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Abstract: China is credited with undertaking some of the world’s most ambitious policies to protect 38 

and restore forests, which could serve as a role model for other countries. However, the actual 39 

environmental consequences of these policies are poorly known. Here, we combine remote-sensing 40 

analysis with household interviews to assess the nature and drivers of land-cover change in 41 

southwestern China between 2000-2015, after China’s major forest protection and reforestation 42 

policies came into effect. We found that while the region’s gross tree cover grew by 32%, this 43 

increase was entirely due to the conversion of croplands to tree plantations, particularly 44 

monocultures. Native forests, in turn, suffered a net loss of 6.6%. Thus, instead of truly recovering 45 

forested landscapes and generating concomitant environmental benefits, the region’s apparent forest 46 

recovery has effectively displaced native forests, including those that could have naturally 47 

regenerated on land freed up from agriculture. The pursuit of profit from agricultural or forestry 48 

production along with governmental encouragement and mobilization for certain land uses – 49 

including tree planting – were the dominant drivers of the observed land-cover change. An additional 50 

driver was the desire of many households to conform with the land-use decisions of their neighbors. 51 

We also found that households’ lack of labor or financial resources, rather than any policy 52 

safeguards, was the primary constraint on further conversion of native forests. We conclude that to 53 

achieve genuine forest recovery along with the resulting environmental benefits, China’s policies 54 

must more strongly protect existing native forests and facilitate native forest restoration. Natural 55 

regeneration, which thus far has been grossly neglected in China’s forest policies, should be 56 

recognized as a legitimate means of forest restoration. In addition, social factors operating at the 57 

household level, notably the pursuit of profit and conformation to social norms, should be harnessed 58 

to promote better land-cover, biodiversity, and environmental outcomes. More generally, for China 59 

and other countries to succeed in recovering forests, policies must clearly distinguish between native 60 

forests and tree plantations.61 
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Introduction 62 

The recovery of forest landscapes (“forest recovery” hereafter) carries considerable promise 63 

for halting and reversing the negative biodiversity impacts of forest loss, mitigating greenhouse-gas 64 

emissions, and generating other ecosystem services (Chazdon et al., 2017). For this reason, forest 65 

recovery is attracting increasing amounts of political attention and financial investment globally 66 

(Aronson and Alexander, 2013; Suding et al., 2015). At a landscape scale, forest recovery happens 67 

when forest restoration – realized via natural regeneration, artificial reforestation, and/or the 68 

spectrum of approaches in between (Suding, 2011) – exceeds forest loss. The gain or loss of forest 69 

cover necessarily involves changes in land use and land cover, with concomitant environmental and 70 

socioeconomic implications (Foley et al., 2005). Given increasing international attention directed 71 

toward forest recovery, understanding the land-cover dynamics involved in forest recovery and their 72 

underlying drivers is of great policy relevance (Rudel et al., 2016; Uriarte and Chazdon, 2016; 73 

Wilson et al., 2017). 74 

The question of what constitutes a forest is at the core of understanding forest recovery 75 

(Chazdon et al., 2016; Sexton et al., 2016). The definition of forest used by the United Nations Food 76 

and Agricultural Organization (FAO)--“land spanning more than 0.5 hectares with trees higher than 77 

5 meters and a canopy cover of more than 10 percent, or trees able to reach these thresholds in situ; it 78 

does not include land that is predominantly under agricultural or urban land use” (FAO, 2012)--is 79 

widely used in policy discourses worldwide and in the vast majority of national forest statistics. It is 80 

also used or implied in a number of prominent international agreements related to forest protection 81 

and recovery such as the Bonn Challenge (Bonn Challenge, 2011; see also www.infoflr.org) and the 82 

New York Declaration on Forests (United Nations, 2014). However, because this definition includes 83 

tree plantations and thus disregards their marked differences from native forests (typically consisting 84 

of diverse stands of native species) in terms of environmental, and particularly biodiversity, 85 

attributes (for reviews on this topic, see Brockerhoff et al., 2008; Liao et al., 2010; Paquette and 86 
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Messier, 2010), this definition risks misrepresenting the environmental implications of alleged forest 87 

recovery (Putz and Romero, 2015; Wilson et al., 2017; Hua et al., in press). To avoid confusion, in 88 

this article we use “tree cover” to represent what FAO defines as forest (i.e. the combination of 89 

native forests and tree plantations that meet the defined areal, tree-height, and canopy-cover 90 

requirements), and we limit the use of “forest” to the native-forest subset of land cover within the 91 

FAO definition, thereby separating it from “tree plantations”, which consist of monocultures or 92 

simple polycultures of planted trees (Lindenmayer et al., 2012a).  Thus, in this article, an increase in 93 

tree cover does not necessarily correspond to forest recovery unless it involves an increase in the 94 

extent of native forests. 95 

China is said to have undergone a remarkable increase in tree cover over the past three 96 

decades: According to the state forest inventory, China’s tree cover – reported in the inventory as 97 

“forest cover” – has increased from 12% of the country’s terrestrial area in 1981 to 21.4% in 2013 98 

(SFA 1999-2014; see Hua et al., in press for a visualized time series of the inventory data). Such an 99 

increase is without precedent in such a short period of time in any large nation. At least for the period 100 

after year 2000, as remotely sensed land-cover data became more accessible, reports of increases in 101 

China’s tree cover have generally been corroborated by remote-sensing studies (Ren et al., 2015; 102 

Ahrends et al., 2017; Li et al., 2017). These increases are considered to be particularly attributable to 103 

a system of state programs begun in the late 1990s to promote forest protection and reforestation for 104 

ecological benefits (Robbins and Harrell, 2014; Yin and Yin, 2010), and they have been widely 105 

credited with generating enormous environmental benefits (Liu et al., 2008; Deng et al., 2014; 106 

Ouyang et al., 2016). However, multiple local studies suggest that China’s recent increase in tree 107 

cover has been dominated by tree plantations, usually monocultures (Hua et al., 2016), while native 108 

forests continue to be lost (Greenpeace East Asia, 2013-2015; Li et al., 2007; Zhai et al., 2014). Such 109 

reports highlight the fact that without differentiating between tree plantations and native forests, it is 110 
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impossible to know what the increase in tree cover means for China’s forest recovery, and indeed, 111 

for the ecological benefits that are the primary goal of the country’s forest policies.  112 

Currently, assessments of China’s tree-cover dynamics that distinguish between native forests 113 

and tree plantations since the late 1990s are non-existent at the national scale and scarce at the 114 

regional scale (e.g. Hu et al., 2014; Li et al., 2007; Zhai et al., 2014). Moreover, little is known about 115 

the factors driving land-cover change related to trees, particularly why, according to some sources, 116 

native forests continue to be lost despite major government policies intended to protect them, such as 117 

the Natural Forest Protection Program (NFPP; Ren et al., 2015). While there are suggestions that 118 

NFPP and other forest policies contain loopholes that inadvertently and perversely favor tree 119 

plantation expansion over the retention of native forest (Greenpeace East Asia, 2013-2015; Zhai et 120 

al., 2014), evidence of this has been anecdotal. Thus, understanding the nature and underlying 121 

drivers of land-cover dynamics related to China’s tree-cover increase, and, in particular, 122 

differentiating between tree plantations and native forests, are key to understanding the 123 

environmental implications of China’s increase in tree cover and to designing effective policies to 124 

maximize its ecological benefits.   125 

In this study, we aim to understand the nature and drivers of land-cover dynamics involved in 126 

the increase in tree cover in southwestern China between 2000-2015, a region that, according to 127 

