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Abstract:	the	Blood-Brain	Barrier	(BBB)	is	a	highly	specialised	interface	separating	the	Central	

Nervous	System	(CNS)	from	circulating	blood.	Dysregulation	of	the	BBB	is	a	key	early	event	in	

pathological	conditions	such	as	inflammation,	in	which	the	entry	of	activated	leukocytes	into	the	

CNS	is	facilitated	by	BBB	breakdown.	The	metzincin	family	of	metalloproteinases	(MPs)	is	one	of	the	

major	contributors	to	BBB	permeability	as	they	cleave	endothelial	cell-cell	contacts	and	underlying	

basal	lamina	components.	However,	the	mechanisms	by	which	MPs	regulate	BBB	integrity	has	not	

yet	been	fully	elucidated.	The	aim	of	this	review	is	to	provide	an	overview	of	pathways	by	which	MPs	

could	regulate	the	BBB	in	the	context	of	neuroinflammation.			
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Development	of	the	BBB	
	

The	Blood-Brain	Barrier	(BBB)	is	a	tightly	regulated	interface	between	the	Central	Nervous	System	

(CNS)	and	the	circulating	blood	that	ensures	a	highly	selective	paracellular	and	transcellular	

exchange	of	molecules	between	the	two	compartments.	Structurally,	the	BBB	is	formed	by	highly	

specialised	capillary	endothelial	cells	(ECs)	discontinuously	wrapped	on	their	luminal	side	by	a	

cellular	layer	of	pericytes.	Together,	ECs	and	pericytes	synthesise	a	basement	membrane	

(comprising	extracellular	matrix	components	including	collagen	IV,	laminin	and	heparan	sulphate	

proteoglycan)	that	provide	structural	support	and	contribute	to	barrier	formation.	Astrocyte	foot	

processes	externally	cover	this	basement	membrane	acting	as	intermediates	between	the	blood	

vessels	and	the	CNS	and	promoting	BBB	stability	through	the	secretion	of	trophic	factors	(see	Fig.	1	

for	a	depiction	of	the	basic	features	of	the	neurovascular	unit)	(Park	et	al.	2003;	Seo	et	al.,	2012).	

The	perivascular	space,	previously	thought	to	be	absent	from	capillaries,	may	well	be	found	

throughout	the	vasculature	(for	review	and	discussion	see	Abbott	et	al.,	2018		and	papers	therein).		

Accumulation	of	immune	cells	within	the	perivascular	space	does	not	necessarily	trigger	full	

neuroinflammation,	as	the	glia	limitans	(formed	by	a	parenchymal	basement	membrane	and	the	

astrocyte	foot	process)	forms	a	second	barrier	that	keeps	the	immune	cells	from	entering	the	CNS	

(reviewed	in	Engelhardt	and	Ransohoff,	2012;	Engelhardt	et	al.,	2016;	Iadecola	2017).		

Cell-cell	interactions	between	neighbouring	ECs	result	in	a	polarized	phenotype	and	very	limited	

transcellular	diffusion,	resulting	in	the	BBB’s	limited	permeability.	Tight	(TJ)	and	adherens	(AJ)	

junctions	link	adjacent	ECs	together	(Kniesel	and	Wolburg,	2000).	TJs	comprise	transmembrane	

proteins	such	as	occludins,	junctional	adhesion	molecules	(JAMs)	and	claudins	which	are	anchored	to	

actin	filaments	via	adaptor	proteins	including	cingulin,	zona	occludens	proteins	(Z0-1,	-2	and	-3)	and	

Ca2+-dependent	serine	protein	kinase	(CASK).	Endothelial	AJs	link	to	the	cytoskeleton	through	

transmembrane	proteins	including	vascular-endothelial	(VE)-cadherin	and	catenins	(α,	β	and	p120)	
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(Fig.	1)	(Dejana	et	al.,	2000;	Kniesel	and	Wolburg,	2000;	Alvarez	et	al.,	2011a).	For	a	detailed	review	

of	endothelial	tight	junctions,	see	Stamatovic	et	al.	(Stamatovic,	et	al,	2016).	

The	development	of	the	BBB	is	a	tightly	regulated	process.	In	the	developing	brain,	neural	progenitor	

cells	secrete	Vascular	Endothelial	Growth	Factor	(VEGF),	which	guides	embryonic	EC	migration	into	

the	developing	brain	(Raab	et	al.,	2004).		Sprouting,	angiogenesis	and	BBB	maturation	are	promoted	

by	Wnt	secreted	by	neural	progenitor	cells,	which	induces	transcription	of	genes	implicated	in	BBB	

maintenance,	such	as	TJ	molecules	(Liebner	et	al.,	2008).	ECs	from	emerging	vessels	release	Platelet	

Derived	Growth	Factor-b	(PDGF-b),	promoting	pericyte	recruitment	to	the	vessel	surface	(Hellström	

et	al,	1999).	Transforming	Growth	Factor-β	(TGF-β)-mediated	cross-talk	between	ECs	and	

surrounding	pericytes	promotes	VE-cadherin	upregulation	in	ECs	(increasing	pericyte	adhesion)	and	

pericyte	deposition	of	ECM	components	(Hill	et	al.,	2014).	Once	vessels	are	formed,	neighbouring	

astrocytes	support	BBB	maturation	through	the	secretion	of	Sonic	Hedgehog	(Shh),	a	trophic	factor	

responsible	for	increased	TJ	protein	expression	in	ECs	(Alvarez	et	al.,	2011b).	

	

BBB	disruption	is	a	pathological	event	
	

BBB	dysfunction	is	widely	implicated	in	the	context	of	brain	injury	and	disease.	Cytotoxic	edema	

through	BBB	disruption	is	a	key	pathological	event	in	a	wide	variety	of	syndromes	such	as	ischemic	

stroke	(Page	et	al.,	2016),	meningitis	(Sellner	and	Leib,	2006)	or	ketoacidosis	(Hoffman	et	al.,	2009).	

BBB	disruption	also	facilitates	the	entry	of	activated	immune	cells	into	the	CNS	and	is	likely	to	be	an	

early	event	in	the	development	of	Multiple	Sclerosis	lesions	(Abbott	et	al.,	2010;	Larochelle	et	al.,	

2011).	In	meningitis,	BBB	disruption,	is	probably	required	for	the	pathogenic	invasion	of	the	CNS	

(Wang	et	al.,	2016).		
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Molecular	and/or	environmental	factors	can	enhance	the	ability	of	circulating	activated	T	cells	to	

cross	the	BBB	and	enter	the	CNS.	Adhesion	molecules	of	the	selectin	family	(such	as	P-selectin	

glycoprotein-1)	expressed	by	the	circulating	activated	leukocytes	interact	with	their	respective	

ligands	up-regulated	on	ECs	(Man	et	al.,	2007;	Engelhardt	et	al.,	2016;	Wang	et	al.,	2016).		Close	

interaction	with	ECs	allows	circulating	leukocytes	to	detect	chemokines	and	cytokines	(released	by	

the	damaged	tissue)	and	leukocyte	tethering	via	the	activation	of	integrins.	The	increased	affinity	

between	the	immune	cell	and	the	endothelium	strengthens	leukocyte	adhesion	to	the	vascular	wall,	

leading	to	a	crawling	process	mainly	mediated	by	alpha	L/M	beta	2	and	alpha	4	beta	1	integrins	and	

their	respective	endothelial	partners	Intercellular	Adhesion	Molecules	(ICAMs)	and	Vascular	Cell	

Adhesion	Molecules	(VCAMs)	(Man	et	al.,	2007;	Engelhard	et	al.,	2016;	Wang	et	al.,	2016).	During	

this	stage,	crawling	immune	cells	scan	the	endothelial	surface	looking	for	a	permissive	site	for	

extravasation	(or	diapedesis),	where	protrusions	from	the	endothelial	plasma	membrane	will	

surround	the	adherent	leukocyte	helping	it	to	migrate	across	the	BBB.	This	extravasation	can	take	

place	through	two	different	routes:	paracellular	diapedesis	and	transcellular	diapedesis.	In	

paracellular	diapedesis	the	activated	leukocyte	migrates	into	the	CNS	by	disrupting	the	endothelial	

junctions	between	adjacent	ECs,	enabling	transmigration	(Man	et	al.,	2007;	Engelhardt	and	

Ransohoff,	2012;	Wang	et	al.,	2016).	Transcellular	diapedesis	occurs	less	frequently	and	is	

characterised	by	clustering	of	ICAM1	(Millan	et	al.,	2006;	reviewed	in	Engelhardt	et	al.,	2016).		In	

conditions	such	as	MS,	once	circulating	autoreactive	T	cells	have	entered	the	CNS,	they	secrete	

proinflammatory	cytokines	such	as	interferon-γ	(INF-γ)	and	tumour	necrosis	factor-α	(TNF-α)	

(Engelhardt,	2006;	Man	et	al.,	2007;	Engelhardt	and	Ransohoff,	2012).	These	cytokines	can	then	

activate	antigen-presenting	cells	(APCs)	and	further	promote	the	migration	of	T	cells	across	the	BBB	

by	increasing	the	expression	of	adhesion	molecules	in	both	circulating	leukocytes	and	ECs.	For	

further	details	of	extravasation	mechanisms	see	reviews	by	Vestweber		and	Engelhardt	and	

colleagues	(Vestweber,	2015;	Engelhardt	et	al.,	2016)	and	for	review	of	immunopathology	of	MS	

development	and	T	cell	subsets	involved	see	Garg	and	Smith	(Garg	and	Smith,	2015)).	Thus,	
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cytokines	play	a	crucial	role	initiating	and	promoting	the	entry	of	pro-inflammatory	cells	into	the	

CNS.	

Many	studies	have	reported	the	role	of	cytokines	in	BBB	disruption	in	neuroinflammatory	disorders.	

Release	of	pro-inflammatory	mediators	is	an	early	event	in	MS	leading	to	BBB	disruption	(Minagar	

and	Alexander,	2003;	Abbott	et	al.,	2010;	Larochelle	et	al.,	2011).	Elevated	levels	of	circulating	TNFα,	

IL-17A	and	decreased	levels	of	circulating	IL-10	were	reported	in	Multiple	Sclerosis	patients	(Trenova	

et	al.,	2018).	Although	the	exact	mechanisms	by	which	cytokines	trigger	BBB	disruption	are	

incompletely	understood,	reduced	levels	of	TJ	proteins	(such	as	Z0-1,	claudin-5	and	occludin)	have	

been	reported	in	several	model	systems	(Forster	et	al.,	2008;	Aslam	et	al.,	2012;	Cohen	et	al.,	2013;	

Labus	et	al.,	2014).	Anti-inflammatory	cytokines	such	as	IL-4	and	IL-10	can	ameliorate	brain	lesions	

and	cellular	infiltration	in	a	murine	model	of	Multiple	Sclerosis	(Hosseini	et	al.,	2017),	and	

termination	of	inflammation	together	with	repair	mechanisms	can	be	promoted	by	microglial	

secretion	of	IL-10,	transforming	growth	factor	β		(TGFβ)	and	insulin-like	growth	factor	1	(IGF1)	

(Amantea	et	al.,	2015).	For	an	overview	of	factors	controlling	BBB	permeability,	see	Almutairi	et	al.	

(Almutair	et	al.,	2016).	

	

Metzincins	play	a	key	role	during	BBB	disruption	
	

Metzincins,	comprising	Matrix	Metalloproteinases	(MMPs),	A	Disintegrin	And	Metalloproteinases	

(ADAMs)	and	A	Disintegrin	And	Metalloproteinase	with	Thrombospondin	motifs	(ADAMTS),	are	a	

family	of	zinc	containing	proteinases	widely	implicated	in	the	biology	of	the	nervous	system	

(reviewed	in	(Rivera	et	al.,	2010)).	
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MMPs:	
	

MMPs	are	synthesized	as	inactive	enzyme	precursors	containing	a	signal	peptide,	directing	secretion	

or	localisation	to	the	plasma	membrane.	MMP	catalytic	activities	have		mainly	been	studied	in	the	

extracellular	environment	and	at	the	cell	surface	(Fanjul-Fernandez	et	al.,	2010).	MMP	activity,	(as	

well	as	activation	in	some	cases),	is	inhibited	by	the	four	Tissue	Inhibitors	of	Metalloproteinases	

(TIMPs)	(Larochelle	et	al.,	2011).	In	humans,	23	different	MMPs	have	been	classified	according	to	

differences	in	their	domain	structure	and	original	ECM	substrate	specificity	(Fig.	2)	(Yong,	2005;	

Rivera	et	al.,	2010).	The	pioneering	proteomic	approaches	taken	by	Chris	Overall	and	several	other	

groups	over	the	last	20	years	have	revealed	that	MMPs	can	cleave	many	novel	substrates,	including	

cell-cell	junction	components,	chemokines,	cytokines	and	their	receptors	as	well	as	growth	factors	

(reviewed	in	Schlage	and	auf	dem	Keller,	2015).		These	findings	have	informed	much	of	the	recent	

research	regarding	MMPs	in	BBB	breakdown.	In	addition	proteomic	approaches	reveal	that		MMP	

action	intracellularly	is	of	emerging	importance	(reviewed	in	Jobin	2017),	but	will	not	be	further	

considered	here.	MMPs	are	tightly	regulated	at	three	main	levels:	at	the	transcriptional	level	(eg	

cytokine-induced	transcription),	by	proteolytic	activation	of	their	initial	inactive	form	exposing	their	

active	catalytic	domain	and	through	inhibition	by	TIMPs.	Additionally,	MMP	activity	can	also	be	

controlled	by	post-translational	modifications,	substrate	availability	and	cellular	localization	

(reviewed	in	Yong,	2005).		

A	major	consequence	of	neuroinflammation	is	the	up-regulation	of	MMPs	(Rempe	et	al.,	2016).	

Components	of	endothelial	cell	TJs	and	AJs	as	well	as	the	extracellular	matrix	surrounding	ECs	and	

pericytes,	can	be	cleaved	by	members	of	this	large	family	of	proteinases	(Fanjul-Fernandez	et	al.,	

2010;	Eisenach	et	al.,	2012;	Liu	et	al.,	2012).	Additionally,	several	studies	using	broad	spectrum	

metalloproteinase	inhibitors	points	at	metzincins	as	main	mediators	of	BBB	pathological	disruption.	

Administration	of	a	broad	spectrum	(M)MPs	inhibitor	in	a	rat	model	of	meningitis	(Paul	et	al.,	1998)	

or	stroke	(Pfefferkorn	and	Rosenberg,	2003),	and	a	murine	model	of	multiple	sclerosis	(Gijbels	et	al.,	
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1994)	resulted	in	suppression	of	induced	BBB	permeability.	Interestingly,	the	ability	of	LPS	to	trigger	

BBB	damage	and	the	ability	of	the	tested	broad	spectrum	(M)MPs	inhibitors	to	block	LPS-induced	

BBB	disruption	was	mouse	strain-dependent,	suggesting	that	genetic	background	could	be	playing	

an	important	role	(Rosenberg	et	al.,	2007).		

MMP	induction	is	associated	with	inflammation	and	brain	injury:	early	studies	revealed	high	levels	of	

MMP9	together		with	a	reduction	in	inhibitor	levels	(TIMP1)	in	serum	from	Multiple	Sclerosis	(MS)	

patients	(an	autoimmune	disorder	in	which	early	BBB	breakdown	is	likely	to	precede	invasion	of	

autoreactive		immune	cells	into	the	CNS)	(Lee	et	al.,	1999;	Waubant	et	al.,	1999).	During	ischemia	

MMP3	expression	levels	can	be	elevated	triggering	loss	of	BBB	integrity	(Rosenberg	et	al.,	2001;	

Gurney	et	al.,	2006).	Observed	dysregulation	of	MMP	levels	may	initiate	BBB	damage	since	several	

members	of	this	family	are	capable	of	cleaving	TJ	and	basement	membrane	elements	(summarised	

in	Table	1).	Claudins,	occludins	and	Z0-1	proteins	can	be	directly	cleaved	by	MMP1	(Wu	et	al.,	2015),	

-2	(Yang	et	al.,	2007),	-9	(Yang	et	al.,	2007;	Bauer	et	al.,	2010)	and	-13	(Lu	et	al.,	2009)	amongst	

others.	Membrane	anchored	MMPs	also	activate	other	MMPs,	as	well	as	degrading	basement	

membrane	elements	such	as	collagen	IV	and	laminin	(Itoh,	2015).	In	murine	model,	MMP2	and	-9	

can	cleave	dystroglican	(a	transmembrane	receptor	responsible	for	astrocyte	foot	processes	

anchorage	to	the	basement	membrane)	promoting	leukocyte	infiltration,	discussed	in	more	detail	

later	(Agrawal	et	al.,	2006).	Additionally,	pro-inflammatory	cytokines	can	also	be	proteolytically	

activated	by	mentzincines,	suggesting	the	existence	of	a	feedback	loop	mechanism	between	(M)MPs	

and	pro-inflammatory	agents:	TNFα	can	be	cleaved	and	activated	by	ADAM17	as	well	as	by	MMPs7,	-

12,	-14	and	-17;	IL-1β	can	be	proteolytically	activated	by	MMPs2,	-3	and	-9;	and	MMP9	can	mediate	

interferon-β	inactivation	(reviewed	in	(Rodriguez	et	al.,	2010).	Interestingly,	ADAMs	8	and	-17	can	

shed	TNFα	receptor	(TNFR),	releasing	soluble	form	of	TNFR	which	can	sequester	extracellular	TNFα	

ameliorating	inflammation	(Reddy	et	al.,	2000;	Bartsch	et	al.,	2010).	IL-1R	and	IL-6R	can	be	shed	by	

ADAM10	and/or	-17		(Reddy	et	al.,	2000;	Schumacher	et	al.,	2015),	releasing	a	soluble	fraction	

capable	of	stabilising	IL-1	or	IL-6	and	exacerbate	the	inflammatory	response.	Metzincins	can	also	
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target	a	wide	range	of	chemokines,	regulating	the	recruitment	of	activated	immune	cells:	MMPs	8	

and	9	can	cleave	IL-8	enhancing	their	chemotactic	activity	(Van	den	Steen		et	al.,	2000;	Van	Den	

Steen	et	al.,	2003;	Tester	et	al.,	2007).	Studies	in	MMP8	null	mice	showed	an	impaired	recruitment	

of	activated	immune	cells	following	LPS	stimulation,	corroborating	the	in	vitro	data	(Tester	et	al.,	

2007).		MMP12	participates	in	the	termination	of	inflammation	through	the	cleavage	and	

inactivation	of	most	members	of	the	CXCL	chemokine	family	(Dean	et	al.,	2008).		Thus,	there	is	

complex	duality	underlying	mentzincines	roles	in	the	processing	of	chemokines	(reviewed	in	

Rodriguez	et	al.,	2010).	Metzincins	cannot	only	modulate	the	infiltration	of	activated	immune	cells	

through	the	direct	opening	of	the	BBB,	but	also	through	their	recruitment	and	activation	via	

chemokine	processing.	For	further	discussion	of	MMPs	in	brain	disease	see	Rempe	et	al.	(2016)	

(Table	1).	

