonstrate the number of wins for the three algorithms and showing that

on 71 out of the 85 datasets the ST HESCA is better than LS and FS.

4.10.1 Results

The critical difference diagram for the results presented in Table 1 (see ap-

pendix) is presented in Figure 4.9. This critical difference diagram shows that

the Shapelet Transform is significantly better than the other two algorithms.

The critical difference for ST vs. the other best nine algorithms in time series

classification is shown in Figure 4.10. The diagram shows that the shapelets

method is significantly better than a large portion of the current state of the

art and is only beaten by collective of transformation based ensembles which

we presented in [6], of which the Shapelet Transform is an integral part.

95

CD

3 2 1

1.2176 ST
2.1 LS

2.6824FS

Figure 4.9: The critical difference diagram of Table 1, (ST is an abbreviation
for ST HESCA)

CD

9 8 7 6 5 4 3 2 1

2.1294
COTE

3.4941
ST

4
BOSS

5.0176
EE

5.6588 DTW
F

5.7294
TSF

5.9118
TSBF

6.4176
LPS

6.6412
MSM

Figure 4.10: The critical difference diagram of the best 9 algorithms from
[8]. These algorithms are described in section 2.2.

In a Wilcoxon signed rank test on fold 0 ST HESCA was found to

be significantly better than the original ST presented in [70]. In Table 2

(see appendix) we present the comparison of the results when comparing

96

between 73 datasets. In a Wilcoxon signed rank test, and the student t-test

ST HESCA is shown to be significantly better than the previous version

of ST. These results are in line with our results presented earlier where we

showed that ST was not significantly worse than Learn Shapelets based on

the published data and in Figure 4.9 showed that with more datasets and

using the improvements we proposed it was significantly better than Learn

Shapelets. Over more datasets and using some small sampling rather than

the length heuristic ST HESCA is significantly better.

COTEs accuracy has improved greatly since its original publication

in [6]. In Figure 4.10 it is shown that COTE is the best algorithm for

time series classification, and that both BOSS and ST HESCA are the

joint second best algorithms. ST HESCA is a core part of the COTE

ensemble. The improvements proposed in chapter 4 can be attributed to

some of the improvements in COTE. Unfortunately, we do not have the

data required to quantitatively prove each individual ensemble components

contributions, nor do we have the data to show how this changed from the

original implementation to the current version. One of the main motivations

for improving both the runtime and accuracy of the Shapelet Transform is

that it should directly improve COTE. As the Shapelet Transform is one of

the slowest algorithms present within the ensemble, reduction in the runtime

requirements should result in COTE being more usable on larger problems.

4.11 Conclusion

In conclusion this chapter describes a Shapelet Transform that was better

than the Shapelet Transform on multi class problems. We described a method

for reducing the number of operations performed by the distance calculations

that is used to calculate the quality of a shapelet.

We demonstrated that the balanced Shapelet Transform wins more often

on problems with many class labels. We defined ST HESCA as a wrapper to

simplify using the Shapelet Transform with the heterogeneous ensemble of

classification algorithms, where the classifier can decide whether to use class

balancing and binary shapelets or not.

97

We demonstrated that the changes made to the shapelet transform

reduced the number of operations performed during a full search, and that on

average there is no difference between a full search and the sometimes large

cutoff values produced by the heuristic setting of min and max. However,

closer inspection of the shapelets found showed they tended to be either less

than 5% of the total series length or the series length itself (100%). In ST

HESCA we will default the shapelet min and max parameters to be 3 and

m confident that our speed ups in the sDist function can offset the increase

in the number of shapelets evaluated when compared to the heuristic length

setting parameter, which we demonstrated can reduce accuracy.

In the second portion of this chapter (section 4.10) a new experimental

methodology was proposed, where 8500 experiments for the Shapelet Trans-

form, Fast Shapelets and Learn Shapelets were conducted on 85 time series

problems. The aim of these experiments was to show which shapelet based

method is the state-of-the-art and quantify how good all shapelet methods

are when compared to other time series classification algorithms. In addition

to this, these results provide an excellent point of comparison for new tech-

niques to benchmark against. ST is compared with other results produced

in the literature [8] where it is found to be the second best algorithm out

of all reviewed. The best algorithm for time series classification was shown

to be COTE, of which the shapelet transform forms an integral part of the

ensemble.

The shapelet transform is compared with the original results presented in

[70] and on the 75 datasets they have in common, the changes made to the

shapelet transform have caused a significant improvement in classification

accuracy. The aim of these experiments was to demonstrate that removing

the shapelet length heuristic in favour of fixing the min and max to 3 to m.

On datasets where the full enumeration is problematic we can use skipping

instead. We demonstrated that some of the best shapelets were being missed

in previous searches. However, because we have used a heuristic to find the

shapelets, the global best shapelets may not have been found, and in some

of the large datasets more improvements could be made.

There were some problems with the shapelet transform on the largest

98

of the TSC problems in the UCR-UEA archive, and some simple stride

parameters were required to achieve reasonable runtime even on a HPC.

With the success of shapelets in this study, this further motivates more

research into runtime reductions. In chapter 5 the problem of quantifying

shapelet runtime, and bounding searches to fixed time limits is explored.

The aim is to give the shapelet search a fixed amount of time and produce

similar or equal accuracy to the results presented in this chapter.

99

Chapter 5

Sampling the Shapelet Space

Contributing Publication

• A. Bostrom, A. Bagnall, and J. Lines. Evaluating improvements to

the shapelet transform. Knowledge Discovery and Data Mining, in

Workshop on Mining and Learning from Time Series, 2016

5.1 Introduction

Through a thorough and extensive analysis we have demonstrated that the

Shapelet Transform is one of the best approaches to solving time series

classification [8]. However, the brute-force search is not scalable for large

or multivariate time series problems. The Shapelet Transform is O(n2m4)

and this leads to infeasible run time requirements for some of the datasets

in the UCR-UEA repository (see chapter 3). In order to solve this problem

we believe more algorithm development on the shapelet search is required.

Alternative shapelet methods have either failed to provide accuracy that is

not significantly worse when reducing run time requirements, or they find

shapelets that are not present in the original data [8, 40, 83]. One of the

major benefits of shapelet discovery, as opposed to learning shapelets, is the

data-driven approach to finding class defining features and how they can be

100

mapped back to the original series for knowledge discovery. The problem

with learning shapelets is there is no guarantee they exist in the data, and

in the case of Fast Shapelets they represent many subsequences as a result

of the aggregation. One type of problem Shapelets have had a large amount

of success with is activity recognition. The concern in this problem area

with derived shapelets, as opposed to found shapelets, is that the shapelet

may not be constrained in the same way that the data capture is. This is

especially apparent in human activity problems, where there is the potential

to generate shapelets that describe impossible movements.

With these issues in mind in this chapter we described methods that find

a set of shapelets that exist within the train data, and provide comparable

accuracy with a full enumerative search, whilst requiring orders of magnitude

less work to find. This will be accomplished by providing a contract approach

to the shapelet transform. We define contract classification as a way of

limiting the runtime of the shapelet transform such that when the limited

runtime has expired a set of shapelets have been found, which may or may

not be the global best solution. The goal of this work is to create search

methods that find the best shapelets whilst being constrained to a fixed time

limit. The deterministic nature of the shapelet transform means we are able

to estimate the run time for a dataset.

In this chapter we will present four different search methods for use

with a contract shapelet transform. Finding and evaluating shapelets is the

constrained process in our contracting algorithm. To ensure comparable

results the same classification method will be maintained (see chapter 4).

The classification method we have used before is called the heterogeneous

ensemble of simple classification algorithms (HESCA) (see section 4.5).

We define four shapelet search space techniques in section 5.4 where we

show that we can find shapelets in two limited runtimes, searching for either

one hour or one day. Our hypothesis is that we can maintain accuracy whilst

reducing the amount of shapelets evaluated using adaptive searching.

This chapter is organised as follows. Section 5.2 presents a number

of formulae for calculating worst-case run time complexity of the shapelet

transform. This is based on previous work in chapter 4 and in [15, 18]. We

101

defined the operations in the Euclidean distance function as part of the

shapelet evaluation process as the fundamental operation. Given a formal

definition for calculating the approximate runtime of the shapelet algorithm,

we then present the contracted shapelet transform algorithm which was

initially presented in [18].

In the UCR-UEA archive there are 85 datasets available. In Table 5.1 and

Table 5.2 we define two subsets which we identified as large and intractable

problems dependent on either a one hour or one day runtime. Having defined

the large datasets and a contract approach for the Shapelet Transform, the

following sections describe four heuristic techniques to finding shapelets

based on a fixed operation count.

The shapelet contracting is discussed in section 5.4 where we outline

the four methods in subsections. In subsection 5.4.1 we describe a heuristic

search for calculating a stride parameter for the sliding window function in

the shapelet search. In subsection 5.4.2 we describe a heuristic search that

randomly selects shapelets from the whole search space until the operation

count limit is exceeded. In subsection 5.4.3 we describe a tailored Tabu

search algorithm designed for shapelets, which blacklists areas of the search

space. In subsection 5.4.4 we define the fourth heuristic search which uses a

stochastic sampling method to constrain the search space as it iterates until

the operation count is exceeded. Finally in section 5.5 we compare the four

heuristic search methods, we perform pairwise analysis of the one hour and

one day respectively.

5.2 Quantifying the time for enumeration

In this section the formula for calculating the number of shapelets and for

calculating the number of fundamental operations in a dataset are presented.

Estimating the number of fundamental calculations for a dataset is a

crucial component in estimating the run time on the large datasets. We

define the runtime complexity function as the number of addition operations

in the euclidean distance function when evaluating a single shapelet. In

chapter 4 and in [15, 18] we demonstrated the effectiveness of the opCount

102

measure for comparing speed up techniques. To extend this work we wanted

to define formulaes for calculating these values for any dataset. This will

enable us to rank datasets by runtime, and search space size.

Considering the set of time series T . We calculate the number of shapelets

using formula Equation 5.1

shapeletCount =
n∑
i=1

m∑
l=1

(m− l + 1) (5.1)

The summation from Equation 5.1 is expanded to Equation 5.2.

shapeletCount =
nm2 + nm

2
(5.2)

We define the total number of operations in a shapelet transform in Equa-

tion 5.3. To evaluate a single shapelet, we must evaluate it by comparing it

to every other series, and slide it along that series calculating the euclidean

distance.

opCount =
n∑
i=1

m∑
l=1

(m− l + 1)2l(n− 1) (5.3)

In Equation 5.4 we show the expanded summation from Equation 5.3 and in

Equation 5.5 we describe a rearranged form for calculating the approximate

number of cases based on a given opCount.

opCount =
m(m+ 1)(m2 + 3m+ 2)(n− 1)n

12
(5.4)

n ≈

√
12opCount

m(m+ 1)(m2 + 3m+ 2)
(5.5)

The final expanded formula in Equation 5.4 clearly demonstrates the

worst case complexity of the shapelet algorithm as O(n2m4). In all of

these equations we have included searching for shapelets from a length of

1 to m. In reality shapelets less than a length of three are inconsequential.

For practical purposes we devised a set of formulas that calculated the

opCount with respect to min and max parameters, as well as other metrics

103

for sampling which are covered in further sections. In Equation 5.6 the

length and position stride parameters p and q have also been included in

the equation. In Table 4.8 we presented an arbitrary heuristic for setting

these values. Instead the aim is to define the runtime with respect to the

datasets parameters and, from a given runtime requirement, derive the stride

parameters to fulfill this contract. The min and max are assumed to be

3 and m: this is the case with all work. We denote the position skipping

parameter as p and the length skipping parameter as q. We define the size of

the set of possible lengths that exist with length skipping as s = (m− 3)/q.

The set of possible length values are:

L =< l1, ..., ls >

where

li = ((i− 1)q) + 3

We define the opCount formula as:

opCount =

|L|∑
i=1

⌈
m− li + 1

p

⌉
(m− li + 1)(li)(n− 1)(n) (5.6)

Which expands to

opCount =
(m− 3)(n2 − n)(m3 + 7m2 −m(q2 − 18q + 27) + 5q2 − 24q + 27)

12pq
(5.7)

We define one final equation for constrained runtime parameters for

random shapelets. Given a fixed operation count opCountTarget and the

fixed opCount we can derive the proportion of work required. We then

calculate the amount of shapelets to be evaluated for random sampling

methods, by multiplying the fixed shapelet amount (Equation 5.1) by this

proportion.

prop =
opCountTarget

opCount
(5.8)

104

maxShapelets = prop ∗ shapeletCount (5.9)

We presented two simple formulas for reducing the runtime of the shapelet

search, these are by either having a fixed number of shapelets or by using

stride parameters to avoid evaluating all shapelets. Having a fixed amount of

shapelets will be useful when creating other heuristic search techniques as we

will be able to anticipate the amount of the shapelet search space available.

All the time constrained experiments are either evaluated with a maximum

train time of one hour, or one day. These train times reflected real-world

expectations, and mirror other similar experiments in the literature [40, 83].

In Figure 5.1 we display the experimental operation counts matched

alongside real-world timed recordings of the shapelet transform averaged

over 10 runs. The aim was to ensure that we could realistically convert

theoretical operation numbers to actual computer performance. The caveat

is that this is dependent on a broad range of factors, some of which are out

of our control. As is the case with all of these experiments we have tried to

ensure they adhere to the one hour or one day runtime but they may not be

these times exactly.

105

(a) opCounts

(b) Timing in nanoseconds

Figure 5.1: All datasets able to fully enumerate the shapelet set in one
day runtime. We demonstrate the calculated opcounts and timing estimate
against the recorded data on the full transform with no optimisations, and
the full transform with current state-of-the-art optimizations.

The datasets for the one hour and one day experiments were carefully

selected based on the size of the full shapelet set. We filtered these by

calculating the amount of the shapelet space that could be explored in either

106

one day or one hour, and created a cut off point. Any dataset where 0.001%

of the total shapelets cannot be calculated in less than the respective time

limit are included. The cut off point is derived from the experiments we

perform in section 5.3.