China’s state forest inventory and numerous remote-sensing studies, has undergone significant tree-128 

cover increase during this period (Xu et al., 2006). We combine remote-sensing analysis and 129 

household interviews to ask two key questions. First, what is the nature of land-cover dynamics 130 

involved in the region’s increase in tree cover, i.e., what vegetation type(s) provided the land for the 131 

increase in tree cover, and what proportion of the increase is due to tree plantations versus native 132 

forests? Second, what social and economic factors drove the land-use choice pertaining to tree cover 133 

in the region? Our goal is to provide recommendations to ensure that China’s forest policies 134 

maximize the ecological benefits that can be obtained through forest recovery, including biodiversity 135 
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conservation. This need is particularly salient considering China’s heavy expenditures on forest 136 

protection and reforestation (Liu et al., 2008; Robbins and Harrell, 2014). Additionally, China’s 137 

experience could also be informative to other developing countries, as they grapple with the 138 

challenges of recovering their forest landscapes (Hosonuma et al., 2012; Wilson et al., 2017). 139 

Study region 140 

We focused on a region of ~15,800 km2 in south-central Sichuan Province in the transition 141 

zone from the western Sichuan Basin to the Hengduan mountain range (Fig. 1). The study region 142 

spans an east-to-west elevation gradient of 300-5,000 m with an accompanying gentle-to-steep 143 

topographical gradient. The area below treeline was historically forested but suffered deforestation 144 

throughout the region’s long human settlement history, which continued well into the late 1990s 145 

(Elvin, 2004; Liu and Tian 2010). According to China’s state forest inventory and numerous remote-146 

sensing studies, it has more recently witnessed substantial tree-cover increase since the late 1990s 147 

(SFA, 1999-2014; Liu et al., 2014; Li et al., 2017).  148 

Importantly, the region has been part of China’s two largest forest programs: the NFPP, 149 

aimed at protecting and regenerating native forests (Ren et al., 2015), and the Grain-for-Green 150 

Program (GFGP), aimed at curbing soil erosion via compensated retirement of sloped croplands 151 

followed by reforestation (Delang and Yuan, 2015). The NFPP was introduced in 1998 and has been 152 

responsible for ~$19 billion in expenditures nationwide through 2010 (Ren et al., 2015). The GFGP 153 

was introduced in 1999 and has expended ~$47 billion nationwide through 2013 (Hua et al., 2016); it 154 

has been the single largest reforestation scheme in the study region over the past two decades. Both 155 

programs are ongoing and are expected to last until at least 2020 (NDRC, 2014; SFA, 2011). Official 156 

statistics for the region claim that the two programs have substantially curbed tree-cover loss and 157 

contributed to tree-cover regrowth from 2000-2015 (SFA, 1999-2014; Ren et al., 2015). On the other 158 

hand, considerable loss of native forests in the region has also been anecdotally reported for the same 159 

period (Greenpeace East Asia, 2013-2015). 160 
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Our previous fieldwork in the region identified four dominant types of tree cover re-161 

established under the GFGP, all of which qualify as tree plantations but are not necessarily of native 162 

species: monocultures of (1) Eucalyptus, (2) bamboo, (3) Japanese cedar, and compositionally 163 

simple (4) mixed plantations consisting of two to five tree species (Hua et al., 2016). Monoculture 164 

plantations are created when multiple households plant the same tree species in small, neighboring 165 

parcels, while mixed plantations are typically created by households planting different tree species in 166 

neighboring parcels (although around a quarter of mixed plantation stands are bona fide, individual-167 

level mixtures). GFGP incentives do not differ between monoculture and mixed plantations (Delang 168 

and Wang, 2015), thus should not influence households’ land-use decisions pertaining to plantation 169 

type under GFGP. Importantly, and consistent with what is known about biodiversity in plantations 170 

in other parts of the world (Brockerhoff et al., 2008; Paquette and Messier, 2010), our previous study 171 

found that both plantation types (monoculture and mixed) fall short of the biodiversity levels 172 

associated with native forests, although mixed plantations are associated with greater biodiversity 173 

than monoculture plantations (Hua et al., 2016). 174 

We combined remote-sensing analysis with household interviews to understand tree-cover 175 

dynamics in this region, separating tree plantations from native forests. To understand the nature of 176 

land-cover change during the study period, we conducted satellite imagery analysis to classify land 177 

cover, including multiple tree-cover and non-tree-cover types. To understand the drivers of the 178 

observed land-cover change, we conducted spatially explicit analyses to assess the role of 179 

biophysical factors in explaining land-cover change at the level of remote-sensing image pixels, and 180 

we used semi-structured household interviews to quantify household decisions regarding land use 181 

and their underlying reasons. Importantly, for this latter part of the study, we restricted our analysis 182 

to three separate aspects of tree-cover change: native forest loss, native forest regrowth via natural 183 

regeneration on land that had previously been cleared of tree cover (hereafter “natural regeneration”), 184 

and tree-plantation establishment under GFGP reforestation. We additionally focused on household 185 
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decision-making in analyzing drivers of tree-cover change, thus treating households as direct agents 186 

of land-use change, although their decision-making may also reflect underlying government policies. 187 

Methods 188 

Remote-sensing analysis of land-cover change 189 

To quantify land-cover change, we classified land cover on four, 30-m-resolution Landsat 190 

images, two from 2000 and two from 2015 (https://earthexplorer.usgs.gov/). We used a ground-truth 191 

dataset to classify land cover into five classes that differ considerably in their biodiversity profiles 192 

according to our previous study (Hua et al., 2016): native forest, monoculture plantation (Eucalyptus, 193 

bamboo, or Japanese cedar; they were first classified separately and subsequently pooled), mixed 194 

plantation, cropland, and other land cover (Table 1). Our ground-truth dataset included a sub-dataset 195 

from field surveys in 2015 and another sub-dataset created from visual interpretation of randomly 196 

sampled, high-resolution Google Earth images from 2016 (https://www.google.com/earth/); 197 

altogether, our dataset covered >2000 pixels for each land-cover class in each image (Fig. 1; 198 

Supplementary Information). We set aside a random collection of 100 pixels for each land-cover 199 

class to form a validation dataset, and used the remaining pixels as the training dataset. Two 200 

assumptions underlay our remote-sensing analysis. First, the ground-truth dataset can be applied to 201 

images from both 2000 and 2015. Second, native forest, monoculture, and mixed plantations together 202 

covered the spectrum of the region’s tree-cover types during the study period. These assumptions 203 

were based on our field knowledge that the region’s non-forest tree cover during the study period 204 

was dominated by the plantation types used under GFGP; any potential violation of these 205 

assumptions was addressed by classification accuracy assessments and discussion of their caveats. 206 

We conducted supervised image classification using the randomForest 4.6.10 package 207 

(Breiman, 2001; Liaw and Wiener, 2002) in R 3.4.0 (R Core Team, 2017)). After classification, we 208 

merged groups of contiguous pixels into patches using an eight-neighbor rule and merged isolated, 209 

small patches (<6 pixels or 0.5 ha) into the largest of their neighboring patches of different land-210 
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cover classes. We thus created a single thematic land-cover map for 2000 and again for 2015, which 211 

we overlaid to classify, for each pixel, the conversion of land-cover class between 2000-2015. Using 212 

an area-weighted error matrix generated by the validation dataset (Olofsson et al., 2014), we assessed 213 

the accuracy of our land-cover classification (Table 2), based on which we further assessed the 214 

classification accuracy of land-cover conversion using a sampling-based simulation approach (Table 215 

3). Full details of our remote-sensing analysis and accuracy assessments are provided in the 216 

Supplementary Information. 217 

Biophysical attributes as explanatory variables of land-cover change 218 

We assessed the role of profitability (i.e. economic returns) for agricultural or forestry 219 

production, represented by a suite of biophysical attributes scored at the level of each pixel in our 220 

remote-sensing images, in explaining the three focal aspects of tree-cover change in the region. 221 

Profitability largely drives household decisions about land use for agricultural or forestry production 222 

(Busch and Ferretti-Gallon, 2017; Geist and Lambin, 2002; Lambin et al., 2001). As such, it 223 

determines not only whether a particular parcel of land is used for cropland or tree cover, but also 224 

whether it is left alone and allowed to undergo natural regeneration (Garcia-Barrios et al., 2009; 225 