ADAMs	
	

The	ADAM	family	shares	great	structural	similarities	with	MMPs	(Fig.	2),	and	has	also	been	

implicated	in	BBB	disruption	(reviewed	in	Reiss	and	Saftig,	2009).	ADAMs	have	major	roles	in	

shedding	molecules	from	the	cell	surface	(for	a	new	comprehensive	sheddome	database	see	Tien	et	

al.,	2017).	Within	the	ADAM	family,	ADAM10	and	ADAM17	are	the	principal	shedding	enzymes	and	

during	inflammatory	conditions	may	promote	BBB	leakage	through	the	shedding	of	adhesion	

molecules	expressed	by	ECs	(reviewed	in	Dreymueller	et	al.,	2012a).	In	addition,	the	expression	of	

ADAM17	has	been	found	to	be	up-regulated	in	active	lesions	during	MS	(Plumb	et	al.,	2006).	Recent	

evidence	indicates	that	Natalizumab	(an	anti-alpha	4	integrin	antibody)	treatment	in	patients	with	

multiple	sclerosis,	which	blocks	leukocyte	adhesion	to	VCAM-1	on	inflamed	endothelial	cells	also	

results	in	reduction	in	circulating	soluble	Vascular	Cell	Adhesion	Molecule	1	(sVCAM-1)	levels	

(Petersen	et	al.,	2016).	VCAM-1	shedding	is	ADAM17-dependent	(Garton	et	al.,	2003;	Singh	et	al.,	

2005).	Whether	Natalizumab	effects	on	VCAM-1	levels	are	ADAM17-mediated	remains	to	be	

studied,	although	it	could	be	speculated	that	Natalizumab	blockade	of	activated	immune	cell	
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recruitment	could	lead	to	a	local	decrease	in	secreted	cytokines,	leading	to	a	downregulation	in	

ADAM17	activation	and	a	possible	reduction	in	VCAM-1	shedding.		

ADAMTS		
	

A	Disintegrin	and	Metalloproteinase	with	Thrombospondin	motifs	(ADAMTS)	proteinases	are	

secreted	extracellular	enzymes	with	a	characteristic	thrombospondin	type	1	sequence	repeat	(TSR)	

motif	that	share	the	same	catalytic	domain	as	MMPs	and	ADAMs	(Figure	2)	(Kelwick	et	al.,	2015).	

Several	members	of	this	family	have	been	implicated	in	BBB	disruption:	genetic	linkage	studies	in	

Multiple	Sclerosis	patients	have	associated	ADAMTS14	(a	procollagen	aminopropeptidase)	with	this	

disease	(Goertsches	et	al.,	2005)	whereas	studies	in	an	ischemic	murine	model	have	reported	that	

ADAMTS13	blocks	tissue	Plasminogen-induced	BBB	disruption	after	cerebral	stroke	(Wang	et	al.,	

2013)	(Table	1).	

Despite	recent	advances	in	our	understanding	of	metalloproteinases,	the	precise	underlying	

mechanisms	by	which	metzincins	regulate	BBB	stability	remain	uncertain.	Many	pathways	can	

regulate	BBB	integrity	during	adulthood.	In	this	review	we	aim	to	highlight	signalling	pathways	which	

are	already	implicated	in	metzincin-mediated	regulation	of	BBB	integrity	as	well	as	those	which	are	

deserving	of	further	study.						

	

Pathways	implicated	in	metzincin	regulation	of	BBB	integrity		
	

Several	pathways	have	been	implicated	in	development	of	the	BBB,	some	of	which	have	also	been	

explored	in	the	context	of	disease.	For	each	pathway,	we	consider	the	pathway’s	role	in	

development	and/or	maintenance	of	the	BBB	and	indicate	where	metzincins	have	established	or	

emerging	roles.	We	also	make	reference	to	other	systems	where	metzincin	interaction	is	of	

importance	and	which	may	provide	useful	pointers	for	future	BBB	research.			
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Hedgehog	Pathway	
	 	

The	importance	of	astrocyte-secreted	Shh	in	BBB	maintenance	has	emerged	in	recent	years.	

Compelling	evidence	for	the	role	of	hedgehog	signalling	in	BBB	maintenance	in	adult	mice	has	been	

provided	by	Alvarez	and	colleagues	(Alvarez	et	al.,	2011b).	In	the	hedgehog	pathway	the	absence	of	

Shh,	the	cell	surface	receptor	patched	(Ptch)	functions	as	a	constitutive	inhibitor	of	Smoothened	

(Smo).	Upon	Shh-Ptch	binding,	Smo	initiates	the	Shh	signalling	cascade,	resulting	in	the	activation	of	

the	Gli	family	of	transcription	factors	(Gli1,	Gli2	and	Gli3)	(Benson	et	al.,	2004;	Choudhry	et	al.,	

2014).	By	selectively	deleting	Smo	in	mouse	brain	ECs,	a	decrease	in	junctional	proteins	(claudins	-3	

and	-5,	occludin	and	Z0-1)	accompanied	by	a	fragmented	basement	membrane	and	higher	BBB	

permeability	in	vivo	was	observed	(Alvarez,	et	al.,	2011b).	Studies	in	ECs	show	that	Shh	promotes	

neovascularization	through	upregulation	of	pro-angiogenic	factors	(including	VEGF)	as	well	as	MMP2	

and	9	(Renault	et	al.,	2010;	Yi	et	al.,	2016).	Interestingly,	Renault	et	al.	suggest	that	a	non-classical,	

alternative	pathway	involving	Rho	could	mediate	Shh-induced	angiogenesis	and	MMP9	upregulation	

in	Human	Umbilical	Vein	Endothelial	Cells	(HUVECs)	(Renault	et	al.,	2010).	In	a	disease-mimicking	

context,	cytokine	IL1β	suppresses	Shh	expression	in	murine	astrocytes	whilst	elevating	levels	of	a	

number	of	chemokines	(Wang	et	al.,	2014).		Conditioned	media	from	untreated	astrocytes	was,	as	

expected,	important	in	promoting	barrier	formation	in	endothelial	cells	whilst	medium	from	

cytokine-treated	astrocytes	abrogated	this	effect	(Wang	et	al.,	2014).	Very	recently,	conditioned	

medium	from	mycobacterium	tuberculosis	(MTb)-infected	monocytes	was	shown	to	up-regulate	

MMP9	expression	in	astrocytes	and,	as	well	as	cleaving	type	IV	collagen,	induced	MMP9	had	an	

additional	role	in	preventing	Shh	delivery	from	astrocytes	to	endothelial	cells	(Brilha	et	al.,	2017).	

Protein	levels	of	claudin-5,	occludin	and	ZO-1	were	all	reduced	but	mechanisms	underpinning	these	

observations	remain	unexplored.	The	fact	that	Shh	can	induce	MMPs	in	endothelial	cells	raises	a	
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potential	tension	between	BBB	formation	and	breakdown	mediated	by	this	pathway,	which	is	

worthy	of	further	investigation.		

	
Notch	Pathway	
	 	

The	Notch	pathway	has	been	implicated	in	vascular	barrier	integrity	(for	review	see	(Cai	et	al.,	2016))	

but	the	underlying	metalloproteinase	involvement	in	the	context	of	the	BBB	remains	unclear.	Upon	

binding	to	their	ligands,	Jagged	and	Delta-like	(Dll),	the	Notch	family	of	transmembrane	receptors	

(Notch1	to	4	in	mammals)	are	generally	cleaved	by	ADAM10,	enabling	γ-secretase-mediated	release	

of	the	Notch	intracellular	domain	(NICD),	which	translocate	to	the	nucleus.	Here	the	NCID	associates	

with	CSL	and	Mastermind-like-1	(MAMIL)	to	regulate	gene	transcription	(reviewed	in	(Siebel	and	

Lendahl,	2017;	Wetzel	et	al.,	2017)).	Interestingly,	Notch	shedding	can	be	also	be	triggered	in	a	

ligand-independent	manner,	involving	endosomal	localisation/association	(reviewed	in	(Palmer	and	

Deng,	2015;	La	Foya	2016)).		Notch	interaction	with	the	wnt	signalling	pathway	may	impact	on	

vascular	barrier	integrity	through	NCID/β-catenin	regulation	of	gene	expression	or	through	triggering	

of	β-catenin	degradation	(reviewed	in	La	Foya	2016).	

Early	studies	have	showed	roles	for	ADAM10	(Pabois	et	al.,	2015;	Zhuang	et	al.,	2015)	and	ADAM17	

(Broux	et	al.,	2012)	in	the	extracellular	cleavage	of	Notch.	Murine	deletion	studies	demonstrated	

that	ADAM10	plays	a	role	in	blood	vessel	development	in	several	vascular	beds,	such	as	liver,	bone	

and	retina	(Glomski	et	al.,	2011).	However,	histopathological	observations	revealed	that	mice	with	

an	endothelial-specific	ADAM10	do	not	develop	major	phenotypic	defects	in	the	brain	(Alabi	et	al.,	

2016).	This	comprehensive	study	revealed	that	endothelial-specific	deletion	of	Notch1	and	Notch4	

phenocopies	the	ADAM10-deleted	mice.	ADAM10/17	double	knockout	mice	did	not	show	any	

additional	defects,	demonstrating	that	ADAM10	is	the	key	proteinase	in	these	interactions.	Further	

studies	will	determine	whether	ADAMs	10	or	17	are	implicated	in	Notch	signalling	in	relation	to	

functional	maintenance	of	the	BBB	in	adult	mice	and	in	disease.		The	same	study	revealed	that	Notch	



HIS
TOLO

GY A
ND H

IS
TOPATHOLO

GY 

(no
n-e

dit
ed

 m
an

us
cri

pt)

13	
	

1	and	Notch	4	have	partially	overlapping	roles	in	vascular	barriers	(Alabi	et	al.,	2016).	Additionally,	

ADAM10	and	Notch	can	respond	to	inflammatory	stimuli	in	other	vascular	pathologies:	in	an	in	vivo	

model	of	vascular	inflammation	an	increase	in	IL-6	was	mediated	by	ADAM10-dependent	shedding	

of	Notch,	suggesting	that	ADAM10	activation	of	Notch	signalling	could	be	involved	in		inflammation	

and	recruitment	of	activated	immune	cells	(Pabois	et	al.,	2015).		

	

Oxidative	stress	can	synergistically	trigger	a	reduction	in	Notch4	and	Z0-1	protein	levels	in	brain	ECs	

isolated	from	rats	(Manda	et	al.,	2010).	However,	it	remains	to	be	determined	whether	the	

described	loss	in	BBB	stability	is	Notch4-dependent	or	a	broader	consequence	of	oxidative	stress	

exposure.	Notch3	(expressed	by	surrounding	vascular	smooth	muscle	cells	(VSMCs))	plays	a	key	role	

in	BBB	maintenance,	as	Notch3-/-	mice	exhibit	enhanced	BBB	permeability	in	vivo	(assessed	by	

Evans	Blue	and	Horseradish	Peroxidase	extravasation)	(Henshall	et	al.,	2015).	Thus,	members	of	the	

Notch	family	may	exert	different	effects	under	the	same	conditions	depending	on	the	overall	activity	

of	the	Notch	pathway.	Supporting	this	idea,	in	vivo	and	in	vitro	studies	in	human	brain	microvascular	

ECs	(HBMECs)	suggest	a	role	for	Notch1	rather	than	Notch3	(whose	expression	is	specific	to	VSMCs)	

to	be	a	key	mediator	in	cocaine-induced	BBB	breakdown	(Yao	et	al.,	2011).	Although	EC	to	EC	Notch	

signalling	has	been	previously	reported	to	be	essential	during	angiogenesis	and	vascular	homeostasis	

(Noseda	et	al.,	2004)	more	recent	studies	suggest	the	existence	of	a	complex	Notch	cross-talk	

between	all	the	components	of	the	NVU.	A	thorough	characterization	of	Notch	receptor	and	ligand	

expression	among	the	components	of	the	NVU	shows	a	heterogeneous	and	complex	distribution	of	

these	components:	Notch	1	and	4	are	expressed	in	ECs	together	with	the	ligands	Jagged2	and	Dll4;	

Notch	2	and	3	are	present	in	astrocytes;		Jagged	1	is	located	in	pericytes	and	neurons	express	Dll1	

(Yamamizu	et	al.,	2017).	Supporting	this	idea,	neuron-derived	Dll	was	reported	to	be	needed	for	the	

complete	differentiation	of	brain	ECs	in	a	complex	co-culture	in	vitro	model	of	the	BBB	(Yamamizu	et	



HIS
TOLO

GY A
ND H

IS
TOPATHOLO

GY 

(no
n-e

dit
ed

 m
an

us
cri

pt)

14	
	

al.,	2017).	Studies	in	mouse	retina	showed	that	Notch3	is	required	for	pericyte	attachment	to	ECs	in	

an	N-cadherin	dependent	manner	(Liu	et	al.,	2010).		

	

One	of	the	many	consequences	of	Notch1	activation	is	the	inhibition	of	Phosphatase	And	Tensin	

Homolog	(PTEN),	downstream	of	Notch,	and	the	consequent	activation	of	PI3K/p-Akt	pathway	(El-

Habr	et	al.,	2014;	Song	et	al.,	2015).	The	role	played	by	the	Serine/Threonine	kinase	Akts	in	BBB	

integrity	remains	to	be	fully	clarified.	Studies	with	Akt1-/-/Akt2-/-	double	KO	mice	showed	no	altered	

EC	survival,	but	a	gradual	loss	of	VSMCs	due	to	reduced	Jagged1/Notch	signalling	(Kerr	et	al.,	2016).		

	

Conflicting	with	the	previously	discussed	studies	in	Notch3-/-	mice	(Henshall	et	al.,	2015),	Akt1-/-

/Akt2-/-	double	KO	mice	exhibit	an	intact	BBB	(Kerr	et	al.,	2016).	However,	the	assessment	of	BBB	

properties	in	this	study	was	performed	through	NaF	permeability,	a	very	low	molecular	weight	

molecule	broadly	used	to	measure	basement	membrane	permeability	to	water	and	other	small	

solutes	rather	than	large	molecules	such	as	dextran.	A	mathematical	prediction	of	BBB	functions	

suggests	that	even	when	TJs	are	compromised,	the	basement	membrane	and	astrocyte	foot	

processes	could	theoretically	maintain	a	low	permeability	to	water	and	other	small	solutes	(Li	et	al.,	

2010).	Hence,	it	is	possible	that	a	functional	basement	membrane	in	the	Akt1-/-	and	Akt2-/-	double	

KO	could	mask	TJ	dysfunction	when	tested	with	NaF,	explaining	the	apparently	contradictory	results.		

Despite	the	uncertain	role	of	Notch	signalling	in	BBB	stability,	a	role	for	secreted	MMP9	and	MMP2	

in	shedding	extracellular	Notch1	(consequently	enhancing	Notch1	signalling)	has	been	suggested	in	a	

murine	model	of	MS	(experimental	autoimmune	encephalomyelitis,	EAE).	Song	and	colleagues	

showed	an	up-regulation	of	Notch1-specific	transcription	factors	in	MMP2-	and	MMP9-treated	

astrocytes	(Song	et	al.,	2015).	Additionally,	in	vitro	experiments	showed	reduced	T	cell	

transmigration	in	the	presence	of	primary	Notch1-/-	astrocytes	exposed	to	a	pro-inflammatory	
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environment.	Reduced	astrocytic	chemotactic	activity	and	chemokine	secretion	could	not	be	

restored	by	addition	of	activated	MMP2	or	MMP9	(Song	et	al.,	2015).	The	key	roles	of	MMP2	and	

MMP9	as	mediators	of	leukocyte	infiltration	into	the	CNS	have	been	shown	in	MMP2-/-/MMP9-/-	

double	knock-out	mice,	but	levels	of	Notch	proteolytic	activation	were	not	assessed	in	this	context.	

MMP14	(or	MT-MMP-1)	can	also	trigger	Notch	proteolytic	activation	but	its	impact	in	the	context	of	

the	BBB	remains	to	be	clarified	(Ma	et	al.,	2014)	(Fig.	3).		