Two sub sets were created from the UCR-UEA archive, the one hour

dataset contains 37 problems, and the one day dataset contains 20 problems.

These are the largest datasets available in the archive. In Table 5.1 we

present the one hour run time datasets. These problems are presented with

the train and test instance sizes n, the length of the series m, and the number

of classes C. In Table 5.2 we present the one day run time datasets, with

the types of information.

107

datasets n TRAIN n TEST m C

CinCECGtorso 40 1380 1639 4
Computers 250 250 720 2
CricketX 390 390 300 12
CricketY 390 390 300 12
CricketZ 390 390 300 12

Earthquakes 322 139 512 2
ElectricDevices 8926 7711 96 7

FiftyWords 450 455 270 50
Fish 175 175 463 7

FordA 3601 1320 500 2
FordB 3636 810 500 2

HandOutlines 1000 370 2709 2
Haptics 155 308 1092 5

InlineSkate 100 550 1882 7
LargeKitchenAppliances 375 375 720 3

Lightning2 60 61 637 2
Mallat 55 2345 1024 8

NonInvasiveFetalECGThorax1 1800 1965 750 42
NonInvasiveFetalECGThorax2 1800 1965 750 42

OSULeaf 200 242 427 6
Phoneme 214 1896 1024 39

RefrigerationDevices 375 375 720 3
ScreenType 375 375 720 3
ShapesAll 600 600 512 60

SmallKitchenAppliances 375 375 720 3
StarlightCurves 1000 8236 1024 3

Strawberry 613 370 235 2
UWaveGestureLibraryAll 896 3582 945 8
UWaveGestureLibraryX 896 3582 315 8
UWaveGestureLibraryY 896 3582 315 8
UWaveGestureLibraryZ 896 3582 315 8

Wafer 1000 6164 152 2
Worms 181 77 900 5

WormsTwoClass 181 77 900 2
Yoga 300 3000 426 2

Table 5.1: One hour dataset list

108

datasets n TRAIN n TEST m C

CinCECGtorso 40 1380 1639 4
Computers 250 250 720 2

FordA 3601 1320 500 2
FordB 3636 810 500 2

HandOutlines 1000 370 2709 2
Haptics 155 308 1092 5

InlineSkate 100 550 1882 7
LargeKitchenAppliances 375 375 720 3

NonInvasiveFetalECGThorax1 1800 1965 750 42
NonInvasiveFetalECGThorax2 1800 1965 750 42

Phoneme 214 1896 1024 39
RefrigerationDevices 375 375 720 3

ScreenType 375 375 720 3
ShapesAll 600 600 512 60

SmallKitchenAppliances 375 375 720 3
StarlightCurves 1000 8236 1024 3

UWaveGestureLibraryAll 896 3582 945 8
Worms 181 77 900 5

WormsTwoClass 181 77 900 2

Table 5.2: One day dataset list

5.3 Sampling Shapelets

In this section, the aim is to demonstrate how sampling methods used to

reduce the shapelet set size affect accuracy. Firstly, we define a simple

sampling regime, which reduces the shapelet search space. Given that the

amount of shapelets can be derived for a given dataset, this can be randomly

reduced by sampling up to a fixed amount. Experiments were conducted

on the UCR-UEA datasets over 10 folds. The parameters are a simple

percentage reduction of the shapelet space. The simple formula
1

10p
where p

is 2 ≤ p ≤ 7 is used to determine sampling. On the datasets where p is either

too small (fails to complete), or is too large (0 shapelets are considered).

These results will be omitted. The aim is to show how accuracy changes as

we consider less information.

109

The simplest approach for random shapelets is to uniformly randomly

sample shapelets from the set of all shapelets. There are three parameters

for selecting a random shapelet these are; series, length and position. In the

case of randomly generating shapelet positions, this parameter is dependent

on the length of the shapelet.

The random shapelet algorithm is described informally as; initially calcu-

late the total number of shapelets available based on the datasets n and m

values. The total shapelet count is sampled down to the given proportion

parameter. Generate a set of random lengths, positions and series indexes

from the set of all shapelets. This set of shapelets are all evaluated and the

kBest are maintained. These are then used to transform the original dataset.

Figure 5.2: The proportion of accuracy relative to the full search. As the
sampling on the shapelet search areas increase the accuracy becomes worse
and the variance increases. This demonstrates how random sampling breaks
down in the extreme case.

Figure 5.2 plots the average accuracy of the random shapelets for each

110

proportion proposed. This plot demonstrates that as we increase sampling,

and reduce the amount of the shapelet search space we consider that accu-

racy is relatively unaffected. However, at some point, in the case of these

experiments 0.01% of the shapelet search space the accuracy begins to break

down and we get significantly worse results, that have a higher variance. The

nature of the problem is that increasing the size of both series length and

number of cases increases the amount of shapelets to search for and also

increases the evaluation cost for each shapelet. So as problems increase in

size, even looking at 0.01% of the search space in a reasonable time frame

becomes infeasible.

5.4 Contract Sampling Algorithms for Shapelet

Space

In this section we present four approaches to searching the shapelet search

space. We define these search space algorithms as the skipping search,

random search, tabu search and magnify search. We give motivations for

each method and some of the problems they may have. As with all of these

methods, some search methods may be more suited to particular types of

data. Our aim is to find an approach that is on average better. However,

the ability to tailor these algorithms to highly specific problems means that

a tailored search could be better than the average case.

5.4.1 Skipping search

We initially conceived of a skipping approach to shapelet finding in [8]

and in chapter 4 where the large problems were infeasible and we had to

arbitrarily constrain problems to complete transforms. In previous work

we had constrained the shapelet length to complete these problems in time.

As we have shown in section 4.9 this method was suboptimal. In [18] we

presented the initial results for the contract classifier evaluated on fold 0 of

the UCR-UEA repository. The preliminary results for the one day run time

were not significantly worse than the results presented in chapter 4 and [8].

111

Following on from these preliminary results we wanted to fully define the

skipping search for contract classification.

The skipping search is a simple method for finding shapelets. Given a

runtime requirement we calculate how many operations the algorithm is

allowed to make. From this given operation count we can derive how often we

should skip along when performing the sliding window search of the shapelet

space. This sliding window can skip on the length parameter or the position

parameter. For example given a skipping parameter of two we would extract

shapelets of lengths, 3,5,7 etc and positions 0,2,4 etc. For simplicity we keep

the length and position parameters the same. This is because the number of

solutions to our equation with two unknowns is often not unique, so we could

have many permutations of length and position parameters to select from.

Keeping the values the same ensures a unique solution and we do not think

that either parameter is inherently better to minimise for better shapelet

finding. We defined the skipping equation in Equation 5.6 and the algorithm

was defined in chapter 4 in algorithm 11.

5.4.2 Random search

The second search algorithm we defined is the random shapelet search. One

of the major downsides of the skipping search was that as problems became

exceptionally large we could have stride parameters that skipped large chunks

of the search space, potentially missing possible shapelets. Smaller shapelets

were more likely to be missed because of the skewed distribution of shapelets

based on length. For example the number of shapelets contained in a series

given a set length is m− l + 1. This means that the distribution of the full

set of shapelets are skewed towards smaller values of l. The reason skipping

can be effective as a search method is because the best shapelets exist in

neighbourhoods. However, when we are looking for small shapelets with large

skipping parameters the likelihood that we will miss these neighbourhoods

increases. In Figure 5.3 we show a quality map for the shapelets in the

ItalyPowerDemand dataset. Where dark blue is low quality and light yellow

is high quality. In this particular series the best shapelets tend to be close

112

to the whole length of the series.

Figure 5.3: A heatmap demonstrating the quality of shapelets found in a
single series from ItalyPowerDemand

We illustrate another potential problem with skipping searches for shapelets

with an an example. Given a series of length 100 in a single series there are

5050 possible shapelets

(
m2 +m

2

)
.

For length 3 there are 100-3+1 shapelets, which equals 98, for length 4

there are 97, and for length 5 there are 96. So with a skipping parameter of 2

skipping from 3 to 5 we avoid calculating 97 shapelets. This is approximately

2% of the shapelet space. For a length shapelet of 98 there 100-98+1, there

are 3 shapelets. For length 99 there are 2 shapelets, and for length 100 there

is 1. Skipping from length 98 to 100 means we skip 2 shapelets which is

approximately 0.04% of the shapelet space. The distribution of the skipping

values is unfairly biased towards evaluating long shapelets compared with

short shapelets.

Random shapelets give equal weighting to all areas of the shapelet search

space and so they should alleviate the major downside of a skipping search.

113

We informally describe the random shapelet search as:

• Given a fixed amount of shapelets to find, randomly generate the series,

length and position parameters.

• Extract the generated shapelets and evaluate them.

• From these shapelets keep the k Best and use them to transform the

dataset.

One of the problems with random sampling is that with a fixed number

of searches, as the problem space grows large the search space becomes large

and the distribution of the shapelets more sparse, therefore the likelihood

of finding representative shapelets decreases. To validate this theory we

conducted random searching experiments of fixed sizes (see section 5.3). In

these experiments we saw that as the shapelet search space was reduced

both the accuracy and variance of our results worsened. To counteract

this problem we performed some subsampling experiments to explore how

reducing the amount of samples that are considered, and concentrating the

random search into a small area of the overall search space could reduce

variance (see subsection 5.5.1).

5.4.3 Tabu search

To reduce the variance problems that a random search can have, we explore

heuristic searching techniques that record areas of the search space and try

to reduce the chance of evaluating shapelets that are similar. The Tabu

algorithm is a heuristic search that was proposed in 1986 [37]. Tabu was

designed as an algorithm which uses a local area search and both long and

short term memory to avoid revisiting areas, or becoming stuck in local

optima. Due to the nature of shapelets, we know that shapelets exist in

neighbourhoods. In our particular implementation of Tabu we have large

short term memory to find good localised shapelets with no global long

term memory. Long term memory is not useful for shapelets because they

are phase independent, therefore after each series is searched there is no

114

guarantee that shapelets of the same class will appear at the same position.

We only check the previous best shapelets length and position across series,

for the case where the similarity is not phase independent.

In algorithm 12 we present the pseudocode for Tabu search. Initially,

the search is given a fixed number of shapelets per series based on the time

constraints from the contract. The search starts by finding a random shapelet

from the possible search space in the series. The neighbouring shapelets are

then retrieved but if any of the neighbouring shapelets are in the tabulist, we

abandon this local search area. If the random shapelet is in an unexplored

region of the search space the surrounding area (neighbourhood) is evaluated

and the local best shapelet is recorded. We then compare this local best

shapelet to the best shapelets we have found so far and add it to the list

of best shapelets. Finally, this shapelet is also added to the tabulist so the

neighbourhood is not evaluated again. This process repeats until we have

evaluated the allotted number of shapelets.

115

Algorithm 12 TabuSearch(T, Ti, min, max, ShapeletsToEvaluate)

Input: A set of time series T, a series to search Ti, min, max and
bsfShapelet

Output: A list of k Shapelets
1: shapelets← ∅
2: tabuList← ∅
3: shapeletsEvaluated = 0
4: currentShapelet = bsfShapelet
5: while ShapeletsToEvaluate > shapeletsEvaluated do
6: currentShapelet = FindRandomShapelet(Ti)
7: neighbouringShapelets = FindNeighbouring(currentShapelet, Ti)
8: if tabuList.contains(neighbouringShapelets) then
9: continue

10: localBsfShapelet.Quality = EvaluateShapelet(currentShapelet)
11: shapeletsEvaluated = shapeletsEvaluated + 1
12: for all currentShapelet in neighbouringShapelets do
13: currentShapelet.Quality = EvaluateShapelet(currentShapelet)
14: shapeletsEvaluated = shapeletsEvaluated + 1
15: if currentShapelet.Quality > localBsfShapelet.Quality then
16: localBsfShapelet = currentShapelet
17: if localBsfShapelet.Quality > bsfShapelet.Quality then
18: bsfShapelet = localBsfShapelet
19: shapelets ∪ bsfShapelet
20: tabuList ∪ localBsfShapelet
21: return shapelets

5.4.4 Magnify Search

Having designed a shapelet specific version of the Tabu search, the aim was

to evaluate another heuristic search that operates differently to Tabu. We

propose magnify search as the fourth shapelet search algorithm. Magnify

search constrains the random search space around the best shapelet, shrinking

the search space as the algorithm iterates. Tabu search attempts to constrain

the search space by reducing repeat evaluations, and exploits the property

of shapelets existing in neighbourhoods by blacklisting based on proximity

to previous evaluations. Magnify search performs a sparse stochastic sample

of the search space it then reduces the search space around that region to

116

try and focus in on a particular area. With a depth parameter providing a

way to evaluate large areas of space by increasingly shrinking the region of

interest.

In algorithm 13 we describe the magnify search in pseudocode. The

initial search space is considered at depth 0. A list of random shapelets

is generated the size of which is defined by the max depth and the total

shapelets set by the contract. All of these shapelets are evaluated and the

best so far becomes the centroid. The search space is reduced by half around

this shapelet. The method repeats until a max depth is reached, where by

on the last stage these shapelets are recorded in the best so far list.

