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Abstract
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Abstract:
The changing structure of the marginal sea-ice zone (MIZ), together with high tem-
perature gradients between the cold Arctic air and relatively warm sea water, con-
tribute to uncertainty in numerical weather prediction (NWP). Since cold-air out-
breaks (CAO) over the MIZ contribute strongly to heat transfer in the polar areas,
assessment of variability in them is of a great importance.
This thesis deals with extending our understanding of the variability within CAO
by means of large eddy simulations, performed in The Met Office Large Eddy Model
(LEM).
The novel approach of this study lies within: firstly, introducing three different pat-
terns of heterogeneity in surface temperatures that represent conditions in MIZs;
secondly, investigating both the spatial and temporal variability in the developing
boundary-layer convection. A set of idealised scenarios and a case study are anal-
ysed. The case study is performed for a weak CAO event observed during ACCACIA
field campaign on 21 March 2013.
The study shows a profound impact of the inhomogeneous surface on both the spatial
organisation of the boundary-layer convection and the latent heat flux at the surface
and the boundary layer. The effect of heterogeneities depends strongly on the wind
shear, the size and the orientation of the heterogeneity, and the initial stratification.
When active cumuli clouds form, the effect of heterogeneities quickly diminish due
to a top-driven mixing. In a stronger stratification that inhibits cumulus forma-
tion, the effect of heterogeneity is maintained. Stripes of temperature anomalies
parallel to mean wind direction drive the formation of forced convective rolls and
facilitate significantly higher latent heat flux. The impact of this heterogeneity usu-
ally increases with increased wind-shear, while the impact of other heterogeneities
generally decreases. The impact of temperature heterogeneity is generally stronger
than the impact of varying ice roughness.
The implications for the parametrization of convective boundary layer are discussed.

Key words: cold-air outbreak, large eddy simulation, parametrization,
marginal sea-ice zone, heterogeneous surface, latent heat flux
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Chapter 1

Introduction

Human civilization has been always dependent on exploiting favourable weather and

mitigating against violent weather. Understanding weather patterns and predicting up-

coming shifts in weather has always been vital. One of the great achievements of the

twentieth century has been numerical weather prediction (NWP) models of the atmo-

sphere, which have enabled useful forecasts of upcoming weather. During past decades,

originally simple models have become increasingly more complicated, representing an

ever increasing number of phenomena that can affect the development of weather.

However, the majority of simulations have occasionally failed to predict serious

weather events just a few days in advance. Although more accurate evaluation of the

initial conditions in the atmosphere and further advances in computational power are

beneficial, a number of phenomena occur on time scales and spatial scales that are too

small to be directly resolved in the NWP simulation. The effect of these phenomena

therefore need to be approximated by employing a suitable parametrization. In ad-

dition, it has been indicated that a further drive towards more accurate deterministic

NWP models alone is not sufficient, and weather prediction should instead be treated in

a probabilistic way (Palmer et al., 2005).

An interesting example of the phenomenon which occur on relatively small scales is

a turbulence over a heterogeneous surface. This is particularly common when the cold air

masses of the Arctic are advected over a warmer surface of a marginal sea-ice zone. This

meteorological phenomenon, known as cold-air outbreak, is then characterized by a de-

veloping convection. This leads to vertical transport of heat, moisture and momentum

(Renfrew and Moore, 1999). NWP models usually parametrize the convective boundary

layer in a cold-air outbreak as if it was taking place over a homogeneous surface, even

though a marginal sea-ice zone consists of a heterogeneous mix of water and segments

of sea-ice (Gryschka et al., 2008). However, the heterogeneity in surface conditions is

likely to effect the organisation of convective eddies (Gryschka et al., 2014). This is

nicely illustrated by a satellite image in the figure 1.1. It is, therefore, a valid question
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how heterogeneous surface conditions alter the structure of the boundary layer and the

resulting vertical transport of heat, moisture and momentum.

Figure 1.1: Satellite image showing the distinctive organisation of cloud streets in the
cold-air outbreak over the marginal sea-ice zone of the Labrador Sea. Reproduced from
Liu et al. (2006).

The main purpose of this thesis is to extend our knowledge of atmospheric processes

in cold-air outbreaks for the purpose of parametrization in NWP. The central point is

examining the influence of a heterogeneous surface forcing on a developing cold-air out-

break. The study then aims to investigate the structure of the convective boundary layer

and provide implications for the boundary layer parametrization schemes. We therefore

focus on the analysis of vertical fluxes of heat, moisture and momentum, as well as on

the variation in their values. The main novelty of this study lies in the introduction of

three different types of heterogeneous patterns in surface temperatures.

