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Abstract 

All-solid-state flexible supercapacitor (AFSC) is a promising energy storage device due to its 

high flexibility, security, and environmental friendliness. However, high electrical resistance 

and low specific capacitance of electrodes limit its application for potential portable 

electronic devices. In this study, we design a novel hybrid film electrode composed of 

reduced graphene oxide (rGO)/silver nanowire (Ag NW)@nickel aluminum layered double 

hydroxide (NiAl LDH; herein, GAL) possessing high electrochemical performance by using 

hydrothermal and vacuum filtration techniques. The Ag NW@NiAl LDH (AL) composites 

with hierarchical core-shell structure are utilized to increase electroactive surface area and 

improve electrical conductivity, while the rGO nanosheets serve as a prominent carbon 

material with outstanding electrical conductivity and mechanical flexibility. The freestanding 

GAL electrode shows high specific capacitance of 1148 F g−1 at 1 A g−1 compared with that 

of rGO/NiAl LDH (GL) of 765.2 F g−1 at 1 A g−1. The bind-free symmetric AFSC device is 

prepared using GAL hybrid film as electrodes and PVA-KOH as solid-state gel electrolyte. 

Meanwhile, the GAL//GAL AFSC device delivers a superior specific capacitance of 127.2 F 

g−1 at 1 A g−1, a high energy density of 35.75 mWh cm-3 at a power density of 1.01 W cm-3, 

and great cycling ability of 83.2% over 10000 cycles. This study introduces a novel design of 

flexible electrode structure for advanced energy storage applications.   

 

 

Keywords: Silver nanowire; Layered double hydroxide; Reduced graphene oxide; Hybrid 

film; All-solid-state supercapacitor 
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1. Introduction 

With the rapid development of electronic technology, wearable and flexible devices such as 

roll-up displays, biomedical sensors, and wearable devices, have drawn considerable 

attention [1-5]. Developing high energy density flexible supercapacitors (FSCs) hold the 

promise to provide a safe, fast charge/discharge rate, and long-life flexible energy storage 

devices [6-8]. Current research has focused on developing flexible film electrode possessing 

high electrical conductivity, high mechanical flexibility, and superior electrochemical 

performance for achieving high energy density FSCs [9-13]. To date, electrodes of high-

performance FSCs are mainly composed of carbonaceous materials such as carbon nanotube 

(CNT) [14-16], graphene [17-19] and CNT/graphene hybrid [20] due to their distinct 

properties of high conductivity and mechanical flexibility [21-23]. However, the 

CNT/graphene-based electric double-layer capacitor (EDLC) possesses low specific 

capacitance due to its intrinsic double-layer charge storage mechanism, which relies on the 

electrostatic attraction of electrolyte ions and charges at the electrode surface [24]. 

 

Accordingly, hybridizing pseudocapacitive metal oxide materials with CNT and/or graphene 

has been extensively studied to increase the specific capacitance and energy density of film 

electrodes [25-29]. However, fabricating flexible electrodes with high electrical conductivity 

and mechanical flexibility remains a challenge despite the use of the abovementioned 

superior carbonaceous materials. Recently, one-dimensional (1D) silver nanowires (Ag NWs) 

have been extensively studied as alternative conducting electrode materials in the 

electrochemical field due to their high electrical conductivity and mechanical flexibility [30, 

31]. Particularly, the embedment of Ag NWs in the carbonaceous matrix exhibits remarkably 

electrical conductivity and mechanical flexibility. Chen et al. reported the embedment of 1D 

Ag NWs in the matrix of chemical vapor deposition (CVD) graphene to enhance the 
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electrical conductivity of Ag NW/CVD graphene film electrodes. The superior electrical 

conductivity of 3189 S cm−1 was obtained in the optimized 50 wt% Ag NW/CVD graphene 

film [32]. However, few research has utilized 1D Ag NWs as the backbone of 

pseudocapacitive materials, such as transition metal oxide/hydroxides as an advanced 

electrode for FSCs. Hydrotalcite-like layered double hydroxides (LDH) have been 

demonstrated as promising pseudocapacitive materials due to their versatility in the matrix 

composition, high redox activity, low cost, and environmental benignity [33-35]. Generally, 

the typical formula for LDH is [M1
−

x
2+Mx

3+(OH)2](A
n−)x/n·mH2O, where M2+ indicates 

divalent cations such as Co2+, Cu2+, Ni2+, Zn2+, and Mg2+; M3+ is a trivalent cation that 

includes Mn3+, Al3+, Cr3+, and Fe3+; and An− is stand for the interlayer exchangeable anion 

such as SO4−, OH−, NO3−[35].  