117

Algorithm 13 MagnifySearch(T, Ti, min, max, ShapeletsToEvaluate)

Input: A set of time series T, a series to search Ti, min, max and
bsfShapelet

Output: A list of k Shapelets
1: shapelets← ∅
2: minL = min
3: maxL = max
4: minP = 0
5: maxP = max−min+ 1
6: lengthWidth = (maxLength−minLength)/2
7: posWidth = (maxPos−minPos)/2
8: for depth ∈ {1, ...,MaxDepth} do
9: bsf Shapelet

10: shapeletsEvaluated = 0
11: while ShapeletsToEvaluate > shapeletsEvaluated do
12: shapelet = FindRandomShapelet(Ti,minL,maxL,minP,maxP)
13: shapelet.Quality = EvaluateShapelet(shapelet)
14: shapeletsEvaluated = shapeletsEvaluated+ 1
15: if shapelet.Quality > bsfShapelet.Quality then
16: bsfShapelet = currentShapelet
17: if depth == MaxDepth then
18: shapelets ∪ shapelet
19: lengthW = lengthW/2
20: posW = posW/2
21: minL = |bsfShapelet| − lengthW
22: maxL = |bsfShapelet|+ lengthW
23: minP = bsfShapelet.startPos− posW
24: maxP = bsfShapelet.startPos+ posW
25: return shapelets

5.5 Experimental Comparison

The main goal is to find robust heuristic methods for finding shapelets which

are not significantly worse than the full search but are significantly faster. In

this section we evaluate the four searches on both the hour and day datasets

presented in Table 5.1 and in Table 5.2.

The experimental setup is as follows, initially four searches are compared

118

to the current state of the art ST results. These ST results are from the

experiments performed in chapter 4 and are reported in [8].

Thirty sets of evaluations were performed for each dataset, capturing

the accuracy and calculating the variance across multiple runs. As we have

recorded the predictions for these calculations we also calculate additional

statistics for evaluating the searches. In particular we calculate the balanced

accuracy and the f-score.

Figure 5.4 presents the critical difference diagram for the four searches

using a one hour run time, measured against ST. For the one hour evaluation

it is shown that there is no significant difference between Tabu, Magnify or

Random and our baseline ST (full).

119

(a) accuracy (b) balanced accuracy

(c) f score (d) AUROC

Figure 5.4: A critical difference diagram comparing the four search algorithms,
with a runtime of one hour, and the Shapelet Transform via error. Three
additional critical difference diagrams compare the four search algorithms
by, balanced accuracy, f score and AUROC.

Figure 5.5 presents the pairwise scatter plots of the four search algorithms

compared to ST. These plots highlight the fluctuation within the random

search when compared to ST. For both magnify and tabu search the accuracy

results have little variance and are tightly aligned along the diagonal, this

indicates little difference between the reported results. With the Random

results in some cases there are large differences between ST and the random

search. In some cases this greatly benefits the classification accuracy and in

others produces worse results.

120

(a) Random vs. ST (b) Skipping vs. ST

(c) Tabu vs. ST (d) Magnify vs. ST

Figure 5.5: A set of four pairwise scatter plots demonstrating the accuracy
of the respective search algorithms with a runtime of one hour compared
with the Shapelet Transform

Figure 5.6 presents the one day runtimes of the same four searches and

the ST results. In this critical difference diagram the problems discussed

earlier with skipping search become evident. On the one hour run time ST

was significantly better than skipping, but with more time the searching is

less brittle and is able to perform as well as the full search, which was shown

in [18]. It is worth noting that the tabu search has the highest rank in both

cases but is not significantly better than the other heuristic searches. As the

search is given more time, it is able to form a larger tabulist and avoid poor

121

search areas.

(a) Accuracy (b) Balanced Accuracy

(c) F Score (d) AUROC

Figure 5.6: A critical difference diagram comparing the four search algorithms,
with a runtime of one day, and the Shapelet Transform via error. Three
additional critical difference diagrams compare the four search algorithms
by, balanced accuracy, f score and AUROC.

Figure 5.7 presents the pairwise scatter plots of the four search algorithms

compared to ST. Whilst random search is not significantly worse than tabu,

magnify or ST its overall rank is lower, and this indicates some of the

problems highly random searches can have. This also motivates why more

specialised heuristic searches such as tabu and magnify are required.

122

(a) Random vs. ST (b) Skipping vs. ST

(c) Tabu vs. ST (d) Magnify vs. ST

Figure 5.7: A set of four pairwise scatter plots demonstrating the accuracy
of the respective search algorithms with a runtime of one day compared with
the Shapelet Transform

5.5.1 Subsampling Random Shapelet search

To alleviate some of the problems that can occur with random sampling we

explored subsampling the series before searching for shapelets to concentrate

the evaluation on a smaller area. In Figure 5.8 we present the two critical

difference diagrams for our experiments. We performed 30 fold evaluations

with three levels of subsampling where the shapelets available come from

either 10%, 25% or 50% of the series and are evaluated on that smaller set

too. Our results show that there was no significant reduction in accuracy

123

for any of the random methods when compared to ST. Subsampling is an

effective way to reduce the size of n without affecting accuracy, and suggests

that some of the sampling in chapter 4 should not have negatively affected

the accuracy of the classifiers.

(a) One Hour Random Subsampling (b) One day Random Subsampling

Figure 5.8: A pair of critical difference diagrams presenting the preliminary
results of comparing 3 types of random subsampling with ST

5.6 Case Study: HeartbeatBIDMC

The dataset heartbeatBIDMC is the longest dataset available in the UCR-

UEA archive. It was first presented as a time series classification dataset

in [94]. HeartbeatBIDMC is a set of 600 time series that are 3750 values

long, consisting of 14 patients who suffer from congestive heart failures. The

recordings are off ECG and contain high levels of noise, large variance even

within the same class. As this is one of the largest datasets available in

the time series classification community, it presents an ideal opportunity

to demonstrate the sampling techniques presented in this chapter, and to

consider the sets of shapelets found and how they effect accuracy. This

dataset was first evaluated using the skipping mechanism and the results

were present in a small case study in [18] where we considered skipping

shapelets to solve the problem in a one day runtime.

124

With the four search algorithms presented in this chapter we compare

the results of those experiments on 10 folds with a one day runtime. The

accuracy of the methods are presented in Table 5.3.

datasets SKIPPING RANDOM MAGNIFY TABU

HeartbeatBIDMC 0.955 (0.01) 0.99 (0.01) 0.98 (0.01) 0.974 (0.01)

Table 5.3: Table of average Accuracy conducted over 10 folds along with the
standard deviation

In Figure 5.9 four box and whiskers plots of the quality of the best

shapelets found for each of the fourteen classes on the heartbeatBIDMC

dataset are presented. The aim of these diagrams is to demonstrate the

correlation between finding better quality shapelets and with improved

classification accuracy. In Table 5.3 there are four accuracies, one for each

of the searches performed which are averaged over 10 folds. The skipping

search having the worst accuracy and the random search having the best.

Considering each of the plots for each search it is clear that the random search

has more high quality shapelets than those found in the skipping search and

the range of shapelets found is more concentrated, but with a large number

of outliers. The skipping search has fewer high quality shapelets and more

low quality shapelets across almost all of the classes. The range of shapelets

for the tabu and magnify search are slightly more spread however the quality

of shapelets found by these searches tends to contain less outliers, which is

expected because of the area type searches they perform. The problem with

the tabu and magnify search on this type of dataset is that, because the series

is very long, and has a large number of cases concentrating on a few series

means that the shapelet transform does not see much of the total dataset.

With the random search because the pool of shapelets is unrestricted there

is a lot of variance in the quality, but if the search can find a small amount

of high quality shapelets this can improve accuracy.

125

(a) Random (b) Skipping

(c) Tabu (d) Magnify

Figure 5.9: A set of four box and whiskers plots showing the quality of
shapelets collected for each of the fourteen classes in the heartbeatBIDMC
dataset.

5.7 Conclusion

In this chapter we discussed and presented the idea of a contract classifier,

where we can bound the runtime of our shapelet search by deriving the

number of total operations and sampling down to a fixed runtime. We

then gave an overview of four heuristic search techniques that have been

considered one of which we presented in [18]. We evaluated these four search

techniques on datasets we identified through our preliminary experiments as

being particularly large and problematic for full search. We produced two

sets of problems for one hour and one day evaluations using our proposed

126

contract classification framework.

We initially presented the results comparing one hour and found that

tabu had the highest rank overall and that the skipping search was particu-

larly brittle when the contract times resulted in large skipping parameters.

Evaluating on the one day datasets showed that the skipping search was

not significantly worse than of the other techniques, however we believe it

is the weakest of the four. Following on from these we saw that the two

meta-heuristic searches we designed and created were able to perform very

well. The random search with or without sub sampling appears to be the

most flexible approach with little issue maintaining accuracy against ST

even on the one hour run times. The meta-search heuristics can have issues

on very large problems where n and m are particularly large and there are

few shapelets to analyse per series. In these cases, sampling series becomes

necessary to concentrate the searches. In these particular cases randomly

selecting shapelets should be considered. As we have shown the random

search to be particularly effective and does not require parameters to use,

we will opt to use random searching when performing contract classification

in future work. Only using tabu when variance becomes problematic and we

can effectively sample.

127

Chapter 6

Multivariate Shapelet

Transforms

Contributing Publication

• A. Bostrom and A. Bagnall. A Shapelet Transform for Multivariate

Time Series Classification. ArXiv e-prints, 2017

6.1 Introduction

Multivariate time series classification (MTSC) has gained traction in recent

years, although the majority of work in time series classification has focused

on the univariate case. For univariate TSC a class label is assigned to a single

series, in MTSC each class label is assigned multiple series. It is commonly

claimed that transitioning to multivariate from univariate is trivial (e.g. [99]).

However, we do not believe this is necessarily true.

For the datasets we consider in this thesis, each case has a class label

that is a single value which does not change over time.

We formally define multivariate time series classification dataset as MT=

{MT1,MT2, ...,MTn} which is a set of n multivariate time series. A single

multivariate time series MTi = {{Ti,1, Ti,2, ..., Ti,d}, c} is a set of d univariate

128

time series with a single class label. Each series in a multivariate instance is

described as Ti,j =< ti,j,1, ti,j,2, ..., ti,j,m > where we define the length as m.

For simplicity of notation we assume all series in the dataset are the same

length.

Multivariate time series classification has many practical applications.

These can range from medical problems, such as electroencephalogram (EEG),

finance, multimedia, human activity recognition (HAR) and gesture recogni-

tion. In Figure 6.1 we demonstrate a simple representation of the X,Y and Z

data for two series in the UWaveGesture problem, the first being from class

1, and the second from class 8 [73].

Figure 6.1: Examples of Class 1 and Class 8 with their respective X, Y and
Z multivariate series from the UWaveGesture dataset

Figure 6.2: Class Labels for the UWaveGesture dataset. Image taken from
[73].

129

This chapter describes new approaches to multivariate time series classi-

fication. The constraints of this work were that time complexity of shapelets

must not exceed simple multivariate methods techniques that are used for

extending univariate algorithms. The methods we propose all scale linearly

with respect to the number of dimensions. All of the multivariate methods

we propose were required to build on top of the work produce in chapter 4

and in chapter 5. In chapter 2 we reviewed the state of multivariate research

and some existing techniques. section 6.2 describes the initial experiments on

the multivariate datasets and how we can gather benchmarking data on these

problems. In chapter 2, section 2.17 the multivariate dynamic time warping

techniques used in this chapter are described. In section 6.3 some of the

problems with scaling the shapelet transform using simpler techniques are

discussed and the need for specific multivariate variants are explained. We

present three multivariate shapelet algorithms in section 6.4 and section 6.5.

Finally in section 6.6 we conduct an experimental comparison of all the

algorithms we have discussed, followed by our conclusions in section 6.8.

6.2 Benchmark Experiments

Before creating and testing new shapelet approaches to MTSC we wanted to

establish the state of current MTSC research and construct a unified problem

space within the UCR-UEA repository specifically for multivariate problems.

In [8] and in chapter 4 an experimental process was designed for comparing

univariate classifiers on a unified problem space across 100 resamples of each

dataset. To ensure a high quality analysis of shapelet algorithms, and of future

problems in this field we first need to establish a benchmark set of results with

which to compare too. Based on the experimental evidence for the univariate

experiments, and the results presented in [65] we chose to benchmark on the

five simple classifiers that form the core of the heterogeneous ensemble of

simple classification algorithms (HESCA) (see section 4.5). We chose to use

the five constituents of HESCA for three reasons. Firstly, HESCA is the main

classification model that is paired with the Shapelet Transform. Secondly, the

constituents chosen for HESCA were selected through a rigorous evaluation

130

of many different classifiers [65]. Finally, each of these algorithms detects

different types of features, and so could reveal the underlying structure within

the data. The five algorithms chosen are: a support vector machine with

a polynomial(quadratic) kernel [81]; a one nearest-neighbour with dynamic

time warping[85, 91]; a multi-layer perceptron[90]; a random forest [19]; and

rotation forest[89].

These initial experiments will ascertain the difficulty of the MTSC data.

By training a set of simple classifiers on the multivariate datasets, we can

provide a benchmark to compare to the current state of the art, as well as,

evaluating the overall performance of new shapelet methods.

We use a simple independent dimension ensemble which, will train a

separate classifier on each dimension. We opted to keep the ensemble as

simple as possible, forgoing any form of weighting of predictions via cross-

validation to ensure a quick train time and easy to reproduce benchmark. In

addition to an ensemble benchmark we also concatenate the dimensions into

a univariate series and then train and build a single classifier.

On both concatenation and ensemble models, we perform no parameter

tuning on any of these algorithms and set the algorithms parameters to

typical defaults. For univariate problems parameter tuning a single model

on a univariate dataset is a relatively simple task. For the ensemble case,

however, tuning parameters for each model on each dimension can be a very

time consuming process, and is counter to the purpose of simple and easily

reproducible benchmarking.

The experiments are conducted on 24 datasets which were introduced

in chapter 3. These have either been selected from within the literature, or

constructed from data gathered at UEA. The multivariate TSC archive is

available from the UCR-UEA repository [23]. The datasets are converted

into the WEKA arff format [43] and all code and experiments are reported

and stored on [5, 4].

131

6.3 Scaling the Shapelet Transform for

Multivariate data

In chapter 4 and chapter 5, we described the shapelet transform for univariate

TSC including new heuristic improvements to the distance calculations and

early-abandon. A contract shapelet search was described which samples the

space of possible shapelets. The aim was to mitigate the shapelet algorithm’s

prohibitive runtime complexity of O(n2m4).