This introductory chapter explains the motivation behind this study and further

narrows down the topic of the study. Firstly, it shows the importance of parametrizing

small-scale processes (1.1). Secondly, it points out the importance of parametrizing the

underlying variability in weather (1.2). Although there is a wide palette of mesoscale

phenomena where the variability is not properly examined, this study needs to only focus

on one chosen phenomenon. The motivation for the choice is given in the following part

(1.3) — it explains the significance of the phenomenon of cold-air outbreak. The next

part (1.4) specifies the main problems and state clearly the thesis objectives. The sub-

sequent part (1.5) will then briefly justify the choice of methods for this study. Finally,

the structure of the thesis will be shown in the last section of the introductory chapter

(1.6).
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1.1 Introduction to the Parametrization of

Convective-Scale Phenomena

The atmosphere can be viewed as a highly complex, non-linear dynamical system. In

this part of the introduction, we will explain the importance of parametrizing parts

of this dynamical system. First, we will briefly review the theory. Secondly, we will

describe some examples of the parametrization of convective-scale phenomena. Finally,

we will show some persisting issues in indexparametrization parametrization approaches.

The atmosphere could be viewed as an infinite-dimension dynamical system. Using

Palmer’s notation, an evolution of this system {X̃ (t)}t is schematically described as

˙̃
X = F̃

[
X̃
]
, (1.1)

where F̃ in a non-linear functional. For the purpose of numerical prediction, an approx-

imation includes some form of Galerkin decomposition on a finite-dimension dynamical

system described as

Ẋ = F
[
X
]

+ P
[
X ; β

]
, (1.2)

where the finite-dimensional F is a truncation of F̃, the functional P
[
X ; β

]
represents

the effects of remaining terms in F̃
[
X̃
]

that were not preserved, and β are parameters

based on physical properties of atmosphere and the form of the decomposition. (Palmer,

2001)

Grid-based models use the premise that the dynamical system can be decomposed

on resolved-scale variables and a local remainder. However there is not a clear justifica-

tion for this assumption, even though the research on cospectra of wind velocities in the

atmospheric boundary layer (ABL) indicated an existence of the cospectral gap (Vickers

and Mahrt, 2003). Nevertheless, the possible issues arising from a cut-off between the

resolved and unresolved scales should be always carefully considered.

Over last few decades, NWP models have, amongst other improvements, seen an in-

crease in the grid resolution. This increased resolution has led to a higher amount of

resolved processes. We will show it on examples of paramatrizations for turbulent trans-

port in the ABL used in current NWP models.

1.1.1 Examples of Convective Boundary Layer Parametrization

One of the popular approaches for parametrizing the convective boundary layer (CBL)

is eddy-diffusivity mass-flux (EDMF) method. It is employed in a number of NWP and
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other numerical models, including the Integrated Forecasting System (IFS) of the Eu-

ropean Centre for Medium-Range Weather Forecasts (ECMWF). The main idea behind

EDMF schemes is that transport of mass and energy within the CBL are modelled as

a combination of upward transport inside thermals and a diffusion into the rest of CBL.

The CBL parametrization in the operational version of the Met Office Unified Model

(MetUM) is based on the similar principles, but it differs from the EDMF parametriza-

tion. It models the vertical transport as the combination of the effect of a non-local

forcing for the transport across the CBL and the local gradient transport by eddy diffu-

sion. The following paragraphs further explain both schemes .

From the EDMF standpoint, the CBL consists of a few strong updraughts and a sur-

rounding turbulent air with weaker updraughts and various downdraughts (Siebesma et

al., 2007). While there are differences between various EDMF implementations, this

explanation mostly focuses on the scheme used in the IFS. Strong updraughts are ar-

bitrarily defined as updraughts in a small fractional area au containing the strongest

upward vertical motions (IFS IV, 2013, pp.39–40). Strong updraughts at the bottom of

the CBL are the basis of thermals that facilitate mass-transport of the warm moist air

parcels higher up while smaller eddies are responsible for the diffusive transport of heat

and moisture in horizontal and vertical gradients (Siebesma and Cuijpers, 1995).