 

In this study, a novel architecture film electrode composed of reduced graphene oxide (rGO)/ 

silver nanowire (Ag NW)@nickel aluminum layered double hydroxide (NiAl LDH; herein 

GAL) hybrid film is successfully fabricated and applied as a film electrode for all-solid-state 

flexible supercapacitor (AFSC) device. The ultrathin and lamellate NiAl LDH nanosheets are 

grown on the Ag NWs to form a hierarchical core-shell composite by a facile hydrothermal 

method. Then, the core-shell Ag NW@NiAl LDH (AL) composite are assembled with rGO 

via the vacuum filtration technique to form the GAL hybrid film. In comparsion with 

reported LDH-based composites, such as LDH/CNT [36], LDH/carbon nanoparticles, and 

LDH/carbon nanofibers [37], the GAL architecture offers the following intriguing features 

[38-41]: (1) 1D Ag NW offers excellent electrical conductivity to facilitate the transport of 

electron; (2) ultrathin porous NiAl LDH nanosheet surfaces grown along 1D Ag NW provide 

the effective electrolyte diffusion and prevent the aggregation of NiAl LDH nanosheets; (3) 

highly conductive and mechanically flexible rGO buffers the volume expansion of NiAl-
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LDH; and (4) AL core-shell improves the specific capacitance performance due to its 

pseudocapacitive characteristic and acts as a spacer to prevent the aggregation of rGO 

nanosheets. The GAL hybrid film displays a remarkable specific capacitance of 1148 F g−1 at 

1 A g−1 compared with the rGO/NiAl LDH (GL) of 765.2 F g−1 at 1 A g−1 and records a 

favorable cycling stability of 77.2% capacitance retention after 10000 cycles at 5 A g−1. A 

bind-free symmetric AFSC device is successfully prepared using GAL hybrid film as 

electrodes and PVA/KOH as solid-state gel electrolyte. The GAL//GAL AFSC device 

delivers a superior specific capacitance of 127.2 F g−1 at 1 A g−1, a high volumetric energy 

density of 35.75 mWh cm-3 at a power density of 1.01 W cm-3, and great cycling ability of 

83.2% over 10000 cycles. 

 

2. Experimental section 

2.1. Synthesis of AL composites 

Ag NWs were synthesized via a solvothermal method according to the reported literature [42].  

AL composites were prepared through a typically hydrothermal method. Briefly, 0.003 mol 

of Ni(NO3)2·6H2O, 0.001 mol of Al(NO3)3·9H2O, and 0.5 mg ml−1 of Ag NWs were 

dispersed into 30 ml deionized (DI) water under ultrasonication for 15 min. Then, 0.04 mol of 

urea was added into the as-prepared solution and stirred for another 15 min. The resultant 

mixture solution was transferred to a 50 mL Teflon-lined stainless-steel autoclave and kept at 

a temperature at 95 ℃ for 24 h. After crystallization, the generated precipitates were washed 

with ethanol and DI water, centrifuged, and dried at 60 °C for 12 h in a vacuum oven.  

 

2.2. Preparation of GAL hybrid film 

Graphene oxide (GO) was prepared from graphite powder via a modified Hummers method 

[43, 44]. The obtained GO powder (10 mg) was dispersed in 20 ml DI water under 
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ultrasonication for 30 min to create a homogeneous aqueous suspension. Subsequently, the 

brown color suspension was centrifuged at 3000 rpm for 30 min to remove any unexfoliated 

GO. To chemically reduce the GO, 280 µl of ammonia and 20 µl of hydrazine were added to 

the GO suspension with rapid stirring for several minutes. The suspension was then 

transferred into a glass vial and placed in water bath at 95 °C for 1h. The obtained black rGO 

suspension was mixed with 20 ml AL suspensions After 2 h, the GAL hybrid film was 

fabricated by vacuum filtration method with a polytetrafluoroethylene Millipore filter (0.2 

μm pore size, 47 mm in diameter). During the process, the prepared GAL suspension was 

added to the filtration system for 5 times (20 ml each time). Finally, the freestanding GAL 

composite film with thickness of 8 μm was obtained after being peeled off from the filter 

carefully. 

 

2.3. Fabrication of AFSC device 

Solid-state symmetric supercapacitors were assembled using GAL as the positive and 

negative electrodes with PVA/KOH gel as a solid electrolyte. In the assembly of GAL//GAL 

flexible symmetric devices, the area of the GAL electrode was 1 cm × 2 cm. The mass 

loading of the GAL was 1 mg cm−2. Gold-coated polyethylene terephthalate (Au-PET) 

membranes were used as conductive plates. The PVA/KOH electrolyte was prepared as 

follows. PVA (3.0 g) and KOH (3.0 g) were dissolved in 30 mL of water with vigorous and 

continuous stirring at 85 °C until the solution becomes clear. Before the device assembly, 

electrodes were soaked in the PVA/KOH sol for 5 min and then allowed to solidify at room 

temperature for 6 h. Finally, they were assembled together under pressing and remained at 

45 °C for 12 h to remove excess water. 
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2.4. Materials characterization 

