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Abstract. We introduce two natural notions of cogrowth for finitely
generated semigroups — one local and one global — and study their
relationship with amenability and random walks. We establish the min-
imal and maximal possible values for cogrowth rates, and show that
non-monogenic free semigroups are exactly characterised by minimal
global cogrowth. We consider the relationship with cogrowth for groups
and with amenability of semigroups. We also study the relationship
with random walks on finitely generated semigroups, and in particular
the spectral radius of the associated Markov operators (when defined)
on `2-spaces. We show that either of maximal global cogrowth or the
weak Følner condition suffices for the spectral radius to be at least 1;
since left amenability implies the weak Følner condition, this represents
a generalisation to semigroups of one implication of Kesten’s Theorem
for groups. By combining with known results about amenability, we are
able to establish a number of new sufficient conditions for (left or right)
amenability in broad classes of semigroups. In particular, maximal local
cogrowth left implies amenability in any left reversible semigroup, while
maximal global cogrowth (which is a much weaker property) suffices for
left amenability in an extremely broad class of semigroups encompass-
ing all inverse semigroups, left reversible left cancellative semigroups
and left reversible regular semigroups.

1. Introduction

The concept of cogrowth forms a natural bridge between combinatorial,
probabilistic and analytic approaches to the study of finitely generated
groups. Defined in terms of generators, as an elementary asymptotic in-
variant in a natural sense dual to growth, the cogrowth of a group has a
natural interpretation in terms of divergence rates of a random walk on the
Cayley graph, and can be used to characterise amenability [11, 19] of the
group.

The areas of group theory touched upon by the study of cogrowth all
have counterparts in semigroup theory. There has long been interest, both
intrinsic and motivated by applications in computer science, in the combina-
torial study of (usually finitely generated) semigroups using generators and
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relations (see for example [6, 21, 30, 36, 37]). Random walks on semigroups
are of longstanding interest, and have recently received additional attention
due to connections with representation theory [5, 7, 8, 33]). The focus so
far has been chiefly on the finite case (most notably on face monoids of hy-
perplane arrangements), but the extension to finitely generated semigroups
is arguably the next natural step. Finally, amenability for semigroups has
been an active area of research from the 1950s [12] to the present day; see
[2, 3, 4, 10, 23] for some examples of recent developments and applications
in other areas and [18, 38] for advances relating specifically to finitely gener-
ated semigroups. It therefore seems apposite to ask whether the concept of
cogrowth makes sense in a semigroup setting, and if so whether it is capable
of forming a similar bridge between these areas.

In this paper, we introduce, and begin the study of, two natural notions
of cogrowth for finitely generated semigroups and monoids — one local and
one global — and study their relationship with random walks and with
amenability. Local cogrowth is the most immediately obvious extension
to semigroups of the usual definition of cogrowth in groups; we shall see
that for semigroups in general it is not capable of capturing the same level
of structural and dynamic information as in groups, but it is interesting
in some cases and also important as a tool for studying global cogrowth.
Global cogrowth is a slightly more subtle definition which for semigroups
turns out to contain much more information, while for groups remaining
essentially equivalent to the usual definition; we contend that this is the
“correct” notion of cogrowth for semigroups.

We establish the minimal and maximal possible values for cogrowth rates,
and show that (excepting the 1-generator case, which has a pathological as-
pect) free semigroups are exactly characterised by minimal global cogrowth
(Theorem 4.20). Where the semigroup happens to be a group with a sym-
metric generating set, our notions are closely related to each other and to
the group-theoretic notion of cogrowth; in particular, we deduce from the
Grigorchuk-Cohen cogrowth theorem [11, 19] that maximality (of either)
characterises amenability (Theorem 6.3). In greater generality (for semi-
groups, or even for groups with non-symmetric generating sets) we show that
maximality of local cogrowth is not invariant under change of generators,
so cannot be expected to characterise any abstract property of semigroups
(Example 3.18). It remains unclear whether maximality of global cogrowth
is invariant under change of generators, but we are able to show that if a
semigroup has a finite generating set with respect to which it has maximal
global cogrowth, then every finite subset is contained in such a generating
set (Theorem 4.25).

To establish the connection with random walks, we follow Kesten’s ap-
proach [27, 28] of studying the spectral radius of the associated Markov
operator on the `2-space of the semigroup. Unlike in groups, this operator
is not always defined; Proposition 5.5 below gives an exact algebraic de-
scription of when it is defined. When it is defined, it is bounded and we
show (Theorems 5.11 and 5.12) that any of maximal local cogrowth, maxi-
mal global cogrowth, the weak Følner condition or left amenability suffices
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for its spectral radius to be at least 1. The latter criterion generalises to
semigroups one implication of Kesten’s Theorem [27] for groups.

By combining our results with known results about amenability, we are
able to deduce a number of new sufficient conditions for left amenability
in left reversible semigroups (left reversibility being an elementary struc-
tural precondition for left amenability). Maximal local cogrowth (at any
element) suffices for left amenability in any left reversible semigroup (The-
orem 6.7). The weaker condition of maximal global cogrowth suffices for
left amenability in left reversible semigroups satisfying the Klawe condition
(Theorem 6.12), and hence in the extreme broad class of near left cancella-
tive semigroups introduced in [18]. Maximal global cogrowth also suffices for
left amenability in left reversible semigroups whose maximal right cancella-
tive quotient has a minimal ideal (Theorem 6.5). Both of these results apply
in particular to inverse semigroups, allowing us to show that a finitely gener-
ated inverse semigroup of maximal global cogrowth is necessarily amenable
(which can be deduced from known results when the generating set is sym-
metric, but is a new result when it is not). The main known and unknown
implications between the various conditions considered are summarised di-
agramatically in Figure 1 at the end of the paper.

2. Preliminaries

Throughout this paper we assume basic familiarity with some elementary
concepts of semigroup theory, such as idempotents, ideals, Green’s equiva-
lence relations and pre-orders, (von Neumann) regular elements and inverse
semigroups; for an introduction to these the reader is directed to any of the
standard texts, such as [20, 24]. For the avoidance of confusion, we recall
that a simple semigroup or monoid is one without proper 2-sided ideals; this
is not the same thing as having no proper homomorphic images, semigroups
and monoids with the latter property being termed congruence-free. A sub-
group of a semigroup means a subsemigroup which forms a group under the
inherited multiplication (the identity element of which may be any idem-
potent of the semigroup); a maximal subgroup is a subgroup not properly
contained in another subgroup; there is no requirement that it be a proper
subsemigroup, so if the semigroup happens to be a group then, in contrast
with the usual terminology in group theory, it is its own unique maximal
subgroup. If S is a semigroup without an identity element we write S1 to
denote the monoid obtained by adjoining an identity element; if S is already
a monoid then S1 is defined to be S.

While the earlier sections should be intelligible to semigroup theorists
with no background in analysis or amenability, Section 5 is concerned with
random walks and associated Markov operators, while Section 6 involves
amenability of semigroups. Very brief introductions to each are given in the
respective sections, but for a more leisurely and comprehensive introduc-
tion we direct the reader to expositions such as [9, 34] for amenability of
semigroups and [39] for concepts related to random walks.

In the rest of this section we fix some notation and terminology. If X is a
set of symbols, we write X∗ (respectively, X+) to represent respectively the
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free monoid (free semigroup) on X, that is, the set of finite words (respec-
tively, finite non-empty words) over X under the operation of concatenation.
For u ∈ X∗ we write |u| for the length of u.

A (finite) choice of generators for a semigroup (or monoid) S is a (finite)
set X of symbols together with a surjective morphism from the free semi-
group X+ (or the free monoid X∗) onto S. For words u and v in X+ or
X∗ we write u for the image of u in S, and u ≡ v to mean that u = v in
S. The canonical example is where X is a generating subset of S with the
map given by multiplication in the obvious way, but our definition is slightly
more general because multiple elements of X may map to the same element
of S, allowing us to consider generators “with multiplicity”. We shall often
simply say that X is a choice of generators for S, leaving the map implicit.
By a finitely generated semigroup (monoid) we mean a semigroup (monoid)
equipped with a fixed finite choice of generators. When S is a group or
inverse semigroup, the choice of generators is called symmetric if for every
s ∈ S the same number (possibly 0) of generators in X represent s and s−1.
Throughout the paper, we shall assume unless stated otherwise that S is a
semigroup with a fixed finite choice of generators X.

We take N to be the set of positive natural numbers, excluding 0. If A is
a subset of a set B we write χA : B → R for the characteristic function of
A; if a ∈ B we write χa for χ{a}.

3. Local Cogrowth

In this section we introduce the first of two notions of cogrowth for finitely
generated semigroups, which is the local cogrowth at a given element. Al-
though this turns out to be (in our opinion) less important than the notion
of global cogrowth to be introduced in the next section, it is closely related
to global cogrowth and provides a useful tool for studying it.

Definition 3.1. The local cogrowth function at an element s ∈ S is the

function λS,Xs : N → N which maps n to the number of distinct words of
length n in X+ representing s.

The local cogrowth rate λS,Xs at s ∈ S is

lim sup
n→∞

(λS,Xs (n))1/n.

Where the semigroup and choice of generators are clear, we drop the super-
scripts and write simply λs(n) and λs.

Remark 3.2. Clearly since there are only |X|n words of length n we have

0 ≤ λs(n) ≤ |X|n

for all n. Thus, the sequence λs(n)1/n is bounded and hence λs is defined
and 0 ≤ λs ≤ |X|.

Definition 3.3. If λs = |X| we say that s has maximal local cogrowth, or
that S has maximal local cogrowth (at the element s).