Pathways	to	cytoskeletal	reorganization	
			

TNFα	stimulation	of	brain	microvascular	ECs	results	in	the	formation	of	actin	stress	fibres,	loss	of	Z0-

1	immunostaining	and	increased	barrier	permeability	at	early	time-points,	which	can	be	reversed	by	

MMP9	inhibition	(Wiggins-Dohlvik	et	al.,	2014).	As	previously	mentioned,	Z0	proteins	act	as	a	link	

between	transmembrane	components	of	the	TJ	(occludins	and	claudins)	and	the	actin	cytoskeleton	

(Fanning	et	al.,	1998;	Itoh	et	al.,	1999),	similar	to	the	role	of	catenins	during	AJ	formation	(Yap	et	al.,	

1997).	Thus,	Z0	proteins	work	as	adaptors	between	the	dynamic	cytoskeleton	and	the	stable	TJ,	

providing	ECs	with	a	barrier	which	can	adjust	to	different	cellular	requirements.	Under	certain	

environmental	conditions,	actin	filaments	can	change	their	usual	conformation	(distributed	across	

the	ECs	as	short	filaments	and	monomers)	and	polymerize	into	large	structures	known	as	stress	

fibres	(Burridge	and	Wittchen,	2013).	In	vitro	studies	using	isolated	mouse	brain	capillaries	and	

HBMECs	have	shown	that	stress	fibres	can	increase	cytoskeletal	tension	leading	to	an	impaired	TJ	

formation	through	a	RhoA/Rho	kinase	(ROCK)-mediated	mechanism	(McKenzie	and	Ridley,	2007;	Shi	

et	al.,	2016).		This	actin-mediated	disassembly	of	TJs	could	result	in	the	opening	cell-cell	contacts,	

exposing	other	junctional	proteins	and	ECM	components	to	the	degradation	by	surrounding	(M)MPs.			

	

Actin	contractility	is	induced	by	the	phosphorylation	of	myosin	light	chain	(MLC),	which	is	in	turn	

activated	by	the	ROCK/myosin-light	chain	kinase	(MLCK)	pathway	(Hathaway	et	al.,	1981).	This	
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impairment	of	TJ	formation	leads	to	an	increased	permeability	to	small	molecules	and	activated	

immune	cells	in	a	well-established	in	vitro	model	of	the	BBB	(Shi	et	al.,	2016).		

Studies	in	immortalised	human	brain	microvascular	ECs	(hCMEC/D3)	report	an	actin-mediated	

nuclear	translocation	mechanism	for	Z0-1	after	activation	of	the	ROCK/MLCK	pathway	that	will	result	

in	Z0-1	internalization	and	TJ	impairment.	This	research	also	demonstrated	that	Rho	activation	

triggered	cAMP	Response	Element	Binding	Protein	(CREB)	phosphorylation,	which	in	turn	could	

enhance	MLC	activation	(Zhong	et	al.,	2012).	CREB	is	a	transcription	factor	that	can	recognize	and	

bind	to	a	CREB	responsive	element	(CRE)	present	in	the	promoter	region	of	many	cAMP-responsive	

genes	(Johannessen	et	al.,	2004)	including	ZO-1	(Chen	et	al.,	2008;	Zhong	et	al.,	2012)	.		Akt	can	

phosphorylate	CREB	on	Ser133	leading	to	its	activation(Du	and	Montminy,	1998).	Thus,	it	could	be	

proposed	that	Akt-mediated	phosphorylation	of	CREB	can	enhance	DNA	binding	activities	leading	to	

an	increase	in	Z0-1	transcription,	which	would	enhance	barrier	properties	in	the	context	of	the	BBB	

(Fig.	3).		

Akt	is	frequently	activated	down-stream	of	BBB	disrupting	agents	including	inflammatory	cytokines,	

and	attention	has	turned	more	recently	to	its	role	in	localisation	of	TJ	proteins:	in	the	bEND.3	cell	

line	cytokine	treatment	results	in	early	loss	of	paracellular	claudin-5	localisation	via	the	PI3K/Akt	

pathway	(Camire	et	al.,	2014;	Machida	et	al.,	2017).	In	a	co-culture	model	of	rat	pericytes	and	ECs,	

thrombin	can	induce	pericyte	release	of	MMP9	through	PAR1/Akt	activation	(Machida	et	al.,	2017).		

It	is	also	possible	that	Akt	could	be	mediating	TJ	formation	through	direct	phosphorylation	of	Z0-1	

(Furuse	et	al.,	1999).	Whereas	Z0-1	tyrosine	phosphorylation	has	been	correlated	with	both	

increased	and	decreased	barrier	permeability,	depending	on	the	cell	type,	in	epithelial	cells	

serine/threonine	phosphorylation	has	mainly	been	described	to	impair	TJ	function	through	the	

internalization	of	Z0-1	(Harhaj	and	Antonetti,	2004).	Akt	mediated	phosphorylation	can	also	enhance	

Z0-1-dependent	TJ	formation	in	diabetic	mouse	retina	explants	(likely	in	the	vasculature)	(Liu	et	al.,	
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2012).Thus,	studies	of	direct	effects	of	Akt-driven	phosphorylation	of	Z0-1	in	the	context	of	the	BBB	

may	be	warranted.		

	

Overall,	it	seems	that	the	Akt/CREB	pathway	could	mediate	opposing	effects	on	BBB	stability:	

inducing	Z0-1	internalization	and	TJ	disruption	or	directly	promoting	Z0-1	gene	expression.		Thus,	the	

Akt/CREB	pathway	may	be	acting	as	an	intracellular	node	that	enhances	or	impairs	TJ	stability	

depending	on	the	environmental	conditions	(Fig.	3).	Interestingly,	McKenzie	et	al.	(2007)	reported	

that	a	TNFα	effect	on	cytoskeletal	rearrangements,	through	ROCK/MLCK	pathway,	was	enough	to	

cause	TJ	distribution	at	early	time-points	but	insufficient	to	trigger	long-term	effects	on	EC	

permeability.	These	observations	suggest	that	TJ	distribution	and	stability	could	be	responding	to	

internal	mechanisms	depending	on	the	time-points	studied	(McKenzie	and	Ridley,	2007).	

Overall,	regulation	of	Z0-1	cellular	localization	seems	to	play	an	essential	role	in	BBB	stability	by	

affecting	TJ	assembly	directly.	In	addition,	and	as	previously	mentioned,	as	well	as	being	a	substrate	

for	MMP9	(and	other	MPs	potentially),	ZO-1	re-distribution	may	result	in	exposure	of	other	

junctional	proteins,	opening	cell-junctions	to	allow	access	by	(M)MPs	to	basement	membrane	

components,	resulting	in	their	subsequent	cleavage.		

	

NFκβ	pathway	
	

NFκβ	is	a	heterodimeric	transcription	factor	which	has	long	been	established	to	activate	

transcription	of	several	MMPs	(Richmond,	2002).	A	number	of	inflammatory	cytokines	trigger	the	

NFκβ	pathway	resulting	in	loss	of	TJ	integrity,	and	consequent	BBB	disruption	(Chen	et	al.,	2011;	

Aslam	et	al.,	2012;	Coelho-Santos	et	al.,	2015).	NFκβ	can	be	sequestered	in	the	cytoplasm	by	the	

Inhibitor	of	κβ	(Iκβ),	whose	phosphorylation	on	specific	Serine	residues	leads	to	its	ubiquitination	

and	proteasome	degradation,	freeing	NFκβ	to	enter	the	nucleus,	bind	to	its	specific	promoter	
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elements	and	activate	gene	transcription	(Fig.	3).	Despite	the	fact	that	Iκβ	phosphorylation	is	not	

directly	regulated	by	Akt,	it	has	been	suggested	that	Akt	can	mediate	the	activation	of	the	Iκβ	kinase	

complex	(IKK)	resulting	in	Iκβ	phosphorylation	and	consequent	degradation	(Li	and	Stark,	2002;	Bai	

et	al.,	2009).		In	vitro	studies	in	Human	Umbilical	Vein	ECs	(HUVECs)	suggest	Akt	could	be	a	mediator	

of	NFκβ	nuclear	transduction	in	the	context	of	the	vascular	endothelium,	although	if	Akt’s	effects	on	

NFκβ	cellular	location	are	direct	or	indirect	remains	to	be	determined	(Yu	et	al.,	2014).		

The	NFκβ	family	of	transcription	factors	can	regulate	the	expression	of	a	wide	range	of	genes	

implicated	in	various	cellular	mechanisms,	and	some	are	intimately	involved	in	the	formation	of	TJs:	

in	ECs	NFκβ	directly	represses	claudin-5	expression	by	binding	to	its	promoter	(Aslam	et	al.,	2012)	

and	binding	regions	have	been	identified	in	MMP14	promoter	(Haas	et	al.,	1999).	Studies	in	several	

cell	types	point	to	many	possible	BBB-related	genes	that	could	be	also	regulated	by	NFκβ,	yet	to	be	

studied	in	an	EC-BBB	context.	For	example,	NFκβ	binding	regions	have	been	identified	in	the	

occludin	promoter	(Wachtel	et	al.,	2001;	Kimura	et	al.,	2008);	characterization	of	the	MLCK	human	

promoter	showed	various	NFκβ	responsive	elements	(Graham	et	al.,	2006)	(which	will	lead	to	TJ	

internalization	as	previously	discussed).	NFkβ	activation	also	results	in	the	transcription	of	several	

(M)MPs	(such	as	MMP1,	3,	-9,	-10,	-12	and	-13	(Lee	et	al.,	2007;	Akhtar	et	al.,	2010;	Fanjul-Fernandez	

et	al.,	2010;	Nakayama,	2013;	Yun	et	al.,	2014)	and	some	ADAMTS	proteinases	(Li	et	al.,	2015;	Sun	et	

al.,	2015).	Recent	in	vitro	studies	with	a	human	brain	microvascular	EC	line	(bEnd.3)	has	shown	that	

under	hypoxic	conditions	NFκβ	can	mediate	BBB	disruption	through	enhanced	MMP9	expression	

(Won	et	al.,	2015).		

Of	particular	interest	is	the	already	discussed	role	of	MMP9	in	Notch1	activation,	since	it	raises	the	

possibility	of	a	positive	feedback	loop	between	the	NFκβ	and	Notch	pathways.	MMP9-mediated	

Notch	activation	will	lead	to	PTEN	inhibition	and	the	consequent	Akt	activation,	now	able	to	enhance	

NFκβ	DNA	binding	ability	and	the	transcription	of	those	NFκβ	responsive	genes,	such	as	MMP9	

further	compromising	BBB	integrity	(Fig.	3).		



HIS
TOLO

GY A
ND H

IS
TOPATHOLO

GY 

(no
n-e

dit
ed

 m
an

us
cri

pt)

19	
	

Additional	complexity	in	the	NFκβ	pathway	is	provided	by	membrane-type	matrix	

metalloproteinases	(MT-MMPs)	some	of	which	have	a	cytoplasmic	tail	that	can	trigger	signal	

transduction	cascades	(Itoh,	2015).	For	example	in	macrophages,	MMP14	(also	known	as	MT-MMP-

1)	can	induce	the	PI3K/Akt	signalling	cascade	in	a	proteinase-independent	manner	(Ohtake,	2006).	

Studies	in	a	human	breast	cancer	cell	line	confirm	MMP14	activation	of	Akt,	and	also	showed	that	

Akt	inhibition	triggered	a	reduction	in	MMP14	levels	(Eisenach	et	al.,	2010)	supporting	the	previously	

discussed	idea	that	Akt	may	be	mediating	(M)MPs	expression	by	ultimately	modulating	the	activity	

of	particular	transcription	factors	(such	as	NFκβ).	A	number	of	studies	have	explored	the	roles	of	

MMP14	in	endothelial	cell	signalling	(reviewed	in	Ohkawara	et	al.	(Ohkawara	et	al.,	2015))	showing	a	

TNFα-dependent	reduction	in	Akt	phosphorylation	and	an	association	of	cytoplasmic	MMP14	with	

Akt	which	can	modulate	NFKβ	responses	(Findley	et	al.,	2007).	More	recent	studies	show	that	under	

oxidative	stress	(a	well	described	activator	of	NFκβ),	the	presence	of	a	broad	spectrum	(M)MP	

inhibitor	could	reverse	induced	occludin	loss	and	intercellular	gap	formation,	although	barrier	

function	was	not	restored.	These	results	suggest	that	in	addition	to	(M)MPs,	there	is	a	complex	

effect	of	oxidative	stress	in	barrier	permeability	(Lischper	et	al.,	2010).					

	Thus	(M)MPs	may	modulate	signalling	pathways	underlying	BBB	integrity	as	well	as	acting	as	

proteolytic	enzymes	responsible	for	direct	BBB	disruption	but	the	cellular	context/stimulus	is	key.		

	

Adherens	Junctions	in	metzincin-mediated	BBB	integrity		
	

		The	impact	of	metzincins	on	Adherens	Junctions	(AJs)	is	also	of	a	great	interest	in	the	context	of	the	

BBB.	Recent	studies	point	at	VE-cadherin	(a	main	component	of	AJs)	as	a	possible	metalloproteinase	

target.	Microvascular	ECs	isolated	from	lungs	of	TIMP3	knockout	mice	showed	a	reduction	in	barrier	

ability	associated	with	a	disrupted	expression	of	membrane	VE-cadherin.	Both	barrier	function	and	

VE-cadherin	expression	were	rescued	in	the	presence	of	a	broad-spectrum	metalloproteinase	

inhibitor	(Arpino	et	al.,	2016).	It	is	important	to	consider	that	TIMP3	not	only	inhibits	MMPs,	but	also	
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several	members	of	the	ADAM	family,	including	ADAM10.	Interestingly,	Reyat	and	colleagues	

described	a	significant	increase	in	VE-cadherin	surface	expression	in	ADAM10	siRNA	knockdown	cells	

(Reyat	et	al.,	2017).	Thus,	ADAM10-mediated	VE-cadherin	cleavage	could	have	a	direct	impact	on	

BBB	stability,	although	it	is	important	to	consider	that	other	metalloproteinases	could	also	be	

involved	in	this	degradation.	In	order	to	clarify	these	observations	further	studies	are	needed	in	the	

context	of	the	BBB.	Junctional	Adhesion	Molecule	A	(JAM-A)	is	also	shed	by	ADAM17	in	cultured	

endothelial	cells	treated	with	pro-inflammatory	cytokines	(Koenen	et	al.,	2009)	and	LPS-induced	

JAM-A	cleavage	was	reduced	after	ADAM17	silencing	in	human	lung	microvascular	endothelial	cells	

(Dreymueller	et	al.,	2012b).	Interestingly,	studies	in	human	brain	microvascular	ECs	exposed	to	HIV-

infected	monocytes	revealed	that	JAM-A	shedding	was	not	exclusive	to	ADAM17,	since	normal	levels	

of	JAM-A	were	restored	after	treatment	with	an	MMP9	specific	inhibitor	(Huang	et	al.,	2009).		

Interestingly,	a	crosstalk	between	AJs	and	TJs	has	been	suggested	in	the	literature	(Tietz	and	

Engelhardt,	2015).	One	of	the	key	elements	of	this	junctional	crosstalk	is	VE-cadherin,	which	

modulates	TJ	stability	through	regulation	of	claudin-5	transcription	(Taddei	et	al.,	2008).		

Despite	the	lack	of	a	complete	characterization	of	the	claudin-5	promoter,	bioinformatic	analysis	has	

predicted	paired	binding	regions	for	Forkhead	box	protein	O1	(FoxO1)	and	β-catenin	suggesting	an	

interaction	between	these	two	transcription	factors	(Taddei	et	al.,	2008).	Chromatin	

immunoprecipitation	(ChIP)	together	with	luciferase	assays	showed	that	a	direct	interaction	

between	β-catenin	and	FoxO1	is	needed	to	stabilise	FoxO1’s	binding	to	the	claudin-5	promoter	and	

enhance	its	repressor	activity	(Taddei	et	al.,	2008).	When	forming	AJs,	transmembrane	VE-cadherin	

forms	a	complex	with	and	sequesters	β-catenin	at	the	plasma	membrane,	impairing	its	nuclear	

translocation.	Due	to	this	intracellular	redistribution,	FoxO1	repressor	activity	can	no	longer	be	

enhanced	by	β-catenin	interaction,	resulting	in	increased	claudin-5	expression	and	consequent	TJ	

stabilization	(Taddei	et	al.,	2008).		
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Additionally,	FoxO1	activity	and	cellular	localization	is	determined	by	its	phosphorylation	status:	DNA	

binding	activity	is	truncated	by	phosphorylation	at	Ser256,	whereas	nuclear	exclusion	is	promoted	by	

phosphorylation	at	Thr24	(Daitoku	et	al.,	2011).	Taddei	et	al.	demonstrated	that	clustering	of	VE-

cadherin	at	the	plasma	membrane	can	lead	to	activation	of	the	PI3K/Akt	pathway	and	consequent	

phosphorylation	of	FoxO1,	which	can	no	longer	repress	claudin-5	(Taddei	et	al.,	2008).	In	vivo	and	in	

vitro	studies	with	AKt1	null	mice	or	with	Akt-depleted	human	microvascular	ECs	(HMECs)	stimulated	

with	pro-	and	anti-vascular	agents	confirm	the	effect	of	Akt	on	FoxO-dependent	claudin-5	expression	

and	endothelial	barrier	integrity	(Gao	et	al.,	2016).	Complementary	to	these	studies,	mice	expressing	

a	truncated	form	of	VE-cadherin	lacking	the	β-catenin-binding	cytoplasmatic	tail	showed	that	a	

cadherin-catenin	complex	is	required	for	PI3K	recruitment	and	activation	of	the	PI3K/Akt	pathway	

(Carmeliet	et	al.,	1999).			