X-ray diffraction (XRD) patterns were recorded using a Bruker D8 Advance X-ray 

diffractometer with Ni-filtered Cu Kα radiation (λ = 1.5406 Å) at a voltage of 40 kV and 

current of 200 mA. The composition and valence states of the prepared samples were 

analyzed by X-ray photoelectron spectroscopy (XPS, VG Scientific ESCALAB250). The 

instrument was calibrated to the carbon peak C 1s at 284.6 eV. Field-emission scanning 

electron microscopy images were acquired using Hitachi S-4800. Transmission electron 

microscopy (TEM) images were obtained using Talos F200 X. Scanning TEM with energy-

dispersive X-ray spectroscopy (EDS, Talos F200 X) mapping was performed to identify the 

distributions of C, O, Ni, Ag, and Al.  

 

2.5. Electrochemical measurements 

Electrochemical performance was evaluated by an electrochemical workstation (IviumNstat) 

with a 6 M KOH electrolyte. A three-electrode system with a GAL hybrid film (1 cm × 2 cm), 

a saturated calomel electrode (SCE, Hg/Hg2Cl2) and a platinum foil were used as working, 

reference, and counter electrodes, respectively. Cyclic voltammetry (CV) was measured with 

various scan rates at a potential window from 0 V to 0.6 V. Galvanostatic charge–discharge 

(GCD) was conducted with various current densities at a potential window from 0 V to 0.5 V. 

Electrochemical impedance spectroscopy (EIS) test was evaluated at a frequency range from 

100 kHz to 0.01 Hz at the open circuit potential with an AC potential amplitude of 5 mV. The 

gravimetric specific capacitance (Cg) was calculated by GCD tests by using the following 

equation:  

                        𝐶𝑔 = (𝐼 × ∆𝑡)/(∆𝑉 × 𝑚)                           (1) 

where I is the discharge current (A), Δt is the discharge time (s), m is the mass of the active 
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material in the electrode (g), and ΔV is the total potential deviation (V). To further evaluate 

the performance of the AFSC device, specific capacitance is calculated in Eq. (1) based on 

the total mass of two electrodes. The gravimetric energy density (Eg) and power density (Pg) 

were calculated using the following equations: 

                            𝐸𝑔 =
1

2
× 𝐶𝑔 × ∆𝑉2                            (2) 

                             𝑃𝑔 =  𝐸𝑔/∆𝑡                               (3) 

where ΔV (V) is the device voltage and Δt (s) is the device discharge time. Moreover, the 

volumetric energy density (Ev) and power density (Pv) were calculated according to the 

following equations [45]: 

                                 𝐸𝑣 = 𝜌𝐸𝑔                               (4) 

                                 𝑃𝑣 = 𝜌𝑃𝑔                                (5) 

Where ρ is the density of the hybrid film, which was calculated by the following equation: 

                              𝜌 =  𝑚/(𝑆 × 𝑑)                             (6) 

where m (g) is the mass of the hybrid film, S (cm2) is the area and d (cm) is the thickness of 

the hybrid film. 

 

3. Results and discussion 

3.1. Material characterization 

Fig. 1a shows the schematic of the core-shell AL composites. In the synthesis process, long 

and thin 1D Ag NWs were used as the high conductivity 1D core for the growth of NiAl-

LDH. During the hydrothermal reaction, urea was first hydrolyzed to provide OH– and CO3
2– 

for the precipitation of Ni2+ and Al3+ to form NiAl LDH along the Ag NWs surface [46, 47]. 

The detailed chemical reactions of AL can be expressed as follows [48]: 

                         𝑁𝐻3 + 𝐻2𝑂 → 𝑁𝐻4
+ + 𝑂𝐻−                        (7) 
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 6𝑁𝑖2+ + 2𝐴𝑙3+ + 0.5𝐶𝑂3
2− + 17𝑂𝐻− + 4𝐻2𝑂 → 𝑁𝑖6𝐴𝑙2(𝑂𝐻)16(𝐶𝑂3, 𝑂𝐻) ∙ 4𝐻2𝑂  (8) 

The crystal structures of the Ag NW and AL were measured by XRD measurement, as shown 

in Fig. 1b. In the XRD pattern of NiAl LDH, well-defined diffraction peaks at 11.7°, 23.5°, 

35.1°, 39.5°, 61.2°and 62.3°are indexed as (003), (006), (012), (015), (018), (110), and 

(113) rhombohedral phase of NiAl LDH (JCPDS 15-0087) with the R3m space group [49]. 