Remark 3.4. Semigroups with maximal local cogrowth are examples of the
A-semigroups introduced and studied by Gerl [17]. See Remark 6.8 below
for further discussion of the relationship between these two concepts.
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Remark 3.5. In the special case that S is a group with identity 1 and X is a
symmetric generating set, λ1 corresponds with the formulation of cogrowth
considered in for example [14]. It differs technically from the standard for-
mulation for groups, in that it counts all words representing the identity,
rather than just freely reduced words. However, it is closely related and still
suffices to characterise amenability (see [14] and Theorem 6.3 below).

Remark 3.6. The local cogrowth of a semigroup is not left or right “sided”:
more precisely the local cogrowth of an element s ∈ S is the same as its
cogrowth in the opposite semigroup Sop with the same set of elements, order
of multiplication reversed, and obvious choice of generators. This imme-
diately implies that one cannot hope to characterise certain properties of
abstract semigroups, such as left amenability or right amenability (see Sec-
tion 6 below), which differ in S and Sop, in terms of local cogrowth.

Proposition 3.7. For any s ∈ S we have λs = 0 if and only if s is repre-
sented by only finitely many words over X, and λs ≥ 1 otherwise.

Proof. If s is represented by only finitely many words then the sequence
λs(n) is eventually 0, so λs(n)1/n is eventually 0. Otherwise λs(n) ≥ 1 for

infinitely many terms, so λs(n)1/n ≥ 1 for infinitely many terms. �

Remark 3.8. The local cogrowth at an element s may be thought of as
measuring the probability that a random walk in the semigroup ends at s.
More precisely, λs(n)/|X|n is the probability that a random walk of length n,
starting at the identity element of S (or of S1 if necessary) and multiplying
consecutively on the right (say) by n generators chosen uniformly at random
from X, ends at s. Notice that λs < |X| if and only if this probability decays
exponentially as n→∞.

Proposition 3.9. If s, t ∈ S are such that s ≤J t then λs ≥ λt. In
particular, local cogrowth is a J -class invariant and if S is simple then local
cogrowth is constant across the semigroup.

Proof. Suppose s ≤J t. Fix words u, v ∈ X∗ such that utv = s, and let
m = |uv|. Then for each word w ∈ Xn representing t we obtain a different
word uwv ∈ Xn+m representing s, so we have

λt(n) ≤ λs(n+m) for all n,

from which the claim easily follows. �

Definition 3.10. If J is a J -class of S then we use the term local cogrowth
at J , and write λJ , for the local cogrowth of any element s ∈ J .

Proposition 3.11. If S has an element of maximal local cogrowth then the
set of all such elements forms a minimal ideal of S.

Proof. It is immediate from Proposition 3.9 that the set of elements of max-
imal local cogrowth (presuming it to be non-empty) forms an ideal; call it
I. Suppose for a contradiction that it is not minimal. Let J be an ideal of
S properly contained in I, and choose elements j ∈ J and i ∈ I \ J . Let
w ∈ X+ be a word representing j. Then all words containing w as a factor
represent elements of J , so in particular no such word can represent i.
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Hence, every word representing i can be written in the form u1 . . . upv
where |v| < |w| and for 1 ≤ q ≤ p we have |uq| = |w| and uq 6= w. The
number of ways to choose such a word of some length n is bounded above
by

(|X||w| − 1)p |X||w| ≤ |X||w|
(

(|X||w| − 1)1/|w|
)n

where p is the integer part of n
|w| and the inequality holds because |X||w|−1 ≥

1 (unless |X| = 1 in which case both sides are 0). Since |X||w| is a constant
independent of n, we obtain

λi = lim sup
n→∞

λi(n)1/n ≤ (|X||w| − 1)1/|w| < |X|

contradicting the assumption that S has maximal local cogrowth at i. �

Corollary 3.12. If a monoid has maximal local cogrowth at the identity
then it must be simple (that is, have no proper 2-sided ideals).

Proposition 3.13. Let f : S → T be a surjective morphism and consider X
as a choice of generators for T (with the obvious map obtained by composing
the map from X+ to S with the map f from S to T ). Then for any s ∈ S
we have

λT,Xf(s)(n) ≥ λS,Xs (n), for all n

and hence λT,Xf(s) ≥ λ
S,X
s .

Proof. This is immediate from that fact that any word representing s in S
represents f(s) in T . �

Example 3.14. Recall that the bicyclic monoid is given by the monoid
presentation

〈b, c | bc = 1〉.
The bicyclic monoid is ubiquitous in infinite semigroup theory and also
(as a natural algebraic model of a counter or a one-sided shift) in many
other areas of mathematics and theoretical computer science. Letting X =
{b, c} be the obvious choice of generators, the language of words representing
the identity is the (one-sided) Dyck language. There are no words of odd
length representing the identity, while the number of words of length 2k
representing the identity is well-known (and easily seen) to be the Catalan
number Ck. Thus, we have

λ1(n) =

{
0 if n is odd

Cn/2 if n is even.

As a consequence of Stirling’s approximation,

Ck ≈
4k

k3/2
√
π

so putting n = 2k we get λ1 = 2. Thus by Corollary 3.12 we obtain the
(well-known) fact that the bicyclic monoid is simple, and we can deduce by
Proposition 3.9 that λs = 2 for all elements s. In other words, all elements
have maximal local cogrowth.
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Example 3.15. Let S be the free commutative monoid 〈a, b | ab = ba〉 with
the obvious choice of generators. For any element s there are only finitely
many words representing s, so we have λs(n) = 0 for sufficiently large n and
hence λs = 0 for all s.

The argument in Example 3.15 clearly applies also to a broad class of
finitely generated semigroups with the property that each element has only
finitely many representatives. This includes all finitely generated semigroups
admitting homogeneous presentations (that is, finite or infinite presentations
in which the left-hand-side and right-hand-side of each relation have the
same length), and all semigroups given by finite presentations satisfying the
small overlap condition C(4) (see [22, 25, 35]) which in a precise statistical
sense is “almost all” finitely presented semigroups [26].

Although it will turn out that the local cogrowth rate of elements is
interesting in certain types of semigroups, these examples show that there
are many other interesting semigroups where it can tell us little or nothing.
This is one of the motivations for a related “global” definition of cogrowth,
which will be introduced in the next section.

Proposition 3.16. If S has a finite minimal left or right ideal I, then the
elements of I have maximal local cogrowth. In particular, any left, right or
two-sided zero element of a semigroup has maximal local cogrowth.

Proof. We treat the case that I is a finite right ideal, the case of a left ideal
being dual. Suppose I has p elements. Fix a word w ∈ X+ representing
some element of I. For any n > |w| each word u ∈ Xn−|w| yields a word
wu ∈ Xn representing an element of I. Thus, for each n, there are at least
|X|n−|w| such words, which by the pigeon hole principle means that some
element of I has at least

1

p
|X|n−|w| =

1

p|X||w|
|X|n

representatives of length n for infinitely many n. Clearly, this element will
have local cogrowth |X|. Since I is a minimal right ideal it is contained in
a J -class so it follows by Proposition 3.9 that every element of I has local
cogrowth |X|. �

Corollary 3.17. Every finite semigroup has maximal local cogrowth.

Propositions 3.11 and 3.16 give respectively a necessary condition and a
sufficient condition for the existence of elements of maximal local cogrowth,
in terms of the ideal structure of the semigroup. One might hope that they
are converging upon an abstract, purely algebraic characterisation of this
property, without reference to generators. However, the following example
shows that this property is actually dependent upon the choice of generators,
so such a characterisation cannot exist:

Example 3.18. Let G = Z with choice of generators X = {a, b} where a
represents +1 and b represents −1. We shall compute the local cogrowth
function at the identity element: λ0(n). Clearly only words of even length

can represent the identity so λG,X0 (n) = 0 for n odd. A word of even length
n = 2k represents 0 if and only if it contains b in exactly k positions. There
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are
(
2k
k

)
ways to choose the positions of the bs and the remaining positions

must contain as, so using Stirling’s approximation:

λG,X0 (n) =

(
2k

k

)
≈ 4k√

πk
=

1√
π n2

2n

whence λG,X0 = 2, which is maximal. Since Z (like all groups) is a simple
semigroup, it follows by Proposition 3.9 that λz = 2 for all z ∈ Z.

Now consider the same group G = Z but this time with choice of genera-
tors Y = {a, a′, b} where a and a′ both represent +1 and b again represents

−1. Just as before λG,Y0 (n) = 0 for n odd, and a word of length n = 2k
represents 0 if and only if it contains b in exactly k positions. There are
again

(
2k
k

)
ways to choose the positions of the bs, but this time there are 2k

ways to choose whether the remaining k positions should contain a or a′. So
using Stirling’s approximation again:

λG,Y0 (n) =

(
2k

k

)
2k ≈ 4k√

πk
2k =

1√
π n2

(2
√

2)n

which gives λG,Y0 = 2
√

2, which is not maximal. Using Proposition 3.9 again,

λG,Yz = 2
√

2 < 3 for all z ∈ Z so there are no elements of maximal local
cogrowth.

4. Global Cogrowth

We saw above that, while local cogrowth displays interesting properties
in some semigroups, in other important semigroups it is everywhere 0. This
motivates another way to define cogrowth for a semigroup, which does not
involve looking at individual elements separately and which is non-trivial in
these cases.

Definition 4.1. The global cogrowth function of S (with respect to the
choice of generators X) is the function γS,X : N → N which maps n to the
number of pairs (u, v) of non-empty words over X with |uv| = n and u = v
in S.