Supporting	the	hypothesis	of	VE-cadherin/β-catenin	mediated	regulation	of	claudin-5	expression,	in	

vitro	studies	with	brain	microvascular	endothelial	cells	not	only	corroborate	the	previously	discussed	

mechanisms	but	also	suggest	an	essential	role	for	non-muscle	myosin	light	chain	kinase	(nm-MLCK)	

in	the	pathway	(Beard	et	al.,	2014).	Importantly	this	study	assessed	VE-cadherin	modulation	of	TJ	

stability	under	inflammatory	conditions;	hence,	nm-MLCK	role	in	VE-cadherin/β-catenin	regulation	

of	claudin-5	expression	needs	to	be	interpreted	in	this	context,	while	other	intermediates	may	vary	

depending	on	the	extracellular	environment.	

Metalloproteinase	effects	on	AJs	should	thus	not	only	be	considered	from	the	perspective	of	a	direct	

impact	on	barrier	stability:	VE-cadherin	cleavage	will	not	only	impair	intercellular	contact	formation	

but	will	also	release	membrane-bound	β-catenin,	now	free	to	modulate	TJ	stability	through	claudin-5	

transcription.	Thus,	AJ-TJ	crosstalk	mechanisms	should	be	explored	further	in	future	BBB	studies.	
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Metzincins	as	indirect	promoters	of	BBB	integrity	
	
It	is	important	to	consider	the	possibility	that	metzincins	may	play	a	key	role	in	limiting	leukocyte	

recruitment	(one	of	the	first	steps	of	neuroinflammation)	at	the	BBB.	MMP2	(together	with	MMP13	

and	14),	can	terminate	the	inflammatory	response	through	the	cleavage	of	Macrophage	

chemoattractant	protein	3	(MCP-3)	(McQuibban	et	al.,	2000).	Full-length	MCP-3	promotes	the	

recruitment	of	active	monocytes	and	leukocytes,	but	once	cleaved	it	can	antagonize	chemokine	

receptors	attenuating	the	inflammatory	response	(McQuibban	et	al.,	2000).	MMP2	may	play	dual	

roles	during	inflammation	since	studies	in	MMP2-/-	mice	showed	earlier	onset	and	more	severe	EAE	

due	to	a	compensatory	increase	in	MMP9	(Esparza	et	al.,	2004).	In	contrast	to	this	data,	Agrawal	et	

al.	did	not	report	any	variation	in	EAE	course	or	severity	in	their	MMP2-/-	mice	when	compared	to	

wild	type	littermates,	since	EAE	resistance	was	exclusively	observed	in	MMP2	/MMP9	double	

knockout	mice	(Agrawal	et	al.,	2006).	Additionally,	fractalkine	(a	pro-inflammatory	chemokine)	can	

be	cleaved	by	MMP2	into	a	soluble	antagonist	(Dean	and	Overall,	2007).		Further	studies	will	be	

needed	to	define	the	exact	role	of	MMP2	during	the	inflammatory	response	in	the	biology	of	the	

BBB.		

MMPs	often	interface	closely	with	the	serine	proteinase	plasminogen	activator	family.	Tissue	

Plasminogen	Activator	(tPA)	has	been	shown	to	induce	BBB	disruption	by	promoting	MMP9	(Wang	

et	al.,	2003)	and	NFκβ	activation	(Cheng	et	al.,	2006).	Protease-activated	receptor	1	(PAR-1)	is	an	

intermediate	in	the	tPA/NFκβ/MMP9	pathway	(Cheng	et	al.,	2006)	that	can	be	cleaved	and	

consequently	activated	by	MMP1	(Boire	et	al.,	2005).	Although	the	impact	of	PAR-1’s	MMP1-

mediated	activation	on	the	NFκβ/MMP9	axis	has	not	yet	been	elucidated,	several	studies	have	

described	MMP1-	mediated	shedding	of	PAR-1	in	endothelial	cells	(Goerge	et	al.,	2006;	Blackburn	

and	Brinckerhoff,	2008;	Tressel	et	al.,	2011;	Nugent	et	al.,	2016).	However,	the	impact	of	this	

pathway	in	the	context	of	the	BBB	and	inflammation	remains	to	be	fully	studied.		
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von	Willebrand	factor	(VWF)	is	a	multimeric	glycoprotein	with	an	essential	role	in	thrombus	

formation	and	the	only	known	substrate	for	ADAMTS-13.	Although	the	underlying	mechanisms	are	

not	fully	understood,	in	vivo	studies	in	a	murine	stroke	model	have	revealed	that	tPA	can	increase	

VWF	plasma	levels	leading	to	BBB	disruption.	ADAMTS-13	may	mitigate	this	pathway	though	VWF	

degradation	(Wang	et	al.,	2013).	Interestingly,	studies	in	VWF-null	mice	reveal	that,	unchallenged,	

these	mice	do	not	have	a	BBB	phenotype	but	are	far	more	susceptible	to	hypoxia/reperfusion	insult.	

Although	the	status	of	ADAMTS13	in	VWF-null	mice	was	not	studied,	an	increase	in	claudin-5	levels	

was	noted	(Suidan	et	al.,	2013).	Alternatively,	tPA	can	also	induce	BBB	disruption	by	upregulating	the	

VEGF/MMP9	pathway	(Kanazawa	et	al.,	2011).	In	this	scenario,	ADAMTS13	might	protect	BBB	

stability	by	abrogating	the	VEGF	pathway	in	a	dose-dependent	manner,	though	the	molecular	

mechanisms	are	yet	unknown,	co-immunoprecipitation	experiments	point	to	a	direct	

ADAMTS13/VEGF	interaction	(Lee	et	al.,	2012).	However,	it	is	possible	ADAMTS13	also	has	

detrimental	effect	on	BBB	integrity	by	antagonising	the	positive	effect	of	VEGF	on	angiogenesis,	

opposite	to	the	effect	of	MMP9	(Bergers	et	al.,	2000).		

	

Conclusions	and	future	directions	
	

It	is	clear	that	the	BBB	plays	a	pivotal	role	in	a	wide	range	of	acute	and	chronic	inflammatory	

neurological	disorders,	including	multiple	sclerosis	and	stroke.	The	importance	and	complexity	of	

metzincin	roles	in	BBB	integrity	is	gradually	being	elucidated	and	becoming	a	more	widespread	field	

of	study.	However,	it	seems	that	metzincin	effects	on	BBB	stability	could	be	the	outcome	of	a	

complex	network	of	intracellular	mechanisms.	In	order	to	start	untangling	this	highly	intricate	

network	in	human	cells,	new	models	may	be	beneficial.	Further	refinement	of	human	BBB	models	in	

which	interactions	between	different	pathways	can	be	dissected	is	needed.	A	good	example	of	this	is	

the	novel	BBB	in	vitro	model	generated	by	Yamamizu	et	al.	(Yamamizu	et	al.,	2017)	in	which	human	
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induced	pluripotent	stem	cells	(hiPSC)	were	used	to	generate	a	co-culture	of	the	4	different	cell	

populations	integrating	the	BBB	(ECs,	pericytes,	astrocytes	and	neurons)	(Yamamizu	et	al.,	2017).		

Hence,	a	better	understanding	of	the	interplay	between	networks	and	signalling	pathways	

underlying	BBB	maintenance	could	offer	new	insights	on	BBB	pathological	dysregulation,	as	well	as	

help	to	identify	novel	therapeutic	targets	in	a	wide	range	of	neurological	disorders.		

	

Acknowledgements	
	

Research	in	the	authors’	laboratories	is	supported	by	funding	from	the	following:	Norwich	Research	

Park	Studentship;	BBSRC;	UEA	Strategic	Funds;	High	Value	Chemicals	from	Plants	Network	and	

Norfolk	and	Norwich	Hospital	Neurology	Research.	

	 	



HIS
TOLO

GY A
ND H

IS
TOPATHOLO

GY 

(no
n-e

dit
ed

 m
an

us
cri

pt)

25	
	

REFERENCES:	
	

Abbott	N.J.,	Patabendige	A.	A.,	Dolman	D.E.,	Yusof	S.R.	and	Begley	D.J.	(2010).	Structure	and	function	of	the	

blood-brain	barrier.	Neurobiol.	Dis.,	37,	13-25.	

Abbott	N.J.,	Pizzo	M.E.,	Preston	J.E.,	Janigro	D.	and	Thorne	R.G.	(2018).	The	role	of	brain	barriers	in	fluid	

movement	in	the	CNS:	is	there	a	“glymphatic”	system?	Acta	Neuropathologica,	pp.	1-21.	

Agrawal	S.,	Anderson	P.,	Durbeej	M.,	van	Rooijen	N.,	Ivars	F.,	Opdenakker	G.	and	Sorokin	L.M.	(2006).	

Dystroglycan	is	selectively	cleaved	at	the	parenchymal	basement	membrane	at	sites	of	leukocyte	

extravasation	in	experimental	autoimmune	encephalomyelitis.	J.	Exp.	Med.,	203,	1007-1019.		

Akhtar	N.,	Rasheed	Z.,	Ramamurthy	S.,	Anbazhagan	A.N.,	Voss	F.R.	and	Haqqi	T.M.	(2010).	MicroRNA-27b	

regulates	the	expression	of	matrix	metalloproteinase	13	in	human	osteoarthritis	chondrocytes.	Arthritis	

Rheum.,	62,	1361-1371.	

Alabi	R.O.,	Glomski	K.,	Haxaire	C.,	Weskamp	G.,	Monette	S.	and	Blobel	C.P.	(2016).	ADAM10-Dependent	

Signaling	Through	Notch1	and	Notch4	Controls	Development	of	Organ-Specific	Vascular	Beds.	Circ.	Res.,	

119,	519-531.	

Almutairi	M.M.,	Gong	C.,	Xu	Y.G.,	Chang	Y.	and	Shi	H.	(2016).	Factors	controlling	permeability	of	the	blood-

brain	barrier.	Cell.	Mol.	Life.	Sci.	73,	57-77.	

Alvarez	J.I.,	Cayrol	R.	and	Prat	A.	(2011a).	Disruption	of	central	nervous	system	barriers	in	multiple	sclerosis.	

Biochim.	Biophys.	Acta,	1812,	252-264.	

Alvarez	J.I.,	Dodelet-Devillers	A.,	Kebir	H.,	Ifergan	I.,	Fabre	P.J.,	Terouz	S.,	Sabbagh	M.,	Wosik	K.,	Bourbonnière	

L.,	Bernard	M.,	van	Horssen	J.,	de	Vries	H.E.,	Charron	F.	and	Prat	A.	(2011b).	The	Hedgehog	pathway	

promotes	blood-brain	barrier	integrity	and	CNS	immune	quiescence.	Science.	334,	1727-1731.		

Amantea	D.,	Micieli	G.,	Tassorelli	C.,	Cuartero	M.I.,	Ballesteros	I.,	Certo	M.,	Moro	M.A.,	Lizasoain	I.	and	Bagetta	

G.	(2015).	Rational	modulation	of	the	innate	immune	system	for	neuroprotection	in	ischemic	stroke.	

Front.	Neurosci.	9,	147.	



HIS
TOLO

GY A
ND H

IS
TOPATHOLO

GY 

(no
n-e

dit
ed

 m
an

us
cri

pt)

26	
	

Arpino	V.,	Mehta	S.,	Wang	L.,	Bird	R.,	Rohan	M.,	Pape	C.	and	Gill,	S.E.	(2016).	Tissue	inhibitor	of	

metalloproteinases	3-dependent	microvascular	endothelial	cell	barrier	function	is	disrupted	under	septic	

conditions.	Am.	J.	Physiol.	Heart.	Circ.	Physiol.	310,	H1455-1467.	

Asahi	M.,	Wang	X.,	Mori	T.,	Sumii	T.,	Jung	J.C.,	Moskowitz	M.A.,	Fini	M.E.,	and	Lo	E.H.	(2001).	Effects	of	matrix	

metalloproteinase-9	gene	knock-out	on	the	proteolysis	of	blood-brain	barrier	and	white	matter	

components	after	cerebral	ischemia.	J.	Neurosci.	21,	7724-7732.	

Aslam	M.,	Ahmad	N.,	Srivastava	R.	and	Hemmer	B.	(2012).	TNF-alpha	induced	NFkappaB	signaling	and	p65	

(RelA)	overexpression	repress	Cldn5	promoter	in	mouse	brain	endothelial	cells.	Cytokine,	57,	269-275.		

Aveleira	C.A.,	Lin	C.M.,	Abcouwer	S.F.,	Ambrosio	A.	F.	and	Antonetti	D.A.	(2010).	TNF-alpha	signals	through	

PKCzeta/NF-kappaB	to	alter	the	tight	junction	complex	and	increase	retinal	endothelial	cell	permeability.	

Diabetes.	59,	2872-2882.	

Bai	D.,	Ueno	L.	and	Vogt	P.K.	(2009).	Akt-mediated	regulation	of	NFκB	and	the	essentialness	of	NFκB	for	the	

oncogenicity	of	PI3K	and	Akt.	Int.	J.	Cancer.	125,	2863-2870.	

Bauer	A.T.,	Bürgers	H.F.,	Rabie	T.	and	Marti	H.H.	(2010).	Matrix	Metalloproteinase-9	Mediates	Hypoxia-

Induced	Vascular	Leakage	in	the	Brain	via	Tight	Junction	Rearrangement.	J.	Cerebral	Blood	Flow	and	

Metabolism.	30,	837-848.	

Beard	R.S.,	Haines	R.	J.,	Wu	K.Y.,	Reynolds	J.J.,	Davis	S.M.,	Elliott	J.E.,	Malinin	N.L.,	Chatterjee	V.,	Cha	B.J.,	Wu	

M.H.	and	Yuan	S.Y.	(2014).	Non-muscle	Mlck	is	required	for		-catenin-	and	FoxO1-dependent	

downregulation	of	Cldn5	in	IL-1	-mediated	barrier	dysfunction	in	brain	endothelial	cells.	J.	Cell	Sci.	127,	

1840-1853.	

Benson	R.	A.,	Lowrey	J.	A.,	Lamb	J.	R.	and	Howie	S.	E.	(2004).	The	Notch	and	Sonic	hedgehog	signalling	

pathways	in	immunity.	Mol.	Immunol.,	41,	715–725.	

Bergers	G.,	Brekken	R.,	McMahon	G.,	Vu	T.	H.,	Itoh	T.,	Tamaki	K.,	Tanzawa	K.,	Thorpe	P.,	Itohara	S.,	Werb	Z.	

and	Hanahan	D.	(2000).	Matrix	metalloproteinase-9	triggers	the	angiogenic	switch	during	carcinogenesis.	

Nature	Cell	Biology,	2,	737–44.		

Blackburn	J.	S.	and	Brinckerhoff	C.	E.	(2008).	Matrix	metalloproteinase-1	and	thrombin	differentially	activate	



HIS
TOLO

GY A
ND H

IS
TOPATHOLO

GY 

(no
n-e

dit
ed

 m
an

us
cri

pt)

27	
	

gene	expression	in	endothelial	cells	via	PAR-1	and	promote	angiogenesis.	Am.	Journal	of	Pathology,	173,	

1736-1746.	

Boire	A.,	Covic	L.,	Agarwal	A.,	Jacques	S.,	Sherifi	S.	and	Kuliopulos	A.	(2005).	PAR1	is	a	matrix	metalloprotease-1	

receptor	that	promotes	invasion	and	tumorigenesis	of	breast	cancer	cells.	Cell,	120,	303-313.		

Bray	S.J.	and	Gomez-Lamarca	M.	(2017).	Notch	after	cleavage.	Current	Opinion	in	Cell	Biology,	51,	103-109.		

Brilha	S.,	Ong	C.W.M.,	Weksler	B.,	Romero	N.,	Couraud	P.O.	and	Friedland	J.S.	(2017).	Matrix	

metalloproteinase-9	activity	and	a	downregulated	Hedgehog	pathway	impair	blood-brain	barrier	

function	in	an	in	vitro	model	of	CNS	tuberculosis.	Scientific	Reports,	7.		

Broux	B.,	Pannemans	K.,	Zhang	X.,	Markovic-Plese	S.,	Broekmans	T.,	Eijnde	B.O.,	Van	Wijmeersch	B.,	Somers	V.,	

Geusens	P.,	van	der	Pol	S.,	van	Horssen	J.,	Stinissen	P.	and	Hellings	N.	(2012).	CX(3)CR1	drives	cytotoxic	

CD4(+)CD28(-)	T	cells	into	the	brain	of	multiple	sclerosis	patients.	J.	Autoimmun.,	38,	10-19.		

Burridge	K.	and	Wittchen	E.S.	(2013).	The	tension	mounts:	Stress	fibers	as	force-generating	

mechanotransducers.	J.	Cell	Biology,	200,	9-19	

Butterworth	R.	F.	(2015).	Pathogenesis	of	hepatic	encephalopathy	and	brain	edema	in	acute	liver	failure.	J.	

Clin.	Exp.	Hepatol.,	5,	S96-S103.		

Cai	Z.,	Zhao	B.,	Deng	Y.,	Shangguan	S.,	Zhou	F.,	Zhou	W.,	Li	X.,	Li	Y.	and	Chen	G.	(2016).	Notch	signaling	in	

cerebrovascular	diseases	(Review).	Mol.	Med.	Rep.,	14,	2883-2898.		

Camire	R.B.,	Beaulac	H.J.,	Brule	S.A.,	McGregor	A.I.,	Lauria	E.E.	and	Willis	C.L.	(2014).	Biphasic	modulation	of	

paracellular	claudin-5	expression	in	mouse	brain	endothelial	cells	is	mediated	through	the	

phosphoinositide-3-kinase/AKT	pathway.	J.	Pharmacol.	Exp.	Ther.,	351,	654-662.	