Conversely, the XRD results of AL composites reveal the presence of XRD peaks of NiAl 

LDH and Ag NW that are indexed to the (111), (200), and (220) crystal planes of Ag (JCPDS 

65-2871) This result further confirms that the AL core-shell composites are successfully 

synthesized by the hydrothermal method. Scanning electron microscopy (SEM) was 

conducted to study the morphology of the AL composites. Fig. 1c shows the SEM images of 

as-prepared 1D Ag NWs with different magnifications at 5 μm and 500 nm. The minimal 

diameter of the Ag NW is approximately 200 nm, which indicates the high uniformity of the 

Ag NW. Fig. 1d shows the as-synthesized AL composites composed of vertically grown NiAl 

LDH nanosheets along the surface of Ag NWs, revealing a highly hierarchical core-shell 

structure. Such core-shell structure enables efficient electroactive surface area for Faradaic 

redox reactions and is expected to shorten the diffusion and migration paths of the electrolyte 

ions.  
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Fig. 1. (a) Schematic illustration of the formation process of the hierarchical core-shell AL 

composites; (b) XRD patterns of NiAl LDH and AL composites; SEM images of (c) Ag NWs 

and (d) AL composites. 

 

The schematic of the preparation process of the GAL hybrid film is shown in Fig. 2a. In the 

process, the rGO and AL composites were dispersed in DI water under ultrasonication to 

obtain the homogeneous suspensions. The GAL hybrid film was then formed by a vacuum 

filtration of the mixture of the rGO and AL suspensions. The XRD patterns of the rGO and 

GAL hybrid films are shown in Fig. 2b. The results show that rGO and GAL display a broad 

reflection peak at 24.3°, indicating the explicit characteristic of poor ordering of rGO sheets 

along their stacking direction [50, 51]. Furthermore, the distinct peaks at 11.7°, 23.4°, 

35.2°, 39.6°and 47.1°are observed in the GAL hybrid film, which corresponds to the 

typical NiAl LDH peaks. To demonstrate the dispersibility of the rGO and AL in aqueous 

solutions, the Tyndall effect of the dispersions was studied (Fig. 2c). Distinct red light paths 
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are clearly shown in the rGO, and AL aqueous solutions, which indicate the typical colloidal 

nature and remarkable stability of the rGO and AL dispersions [52]. The surface morphology 

and cross-section SEM images of the rGO and GAL hybrid films were investigated by SEM. 

Fig. 2d illustrates the flat surface of rGO film with a wrinkled edge. The cross-section SEM 

image reveals the rGO film composed of massive rGO nanosheets restacked together to form 

layers. By contrast, the GAL hybrid film composed of the rGO layers that are well separated 

with the introduction of AL composites resulted in clear spaces between rGO layers (Fig. 2e). 

To clearly observe the thickness of GAL hybrid film, Fig. S1 shows the cross section SEM 

image of GAL hybrid film, with thickness of 7.91 µm. This GAL architecture enables 

effective electrolyte diffusion between rGO layers and shortens diffusion paths to NiAl LDH, 

resulting in enhanced EDLC and pseudocapacitance.  
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Fig. 2. (a) Schematic illustration of the GAL film; (b) XRD patterns of rGO and GAL film; (c) 

Tyndall effect illustration of rGO and AL composites dispersions; SEM and cross-sectional 

images of (d) rGO and (e) GAL film.  

 

The microstructure of the GAL hybrid film was further evaluated by TEM. As shown in Fig. 

3a-b and Fig. S2a, the surface of the Ag NWs is uniformly covered with the ultrathin NiAl 



13 

 

LDH nanosheets, signifying a perfect core-shell hierarchical structure. Notably, numerous 

thin and wrinkled rGO nanosheets were electrostatically attracted to AL composites resulting 

in a self-assembly of the GAL hybrid film. The self-assembly of AL composites and rGO was 

ascribed to the positively charged NiAl LDH surface [53] and the negatively charged rGO 

due to the ionization of the partial oxygen functional groups that were incompletely reduced 

[54]. The selected area electron diffraction (SAED) pattern (inset of Fig. 3c) reveals the well-

defined diffraction rings corresponding to the (113) and (018) planes of NiAl LDH, 

indicating the polycrystalline structure of the LDH nanosheets. High-resolution TEM 

(HRTEM) image differentiated clearly the NiAl LDHs and rGO, as shown in Fig. 3d. The 

wrinkled rGO nanosheet depicts an explicit interlayer spacing of 0.345 nm, which indicates 

the typical graphene nature [55]. The (018) plane of NiAl LDH phase with an interlayer 

distance of 0.189 nm is observed in the HRTEM image, which matches well with the XRD 

results (Fig. 3e). To verify the spatial distribution of the chemical components of the AL 

composites, high-angle annular dark-field (HAADF) scanning TEM image of an AL 

composite structure and the corresponding EDS mapping analysis (Fig. 3f) were conducted. 