The global cogrowth rate γS,X of S is

lim sup
n→∞

(γS,X(n))1/n.

Again, we omit superscripts where no confusion can arise.

As we start to study the global cogrowth rate in more depth, we shall see
that it admits numerous equivalent formulations (see Remark 4.4, Lemma 4.16,
Proposition 4.23 and Corollary 5.2 below).

Remark 4.2. Clearly we have 0 ≤ γS,X(n) ≤ (n− 1)|X|n for all n. Hence,

0 ≤
(
γS,X(n)

)1/n ≤ (n− 1)1/n|X| for all n, from which it follows that γS,X

is defined and 0 ≤ γS,X ≤ |X|.

We will be interested not so much in the actual value of the global
cogrowth rate, as in when it obtains its minimum and (especially) maxi-
mum possible values.
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Definition 4.3. We say that S has maximal global cogrowth (with respect
to X) if γS,X = |X|.

Remark 4.4. As an immediate consequence of the definitions, we can de-
scribe global cogrowth in terms of local cogrowth by the formula:

γS,X(n) =
∑
i,j∈N
i+j=n
s∈S

λS,Xs (i)λS,Xs (j).

Notice that the sum on the right hand side has only finitely many non-zero
terms, since only finitely many elements can be represented by words over
X of length n or less.

There is another elementary relationship between local and global cogrowth
rates:

Proposition 4.5. The global cogrowth rate is bounded below by the local
cogrowth rate of every element. In particular, every semigroup of maximal
local cogrowth has maximal global cogrowth.

Proof. Let s ∈ S. For any n there are λs(n) words of length n representing
s and hence at least λs(n)2 pairs (u, v) of words both of which represent s
and with |uv| = 2n. Thus, we have γ(2n) ≥ λs(n)2 for all n. The claim
follows. �

Corollary 4.6. Every finitely generated semigroup with a finite minimal
left or right ideal has maximal global cogrowth. In particular, every finite
semigroup has maximal global cogrowth.

Proof. This is immediate from Propositions 3.16 and 4.5. �

Example 4.7. We saw in Example 3.14 that the (2-generated) bicyclic
monoid has maximal local cogrowth at the identity element, so by Proposi-
tion 4.5 it also has maximal global cogrowth.

Proposition 4.8. If T is a homomorphic image of S (with the obvious
choice of generators obtained by composing the map from X+ to S with the
morphism from S onto T ) then the global cogrowth of T is greater than or
equal to the global cogrowth of S. In particular, the class of semigroups hav-
ing maximal global cogrowth with respect to some finite choice of generators
is closed under the taking of quotients.

Proof. This follows immediately from the fact that two words representing
the same element of S also represent the same element of T . �

Example 4.9. Let S be the free commutative monoid 〈a, b | ab = ba〉. For

any n ∈ N there are
(
2n
n

)
distinct words of length 2n representing anbn, so

using Stirling’s approximation we obtain

γ(4n) ≥
(

2n

n

)2

≈
(

4n

2n+ 1

)2

=
24n

(2n+ 1)2

from which it follows (since (2n + 1)2 is subexponential) that γ ≥ 2. Since
there are only two generators we must have γ = 2, that is, S has maximal
global cogrowth.
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A comparison of Examples 3.15 and 4.9 illustrates how greatly global
cogrowth can differ from local cogrowth. In particular, a semigroup can
have maximal global cogrowth but local cogrowth which is everywhere 0.

A similar, if slightly more involved, combinatorial analysis to that in Ex-
ample 4.9 can be used to compute the global cogrowth of free commutative
semigroups of all finite ranks; it turns out that they all have maximal global
cogrowth. Since every finitely generated commutative semigroup is a quo-
tient of such a semigroup, it follows by Proposition 4.8 that every finitely
generated commutative semigroup has maximal global cogrowth. But in
fact we can prove something much stronger than this:

Theorem 4.10. Every finitely generated semigroup of subexponential growth
has maximal global cogrowth.

Proof. Let f : N → N be the (spherical) growth function of S with respect
to X, that is, the function which maps n to the number of distinct elements
of S which admit representatives in X+ of length exactly n. Let k = |X|.

Then for each n, by the pigeon hole principle, we may choose an element
xn ∈ S such that at least kn

f(n) distinct words of length exactly n represent

xn. Thus, there are at least
(

kn

f(n)

)2
ways to choose words u and v of length

n so that u = v in S, and so

γ(2n) ≥
(
kn

f(n)

)2

=
1

f(n)2
k2n

giving

γ = lim sup
n→∞

(γ(n))1/n

≥ lim sup
m→∞

(γ(2m))1/2m

≥ lim sup
m→∞

(
1

f(m)2
k2m

)1/2m

= lim sup
m→∞

(
1

f(m)

)1/2m

k

= k lim sup
m→∞

(
1

f(m)

)1/2m

= k

where the last equality holds because the growth function f is subexponen-
tial. �

In particular, we obtain by this route the claimed fact about commutative
semigroups:

Corollary 4.11. Every finitely generated commutative semigroup has max-
imal global cogrowth.

Remark 4.12. The converse to Theorem 4.10 fails even for groups with
symmetric choices of generators; indeed by Theorem 6.3 below, any finitely
generated amenable group of exponential growth (for example, any finitely
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generated solvable group which is not virtually nilpotent, such as the Baumslag-
Solitar group BS(1, 2)) with any finite symmetric generating set provides a
counterexample.

Lemma 4.13. Let S be a semigroup with choice of generators X, having an
ideal I which is a monoid with identity element e. Consider X as a choice of
generators for I, with each symbol x ∈ X representing the element ex ∈ I.
Then γS,X = γI,X .

Proof. The map
S → I, x 7→ ex

is easily verified to be a surjective homomorphism from S onto I, so by
Proposition 4.8 we have γI,X ≥ γS,X .

Conversely, fix a word w over X representing e in S. Then for any words
u and v, we have u ≡ v in I if and only if wu ≡ wv in S. Hence for every
n ∈ N we have

γI,X(n) ≤ γS,X(n+ 2|w|)
and so γS,X ≤ γI,X . �

We now introduce a slight variation of the definition of the global cogrowth
function, which will turn out to be equivalent for the purpose of calculating
the cogrowth rate, but is technically easier to work with since it involves
comparing only words of the same length:

Definition 4.14. Let S be a semigroup with finite choice of generators X.
We define γ′ : N→ N by

γ′(n) =
∣∣{(u, v) | u, v ∈ X+, u ≡ v, |u| = |v|, |uv| = n}

∣∣ .
Remark 4.15. Immediately from the definition, γ′(n) = 0 for n odd, while
for n = 2k we have

γ′(n) =
∑
s∈S

λs(k)2.

Lemma 4.16. Let S be a semigroup finitely generated by X. Then

γ = lim sup
n→∞

(
γ′(n)

)1/n
= lim sup

n→∞
n even

(
γ′(n)

)1/n
.

Proof. The inequalities

γ ≥ lim sup
n→∞

(
γ′(n)

)1/n ≥ lim sup
n→∞
n even

(
γ′(n)

)1/n
are clear. Indeed, the first holds because by definition γ(n) ≥ γ′(n) for all
n, and the second from the definition of the limit superior.

For the remaining inequality, define

γ′ = lim sup
n→∞
n even

(
γ′(n)

)1/n
and suppose for a contradiction that γ′ < γ. Choose some δ with γ′ < δ < γ.
Then there is a constant β such that γ′(n) ≤ βδn for all even n. From the
definition of γ′ this means that for every i we have∑

s∈S
λs(i)

2 = γ′(2i) ≤ βδ2i.
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Recall from Remark 4.4 that

γ(n) =
∑
i+j=n
s∈S

λs(i)λs(j) =
∑
i+j=n

(∑
s∈S

λs(i)λs(j)

)
.

Notice that, since for each k there are only finitely many s ∈ S with λs(k) 6=
0, each term in the outer sum is the scalar product of two finite dimensional
vectors; by the Cauchy-Schwarz inequality this cannot exceed the product
of their Euclidean norms, so whenever i+ j = n we have:∑

s∈S
λs(i)λs(j) ≤

√∑
s∈S

λs(i)2
√∑

s∈S
λs(j)2 ≤

√
βδ2i

√
βδ2j = βδn

and hence, since there are n− 1 possible choices of i and j,

γ(n) ≤
∑
i+j=n

βδn ≤ (n− 1)βδn.

It follows that γ ≤ δ, contradicting the choice of δ and completing the
proof. �

Remark 4.17. The definition of γ′(n) allows an interpretation of global
cogrowth in terms of random walks, similar to that for local cogrowth de-
scribed in Remark 3.8. It is easy to see that γ′(2n)/|X|2n is the probability
that two independent random walks, each starting at the identity element
(or at an adjoined identity element for semigroups without identity) and
proceeding by multiplying consecutively on the right (say) by n generators
chosen independently and uniformly at random, end at the same element.
By Lemma 4.16, the global cogrowth is maximal if and only if this proba-
bility does not decay exponentially fast as n→∞.

In the special case of a group equipped with a symmetric choice of (semi-
group) generators, it transpires that there is no essential difference between
local and global cogrowth:

Proposition 4.18. Let G be a group with a finite symmetric choice of
generators X. Then

γG,X = λG,Xg

for all g ∈ G.

Proof. Let 1 denote the identity element of G. We shall need a notion of
a formal inverse of a word over the generating set X. Since the choice
of generators is symmetric, we may pair up each generator x ∈ X with a
generator x′ ∈ X in such a way that x and x′ represent mutually inverse
elements and (x′)′ = x. (If x represents the identity or an involution it
may be necessary to choose x′ = x.) Extend to words in the obvious way,
by defining (x1 . . . xn)′ = (xn)′ . . . (x1)

′ so that u and u′ always represent
mutually inverse elements.