Carmeliet	P.,	Lampugnani	M.G.,	Moons	L.,	Breviario	F.,	Compernolle	V.,	Bono	F.	Balconi	G.,	Spagnuolo	R.,	

Oosthuyse	B.,	Dewerchin	M.,	Zanetti	A.,	Angellilo	A.,	Mattot	V.,	Nuyens	D.,	Lutgens	E.,	Clotman	F.,	de	

Ruiter	M.C.,	Gittenberger-de	Groot	A.,	Poelmann	R.,	Lupu	F.,	Herbert	J.	M.,	Collen	D.	Dejana	E.	(1999).	

Targeted	deficiency	or	cytosolic	truncation	of	the	VE-cadherin	gene	in	mice	impairs	VEGF-mediated	

endothelial	survival	and	angiogenesis.	Cell,	98,	147-157.	



HIS
TOLO

GY A
ND H

IS
TOPATHOLO

GY 

(no
n-e

dit
ed

 m
an

us
cri

pt)

28	
	

Chang	L.,	Zhao	D.,	Liu	H.B.,	Wang	Q.S.,	Zhang	P.,	Li	C.L.,	Du	W.Z.,	Wang	H.J.,	Liu	X.,	Zhang	Z.R.	and	Jiang	C.L.	

(2015).	Activation	of	sonic	hedgehog	signaling	enhances	cell	migration	and	invasion	by	induction	of	

matrix	metalloproteinase-2	and	-9	via	the	phosphoinositide-3	kinase/AKT	signaling	pathway	in	

glioblastoma.	Mol.	Med.	Rep.,	12,	6702-6710.	

Chen	D.,	Li	Y.,	Dai	X.,	Zhou	X.,	Tian	W.,	Zhou	Y.,	Zhou	X.	and	Zhang	C.	(2013).	1,25-Dihydroxyvitamin	D3	

activates	MMP13	gene	expression	in	chondrocytes	through	p38	MARK	pathway.	Int.	J.	Biol.	Sci.,	9,	649-

655.	

Chen	F.,	Hori	T.,	Ohashi	N.,	Baine	A.M.,	Eckman	C.B.	and	Nguyen	J.H.	(2011).	Occludin	is	regulated	by	

epidermal	growth	factor	receptor	activation	in	brain	endothelial	cells	and	brains	of	mice	with	acute	liver	

failure.	Hepatology	(Baltimore,	Md.),	53,	1294-1305.	

Chen	J.,	Xiao	L.,	Rao	J.N.,	Zou	T.,	Liu	L.,	Bellavance	E.,	Gorospe	M.	and	Wang	J.Y.	(2008).	JunD	represses	

transcription	and	translation	of	the	tight	junction	protein	zona	occludens-1	modulating	intestinal	

epithelial	barrier	function.	Mol.	Biol.	Cell,	19,	3701-3712.	

Cheng	T.,	Petraglia	A.	L.,	Li	Z.,	Thiyagarajan	M.,	Zhong	Z.,	Wu	Z.,	Liu	D.,	Maggirwar	S.B.,	Deane	R.,	Fernández	J.	

A.,	LaRue	B.,	Griffin	J.H.,	Chopp	M.	and	Zlokovic	B.V.	(2006).	Activated	protein	C	inhibits	tissue	

plasminogen	activator–induced	brain	hemorrhage.	Nature	Medicine,	12,	1278-1285.		

Choudhry	Z.,	Rikani	A.A.,	Choudhry	A.M.,	Tariq	S.,	Zakaria	F.,	Asghar	M.W.,	Sarfraz	M.K.,	Haider	K.,	Shafiq	A.A.	

and	Mobassarah	N.J.	(2014).	Sonic	hedgehog	signalling	pathway:	a	complex	network.	Ann.	Neurosci.,	21,	

28-31.		

Coelho-Santos	V.,	Leitão	R.A.,	Cardoso	F.L.,	Palmela	I.,	Rito	M.,	Barbosa	M.,	Brito	M.A.,	Fontes-Ribeiro	C.A.	and	

Silva	A.P.	(2015).	The	TNF-α/NF-κB	signaling	pathway	has	a	key	role	in	methamphetamine-induced	

blood-brain	barrier	dysfunction.	J.	Cerebral	Blood	Flow	and	Metabolism:	Official	Journal	of	the	

International	Society	of	Cerebral	Blood	Flow	and	Metabolism,	35,	1260-1271.		

Cohen	S.S.,	Min	M.,	Cummings	E.E.,	Chen	X.,	Sadowska	G.B.,	Sharma	S.	and	Stonestreet	B.S.	(2013).	Effects	of	

interleukin-6	on	the	expression	of	tight	junction	proteins	in	isolated	cerebral	microvessels	from	yearling	

and	adult	sheep.	Neuroimmunomodulation,	20,	264-273.	



HIS
TOLO

GY A
ND H

IS
TOPATHOLO

GY 

(no
n-e

dit
ed

 m
an

us
cri

pt)

29	
	

Daitoku	H.,	Sakamaki	J.	and	Fukamizu	A.	(2011).	Regulation	of	FoxO	transcription	factors	by	acetylation	and	

protein-protein	interactions.	Biochimica	et	Biophysica	Acta	-	Mol.	Cell	Res.	1813,	1954-1960.	

Dean	R.A.,	Cox	J.H.,	Bellac	C.L.,	Doucet	A.,	Starr	A.E.	and	Overall	C.M.	(2008).	Macrophage-specific	

metalloelastase	(MMP-12)	truncates	and	inactivates	ELR	+	CXC	chemokines	and	generates	CCL2,	-7,	-8,	

and	-13	antagonists:	Potential	role	of	the	macrophage	in	terminating	polymorphonuclear	leukocyte	

influx.	Blood,	112,	3455-3464.	

Dean	R.A.	and	Overall	C.M.	(2007).	Proteomics	Discovery	of	Metalloproteinase	Substrates	in	the	Cellular	

Context	by	iTRAQTM	Labeling	Reveals	a	Diverse	MMP-2	Substrate	Degradome.	Molecular	and	Cellular	

Proteomics,	6,	611-623.	

Dejana	E.,	Lampugnani	M.G.,	Martinez-Estrada	O.	and	Bazzoni	G.	(2000).	The	molecular	organization	of	

endothelial	junctions	and	their	functional	role	in	vascular	morphogenesis	and	permeability.	Int.	J.	Dev.	

Biol.,	44,	743-748.		

Dreymueller	D.,	Pruessmeyer	J.,	Groth	E.	and	Ludwig	A.	(2012a).	The	role	of	ADAM-mediated	shedding	in	

vascular	biology.	Eur.	J.	Cell	Biol.	91,	472-485.		

Dreymueller	D.,	Martin	C.,	Kogel	T.,	Pruessmeyer	J.,	Hess	F.M.,	Horiuchi	K.,	Uhlig	S.	and	Ludwig	A.	(2012b).	

Lung	endothelial	ADAM17	regulates	the	acute	inflammatory	response	to	lipopolysaccharide.	EMBO	Mol.	

Med.	4,	412-423.	

Du	K.	and	Montminy	M.	(1998).	CREB	is	a	regulatory	target	for	the	protein	kinase	Akt/PKB.	J.	Biol.	Chem.	273,	

32377-32379.	

Dubois	B.,	Masure	S.,	Hurtenbach	U.,	Paemen	L.,	Heremans	H.,	van	den	Oord	J.,	Sciot	R.,	Meinhardt	T.,	

Hämmerling	G.,	Opdenakker	G.	and	Arnold	B.	(1999).	Resistance	of	young	gelatinase	B-deficient	mice	to	

experimental	autoimmune	encephalomyelitis	and	necrotizing	tail	lesions.	J.	Clin.	Invest.,	104,	1507-1515.	

Eisenach	P.A.,	De	Sampaio	P.C.,	Murphy	G.	and	Roghi	C.	(2012).	Membrane	type	1	matrix	metalloproteinase	

(MT1-MMP)	ubiquitination	at	Lys581	increases	cellular	invasion	through	type	I	collagen.	J.	Biol.	Chem.	

287,	11533-11545.		

Eisenach	P.A.,	Roghi	C.,	Fogarasi	M.,	Murphy	G.	and	English	W.R.	(2010).	MT1-MMP	regulates	VEGF-A	



HIS
TOLO

GY A
ND H

IS
TOPATHOLO

GY 

(no
n-e

dit
ed

 m
an

us
cri

pt)

30	
	

expression	through	a	complex	with	VEGFR-2	and	Src.	J.	Cell	Science,	123,	4182–4193.		

El-Habr	E.A.,	Levidou	G.,	Trigka	E.A.,	Sakalidou	J.,	Piperi	C.,	Chatziandreou	I.,	Spyropoulou	A.,	Soldatos	R.,	

Tomara	G.,	Petraki	K.,	Samaras	V.,	Zisakis	A.,	Varsos	V.,	Vrettakos	G.,	Boviatsis	E.,	Patsouris	E.,	Saetta	A.	

A.	and	Korkolopoulou	P.	(2014).	Complex	interactions	between	the	components	of	the	PI3K/AKT/mTOR	

pathway,	and	with	components	of	MAPK,	JAK/STAT	and	Notch-1	pathways,	indicate	their	involvement	in	

meningioma	development.	Virchows	Arch.,	465,	473-485.	

Engelhardt	B.	(2006).	Molecular	mechanisms	involved	in	T	cell	migration	across	the	blood-brain	barrier.	J.	

Neural.	Transm.,	113,	477-485.		

Engelhardt	B.,	Carare	R.O.,	Bechmann	I.,	Flügel	A.,	Laman	J.D.	and	Weller	R.O.	(2016).	Vascular,	glial,	and	

lymphatic	immune	gateways	of	the	central	nervous	system.	Acta	Neuropathologica.	132,	317-338.		

Engelhardt	B.	and	Ransohoff	R.	M.	(2012).	Capture,	crawl,	cross:	the	T	cell	code	to	breach	the	blood-brain	

barriers.	Trends	Immunol.	33,	579-589.		

Esparza	J.,	Kruse	M.,	Lee	J.,	Michaud	M.	and	Madri	J.A.	(2004).	MMP-2	null	mice	exhibit	an	early	onset	and	

severe	experimental	autoimmune	encephalomyelitis	due	to	an	increase	in	MMP-9	expression	and	

activity.	FASEB	J.,	18,	1682-1691.	

Fanjul-Fernandez	M.,	Folgueras	A.R.,	Cabrera	S.	and	Lopez-Otin	C.	(2010).	Matrix	metalloproteinases:	

evolution,	gene	regulation	and	functional	analysis	in	mouse	models.	Biochim.	Biophys.	Acta,	1803,	3-19.		

Fanning	A.S.,	Jameson	B.J.,	Jesaitis	L.A.	and	Anderson	J.M.	(1998).	The	tight	junction	protein	ZO-1	establishes	a	

link	between	the	transmembrane	protein	occludin	and	the	actin	cytoskeleton.	J.	Biol.	Chem.,	273,	29745-

29753.		

Findley	C.	M.,	Cudmore	M.	J.,	Ahmed	A.	and	Kontos	C.	D.	(2007).	VEGF	induces	Tie2	shedding	via	a	

phosphoinositide	3-kinase/Akt	dependent	pathway	to	modulate	Tie2	signaling.	Arterioscler.	Thromb.	

Vasc.	Biol.,	27,	2619-2626.		

Fiotti	N.,	Zivadinov	R.,	Altamura	N.,	Nasuelli	D.,	Bratina	A.,	Tommasi	M.A.,	Bosco	A.,	Locatelli	L.,	Grop	A.,	

Cazzato	G.,	Guarnieri	G.,	Giansante	C.	and	Zorzon	M.	(2004).	MMP-9	microsatellite	polymorphism	and	

multiple	sclerosis.	J.	Neuroimmunol.,	152,	147-153.		



HIS
TOLO

GY A
ND H

IS
TOPATHOLO

GY 

(no
n-e

dit
ed

 m
an

us
cri

pt)

31	
	

Forster	C.,	Burek	M.,	Romero	I.A.,	Weksler	B.,	Couraud	P.O.	and	Drenckhahn	D.	(2008).	Differential	effects	of	

hydrocortisone	and	TNFalpha	on	tight	junction	proteins	in	an	in	vitro	model	of	the	human	blood-brain	

barrier.	J.	Physiol.,	586,	1937-1949.		

Furuse	M.,	Sasaki	H.	and	Tsukita	S.	(1999).	Manner	of	interaction	of	heterogeneous	claudin	species	within	and	

between	tight	junction	strands.	J.	Cell	Biol.	147,	891-903.	

Gao	F.,	Artham	S.,	Sabbineni	H.,	Al-Azayzih	A.,	Peng	X.D.,	Hay	N.,	Adams	R.H.,	Byzova	T.V.	and	Somanath	P.R.	

(2016).	Akt1	promotes	stimuli-induced	endothelial-barrier	protection	through	FoxO-mediated	tight-

junction	protein	turnover.	Cell.	Mol.	Life	Sci.	73,	3917-3933.	

Garg	N.	and	Smith,	T.W.	(2015).	An	update	on	immunopathogenesis,	diagnosis,	and	treatment	of	multiple	

sclerosis.	Brain	and	Behavior,	5,	e00362.		

Garton	K.J.,	Gough	P.J.,	Philalay	J.,	Wille	P.T.,	Blobel	C.P.,	Whitehead	R.H.,	Dempsey	T.J.	and	Raines	E.W.	

(2003).	Stimulated	shedding	of	vascular	cell	adhesion	molecule	1	(VCAM-1)	is	mediated	by	tumor	

necrosis	factor-α-converting	enzyme	(ADAM	17).	J.	Biol.	Chem.	278,	37459-37464.		

Gijbels	K.,	Galardy	R.E.	and	Steinman	L.	(1994).	Reversal	of	experimental	autoimmune	encephalomyelitis	with	

a	hydroxamate	inhibitor	of	matrix	metalloproteases.	J.	Clin.	Invest.	94,	2177-2182.		

Glomski	K.,	Monette	S.,	Manova	K.,	De	Strooper	B.,	Saftig	P.	and	Blobel	C.P.	(2011).	Deletion	of	Adam10	in	

endothelial	cells	leads	to	defects	in	organ-specific	vascular	structures.	Blood,	118,	1163-1174.		

Goerge	T.,	Barg	A.,	Schnaeker	E.	M.,	Poppelmann	B.,	Shpacovitch	V.,	Rattenholl	A.,	Maaser	C.,	Luger	T.	A.,	

Steinhoff	M.	and	Schneider	S.W.	(2006).	Tumor-derived	matrix	metalloproteinase-1	targets	endothelial	

proteinase-activated	receptor	1	promoting	endothelial	cell	activation.	Cancer	Research,	66,	7766-7774.	

Goertsches	R.,	Comabella	M.,	Navarro	A.,	Perkal	H.	and	Montalban	X.	(2005).	Genetic	association	between	

polymorphisms	in	the	ADAMTS14	gene	and	multiple	sclerosis.	J.	Neuroimmunol.,	164,	140-147.		

Graesser	D.,	Mahooti	S.	and	Madri	J.A.	(2000).	Distinct	roles	for	matrix	metalloproteinase-2	and	alpha4	integrin	

in	autoimmune	T	cell	extravasation	and	residency	in	brain	parenchyma	during	experimental	autoimmune	

encephalomyelitis.	J.	Neuroimmunol.,	109,	121-131.		



HIS
TOLO

GY A
ND H

IS
TOPATHOLO

GY 

(no
n-e

dit
ed

 m
an

us
cri

pt)

32	
	

Graham	W.V,	Wang	F.,	Clayburgh	D.R.,	Cheng	J.X.,	Yoon	B.,	Wang	Y.,	Lin	A.	and	Turner	J.R.	(2006).	Tumor	

necrosis	factor-induced	long	myosin	light	chain	kinase	transcription	is	regulated	by	differentiation-

dependent	signaling	events.	Characterization	of	the	human	long	myosin	light	chain	kinase	promoter.	J.	

Biol.	Chem.	281,	26205–26215.		

Gurney	K.J.,	Estrada	E.Y.	and	Rosenberg	G.A.	(2006).	Blood-brain	barrier	disruption	by	stromelysin-1	facilitates	

neutrophil	infiltration	in	neuroinflammation.	Neurobiol.	Dis.	23,	87-96.		

Haas	T.L.,	Stitelman	D.,	Davis	S.J.,	Apte	S.S.	and	Madri	J.A.	(1999).	Egr-1	mediates	extracellular	matrix-driven	

transcription	of	membrane	type	1	matrix	metalloproteinase	in	endothelium.	J.	Biol.	Chem.,	274,	22679-

22685.		

Hansmann	F.,	Herder	V.,	Kalkuhl	A.,	Haist	V.,	Zhang	N.,	Schaudien	D.,	Deschl	U.,	Baumgärtner	W.	and	Ulrich	R.	

(2012).	Matrix	metalloproteinase-12	deficiency	ameliorates	the	clinical	course	and	demyelination	in	

Theiler’s	murine	encephalomyelitis.	Acta	Neuropathologica.	124,	127-142.	

Harhaj	N.S.	and	Antonetti	D.A.	(2004).	Regulation	of	tight	junctions	and	loss	of	barrier	function	in	

pathophysiology.	Int.	J.	Biochem.	Cell	Biol.	36,	1206-1237.	

Hathaway	D.R.,	Eaton	C.R.	and	Adelstein	R.S.	(1981).	Regulation	of	human	platelet	myosin	light	chain	kinase	by	

the	catalytic	subunit	of	cyclic	AMP-dependent	protein	kinase.	Nature,	291,	252-256.		

Hellström	M.,	Kalén	M.,	Lindahl	P.,	Abramsson	A.	and	Betsholtz	C.	(1999).	Role	of	PDGF-B	and	PDGFR-beta	in	

recruitment	of	vascular	smooth	muscle	cells	and	pericytes	during	embryonic	blood	vessel	formation	in	

the	mouse.	Development	(Cambridge,	England),	126,	3047-3055.	