The EDS results reveal clearly the distinct distribution of Ni, Al, and Ag in the AL 

composites, which further confirms the well-defined core-shell structure with Ag NW core 

and NiAl LDH nanosheets. The HAADF mapping image of the GAL hybrid film showing the 

presence of Ni, Al, Ag, and C is shown in Fig S2b.  
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Fig. 3. (a, b, c) TEM images of GAL film with different magnifications; (inset in c) the 

corresponding SAED pattern of NiAl LDH in AL composites; HRTEM image of (d) GAL, 

(inset in d) rGO and (e) NiAl LDH; (f) Mapping results of AL composites. 
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XPS measurement was used to assess the surface chemical states of the GAL film. Fig. 4a 

shows the full XPS spectra of the GAL film, which is composed of Ni, Al, Ag, O and C. A 

close inspection reveals that Ni, Al, and Ag exhibit weaker peaks. This result is attributed to 

the few-nanometer electron escape depth of XPS measurement and the core-shell AL 

composites wrapped within the rGO sheets, resulting in weak XPS signal. Fig. 4b reveals a 

main peak of C 1s at approximately 284.6 eV, suggesting the graphitic sp2 carbon atoms. 

Meanwhile, two weak peaks are also exhibited at 286.5 eV and 288.4 eV, which are 

attributed to the presence of oxygenate groups (C–O and C=O) on the rGO sheets [56, 57]. 

The high-resolution XPS spectrum of Ni 2p (Fig. 4c) depicts two characteristic peaks at 856.2 

eV and 874.1 eV with their shakeup satellites (indicated by “Sat”), corresponding to Ni 2p3/2 

and Ni 2p1/2 spin-orbit doublets of the NiAl LDH, respectively; this result further confirmed 

the presence of Ni2+.[48] The Ag 3d XPS spectrum (Fig. 4d) exhibits two peaks of Ag 3d5/2 

and Ag 3d3/2 at the binding energies of 368.5 eV and 374.4 eV, indicating the presence of Ag 

metal inside the AL composites [58]. Furthermore, the O 1s spectrum is fitted by two peaks at 

530.4 eV and 531.9 eV, which correspond to lattice oxygen and hydroxide group in the rGO 

sheets, respectively (Fig. S3) [59].  
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Fig. 4. XPS results of the GAL hybrid film: (a) full spectrum, (b) C 1s, (c) Ni 2p, and (d) Ag 

3d. 

 

3.2. Electrochemical characterization 

The electrochemical performances of the freestanding GAL and GL electrodes were 

evaluated in a three-electrode system with 6 M KOH solution as the electrolyte (Fig. 5). The 

GL film was tested as a reference compared with the GAL film. The CV curves of the GL 

and GAL film electrodes at a scan rate of 100 mV s−1 in the voltage range of 0–0.6 V (versus 

SCE) are shown in Fig. 5a. The results show that the GAL and GL electrodes present a pair 

of well-defined redox peaks attributed to the capacitive nature of the reversible redox reaction 

of Ni2+/Ni3+ in alkaline electrolyte [60-62]. The redox reactions during the CV test are shown 

as follows: 

                   𝑁𝑖(𝑂𝐻)2 +  𝑂𝐻− ↔ 𝑁𝑖𝑂𝑂𝐻 + 𝐻2𝑂 + 𝑒−                   (9) 



17 

 

Notably, the GAL electrode exhibits a higher current density and larger integral area than that 

of the GL electrode, revealing that GAL electrode has superior capacitive characteristics. This 

prominent electrochemical performance is attributed to the superior electrical conductivity of 

1D Ag NW and the enhanced diffusion of electrolyte ions ascribed to the ultrathin NiAl LDH 

nanosheets [63] of the core-shell AL composites. Fig. S4a-b show the CV curves of the GAL 

and GL electrodes at various scan rates of 5, 10, 20, 30, 40, 50 and 100 m V s−1. With an 

increase in scan rate from 5 m V s−1 to 100 m V s−1, the clear shape of the redox peaks are 

maintained with a small shift, illustrating the small diffusion resistance of the electrode 

material and good rate capability [2, 64]. In addition, the correlation between the cathodic 

peak current and the square roots of the scan rates (v1/2) of the GAL and GL electrodes is 

shown in Fig. 5b. The GAL and GL electrodes exhibit a linear relationship between the 

cathodic peak current and v1/2, indicating a diffusion-controlled process [65]. Accordingly, the 

diffusion coefficient (D) of OH− ion is calculated using Randles–Sevcik equation, as shown 

as follows [66]: 

                   𝐼𝑝 = 2.69 × 105 × 𝑛3/2 × 𝐴 × √𝐷 × 𝐶 × √𝑣                (10) 