By Proposition 3.9 we have λg = λh for all g, h ∈ G, so it suffices to show
that λ1 = γ. In fact, by Lemma 4.16, it suffices to show that λ1(2n) = γ′(2n)
for all n.

But every word of length 2n can be written uniquely in the form u(v′) for
some u, v ∈ X+ with |u| = |v| = n, and clearly we have u ≡ v in G if and
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only if u(v′) ≡ 1 in G. Thus, there is a one-one correspondence between the
pairs counted by γ′(2n) and the words counted by λ1(2n). �

The hypothesis in Proposition 4.18 that the choice of generators be sym-
metric cannot be removed, as the following example shows:

Example 4.19. Recall from Example 3.18 that when G = Z with two
generators representing +1 and only one representing −1 we have λz = 2

√
2

for all z ∈ Z. On the other hand, Corollary 4.11 tells us that Z has maximal
global cogrowth irrespective of the semigroup generating set chosen, so for
this generating set γ = 3.

We next consider the case of (non-commutative) free semigroups; it turns
out that these are (except for a pathological case where |X| = 1) exactly
characterized by their global cogrowth:

Theorem 4.20. Let S be a semigroup with finite choice of generators X.
Then

γS,X ≥
√
|X|

with equality if and only if either S is a free semigroup freely generated by
X or |X| = 1.

Proof. First suppose S is a free semigroup, freely generated by X. For any
words u, v ∈ X+ we have u = v in S if and only if u = v as words. It follows
easily that

γ(n) =

{
0 if n is odd;

|X|n/2 if n is even

whence

γ = lim sup
n→∞

γ(n)1/n = lim sup
m→∞

γ(2m)1/2m = lim sup
m→∞

(|X|m)1/2m =
√
|X|.

Now consider the case where S is not (necessarily) free on X. Since every
k-generated semigroup is a quotient of a free semigroup of rank k, it follows
from this and Proposition 4.8 that

√
k is the minimum possible value for

the global cogrowth of a k-generated semigroup.
In particular, if |X| = 1 then we have γ ≥

√
|X| = 1, and clearly γ ≤

|X| = 1 so in this case γ = 1 = |X|.
Finally, suppose |X| ≥ 2 and S is not freely generated by X. Then there

are two distinct words u, v ∈ X+ which represent the same element of S.
We claim we may choose these words to have the same length. Indeed, if
u and v do not commute in X+ then it suffices to replace u by uv and v
by vu. If they do commute, then by [32, Proposition 1.3.2] they are powers
of a common word, say u = wq and v = wr. Now let a and b be distinct
symbols in X (recalling that |X| ≥ 2) and choose n larger than the lengths
of u and v. Let u′ = wqabn+2 and v′ = wrabn+2. Clearly u′ and v′ are
distinct words representing the same element of S. It is easily seen that
neither u′ nor v′ can be a proper power: indeed, if either was then it would
have to be a power of a suffix of bn+2 (since the latter makes up more than
half the word) but this contradicts the fact it contains the letter a. Thus,
they cannot commute, so replacing u with u′v′ and v with v′u′ yields the
required properties. Let p be the common length of u and v.
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Consider now a pair (x, y) of two (not necessarily distinct) words x, y ∈
X+ of length n, both representing the same element of S. From (x, y) we
can construct two different types of pairs of words of length n+ p:

• the |X|p pairs of the form (xw, yw) where w ∈ X+ is of length p;
• the 2 pairs (xu, yv) and (xv, yu).

Clearly, each pair consists of two words representing the same element of S.
The pairs of the second kind are distinct from those of the first kind since
the two sides do not share a suffix of length p, while the pairs within each
kind are distinct from each other because the final p letters of (say) the left-
hand-side are always different. Thus, we have constructed |X|p + 2 distinct
pairs. Moreover, the words x and y are recoverable as the n-letter prefixes of
all the pairs, so a different choice of (x, y) of the same length would clearly
lead to a disjoint collection of pairs. Thus, we have constructed |X|p + 2
pairs of words of length n+p for each pair of words of length n, which means
that

γ′(2(n+ p)) ≥ (|X|p + 2) γ′(2n)

for all n. A simple induction gives

γ′(2 + 2kp) ≥ (|X|p + 2)kγ′(2) ≥ (|X|p + 2)k

for all k, and it follows easily by Lemma 4.16 that

γ ≥ (|X|p + 2)1/2p > (|X|p)1/2p =
√
|X|.

�

We now return to studying the properties of the global cogrowth functions
γ and γ′. The following two lemmas give a sense in which these functions
approach their limiting growth rate in a reasonably uniform way; this will
be of great importance for many of our subsequent results.

Lemma 4.21. If γ′(n0) > κn0 for some κ ≥ 0 and n0 ∈ N then there is a
constant C > 0 such that γ′(n) > Cκn for all even n ∈ N.

Proof. If κ = 0 then the claim is trivial, so suppose κ > 0. Suppose γ′(n0) >
κn0 . Since γ′(n) = 0 for odd n, we must have n0 even, say n0 = 2q.

First, we claim that γ′(2pq) > κ2pq for all p ∈ N. Indeed, by the defini-
tion of γ′ there are γ′(2q) pairs of words of length q representing the same
element, so by choosing p such pairs and concatenating the respective sides
we can obtain (γ′(2q))p > κ2pq pairs of words of length pq representing the
same element. Thus, γ′(2pq) > κ2pq as claimed.

Now for any p ≥ 1 and 1 ≤ r < q there are at least as many pairs of
words of length pq + r representing the same element as there are pairs of
words of length pq representing the same element. Indeed, from each pair
of the latter kind one may obtain a pair of the former kind by fixing a letter
a and concatenating ar to each side. Thus, we have

γ′(2(pq + r)) ≥ γ′(2pq) > κ2pq = κ−2rκ2(pq+r).

So if we choose C smaller than the finitely many values of κ−2r for 1 ≤
r < q and the finitely many values of γ′(2m)κ−2m for 1 ≤ m < q, we have
γ′(2m) > Cκ2m for all m ∈ N, as required. �
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Lemma 4.22. For any 0 ≤ κ < γ, there is a constant C > 0 such that

γ(n) ≥ γ′(n) > Cκn

for all even n ∈ N.

Proof. The first inequality is immediate from the definitions.
For the second, since κ < γ, it follows by Lemma 4.16 that there is an n ∈

N with γ′(n) > κn, and then the claim is immediate from Lemma 4.21. �

A consequence of Lemma 4.21 is that we have the option of characterising
global cogrowth as a simple supremum instead of a limit superior:

Proposition 4.23. Let S be a semigroup with finite choice of generators
X. Then

γ = sup
n∈N

(
γ′(n)

)1/n
= sup

n∈N
n even

(
γ′(n)

)1/n
.

Proof. We prove first the left-hand equality. By Lemma 4.16 we have

γ = lim sup
n→∞

(
γ′(n)

)1/n
.

and by definition the limit superior cannot exceed the supremum.
Now suppose for a contradiction that the supremum in the middle strictly

exceeds γ, and choose κ with

γ < κ < sup
n∈N

(
γ′(n)

)1/n
.

Then there is an n0 ∈ N such that κ < (γ′(n0))
1/n0 , that is κn0 < γ′(n0).

Now by Lemma 4.21 there is a constant C > 0 so that γ′(n) > Cκn for all
even n > 1, from which it follows that γ ≥ κ, giving the required contradic-
tion.

The right-hand equality in the statement is immediate from the fact that
γ′(n) is 0 for odd n and non-negative for even n. �

Our first application of the above uniformity results is to show that, where
a semigroup has maximal cogrowth with respect to some choice of gener-
ators, one is free to assume (passing to the monoid S1 if necessary) that
the choice of generators contains a representative for the identity element.
(Recall that, by definition, if S is a monoid then S = S1.)

Theorem 4.24. Suppose S is a semigroup or monoid with finite choice
of generators X, and let Y be the choice of generators for the monoid S1

obtained by adding an extra generator representing the identity element of

S1. Then γS
1,Y ≥ γS,X + 1. In particular, if S has maximal global cogrowth

with respect to X then S1 has maximal global cogrowth with respect to Y .

Proof. First note that if |X| = 1 then S has subexponential growth, so S1

has subexponential growth, which by Theorem 4.10 means it has maximal

cogrowth with respect to every generating set, so that γS
1,Y = |Y | = |X|+

1 = γS,X + 1. We may assume, therefore, that |X| > 1. It follows by

Theorem 4.20 that γS,X ≥
√
|X| > 1.

Let e be a new symbol representing the identity element of S1, and con-
sider the choice of generators Y = X ∪ {e} for S1.
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Let n ∈ N, and consider the value of γS
1,Y (n), that is, the number of

pairs of words of total length n over Y representing the same element in
S1. Clearly, since inserting es into a word does not change the element of
S1 represented, each such pair may be obtained from a unique (typically
shorter) pair over the alphabet X by inserting es at different points in the
words to increase their length to n. Given a pair of words in X+ of total
length n − i, there are at least3 n − i + 1 possible positions into which to
insert the required i e’s, so the number of ways to do this is at least(

i+ (n− i+ 1)− 1

(n− i+ 1)− 1

)
=

(
n

n− i

)
=

(
n

i

)
.

Thus, every pair of words of total length n − i over X yields
(
n
i

)
pairs of

words of total length n over Y , so we have

γS
1,Y (n) ≥

n∑
i=0

(
n

i

)
γS,X(i).