Hemmer	B.,	Archelos	J.J.	and	Hartung	H.P.	(2002).	New	concepts	in	the	immunopathogenesis	of	multiple	

sclerosis.	Nat.	Rev.	Neuroscience,	3,	291-301.	

Henshall	T.L.,	Keller	A.,	He	L.,	Johansson	B.R.,	Wallgard	E.,	Raschperger	E.,	Mäe	M.A.,	Jin	S.,	Betsholtz	C.	and	

Lendahl	U.	(2015).	Notch3	is	necessary	for	blood	vessel	integrity	in	the	central	nervous	system.	

Arterioscler.	Thromb.	Vasc.	Biol.	35,	409-420.		

Hill	J.,	Rom	S.,	Ramirez	S.H.	and	Persidsky	Y.	(2014).	Emerging	Roles	of	Pericytes	in	the	Regulation	of	the	

Neurovascular	Unit	in	Health	and	Disease.	J.	Neuroimmune	Pharmacol.	9,	591-605.		



HIS
TOLO

GY A
ND H

IS
TOPATHOLO

GY 

(no
n-e

dit
ed

 m
an

us
cri

pt)

33	
	

Hoffman	W.H.,	Stamatovic	S.M.	and	Andjelkovic	A.V.	(2009).	Inflammatory	mediators	and	blood	brain	barrier	

disruption	in	fatal	brain	edema	of	diabetic	ketoacidosis.	Brain	Res.	1254,	138-148.	

Hosseini	A.,	Estiri	H.,	Akhavan	Niaki	H.,	Alizadeh	A.,	Abdolhossein	Zadeh	B.,	Ghaderian	S.	M.H.,	Farjadfar	A.	and	

Fallah	A.	(2017).	Multiple	Sclerosis	Gene	Therapy	with	Recombinant	Viral	Vectors:	Overexpression	of	IL-

4,	Leukemia	Inhibitory	Factor,	and	IL-10	in	Wharton’s	Jelly	Stem	Cells	Used	in	EAE	Mice	Model.	Cell	J.	19,	

361-374.	

Huang	W.,	Eum	S.Y.,	András	I.E.,	Hennig	B.	and	Toborek	M.	(2009).	PPARalpha	and	PPARgamma	attenuate	HIV-

induced	dysregulation	of	tight	junction	proteins	by	modulations	of	matrix	metalloproteinase	and	

proteasome	activities.	The	FASEB	J.	23,	1596-1606.		

Iadecola	C.	(2017).	The	Neurovascular	Unit	Coming	of	Age:	A	Journey	through	Neurovascular	Coupling	in	

Health	and	Disease.	Neuron.	Cell	Press.	96,	17-42.		

Itoh	M.,	Furuse	M.,	Morita	K.,	Kubota	K.,	Saitou	M.	and	Tsukita	S.	(1999).	Direct	binding	of	three	tight	junction-

associated	MAGUKs,	ZO-1,	ZO-2,	and	ZO-3,	with	the	COOH	termini	of	claudins.	J.	Cell	Biol.	147,	1351-

1363.	

Itoh	Y.	(2015).	Membrane-type	matrix	metalloproteinases:	Their	functions	and	regulations.	Matrix	Biology,	44-

46,	207-223.		

Jayakumar	A.	R.,	Rama	Rao	K.	V.	and	Norenberg	M.	D.	(2015).	Neuroinflammation	in	hepatic	encephalopathy:	

mechanistic	aspects.	J.	Clin.	Exp.	Hepatol.,	5,	S21-28.	

Jobin	P.G.,	Butler	G.S.	and	Overall	C.M.	(2017).	New	intracellular	activities	of	matrix	metalloproteinases	shine	

in	the	moonlight.	Biochimica	et	Biophysica	Acta	-	Mol.	Cell	Res.	1864,	2043-2055.		

Johannessen	M.,	Delghandi	M.P.	and	Moens	U.	(2004).	What	turns	CREB	on?	Cellular	Signalling,	6,	1211-1227		

Kanazawa	M.,	Igarashi	H.,	Kawamura	K.,	Takahashi	T.,	Kakita	A.,	Takahashi	H.,	Nakada	T.,	Nishizawa	M.	and	

Shimohata	T.	(2011).	Inhibition	of	VEGF	signaling	pathway	attenuates	hemorrhage	after	tPA	treatment.	J.	

Cerebral	Blood	Flow	and	Metabolism,	31,	1461–1474.		

Kelwick	R.,	Desanlis	I.,	Wheeler	G.N.	and	Edwards	D.R.	(2015).	The	ADAMTS	(A	Disintegrin	and	



HIS
TOLO

GY A
ND H

IS
TOPATHOLO

GY 

(no
n-e

dit
ed

 m
an

us
cri

pt)

34	
	

Metalloproteinase	with	Thrombospondin	motifs)	family.	Genome	Biol.,	16,	113.		

Kerr	B.A.,	West	X.Z.,	Kim	Y.-W.,	Zhao	Y.,	Tischenko	M.,	Cull	R.	M.,	Phares	T.W.,	Peng	X.D.,	Bernier-Latmani	J.,	

Petrova	T.V.,	Adams	R.H.,	Hay	N.,	Naga	S.V.	and	Byzova	T.V.	(2016).	Stability	and	function	of	adult	

vasculature	is	sustained	by	Akt/Jagged1	signalling	axis	in	endothelium.	Nat.	Communications,	7,	10960.	

Kimura	K.,	Teranishi	S.,	Fukuda	K.,	Kawamoto	K.	and	Nishida	T.	(2008).	Delayed	disruption	of	barrier	function	in	

cultured	human	corneal	epithelial	cells	induced	by	tumor	necrosis	factor-alpha	in	a	manner	dependent	

on	NF-kappaB.	Invest.	Ophthalmol.	Vis.	Sci.,	49,	565-571.		

Kniesel	U.	and	Wolburg	H.	(2000).	Tight	junctions	of	the	blood-brain	barrier.	Cell.	Mol.	Neurobiol.,	20,	57-76.	

Koenen	R.R.,	Pruessmeyer	J.,	Soehnlein	O.,	Fraemohs	L.,	Zernecke	A.,	Schwarz	N.,	Reiss	K.,	Sarabi	A.,	Lindbom	

L.,	Hackeng	T.	M.,	Weber	C.	and	Ludwig	A.	(2009).	Regulated	release	and	functional	modulation	of	

junctional	adhesion	molecule	A	by	disintegrin	metalloproteinases.	Blood,	113,	4799-4809.		

Labus	J.,	Hackel	S.,	Lucka	L.	and	Danker	K.	(2014).	Interleukin-1beta	induces	an	inflammatory	response	and	the	

breakdown	of	the	endothelial	cell	layer	in	an	improved	human	THBMEC-based	in	vitro	blood-brain	

barrier	model.	J.	Neurosci.	Methods.	228,	35-45.	

LaFoya	B.,	Munroe	J.A.,	Mia	M.M.,	Detweiler	M.A.,	Crow	J.J.,	Wood	T.,	Roth	S.,	Sharma	B.	and	Albig	A.R.	(2016).	

Notch:	A	multi-functional	integrating	system	of	microenvironmental	signals.	Dev.	Biol.	418,	227-241.		

Larochelle	C.,	Alvarez	J.I.	and	Prat	A.	(2011).	How	do	immune	cells	overcome	the	blood-brain	barrier	in	

multiple	sclerosis?	FEBS	Lett.,	585,	3770-3780.		

Lee	C.W.,	Lin	C.C.,	Lin	W.N.,	Liang	K.C.,	Luo	S.F.,	Wu	C.B.,	Wang	S.W.	and	Yang	C.M.	(2007).	TNF-alpha	induces	

MMP-9	expression	via	activation	of	Src/EGFR,	PDGFR/PI3K/Akt	cascade	and	promotion	of	NF-

kappaB/p300	binding	in	human	tracheal	smooth	muscle	cells.	Am.	J.	Physiol.	Lung.	Cell.	Mol.	Physiol.,	

292,	L799-812.		

Lee	M.A.,	Palace	J.,	Stabler	G.,	Ford	J.,	Gearing	A.	and	Miller	K.	(1999).	Serum	gelatinase	B,	TIMP-1	and	TIMP-2	

levels	in	multiple	sclerosis.	A	longitudinal	clinical	and	MRI	study.	Brain.	122,	191-197.	

Lee	M.,	Rodansky	E.S.,	Smith	J.K.	and	Rodgers	G.M.	(2012).	ADAMTS13	promotes	angiogenesis	and	modulates	



HIS
TOLO

GY A
ND H

IS
TOPATHOLO

GY 

(no
n-e

dit
ed

 m
an

us
cri

pt)

35	
	

VEGF-induced	angiogenesis.	Microvascular	Res.	84,	109-115.		

Li	G.,	Yuan	W.	and	Fu	B.M.	(2010).	A	model	for	the	blood-brain	barrier	permeability	to	water	and	small	solutes.	

J.	Biomechanics.	43,	2133-2140.	

Li	J.K.,	Cheng	L.,	Zhao	Y.P.,	Guo	Y.J.,	Liu	Y.,	Zhang	W.,	Wang	S.S.,	Zhang	Y.Q.,	Pan	X.	and	Nie	L.	(2015).	ADAMTS-

7	Exhibits	Elevated	Expression	in	Cartilage	of	Osteonecrosis	of	Femoral	Head	and	Has	a	Positive	

Correlation	with	TNF-a	and	NFK-	B	P65.	Mediators	of	Inflammation,	2015,	196702.		

Li	X.	and	Stark	G.R.	(2002).	NFκB-dependent	signaling	pathways.	Exp.	Hematol.	30,	285-296.	

Liebner	S.,	Corada	M.,	Bangsow	T.,	Babbage	J.,	Taddei	A.,	Czupalla	C.J.,	Reis	M.,	Felici	A.,	Wolburg	H.,	Fruttiger	

M.,	Taketo	M.M.,	von	Melchner	H.,	Plate	K.H.,	Gerhardt	H.	and	Dejana	E.	(2008).	Wnt/beta-catenin	

signaling	controls	development	of	the	blood-brain	barrier.	J.	Cell	Biol.	183,	409-417.		

Lindberg	R.L.,	De	Groot	C.J.,	Montagne	L.,	Freitag	P.,	van	der	Valk	P.,	Kappos	L.	and	Leppert	D.	(2001).	The	

expression	profile	of	matrix	metalloproteinases	(MMPs)	and	their	inhibitors	(TIMPs)	in	lesions	and	

normal	appearing	white	matter	of	multiple	sclerosis.	Brain.	124,	1743-1753.		

Lischper	M.,	Beuck	S.,	Thanabalasundaram	G.,	Pieper	C.	and	Galla	H.J.	(2010).	Metalloproteinase	mediated	

occludin	cleavage	in	the	cerebral	microcapillary	endothelium	under	pathological	conditions.	Brain	Res.	

1326,	114-127.		

Liu	J.,	Jin	X.,	Liu	K.J.	and	Liu	W.	(2012).	Matrix	Metalloproteinase-2-Mediated	Occludin	Degradation	and	

Caveolin-1-Mediated	Claudin-5	Redistribution	Contribute	to	Blood-Brain	Barrier	Damage	in	Early	

Ischemic	Stroke	Stage.	J.	Neuroscience,	32,	3044-3057.	

Liu	Y.,	Leo	L.F.,	McGregor	C.,	Grivitishvili	A.,	Barnstable	C.J.	and	Tombran-Tink	J.	(2012).	Pigment	epithelium-

derived	factor	(PEDF)	peptide	eye	drops	reduce	inflammation,	cell	death	and	vascular	leakage	in	diabetic	

retinopathy	in	Ins2(Akita)	mice.	Mol.	Med.,	18,	1387-1401.	

Liu	H.,	Zhang	W.,	Kennard	S.,	Caldwell	R.B.	and	Lilly	B.	(2010).	Notch3	is	critical	for	proper	angiogenesis	and	

mural	cell	investment.	Circulation	Res.	107,	860-870.	

Lu	D.Y.,	Yu	W.H.,	Yeh	W.L.,	Tang	C.H.,	Leung	Y.M.,	Wong	K.L.,	Chen	Y.F.,	Lai	C.H.	and	Fu	W.M.	(2009).	Hypoxia-



HIS
TOLO

GY A
ND H

IS
TOPATHOLO

GY 

(no
n-e

dit
ed

 m
an

us
cri

pt)

36	
	

induced	matrix	metalloproteinase-13	expression	in	astrocytes	enhances	permeability	of	brain	

endothelial	cells.	J.	Cell.	Physiol.,	220,	163-173.	

Ma	J.,	Tang	X.,	Wong	P.,	Jacobs	B.,	Borden	E.	C.	and	Bedogni	B.	(2014).	Noncanonical	activation	of	Notch1	

protein	by	Membrane	Type	1	Matrix	Metalloproteinase	(MT1-MMP)	controls	melanoma	cell	

proliferation.	J.	Biol.	Chem.	289,	8442-8449.	

Machida	T.,	Dohgu	S.,	Takata	F.,	Matsumoto	J.,	Kimura	I.,	Koga	M.,	Nakamoto	K.,	Yamauchi	A.	and	Kataoka	Y.	

(2017).	Role	of	thrombin-PAR1-PKCtheta/delta	axis	in	brain	pericytes	in	thrombin-induced	MMP-9	

production	and	blood-brain	barrier	dysfunction	in	vitro.	Neuroscience,	350,	146-157.		

Man	S.,	Ubogu	E.E.	and	Ransohoff	R.M.	(2007).	Inflammatory	cell	migration	into	the	central	nervous	system:	a	

few	new	twists	on	an	old	tale.	Brain	Pathol.	17,	243-250.		

Manda	V.K.,	Mittapalli	R.K.,	Geldenhuys	W.J.	and	Lockman	P.R.	(2010).	Chronic	exposure	to	nicotine	and	

saquinavir	decreases	endothelial	Notch-4	expression	and	disrupts	blood-brain	barrier	integrity.	J.	

Neurochem.	115,	515-525.	

McKenzie	J.A.	and	Ridley	A.J.	(2007).	Roles	of	Rho/ROCK	and	MLCK	in	TNF-alpha-induced	changes	in	

endothelial	morphology	and	permeability.	J.	Cell.	Physiol.	213,	221-228.		

McQuibban	G.A.,	Gong	J.H.,	Tam	E.M.,	McCulloch	C.A.,	Clark-Lewis	I.	and	Overall	C.M.	(2000).	Inflammation	

dampened	by	gelatinase	A	cleavage	of	monocyte	chemoattractant	protein-3.	Science,	289,	1202-1206.	

Millán	J.,	Hewlett	L.,	Glyn	M.,	Toomre	D.,	Clark	P.	and	Ridley	A.J.	(2006).	Lymphocyte	transcellular	migration	

occurs	through	recruitment	of	endothelial	ICAM-1	to	caveola-	and	F-actin-rich	domains.	Nat.	Cell	Biology,	

8,	113-123.	

Minagar	A.	and	Alexander	J.S.	(2003).	Blood-brain	barrier	disruption	in	multiple	sclerosis.	Mult.	Scler.,	9,	540-

549.	

Nakayama	K.	(2013).	cAMP-response	element-binding	protein	(CREB)	and	NF-kappaB	transcription	factors	are	

activated	during	prolonged	hypoxia	and	cooperatively	regulate	the	induction	of	matrix	

metalloproteinase	MMP1.	J.	Biol.	Chem.	288,	22584-22595.	



HIS
TOLO

GY A
ND H

IS
TOPATHOLO

GY 

(no
n-e

dit
ed

 m
an

us
cri

pt)

37	
	

Noseda	M.,	Chang	L.,	McLean	G.,	Grim	J.E.,	Clurman	B.E.,	Smith	L.L.	and	Karsan	A.	(2004).	Notch	activation	

induces	endothelial	cell	cycle	arrest	and	participates	in	contact	inhibition:	role	of	p21Cip1	repression.	

Mol.	and	Cell.	Biol.	24,	8813-8822.	

Noseworthy	J.H.,	Lucchinetti	C.,	Rodriguez	M.	and	Weinshenker	B.G.	(2000).	Multiple	sclerosis.	N.	Engl.	J.	Med.	

343,	938-952.	

Nugent	W.H.,	Mishra	N.,	Strauss	J.F.	and	Walsh	S.W.	(2016).	Matrix	Metalloproteinase	1	Causes	

Vasoconstriction	and	Enhances	Vessel	Reactivity	to	Angiotensin	II	via	Protease-Activated	Receptor	1.	

Reproductive	Sciences,	23,	542-548.	

Ohkawara	H.,	Ikeda	K.,	Ogawa	K.	and	Takeishi	Y.	(2015).	Membrane	Type	1-Matrix	Metalloproteinase	(Mt1-

Mmp)	Identified	as	a	Multifunctional	Regulator	of	Vascular	Responses.	Fukushima	J.	Med.	Sci.,	61,	91-

100.	

Ohtake	Y.	(2006).	Multifunctional	roles	of	MT1-MMP	in	myofiber	formation	and	morphostatic	maintenance	of	

skeletal	muscle.	J.	Cell	Science,	119,	3822-3832.	

Pabois	A.,	Devallière	J.,	Quillard	T.,	Coulon	F.,	Gérard	N.,	Laboisse	C.,	Toquet	C.	and	Charreau	B.	(2015).	The	

disintegrin	and	metalloproteinase	ADAM10	mediates	a	canonical	Notch-dependent	regulation	of	IL-6	

through	Dll4	in	human	endothelial	cells.	Biochem.	Pharmacol.	91,	510-521.		