      𝐷𝐺𝐴𝐿/𝐷𝐺𝐿 = [𝐷(𝐼𝑝/𝑣1/2)𝐺𝐴𝐿/𝐷(𝐼𝑝/𝑣1/2)𝐺𝐿]2 = (13.15/10.01)2 = 1.73      (11) 

where Ip is the peak current, n is the number of electrons involved in the reaction, A is the 

surface area of the electrode, D is the diffusion coefficient of the electrode material, C is the 

proton concentration, and ν is the scanning rate. The diffusion coefficient of the GAL 

electrode (DGAL) is approximately 1.73 times larger than that of the GL electrode (DGL), 

indicating its higher ion mobility.  
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Fig. 5. Electrochemical measurements of the GAL and GL electrodes: (a) CV curves at a 

scan rate of 100 mV s−1; (b) Linear relationship between the cathodic peak current and square 

root of the scan rates; (c) GCD curves at a current density of 1 A g−1; (d) Specific 

capacitances at different current densities; (e) Cycling performances at a current density of 5 

A g−1; and (f) Nyquist plots. 
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Fig. 5c shows the GCD curves of the GAL and GL electrodes at a current density of 1 A g−1 

with the potential window from 0 V to 0.5 V. The GAL electrode delivers a high specific 

capacitance of 1148 F g−1 at 1 A g−1, which is 1.5 times higher than that of the GL electrode 

(765.2 F g−1 at 1 A g−1). The specific capacitances of the GAL and GL electrodes at different 

current densities are shown in Fig 5d. The calculated specific capacitances of the GAL 

electrode are 1148, 873.6, 804, 745.6 and 728 F g−1, whereas the calculated specific 

capacitances of the GL electrode are 765.2, 626.4, 580, 537.6 and 520 F g−1, at current 

densities of 1, 3, 5, 8, and 10 A g−1, respectively. Moreover, the GCD curves of the GAL and 

GL electrodes at various current densities of 1, 3, 5, 8 and 10 A g−1 are shown in Fig S4c-d. 

The GAL electrode exhibits a longer charge/discharge time than GL electrode at all tested 

current density range, demonstrating the merits of the hierarchical AL composites embedded 

in the rGO sheet structure. The nonlinear GCD curves represent the typical Faradaic 

characteristic, indicating the quasi-reversible redox reactions at the electrolyte−electrode 

interface [59]. Notably, the deviation of the potential range between CV and GCD curves is 

due to the electrochemical polarization of the materials [67]. The cycling performances of the 

GAL and GL electrodes were conducted at progressively increased current densities (Fig. 

S4e). At the first 100 cycles of charge/discharge at a current density of 1 A g−1, the GAL 

electrode shows a high specific capacitance of 1148 F g−1, whereas the GL electrode shows a 

specific capacitance of 765.2 F g−1. The specific capacitances of the GAL and GL electrodes 

show a descending trend with the increase in current density, which can be attributed to the 

polarization effect of the electrodes [68]. After continuous cycling for 400 cycles at various 

current densities, the current density is reduced back to 1 A g−1, the GAL electrode retained 

98.5% of the initial specific capacitance (1130.8 F g−1) and remained for another 100 cycles 

constantly. By contrast, the GL electrode maintained 96.2% of the initial capacitance (736.1 

F g−1). The cycling performances of the GAL and GL electrodes were evaluated with 
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repeated charge/discharge testes at a current density of 5 A g−1 (Fig. 5e). Remarkably, the 

GAL electrode exhibits a decent capacitance retention of 77.2% (initial specific capacitance 

of 886.3 F g−1) and Columbic efficiency of 98.5% after 10000 cycles, which is higher than 

that of the GL electrode (67.7% decent capacitance retention, initial specific capacitance of 

518.1 F g−1; Coulombic efficiency of 91.2%; Fig. S4f). The remarkable electrochemical 

performances and cycling stability of the GAL electrode are attributed to the rational design 

of the electrode. The high utilization of electroactive surface area of NiAl LDH nanosheets in 

the AL composites results in high pseudocapacitance. Meanwhile, the space between AL 

composites and rGO sheets enables effective penetration of electrolyte ions, which shortens 

the ions diffusion paths. The rGO sheets significantly protect the NiAl LDH from dissolution 

in the electrolyte during cycling. In addition, the highly electrically conductive 1D Ag NW 

core provides rapid electron transport and effectively prevents NiAl LDH from aggregation, 

leading to high cycling stability. 

 

EIS analysis was used to evaluate the conductivity and charge transfer kinetics of the GAL 

and GL electrodes (Fig. 5f). The Nyquist plots of the electrodes are depicted at the frequency 

range from 100 KHz to 0.01 Hz showing a semicircle in the high-frequency region and a 

sloped line in the low-frequency region. At high frequencies, the intercept at the real part (Zʹ) 

indicates the combinational series resistance (Rs) of the electrode, bulk electrolyte, and 

electrode/current collector contact resistance [69]. The diameter of the semicircle corresponds 

to the charge transfer resistance (Rct) at the interface between the electrode material and 

electrolyte. The Rs was measured to be 0.62 Ω for the GAL film electrode and 0.96 Ω for the 

GL electrode; thus, the GAL film electrode has a higher electrical conductivity attributed to 

the1D core Ag NWs. The GAL film electrode also displays a smaller Rct (4.68 Ω) compared 

with the GL electrode (16.72 Ω) at the high-frequency region, indicating a faster electron 
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transfer process [70]. In addition, the straight line in the low-frequency region corresponds to 

the Warburg resistance (Zw). Meanwhile, the GAL film electrode depicts a steeper slope line 

at the low-frequency region, suggesting the high ion diffusion in the electrode materials. The 

results demonstrate that the GAL film electrode possesses superior electrical conductivity and 

effective charge transfer kinetics.  