Chazdon and Guariguata, 2016). Indeed, natural regeneration has been found to mostly occur on 226 

marginal land not deemed profitable for agricultural or forestry production (Asner et al. 2009; 227 

Uriarte and Chazdon 2016). And, of course, government policies also play a major role in 228 

determining what happens on a given pixel of land in China’s top-down forest governance structure 229 

(Xu et al., 2006; Hua et al., in press). We tried to obtain government documentation on where NFPP 230 

and GFGP had been implemented in the region but were refused access. We were thus unable to 231 

include this information in our analysis. 232 

The biophysical attributes we considered as indicative of profitability for agricultural or 233 

forestry production included (1) the slope of each pixel (in degrees) as a proxy for the difficulty, and 234 

thus cost, of agricultural/forestry production, (2) the proximity of each pixel to the nearest paved 235 
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road (in km) as a proxy for the difficulty, and thus cost, of transportation, and (3) the proximity of 236 

each pixel to the nearest township (the smallest urban administrative unit in China; in km) as a proxy 237 

for market access (de Rezende et al., 2015). For natural regeneration, we also considered the 238 

proximity of pixels to the nearest pixel that was classified as native forest in 2000 (“distance to the 239 

nearest native forest”; in km) as a proxy for the distance to, and thus availability of, propagule 240 

sources of native trees, a key determinant of the speed and trajectory of natural regeneration (Arroyo-241 

Rodriguez et al., 2015; Sloan et al., 2016). We did not include elevation because of its strong 242 

collinearity with one or more of the above attributes (Pearson’s correlation coefficient ³0.65; Table 243 

S1 in Supplementary Information). Slope data were obtained from the Global Digital Elevation 244 

Model 2 (gdem.ersdac.jspacesystems.or.jp/DEM), and the shapefiles of paved roads and townships 245 

were obtained from the 1:250,000 digitized map of China published by the National Geomatics 246 

Center of China that covers the period between 1980-1997 (NGCC, 2006; Wang, 2011).  247 

Household interviews for household choices and attitudes 248 

We conducted household interviews to assess households’ choices, attitudes, and underlying 249 

reasons pertaining to tree-cover change, again treating households as key agents of land-cover 250 

dynamics. Our interviews focused on households that participated in the GFGP. Because we had 251 

previously determined in a pilot study that households commonly cleared native forests during the 252 

study period (FH unpublished data), we anticipated that GFGP households would also be able to 253 

provide information on drivers of native forest loss.  254 

In July 2015, we interviewed 166 households (³35 households for each GFGP plantation 255 

type). Interviews were conducted with household heads, lasted 30-40 minutes each, and used a 256 

combination of multiple-choice and open-ended questions. In villages around large expanses of the 257 

four major GFGP plantation types, we randomly selected households with the constraints that (1) the 258 

household head was available for an interview and able to provide clear answers to interview 259 

questions, (2) no more than three households were from the same village, and (3) households from a 260 
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given village covered a spectrum of landholding size and socioeconomic status. We asked each 261 

household why they chose a particular plantation type, their attitudes toward a hypothetical 262 

alternative tree-cover type known to deliver better environmental benefits, and whether they had 263 

cleared native forests during the study period and their motivations for doing or not doing so (see 264 

Table S2 in Supplementary Information for details). For all multiple-choice questions pertaining to 265 

reasons, perceptions, and attitudes, we allowed respondents to give multiple answers. All required 266 

permits for household interviews were obtained from the IRB (Institutional Review Board) of 267 

Princeton University, and all respondents gave informed consent before the interviews. 268 

Statistical analysis for drivers of tree-cover change 269 

We analyzed the drivers of native forest loss between 2000-2015 by testing the statistical 270 

relationship between native forest loss and biophysical attributes at the pixel level, using a 271 

multinomial logistic regression. We considered a pixel to have undergone native forest loss if its 272 

classification status changed from native forest in 2000 to any of the other land-cover classes in 273 

2015. Therefore, for this analysis, we focused on pixels that were classified as native forest in 2000, 274 

and we differentiated among four outcomes of classification status in 2015 for these pixels: (1) non-275 

tree land cover (including cropland and other land cover), (2) monoculture plantation, (3) mixed 276 

plantation, and (4) the maintenance of pixel status as native forest in both 2000 and 2015. We further 277 

supplemented the statistical analysis with information on households’ reasons for clearing or 278 

retaining native forests obtained from household interviews (Table S2 in Supplementary 279 

Information). 280 

We analyzed the drivers of natural regeneration between 2000-2015 by testing the statistical 281 

relationship between natural regeneration and biophysical attributes at the pixel level, using a 282 

binomial logistic regression. We considered a pixel to have undergone natural regeneration if its 283 

classification status changed from non-tree cover in 2000 to native forest in 2015. Therefore, for this 284 

analysis, we focused on pixels that were classified as non-tree cover (i.e. cropland or other land 285 
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cover) in 2000, and we differentiated between the Yes or No outcome with regard to natural 286 

regeneration based on pixels’ classification status in 2015: (1) Yes, i.e. the pixel having undergone 287 

natural regeneration, represented by the change of pixel classification status from non-tree cover in 288 

2000 to native forest in 2015, and (2) No, i.e. the pixel not having undergone natural regeneration, 289 

represented by the pixel maintaining the non-tree-cover status in both 2000 and 2015, or changing 290 

from the non-tree-cover status into any plantation type in 2015. 291 

The biophysical attributes included in the statistical analyses were not strongly collinear 292 

(Pearson’s correlation coefficient <0.65; Table S1 in Supplementary Information). Prior to analyses, 293 

we conducted subsampling to generate 1,000 sub-datasets for the multinomial logistic regression and 294 

binomial logistic regression, respectively, to minimize data skewness toward non-change in the 295 

response variable and spatial autocorrelation. Specifically, each sub-dataset comprised 500 pixels for 296 

each outcome of response variable, and all pixels were spaced ³1 km apart. Thus, each sub-dataset 297 

consisted of 2,000 pixels for the multinomial logistic regression, and 1,000 pixels for the binomial 298 

logistic regression. We conducted regression analyses on each sub-dataset, based on which we 299 

calculated the mean and 95% confidence interval for the effects of each predictor variable. All 300 

regression analyses were carried out in R 3.3.3 (R Development Core Team 2017) with packages 301 

rgdal 1.2-7 (Bivand et al., 2017) and nnet 7.3-12 (Ripley and Venables, 2011). 302 

For tree plantation establishment under GFGP reforestation, we focused on understanding the 303 

drivers of households’ choices of specific plantation types, which should predominantly be the 304 

outcome of household decisions (Delang and Yuan, 2015); our analysis relied exclusively on 305 

household responses. By contrast, whether or not a household’s landholding was reforested under 306 

GFGP should be determined by government policy based in part on land biophysical attributes such 307 

as slope (Delang and Yuan, 2015); our study did not concern this aspect. For all interview questions, 308 

we tallied the percentage of responses for each answer out of the total pool of valid questionnaires as 309 

a measure of the importance of the choices/attitudes/reasons represented by the answers. We did not 310 
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apply statistical analysis because of the large numbers of possible answers relative to the limited 311 

sample sizes for most questions.  312 

Results 313 

Nature of tree-cover increase in south-central Sichuan in 2000-2015 314 

Between 2000-2015, the region’s total tree cover – including native forests and tree plantations 315 

– increased by 32% (1,935 km2), equivalent to 12.2% of the region’s land area (Figs. 2a, 2b; Table 2). 316 