The EDMF schemes are not concerned with each single updraught plume, but with

their overall effect on the vertical transport (Witek et al., 2011). Denoting the vertical

velocity w, the vertical flux of a scalar quantity ϕ in the kinematic form is expressed as

(w′ ϕ′) = au (w′ ϕ′u)
(u)

+ (1− au) (w′ ϕ′e)
(e)

+ au wu
(
ϕu − ϕe

)
(1.3)

where ( )
(u)

denotes averaging over the area of strong updraughts, ( )
(e)

denotes averag-

ing over the air surrounding updraughts, and ϕu and ϕe are values of the scalar quantity

within the strong updraughts, respectively the air surrounding updraughts. The diffusion

components are then estimated by first-order closure to obtain

(w′ ϕ′) = −Kϕ
∂ϕ

∂z
+ au wu

(
ϕu − ϕe

)
, (1.4)

where Kϕ denotes the K-profile that estimates the eddy diffusivity (O’Brien, 1970). The

K-profile values are usually estimated by the method of Troen and Mahrt (1986).

The EDMF approach is usually applied between the surface layer and the top of the

CBL. In the IFS, the EDMF is applied up to the inversion height above the CBL in the

case it is clear or topped with stratocumuli clouds. In the case that cumulus clouds are

present, the EDMF is applied up to the cloud base. The height of the inversion and the

condition for cumulus clouds are determined diagnostically (Köhler et al., 2011). The
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transport between the surface and the lowest model level is treated by a separate surface

parametrization based on Monin-Obukhov theory (Beljaars, 1994).

The surface parametrization is also used to derive the vertical velocity variance σw

at the lowest EDMF level and the difference between the values of ϕu and the horizontal

mean ϕ. Under the assumption that the distribution of vertical velocities follows a normal

distribution, the vertical wind velocity an the lowest level is set to σw ·z1−au , where z1−au

is the 1− au quantile of the normal distribution. The values of the kinetic energy 1
2
w2
u

and the scalar quantity ϕu within the strong updraughts at other model levels are then

obtained by integrating the mass flux equations

∂ϕu
∂z

= − εe
(
ϕu − ϕ

)
1

2

∂w2
u

∂z
=− εe

(
w2
u − w2

)
+ g

θv,u − θv
θv︸ ︷︷ ︸

(II)

,

(1.5)

where θv,u is the virtual potential temperature within updraughts, θv is the horizontal

mean of the virtual potential temperature and εe is fractional entrainment (Siebesma

and Teixeira, 2000). The first term on each right-hand side of each equation represents

the entrainment between the strong updraughts and the rest of the CBL air. The term

(II) then accounts for the changes the vertical velocity of updraughts due to buoyancy.

The choice of the vertical velocity of updraught attracts further attention. Although

the estimation of the vertical velocity variance in the vicinity of the surface is quite robust

and supported by laboratory experiments (Holtslag and Moeng, 1991), we do not know

much about the skew and further properties of the distribution of the vertical velocities.

While some recent studies concerning EDMF schemes have taken into account variations

in the distribution of strengths of updraughts (Sušelj et al., 2012), many other sources

simply assume that the distribution of vertical velocity of updraughts and downdraughts

follows normal distribution (IFS IV, 2013, pp.41-42).

The ABL parametrization in the operational version of the MetUM is dependent

on the boundary layer type. The current version of MetUM (8.6 as of 2016) recognises

seven different types of ABL. Out of that, five are concerned with the CBL (Lock and

Edwards, 2013, p. 6). The computational scheme for vertical turbulent transport of

heat and moisture differs between the types. Nevertheless, there are some main common

points. Firstly, the ABL type is determined diagnostically. Secondly, the depth of the

ABL and the heights of possible decoupling levels are estimated. In essence, these ABL

properties are diagnosed by taking parcels of the air from the near-surface layer and the

top cloud layer and evaluating their buoyancy at different altitudes. The prediction of
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the vertical turbulent transport within the ABL is then based on the first-order closure

of a flux-gradient relation (Lock et al., 2000).

In the flux-gradient approach, vertical fluxes of momentum and scalar quantities are

replaced by a term for local gradient transport and an additional non-local term. The

vertical kinematic flux of a scalar quantity ϕ is usually expressed as

(
w′ ϕ′

)
= −Kh

∂ϕ

∂z︸ ︷︷ ︸
local

+ K(surf)

h γϕ︸ ︷︷ ︸
non−local

, (1.6)

where Kh is the K-profile that estimates the eddy diffusivity (O’Brien, 1970), K(surf)

h is

a term representing surface forcing and the variable γϕ represents the effect of the en-

trainment at the top of the CBL (Lock and Edwards, 2013, pp. 21–22). The treatment

of the vertical flux of momentum is analogous, although the coefficients differ.