With multivariate time series classification, the runtime complexity prob-

lem gets worse. A näıve concatenation of the multivariate data into univariate

series increases each series length to dm, assuming equal length dimensions.

Consequently, the current Shapelet Transform on concatenated multivariate

data has a runtime complexity of O(n2(dm)4). For long or high dimensional

data, this is clearly not scalable.

Many of the multivariate datasets presented in chapter 3 are infeasible

to fully enumerate, even with the new methods we presented in chapter 4.

Furthermore, for some of the very large datasets the number of shapelets

it is possible to evaluate with a contract approach, is a tiny fraction of

the full space. The dataset PEMS contains 267 series, which have 144

dimensions where each dimension is 964 values long, a full enumeration on

the concatenated series would require approximately 2.6 ∗ 1025 operations,

which is estimated at 1011 years.

As well as their predictive power, one of the main benefits of using

shapelets is the interpretability they provide. The shapelets found in con-

catenated data are not interpretable because they are dependent on the

ordering of the concatenation process. The often arbitrary ordering of the

concatenation can completely change the types of shapelets found, and their

ability to separate the data into their respective classes. As the number of

dimensions increases this problem is exacerbated.

Ensembling the Shapelet Transform appears to be a simple solution to

these problems with multivariate data. Keeping the dimensions separate

avoids increasing further the already worst-scaling factor of the transform, m,

132

and restricting the shapelets to be within individual dimensions maintains

their intuitive interpretability. However, on very large problems, where

sampling is required, this approach is more difficult. Initially we consid-

ered training individual Shapelet Transforms on each dimension, where the

number of shapelets that can be evaluated in the time frame is evenly split

between each dimension. This method is bounded by O(n2m4d). However,

on some of the very large datasets, especially the highly dimensional PEMS

dataset, the number of shapelets available to each transform is still very

low. Performing any form of cross-validation to weight the importance

of dimensions is infeasible and we cannot benefit from techniques such as

bagging of boosting to improve overall ensemble performance. The way in

which contract classifiers handle cross-validation is open to interpretation. If

the contract calculations required cross-validation to be taken into account,

certain time frames become impossible on some datasets. Other considera-

tions for contract ensembling could be giving different dimensions variable

amounts of time, depending on the importance of the dimension. We believe

multivariate contracted ensembling is a large open ended research question,

and worth significant exploration, but is out of the scope of this piece of

research.

6.4 Independent Shapelets

The first multivariate shapelet method is called Independent Shapelets

(ST IND). This algorithm finds single dimension shapelets from any dimen-

sion. It then assesses the shapelets quality against the other series via sliding

the shapelet along the same dimension in the multivariate series. Once the

k best shapelets have been found, they are used to transform the original

dataset. Using the same distance method, we can transform the multivari-

ate dataset in a k by n matrix, where we find the respective distance of

the shapelets to each series. The runtime complexity of this algorithm is

O(n2m2d).

The motivation for this method is that in some multivariate datasets the

class defining feature may occur in only one dimension, and it could even be

133

independent of dimension. The shape of the feature is the class identifier not

its position or dimension. This method should extract identical shapelets

that would occur in an ensemble version of the Shapelet Transform, but will

build a single transform rather than multiple transforms.

This method is most suited if you have multiple dimensions from different

types of data recording where the dimensions are unrelated. One of the

datasets we present MVMotionAG contains three dimensions of accelerometer

data, and three dimensions of rotational(Gimbal) data. In some of the activity

recognition the rotational data is completely independent of the movement

information.

In algorithm 14 we formally define the full search for Independent

Shapelets. We loop through each instance MTi in the dataset MT, for

each data series in MTi, the algorithm loops over the series considering all

lengths between min and max, and all positions between 0 and the data series

minus the current length plus 1. The subsequence is extracted in the variable

shapelet. This is then compared to all other series using checkCandidate,

a this is shown in 6.3a. In algorithm 15 we calculate the information gain

for the shapelet passed in. For each series in the dataset the shapelet is

compared to the same dimension that the shapelet is extracted from. This

shapelet is slid along the series in sDist finding the minimum distance to

match with, which is demonstrated in 6.3b. The shapelet is compared with

individual normalised subsequences in the series, which we demonstrate in

6.3c. sDist calculates a single distance value for a shapelet when compared

to a single multivariate instance and the set of distance values for each series

is used to construct an orderline and the calculate shapelets information gain

which we have described in greater detail in chapter 4.

134

Algorithm 14 FindBestIndependentShapelets(MT,min,max)

Where MT is a set of Multivariate Time Series.
KShapelets = ∅
for all MTi in MT do
seriesShapelets = ∅
for j = 1 to d do

for l = min to MTi,j do
for p = 1 to max− l + 1 do
shapelet = MTl

i,j,p

quality = checkCandidate(MT, shapelet, j)
seriesShapelets = seriesShapelets ∪ {MTl

i,p,quality}
sort(seriesShapelets)
removeSelfSimilar(seriesShapelets)
kShapelets = merge(k, kShapelets, seriesShapelets)

Algorithm 15 checkCandidate(MT, shapelet, d)

Where MT is a set of Multivariate Time Series.
dist
Where O is an orderline.
for MTi in MT do
dist = sDist(shapelet,MTi,d)
O ∪ dist

return informationGain(O)

135

(a) Shapelet extraction

(b) Shapelet matching (c) Normalised distance

Figure 6.3: An example of extracting a single shapelet from a many dimen-
sional series, and comparing it to a different series of the same dimension

.

6.5 Finding Multidimensional Shapelets

ST IND extracts single shapelets from a single dimension. We now consider

the case of extracting shapelets that span across all dimensions. This is

demonstrated in both 6.4a and in 6.5a. The main difference between

Multivariate shapelet extraction and univariate extraction is we extract a

shapelet from each dimension when given a length and position. For ease of

mathematical notation we assume all dimensions are the same length.

For the multidimensional search we extract subsequences from within

a multivariate time series as a block that spans all dimensions. These

136

sequences are are compared with the other series in the dataset in the function

checkCandidate. The type of sDist function in the Shapelet Transform

depends on the methods we present in subsection 6.5.1 and in subsection 6.5.2.

6.5.1 Multidimensional Dependent Shapelets

The first multivariate shapelet method is called multidimensional dependent

shapelets (MSTD). This method extracts multi-dimensional shapelets, that

are then compared to the other multivariate series, maintaining the phase

across channels.

In algorithm 16 we describe the process of calculating the distance

when comparing a multivariate series to a single multivariate series. The

multivariate shapelet is slid along the time series from position 0 to position

m − l + 1, this is shown in 6.4b. 6.4b also illustrates how the shapelet is

measured across the dimensions as a phase inter-dependent band.

A multivariate subsequence which is the same length as the multivariate

shapelet that is passed in is compared using a modified multi-dimensional

Euclidean distance. The multivariate shapelet is initially z-normalised along

each dimension respectively. Each individual dimension within the subse-

quence is z-normalised. In 6.4c we demonstrate a shapelet and an extract

normalised subsequence. These two sets of series are then paired with there

matching dimensions. For each point we calculate the square difference

and sum across the whole series. The square root of this summed value

is the distance for that particular subsequence compared to the multivari-

ate shapelet. This process continues for the whole series until we find the

minimum distance, which is the position of closest match. In this methods

because of the nature of the distance calculations we are able to leverage all

of the distance early abandoning techniques.

The runtime complexity for the MSTD method is bounded by O(n2m4d).

This is because we evaluate the same number of shapelets as univariate series

of the same size and length. When calculating the distance we perform d

operations, in the univariate case of d being equal to 1 this simplifies to the

original worst case complexity.

137

The most important aspect of the MSTD algorithm is that the minimum

distance for a multivariate series and a multi-dimensional shapelet is the

position of best match is maintained across the channels. The motivation

for this method is that for gesture recognition where a particular gesture

is performed, all the channels (X, Y and Z) should have information about

this event at the same point, but that the phase independence of shapelets

means the information can be captured even though it can occur at any time

interval.

Algorithm 16 sDistD(MT,MShapelet, i,m, dimensions, l)

Where MT is a set of time Series.
min dist, dist
for p = 1 to m− l do
sq dist sum = 0
for d = 1 to dimensions do
subsequence = MTl

i,d,p

sq dist sum = sq dist sum+ dist(MShapelet, subsequence)2

dist =
√
sq dist sum

if dist < min dist then
min dist = dist

return min dist

138

(a) Shapelet extraction

(b) Shapelet matching (c) Normalised distance

Figure 6.4: An example of extracting a ShapeletD from a many dimensional
series, and comparing it to a different series. Orange is the extracted shapelet,
and blue is either the time series the shapelet is extracted from, or being
compared too.

6.5.2 Multidimensional Independent Shapelets

The second multivariate shapelet method is called Multidimensional Inde-

pendent Shapelets (MSTI). This method is similar to MSTD which extracts

multi-dimensional shapelets. Each subsequence within the multi-dimensional

shapelet finds the minimum distance to its respective dimension independent

of the other calculations. MSTD could be considered a special case of the

MSTI algorithm where the best independent phase matches coincide.

In algorithm 17 we describe the algorithm for calculating the distance

between a multivariate shapelet and the the multivariate series passed into

the function. The shapelet band that is extracted is shown in 6.5a.

139

Initially the algorithm loops through each dimension of both the multi-

variate shapelet and the multivariate time series, each shapelet subsequence

from each dimension is slide along its matching dimensional series. This

is illustrated in 6.5b where the individual subsequences are disconnected.

For each of the dimensions, the best matching location is found. This is

where the minimum distance between the shapelet and the subsequence is

calculated. The distance is calculated by normalising the subsequence and

then calculating the Euclidean distance, we illustrate this in 6.5c. The

runtime complexity of this algorithm also scales linearly with the number

of dimensions as we essentially perform d number of distance checks for a

shapelet, the algorithm is bounded by O(n2m4d).

The motivation for this method is that we believe whilst the shapelet

extracted is dependent on the features being in phase, the places where they

occur in other series could be independent of one another. The ideal case

is if there is a small amount of lag in either of the other dimensions. This

type of feature is most likely to occur in human activity recognition where

a particular set of movements may happen in the same phase and timing,

but between many samples there can be slight timing variations across the

dimensions. This problem is also in part due to motor redundancy and how

a similar movement or gesture can be presented in a infinite number of slight

muscular variations within the body.

Algorithm 17 sDistI(MT,MShapelet, i,m, dimensions, l)

Where MTi is a time Series.
min dist, dist
dist sum = 0
for d = 1 to dimensions do
min dist = 0
for p = 1 to m− l do
subsequence = MTl

i,d,p

dist = distance(MShapeletd, subsequence)
if dist < min dist then
min dist = dist

dist sum = dist sum+min dist
return dist sum

140

(a) Shapelet extraction

(b) Shapelet matching (c) Normalised distance

Figure 6.5: We present an illustrative example of extracting a ShapeletI from
a many dimensional series, and comparing it to a different series. Orange
is the extracted shapelet, and blue is either the time series the shapelet is
extracted from, or being compared too.

6.6 Evaluation

The experimental setup follows the same approach outlined in [8]. We

perform 100 fold resampling on the data. For each algorithm presented we

have performed 2,400 experiments. The data presented in the tables are the

mean average accuracy across the 100 folds. The critical difference diagrams

are calculated from these mean averages.

We initially present the results for the univariate methods for both,

concatenation and dimensional ensembling. These results show how concate-

nating dimensions into a single univariate series is superior to dimensional

ensembling. However there are a few cases where the ensemble approach for

141

(a) Accuracy (b) Balanced Accuracy

Figure 6.6: Accuracy and balanced accuracy of 10 algorithms using five
simple classifiers. These algorithms are RotationForest(RotF), RandomForest
(RandF), Support Vector Machine using a quadratic kernel (SMO), Multi-
Layer Perceptron (MLP) and 1 nearest neighbour with dynamic time warping
(1NN DTW). We use the notation C to denote concatenation, and E to
denote ensembled across dimensions.

DTW out performs concatenation. We believe given a cross-validated train-

ing approach to weight the respective ensemble dimensions, the ensembled

method would be more robust. However the scale, and time requirements

to cross-validate on these datasets is out of the scope of this work. In

Figure 6.6 we present two critical difference diagrams, one comparing the

average accuracy of the simple classifiers, and one comparing the balanced

accuracy.

6.6.1 Shapelets

We present the full enumeration results for our three multivariate shapelet

methods on 16 datasets in Table 6.1. These experiments were performed

on 100 resamples of the train/test splits to create 100 unique datasets with

which we average our summary statistics on.

In Table 6.2 we have performed a fixed one hour run time evaluation of the

shapelet space for five additional datasets. The simple worst-case complexity

142

analysis we conducted earlier, combined with our work in chapter 5 we are

able to calculate ahead of time how many shapelets we can evaluate for all

three multivariate methods.

The main aims of this work was to create a comparable Shapelet Trans-

form for multivariate time series classification, that scales better than con-

catenation, and alleviates most of the complexity and parameter tuning

of ensembling. This work also needs to be able to leverage the heuristic

techniques previously developed, but also scale well with them too. For

contract classification we want to ensure that we can maintain accuracy as

the datasets increase in size.

We constrained the number of shapelets that are considered, and fixed

the run time of the algorithm. All the datasets were limited to a one hour

run time. Alongside this we performed full enumerations for all the datasets

where possible. This meant we were able to evaluate an additional five

datasets. In Figure 6.7 we present the critical difference diagrams comparing

the full enumeration of the multivariate datasets vs. the one hour run time.

This is a comparison of only the 16 that the full enumeration could complete.

We demonstrate that for both accuracy and balanced accuracy, and with

pairwise Wilcoxon and the student t-test there is no significant difference

between the 1hour contract approach and the full enumeration. This shows

that our contract classifier is currently able to scale on these datasets without

issue.

In Table 6.2 we have the results for three multivariate DTW approaches.