Page	S.,	Munsell	A.	and	Al-Ahmad	A.J.	(2016).	Cerebral	hypoxia/ischemia	selectively	disrupts	tight	junctions	

complexes	in	stem	cell-derived	human	brain	microvascular	endothelial	cells.	Fluids	and	Barriers	of	the	

CNS,	13,	16.		

Palmer	W.H.	and	Deng	W.M.	(2015).	Ligand-Independent	Mechanisms	of	Notch	Activity.	Trends	in	Cell	Biol.	25,	

697-707.		

Park	J.A.,	Choi	K.S.,	Kim	S.Y.	and	Kim	K.W.	(2003).	Coordinated	interaction	of	the	vascular	and	nervous	systems:	

From	molecule-	to	cell-based	approaches.	Biochem.	and	Biophysical	Res.	Communications	311,	247-253.		

Paul	R.,	Lorenzl	S.,	Koedel	U.,	Sporer	B.,	Vogel	U.,	Frosch	M.	and	Pfister	H.W.	(1998).	Matrix	metalloproteinases	

contribute	to	the	blood-brain	barrier	disruption	during	bacterial	meningitis.	Annals	of	Neurol.	44,	592-

600.	



HIS
TOLO

GY A
ND H

IS
TOPATHOLO

GY 

(no
n-e

dit
ed

 m
an

us
cri

pt)

38	
	

Petersen	E.R.,	Sondergaard	H.B.,	Oturai	A.B.,	Jensen	P.,	Sorensen	P.S.,	Sellebjerg	F.	and	Bornsen	L.	(2016).	

Soluble	serum	VCAM-1,	whole	blood	mRNA	expression	and	treatment	response	in	natalizumab-treated	

multiple	sclerosis.	Mult.	Scler.	Relat.	Disord.,	10,	66-72.	

Pfefferkorn	T.	and	Rosenberg	G.A.	(2003).	Closure	of	the	blood-brain	barrier	by	matrix	metalloproteinase	

inhibition	reduces	rtPA-mediated	mortality	in	cerebral	ischemia	with	delayed	reperfusion.	Stroke,	34,	

2025-2030.	

Plumb	J.,	McQuaid	S.,	Cross	A.	K.,	Surr	J.,	Haddock	G.,	Bunning	R.	A.	and	Woodroofe	M.	N.	(2006).	Upregulation	

of	ADAM-17	expression	in	active	lesions	in	multiple	sclerosis.	Mult.	Scler.,	12,	375-385.	

Quagliarello	V.J.,	Wispelwey	B.,	Long	W.J.	and	Scheld	W.M.	(1991).	Recombinant	human	interleukin-1	induces	

meningitis	and	blood-brain	barrier	injury	in	the	rat:	Characterization	and	comparison	with	tumor	

necrosis	factor.	J.	Clin.	Invest.	87,	1360-1366.	

Raab	S.,	Beck	H.,	Gaumann	A.,	Yüce	A.,	Gerber	H.P.,	Plate	K.,	Hammes	H.P.,	Ferrara	N.	and	Breier	G.	(2004).	

Impaired	brain	angiogenesis	and	neuronal	apoptosis	induced	by	conditional	homozygous	inactivation	of	

vascular	endothelial	growth	factor.	Thrombosis	and	Haemostasis,	91,	595-605.	

Reiss	K.	and	Saftig	P.	(2009).	The	“a	disintegrin	and	metalloprotease”	(ADAM)	family	of	sheddases:	

physiological	and	cellular	functions.	Semin.	Cell.	Dev.	Biol.,	20,	126-137.		

Rempe	R.G.,	Hartz	A.M.	and	Bauer	B.	(2016).	Matrix	metalloproteinases	in	the	brain	and	blood-brain	barrier:	

Versatile	breakers	and	makers.	J.	Cereb.	Blood	Flow.	Metab.,	36,	1481-1507.		

Renault	M.A.,	Roncalli	J.,	Tongers	J.,	Thorne	T.,	Klyachko	E.,	Misener	S.,	Volpert	O.V.,	Mehta	S.,	Burg	A.,	

Luedemann	C.,	Qin	G.,	Kishore	R.	and	Losordo	D.W.	(2010).	Sonic	hedgehog	induces	angiogenesis	via	Rho	

kinase-dependent	signaling	in	endothelial	cells.	J.	Mol.	Cell.	Cardiol.,	49,	490-498.		

Reyat	J.S.,	Chimen	M.,	Noy	P.J.,	Szyroka	J.,	Rainger	G.E.	and	Tomlinson	M.G.	(2017).	ADAM10-Interacting	

Tetraspanins	Tspan5	and	Tspan17	Regulate	VE-Cadherin	Expression	and	Promote	T	Lymphocyte	

Transmigration.	J.	Immunol.,	199,	666-676.	

Richmond	A.	(2002).	Nf-kappa	B,	chemokine	gene	transcription	and	tumour	growth.	Nature	Reviews.	

Immunology,	2,	664-674.	



HIS
TOLO

GY A
ND H

IS
TOPATHOLO

GY 

(no
n-e

dit
ed

 m
an

us
cri

pt)

39	
	

Rivera	S.,	Khrestchatisky	M.,	Kaczmarek	L.,	Rosenberg	G.A.	and	Jaworski	D.M.	(2010).	Metzincin	proteases	and	

their	inhibitors:	foes	or	friends	in	nervous	system	physiology?	J.	Neurosci.,	30,	15337-15357.		

Rodriguez	D.,	Morrison	C.J.	and	Overall	C.M.	(2010).	Matrix	metalloproteinases:	what	do	they	not	do?	New	

substrates	and	biological	roles	identified	by	murine	models	and	proteomics.	Biochimica	et	Biophysica	

Acta,	1803,	39-54.	

Rosenberg	G.A.,	Cunningham	L.A.,	Wallace	J.,	Alexander	S.,	Estrada	E.Y.,	Grossetete	M.,	Razhagi	A.,	Miller	K.	

and	Gearing	A.	(2001).	Immunohistochemistry	of	matrix	metalloproteinases	in	reperfusion	injury	to	rat	

brain:	Activation	of	MMP-9	linked	to	stromelysin-1	and	microglia	in	cell	cultures.	Brain	Res.	893,	104-112.		

Rosenberg	G.A.,	Estrada	E.Y.	and	Mobashery	S.	(2007).	Effect	of	synthetic	matrix	metalloproteinase	inhibitors	

on	lipopolysaccharide-induced	blood-brain	barrier	opening	in	rodents:	Differences	in	response	based	on	

strains	and	solvents.	Brain	Res.	1133,	186-192.	

Schlage	P.	and	auf	dem	Keller	U.	(2015).	Proteomic	approaches	to	uncover	MMP	function.	Matrix	Biology,	44-

46,	232-238.	

Schulz	B.,	Pruessmeyer	J.,	Maretzky	T.,	Ludwig	A.,	Blobel	C.P.,	Saftig	P.	and	Reiss	K.	(2008).	ADAMIO	regulates	

endothelial	permeability	and	T-cell	transmigration	by	proteolysis	of	vascular	endothelial	cadherin.	

Circulation	Res.	102,	1192–1201.		

Sellner	J.	and	Leib	S.L.	(2006).	In	bacterial	meningitis	cortical	brain	damage	is	associated	with	changes	in	

parenchymal	MMP-9/TIMP-1	ratio	and	increased	collagen	type	IV	degradation.	Neurobiol.	Dis.	21,	647-

656.		

Seo	J.H.,	Guo	S.,	Lok	J.,	Navaratna	D.,	Whalen	M.J.,	Kim	K.	W.	and	Lo	E.H.	(2012).	Neurovascular	matrix	

metalloproteinases	and	the	blood-brain	barrier.	Curr.	Pharm.	Des.,	18,	3645-3648.		

Shi	Y.,	Zhang	L.,	Pu	H.,	Mao	L.,	Hu	X.,	Jiang	X.,	Xu	N.,	Stetler	R.A.,	Zhang	F.,	Liu	X.,	Leak	R.K.,	Keep	R.	F.,	Ji	X.	and	

Chen	J.	(2016).	Rapid	endothelial	cytoskeletal	reorganization	enables	early	blood–brain	barrier	

disruption	and	long-term	ischaemic	reperfusion	brain	injury.	Nat.	Communications,	7,	10523.		

Siebel	C.	and	Lendahl	U.	(2017).	Notch	Signaling	in	Development,	Tissue	Homeostasis,	and	Disease.	

Physiological	Reviews,	97,	1235-1294.	



HIS
TOLO

GY A
ND H

IS
TOPATHOLO

GY 

(no
n-e

dit
ed

 m
an

us
cri

pt)

40	
	

Singh	R.J.,	Mason	J.C.,	Lidington	E.A.,	Edwards	D.R.,	Nuttall	R.K.,	Khokha	R.,	Knauper	V.,	Murphy	G.	and	

Gavrilovic	J.	(2005).	Cytokine	stimulated	vascular	cell	adhesion	molecule-1	(VCAM-1)	ectodomain	release	

is	regulated	by	TIMP-3.	Cardiovasc.	Res.,	67,	39-49.	

Song	B.Q.,	Chi	Y.,	Li	X.,	Du	W.J.,	Han	Z.B.,	Tian	J.J.,	Li	J.J.,	Chen	F.,	Wu	H.H.,	Han	L.X.,	Lu	S.H.,	Zheng	Y.Z.	and	Han	

Z.C.	(2015).	Inhibition	of	Notch	Signaling	Promotes	the	Adipogenic	Differentiation	of	Mesenchymal	Stem	

Cells	Through	Autophagy	Activation	and	PTEN-PI3K/AKT/mTOR	Pathway.	Cell.	Physiol.	Biochem.,	36,	

1991-2002.		

Song	J.,	Wu	C.,	Korpos	E.,	Zhang	X.,	Agrawal	S.M.,	Wang	Y.,	Faber	C.,	Schäfers	M.,	Körner	H.,	Opdenakker	G.,	

Hallmann	R.	and	Sorokin	L.	(2015).	Focal	MMP-2	and	MMP-9	Activity	at	the	Blood-Brain	Barrier	Promotes	

Chemokine-Induced	Leukocyte	Migration.	Cell.	Rep.,	10,	1040-1054.		

Stamatovic	S.M.,	Johnson	A.M.,	Keep	R.F.	and	Andjelkovic	A.V.	(2016).	Junctional	proteins	of	the	blood-brain	

barrier:	New	insights	into	function	and	dysfunction.	Tissue	Barriers,	4,	e1154641.		

Suidan	G.L.,	Brill	A.,	De	Meyer	S.F.,	Voorhees	J.R.,	Cifuni	S.M.,	Cabral	J.E.	and	Wagner	D.D.	(2013).	Endothelial	

Von	Willebrand	factor	promotes	blood-brain	barrier	flexibility	and	provides	protection	from	hypoxia	and	

seizures	in	mice.	Arterioscler.	Thromb.	Vasc.	Biol.,	33,	2112-2120.		

Sun	C.,	Wu	M.H.,	Guo	M.,	Day	M.L.,	Lee	E.S.	and	Yuan	S.Y.	(2010).	ADAM15	regulates	endothelial	permeability	

and	neutrophil	migration	via	Src/ERK1/2	signalling.	Cardiovasc.	Res.,	87,	348-355.		

Sun	Z.,	Yin	Z.,	Liu	C.,	Liang	H.,	Jiang	M.	and	Tian	J.	(2015).	IL-1β	promotes	ADAMTS	enzyme-mediated	aggrecan	

degradation	through	NF-κB	in	human	intervertebral	disc.	J.	Ortho.	Surg.	Res.	10,	159.	

Taddei	A.,	Giampietro	C.,	Conti	A.,	Orsenigo	F.,	Breviario	F.,	Pirazzoli	V.,	Potente	M.,	Daly	C.,	Dimmeler	S.	and	

Dejana	E.	(2008).	Endothelial	adherens	junctions	control	tight	junctions	by	VE-cadherin-mediated	

upregulation	of	claudin-5.	Nat.	Cell.	Biol.,	10,	923-934.	

Tester	A.M.,	Cox	J.H.,	Connor	A.R.,	Starr	A.E.,	Dean	R.A.,	Puente	X.S.,	López-Otín	C.	and	Overall	C.M.	(2007).	LPS	

responsiveness	and	neutrophil	chemotaxis	in	vivo	require	PMN	MMP-8	activity.	PLoS	ONE,	2,	e312.		

Tien	W.S.,	Chen	J.H.	and	Wu	K.P.	(2017).	SheddomeDB:	the	ectodomain	shedding	database	for	membrane-

bound	shed	markers.	BMC	Bioinformatics,	18,	42.	



HIS
TOLO

GY A
ND H

IS
TOPATHOLO

GY 

(no
n-e

dit
ed

 m
an

us
cri

pt)

41	
	

Tietz	S.	and	Engelhardt	B.	(2015).	Brain	barriers:	Crosstalk	between	complex	tight	junctions	and	adherens	

junctions.	J.	Cell.	Biol.,	209,	493-506.	

Toft-Hansen	H.,	Nuttall	R.K.,	Edwards	D.R.	and	Owens	T.	(2004).	Key	metalloproteinases	are	expressed	by	

specific	cell	types	in	experimental	autoimmune	encephalomyelitis.	J.	Immunol.	173,	5209-5218.		

Trenova	A.G.,	Slavov	G.S.,	Draganova-Filipova	M.N.,	Mateva	N.G.,	Manova	M.G.,	Miteva	L.D.	and	Stanilova	S.A.	

(2018).	Circulating	levels	of	interleukin-17A,	tumor	necrosis	factor-alpha,	interleukin-18,	interleukin-10,	

and	cognitive	performance	of	patients	with	relapsing-remitting	multiple	sclerosis.	Neurolog.	Res.	40,	

153-159.		

Tressel	S.L.,	Kaneider	N.C.,	Kasuda	S.,	Foley	C.,	Koukos	G.,	Austin	K.,	Agarwal	A.,	Covic	L.,	Opal	S.M.	and	

Kuliopulos	A.	(2011).	A	matrix	metalloprotease-PAR1	system	regulates	vascular	integrity,	systemic	

inflammation	and	death	in	sepsis.	EMBO	Mol.	Med.	3,	370-384.	

Van	Den	Steen	P.	E.,	Wuyts	A.,	Husson	S.	J.,	Proost	P.,	Van	Damme	J.	and	Opdenakker	G.	(2003).	Gelatinase	

B/MMP-9	and	neutrophil	collagenase/MMP-8	process	the	chemokines	human	GCP-2/CXCL6,	ENA-

78/CXCL5	and	mouse	GCP-2/LIX	and	modulate	their	physiological	activities.	European	J.	Biochem.	270,	

3739-3749.	

Vestweber	D.	(2015).	How	leukocytes	cross	the	vascular	endothelium.	Nat.	Rev.	Immunol.	15,	692-704.	

Wachtel	M.,	Bolliger	M.F.,	Ishihara	H.,	Frei	K.,	Bluethmann	H.	and	Gloor	S.M.	(2001).	Down-regulation	of	

occludin	expression	in	astrocytes	by	tumour	necrosis	factor	(TNF)	is	mediated	via	TNF	type-1	receptor	

and	nuclear	factor-kappaB	activation.	J.	Neurochem.	78,	155-162.	

Wang	L.,	Fan	W.,	Cai	P.,	Fan	M.,	Zhu	X.,	Dai	Y.,	Sun	C.,	Cheng	Y.,	Zheng	P.	and	Zhao	B.Q.	(2013).	Recombinant	

ADAMTS13	reduces	tissue	plasminogen	activator-induced	hemorrhage	after	stroke	in	mice.	Ann.	Neurol.	

73,	189-198.		

Wang	S.,	Peng	L.,	Gai	Z.,	Zhang	L.,	Jong	A.,	Cao	H.	and	Huang	S.H.	(2016).	Pathogenic	triad	in	bacterial	

meningitis:	Pathogen	invasion,	NF-κB	activation,	and	leukocyte	transmigration	that	occur	at	the	blood-

brain	barrier.	Frontiers	in	Microbiology,	7,	148.		



HIS
TOLO

GY A
ND H

IS
TOPATHOLO

GY 

(no
n-e

dit
ed

 m
an

us
cri

pt)

42	
	

Wang	X.,	Lee	S.-R.,	Arai	K.,	Lee	S.-R.,	Tsuji	K.,	Rebeck	G.	W.	and	Lo	E.H.	(2003).	Lipoprotein	receptor–mediated	

induction	of	matrix	metalloproteinase	by	tissue	plasminogen	activator.	Nat.	Med.	9,	1313-1317.		

Wang	Y.H.,	Sui	X.	M.,	Sui	Y.N.,	Zhu	Q.W.,	Yan	K.,	Wang	L.S.,	Wang	F.	and	Zhou	J.H.	(2015).	BRD4	induces	cell	

migration	and	invasion	in	HCC	cells	through	MMP-2	and	MMP-9	activation	mediated	by	the	Sonic	

hedgehog	signaling	pathway.	Oncol.	Lett.,	10,	2227-2232.	

Wang	Y.,	Jin	S.,	Sonobe	Y.,	Cheng	Y.,	Horiuchi	H.,	Parajuli	B.,	Kawanokuchi	J.,	Mizuno	T.,	Takeuchi	H.	and	

Suzumura	A.	(2014).	Interleukin-1beta	induces	blood-brain	barrier	disruption	by	downregulating	Sonic	

hedgehog	in	astrocytes.	PLoS	One,	9,	e110024.		

Waubant	E.,	Goodkin	D.E.,	Gee	L.,	Bacchetti	P.,	Sloan	R.,	Stewart	T.,	Andersson	P.B.,	Stabler	G.	and	Miller	K.	

(1999).	Serum	MMP-9	and	TIMP-1	levels	are	related	to	MRI	activity	in	relapsing	multiple	sclerosis.	