However, the region’s native forests decreased by 6.6% (138 km2) during this same period, 317 

equivalent to 0.9% of the region’s land area (Figs 2a, 2b; Table 2). Thus, the net tree-cover increase 318 

of the region was entirely accounted for by tree plantations. Correspondingly, the dominant form of 319 

land-cover change in the study region during this period was conversion of croplands to monoculture 320 

plantations (Fig. 2c). In all, the region’s cropland area decreased by 23.5% (2,014 km2), equivalent to 321 

12.7% of the region’s area (Figs. 2a, 2b; Table 2). Of the cropland area lost, 56.3% was converted to 322 

monoculture plantations, 36.1% to mixed plantations, and only 1.8% was allowed to regenerate as 323 

native forests (Fig. 2c). Accuracy assessments for the classification of land cover and land-cover 324 

conversion between 2000-2015 suggested reasonable performances (Tables 2, 3). 325 

Household interview data supported the above patterns of tree-cover dynamics. Thirty-seven out 326 

of 82 respondent households (45.1%) indicated that they had converted native forests on their 327 

landholdings since GFGP started in the region in 1999. An additional 13 households indicated that 328 

they had converted “scrubland” – likely a highly degraded form of native forests (Harkness, 1998) – 329 

on their landholdings since 1999 (scrubland was most likely classified as “Other land cover” in our 330 

remote-sensing analysis; Table 1). All households that reported clearing native forests or scrublands 331 

indicated that they replaced them with monoculture or mixed plantations. 332 

Drivers of native forest loss 333 

Multinomial logistic regression suggested that the biophysical attributes we included in our 334 

analyses played a significant role in explaining the patterns of native forest loss in the region 335 
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between 2000-2015 (Fig. 3a). Native forests on steeper slopes were less likely to be converted to 336 

non-tree cover. Native forests closer to paved roads and townships were more likely to be converted 337 

to tree plantations. These two relationships suggest that profitability for agricultural or forestry 338 

production was likely an important driver of native forest loss.  339 

Household interview data corroborated the above findings (Figs 3b-3c). The pursuit of greater 340 

profits and government encouragement/mobilization (as perceived by the household. Anecdotes from 341 

our interactions with respondent households suggest that “government encouragement/mobilization” 342 

in our study context entailed a range of formats, from government laying out regulations for 343 

households to follow, to government providing monetary or logistical incentives, such as organizing 344 

communities to conduct land cover conversion, or providing free seeds/seedlings for tree planting; 345 

this clarification applies to “government encouragement/mobilization” used below in the article) 346 

were the two most commonly cited factors for households to convert native forests: they were cited 347 

by 49.0% and 25.5% of the 51 responding households that reported converting native forests, 348 

respectively (Fig. 3b; percentages do not sum up to 100% because respondents could select more 349 

than one factor). Community influence (i.e. conforming to the land-use decisions of other households 350 

in the community; 7.8%) and biophysical suitability (i.e. land parcels’ biophysical conditions 351 

perceived to be suitable for a given replacement land cover; 5.9%) were also cited as relevant factors 352 

(Fig. 3b). Of the 30 respondent households that did not convert native forests, a lack of labor and/or 353 

finance (30%), a lack of government encouragement/mobilization (26.7%), and a lack of interest in 354 

initiating the management of the forest land involved (26.7%) were the three most commonly cited 355 

reasons (Fig. 3c). Community influence (10%) was also cited as a relevant but less important factor 356 

(Fig. 3c). 357 

Drivers of natural regeneration 358 

Binomial logistic regression suggested significant roles for the biophysical attributes we included 359 

in our analyses in explaining natural regeneration in the study region between 2000-2015 (Fig. 4). 360 
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Treeless land on steeper slopes, farther from townships and closer to native forests was more likely 361 

to undergo natural regeneration (Fig. 4). These results suggest that two important drivers of natural 362 

regeneration in the region were the lack of profitability for agricultural or forestry production, and 363 

proximity to native forest (hence, proximity to plant propagule sources). 364 

Drivers of plantation choice under GFGP reforestation 365 

Household interviews revealed that the pursuit of higher profits as well as government 366 

encouragement/mobilization were the two most important factors underlying households’ choice of 367 

plantation type under GFGP reforestation (Figs. 5a-5b). Of the households planting monocultures, 368 

43.2% and 41.9% pointed to profit incentives and government encouragement/mobilization as 369 

drivers of their choice of plantation type, respectively (Fig. 5a). Similarly, 37.6% and 35.3% of 370 

households planting mixed plantations indicated that profit incentives and government 371 

encouragement/mobilization drove their choice, respectively (Fig. 5b). Other factors cited as driving 372 

household choice of plantation type included biophysical suitability (20.3% and 23.5%, respectively 373 

for monoculture and mixed plantation households), community influence (9.5% and 15.3%), and the 374 

cost of maintenance (5.4% and 9.4%; Figs. 5a-5b). 375 

Regarding the conditions under which households would be willing to switch to a hypothetical 376 

alternative tree-cover type known to deliver greater environmental benefits, respondent households 377 

most often cited two conditions: (1) forestry production profits must not be lower, and (2) any cost 378 

associated with switching to the alternative tree-cover type must not be paid by themselves (Fig. 5c). 379 

These two conditions were cited by 56.3% and 26.8% of the 142 households, respectively. 380 

Maintenance cost was cited as the next most important condition, with 12.7% of households 381 

indicating they would be willing to switch if maintenance costs were no higher than before. Notably, 382 

among the additional factors also cited as relevant (Fig. 5c), 6.3% of households indicated that they 383 

would be willing to switch if other households in their communities did the same, again pointing to a 384 

small but non-negligible role of community influence on land-use decisions. Finally, 3.5% of 385 
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households indicated they would be willing to switch unconditionally, whereas 7.7% of households 386 

indicated they would not be willing to switch under any circumstances (Fig. 5c). 387 

Discussion 388 

Our remote-sensing analysis highlighted two dominant features of land-cover change related 389 

to tree cover in southwestern China between 2000-2015. First, the gross tree cover – native forests 390 

and all types of tree plantations combined – experienced a substantial net increase in both percentage 391 

and absolute area (Fig. 2a, 2b). Second, this increase was entirely accounted for by cropland 392 

conversion to tree plantations, particularly monocultures. In contrast, native forests suffered a net 393 

loss (Fig. 2c). Spatially explicit analyses of biophysical attributes representing land production 394 

profitability, along with household interviews, revealed that the two dominant drivers of land-cover 395 

change were (1) the pursuit of profits from agricultural/forestry production (including the aversion of 396 

management costs), and (2) government encouragement/mobilization for particular land uses (Figs. 397 

3-5). Household interviews also suggested that, to some degree, households tended to conform to the 398 

land-use decisions of other households in the community (Figs. 3b, 3c, and 5), and that the lack of 399 

labor and/or financial resources was a primary constraint on households converting native forests to 400 

other land-use types (Fig. 3c). 401 

The growth of plantations in conjunction with the loss of native forests means that, far from 402 

setting the region’s forest landscape on a trajectory of recovery with concomitant benefits for 403 

biodiversity and other ecosystem services, the region’s tree-cover increase has, in effect, displaced 404 

native forests. Native forests were not only directly lost via conversion to tree plantations and other 405 

uses, but were also indirectly lost when land freed up from agriculture was converted to tree 406 

plantations instead of being allowed to naturally regenerate into native forests. Tree plantations differ 407 

vastly from native forests in their capacity to support biodiversity and other ecological 408 

functions/services (Brockerhoff et al., 2008; Felton et al., 2010; Gamfeldt et al., 2013; Hulvey et al., 409 

2013; Liao et al., 2010; in this region: Hua et al., 2016). The cryptic displacement of native forests 410 
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amid increasing tree cover in our study region and other regions (Zhai et al., 2014; Heilmayr et al., 411 

2016) thus highlights the risk of misguided environmental assessment and policy-making, when 412 

these efforts fail to discriminate between native forests and plantations, and in general, (mis)use a 413 

loosely defined “forest cover” – i.e. tree cover – as the simple metric of environmental benefits 414 