We compare these three approaches with that of the three shapelets us-

ing critical difference diagrams for both accuracy and balanced accuracy,

presented in Figure 6.8.

From these results we find that MSTD is not significantly worse than

any of the multivariate DTW approaches on 21 datasets all with 100 fold

resampling. In addition to the critical difference tests, we performed multiple

pairwise tests and show that MSTD with a constrained runtime of one hour

is not significantly worse than any of the three DTW multivariate methods.

The MSTI method was significantly worse than the DTWA and DTWI

but was not significantly worse than DTWD on a Wilcoxon sign ranked test.

143

(a) Accuracy (b) Balanced Accuracy

Figure 6.7: Accuracy and Balanced Accuracy

Finally we found that the independent shapelet method was significantly

worse than all multivariate DTW methods as well as MSTD and was not

significantly worse than MSTI.

144

(a) Accuracy (b) Balanced Accuracy

Figure 6.8: Two critical difference diagrams comparing the three shapelet
algorithms with the three multivariate dynamic time warping algorithms.

145

datasets MST D ST IND MST I DTW A DTW D DTW I

AALTD 0 0.646 (0.04) 0.583 (0.06) 0.569 (0.05) 0.664 (0.03) 0.681 (0.03) 0.649 (0.03)
AALTD 1 0.792 (0.03) 0.725 (0.04) 0.744 (0.04) 0.805 (0.03) 0.804 (0.03) 0.809 (0.03)
AALTD 2 0.608 (0.04) 0.529 (0.05) 0.557 (0.04) 0.667 (0.04) 0.675 (0.03) 0.671 (0.04)
AALTD 3 0.661 (0.05) 0.61 (0.05) 0.656 (0.05) 0.684 (0.04) 0.68 (0.04) 0.683 (0.04)
AALTD 4 0.624 (0.04) 0.576 (0.04) 0.619 (0.04) 0.657 (0.04) 0.667 (0.04) 0.667 (0.04)
AALTD 5 0.767 (0.04) 0.735 (0.04) 0.735 (0.04) 0.789 (0.04) 0.797 (0.04) 0.777 (0.04)
AALTD 6 0.617 (0.04) 0.542 (0.05) 0.461 (0.06) 0.654 (0.04) 0.671 (0.03) 0.639 (0.03)
AALTD 7 0.796 (0.04) 0.739 (0.04) 0.746 (0.04) 0.791 (0.03) 0.784 (0.03) 0.791 (0.03)

ArticularyWordLL 0.856 (0.02) 0.828 (0.02) 0.865 (0.02) 0.84 (0.02) 0.843 (0.02) 0.83 (0.02)
ArticularyWordT1 0.923 (0.02) 0.901 (0.02) 0.894 (0.02) 0.921 (0.01) 0.924 (0.01) 0.908 (0.01)
ArticularyWordUL 0.811 (0.03) 0.718 (0.03) 0.829 (0.03) 0.741 (0.02) 0.719 (0.02) 0.749 (0.02)

HandwritingA 0.481 (0.03) 0.442 (0.03) 0.426 (0.03) 0.601 (0.03) 0.609 (0.02) 0.48 (0.02)
JapaneseVowels 0.887 (0.02) 0.808 (0.03) 0.88 (0.02) 0.957 (0.01) 0.955 (0.01) 0.959 (0.01)

MVMotionA 0.979 (0.02) 0.956 (0.02) 0.963 (0.03) 0.912 (0.05) 0.77 (0.04) 0.912 (0.05)
MVMotionAG 0.984 (0.02) 0.953 (0.03) 0.961 (0.03) 0.999 (0) 0.951 (0.04) 0.999 (0)
MVMotionG 0.936 (0.04) 0.939 (0.03) 0.933 (0.04) 0.996 (0.01) 0.917 (0.04) 0.996 (0.01)

Wins 3 0 1 3 7 5

Table 6.1: A table of results for the Full searches for the three shapelet algorithms, and the three dynamic time
warping algorithms

.

146

datasets MST D 1H ST IND 1H MST I 1H DTW A DTW D DTW I

AALTD 0 0.646 (0.04) 0.583 (0.06) 0.569 (0.05) 0.664 (0.03) 0.681 (0.03) 0.649 (0.03)
AALTD 1 0.792 (0.03) 0.725 (0.04) 0.744 (0.04) 0.805 (0.03) 0.804 (0.03) 0.809 (0.03)
AALTD 2 0.608 (0.04) 0.529 (0.05) 0.557 (0.04) 0.667 (0.04) 0.675 (0.03) 0.671 (0.04)
AALTD 3 0.661 (0.05) 0.61 (0.05) 0.656 (0.05) 0.684 (0.04) 0.68 (0.04) 0.683 (0.04)
AALTD 4 0.624 (0.04) 0.576 (0.04) 0.619 (0.04) 0.657 (0.04) 0.667 (0.04) 0.667 (0.04)
AALTD 5 0.767 (0.04) 0.735 (0.04) 0.735 (0.04) 0.789 (0.04) 0.797 (0.04) 0.777 (0.04)
AALTD 6 0.617 (0.04) 0.542 (0.05) 0.461 (0.06) 0.654 (0.04) 0.671 (0.03) 0.639 (0.03)
AALTD 7 0.796 (0.04) 0.739 (0.04) 0.746 (0.04) 0.791 (0.03) 0.784 (0.03) 0.791 (0.03)

ArticularyWordLL 0.856 (0.02) 0.828 (0.02) 0.865 (0.02) 0.84 (0.02) 0.843 (0.02) 0.83 (0.02)
ArticularyWordT1 0.923 (0.02) 0.901 (0.02) 0.894 (0.02) 0.921 (0.01) 0.924 (0.01) 0.908 (0.01)
ArticularyWordUL 0.811 (0.03) 0.718 (0.03) 0.829 (0.03) 0.741 (0.02) 0.719 (0.02) 0.749 (0.02)

CricketLeft 0.92 (0.03) 0.819 (0.04) 0.869 (0.03) 0.927 (0.02) 0.933 (0.02) 0.887 (0.02)
CricketRight 0.935 (0.02) 0.93 (0.03) 0.93 (0.03) 0.939 (0.03) 0.924 (0.03) 0.945 (0.03)

Epilepsy 0.969 (0.01) 0.978 (0.02) 0.981 (0.01) 0.965 (0.01) 0.957 (0.02) 0.969 (0.01)
HandwritingAccelerometer 0.481 (0.03) 0.442 (0.03) 0.426 (0.03) 0.601 (0.03) 0.609 (0.02) 0.48 (0.02)

HandwritingGyroscope 0.84 (0.01) 0.711 (0.1) 0.769 (0.11) 0.861 (0.05) 0.863 (0.05) 0.785 (0.04)
JapaneseVowels 0.887 (0.02) 0.808 (0.03) 0.88 (0.02) 0.957 (0.01) 0.955 (0.01) 0.959 (0.01)

MVMotionA 0.979 (0.02) 0.956 (0.02) 0.963 (0.03) 0.912 (0.05) 0.77 (0.04) 0.912 (0.05)
MVMotionAG 0.984 (0.02) 0.953 (0.03) 0.961 (0.03) 0.999 (0) 0.951 (0.04) 0.999 (0)
MVMotionG 0.936 (0.04) 0.939 (0.03) 0.933 (0.04) 0.996 (0.01) 0.917 (0.04) 0.996 (0.01)

UWaveGesture 0.898 (0.02) 0.868 (0.02) 0.862 (0.02) 0.919 (0.01) 0.925 (0.01) 0.909 (0.01)

Wins 3 0 2 3 10 6

Table 6.2: A table of results showing the results for the one hour runtimes of the three shapelet algorithms using
random shapelet selection and the three dynamic time warping algorithms. The standard deviation across the 30
folds is in brackets.

.

147

6.6.2 Comparing multivariate approaches with simple

classifiers

We compare the three shapelet methods and the three multivariate DTW

methods to the initial benchmarks we conducted earlier. In the initial

comparison of the simple classifiers we noted that ensembles methods overall

performed worse than concatenation approaches, to ensure readability on

the critical difference diagrams in Figure 6.9 we have opted only to compare

all the concatenation approaches, 1NN DTW ensemble and the multivariate

methods. We present these results on all 22 datasets where we have calculated

the accuracy, balanced accuracy, log likelihood and AUROC. On the final

analysis of these approaches comparing via log likelihood can give us insight

into how the different approaches generate probability distributions for our

predictions, and the confidence of true positives and true negatives. We

compare using AUROC as a means of understanding the True positive rate

and the False positive rate.

For accuracy and balanced accuracy there is no significant difference

between the top 7 approaches on the multivariate datasets, these algorithms

are DTW A, DTW D, DTW I, MST D 1H, 1NN DTW C, MST I 1H and

SMO C. These final results are interesting for a number of reasons. They

show that the current state-of-the-art, which is DTW A, is not significantly

better than simpler concatenation approaches and that the perceived wis-

dom of scaling to multivariate may not be difficult. We constructed an

additional critical difference diagram of the top four DTW methods and the

three shapelet methods in Figure 6.10 which shows that shapelets are not

significantly better than simpler approaches on these problems. However, we

stand by the position of concatenated shapelets being an untenable algorithm

as series and dimensions increase. Interestingly shapelets has much higher

rankings in the AUROC tests we performed and this might indicate that the

shapelets we are finding enable good recall and sensitivity in HESCA.

148

(a) Accuracy (b) Balanced Accuracy

(c) AUROC (d) Log Likelihood

Figure 6.9: Four critical difference diagrams showing Accuracy, Balanced
Accuracy, AUROC and log likelihood of the best 12 algorithms.

149

(a) Accuracy (b) Balanced Accuracy

Figure 6.10: Two critical difference diagrams showing accuracy and balanced
accuracy of the three multivariate DTW algorithms, the three timed shapelet
algorithms and 1NN DTW on concatenated data

6.7 Case Study: MVMotionA

MVMotion is a dataset captured at UEA. It is a human activity recogni-

tion problem. The expectation was that the multivariate shapelet based

approaches would be well suited in motion based classification. The dataset

was introduced in chapter 3 where the method of capturing the accelerom-

eter data was covered in greater detail. The aim of this problem was to

detect from a smartphone device whether an individual was sitting, running,

walking or playing badminton. In Figure 6.11 the four classes and the X,Y,Z

dimensions are shown.

In the experiments performed all three shapelet methods were found to

have the highest accuracy on this particular problem. Over the 100 folds all

three shapelets methods were at least 5% more accurate compared to the

DTW based approaches.

Given the set of shapelets extracted we also wanted to consider the

average quality of the shapelets, high quality means that the multivariate

shapelet is able to differentiate between the classes well, and so is a good

measure of whether it is capturing the underlying structure of the data.

150

Figure 6.11: Four classes for the MVMotionA dataset

151

For the MSTD the average shapelet quality of the 300 total shapelets

found is 0.86 with a standard deviation of 0.073 and for MSTI is 0.904 with a

standard deviation 0.078. In Figure 6.12 the box and whiskers for both MSTD

and MSTI are shown. Initially with a high average quality it appears the

MSTI should be better, however upon inspection of the individual averages

on a class basis, MSTI is able to separate classes 1 and 2 very well, with some

shapelets perfectly separating one class from the rest. However, separating

class 3 from the rest appears to be more difficult and could explain why the

overall average quality does not translate to improved accuracy. Despite the

quality overall being better for MSTI, the MSTD has superior accuracy. This

may show that despite the shapelet being able to separate the training data

well, this property is present in the test set and overall explains why there is

some accuracy difference over the 100 folds and more variance with respect

to MSTI.

(a) MSTD (b) MSTI

Figure 6.12: Box and Whiskers plots of the quality of shapelets broken down
by class

6.8 Conclusion

In conclusion, we have collated a reasonable set of data for multivariate

time series classification. Some of which was constructed at UEA, but most

of which we collated from the literature. We aimed to convert this into a

152

common framework of Weka.

We have evaluated a set of algorithms from within the literature that we

implemented in Weka and Java. Some of the multivariate algorithms from

the literature we were not able to get or sufficiently recreate due to time

constraints and scope. We implemented three multivariate dynamic time

warping methods, that we verified, alongside a MATLAB implementation.

We then proposed three shapelet methods and modified the existing

Shapelet Transform framework to accommodate multivariate time series

data. We created a series of simple ensembles, and filtered the multivariate

data into a univariate space by concatenating the dimensions. This created

19 different algorithms to evaluate on the 22 datasets. In our previous

experiments we established that performing resampling of the datasets can

create more robust estimates of the problem’s accuracy. We chose to perform

100 fold resamples on the 22 datasets, essentially creating 2200 problems

performing 41,800 experiments.

From these experiments we presented initial benchmarking results of the

simple classifiers, demonstrating that without any tuning concatenation is

an effective method of filtering multivariate datasets. We identified issues

with trying to ensemble or concatenate data and use with the Shapelet

Transform, and the contract classifier version. The three shapelet methods we

proposed were able to find multi-dimensional shapelets whilst only requiring

an additional linear component to the worst case runtime. This is a significant

improvement over the quartic scaling of when the dimensions are concatenated

together.

The multivariate Shapelet Transform with the dependent distance mea-

sure, was not significantly worse than any of the other approaches. In

thoroughly analysing the Shapelet Transform we also determined the multi-

variate dynamic warping approaches are not significantly worse than each

other, but are also not significantly worse than concatenated dynamic time

warping. This result can suggest two possibilities, the datasets we have

presented are biased towards dynamic time warping approaches, especially

as the Shapelet Transform has been shown to be significantly better than

DTW on many problems. The alternative is that scaling to multivariate

153

problems is not difficult, and univariate classifiers can achieve relatively good

accuracy without specialised multivariate models.

Finally, we conducted a small case study on the MVMotionA dataset

which we introduced in [17]. This dataset is accelerometer data captured

from a smart phone. The case study looked at the shapelets found from

within the series. It also looked at the quality of the shapelets on a class basis.