The main idea behind the local gradient term is that smaller eddies facilitate the

diffusion of the momentum and scalar quantities mostly in the down-gradient direction.

The eddy diffusivity K-profile is determined based on the estimated Richardson number,

indicated amount of wind shear and additional coefficients dependent on the model nu-

merical set-up. The specific way of calculating these values differs between CBL types.

Due to a rather complicated nature of these calculations, we point for the further details

to the MetUM documentation (Lock and Edwards, 2013).

The non-local term accounts for additional forcings in the ABL. In the CBL cases,

it consist of the impact of the surface-driven eddies and the impact of entrainment at

the CBL top. The entrainment is parametrized by employing the direct scheme of Lock

(2000) for well-mixed boundary layers and the mass-flux scheme of Gregory and Rown-

tree (1990) for cumulus-topped layers. The surface layer forcing term is computed with

the help of the surface scheme based on Monin-Obukhov theory. This again alludes

to some similarity to the EDMF scheme. For further details on the calculation, we again

point to the MetUM documentation (Lock and Edwards, 2013).

1.1.2 Issues in Convective Boundary Layer Parametrization

A common feature of many ABL parametrization schemes is the assumption that the

vertical wind velocity at the bottom of the ABL follows some specific distribution. More-

over, there is also the implicit assumption that the surface roughness, temperature and

other properties are spatially homogeneous. The question whether the schemes work

well for heterogeneous surfaces within the model grid cells is seldom addressed, let alone

discussed. However, it is very likely that inhomogeneities contribute to the error in sub-
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grid parametrization in atmospheric models (Love and Leslie, 1979).

The issue of the impact of a heterogeneous surface on CBL properties has gained

more scientific attention in the recent decade. The impact of non-homogeneous surface

forcing is slowly gaining attention in the development of NWP. This is also the case of

both aforementioned examples of NWP systems. For example, the MetUM documenta-

tion offers a promise that future versions of the model will treat surface heterogeneity

explicitly by a ’tiling’ method (Lock and Edwards, 2013, p.55). In addition, a number of

studies has proposed modifications of the surface drag coefficients over a heterogeneous

surface (Lüpkes et al., 2012) or the modification of the entrainment estimation (Sühring

et al., 2014). However, surface heterogeneity can affect the overall structure of the CBL

(Desai et al., 2006), including the coherency of the larger convective eddies (Fesquet et

al., 2009). Therefore, it is logical to ask whether ABL schemes require adjustments in

a case of heterogeneous surface conditions.

1.2 Introduction to Stochastic Parametrization

The atmosphere is a complicated dynamical system that often exhibits a chaotic be-

haviour and a high sensitivity to initial conditions. Owing to various advances in NWP

models, a deterministic simulation can approximate the effects of various processes on

developing weather. However, one deterministic simulation does not take into account

the variability in these processes. In this part of the chapter, we are going to explain the

motivation for stochastic parametrization and introduce some of the issues related to it.

A recently popular approach to capturing the variability in the development of

weather has been ensemble forecasts. The main idea behind them is that a large set

of deterministic NWP runs is initialised with different perturbations in the parameters,

and in some cases, also different parametrization schemes. The results of NWP runs are

then statistically evaluated to estimate the most likely development of the dynamical sys-

tem of the weather and estimate the likely variations in weather conditions (Weisheimer

et al., 2011). Ensemble forecasts, though widely accepted as the state of art in NWP

forecasts, have a tendency to under-represent the spread on the longer timescales and

might often fail to predict serious weather events in advance (Palmer et al., 2005).

With a goal to counter these issues, another new approach based on stochastic treat-

ment of uncertainty arises as well. The effect of various unresolved processes and varia-

tion in the initial conditions are represented by the deliberate introduction of uncertainty

into models. Generally, there is no single main method for stochastic parametrization,

but rather a growing selection of various, often very different approaches. Some of them

are based on global parameter perturbations (Li et al., 2008), some others use stochastic
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backscatter to retain the effect of high frequencies near cut-off length and scatter part

of their effect onto lower frequencies (Buizza et al., 1999), and there are also a number

of methods based on the application of cellular automata (Bengtsson et al., 2013). Spe-

cific stochastic parametrization schemes have been implemented within some established

NWP models, including the ECMWF IFS (Weisheimer et al., 2014) and the Met Office

Global and Regional Ensemble Prediction System (MOGREPS) (Tennant et al., 2011).

It has been indicated that the skill of the forecasts have improved (Palmer, 2001, p. 290).