Recalling that γS,X > 1, let 1 ≤ κ < γS,X . By Lemma 4.22, there is a C > 0
such that γS,X(i) > Cκi for all even i. Thus, we have

γS
1,Y (n) ≥

n∑
i=0

(
n

i

)
γS,X(i) ≥

n∑
i=0
i even

(
n

i

)
Cκi = C

n∑
i=0
i even

(
n

i

)
κi.

Now, for convenience defining
(
n−1
−1
)

=
(
n−1
n

)
= 0, we have

n∑
i=0
i even

(
n

i

)
κi =

n∑
i=0
i even

((
n− 1

i− 1

)
+

(
n− 1

i

))
κi

=

 n∑
i=0
i even

(
n− 1

i

)
κi

+

 n−1∑
j=−1
j odd

(
n− 1

j

)
κj+1



≥

 n∑
i=0
i even

(
n− 1

i

)
κi

+

 n−1∑
j=−1
j odd

(
n− 1

j

)
κj


=

n−1∑
i=0

(
n− 1

i

)
κi

= (κ+ 1)n−1

where the inequality holds because κ > 1 so κj < κj+1, and the final equality
is an application of the binomial theorem. Thus for all n we have

γS
1,Y (n) ≥ C(κ+ 1)n−1 =

(
C(κ+ 1)−1

)
(κ+ 1)n.

Hence γS
1,Y > κ+ 1, and since κ was an arbitrary value less than γS,X we

must have γS
1,Y ≥ γS,X + 1 as required. �

3In fact there are n− i + 2 but using only n− i + 1 of them gives a cleaner argument.
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Theorem 4.25. Suppose S is a semigroup or monoid with maximal global
cogrowth with respect to some choice of generators, and let K be any finite
subset of S1. Then the monoid S1 has maximal cogrowth with respect to
some choice of generators containing a representative for every element of
K.

Proof. By Theorem 4.24 there is a choice of generators X for S1 containing
a generator, say e, representing the identity element. Since K is finite and X
generates S1, there is a p such that every element of K can be represented by
a word over X of length at most p. Moreover, since X contains a generator
representing the identity, every element of K can be represented by a word
over X of length exactly p, as can each element represented by a generator
from X.

Thus, there is a choice of generators (call it Y ) for S1 containing one
generator for each word of length p over X. Now for n divisible by 2p, say
n = 2pq, every pair of words over X of length pq representing the same
element of S1 clearly yields a distinct pair of words over Y of length q
representing the same element of S1. Hence, we have

γ′S
1,Y (2q) ≥ γ′S

1,X(2pq)

for all q.

Now for any κ < |X| = γS
1,X by Lemma 4.22 there is a C > 0 so that

γ′S
1,X(n) > Cκn for all even n. Thus, for all even n, say n = 2q, we have

γ′S
1,Y (n) = γ′S

1,Y (2q) ≥ γ′S
1,X(2pq) > Cκ2pq = C(κp)n

so by Lemma 4.16 we have γS
1,Y ≥ κp. Since κ was an arbitrary value less

than |X| it follows that γS
1,Y ≥ |X|p = |Y | so S1 has maximal cogrowth

with respect to the choice of generators Y , as required. �

5. Cogrowth and the Markov Operator of a Random Walk

Consider again a random walk, starting at the identity of the monoid
S1 and multiplying on the right by generators chosen uniformly at random
from X. This is a Markov process, and has an associated S1×S1 transition
matrix M where for s, t ∈ S1 the entry Ms,t — the probability that starting
at s and taking one step takes one to t — is given by

Ms,t =
|{x ∈ X | sx = t}|

|X|
.

Being clearly row stochastic, this matrix is an operator on the right of the
Banach space `1(S

1).
(Of course we could also, dually, consider a random walk obtained by

multiplying on the left by generators, obtaining a Markov operator on the
left of `1(S

1). In this section we prefer to work with the right random walk
operator, for consistency with antecedent work of Day [13] and with the bulk
of the literature on semigroup Cayley graphs. Of course, all of our results
admit left-right duals, the statements of which are easily obtained and some
of which we shall need to use in Section 6 below.)

Let v ∈ `1(S1) be the probability mass function corresponding to some
probability distribution on S1. Then vMn is the probability mass function
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resulting from starting in the distribution corresponding to v and taking n
steps of the random walk. Notice also that the `2-norm

|v|2 =

√∑
s∈S1

v(s)2

is the square root of the probability that two elements of S1, selected inde-
pendently at random according to v, coincide. If we let χ1 ∈ `1(S1) be the
characteristic function of the identity element in S1 (that is, the probability
mass function of the starting distribution for our random walk) then these
observations combine with Remark 4.17 to prove the following connection
between the operator M and global cogrowth:

Proposition 5.1. For all n, γ′(2n) = |X|2n (|χ1M
n|2)2.

Combining with Lemma 4.16 and Proposition 4.23 this yields:

Corollary 5.2.

γ = |X| lim sup
n→∞

(|χ1M
n|2)1/n = |X| sup

n∈N
(|χ1M

n|2)1/n .

The natural way in which the `2-norm arises suggests that it might be
profitable to study M as an operator on the Hilbert space `2(S

1). In general,
unfortunately, M is not defined on the whole of `2(S

1), and even when it does
define a map from `2(S

1) to functions S1 → R it may not preserve square-
summability. We shall shortly (Proposition 5.5 below) describe exactly the
circumstances under which it does act on `2(S

1), but first we consider a
special case.

Suppose for now that M is an operator on `2(S
1), and recall that the

spectral radius of M is the supremum of the absolute values of all λ such
that M−λI is singular, where I is the identity operator. By the well-known
theorem of Gelfand, provided M is bounded this value is equal to the rate
of exponential growth of the operator norm of the powers of M , that is,

lim sup
n→∞

(||Mn||2)1/n ,

where ||N ||2 denotes the operator norm supv∈`2(S1)\{0}
|vN |2
|v|2 of an operator

N on `2(S
1).

In the case S is a group (hence S = S1) and X is a symmetric choice of
generators, a celebrated theorem of Kesten [27] describes amenability of the
group S:

Theorem 5.3 (Kesten 1959). Let S be a group, X a symmetric choice of
generators for S, and M the corresponding right random walk transition
matrix. Then

• M is a bounded symmetric operator on `2(S) with norm (and hence
spectral radius) at most 1; and
• M has spectral radius 1 if and only if S is amenable.

We now return to a more general semigroup S and the question of whether
or when M is an operator (or even a bounded operator) on `2(S

1). Recall
that a semigroup S has bounded right indegree (sometimes called finite geo-
metric type) if for every element x ∈ S there is a b ∈ N such that for each
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s ∈ S no more than b elements t ∈ S satisfy tx = s. In a finitely gener-
ated semigroup, this is easily seen to mean exactly that there is a bound
on the number of edges coming into each vertex of the right Cayley graph.
Note that every right cancellative semigroup has bounded indegree, since
one may take b = 1 for every x ∈ S. We shall need the following elementary
inequality:

Lemma 5.4. For any s1, . . . , sn ∈ R,

(s1 + · · ·+ sn)2 ≤ n(s21 + · · ·+ s2n).

Proof. Define v, w ∈ Rn by vi = 1 and wi = si for all 1 ≤ i ≤ n. Then by
the Cauchy-Schwarz inequality,

(s1 + · · ·+ sn)2 = (v · w)2 ≤ (v · v)(w · w) = n(s21 + · · ·+ s2n).

�

Proposition 5.5. Let S be a finitely generated semigroup and let M be the
associated right random walk transition matrix as defined above. Then the
following are equivalent:

(i) M defines an operator on `2(S
1);

(ii) M defines a bounded operator on `2(S
1);

(iii) S has bounded right indegree.

Moreover, if S is right cancellative then ||M ||2 ≤ 1, and hence M has spectral
radius at most 1.

Proof. The implication (ii) =⇒ (i) being immediate, it suffices to show (iii)
=⇒ (ii) and (i) =⇒ (iii).

(iii) =⇒ (ii). Suppose S has bounded right indegree. Let v ∈ `2(S). We
need to show that vM is defined and square-summable. For each generator
a ∈ X, let ba be a corresponding bound on the right indegree, and let Ma

be the matrix with

(Ma)st =

{
1 if sa = t

0 otherwise

so that M = 1
|X|
∑

a∈XMa.

Now for any s ∈ S1

(vMa)(s) =
∑
ta=s

v(t)

is clearly defined, since there are at most ba elements t satisfying ta = s, so
vMa is defined as a function S1 → R. Moreover,

(|vMa|2)2 =
∑
s∈S

((vMa)(s))
2 =

∑
s∈S

 ∑
t∈sa−1

v(t)


where sa−1 denotes the set {t ∈ S1 | ta = s}. For each s, this set has at
most ba elements. Moreover, since for a fixed a and t there is only one s
satisfying ta = s, these sets are disjoint as s varies. Hence (|vMa|2)2 can be
written as a sum of terms of the form

|v(t1) + · · ·+ v(tc)|2 ≤ ba|v(t1)|2 + · · ·+ ba|v(tc)|2
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where c ≤ ba so that the inequality follows from Lemma 5.4, and each t ∈ S
occurs in at most one term. Thus, we have

(|vMa|2)2 ≤
∑
t∈S

ba|v(t)|2 ≤ ba(|v|2)2

so that |vMa|2 ≤
√
ba|v|2. Thus, Ma is a bounded operator on `2(S

1) and
||Ma||2 ≤

√
ba. Hence by the triangle inequality:

||M ||2 = || 1

|X|
∑
a∈X

Ma||2 ≤
1

|X|
∑
a∈X

√
ba.

so M is a bounded operator on `2(S
1).