We then discussed how this quality can affect the accuracy of a transform,

and whether the multivariate shapelets are able to separate classes correctly

from one another. We believe the multivariate shapelets capture different

features to multivariate dynamic time warping, are more interpretable than

concatenated shapelets and will fill a niche area of multivariate time series

classification.

154

Chapter 7

Conclusions and Future

Work

The work in this thesis was initially aimed at reducing the runtime of the

brute-force search algorithm of the shapelet transform (ST). In time series

classification (TSC) shapelet based methods have been shown to be a very

effective model for classification [8, 70, 83, 40].

There have been a number of different improvements and heuristic speed

ups proposed since the algorithm’s inception. We initially wanted to answer

the question: can we make the shapelet transform faster without reducing

accuracy? The majority of research into shapelet speed ups has consisted

of improvements to reducing the number of operations performed when

evaluating a single shapelet [114, 84, 83, 79].

However, the main issue with some of these methods is they either used

large amounts of additional memory (making it unscalable), or they were only

possible on two class problems. The secondary aims of this thesis became

apparent once we performed a large scale evaluation of the shapelet methods

and had to drastically sample some of the largest datasets to achieve results.

The secondary aim of this thesis was, can we give a shapelet transform a

time limit to find shapelets, and still achieve comparable accuracy to a full

enumeration? We aimed to explore heuristic searches and how they affected

155

accuracy, with the final aim being to create a multivariate representation of

shapelets. Evaluating large multivariate datasets would be all but impossible

without the heuristic searches and distance measures created in the earlier

work. The findings of this thesis are as follows: the Shapelet Transform when

paired with the heterogeneous ensemble of simple classifiers (ST HESCA)

is the second best time classification algorithm for univariate time series

classification. The state-of-the-art classifier is the collective of transformation

ensembles (COTE) which the shapelet transform forms a core part of [8, 6].

7.1 Discussion of Contributions

The first contribution of this thesis was improving the shapelet transform

on multi class problems. These improvements were designed to reduce the

runtime and improve the accuracy on multiclass problems. We made changes

to allow entropy pruning on multi class datasets and we created a new

sDist function for evaluating shapelet order which on average increased

early abandons. In addition to these speed improvements we developed a

balancing mechanism to ensure shapelets from all classes were represented

in the transform. In chapter 4 we presented the results from comparing the

operation count improvements and the accuracy improvements. These results

showed that with more classes the balanced shapelet transform had improved

accuracy over the original algorithm. In the worst cases the algorithm

presented did not significantly improve accuracy, but was not worse than

the original. In the best and averages cases there were improvements and

this prompted the inception of the ST HESCA classifier which selects the

relevant shapelet transform depending on the dataset.

Performing these initial experiments helped to create a better experimen-

tal methodology, which we designed so that we could perform more robust

evaluations of time series classifiers. With this new methodology, the aim

was to evaluate the state of the art classifiers within time series classification,

the focus of the work in second portion of chapter 4 being on shapelet based

classifiers and the wider work from the UEA time series classification group

published in [8]. The contributions towards this thesis was that we could

156

fully demonstrate the significance of the improvements created earlier in

chapter 4 where the Shapelet Transform now out performs the original on

a number of problems, and is significantly more accurate than most time

series classification algorithms in the literature. The aim of the work was

to also establish the state of other shapelet algorithms, as the number of

overlapping datasets did not allow robust comparisons. We found that even

with the help of the authors on recreating there algorithms, the results were

less favourable for Learn Shapelets and Fast Shapelets. A minor objective of

this work was to open source all of the available results and source code, for

replication by the time series community (available [5]).

One of the major issues noticed during the large scale experimental

work described in chapter 4 was that the shapelet transform was intractable

on the largest problems even with the use of specialist HPC equipment

and tailored HPC ST algorithms. With the final goal of this thesis to

design multivariate shapelet algorithms it became apparent that more drastic

time and space reductions would be required as we were still struggling

on univariate problems. The aim was to develop heuristic searches that

drastically reduce the runtime of the shapelet search without compromising

on classification accuracy. Contract classification was proposed, whereby time

requirements were imposed on the shapelet search and a number of shapelets

were found until the time limit expired. We find that some of these searches

required large parametrisation, where searching for the best parameter set

would defeat the object of contract classification. The contributions in

chapter 5 were designing and evaluating four shapelet search algorithms

considering both one hour and one day runtimes and comparing these results

with the current ST. We also added an additional dataset to the UCR-UEA

archive from the literature [94] which was the largest problem found in the

literature for time series classification (HeartbeatBIDMC).

The final contribution in this thesis is one of the first large scale ex-

periments on multivariate TSC datasets. We gathered datasets from the

literature and processed them into the ARFF format for use with Weka

[43]. Selecting a number of simple classifiers, most of which are constituents

of HESCA, we performed concatenation and ensembling over dimensions

157

to create ten classifiers which we could benchmark these initial datasets

on. In addition to these simple classifiers we implemented three types of

multivariate dynamic time warping, and we created three new multivariate

shapelet transforms. We then benchmarked these algorithms in a similar

style to [8] aiming to establish a common set of multivariate problems and

to provide a framework within Weka for other algorithms to use. It was

found that the shapelet algorithms were not significantly worse than other

multivariate time series classification approaches, and on certain datasets

outperformed dynamic time warping.

Through this thesis we have significantly improved the classification

accuracy of the Shapelet Transform for univariate time series classification.

We have demonstrated new heuristic speed up techniques that enable faster

searching and evaluation of shapelets. We presented the concept of a contract

classifier whereby the runtime of an algorithm can be artificially shortened,

and demonstrated that no significant accuracy loss was found despite vast

improvements in speed. Finally we introduced a new time representation

of shapelets in the multivariate domain, that are significantly faster than

naively concatenating or ensembling.

7.2 Future Work and Extensions

The results for the searching and runtime reductions on univariate problems

were very promising and demonstrated the effectiveness of heuristic searches.

We believe that better heuristic searches could be created that consider less

data. One of the major problems is that the search for shapelets is only half

of the runtime complexity of the algorithm. The other component is the

quality and distance calculations, which requires similar amounts of work.

Significant amounts of research has been performed in reducing the number

of operations when evaluating a single shapelet, however, we believe that even

more drastic speed up algorithms could be proposed. As opposed to the full

sliding window function being used, a sufficient number of random evaluations

could provide a cheap alternative to establishing tentative distance values. In

this way the search space could be quickly pruned using minimal calculations

158

and then a set of smaller shapelets could be fully evaluated. This idea is

similar to fast shapelets in some respects, and we did present the results

of a fast shapelet transform in [18]. However, we believe PAA and SAX

destroy the subtle shape information that is an important part of what makes

shapelets a good representation. One potential future area of research is

in creating contract classifiers of the other leading time series classification

algorithms, a contract COTE being the final aim.

The novel contribution of this work is in the multivariate domain. The

work presented in chapter 6 was one of the first large scale analyses of

multivariate datasets, where most studies had focused on a handful of datasets.

These 23 datasets should provide the foundation for additional research and

more data will hopefully be contributed by the community. We had hoped

to provide a decisive multivariate shapelet transform that outperformed all

other approaches, however, this was not the case. Further work would ideally

focus on looking at the problems with the current multivariate shapelet

representations and consider how to avoid some of them. One of these

problems is that currently the multivariate shapelets are attempting to find

bands of shapelets in the same phase across dimensions. If there is any

lag in the activity the length of the whole shapelet band needs to increase

to accommodate this, and results in the individual dimension sequences

containing noise. As this signal to noise ratio increases the likelihood of a

good shapelet match will decrease and so the true shapelet may be missed.

One possibility is that the multivariate shapelets phase could be independent

of each other, combining the shapelets from the same series and across

dimensions. This is a much more difficult problem than just finding bands

of multivariate shapelets, especially as the interpretability of shapelets may

decrease which is one of their beneficial properties.

Finally having created a multivariate shapelet transform we expect other

major TSC algorithms to consider multivariate representations with changes

to the BOSS algorithm and potentially a new multivariate elastic ensemble, or

time series forest [94, 69, 30]. The culmination of this would be a multivariate

COTE, converting the state-of-the-art univariate time series classifier into

the state-of-the-art multivariate classifier.

159

Appendices

160

Table 1: The average accuracies for the Shapelet Transform, Learn Shapelets
and Fast Shapelets averaged over a 100 resamples for the 85 UCR datasets

Datasets ST HESCA LS FS

Adiac 0.768 0.527 0.555

ArrowHead 0.851 0.841 0.675

Beef 0.736 0.698 0.502

BeetleFly 0.874 0.861 0.795

BirdChicken 0.927 0.863 0.862

Car 0.902 0.856 0.736

CBF 0.986 0.977 0.924

ChlorineConcentration 0.682 0.586 0.566

CinCECGtorso 0.918 0.855 0.741

Coffee 0.995 0.995 0.917

Computers 0.785 0.654 0.5

CricketX 0.777 0.744 0.479

CricketY 0.762 0.726 0.509

CricketZ 0.798 0.754 0.466

DiatomSizeReduction 0.911 0.927 0.873

DistalPhalanxOutlineCorrect 0.829 0.822 0.78

DistalPhalanxOutlineAgeGroup 0.819 0.81 0.745

DistalPhalanxTW 0.69 0.659 0.623

Earthquakes 0.737 0.742 0.747

ECG200 0.84 0.871 0.806

ECG5000 0.943 0.94 0.922

ECGFiveDays 0.955 0.985 0.986

ElectricDevices 0.895 0.709 0.262

FaceAll 0.968 0.926 0.772

FaceFour 0.794 0.957 0.869

FacesUCR 0.909 0.939 0.701

FiftyWords 0.713 0.694 0.512

Fish 0.974 0.94 0.742

FordA 0.965 0.895 0.785

FordB 0.915 0.89 0.783

GunPoint 0.999 0.983 0.93

Ham 0.808 0.832 0.677

Continued on next page

161

Table 1 – continued from previous page

Datasets ST LS FS

HandOutlines 0.924 0.837 0.841

Haptics 0.512 0.478 0.356

Herring 0.653 0.628 0.558

InlineSkate 0.393 0.299 0.257

InsectWingbeatSound 0.617 0.55 0.488

ItalyPowerDemand 0.953 0.952 0.909

LargeKitchenAppliances 0.933 0.765 0.419

Lightning2 0.659 0.759 0.48

Lightning7 0.724 0.765 0.101

Mallat 0.972 0.951 0.893

Meat 0.966 0.814 0.924

MedicalImages 0.691 0.704 0.609

MiddlePhalanxOutlineCorrect 0.815 0.822 0.716

MiddlePhalanxOutlineAgeGroup 0.694 0.679 0.613

MiddlePhalanxTW 0.579 0.54 0.519

MoteStrain 0.882 0.876 0.793

NonInvasiveFatalECGThorax1 0.947 0.6 0.71

NonInvasiveFatalECGThorax2 0.954 0.739 0.758

OliveOil 0.881 0.172 0.765

OSULeaf 0.934 0.771 0.679

PhalangesOutlinesCorrect 0.794 0.783 0.73

Phoneme 0.329 0.152 0.173

Plane 1 0.995 0.97

ProximalPhalanxOutlineCorrect 0.881 0.793 0.797

ProximalPhalanxOutlineAgeGroup 0.841 0.832 0.797

ProximalPhalanxTW 0.803 0.794 0.716

RefrigerationDevices 0.761 0.642 0.574

ScreenType 0.676 0.445 0.365

ShapeletSim 0.934 0.933 1

ShapesAll 0.854 0.76 0.598

SmallKitchenAppliances 0.802 0.663 0.333

SonyAIBORobotSurface1 0.888 0.906 0.918

SonyAIBORobotSurface2 0.924 0.9 0.849

StarlightCurves 0.977 0.888 0.908

Continued on next page

162

Table 1 – continued from previous page

Datasets ST LS FS

Strawberry 0.968 0.925 0.917

SwedishLeaf 0.939 0.899 0.758

Symbols 0.862 0.919 0.908

SyntheticControl 0.987 0.995 0.92

ToeSegmentation1 0.954 0.934 0.904

ToeSegmentation2 0.947 0.943 0.873

Trace 1 0.996 0.998

TwoLeadECG 0.984 0.994 0.92

TwoPatterns 0.952 0.994 0.696

UWaveGestureLibraryX 0.806 0.804 0.694

UWaveGestureLibraryY 0.737 0.718 0.591

UWaveGestureLibraryZ 0.747 0.737 0.638

UWaveGestureLibraryAll 0.942 0.68 0.766

Wafer 1 0.996 0.981

Wine 0.926 0.524 0.794

WordSynonyms 0.582 0.581 0.461

Worms 0.719 0.642 0.622

WormsTwoClass 0.779 0.736 0.706

Yoga 0.823 0.833 0.721

Wins 71 10 4

Table 2: Two tables presenting a comparison of the overlapping fold 0
datasets and the old ST results presented in [70].