The approach to stochastic parametrization can be demonstrated in the modification

of the existing decomposition of the system on resolved and unresolved scales. A number

of conventional local-enclosure and bulk-parametrization schemes follows the premise

behind the decomposition (defined in equation 1.2) by assuming that the contribution

of unresolved processes at each Nd points is based only on a set of parameters and the

local values of resolved variables, i.e.

X k = Fk

[
X
]

+ P
[
X k; β

]
, k = 1 . . . Nd, (1.7)

However, resulting system of the ordinary differential equation would not cover the same

variability as the original one, Palmer (2001, p. 283) argues. Although unresolved scales

only hold a small portion of the total model variance, neglecting them in a non-linear

system can easily lead to serious systematic errors (Bengtsson et al., 2011). To counter

this issue, Buizza et al. (1999, p. 2889) suggest adding the stochastic perturbations that

is schematically defined as

X k = Fk

[
X
]

+ ν P
[
X k; β

]
, ν ∼ U(0.5, 1.5), k = 1 . . . Nd, (1.8)

where ν is the random number drawn from the uniform distribution on the interval

[0.5, 1.5]. Orrell (1999) and Smith (2001) instead suggest various non-local parametriza-

tions where the variance in the parametrized term is based on the estimated variance of

the full system.

The aforementioned parametrization schemes usually employ random numbers drawn

from the uniform distribution or Gaussian distribution. However Berner (2005) argues

that that the underlying probability distribution should be non-Gaussian and presents

few examples when this approach improves the skill of the forecast. Furthermore, it

is important to consider some degree of auto-regression in the random variables. This

possibility was already identified in the ECMWF stochastic schemes (Palmer et al., 2009).

Regarding different approaches in weather forecasting, one of the implicit questions

is whether we can improve our knowledge of the underlying variability in some of the

processes affecting the development of weather. A better insight into the variability
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both on temporal and spatial scales can be beneficial for further improvement in the

stochastic parametrization schemes. Moreover, there is also the question of which atmo-

spheric phenomena can be determined accurately enough and which phenomena should

be treated as a part of stochastic ’noise’.

1.3 Introduction to Cold-Air Outbreaks

One of the weather phenomena that leads to rapid changes in the extratropical ABL is

known as Cold-Air Outbreak (CAO). CAOs strongly contribute to heat transfer in polar

areas (Papritz et al., 2014). A number of studies indicate that they are very likely to

influence the uncertainty in the extra-tropical weather conditions (Wacker et al., 2005)

and affect the predictability of weather (Walsh et al., 2001). In this part of the thesis,

we will characterise the phenomenon of CAO and explain its importance. Firstly, we

start with a brief historical introduction. Secondly, we compactly characterise the main

principle of CAO. Then we further describe the processes within CAO. As a next step,

we show some differences between CAOs. Finally we focus on challenges faced in the

previous model studies of CAO.

The phenomenon of cold-air outbreak was scientifically observed at least as early as

mid-19th century, although the scientific name we use for it today was not yet adopted

at those times. Researchers on the early Arctic expeditions described that CAO leads

to rapid changes in the bottom part of the troposphere (Murphy, 1860, p.312). It was

also recognised that high temperature differences together with the changing structure of

Arctic sea-ice might affect wind patterns (Daly, 1877). Later expeditions then revealed

a high variability in the weather patterns in the Arctic (Shaw, 1928).

The main principle of CAO can be described as follows: The mass of a cold strati-

fied air originating over sea-ice or land is advected over a warmer surface of a marginal

sea-ice zone (MIZ) or an open sea. A high surface temperature gradient over the surface

then leads to a high flux of heat and moisture into the atmosphere (Moore et al., 2014).

The originally stratified stable boundary layer (SBL) becomes unstable. This causes

warm plumes to rise from the surface layer and form the CBL. Developing convective

eddies than facilitate further vertical transport of heat and moisture from the surface

(Skyllingstad and Edson, 2009). This allows deepening of the CBL and the formation of

clouds. The main principle of CAO is illustrated in the figure 1.2. The processes present

in a CAO are further described in the following paragraphs.
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Figure 1.2: Illustration of a cold-air outbreak of a MIZ — The horizontal and vertical
distances are not up to scale. The structure of the MIZ is based on figures from Rothrock
and Thorndike (1984). Only the main processes are illustrated: A– the advection of cold
air, B– the edge of ice, C– convective plumes, D– steam fog , E– clouds (stratocumulus
type), F– outgoing longwave radiation, G– convective rolls (the mean wind component
not displayed), H– precipitation, I– cloud entrainment, J– clouds (cumulus type)