(Ahrends et al., 2017; Chazdon et al., 2016; Wilson et al., 2017). This risk is particularly salient 415 

given the magnitude of environmental dividends that could be achieved in China and globally under 416 

a bona fide commitment to the recovery of native forests (Suding et al., 2015; Chazdon et al., 2017). 417 

Notwithstanding the legitimacy and, indeed, necessity of establishing and maintaining tree 418 

plantations and integrating them into land-use planning (Paquette and Messier, 2009; Pirard et al., 419 

2016), policies aimed at reaping the environmental benefits of forest recovery must avoid 420 

jeopardizing native forests with the use of muddled concepts and criteria.  421 

An issue highly relevant to the benefits and costs of forest recovery that has been grossly 422 

neglected in China’s policies thus far is the potential utility of natural regeneration as a means to 423 

achieve forest recovery. This issue is illustrated by our finding that the vast majority of former 424 

cropland lost from our study region between 2000-2015 was taken up by tree plantations, particularly 425 

monocultures, with < 2% undergoing natural regeneration (Fig. 2cs). China’s recent policies on 426 

reforestation have placed disproportionate emphasis on active tree planting and have almost 427 

completely disregarded natural regeneration, except for in the limited context concerning degraded, 428 

but still standing, forests (SFA 1999-2014). Because of this policy bias, even regions for which 429 

natural regeneration might have been a highly effective, economical means to achieve forest 430 

recovery (Lamb 2014; Chazdon and Uriarte, 2016) have undertaken active tree planting programs 431 

(often resulting in biologically depauperate plantations) at considerable expense. The extensively 432 

studied region around the Wolong Nature Reserve provides a case in point: Despite its ideal 433 

biophysical (i.e. it borders large expanses of native forests), political (i.e. political will exists to 434 

reforest the region), and socioeconomic (i.e. rural households have access to financial compensation 435 
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for reforestation, and the region is undergoing rural depopulation and shifting to non-farm incomes) 436 

conditions for natural regeneration (Chazdon and Guariguata, 2016), government-sponsored 437 

reforestation has exclusively entailed planting, at great expense, simple stands of mostly conifer 438 

trees, in contrast to the broadleaf mixed forests actually native to the region (Chen et al., 2009; FH 439 

and BF, personal observations). The rejection of natural regeneration effectively results in a lose-lose 440 

situation in terms of environmental benefits and logistical/monetary costs. We recommend that forest 441 

policies in China and other countries follow available scientific guidance (Chazdon and Guariguata, 442 

2016; Meli et al., 2017) and successful examples (e.g. de Rezende et al., 2015) to incorporate natural 443 

regeneration more formally as a legitimate means of forest recovery where feasible and appropriate. 444 

In addition to identifying the pursuit of profit (and thus economic opportunities) as a key 445 

driver of tree-cover change, as has been widely reported by other studies across the world (Busch 446 

and Ferretti-Gallon, 2017; Geist and Lambin, 2002; Lambin et al., 2001; Munteanu et al., 2014; 447 

Qasim et al., 2013; Silva et al., 2016; Waiswa et al., 2015), our study also highlights a number of less 448 

well known drivers. First, government encouragement/mobilization was consistently noted to be 449 

highly and directly influential on household decisions regarding native forest clearance and 450 

reforestation (Figs. 3b, 3c, 5a, 5b). Given the reputation of China’s top-down forest governance for 451 

effective policy implementation (Xu et al., 2006), this strong governmental influence is perhaps 452 

expected. Nonetheless, the fact that China’s contemporary forest policies – ostensibly guided by the 453 

goal of safeguarding and improving forests’ ecological conditions, functions, and benefits (Xu et al., 454 

2006; Yin and Yin, 2010) – fostered land-use behaviors that compromised native forests or failed to 455 

realize the ecological gains achievable under reforestation (Hua et al., 2016), highlights major pitfalls 456 

in their design and implementation. Policy makers should follow scientific advice to rectify these 457 

pitfalls (Hua et al., in press). 458 

Second, when it comes to decisions regarding reforestation or tree planting, landholders are 459 

influenced by what their neighbors do, thereby demonstrating the importance of community norms in 460 
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driving larger-scale patterns of land-use change. This finding echoes the results of a suite of studies 461 

of social norms and environmental decision-making under different contexts (Byerly et al., in press). 462 

Invoking and in some cases changing social norms have led to significant changes in behavior, 463 

including, for example, reductions in urban household water use in the United States (Ferraro and 464 

Price, 2013) and increased willingness of farmers to engage in conservation practices, also in the 465 

United States (Messer et al., 2016). Within China, social norms have been linked to increased 466 

likelihood of households re-enrolling in GFGP in a study site adjacent to our study region (Chen et 467 

al., 2009). Given the importance of household-level decisions on wider biodiversity values in our 468 

study region (Hua et al., 2016), utilizing social norms as a mechanism to guide decisions at the 469 

regional scale could deliver appreciable environmental benefits. 470 

Third, the most important reason given by households in our study region for not clearing 471 

more native forests was the lack of labor and/or financial resources, suggesting that at least up until 472 

the time of our household interviews, households had both the desire and legal right to clear native 473 

forests but were hindered from doing so by economic obstacles. The absence of more durable 474 

safeguards to further deforestation underscores the vulnerability of the region’s remaining native 475 

forests (Hua et al., in press). In recent years, the Chinese government has been actively encouraging 476 

the production-oriented leasing of rural land to outside enterprises (referred to as “land circulation 477 

(��$1)” in China; Bosi Data, 2014; Zhai et al., 2014), making way for large-scale agro-/forestry 478 

businesses. Operating on completely different scales than smallholders, these enterprises have the 479 

resources and motivation to prepare large areas of land for crop or timber production. Moreover, as 480 

urbanization and rural economic transformation continue to enrich rural households, more 481 

households will have the resources they need to clear forests. China, therefore, faces the prospect of 482 

escalating losses of native forests unless it enacts policies targeted at their protection. 483 

Three caveats associated with our remote sensing-based analysis should be noted. First, our 484 

land-cover classification assumed that the tree-cover types included in our classification scheme 485 



 20 

represented the range of tree-cover types in the study region during the study period, an assumption 486 

that may be incorrect for parts of the region not covered by field visits. Second, the relatively small 487 

proportion of the region for which we have field-based, ground-truth data likely reduced the quality 488 

of land-cover classification for those parts of the region not covered by field visits. Considering that 489 

accuracy assessments of remote-sensing analysis showed reasonable performances (Tables 2-3), 490 

these caveats would be problematic only if there were major expanses of tree-cover types not 491 

included in our classification scheme. This concern is lessened at least to some extent by the fact that 492 

the mixed plantations in our classification scheme covered a wide range of compositional 493 

characteristics (Table 1), which may enable other simple mixed tree plantations to be classified 494 

correctly. Together with the expected, correct classification of native forests, this should allow the 495 

remaining tree-cover types – the only possibility being monoculture plantations – to also be correctly 496 

classified. Finally, our statistical analysis of biophysical attributes directly used pixels’ conversion 497 

status obtained from remote-sensing analysis as the response variable, in effect ignoring the 498 

uncertainty of land-cover classification. Given the differential errors of different conversion classes, 499 

this may have biased the conclusions of our statistical analyses in unknown ways. This bias is 500 

unlikely to be substantial considering the relatively small percentage of pixels incorrectly classified 501 