Datasets old ST ST HESCA

datasets Old New

Adiac 0.57 0.78

ArrowHead 0.77 0.74

Beef 0.83 0.90

BeetleFly 0.75 0.60

BirdChicken 0.75 0.80

CBF 1.00 0.97

Car 0.73 0.92

ChlorineConcentration 0.70 0.70

Continued on next page

163

Table 2 – continued from previous page

Datasets old ST ST HESCA

CinCECGtorso 0.85 0.95

Coffee 1.00 0.96

Computers 0.70 0.74

CricketX 0.78 0.77

CricketY 0.76 0.78

CricketZ 0.77 0.79

DiatomSizeReduction 0.88 0.92

DistalPhalanxOutlineAgeGroup 0.74 0.77

DistalPhalanxOutlineCorrect 0.74 0.78

DistalPhalanxTW 0.63 0.66

ECGFiveDays 1.00 0.98

Earthquakes 0.73 0.74

FaceAll 0.74 0.78

FaceFour 0.94 0.85

FacesUCR 0.91 0.91

FordA 0.93 0.97

FordB 0.79 0.81

GunPoint 0.98 1.00

Haptics 0.48 0.52

Herring 0.67 0.67

InlineSkate 0.39 0.37

ItalyPowerDemand 0.95 0.95

LargeKitchenAppliances 0.88 0.86

Lightning2 0.66 0.74

Lightning7 0.74 0.73

MALLAT 0.94 0.96

MedicalImages 0.60 0.67

MiddlePhalanxOutlineAgeGroup 0.63 0.64

MiddlePhalanxOutlineCorrect 0.73 0.79

MiddlePhalanxTW 0.54 0.52

MoteStrain 0.89 0.90

NonInvasiveFetalECGThorax1 0.90 0.95

NonInvasiveFetalECGThorax2 0.90 0.95

OSULeaf 0.71 0.97

Continued on next page

164

Table 2 – continued from previous page

Datasets old ST ST HESCA

OliveOil 0.90 0.90

PhalangesOutlinesCorrect 0.75 0.76

Plane 1.00 1.00

ProximalPhalanxOutlineAgeGroup 0.85 0.84

ProximalPhalanxOutlineCorrect 0.90 0.88

ProximalPhalanxTW 0.77 0.80

RefrigerationDevices 0.56 0.58

ScreenType 0.53 0.52

ShapeletSim 0.92 0.96

SmallKitchenAppliances 0.77 0.79

SonyAIBORobotSurface1 0.93 0.86

SonyAIBORobotSurface2 0.88 0.93

StarLightCurves 0.98 0.98

SwedishLeaf 0.91 0.93

Symbols 0.89 0.88

SyntheticControl 0.98 0.98

ToeSegmentation1 0.96 0.96

ToeSegmentation2 0.85 0.91

Trace 0.98 1.00

TwoLeadECG 1.00 1.00

TwoPatterns 0.94 0.95

UWaveGestureLibraryX 0.78 0.80

UWaveGestureLibraryY 0.70 0.73

UWaveGestureLibraryZ 0.73 0.75

WordSynonyms 0.60 0.57

Worms 0.70 0.74

WormsTwoClass 0.77 0.83

Yoga 0.80 0.82

Fiftywords 0.72 0.71

Fish 0.98 0.99

Wafer 1.00 1.00

165

Chapter 8

Bibliography

[1] Ahmed Al-Jawad, Miguel Reyes Adame, Michailas Romanovas, Markus

Hobert, Walter Maetzler, Martin Traechtler, Knut Moeller, and Yian-

nos Manoli. Using multi-dimensional dynamic time warping for tug

test instrumentation with inertial sensors. In Multisensor Fusion and

Integration for Intelligent Systems (MFI), 2012 IEEE Conference on,

pages 212–218. IEEE, 2012.

[2] Fevzi Alimoğlu and Ethem Alpaydin. Combining multiple representa-

tions for pen-based handwritten digit recognition. Turkish Journal of

Electrical Engineering & Computer Sciences, 9(1):1–12, 2001.

[3] A. Bagnall and G. Janacek. A run length transformation for discrimi-

nating between auto regressive time series. Journal of Classification,

31:154–178, 2014.

[4] A. Bagnall, A. Bostrom, and J. Lines. The UEA TSC codebase.

https://bitbucket.org/TonyBagnall/time-series-classification,

.

[5] A. Bagnall, J. Lines, A. Bostrom, and E. Keogh. The UCR/UEA TSC

archive. http://timeseriesclassification.com, .

[6] A. Bagnall, J. Lines, J. Hills, and A. Bostrom. Time-series classification

166

with COTE: The collective of transformation-based ensembles. IEEE

Transactions on Knowledge and Data Engineering, 27:2522–2535, 2015.

[7] A. Bagnall, A. Bostrom, J. Large, and J.Lines. Simulated data ex-

periments for time series classification part 1: Accuracy comparison

with default settings. Technical report, School of Computing Sciences,

University of East Anglia, 2016.

[8] A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh. The great

time series classification bake off: a review and experimental evaluation

of recent algorithmic advance. Data Mining and Knowledge Discovery,

pages 1–55, 2016.

[9] Anthony Bagnall and Gareth Janacek. A run length transformation

for discriminating between auto regressive time series. Journal of

classification, 31(2):154–178, 2014.

[10] Muzaffar Bashir and Jürgen Kempf. Reduced dynamic time warping

for handwriting recognition based on multidimensional time series of

a novel pen device. International Journal of Intelligent Systems and

Technologies, WASET, 3(4):194, 2008.

[11] M. Baydogan and G. Runger. Time series representation and similarity

based on local autopatterns. Data Mining and Knowledge Discovery,

30(2):476–509, 2016.

[12] M. Baydogan, G. Runger, and E. Tuv. A bag-of-features framework

to classify time series. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 25(11):2796–2802, 2013.

[13] Mustafa Gokce Baydogan and George Runger. Learning a symbolic

representation for multivariate time series classification. Data Mining

and Knowledge Discovery, 29(2):400–422, 2015.

[14] Laurent Bernaille, Renata Teixeira, Ismael Akodkenou, Augustin Soule,

and Kave Salamatian. Traffic classification on the fly. ACM SIGCOMM

Computer Communication Review, 36(2):23–26, 2006.

167

[15] A. Bostrom and A. Bagnall. Binary shapelet transform for multiclass

time series classification. Proc. 17th International Conference on Big

Data Analytics and Knowledge Discovery (DAWAK), 2015.

[16] A. Bostrom and A. Bagnall. Binary shapelet transform for multiclass

time series classification. Transactions on Large-Scale Data and Knowl-

edge Centered Systems XXXII: Special Issue on Big Data Analytics

and Knowledge Discovery, pages 24–46, 2017.

[17] A. Bostrom and A. Bagnall. A Shapelet Transform for Multivariate

Time Series Classification. ArXiv e-prints, 2017.

[18] A. Bostrom, A. Bagnall, and J. Lines. Evaluating improvements to

the shapelet transform. Knowledge Discovery and Data Mining, in

Workshop on Mining and Learning from Time Series, 2016.

[19] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[20] Jeremy Buhler and Martin Tompa. Finding motifs using random

projections. Journal of computational biology, 9(2):225–242, 2002.

[21] K. Chakrabarti, E. Keogh, S. Mehrotra, and M. Pazzani. Locally adap-

tive dimensionality reduction for indexing large time series databases.

ACM Transactions on Database Systems, 27(2):188–228, 2002.

[22] L. Chen and R. Ng. On the marriage of Lp-norms and edit distance. In

Proc. 30th International Conference on Very Large Databases (VLDB),

2004.

[23] Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall, A. Mueen,

and G. Batista. The UEA-UCR time series classification archive.

http://www.cs.ucr.edu/~eamonn/time series data/, 2015.

[24] Yanping Chen, Bing Hu, Eamonn Keogh, and Gustavo EAPA Batista.

Dtw-d: time series semi-supervised learning from a single example. In

Proceedings of the 19th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 383–391. ACM, 2013.

168

[25] M. Corduas and D. Piccolo. Time series clustering and classification by

the autoregressive metric. Computational Statistics and Data Analysis,

52(4):1860–1872, 2008.

[26] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Ma-

chine learning, 20(3):273–297, 1995.

[27] Marco Cuturi. Fast global alignment kernels. In Proceedings of the

28th international conference on machine learning (ICML-11), pages

929–936, 2011.

[28] Rodrigo Fernandes de Mello and Iker Gondra. Multi-dimensional

dynamic time warping for image texture similarity. In Brazilian Sym-

posium on Artificial Intelligence, pages 23–32. Springer, 2008.

[29] J. Demšar. Statistical comparisons of classifiers over multiple data sets.

Journal of Machine Learning Research, 7:1–30, 2006.

[30] H. Deng, G. Runger, E. Tuv, and M. Vladimir. A time series forest

for classification and feature extraction. Information Sciences, 239:

142–153, 2013.

[31] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient

methods for online learning and stochastic optimization. Journal of

Machine Learning Research, 12(Jul):2121–2159, 2011.

[32] Miikka Ermes, Juha Pärkkä, Jani Mäntyjärvi, and Ilkka Korhonen.

Detection of daily activities and sports with wearable sensors in con-

trolled and uncontrolled conditions. IEEE transactions on information

technology in biomedicine, 12(1):20–26, 2008.

[33] Y. Freund and R. Schapire. Experiments with a new boosting algorithm.

In Proc. International Conference on Machine Learning, volume 96,

pages 148–156, 1996.

[34] Mohamed F Ghalwash and Zoran Obradovic. Early classification

of multivariate temporal observations by extraction of interpretable

shapelets. BMC bioinformatics, 13(1):1, 2012.

169

[35] Mohamed F Ghalwash, Vladan Radosavljevic, and Zoran Obradovic.

Extraction of interpretable multivariate patterns for early diagnostics.

In 2013 IEEE 13th International Conference on Data Mining, pages

201–210. IEEE, 2013.

[36] Nicholas Gillian, Benjamin Knapp, and Sile O’Modhrain. Recognition

of multivariate temporal musical gestures using n-dimensional dynamic

time warping. In NIME, pages 337–342, 2011.

[37] Fred Glover. Tabu Search and Adaptive Memory Programming —

Advances, Applications and Challenges, pages 1–75. Springer US,

1997.

[38] Daniel Gordon, Danny Hendler, and Lior Rokach. Fast randomized

model generation for shapelet-based time series classification. CoRR,

abs/1209.5038, 2012. URL http://arxiv.org/abs/1209.5038.

[39] Tomasz Górecki and Maciej Luczak. Multivariate time series classifica-

tion with parametric derivative dynamic time warping. Expert Systems

with Applications, 42(5):2305–2312, 2015.

[40] J. Grabocka, N. Schilling, M. Wistuba, and L. Schmidt-Thieme. Learn-

ing time-series shapelets. In Proc. 20th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, 2014.

[41] J. Grabocka, M. Wistuba, and L. Schmidt-Thieme. Fast classification

of univariate and multivariate time series through shapelet discovery.

Fast classification of univariate and multivariate time series through

shapelet discovery, 49:429–454, 2016.

[42] M Pamela Griffin and J Randall Moorman. Toward the early diagnosis

of neonatal sepsis and sepsis-like illness using novel heart rate analysis.

Pediatrics, 107(1):97–104, 2001.

[43] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and

I. Witten. The WEKA data mining software: An update. SIGKDD

Explorations, 11(1):10–18, 2009.

170

http://arxiv.org/abs/1209.5038

[44] Nacereddine Hammami and Mokhtar Sellam. Tree distribution classifier

for automatic spoken arabic digit recognition. In Internet Technology

and Secured Transactions, 2009. ICITST 2009. International Confer-

ence for, pages 1–4. IEEE, 2009.

[45] Bastian Hartmann and Norbert Link. Gesture recognition with inertial

sensors and optimized dtw prototypes. In Systems Man and Cybernetics

(SMC), 2010 IEEE International Conference on, pages 2102–2109.

IEEE, 2010.

[46] J. Hills. Mining Time-series Data using Discriminative Subsequences.

PhD thesis, School of Computing Sciences, University of East Anglia,

2015.

[47] J. Hills, J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. Classi-

fication of time series by shapelet transformation. Data Mining and

Knowledge Discovery, 28(4):851–881, 2014.

[48] D. Hirschberg. Algorithms for the longest common subsequence prob-

lem. Journal of the ACM, 24(4):664–675, 1977.

[49] Charles AR Hoare. Quicksort. The Computer Journal, 5(1):10–16,

1962.

[50] Lu Hou, James T Kwok, and Jacek M Zurada. Efficient learning

of timeseries shapelets. In Thirtieth AAAI Conference on Artificial

Intelligence, 2016.

[51] Y. Jeong, M. Jeong, and O. Omitaomu. Weighted dynamic time warping

for time series classification. Pattern Recognition, 44:2231–2240, 2011.

[52] Nimish Kale, Jaeseong Lee, Reza Lotfian, and Roozbeh Jafari. Impact

of sensor misplacement on dynamic time warping based human activity

recognition using wearable computers. In Proceedings of the conference

on Wireless Health, page 7. ACM, 2012.

[53] Isak Karlsson. Order in the random forest. PhD thesis, Department of

Computer and Systems Sciences, Stockholm University, 2017.

171

[54] Isak Karlsson, Panagiotis Papapetrou, and Lars Asker. Multi-channel

ecg classification using forests of randomized shapelet trees. In Pro-

ceedings of the 8th ACM International Conference on PErvasive Tech-

nologies Related to Assistive Environments, page 43. ACM, 2015.

[55] Isak Karlsson, Panagotis Papapetrou, and Henrik Boström. Forests of

randomized shapelet trees. In International Symposium on Statistical

Learning and Data Sciences, pages 126–136. Springer, 2015.

[56] Isak Karlsson, Panagiotis Papapetrou, and Henrik Boström. Early

random shapelet forest. In International Conference on Discovery

Science, pages 261–276. Springer, 2016.

[57] Isak Karlsson, Panagiotis Papapetrou, and Henrik Boström. General-

ized random shapelet forests. Data Mining and Knowledge Discovery,

30(5):1053–1085, 2016.

[58] Juha Kela, Panu Korpipää, Jani Mäntyjärvi, Sanna Kallio, Giuseppe

Savino, Luca Jozzo, and Sergio Di Marca. Accelerometer-based gesture

control for a design environment. Personal and Ubiquitous Computing,

10(5):285–299, 2006.

[59] E. Keogh and S. Kasetty. On the need for time series data mining

benchmarks: A survey and empirical demonstration. Data Mining and

Knowledge Discovery, 7(4):349–371, 2003.

[60] E. Keogh and M. Pazzani. Derivative dynamic time warping. In Proc.

1st SIAM International Conference on Data Mining (SDM), 2001.

[61] Ming Hsiao Ko, Geoff West, Svetha Venkatesh, and Mohan Kumar.