1.3.1 Processes in Cold-Air Outbreak

With the warming of the near-surface air after the edge of ice, an internal boundary layer

(IBL) is formed between the turbulent air and the remains of the original SBL. The IBL

then grows due to heating from the surface and the entrainment of the air above the IBL

(Renfrew and King, 2000). As the IBL rises, coherent convective structures are formed

(Zurn-Birkhimer et al., 2005). Originally separate surface plumes blend with altitude

into thermals (Couvreux, 2010). The inner portion of the CBL above the surface layer

and bellow the IBL generally become well mixed (Ebner et al., 2011), leading to its
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classification as mixed layer (ML) (Stull, 1988, p. 12)

The growth of the CBL is also associated with the formation of clouds. Clouds usually

start forming soon after the air passes the edge of the ice. However, it is often difficult to

distinguish between convective clouds and the steam fog (Brümmer, 2002). The steam

fog and “steam devils” occur due to condensation in rising plumes (Zurn-Birkhimer et

al., 2005). Clouds usually form atop larger thermals. Thermals are generally responsible

for most of the vertical heat and moisture transport within the cloud layer (Klein et

al., 2009). Due to the influx of heat and moisture, clouds continue growing and extend

also into the inversion layer (Solomon et al., 2014). Due to longwave radiative cooling

at cloud tops, droplets grow rapidly until subsaturation occurs (Jiang and Cotton, 2000).

While the upper part of the clouds mostly consist of growing supercooled water

droplets, the situation in the lower portion of the clouds is significantly different. The

bottom part of clouds experience glaciation, leading to the mixed-phase character of

clouds (Klein et al., 2009). Despite a number of observational and model studies, the

impact of the small-scale turbulence on the small droplets of supercooled water is still not

properly understood (Forbes and Ahlgrimm, 2014). As a results, mixed-phase clouds are

generally difficult to paremeterize, particularly in the representation of the supercooled

liquid water. Therefore, NWP models face a number of difficulties reproducing Arctic

clouds (Tjernström et al., 2008), leading to biases in Arctic radiative balance (Tsay et

al., 2008). This bias is mostly indicated in the downwelling longwave radiation (Barton

et al., 2014).

The formation of larger organised convective structures has been observed in many

cases. The most common form are structures known as convective rolls where convection

is organised into a quasi two-dimensional vortex circulation. These rolls generally have

an opposite sense of rotation and are aligned parallel with the wind in the CBL (Etling

and Brown, 1993). When cloud rolls form a repetitive horizontal pattern, their long axis

are usually pointing 15◦ to 20◦ left from the direction of the geostrophic wind (Atkin-

son and Zhang, 1996). In the downwind direction, convective rolls grow in depth and

sometimes merge (Liu et al., 2006). Due to clouds usually forming atop the convective

updraught, convective rolls often lead to the formation of cloud streets (Gryschka et al.,

2014). An example of a CAO with convective rolls is shown in the figure 1.1.

Convective rolls usually reach depth from 0.5 to 2 km and the horizontal wavelength

of the pattern (i.e. the width of two counter-rotating rolls) is usually 2 to 5 km. The

ratio between the wavelength and the depth is usually between 2 and 5. However, if we

focus on cold outbreaks in the Arctic, shallower rolls and patterns with lower wavelength

are also occasionally observed. During ARKTIS 1991 and ARKTIS 1993 field campaigns

rolls of the depth 350 to 800 m were often observed. The pattern wavelengths were usu-
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ally 1.2 to 4 km, with the aspect ratios between 3.5 and 6.5 (Brümmer, 1999).

Further downwind, the convection often undergoes a transition from the regime of

convective rolls to a regime of cellular structures (Fedorovich and Conzemius, 2008).

This transition is often associated with the decrease in the wind shear at the top of the

CBL (Elperin et al., 2006). A CAO originating in the Arctic usually attains the form of

open cells (Brümmer, 1997). These are dominated by large cells where the convective

updraught is mostly contained on the edges and topped with clouds. The inner region

of each cell consists of descending cold air. The centre of a cell usually stays nearly

cloud-free (Atkinson and Zhang, 1996). Open cells then tend to grow further in size

(Dörnbrack, 1997). Open cells usually attain the depth 1 to 2 km and the diameter 7 to

20 km (Brümmer, 1999).

1.3.2 Comparison of Cold-Air Outbreaks

Cold-air outbreaks are neither rare nor limited to a few areas. In the following para-

graphs, we will compare general properties of CAO. Firstly, we look at the geographical

variability. Secondly, we compare the vertical structure of the ABL in CAOs.