(Table 3); still, the relationship we found between land pixels’ biophysical attributes and land 502 

conversion status should be taken with this caveat in mind.  503 

Our findings provide several insights on how policies could be steered to achieve better 504 

biodiversity gains for the region from its tree-cover dynamics. First, the Chinese government needs 505 

to devise more robust mechanisms to facilitate native forest recovery. While China’s most recent 506 

forest policies have begun to emphasize the protection of existing native forests, they still lack 507 

concrete measures to achieve this goal (Hua et al., in press). More critically, China must develop 508 

mechanisms to facilitate the restoration of native forests, which to date have been largely neglected 509 

in the country’s forest policies (Hua et al., in press), and encourage natural regeneration as a means 510 
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of restoring forests (Chazdon and Guariguata, 2016). Second, social factors operating at the 511 

household level should be harnessed to promote better land-cover, biodiversity, and other 512 

environmental outcomes. These include, most notably, households’ strong emphasis on profitability 513 

in their land-use decision-making, and their desire to conform to community norms with respect to 514 

land use. The importance that households give to profitability when making land-use decisions 515 

highlights the need for adequate compensation to these households for any foregone opportunity 516 

costs associated with protecting and restoring native forests (Jayachandran et al., 2017; Mohebalian 517 

and Aguilar, 2018). Unfortunately, compensation standards in many of China’s current forest 518 

protection/restoration programs are too low to compete against the foregone opportunity costs of 519 

alternative land uses, such as plantations or farming (Hua et al., in press). The tendency of 520 

households to do what their neighbors do points to the potential of social marketing to encourage 521 

land-use decisions that will result in more biodiversity and other ecological benefits (Nyborg et al., 522 

2016). Finally, within the remit of production-oriented tree plantations, in light of the accumulating 523 

evidence of the economic competitiveness and greater biodiversity benefits of mixed plantations 524 

compared with monocultures (Paquette and Messier 2010; Wilson et al., 2017; in the study region: 525 

Hua et al., 2016), the above-noted policy and social mechanisms should be mobilized to also 526 

encourage a shift away from monocultures toward mixed plantations, in places where the restoration 527 

of native forest is not feasible. 528 

Worldwide, rural emigration is creating historic opportunities for large-scale forest recovery 529 

on former agricultural lands (Chazdon and Guariguata, 2016; Meyfroidt and Lambin, 2011). This 530 

process is further encouraged by a growing list of global and regional initiatives aimed at cashing in 531 

on the environmental promises of forest recovery (Suding et al., 2015). In some circumstances, the 532 

desire to increase tree cover without differentiating between tree plantations and native forests has 533 

caused perverse consequences for biodiversity and other environmental functions/services 534 

(Brancalion and Chazdon, 2017; Lindenmayer et al., 2012b). With forest recovery gaining 535 
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momentum globally, care must be taken to design policies and strategies that can achieve a fuller 536 

range of desired benefits, with particular emphasis on the recovery of native ecosystems (Chazdon et 537 

al., 2017; Mansourian et al., 2017; Suding et al., 2015).  538 
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Tables 

Table 1. Classification scheme for remote-sensing analysis of land cover in the study region. 

Land-cover class       Description 

Native forest  • Broadleaf subtropical evergreen forest 

Mixed plantation  • Simple mixed stands comprising up to five, mostly two to three tree species  

• Stands can be mixed at the level of individual trees or patches (i.e. comprising small patches of 

monocultures) 

• Stands at different locations tend to vary in tree species composition 

Monoculture plantation Eucalyptus • Mostly of lowland (£ 650 m) distribution 

 Bamboo • May involve multiple bamboo species; considered as monoculture because of the similar and 

consistently simple forest structure of the bamboo species involved 

• Mostly of mid-elevation (500-1,000 m) distribution  

 Japanese cedar • Mostly of high-elevation (³ 1,000 m) distribution 

Cropland  • Seasonally rotational rice, corn, and vegetables 

Other land cover  • All other land-cover types not included in the cover classes above 
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• Typically grassland, scrubland, open areas, waterbody, rocky/bare surfaces, urban areas, paved 

roads, etc. 
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Table 2. Land-cover mapping area and classification accuracies for 2000 and 2015. PA: producer’s 

accuracy; UA: user’s accuracy; OA: overall accuracy. 

Land-cover class 
2000 2015 

Map area (km2) PA UA OA Map area (km2) PA UA OA 

Native forest 2,100.91 0.82 0.78 -- 1,962.93 0.83 0.85 -- 

Mixed plantation 2,732.90 0.67 0.70 -- 3,626.46 0.82 0.80 -- 

Monoculture 

plantation 

1,221.28 0.63 0.80 -- 2,400.48 0.79 0.85 -- 

Cropland 8,588.08 0.93 0.88 -- 6,573.72 0.92 0.88 -- 

Others 1,170.93 0.74 0.80 -- 1,250.50 0.77 0.87 -- 

Total 15,814.09 -- -- 0.82 15,814.09 -- -- 0.85 
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Table 3. Accuracy of classification for land-cover conversion between 2000-2015. Accuracy was 

assessed as 95% confidence intervals (CI) of (1) the % of pixels classified as the conversion in 

question that were classified correctly (% correctly classified), and (2) the % of all pixels of the study 

region that were of the conversion in question but failed to be identified as such (% of study region 

omitted).  

Land-cover conversion % of study 

region 

% correctly 

classified 

% of study region 

omitted  

From 

(2000) 

To 

(2015) 

Lower 

95% CI 

Upper 

95% CI 

Lower  

95% CI 

Upper  

95% CI 

Native forest Native forest 9.77% 66.24% 66.36% 0.26% 0.27% 

Native forest Mixed plantation 2.01% 62.27% 62.53% 1.27% 1.28% 

Native forest Monoculture 0.53% 66.04% 66.58% 0.81% 0.82% 

Native forest Cropland 0.02% 67.46% 69.80% 1.36% 1.37% 

Native forest Others 0.95% 67.67% 68.04% 0.41% 0.42% 

Mixed plantation Native forest 1.56% 59.35% 59.66% 1.33% 1.34% 

Mixed plantation Mixed plantation 12.80% 55.94% 56.06% 0.95% 0.95% 

Mixed plantation Monoculture 0.86% 59.30% 59.71% 1.62% 1.63% 

Mixed plantation Cropland 1.52% 61.44% 61.75% 2.89% 2.90% 

Mixed plantation Others 0.53% 60.65% 61.16% 0.88% 0.88% 

Monoculture Native forest 2.43% 67.64% 68.38% 0.77% 0.78% 

Monoculture Mixed plantation 1.12% 63.82% 64.17% 1.49% 1.50% 

Monoculture Monoculture 4.87% 67.92% 68.08% 0.55% 0.56% 

Monoculture Cropland 1.14% 70.23% 70.57% 1.50% 1.51% 

Monoculture Others 0.35% 69.30% 69.92% 0.46% 0.47% 

Others Native forest 0.58% 67.74% 68.23% 0.44% 0.45% 
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Others Mixed plantation 0.88% 63.80% 64.21% 0.89% 0.89% 

Others Monoculture 0.61% 67.78% 68.24% 0.51% 0.52% 

Others Cropland 1.45% 70.25% 70.55% 0.85% 0.86% 

Others Others 3.88% 69.51% 69.69% 0.18% 0.18% 

Cropland Native forest 0.25% 74.45% 75.15% 2.02% 2.03% 

Cropland Mixed plantation 6.12% 70.33% 70.48% 3.59% 3.60% 

Cropland Monoculture 8.30% 74.73% 74.86% 2.04% 2.05% 

Cropland Cropland 37.43% 77.41% 77.47% 1.26% 1.27% 

Cropland Others 2.20% 76.44% 76.67% 1.25% 1.25% 
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Figure legends 

Figure 1. Map of the study region displaying distribution of ground-truth data points. Polygons with 

names are counties included in the study region. 

Figure 2. Nature of tree-cover change in the study region between 2000-2015. (a) Thematic land-

cover maps of the study region in 2000 and 2015. (b) The pattern of conversion among different 

land-cover classes between 2000-2015 based on the two thematic maps, shown by a circular plot. 