 

Fig. 6a displays the schematic of the GAL//GAL AFSC device assembled using GAL thin 

films as the positive and negative electrodes with PVA-KOH as a gel electrolyte. 

Freestanding GAL possesses high mechanical flexibility, as demonstrated by rolling it on the 

surface of the stainless-steel rod (Fig. 6b). In this study, Au-PET was used as a substrate of 

the AFSC due to its mechanical flexibility as demonstrated in the flat and bending conditions 

of the GAL//GAL AFSC (Fig. 6b and S5). The CV curves of the GAL//GAL AFSC (Fig. 6c) 

are presented at various scan rates from 5–100 m V s−1 between 0 V and 1 V. These quasi-

rectangular patterns illustrate the typical Faradaic behavior and the mild distortion is 

attributed to the oxygen-related functional groups existing on the surface of electrode 

materials [71]. Fig. 6d shows the GCD curves of the GAL//GAL AFSC with different current 

densities of 1, 3, 5, 8 and 10 A g−1, respectively. The results reveal the symmetric and nearly 

triangular shapes with smaller IR drop, indicating the device has ideal capacitive behavior 

and lower internal resistance. The specific capacitances of the GAL//GAL AFSC are 

calculated to be 127.2, 99.6, 84, 68.8 and 60 F g-1 at current densities of 1, 3, 5, 8 and 10 A 

g−1, respectively (Fig. 6e). Cycling performance is one of the important parameters to 

evaluate the practical application for energy storage device. As shown in Fig. 6f, the 

GAL//GAL AFSC exhibits excellent cycling stability of 83.2 % capacitance retention after 

10000 cycles at a current density of 5 A g-1, suggesting superior electrochemical stability of 

proposed GAL electrode structure. In addition, the coulombic efficiency of the GAL//GAL 
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AFSC remains at 89.4% at the end of 10000 cycles, demonstrating a remarkable reversibility 

[60]. 

 

To further evaluate the mechanical flexibility of the device, the CV curves of GAL//GAL 

AFSC were measured at various bending angles of 0°, 30°, 60°, and 90° (Fig. 7a). The 

corresponding CV and CD curves (Fig. 7b-c) maintain the same shape without a significant 

difference at all tested bending angles, suggesting the excellent flexibility and 

electrochemical performance of the device. Meanwhile, the mechanical fatigue tests of the 

device were also investigated by CV and CD measurements at the repeated bending tests (Fig. 

7e-f). After 100 cycles of bending to 90º, the GAL//GAL AFSC retained 93.1 % initial 

capacitance. The slight decrease of the specific capacitance during bending is attributed to the 

loss of the adhesion ability of the AFSC device during bending cycles [72]. 
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Fig. 6. (a) Schematic illustration of the GAL//GAL AFSC device; (b) Photographic images of 

the GAL film and AFSC device. Electrochemical measurements of the GAL//GAL AFSC 

device: (c) CV curves at different scan rates, (d) GCD curves at various current densities, (e) 

Specific capacitances at different current densities, and (f) Cycling performance and 

Coulombic efficiency at a current density of 5 A g−1. 



24 

 

 

Fig. 7. (a) Photographic image, (b) CV and (c) GCD curves of GAL//GAL AFSC device at 

various bending angles; (d) Photographic image of the mechanical fatigue tests; (e) CV and (f) 

GCD curves of GAL//GAL AFSC device at different bending cycles. 

 

The mass energy density and power densities of the GAL//GAL AFSC device were 

calculated and shown on the Ragone plot (Fig. S6). In this figure, the GAL//GAL AFSC 

device displays a satisfactory mass energy density of 17.7 Wh kg-1 at a power density of 500 

W kg-1, which is higher than similar symmetric flexible supercapacitors in the literature 

(Table S1), such as CNT//CNT (5.2 Wh kg−1 at 110 W kg−1) [73], Ag NWs/G//Ag NWs/G 

(4.5 Wh kg−1 at 5040 W kg−1) [72], RuO2/G//RuO2/G (13 Wh kg−1 at 2100 W kg−1) [74], 