During the winter season in the northern hemisphere, CAOs are observed over a wide

range of mid-latitude and high-latitude seas, for example:

• Arctic ocean near Svalbard (Brümmer, 1996),

• Laptev sea north off the coast of central Siberia (Ebner et al., 2011),

• Labrador Sea and neighbourhood areas of Northern Atlantic (Renfrew and Moore,

1999),

• Sea of Japan (Inoue et al., 2005a),

• East China sea (Yamamoto, 2012),

• Baltic Sea (Brümmer, 2002),

• Black Sea (Efimov and Yarovaya, 2014),

and also over some large lakes, for example

• Lake Erie (Gerbush et al., 2008).

CAOs also occur over seas in high-latitudes of the southern hemisphere (Papritz et al.,

2014). In a number of mid-latitude cold-air outbreaks, the mass of cold air does not

start over sea-ice, but over a cold land surface (Efimov and Yarovaya, 2014). In the

CAOs over large lakes, the warming of the ABL is limited by the extent of the lake, as

the heating from the surface ceases when the air passes over land (Gerbush et al., 2008).

12
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Despite these differences, the main principles are same as in the Arctic CAO.

The cold air upwind from the warm water surface is often strongly stratified. The po-

tential temperature lapse rate in the bottom few hundred meters can exceed 20 K km−1.

Such a strong stratification was observed for example in CAO on 20 March 1993 during

the ARKTIS 1993 campaign (Brümmer, 1996). However in a number of other cases,

the bottom part of the atmosphere was affected by warming from leads (Inoue et al.,

2005b) or by previous cyclonic weather (Pagowski and Moore, 2001). This then gener-

ally caused a weaker stratification in the SBL. A high diversity in the vertical structure

of lower troposphere during CAO is demonstrated in the comparison of previous CAO

studies (see figure 1.3). Comparing the potential temperature between CAO studies is

slightly complicated by the fact that measurements were taken at different stages of the

CAO development.

The differences between the surface temperature and the potential of the forming

CBL is often around 10 K (Brümmer, 1999), but it can also reach values up to 40 K

(Ebner et al., 2011). There is a wide spread in the wind velocities between CAOs. The

comparison of CAO studies by Brümmer (1999) concluded that wind velocities were in

the range 3.8–14.4 m s−1 , although wind velocities over 15 m s−1 are also seldom observed

(Hartmann et al., 1999).

During CAO, cold air masses are often advected over a surface that is not strictly

homogeneous. In the inner Arctic, the marginal sea-ice zone (MIZ) consist of large areas

covered with broken sea-ice sheets and ice floes (Inoue et al., 2004). Similarly, coastal

polynia of the Laptev Sea consist of patches of ice and open water (Ebner et al., 2011).

MIZs can reach downwind extent from few kilometres (Kottmeier and Hartig, 1990) to

few hundred kilometres (Streten, 1973). The sizes and shapes of ice floes can vary in

scales from a few metres to a few kilometres (Esau, 2007) (Inoue et al., 2005b). There

is high variability in this sea-ice mix. The distribution of sea-ice floes is often influenced

by geographical region and the distance from coastal areas (Hudson, 1987) as well as by

seasonal variability (Perovich and Jones, 2014).

Since the airborne lidar observations in mid-latitudes has shown the effect of surface

heterogeneities on the organisation of coherent convective structures and the CBL en-

trainment (Grabon et al., 2010), the role of heterogeneities in MIZ should be considered.

While a MIZ consists of a mix of sea water and patches of various kinds of ice (Gupta et

al., 2014) of different temperatures, these surface heterogeneities are likely to influence

the atmospheric conditions (Gryschka et al., 2008), including CAOs developing over the

MIZ (Pagowski and Moore, 2001). Due to ongoing processes of freezing and melting as

well as ice sheet dynamics, the structure of sea-ice is facing ongoing changes (Yang and

Yuan, 2014).
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Figure 1.3: The vertical profiles of potential temperatures in previous studies of cold-air
outbreak cases: ARKTIS 1993 campaign took place in March 1993 in areas north-
west and south of Svalbard (Brümmer, 1996); Gulf of Finland model study is based
on observations from 6–8 December 1998 over the southern part of the Gulf of Finland
(Savijärvi, 2012); Labrador, 2004 model study is based on CAO case on 8 February 1997
over Labrador Sea (Liu et al., 2004); M-PACE model study (Klein et al., 2009) is based
on the field observations of CAO on 9–10 October 2004 near Barrow on the north coast
of Alaska (Verlinde et al., 2007)

To summarise, CAO occur in a wide range of high-latitude regions. There is a high

diversity in the atmospheric conditions between different cases. The characteristic of

the MIZ prompts questions as to whether surface heterogeneous forcing plays a signifi-

cant role in the formation of the CBL and whether it affects the variability in the ABL.