The plot consists of two concentric outer “wheels” and a set of inner “links”. The wheels display the 

relative area of different land-cover classes in 2000 and 2015 with colored segments. Specifically, 

each segment (representing each land-cover class) on the inner wheel comprises a solid sub-segment 

and a blank sub-segment, whose lengths are proportional to the areas of the corresponding land-

cover class in 2000 and 2015, respectively. The inner links display the conversion of land-cover class 

between 2000 and 2015, by connecting any pair of one “origin” land-cover class in 2000 

(represented by a solid sub-segment on the inner wheel) with one “destination” land-cover class in 

2015 (represented by a blank sub-segment on the inner wheel). Links are color-coded with the same 

color as that of the “origin” land-cover class, and their thickness at the base (i.e. where they abut the 

inner wheel) is proportional to the number of pixels involved in the corresponding conversion. 

Figure 3. Drivers of native forest loss in the study region. (a) Role of biophysical attributes in 

explaining the probability – represented as its odds ratio on a log scale – of native forest conversion 

to three alternative land-cover classes on the pixel level. Results are based on multinomial logistic 

regression of 1,000 sub-sampled datasets. Error bars represent 95% confidence intervals; the absence 

of error bars for slope and distance to town is due to their extremely small confidence intervals. (b) 

The number of households that indicated different reasons for converting native forests to other land-

cover types. (c) The number of households that indicated different reasons for not converting native 

forests. For (b) and (c), “n” on top of the figures indicates the number of households that returned 

valid questionnaires for the focal question; “government mobilization” is a shorthand for 



 38 

“government encouragement/mobilization”; “biophysical conditions” mean that biophysical 

conditions were perceived to be suitable, or unsuitable, for the replacement land cover, respectively. 

Figure 4. Drivers of natural regeneration in the study region, as shown by the role of biophysical 

attributes in explaining the probability – represented as its odds ratio on a log scale – of non-tree-

cover converting to native forest on the pixel level. Results are based on binomial logistic regression 

of 1,000 sub-sampled datasets. Error bars represent 95% confidence intervals; the absence of error 

bars for slope and distance to town is due to their extremely small confidence intervals. 

Figure 5. Drivers of tree plantation type choice in GFGP artificial reforestation. (a) The number of 

households planting monoculture plantations and (b) mixed plantations for GFGP reforestation that 

indicated different reasons or their choice of plantation types. (c) The number of households that 

indicated different conditions for their willingness to switch from the current plantation type to a 

hypothetical tree-cover type for environmental benefits. For all three panels, “n” on top of figures 

indicates the number of households that returned valid questionnaires for the focal question; 

“government mobilization” is a shorthand for “government encouragement/mobilization”; 

“biophysical conditions” mean that biophysical conditions were perceived to be suitable for the tree-

cover type in question; “maintenance cost” means that the amount of maintenance cost made/would 

make it preferable to choose the tree-cover type in question. 
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Part I. Further details on remote-sensing analysis of forest-cover change 

Satellite images  

The four images we used for remote sensing analysis were all Standard Terrain Correction 

products (L1T) obtained from the U.S. Geological Survey Landsat Archives 

(https://landsat.usgs.gov/). They included two Landsat Enhanced Thematic Mapper Plus (“ETM+” 

hereafter) images obtained from 2000 (one with path-row 130-039 taken on December 9th 1999, and 

the other with path-row 129-039 taken on November 2nd 2000), and two Landsat 8 Operational Land 

Imager (“OLI” hereafter) images from 2015 (one with path-row 129-039 taken on December 19th 

2014, and the other with path-row 130-039 taken on February 12th 2015). We used only images from 

the winter season of the northern hemisphere to minimize the influence of cloud cover.  

We geo-referenced all images to UTM/WGS 84 coordinates, and conducted image-to-image 

registration to geometrically correct the ETM+ images using the OLI images such that the root mean 

square error was <0.5 pixel (15 m). For supervised classification, we used Landsat original bands 

(bands 1~5 and 7 for ETM+ and bands 1~7 for Landsat 8 OLI) in combination with the Normalized 

Difference Vegetation Index (NDVI; Tucker, 1979; Tucker et al., 1991) and the Global Digital 

Elevation Model 2 (http://gdem.ersdac.jspacesystems.or.jp/DEM)  as predictor variables (Ren et al., 

2009).  

Ground-truth dataset 

We collected our field-based sub-dataset of ground-truth information during biodiversity field 

surveys in 2015, the details of which are provided in Hua et al. 2016. In brief, we visited large 

expanses of all land-cover classes except for the “others” class to survey for their associated bird and 

bee communities. We recorded the GPS coordinates of the biodiversity sampling points (for birds) 

and plots (for bees), along with their corresponding land-cover information. Field points for the three 

types of monoculture plantation (namely, Eucalyptus, bamboo, and Japanese cedar) were registered 

separately, in accordance with our later procedure where these three plantation types were classified 
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separately before being combined into the land-cover class of monoculture plantation. In all, we 

collected 245 field points for native forest, 327 for mixed plantation, 108 for Eucalyptus plantation, 

105 for bamboo plantation, 107 for Japanese cedar plantation, and 130 for cropland. 

To generate additional ground-truth information, we randomly placed sampling points within 

the study region on Google Earth high-resolution image, and identified their corresponding land-

cover information by visual interpretation. This step was particularly useful to (1) extend the spatial 

coverage of our ground-truth dataset to areas not covered by field surveys, and (2) generate ground-

truth data for the “others” land-cover class for which we did not have field-based ground-truth data. 

We aimed to generate enough Google Earth-based sampling points such that the total number of 

ground-truth sampling point for each land-cover class was at least 2,000 (the number of ground-truth 

sampling points for each of the three monoculture plantation types was at least 500). 

Simulation for assessing the classification accuracy of land-cover conversion status  

Similar to the producer’s accuracy and user’s accuracy approach for land-cover classification, 

we assessed the classification accuracy of land-cover conversion status in two ways: commission 

error (or false positive) and omission error (or false negative). For commission error, we quantified 

the amount of pixel classified as a particular conversion status that were in fact not of the conversion 

status in question; we expressed this amount using the % of pixels out of the total number of pixels 

classified as a particular conversion status (i.e. % of “committed” pixels), and reported this 

information as the % of correctly classified pixels (i.e. 1 - % of “committed” pixels). For omission 

error, we quantified amount of pixels that were in fact of a particular conversion status but that failed 

to be identified as such; we expressed this amount using the % of pixels out of the total number of 

pixels in the study region. We used a sampling-based simulation scheme for the estimation of both 

errors, which simulated the unknown number of “committed” and “omitted” pixels for each of the 25 

conversion status classes (Table 3) over 1,000 runs. We report the 95% confidence intervals of the 

commission error and omission error based on the results of these simulation runs.  
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For each conversion class, we simulated the number of “committed” pixels based on the 

commission errors of classification for the two land covers involved in 2000 and 2015, respectively, 

which were known from the user’s accuracy (“UA” hereafter) of land-cover classification (i.e. they 

are 1-UA; Table 2). Let ni->j be the number of pixels classified as conversion from land-cover class i 

in 2000 to j in 2015, and UAi, 2000 and UAj, 2015 be the user’s accuracy for land-cover class i in 2000 and 

land-cover class j in 2015, the number of correctly classified pixels, denoted as ni->j, Y should be those 

that were correctly classified in terms of land-cover class in both 2000 and 2015. Without knowing 

the true land-cover class of each pixel, possible values of ni->j, Y can be simulated by binomial draws 

based on ni->j (the total number of trials), 1-UAi, 2000 (the probability of correctly classifying land cover i 

in year 2000), and 1-UAj, 2015 (the probability of correctly classifying land cover j in year 2015). We 

identified the pixels corresponding to positive draw outcomes (i.e. correct classification of land-

cover class) for both 2000 and 2015 as those that were correctly classified in terms of conversion 

status, tallied their number to obtain ni->j, Y, and divided them by ni->j to obtain the % of correctly 

classified pixels. We repeated such binomial draw for 1,000 times to obtain 1,000 estimates of ni->j, 

Y/ni->j, based on which we calculated their 95% confidence interval. 