Online context recognition in multisensor systems using dynamic time

warping. In Intelligent Sensors, Sensor Networks and Information

Processing Conference, 2005. Proceedings of the 2005 International

Conference on, pages 283–288. IEEE, 2005.

[62] William H Kruskal. A nonparametric test for the several sample

problem. The Annals of Mathematical Statistics, pages 525–540, 1952.

172

[63] Mineichi Kudo, Jun Toyama, and Masaru Shimbo. Multidimensional

curve classification using passing-through regions. Pattern Recognition

Letters, 20(11):1103–1111, 1999.

[64] Oscar D Lara and Miguel A Labrador. A survey on human activity

recognition using wearable sensors. IEEE Communications Surveys

and Tutorials, 15(3):1192–1209, 2013.

[65] J. Large, J. Lines, and A. Bagnall. The Heterogeneous Ensembles of

Standard Classification Algorithms (HESCA): the Whole is Greater

than the Sum of its Parts. 2017.

[66] M. Lichman. UCI machine learning repository.

http://archive.ics.uci.edu/ml, 2013.

[67] J. Lin, E. Keogh, W. Li, and S. Lonardi. Experiencing SAX: a novel

symbolic representation of time series. Data Mining and Knowledge

Discovery, 15(2):107–144, 2007.

[68] J. Lin, R. Khade, and Y. Li. Rotation-invariant similarity in time series

using bag-of-patterns representation. Journal of Intelligent Information

Systems, 39(2):287–315, 2012.

[69] J. Lines and A. Bagnall. Time series classification with ensembles of

elastic distance measures. Data Mining and Knowledge Discovery, 29:

565–592, 2015.

[70] J. Lines, L. Davis, J. Hills, and A. Bagnall. A shapelet transform for

time series classification. In Proc. the 18th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, 2012.

[71] Jason Lines. Time Series classification through transformation and

ensembles. PhD thesis, University of East Anglia, 2015.

[72] Jason Lines and Anthony Bagnall. Alternative quality measures for

time series shapelets. In International Conference on Intelligent Data

Engineering and Automated Learning, pages 475–483. Springer, 2012.

173

[73] Jiayang Liu, Lin Zhong, Jehan Wickramasuriya, and Venu Vasudevan.

uwave: Accelerometer-based personalized gesture recognition and its

applications. Pervasive and Mobile Computing, 5(6):657–675, 2009.

[74] E. A. Maharaj. Clusters of time series. Journal of Classification, 17:

297–314, 2000.

[75] P. Marteau. Time warp edit distance with stiffness adjustment for time

series matching. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 31(2):306–318, 2009.

[76] Amy McGovern, Derek H Rosendahl, Rodger A Brown, and Kelvin K

Droegemeier. Identifying predictive multi-dimensional time series

motifs: an application to severe weather prediction. Data Mining and

Knowledge Discovery, 22(1-2):232–258, 2011.

[77] Karl Øyvind Mikalsen, Filippo Maria Bianchi, Cristina Soguero-Ruiz,

Stein Olav Skrøvseth, Rolv-Ole Lindsetmo, Arthur Revhaug, and

Robert Jenssen. Learning similarities between irregularly sampled

short multivariate time series from ehrs. 2016.

[78] Alexander McFarlane Mood. Introduction to the theory of statistics.

1950.

[79] A. Mueen, E. Keogh, and N. Young. Logical-shapelets: An expressive

primitive for time series classification. In Proc. 17th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining,

2011.

[80] Om Prasad Patri, Rajgopal Kannan, Anand V Panangadan, and

Viktor K Prasanna. Multivariate time series classification using inter-

leaved shapelets. In NIPS 2015 Time Series Workshop, 2015.

[81] John C Platt. 12 fast training of support vector machines using

sequential minimal optimization. Advances in kernel methods, pages

185–208, 1999.

174

[82] J Ross Quinlan. C4.5: Programming for machine learning. Morgan

Kauffmann, 38, 1993.

[83] T. Rakthanmanon and E. Keogh. Fast-shapelets: A fast algorithm

for discovering robust time series shapelets. In Proc. 13th SIAM

International Conference on Data Mining (SDM), 2013.

[84] T. Rakthanmanon, J. Bilson, L. Campana, A. Mueen, G. Batista,

B. Westover, Q. Zhu, J. Zakaria, and E. Keogh. Addressing big data

time series: Mining trillions of time series subsequences under dynamic

time warping. ACM Transactions on Knowledge Discovery from Data,

7(3), 2013.

[85] C. Ratanamahatana and E. Keogh. Three myths about dynamic time

warping data mining. In Proc. 5th SIAM International Conference on

Data Mining (SDM), 2005.

[86] Chotirat Ann Ratanamahatana and Eamonn Keogh. Three myths

about dynamic time warping data mining. In Proceedings of the 2005

SIAM International Conference on Data Mining, pages 506–510. SIAM,

2005.

[87] Atif Raza and Stefan Kramer. Ensembles of randomized time series

shapelets provide improved accuracy while reducing computational

costs. arXiv preprint arXiv:1702.06712, 2017.

[88] Xavier Renard, Maria Rifqi, Walid Erray, and Marcin Detyniecki.

Random-shapelet: an algorithm for fast shapelet discovery. In Data

Science and Advanced Analytics (DSAA), 2015. 36678 2015. IEEE

International Conference on, pages 1–10. IEEE, 2015.

[89] Juan José Rodriguez, Ludmila I Kuncheva, and Carlos J Alonso. Ro-

tation forest: A new classifier ensemble method. IEEE transactions on

pattern analysis and machine intelligence, 28(10):1619–1630, 2006.

[90] Dennis W Ruck, Steven K Rogers, Matthew Kabrisky, Mark E Oxley,

and Bruce W Suter. The multilayer perceptron as an approximation to

175

a bayes optimal discriminant function. IEEE Transactions on Neural

Networks, 1(4):296–298, 1990.

[91] Hiroaki Sakoe and Seibi Chiba. Dynamic programming algorithm opti-

mization for spoken word recognition. IEEE transactions on acoustics,

speech, and signal processing, 26(1):43–49, 1978.

[92] Yasushi Sakurai, Spiros Papadimitriou, and Christos Faloutsos. Braid:

Stream mining through group lag correlations. In Proceedings of the

2005 ACM SIGMOD international conference on Management of data,

pages 599–610. ACM, 2005.

[93] P. Schäfer. The BOSS is concerned with time series classification in

the presence of noise. Data Mining and Knowledge Discovery, 29(6):

1505–1530, 2015.

[94] P. Schäfer. Scalable time series classification. Data Mining and Knowl-

edge Discovery, 30(5):1273–1298, 2016.

[95] P. Senin and S. Malinchik. SAX-VSM: interpretable time series clas-

sification using sax and vector space model. In Proc. 13th IEEE

International Conference on Data Mining (ICDM), 2013.

[96] T Shajina and P Bagavathi Sivakumar. Human gait recognition and

classification using time series shapelets. In Advances in Computing

and Communications (ICACC), 2012 International Conference on,

pages 31–34. IEEE, 2012.

[97] Claude Elwood Shannon. A mathematical theory of communication.

ACM SIGMOBILE Mobile Computing and Communications Review, 5

(1):3–55, 2001.

[98] Mohammad Shokoohi-Yekta, Jun Wang, and Eamonn Keogh. On

the non-trivial generalization of dynamic time warping to the multi-

dimensional case. In Proceedings of the 2015 SIAM International

Conference on Data Mining, pages 289–297. SIAM, 2015.

176

[99] Mohammad Shokoohi-Yekta, Bing Hu, Hongxia Jin, Jun Wang, and

Eamonn Keogh. Generalizing dtw to the multi-dimensional case requires

an adaptive approach. Data Mining and Knowledge Discovery, 31(1):

1–31, 2017.

[100] P. Smyth. Clustering sequences with hidden markov models. In

Advances in Neural Information Processing Systems, volume 9, 1997.

[101] A. Stefan, V. Athitsos, and G. Das. The Move-Split-Merge metric for

time series. IEEE Transactions on Knowledge and Data Engineering,

25(6):1425–1438, 2013.

[102] Jiuqiang Tang and Roger B Dannenberg. Extracting commands from

gestures: Gesture spotting and recognition for real-time music perfor-

mance. In International Symposium on Computer Music Modeling and

Retrieval, pages 72–85. Springer, 2013.

[103] Gineke A ten Holt, Marcel JT Reinders, and EA Hendriks. Multi-

dimensional dynamic time warping for gesture recognition. In Thir-

teenth annual conference of the Advanced School for Computing and

Imaging, volume 300, 2007.

[104] Robert Tibshirani, Michael Saunders, Saharon Rosset, Ji Zhu, and

Keith Knight. Sparsity and smoothness via the fused lasso. Journal of

the Royal Statistical Society: Series B (Statistical Methodology), 67(1):

91–108, 2005.

[105] Liudmila Ulanova, Nurjahan Begum, and Eamonn Keogh. Scalable

clustering of time series with u-shapelets. In SIAM international

conference on data mining (SDM 2015). SIAM, 2015.

[106] José Ramón Villar, Silvia González, Javier Sedano, Camelia Chira, and

José M Trejo. Human activity recognition and feature selection for

stroke early diagnosis. In International Conference on Hybrid Artificial

Intelligence Systems, pages 659–668. Springer, 2013.

177

[107] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, and

E. Keogh. Experimental comparison of representation methods and

distance measures for time series data. Data Mining and Knowledge

Discovery, 26(2):275–309, 2013.

[108] Li Wei, Eamonn Keogh, and Xiaopeng Xi. Saxually explicit images:

Finding unusual shapes. In Data Mining, 2006. ICDM’06. Sixth Inter-

national Conference on, pages 711–720. IEEE, 2006.

[109] Xiaoqing Weng and Junyi Shen. Classification of multivariate time

series using locality preserving projections. Knowledge-Based Systems,

21(7):581–587, 2008.

[110] Xiaoqing Weng and Junyi Shen. Classification of multivariate time

series using two-dimensional singular value decomposition. Knowledge-

Based Systems, 21(7):535–539, 2008.

[111] D. H. Wolpert and W. G. Macready. No free lunch theorems for

optimization. Trans. Evol. Comp, 1(1):67–82, 1997.

[112] Zhengzheng Xing, Jian Pei, S Yu Philip, and Ke Wang. Extracting

interpretable features for early classification on time series. In SDM,

volume 11, pages 247–258. SIAM, 2011.

[113] Zhengzheng Xing, Jian Pei, and S Yu Philip. Early classification on

time series. Knowledge and information systems, 31(1):105–127, 2012.

[114] L. Ye and E. Keogh. Time series shapelets: a novel technique that

allows accurate, interpretable and fast classification. Data Mining and

Knowledge Discovery, 22(1-2):149–182, 2011.

[115] Lexiang Ye and Eamonn Keogh. Time series shapelets: a new primitive

for data mining. In Proceedings of the 15th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 947–956.

ACM, 2009.

178

[116] Jesin Zakaria, Abdullah Mueen, Eamonn Keogh, and Neal Young.

Accelerating the discovery of unsupervised-shapelets. Data mining and

knowledge discovery, 30(1):243–281, 2016.

[117] Qiang Zhu and Eamonn Keogh. Mother fugger: mining historical

manuscripts with local color patches. In Data Mining (ICDM), 2010

IEEE 10th International Conference on, pages 699–708. IEEE, 2010.

179

	List of Algorithms
	List of Figures
	List of Tables
	Introduction
	Introduction
	Motivation
	Contributions
	Thesis Organisation

	Technical Background and Related Work
	Time Series Classification
	Time Series Classification Algorithms
	Whole series
	Intervals
	Shapelets
	Dictionary based
	Combinations
	Model based

	Shapelets
	Shapelet Tree
	Information Gain
	Shapelet Quality
	Brute Force Search

	Logical Shapelets
	Shapelet Transform
	Changes from Shapelet Tree to Shapelet Transform
	Alternative Quality Measures
	Data Transformation

	Fast shapelets
	Learn Shapelets
	Fused Lasso Generalized eigenvector method
	Random Shapelet Tree and Random Shapelet Forest
	Efficiency Improvements
	Early Distance Abandon and Precomputing
	Entropy Pruning
	Similar shapelet abandon

	Shapelet Search improvements
	Timing Experiments
	Applications of Shapelets
	Issues With Current Approaches
	Multivariate Time Series Classification
	Multivariate Dynamic Time Warping
	Multivariate Shapelet Algorithms

	Experimental Methodology
	Comparing Classifiers
	Performance Statistics
	Standard Classification Algorithms
	C4.5 Decision Tree
	Support Vector Machine
	Random Forest
	Rotation Forest

	Resampling Datasets
	Univariate Datasets
	Multivariate Datasets

	Improving the accuracy and reducing the runtime of the Shapelet Transform
	Introduction
	Comparison of Published Results
	Multi-class information gain
	Changing the shapelet evaluation order
	Heterogeneous ensemble of standard classification algorithms
	Results
	Analysing the individual Improvements
	Measuring heuristic speed up techniques
	Shapelet Distribution
	Resampling Experiments
	Results

	Conclusion

	Sampling the Shapelet Space
	Introduction
	Quantifying the time for enumeration
	Sampling Shapelets
	Contract Sampling Algorithms for Shapelet Space
	Skipping search
	Random search
	Tabu search
	Magnify Search

	Experimental Comparison
	Subsampling Random Shapelet search

	Case Study: HeartbeatBIDMC
	Conclusion

	Multivariate Shapelet Transforms
	Introduction
	Benchmark Experiments
	Scaling the Shapelet Transform for Multivariate data
	Independent Shapelets
	Finding Multidimensional Shapelets
	Multidimensional Dependent Shapelets
	Multidimensional Independent Shapelets

	Evaluation
	Shapelets
	Comparing multivariate approaches with simple classifiers

	Case Study: MVMotionA
	Conclusion

	Conclusions and Future Work
	Discussion of Contributions
	Future Work and Extensions

	Appendices
	Bibliography