V2O5/rGO//V2O5/rGO (8.5 Wh kg−1 at 425 W kg−1) [75] and G/MnO2/CNT//G/MnO2/CNT 

(8.9 Wh kg−1 at 106 W kg−1) [76]. Furthermore, the volumetric energy and power density of 

the GAL//GAL AFSC device are also evaluated in Fig. 8, which delivered excellent 

performance of 35.75 mWh cm−3 and 1.01 W cm−3. The detail comparison of the volumetric 

energy and power densities is shown in Table S2. Notably, our results are superior to many 

recently reports, such as G/AC//G/AC (15.9 mWh cm−3 at 0.0236 W cm−3) [77], 
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CF/NiPx//CF/rGO (8.97 mWh cm−3 at 0.07 W cm−3) [78], CNT/rGO//CNT/rGO (6.3 mWh 

cm−3 at 0.015 W cm−3) [79], G/MoS2//G/MoS2 (1.7 mWh cm−3 at 0.062 W cm−3) [80], 

Mn3O4/rGO//Mn3O4/rGO (18 mWh cm−3 at 3.13 W cm−3) [81], 

CNTs/NiCo2O4//CNTs/NiCo2O4 (1.17 mWh cm−3 at 2.43 W cm−3) [82], 

CF/rGO/MnO2//CF/rGO (1.23 mWh cm−3 at 0.03 W cm−3) [83] and CNF/rGO/MoOxNy// 

CNF/rGO/MoOxNy (18.8 mWh cm−3 at 0.016 W cm−3) [84]. 

 

 

Fig. 8. Volumetric energy and power densities of GAL//GAL AFSC device, and compared 

with several similar reports. 

 

Conclusions 

In summary, we reported a novel flexible GAL film electrode composed of AL composites 

and rGO sheets by facial hydrothermal and vacuum filtration approaches. Specifically, the 

hierarchical core-shell structure of AL composites was prepared by grafting NiAl LDH 

nanosheets vertically on 1D Ag NWs by a facile hydrothermal method. The GAL hybrid film 

electrode was fabricated by the electrostatic attraction of AL composites and rGO nanosheets 
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by vacuum filtration technique. The GAL electrode shows superior electrochemical 

performance with specific capacitance of 1148 F g−1 at 1 A g−1 and prominent cycling 

stability of 77.2% after 10000 cycles. Furthermore, the GAL//GAL AFSC device was 

assembled using GAL electrodes as positive and negative electrodes and PVA-KOH gel as 

the solid-state electrolyte. The GAL//GAL AFSC device exhibits outstanding flexibility and 

great stability. A high volumetric energy density of 35.75 mWh cm−3 at a power density of 

1.01 W cm−3 was achieved with remarkable cycling stability of 89.4% after 10000 cycles. 

This study presents a promising flexible electrode structure with high electrochemical 

performance and stability for high-performance flexible energy storage devices. 
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Figure captions 

Fig. 1. (a) Schematic illustration of the formation process of the hierarchical core-shell AL 

composites; (b) XRD patterns of NiAl LDH and AL composites; SEM images of (c) Ag NWs 

and (d) AL composites. 

Fig. 2. (a) Schematic illustration of the GAL film; (b) XRD patterns of rGO and GAL film; (c) 

Tyndall effect illustration of rGO and AL composites dispersions; SEM and cross-sectional 

images of (d) rGO and (e) GAL film.  

Fig. 3. (a, b, c) TEM images of GAL film with different magnifications; (inset in c) the 

corresponding SAED pattern of NiAl LDH in AL composites; HRTEM image of (d) GAL, 

(inset in d) rGO and (e) NiAl LDH; (f) Mapping results of AL composites. 

Fig. 4. XPS results of the GAL hybrid film: (a) full spectrum, (b) C 1s, (c) Ni 2p, and (d) Ag 

3d. 

Fig. 5. Electrochemical measurements of the GAL and GL electrodes: (a) CV curves at a 

scan rate of 100 mV s−1; (b) Linear relationship between the cathodic peak current and square 

root of the scan rates; (c) GCD curves at a current density of 1 A g−1; (d) Specific 

capacitances at different current densities; (e) Cycling performances at a current density of 5 
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A g−1; and (f) Nyquist plots. 

Fig. 6. (a) Schematic illustration of the GAL//GAL AFSC device; (b) Photographic images of 

the GAL film and AFSC device. Electrochemical measurements of the GAL//GAL AFSC 

device: (c) CV curves at different scan rates, (d) GCD curves at various current densities, (e) 

Specific capacitances at different current densities, and (f) Cycling performance and 

Coulombic efficiency at a current density of 5 A g−1. 

Fig. 7. (a) Photographic image, (b) CV and (c) GCD curves of GAL//GAL AFSC device at 

various bending angles; (d) Photographic image of the mechanical fatigue tests; (e) CV and (f) 

GCD curves of GAL//GAL AFSC device at different bending cycles. 

Fig. 8. Volumetric energy and power densities of GAL//GAL AFSC device, and compared 

with several similar reports. 

 

 

 