(i) =⇒ (iii). We prove the contrapositive. Suppose that S has un-
bounded indegree; since the generating set X is finite, this means we may
choose an x ∈ X and a sequence of (not necessarily distinct) elements
s1, s2, · · · ∈ S such that for each i, there are distinct elements ti,1, . . . , ti,i
with ti,jx = si for all j. By skipping some terms in the sequence of si’s if
necessary, we may choose things so that the ti,j ’s are all distinct (as both
i and j vary). We shall define an element v ∈ `2(S) such that vM is not
square-summable.

Define v : S1 → R by v(ti,j) = i−1.1 and v(t) = 0 for t not of the form
ti,j . Then∑

s∈S
|v(s)|2 =

∑
j≤i

v(ti,j)
2 =

∑
i

i
(
i−1.1

)2
=
∑
i

i−1.2

converges, so v ∈ `2(S1). Notice that, because v is supported only on the
elements ti,j and because ti,jx = si for all i and j, we have that vMx is
supported only on the elements si, and

(vMx)(si) =
∑
j≤i

v(ti,j) = i(i−1.1) = i−0.1.

Thus,∑
s∈S
|(vMx)(s)|2 =

∑
i

|(vMx)(si)|2 =
∑
i

(i−0.1)2 =
∑
i

i−0.2,

which diverges, so vMx /∈ `2(S1). It follows easily that vM /∈ `2(S1), so M
is not an operator on `2(S

1), completing the proof that (i) =⇒ (ii).
For the final part of the statement, notice that if M is right cancellative

then in the argument for (iii) =⇒ (ii) we may take ba = 1 for all a, giving

||M ||2 ≤
1

|X|
∑
a∈X

√
1 = 1.

It is well known and follows easily from the definitions that the spectral
radius is bounded above by the operator norm. �

Remark 5.6. Intuitively, the norm and spectral radius of the Markov op-
erator measure the rate at which the right random walk diffuses around the
semigroup, in one step (norm) or asymptotically (spectral radius). Values
less than 1 correspond to rapid diffusion, while values greater than 1 imply
rapid concentration (which, as is made precise in the last part of Proposi-
tion 5.5, can only result from a failure of right cancellativity). A value of
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exactly 1 means that any diffusion or concentration is “slow”. Kesten’s The-
orem therefore says, intuitively, that amenable groups are those in which ran-
dom walks do not (asymptotically) diffuse rapidly across the group. Cases
where the operator is undefined result from “unboundedly fast concentra-
tion”, and the undefined operator can be thought of as having “infinite
norm and spectral radius”. For this reason, such cases are usually naturally
considered together with cases where the operator is defined and has large
(greater than 1) norm and spectral radius. Many of our results will therefore
feature conditions which are conjunctions such as “M is undefined or has
spectral radius at least 1”.

Remark 5.7. In the special case that S is a right cancellative semigroup
with a right identity element, our operator M is essentially the same as the
convolution operator ◦ϕ studied by Day [13] where ϕ ∈ `1(S) is the natural
probability mass function induced by the choice of generators:

ϕ(s) =
|{x ∈ X | x = s}|

|X|
.

Indeed, for any v ∈ `2(S) and any s ∈ S we have

(vM)(s) =
∑
t∈S

v(t)Mts =
∑
t∈S

v(t)
|{x ∈ X | tx = s}|

|X|

=
∑
t∈S

v(t)
∑

x∈X,tx=s

1

|X|
=
∑
t∈S

v(t)
∑

x∈S,tx=s
ϕ(x)

=
∑

t,x∈S,tx=s
v(t)ϕ(x) = (v ◦ ϕ)(s).

Remark 5.8. The converse of the final part of Proposition 5.5 does not hold
in general: an operator corresponding to a non-right-cancellative monoid
could have norm 1 or less. This is because the “concentration” effect result-
ing from multiplying by a non-right-cancellative generator can be more than
compensated for by “diffusion” caused by other generators, as the following
example shows.

Example 5.9. Consider the monoid S = 〈a, b, c | ac = bc〉, with the obvious
choice of generators. Clearly S is not right cancellative. Let M be the
corresponding right random walk transition matrix. It is easy to see that
any element s ∈ S \ {1, c} can be written in exactly one of the forms (1)
s = psa where ps ∈ S, (2) s = qsb where qs ∈ S, (3) s = rsac = rsbc where
rs ∈ S or (4) s = tscc where ts ∈ S. For i ∈ {1, 2, 3, 4} we write Si for
the set of elements of S which can be written in form (i), so that S is the
disjoint union of S1, S2, S3, S4 and {1, c}. Notice that the choice of ps, qs,
rs or ts as appropriate is unique.

Now let v ∈ `2(S). It follows easily from the definition of the operator M
that (vM)(1) = 0 and (vM)(c) = 1

3v(1) while

(vM)(s) =


1
3v(ps) if s ∈ S1;
1
3v(qs) if s ∈ S2;
1
3v(rsa) + 1

3v(rsb) if s ∈ S3;
1
3v(tsc) if s ∈ S4.
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Thus we have

(|(vM)|2)2 =

(
1

3
v(1)

)2

+

∑
s∈S1

(
1

3
v(ps)

)2
+

∑
s∈S2

(
1

3
v(qs)

)2


+

∑
s∈S3

(
1

3
v(rsa) +

1

3
v(rsb)

)2
+

∑
s∈S4

(
1

3
v(tsc)

)2
 .

The first term is clearly bounded above by 1
9(|v|2)2. Since for each element

z there is exactly one element za [respectively, zb, zc], each element occurs
as ps [respectively, qs, tsc] for at most one s. It follows that the first, second
and fourth sums are each bounded above by 1

9(|v|2)2. For the remaining
(third) sum we have∑

s∈S3

(
1

3
v(rsa) +

1

3
v(rsb)

)2

≤
∑
s∈S3

1

9
2
(
v(rsa)2 + v(rsb)

2
)

by application of Lemma 5.4 to each term. Since for each element z there
is only one element zc, each element occurs as rsa or rsb for at most one
s. Moreover, the same element cannot occur as both rsa and rsb (since no
relation allows us to change the last letter of a word), and so each element
occurs at most once in the above sum. Thus, this sum is less that 2

9(|v|2)2 and

hence (|vM |2)2 ≤ 6
9(|v|2)2. Since v was a general element of `2(S) the norm

(and hence also the spectral radius) of M cannot exceed
√

6
9 =

√
6
3 ≈ 0.816.

Remark 5.10. A semigroup S is said to have infinite right indegree if there
are elements x and s such that tx = s for infinitely many t. This will happen,
for example, if S is infinite and has a right zero element. In this case, vM
is not always defined for v ∈ `2(S1). Indeed, if S has infinite indegree then
it is easy to see that we can choose s and x as in the definition, with x ∈ X
a generator. Now choose v ∈ `2(S1) \ `1(S1) supported on the elements t
satisfying tx = s, and it is clear that (vM)(s) is undefined. This contrasts
with the case of finite but unbounded indegree, where for all v ∈ `2(S1) the
product vM will be defined, but may not be itself in `2(S

1).

Our next result says that, just as for groups, maximal cogrowth tells
us something about the spectral radius of the corresponding random walk
operator.

Theorem 5.11. If a semigroup S has maximal global cogrowth with respect
to some finite choice of generators then the associated right (or left) random
walk Markov operator on `2(S

1) is either not defined or has spectral radius
at least 1.

Proof. Suppose the right random walk operator M is defined on `2(S
1). If

we let χ1 ∈ `2(S1) be once again the characteristic function of the singleton
set {1} ⊆ S1 then for each n, combining the definition of the operator norm
with Proposition 5.1 yields

||Mn||2 ≥
|χ1M |2
|χ1|2

= |χ1M |2 =

√
γ′(2n)

|X|2n
.
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Since S has maximal cogrowth, by Lemma 4.16 we have

lim sup
n→∞

(
γ′(n)

)1/n
= |X|

which means that for any β < 1 there are infinitely many k such that
γ′(k) ≥ (β|X|)k. Since γ′(k) = 0 for k odd, this means there are infinitely
many n for which γ′(2n) ≥ (β|X|)2n, and hence for which

||Mn||2 ≥

√
γ′(2n)

|X|2n
≥

√
(β|X|)2n
|X|2n

= βn.

Thus, M has spectral radius at least β and since β may be chosen arbitrarily
close to 1, M has spectral radius at least 1. �

Recall that a semigroup S satisfies the right Følner condition (right FC )
if for every finite subset H of S and every ε > 0, there is a finite non-empty
subset F of S with |Fs \ F | ≤ ε|F | for all s ∈ H. It satisfies the right
strong Følner condition (right SFC ) if for every finite subset H of S and
every ε > 0, there is a finite non-empty subset F of S with |F \ Fs| ≤ ε|F |
for all s ∈ H. There is an obvious dual left Følner condition (left FC ) and
left strong Følner condition (left SFC ). In groups it is well known that all
of these conditions are equivalent to amenability; in semigroups right FC
and right SFC are respectively necessary and sufficient conditions for right
amenability [34]. It transpires that right FC is sufficient for the right random
walk Markov operator (with respect to every finite choice of generators) to
have spectral radius at least 1:

Theorem 5.12. If a semigroup S satisfies the right [left] Følner Condition
then, for any finite choice of generators, the associated right [left] random
walk Markov operator on `2(S

1) is either not defined or has spectral radius
at least 1.