Similarly, for each conversion class, we simulated the number of “omitted” pixels based on 

omission errors of classification for the two land covers involved in 2000 and 2015, respectively, 

which were known from the producer’s accuracy (“PA” hereafter) of land-cover classification (i.e. 

they are 1-PA; Table 2). The “omitted” pixels for a given conversion are essentially the collection of 

a portion of the pixels that were “committed” with regard to other conversion classes. Viewed from a 

flip perspective, for the conversion class i->j, the collection of incorrectly classified pixels, numbered 

at ni->j - ni->j, Y, should in fact have belonged to one of the other 24 conversion classes (Table 3), and 

have been “omitted” from them. The estimation of omission error for the classification of land-cover 

conversion status thus hinges on estimating the numbers of pixels out of ni->j - ni->j, Y that should be 

“returned” to each of the 24 other conversion classes, for every i->j combination. Let ni->j, m->n denote the 
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number of pixels classified as conversion class i->j but that have in fact been converted from land 

cover m in 2000 to n in 2015, respectively, the number of “omitted” pixels for the conversion class 

m->n, denoted as nomitted, m->n, should be the sum of ni->j, m->n for every i->j combination except when i is the 

same value as m and j is the same value as n.  

 Because ni->j - ni->j, Y is to be divided among 24 other conversion classes that are not i->j, ni->j, m->n 

can be simulated by multinomial draws based on the relative probabilities of pixel assignment into 

the “true” conversion classes. The “true” conversion classes can be viewed as comprising three 

pools. (1) Pool #1: where m equals i, i.e. the misclassification of conversion status was due only to 

misclassification of land-cover class in 2015; we denote its size as ni->j, m->n, 2015. This pool thus comprises 

of the four conversion classes from i in 2000 to any of the four land-cover classes that is not j in 

2015. (2) Pool #2: where n equals j, i.e. the misclassification of conversion status was due only to 

misclassification of land-cover class in 2000; we denote its size as ni->j, m->n, 2000. This pool thus comprises 

of the four conversion classes from any of the four land-cover classes that is not i in 2000 to j in 

2015. (3) Pool #3: where neither does m equal i or n equal j; i.e. the misclassification of conversion 

status was due to misclassification of land-cover class in both 2000 and 2015; we denote its size as 

ni->j, m->n, 2000_2015. This pool thus comprises of the 16 conversion classes from any of the four land-cover 

classes that is not i in 2000 to any of the four land-cover classes that is not j in 2015. The values for 

ni->j, m->n, 2015, ni->j, m->n, 2000 , and ni->j, m->n, 2000_2015 can each be estimated from the binomial draw above (they sum up to 

equal ni->j - ni->j, Y), to serve as the total number of trials that are to be assigned (and “returned”) to each 

of the “true” conversion classes within each pool using multinomial draws. 

With regard to the relative probabilities with which to conduct the multinomial draws, we 

made the assumption that they were proportional to the omission errors of the land-cover class(es) 

involved, weighted by the true extent of the land-cover class in question in the study region. Thus, 

with regard to Pools #1 and #2, for each “true” conversion class to their pixels were to be assigned, 

the relative probability was directly the weighted omission error for the one land-cover class 
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concerned. With regard to Pool #3, for each “true” conversion class to which its pixels were to be 

assigned, the relative probability was the product of the weighted omission errors of the two land-

cover classes concerned. We followed Stehman 2013 in estimating the true extent of each of the five 

land-cover classes in 2000 and 2015 based on UA and PA (Equation 21 in Stehman 2013), and in 

turn calculated the weighted omission error for each land-cover class in 2000 and 2015 (Table S3).  

We thus conducted, for each i-j combination, three separate sets of multinomial draws based 

on their respective number of trials (ni->j, m->n, 2015, ni->j, m->n, 2000 , and ni->j, m->n, 2000_2015, respectively) and relative 

probabilities of outcomes. For each i-j combination, we identified the pixels corresponding to 

positive outcomes for each “true” conversion class (i.e. those that should be assigned to each of the 

“true” conversion classes), and tallied these numbers within each “true” conversion class to obtain 

ni->j, m->n. For every combination of m->n, we then summed up all ni->j, m->n across all i-j combinations to 

obtain nomitted, m->n, i.e. the total number of “omitted” pixels for the conversion class m->n. We divided 

nomitted, m->n by the total number of pixels in the study region ntotal, to obtain the % of “omitted” pixels of the 

conversion class m->n. We repeated such multinomial draws for 1,000 times to obtain 1,000 

estimates of nomitted, m->n/ntotal, based on which we calculated their 95% confidence interval. 
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Part II. Supplementary tables 

Table S1. Pearson’s correlation coefficient among candidate biophysical attributes for all pixels of the study region. 

 Slope Distance to the nearest 

paved road 

Distance to the nearest 

township 

Distance to the nearest 

native forest in 2000 

Elevation 

Slope 1 0.32 0.42 -0.45 0.61 

Distance to the nearest 

paved road 

0.32 1 0.51 -0.14 0.57 

Distance to the nearest 

township 

0.42 0.51 1 -0.18 0.69 

Distance to the nearest 

native forest in 2000 

-0.45 -0.14 -0.18 1 -0.49 

Elevation 0.61 0.57 0.69 -0.49 1 
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Table S2. Detailed household survey questions. All multiple-choice questions allowed for more than one choices. 

Aspect of forest -

cover change 

No. Question Nature of 

question 

Native forest 

conversion 

1 Since 1999, how many Chinese mu (15 mu = 1 hectare) of previously existing native forest have you 

converted into other types? 

Open-ended 

 2 [If 1 > 0] What was the forest type post-conversion? Open-ended 

 3 [If 1 > 0] Why did you convert the forest? Multiple-choice 

  Options:  

a) for better profit; b) government encouragement/mobilization†; c) community influence; d) other 

reasons (please clarify)  

 

 4 [If 1 = 0] Why did you not convert the forest? Multiple-choice  
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  Options: 

a) no one did this (community influence); b) no encouragement/mobilization from government†; c) 

no labor and/or financial resources; d) no interest in managing land; e) other reasons (please clarify) 

 

GFGP artificial 

reforestation 

5 Why did you choose the current GFGP tree species? Multiple-choice  

 Options:  

a): profit incentives; b) low maintenance; c) government encouragement/mobilization†; d) community 

influence; e) other reasons (please clarify) 

 

6 If switching to a different forest type can generate more environmental benefits, under what 

conditions would you be willing to switch? (Note: we did not specify which forest type this may be.) 

Multiple-choice 

  Options:  

a): cost of switching is covered; b) profit is no lower than now; c) maintenance intensity is no higher 

than now; e) other conditions (please clarify) 

 

Note: † - “government encouragement/mobilization” refers to any perceived encouragement or mobilization for certain land use from the government, 

as reported by respondent households. Anecdotes from our interactions with respondent households suggest that it entailed a range of formats, from 
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government laying out regulations for households to follow, to government providing monetary or logistical incentives, such as organizing communities 

to conduct land cover conversion, or providing free seeds/seedlings for tree planting.
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Table S3. Weighted omission error for each land-cover class in 2000 and 2015. 

Land-cover class 2000   2015   

 Omission error True extent† Weighted omission error Omission error True extent† Weighted omission error 

Native forest 0.18 1,947,772 0.020 0.17 2,110,751 0.020 

Mixed plantation 0.33 3,001,408 0.056 0.18 4,240,251 0.043 

Monoculture plantation 0.37 1,356,978 0.029 0.21 2,526,633 0.030 

Cropland 0.07 10,245,161 0.041 0.08 7,550,130 0.034 

Others 0.26 1,019,897 0.015 0.23 1,143,450 0.015 

 Note: † - True extent of the land-cover classes is expressed as the number of pixels. 

 

 