Neurology,	53,	1397-1401.		

Weaver	A.,	Goncalves	da	Silva	A.,	Nuttall	R.K.,	Edwards	D.R.,	Shapiro	S.D.,	Rivest	S.	and	Yong,	V.W.	(2005).	An	

elevated	matrix	metalloproteinase	(MMP)	in	an	animal	model	of	multiple	sclerosis	is	protective	by	

affecting	Th1/Th2	polarization.	FASEB	J.	19,	1668-1670.	

Wetzel	S.,	Seipold	L.	and	Saftig	P.	(2017).	The	metalloproteinase	ADAM10:	A	useful	therapeutic	target?	

Biochim.	Biophys.	Acta,	1864,	2071-2081.	

Wiggins-Dohlvik	K.,	Merriman	M.,	Shaji	C.A.	Alluri,	H.,	Grimsley	M.,	Davis	M.L.,	Smith	R.W.	and	Tharakan	B.	

(2014).	Tumor	necrosis	factor-alpha	disruption	of	brain	endothelial	cell	barrier	is	mediated	through	

matrix	metalloproteinase-9.	Am.	J.	Surg.,	208,	954-960	

Won	S.,	Sayeed	I.,	Peterson	B.	L.,	Wali	B.,	Kahn	J.S.	and	Stein	D.G.	(2015).	Vitamin	D	prevents	

hypoxia/reoxygenation-induced	blood-brain	barrier	disruption	via	vitamin	D	receptor-mediated	NF-kB	

signaling	pathways.	PLoS	One,	10,	e0122821.	

Wu	K.,	Fukuda	K.,	Xing	F.,	Zhang	Y.,	Sharma	S.,	Liu	Y.,	Chan	M.D.,	Zhou	X.,	Qasem	S.A.,	Pochampally	R.,	Mo	Y.Y.	

and	Watabe	K.	(2015).	Roles	of	the	cyclooxygenase	2	matrix	metalloproteinase	1	pathway	in	brain	

metastasis	of	breast	cancer.	J.	Biol.	Chem.,	290,	9842-9854.		

Yamamizu	K.,	Iwasaki	M.,	Takakubo	H.,	Sakamoto	T.,	Ikuno	T.,	Miyoshi	M.,	Kondo	T.,	Nakao	Y,	Nakagawa	M.,	



HIS
TOLO

GY A
ND H

IS
TOPATHOLO

GY 

(no
n-e

dit
ed

 m
an

us
cri

pt)

43	
	

Inoue	H.	and	Yamashita	J.K.	(2017).	In	Vitro	Modeling	of	Blood-Brain	Barrier	with	Human	iPSC-Derived	

Endothelial	Cells,	Pericytes,	Neurons,	and	Astrocytes	via	Notch	Signaling.	Stem.	Cell	Reports.,	8,	634-647.		

Yang	Y.,	Estrada	E.Y.,	Thompson	J.F.,	Liu	W.	and	Rosenberg	G.A.	(2007).	Matrix	Metalloproteinase-Mediated	

Disruption	of	Tight	Junction	Proteins	in	Cerebral	Vessels	is	Reversed	by	Synthetic	Matrix	

Metalloproteinase	Inhibitor	in	Focal	Ischemia	in	Rat.	J.	Cerebral	Blood	Flow	and	Metabolism,	27,	697-

709.	

Yao	H.,	Duan	M.,	Hu	G.	and	Buch	S.	(2011).	Platelet-derived	growth	factor	B	chain	is	a	novel	target	gene	of	

cocaine-mediated	Notch1	signaling:	implications	for	HIV-associated	neurological	disorders.	J.	Neurosci.	

31,	12449-12454.	

Yap	S.,	Brieher	W.M.	and	Gumbiner	B.M.	(1997).	Molecular	and	functional	analysis	of	cadherin-based	adherens	

junctions.	Ann.	Rev.	Cell	and	Dev.	Biol.	13,	119-146.		

Yi	J.,	Zhu	Y.,	Jia	Y.,	Jiang	H.,	Zheng	X.,	Liu	D.,	Gao	S.,	Sun	M.,	Hu	B.,	Jiao	B.,	Wang	L.	and	Wang	K.	(2016).	The	

Annexin	a2	Promotes	Development	in	Arthritis	through	Neovascularization	by	Amplification	Hedgehog	

Pathway.	PLoS	One,	11,	e0150363.		

Yong	V.	W.	(2005).	Metalloproteinases:	mediators	of	pathology	and	regeneration	in	the	CNS.	Nat.	Rev.	

Neurosci.,	6,	931-944.	

Yoo	Y.	A.,	Kang	M.H.,	Lee	H.J.,	Kim	B.H.,	Park	J.K.,	Kim	H.K.,	Kim	J.S.	and	Oh	S.C.	(2011).	Sonic	hedgehog	

pathway	promotes	metastasis	and	lymphangiogenesis	via	activation	of	Akt,	EMT,	and	MMP-9	pathway	in	

gastric	cancer.	Cancer	Res.,	71,	7061-7070.	

Yu	H.,	Jiang	W.,	Du	H.,	Xing	Y.,	Bai	G.,	Zhang	Y.,	Li	Y.,	Jiang	H.,	Zhang	Y.,	Wang	J.,	Wang	P.	and	Bai	X.	(2014).	

Involvement	of	the	Akt/NF-kappaB	pathways	in	the	HTNV-mediated	increase	of	IL-6,	CCL5,	ICAM-1,	and	

VCAM-1	in	HUVECs.	PLoS	One,	9,	e93810.		

Yun	S.P.,	Lee	S.J.,	Oh	S.Y.,	Jung	Y.H.,	Ryu	J.M.,	Suh	H.N.,	Kim	M.O.,	Oh	K.B.	and	Han	H.J.	(2014).	Reactive	oxygen	

species	induce	MMP12-dependent	degradation	of	collagen	5	and	fibronectin	to	promote	the	motility	of	

human	umbilical	cord-derived	mesenchymal	stem	cells.	Br.	J.	Pharmacol.,	171,	3283-3297.		

Zhong	Y.,	Zhang	B.,	Eum	S.	Y.	and	Toborek	M.	(2012).	HIV-1	Tat	triggers	nuclear	localization	of	ZO-1	via	Rho	



HIS
TOLO

GY A
ND H

IS
TOPATHOLO

GY 

(no
n-e

dit
ed

 m
an

us
cri

pt)

44	
	

signaling	and	cAMP	response	element-binding	protein	activation.	J.	Neurosci.,	32,	143-150.		

Zhuang	J.,	Wei	Q.,	Lin	Z.	and	Zhou	C.	(2015).	Effects	of	ADAM10	deletion	on	Notch-1	signaling	pathway	and	

neuronal	maintenance	in	adult	mouse	brain.	Gene,	555,	150-158.	

	

	

	

	

	 	



HIS
TOLO

GY A
ND H

IS
TOPATHOLO

GY 

(no
n-e

dit
ed

 m
an

us
cri

pt)

45	
	

FIGURE	LEGENDS:	

Figure	1:	Schematic	representation	of	the	architecture	of	the	blood-brain	barrier	(BBB).	

Endothelial	Cells	(ECs)	forming	the	capillaries	establish	intercellular	contacts	known	as	tight	

junctions.	ECs	and	pericytes	are	surrounded	by	a	basement	membrane,	which	in	turn	is	also	

wrapped	by	astrocyte	foot	processes.	Astrocytes	play	a	major	role	in	BBB	maintenance	

through	the	secretion	of	several	factors	including	Shh	(not	shown).		

Figure	2:	Schematic	representation	of	Metzincin	structural	domains.	Metalloproteinases	

exhibit	a	high	structural	homology	with	a	catalytic	domain	followed	by	a	highly	conserved	

methionine	residue;	a	linker	or	hinge	peptide;	and	a	hemopexin	domain	with	a	calcium	

binding	site.	Differences	in	this	consensus	structure	have	been	used	to	classify	this	family	

members	in	the	above	specified	subgroups.	The	presence	of	a	signal	peptide	(SP)	directs	

their	secretion	or	transmembrane	anchorage.	These	metalloproteinases	are	activated	

proteolytically	through	cleavage	of	the	pro-domain.	Although	MMPs	are	secreted,	the	

presence	of	a	transmembrane	or	glycosyl	phosphatidylinositol	(GPI)	domain	allows	some	

members	of	this	family	to	anchor	to	the	cellular	membrane.	ADAMs	have	a	disintegrin-like	

domain	involved	in	cell	adhesion	together	with	a	cysteine-rich	region	and	Epidermal	Growth	

Factor	(EGF-)	like	repeats.	Structurally	similar	to	ADAMs,	ADAMTS	also	contain	a	disintegrin-

like	and	cysteine-rich	regions	(separated	by	a	thrombospondin	motive)	but	lack	a	

transmembrane	domain	and	are	thus	secreted.	
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Figure	3:	Some	of	the	possible	intracellular	mechanisms	underlying	BBB	stability.	Under	

inflammatory	conditions	cytokines	are	released	to	the	extracellular	environment.	

Endothelial	Cells	(ECs)	forming	the	Blood-Brain	Barrier	(BBB)	respond	to	these	released	

factors	through	transmembrane	receptors	(such	as	TNFR	or	ILR)	and	trigger	a	cascade	of	

intracellular	events	in	which	the	PI3K/Akt	pathway	may	function	as	a	key	node.	Cytoskeletal	

changes	triggered	by	myosin	phosphorylation	together	with	Z0-1	phosphorylation	status,	

both	potential	Akt	substrates,	seem	to	determine	Z0-1	intracellular	location	and	consequent	

TJ	formation.	Additionally,	Akt-mediated	phosphorylation	may	be	responsible	for	the	

activation	of	transcription	factors	such	as	CREB	(which	can	trigger	ZO-1	transcription),	NFκβ	

(depicted	p50/p65	and	whose	inhibitor	degradation	IkB	can	be	also	modulated	by	Akt)	

FoXO1	(in	the	absence	of	VE-cadherin,	β-catenin	is	no	longer	sequestered	in	the	membrane	

and	can	interact	with	FoXO1,	inhibiting	claudin-5	transcription).	NFκβ	modulates	gene	

transcription	of	several	genes,	some	of	them	implicated	in	BBB	maintenance:	represses	TJ	

proteins	expression	while	enhancing	the	transcription	of	metzincins	such	as	MMP9,	-14,	

ADAM10	and	-17.	Interestingly,	(M)MPs	have	not	only	been	described	to	directly	cleave	TJ	

proteins	and	basement	membrane	components	but	also	cleave/activate	notch,	which	in	

turn	may	further	enhance	Akt-mediated	effects	through	inhibition	of	PTEN,	a	repressor	of	

the	PI3K/Akt	pathway.	After	Notch	cleavage,	Notch	intracellular	domain	(NICD)	is	free	to	

translocate	into	the	nucleus,	where	it	can	regulate	gene	transcription	and	impact	BBB	stability.	

Additionally,	ADAM15	can	also	impact	on	barrier	stability	not	only	through	cleavage	but	also	

by	promoting	VE-cadherin	phosphorylation	and	consequent	AJ	disassembly	through	

intracellular	signalling	cascade	triggered	with	its	cytoplasmic	tail	(not	depicted).	Interactions	

validated	in	the	BBB	are	represented	by	solid	lines,	while	dotted	lines	refer	to	connections	

described	in	a	different	cellular	context.
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Table	1.	—	Key	findings	regarding	metalloproteinases	effects	in	BBB	integrity	and	BBB	related	disease	

	 OBSERVATION	 STUDIED	IN	 REFERENCES	

MMP1	 Cleaves	claudins	and	occludins	but	not	Z0-1	proteins	
Co-culture	 of	 mBMEC	 with	
human	breast	cancer	cells	

Wu	et	al.,	2015	

MMP2	

Required	by	monocytes,	dendritic	cells	and	activated	T	cells	to	induce	BBB	breakdown	 EAE	 Graesser	et	al.,	2000	

Resistance	to	EAE	in	MMP-2	and	MMP-9	in	double	knockout	mice		 EAE	 Agrawal	et	al.,	2006	
Positive	 feedback	mechanism:	 cytokines	 produced	 by	 leukocytes	 induce	MMP-9	 and	 -2,	
which	in	turn	can	promote	further	infiltration	of	immune	cells	

EAE	 Agrawal	et	al.,	2006	

Cleaves	claudin-5		
Cerebral	 artery	 occlusion	 and	
reperfusion	in	rats	

J.	Song	et	al.,	2015	

Increase	susceptibility	to	EAE	in	MMP2-/-	mouse	due	to	a	compensatory	increase	in	MMP9	
levels	

EAE		 Yang	et	al.,	2007	

MMP3	

LPS	 intracerebral	 injection	 showed	 reduced	 BBB	 opening	 and	 neutrophil	 infiltration	 in	
MMP3-/-	mouse	

Knockout	mouse	 Esparza	et	al.,	2004	

Increased	expression	during	brain	ischemic	insult	 Ischemic	rat	brain		 Gurney	et	al.,	2006	
mRNA	levels	elevated	during	Relapsing	Remitting	Multiple	Sclerosis	 MS	patients	 Rosenberg	et	al.,	2001	
Increased	transcriptional	up-regulation	in	a	murine	virus	induced	model	of	Multiple	Sclerosis	 Murine	MS	model	 Reviewed	in	Larochelle	et	al.,	2011	

MMP7	
Increased	in	lesions	from	post-mortem	Multiple	Sclerosis	brains	 Post-mortem	brain		 Hansmann	et	al.,	2012	
mRNA	levels	elevated	during	Relapsing	Remitting	Multiple	Sclerosis	 MS	patients	 Lindberg	et	al.,	2001	

MMP8	
Serum	levels	increased	in	Multiple	Sclerosis	patients	 MS	patients	 Reviewed	in	Larochelle	et	al.,	2011	
Up-regulated	expression	levels	in	the	CNS	of	a	mouse	model	of	Multiple	Sclerosis	(EAE)	 EAE	 Reviewed	in	Larochelle	et	al.,	2011	

MMP9	

Required	by	monocytes,	dendritic	cells	and	activated	T	cells	to	induce	BBB	breakdown	 EAE	 Toft-Hansen	et	al.,	2004	
Resistance	to	EAE	in	MMP-2	and	MMP-9	in	double	knockout	mice		 EAE	 Agrawal	et	al.,	2006	
Positive	 feedback	mechanism:	 cytokines	 produced	 by	 leukocytes	 induce	MMP-9	 and	 -2,	
which	in	turn	can	promote	further	infiltration	of	immune	cells	

EAE	 Graesser	et	al.,	2000	

Higher	levels	in	MS	patients	and	associated	with	relapse	
High	serum	levels	correlated	with	BBB	disruption	in	MS	patients	

MS	patients	 Agrawal	et	al.,	2006	

Gene	knockout	is	associated	with	a	reduction	in	infarction	and	attenuation	of	BBB	opening	
after	focal	cerebral	ischemia	

Transient	focal	ischemia	in	mice	 Song	et	al.,	2015	
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Cleavage	of	Z0-1,	occludin	and	claudin-5		
Cerebral	hypoxia	mice	
Brain	artery	occlusion	rats	

Lee	et	al.,	1999	

Reduced	susceptibility	to	EAE,	BBB	damage	and	infarcts	susceptibility	in	MMP9-/-	mouse	 Knockout	mouse	 Waubant	et	al.,	1999	
Polymorphisms	 in	 its	 promoter	 have	 been	 linked	 to	 increased	 susceptibility	 to	Multiple	
Sclerosis	

MS	patients	 Asahi	et	al.,	2001	

MMP10	 Up-regulated	expression	levels	in	the	CNS	of	a	mouse	model	of	Multiple	Sclerosis	(EAE)	 EAE	 Bauer	et	al.,	2010	

MMP12	
Up-regulated	expression	levels	in	the	CNS	of	a	mouse	model	of	Multiple	Sclerosis	(EAE)	 EAE	 Yang	et	al.,	2007	

Increased	susceptibility	to	EAE	in	MMP12-/-	mouse	 EAE	 Asahi	et	al.,	2001	

MMP13	 Can	enhance	BBB	permeability	through	Z0-1	fragmentation	
Primary	 rat	 astrocytes	 and	
ARBECs	co-culture	

Dubois	et	al.,	1999	

MT-MMPs	
Cleavage	of		BBB	basement	membrane	components	such	as	laminin	and	collagen	IV	 In	vitro	studies	 Fiotti	et	al.,	2004	

Serum	levels	(MT-MMP1)	can	be	elevated	in	Multiple	Sclerosis	patients	 MS	patients	serum	 Toft-Hansen	et	al.,	2004	

TIMP1	 Low	serum	levels	correlated	with	BBB	disruption	in	Multiple	Sclerosis	(MS)	patients	 MS	patients	serum	 Toft-Hansen	et	al.,	2004	

ADAM10	 Promote	BBB	leakage	through	the	shedding	of	adhesion	molecules	 HUVECs	 Weaver	et	al.,	2005	

ADAM15	
ADAM15	 depletion	 can	 decrease	 endothelial	 permeability.	 This	 can	 be	 reversed	 by	 its	
overexpression	

HUVECs	 Lu	et	al.,	2009	

ADAM17	
Promote	BBB	leakage	through	the	shedding	of	adhesion	molecules	
Expressed	in	blood	vessels	of	MS	lesions	

HUVECs	
MS	patients	

Reviewed	in	Itoh,	2015	

ADAMTS13	 Capable	of	blocking	tPA	induced	BBB	disruption	after	cerebral	ischemia	in	mice	 Ischemia	mouse	model	 Reviewed	in	Larochelle	et	al.,	2011	

ADAMTS14	 Associated	to	Multiple	Sclerosis	through	genetic	linkage	 MS	patients	 Waubant	et	al.,	1999	
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