Proof. Suppose S satisfies the right Følner Condition and that the right
random walk operator M is defined. Let n ∈ N and ε > 0, and consider the
operator Mn. Let K be the (finite) set of all elements in S represented by
words of length n or less. By the Følner condition, we may choose a finite
non-empty subset F of S such that for each k ∈ K, |Fk \F | ≤ ε

|K| |F |. Since

FK ⊆ F ∪
⋃
k∈K Fk \ F , it follows that

|FK| ≤ |F |+ |K| ε
|K|
|F | = (1 + ε)|F |.

Let v ∈ `2(S1) be the uniform probability mass function on the finite set F .

A simple calculation shows that |v|2 = |F |−
1
2 .

Consider now vMn. By the definition of K, the only elements of S which
can be reached from elements of F by right-multiplication by a sequence of n
or fewer generators are the elements of FK. It follows that vMn is supported
only on the set FK, which has cardinality at most (1 + ε)|F |. By the fact
that the 2-norm of a probability distribution on a finite set is minimised
by the uniform distribution (or alternatively by applying Lemma 5.4) we
deduce that

|vMn|2 ≥

√
1

|FK|
≥

√
1

(1 + ε)|F |
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and hence

||Mn||2 ≥
|vMn|2
|v|2

≥

√
|F |

(1 + ε)|F |
=

1√
1 + ε

.

Since ε can be chosen arbitrarily small, it follows that ||Mn||2 ≥ 1 for all n,
so that M has spectral radius at least 1. �

6. Cogrowth and amenability

In this section we consider the relationship between amenability and
cogrowth for finitely generated semigroups. We recall some relevant defi-
nitions: for a more detailed introduction the reader is directed to [34].

A semigroup S is called left amenable if there is a mean on l∞(S) which
is invariant under the natural left action of S on the dual space l∞(S)′

[34, Section 0.18]. Equivalently [34, Problem 0.32], S is left amenable if it
admits a finitely additive probability measure µ, defined on all the subsets
of S, which is left invariant, in the sense that µ(a−1X) = µ(X) for all
X ⊆ S and a ∈ S. Here, a−1X denotes the set {s ∈ S | as ∈ X}. (Note
that left invariance is strictly weaker than requiring µ(aX) = µ(X) for all
X ⊆ S and a ∈ S.) We also mention an important structural property of
semigroups: a semigroup is called left reversible if it does not admit disjoint
right ideals; left reversibility is a necessary precondition for left amenability
[34, Proposition 1.23].

There are obvious dual notions of right invariance, right amenability and
right reversibility. For inverse semigroups (in particular for groups) left
and right amenability coincide; a left/right amenable inverse semigroup or
group is simply called amenable and in fact always admits a measure which
is simultaneously left and right invariant. Where a distinction is necessary,
we work chiefly with left amenability, for consistency with the standard text
[34] and most of the subsequent literature. Of course, all results admit
left/right duals; in some cases we make these explicit, in particular where
this gives a clearer relationship with Section 5 above.

Kesten’s Theorem ([27], also stated as Theorem 5.3 above) can be inter-
preted as saying that for finitely generated groups, amenability is equivalent
to the associated (right or left) random walk Markov operator having spec-
tral radius 1. In a group, amenability is equivalent to right amenability, the
operator is always defined and 1 is the maximum possible value its spec-
tral radius (by Proposition 5.5 for example). The theorem can therefore
(somewhat vacuously but helpfully in our context — see Remark 5.6) be
rephrased as saying that right amenability is equivalent to the right random
walk operator being undefined or having spectral radius at least 1. Our re-
sults so far, combined with known results about amenability, imply that one
implication of this statement holds for semigroups in complete generality:

Theorem 6.1. If S is a left [right] amenable semigroup then the Markov
operator on `2(S

1) of a left [right] random walk on S is either not defined
or has spectral radius at least 1.
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Proof. If S is left [right] amenable then by [34, Proposition 4.9] or its dual,
S satisfies the left [right] Følner condition, so the claim follows from Theo-
rem 5.12 and its dual. �

Remark 6.2. We note that the converse to Theorem 6.1 cannot hold for
semigroups in general; indeed if it did we would be able to deduce by com-
bining with Theorem 5.12 that the right Følner condition suffices for right
amenability, and this is known not to be the case (see for example [34, Sec-
tion 4.22]). It remains open whether a converse may hold in well-behaved
classes of semigroups, such as left or right cancellative semigroups. Prob-
ably the closest thing in the literature is the implication (e) =⇒ (a) of
[13, Theorem 1]: applied to our situation through the translation described
in Remark 5.7, this implies that if S is right cancellative with a right iden-
tity element and the random walk Markov operator corresponding to every
finite choice of generators has norm 1, then S is right amenable.

It is a well-known theorem, due separately to Grigorchuk [19] and Cohen
[11], that for finitely generated groups considered with symmetric generating
sets, amenability is exactly characterised by the maximality of the group
cogrowth rate with respect to a symmetric generating set. (Because only
reduced words are considered in the group cogrowth, “maximal” in this
context means 1 less than the size of the generating set). This result can
also be rephrased in terms of (either local or global) semigroup cogrowth for
groups:

Theorem 6.3. Let G be a group with a finite symmetric choice of generators
X. Then the following are equivalent:

(i) G is amenable;
(ii) γG,X = |X|;
(iii) λG,Xg = |X| for some g ∈ G;

(iv) λG,Xg = |X| for all g ∈ G.

Proof. The equivalence of (ii), (iii) and (iv) follows from Proposition 4.18.
By [14, Theorem 1] (which is a consequence of the Grigorchuk-Cohen cogrowth
theorem together with a result of Kouksov [31]) the group G is amenable if

and only if, in our language, λG,X1 = |X|; since the latter condition implies
(iii) and is implied by (iv), this completes the proof. �

Remark 6.4. The implication (ii) implies (i) of Theorem 6.3 can also be
deduced more directly from Kesten’s Theorem and our results above, with-
out passing through the intervening machinery of the Grigorchuk-Cohen
cogrowth theorem. Indeed, if G is group with maximal global cogrowth
then the operator M is defined on `2(G) (by Proposition 5.5) and has spec-
tral radius at most 1 (by Proposition 5.5) and at least 1 (by Theorem 5.11);
hence by Kesten’s Theoerm (Theorem 5.3) G is amenable. To establish the
converse implication in a similar direct way, we would need to prove directly
that spectral radius 1 implies maximum global cogrowth for groups, which
does not seem to be so straightforward.
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When groups are viewed as examples of semigroups, the requirement in
Theorem 6.3 that the choice of generators be symmetric is rather unsatisfac-
tory, so it is natural ask whether the symmetry requirement can be dropped.
The following results will allow us to partly answer this question.

Theorem 6.5. Let S be a left reversible, finitely generated semigroup with
maximal global cogrowth, and such that its maximum right cancellative quo-
tient has a minimal ideal. Then S is left amenable.

Proof. Let T be the maximum right cancellative quotient of S. By Propo-
sition 4.8, T also has maximal global cogrowth with respect to the corre-
sponding choice of generators. Moreover, it is easy to see that T is left
reversible.

Let I be the minimal ideal of T . We claim that I is a group. Indeed, I is
simple and right cancellative, so it must be a completely simple semigroup
with a single L-class. Moreover, it is easily seen that I is left reversible,
which means it has only one R-class. Thus, I is a group.

In particular, I is an ideal which is a monoid, and so by Lemma 4.13
I has maximal global cogrowth with respect to some choice of generators,
and by Theorem 4.24 we may assume this choice of generators contains a
representative for the identity element of I.

Also, I is left cancellative, so we may apply the dual to Theorem 5.11,
which tells us that the corresponding left random walk operator M on `2(I)
has spectral radius 1, and hence operator norm 1. Thus, through the dual to
the translation of notation described in Remark 5.7, the situation satisfies
condition (e”) of the dual to [13, Corollary to Theorem 4], from which
it follows that I is an amenable group. Now by [34, remarks following
Corollary 1.22] T is left amenable, so by [34, Proposition 1.25] S itself is left
amenable. �

Corollary 6.6. Every finitely generated group or inverse semigroup with
maximal global cogrowth is amenable.

Proof. Every inverse semigroup (and hence also every group) is left reversible
and has maximum right cancellative quotient which is a group. Since every
group has a minimal ideal, Theorem 6.5 therefore tells us that an inverse
semigroup or group with maximal global cogrowth must be left amenable,
which for these semigroups is the same as being amenable. �

We note that Corollary 6.6 in the group case improves upon the corre-
sponding implication of Kesten’s Theorem, because it doesn’t require the
choice of generators to be symmetric.

Theorem 6.7. Every left reversible finitely generated semigroup of maximal
local cogrowth is left amenable.

Proof. Suppose S has maximal local cogrowth at an element s ∈ S. Then by
Proposition 4.5 it has maximal global cogrowth. Now since S is left reversible
it has a maximum right cancellative quotient; call this T . Let t be the image
in T of the element s. By Proposition 3.13, T has a choice of generators with
respect to which t has maximal local cogrowth. Now by Proposition 3.11,
T has a minimal ideal, so the claim follows from Theorem 6.5. �
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Remark 6.8. Theorem 6.7 is related to a theorem of Gerl [17, Theorem 3].
He considers probability measures P on a semigroup S such that the support
of P generates S, defines a convolution product on measures by

(P ∗Q)(s) =
∑
s=s1s2

P (s1)Q(s2)

and considers the powers P (n) of P under this operation. His theorem states
that if S is left cancellative with a left unit element and there exists s ∈ S
such that

lim sup
n→∞

(
P (n)(s)

)1/n
= 1

then S is left amenable.
Returning to our usual setting, with X a finite choice of generators for

S, we may define a (finitely supported) probability measure P on S where
each element is weighted in proportion to the number of generators in X
representing it. Then it is easy to see that

P (n)(s) =
λs(n)

|X|n

for every n. In particular, if S has maximal local cogrowth at s (and satisfies
the structural conditions of being left cancellative with a left unit) then the
hypotheses of Gerl’s theorem are satisfied and so we obtain an alternative
way to deduce that S is left amenable.

Gerl’s theorem is more general than Theorem 6.7 in that it treats a general
probability measure (possibly with infinite support) and hence has poten-
tial for application to non-finitely generated semigroups, but more specific
in that it applies only when S is left cancellative with a left unit. Gerl gives
counterexamples [17, Remark 3] to show that the latter structural assump-
tions cannot be completely removed, but the obstruction to left amenability
in these cases is always the absence of left reversibility. We conjecture that
the left cancellativity and left unit hypotheses in Gerl’s theorem can be
replaced with left reversibility:

Conjecture 6.9. Let P be a probability measure on a (not necessarily
finitely generated) left reversible semigroup S, such that the support of P

generates S. Define the convolution power P (n) as in Remark 6.8. If there
exists s ∈ S such that

lim sup
n→∞

(
P (n)(s)

)1/n
= 1

then S is left amenable.

We now return to the case of a finitely generated group G, and the ques-
tion of whether the characterisations of amenability given by Theorem 6.3
remain equivalent if the symmetry assumption on the choice of generators is
dropped. If G has maximal global cogrowth then by Corollary 6.6 it must be
amenable. Similarly, if G has maximal local cogrowth then by Theorem 6.7
(or by Proposition 4.5 and Corollary 6.6) it is amenable.

The converse fails for local cogrowth: indeed, in Example 3.18 above
we saw a 3-generated amenable group (Z with an asymmetric choice of
generators) with local cogrowth 2

√
2 < 3 at every element. However, by
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Corollary 4.11, the global cogrowth of Z is maximal with respect to any
(symmetric or asymmetric) choice of generators, so this cannot be a coun-
terexample to the converse for global cogrowth (and nor can any other group
of subexponential growth).

Question 6.10. Does there exist an amenable group G (necessarily of ex-
ponential growth) with a choice of generators X (necessarily asymmetric)
such that γG,X < |X|?

While we do not know whether or not there is an amenable group with-
out maximal global cogrowth, we do expect that there are semigroups and
monoids with the corresponding property:

Conjecture 6.11. There is a left reversible finitely generated monoid which
is left amenable but does not have maximal global cogrowth.

Recall from [18, Section 2.4] that a semigroup S satisfies the Klawe con-
dition if whenever s, x and y in S are such that sx = sy, there exists t ∈ S
so that xt = yt. This condition first arose implicitly, without being given a
name, in the work of Klawe [29]. It is immediate from the definition that ev-
ery left cancellative semigroup satisfies the Klawe condition. It follows from
[18, Propositions 2.2 and 2.3] that every left reversible semigroup in which
every ideal contains an idempotent also satisfies the Klawe condition; this in-
cludes every group, inverse semigroup, left reversible regular semigroup, left
reversible finite semigroup, left reversible compact left or right topological
semigroup, and semigroup with a right or two-sided zero element.

Theorem 6.12. Let S be a left reversible, finitely generated semigroup such
that S1 satisfies the Klawe condition. If S has maximal global cogrowth then
S is left amenable.

Proof. By Theorem 4.25 the monoid S1 has maximal cogrowth with respect
to some choice of generators; call it A. Let T be the maximum right cancella-
tive quotient of S1. By Proposition 4.8, T has maximal global cogrowth with
respect to A, and by [18, Proposition 2.4], T is a left cancellative monoid.
By Theorem 4.25, for any finite subset K of T there exists a finite generating
set BK for T such that, BK contains the identity element of the monoid T ,
K is a subset of BK , and T has maximal cogrowth with respect to BK . By
Theorem 5.11 it follows that (with respect to this generating set BK) the
corresponding left Markov operator M on `2(T ) has spectral radius 1 and
hence operator norm 1.

Thus the dual of condition (e) in [13, Theorem 1] is satisfied. (The general
translation into the language of [13] is as described in Remark 5.7 above;
the set K corresponds to ξ from [13, Theorem 1], the set Pϕ ∩ U is not
empty since B contains the identity element, and we take p = 2 since we are
working with the `2-norm of the operator M .)

Applying that result we conclude that T is left amenable, and hence by
[34, Proposition 1.25] S1 is left amenable. Since S is a left ideal in S1, it
follows by [34, Corollary 1.22] that S is left amenable. �

Remark 6.13. The hypothesis in Theorem 6.12 that S1 satisfies the Klawe
condition is slightly unsatisfactory, but in many cases of interest it coincides
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with the (more natural) condition that S satisfies the Klawe condition. In-
deed, if S satisfies the Klawe condition, the only possible obstruction to S1

satisfying the Klawe condition is the existence of elements s, x ∈ S such that
sx = s but there is no t ∈ S with xt = t.

Corollary 6.14. Every left reversible finitely generated regular semigroup
with maximal global cogrowth is left amenable.

Proof. If S is left reversible and regular then clearly so is S1, so by [18,
Propositions 2.2 and 2.3] the monoid S1 satisfies the Klawe condition and
the result follows from Theorem 6.12. �

Corollary 6.15. Every left reversible left cancellative finitely generated
monoid with maximal global cogrowth is left amenable.

Remark 6.16. Theorems 6.5, 6.7 and 6.12 and Corollaries 6.6, 6.14 and 6.15
all give sufficient structural conditions for maximal local or global cogrowth
to imply left amenability. In all cases left reversibility is (explicitly or implic-
itly) among the conditions, and indeed this condition is necessary, since (for
example) all finite semigroups have maximal global cogrowth (by Corol-
lary 4.6) and maximal local cogrowth (by Proposition 3.16), but left re-
versibility is necessary for left amenability [34, Proposition 1.23]. In fact,
by the latter observation and Theorem 6.7, a semigroup of maximal local
cogrowth is left amenable if and only if it is left reversible. We do not know
if the same holds for maximal global cogrowth:

Question 6.17. Is a left reversible finitely generated semigroup of maximal
global cogrowth necessary left amenable?

7. Conclusions and open problems

Figure 1 summarises some of the main results of this article and also
some relevant results of our previous article [18] and older work of Frey [16]
and Argabright and Wilde [1]. It shows six different conditions which for
groups with symmetric generating sets are known to coincide, essentially by
the work of Følner [15], Kesten [27], Grigorchuk [19] and Cohen [11]. Solid
arrows represent implications which hold for finitely generated semigroups
in complete generality. Dashed arrows represent implications known to hold
under certain mild structural assumptions on the semigroup.

All of the dashed arrow implications hold for left reversible, finitely gener-
ated monoids satisfying the Klawe condition, and hence for all groups (with
not necessarily symmetric generating sets), inverse monoids, left reversible
regular monoids, left reversible left cancellative and left reversible near left
cancellative monoids. They also hold for left reversible regular semigroups.
Of the missing implications, we know maximal local cogrowth is not equiv-
alent to left amenability (even for groups with asymmetric choice of gen-
erators — see Example 3.18). Within the class of left reversible, finitely
generated monoids satisfying the Klawe condition, we do not know whether
left amenability implies maximal global cogrowth (or equivalently, left SFC),
even for groups with asymmetric choice of generators (Question 6.10). Since
global cogrowth is not “sided”, a positive answer would imply that for semi-
groups which are left and right reversible and satisfy the Klawe condition
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Thm 5.12

Frey [16] Thm 5.11

Prop 4.5
Thm 6.7

Thms 6.5, 6.12
& corollaries

Argabright
& Wilde [1]

Gray &
Kambites [18]

S has left SFC

S is left amenable

S has left FC

S has maximal local cogrowth

S has maximal global cogrowth

M has spectral radius ≥ 1

Figure 1. Relationships between various properties of a
finitely generated semigroup S and of the corresponding left
random walk Markov operator M . (Solid arrows correspond
to unconditional implications, and dashed arrows to implica-
tions which hold under mild structural assumptions on S.)

and its dual, left and right amenability coincide. We also do not know
whether the left Markov operator having spectral radius (or norm) at least
1 suffices for left amenability in this setting — see Remark 6.2; if so this
would imply that (within the given class of monoids) left FC coincides with
left amenability and left SFC.

In the wider class of left reversible finitely generated semigroups (without
the Klawe condition), we know that maximal local cogrowth implies left
amenability (Theorem 6.7), but we do not know if maximal global cogrowth,
or a Markov operator with norm and/or spectral radius at least 1 suffice
for left amenability, or even for left FC. Left amenability certainly does
not imply maximal local cogrowth (Example 3.15), but we do not know
whether it suffices for maximal global cogrowth; we conjecture that it does
not (Conjecture 6.11).

For finitely generated semigroups in absolute generality, it is well known
that left FC does not imply left amenability ([16], or see [34, Section 4.22]
for a more accessible reference) and that left amenability does not imply
left SFC (due to an example of [38] which is a refinement to the finitely
generated case of a result of Klawe [29]). We have seen that the existence
of an element of maximal local cogrowth does not imply left amenability
(see Remark 6.16 above), and therefore nor does maximal global cogrowth,
or the associated random walk Markov operator having a norm or spectral
radius of at least 1.
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