Therefore, in the next part of the thesis, we will focus on previous model studies that

took into account the structure of the MIZ.

1.3.3 Previous Model Studies

Fine-scale model studies play an important role in the research of the CAO. In the fol-

lowing paragraphs, we will first provide a brief introduction to previous model studies.

Then we will describe some of the common challenges in the implementation of hetero-

geneous surface forcing.

Various studies have tried to analyse the structure of CBL in CAO (Brümmer, 1996)

and the developing cloud patterns (Clond, 1992). A number of studies have also focused

on the convective rolls in CAO in various geographical locations, including Labrador Sea

(Liu et al., 2004) and South China Sea (Alpers et al., 2012). Older studies almost al-
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ways treated the surface as homogeneous, however this started changing in 21st century.

Recent studies with cloud-resolving models have analysed the impact of sea-ice concen-

tration on the formation of roll convection and clouds (Liu et al., 2006). Eddy-resolving

model studies were usually employed to examine the impact of sea-ice inhomogeneities

on the changes in the stratification of the ABL Lüpkes et al. (2008), and on the for-

mation of cloud rolls (Gryschka et al., 2008). A relation between the relative scale of

inhomogeneities and their impact on increasing convective forcing has been explored in

Yates et al. (2003) and further modelled by Heerwarden et al. (2014).

Still, the question of the variability in the developing CBL induced by inhomogeneities

in the surface has not yet been fully addressed. A common feature of many studies is that

they define just one specific type of the heterogeneity. A common choice is a spatial het-

erogeneity in surface temperatures prescribed as a two-dimensional sinusoid wave (Kang

and Lenschow, 2014) or a one dimensional wave oriented across the wind (Shen and

Leclerc, 1995). The length of the wave and the amplitude of the temperature anomaly

are then treated as model parameters. However the possibility that the effect of the het-

erogeneous surface forcing might differ for a heterogeneity of a different shape is usually

not investigated.

Although there were also studies such as Courault et al. (2007) that investigated the

impact of heterogeneous surface patches of different shapes, they were focused on hetero-

geneity in surface moisture. Furthermore, the study was concerned with the weak-wind

scenario in mid-latitudes. Also, the often changing-structure of the sea-ice (Yang and

Yuan, 2014) might present an issue in determining the heterogeneous forcing accurately.

1.3.4 Summary of Cold-Air Outbreaks

To summarise, CAOs are dominated by a rapid development of the CBL. The coherent

convective structures that develop in the CBL then facilitate further transport of heat

and moisture from the surface. CAO lead to significant changes in the structure of the

ABL. CAOs in the Arctic region often occur over a MIZ with a high spatial variability in

surface temperatures and roughness. The changing structure of sea ice (Yang and Yuan,

2014), together with high temperature gradients between the cold Arctic air and rela-

tively warm sea water, can contribute to uncertainty in the prediction of extratropical

weather. A number of previous studies therefore investigated the impact of heteroge-

neous surface forcing over MIZ on the developing CAO. However, it is not clear whether

the models properly capture the variability in the surface conditions in the MIZ. This

would logically lead to a question how to describe the resulting uncertainty in the ABL

properties.
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1.4 Thesis Aims

This part of the thesis first summarise the main problems regarding the parametrization

of CAO and the variability within it. Secondly, it establishes the niche that this study

intends to fill. Finally, it declares the thesis objectives.

The main motivation for this thesis is the uncertainty in the atmospheric processes

over MIZ in Arctic. While the impact of heterogeneous surface conditions has been ex-

amined in various research studies there are still some unresolved questions. Generally

speaking, previous studies were often focused on one specific aspect of cold-air outbreak,

for example distribution of cloud sizes or the strength of entrainment (Sühring et al.,

2014). Also, many model studies were limited by the specific definition of surface hetero-

geneous conditions. A common limitation was that only one shape of surface anomalies

was defined, such as stripe or wave pattern oriented across the direction of the mean

wind (Gryschka et al., 2014). Possibility of a different shape of surface anomalies or

a different orientation was often not considered.

The main purpose of this study is therefore to improve our knowledge of the vari-

ability within CBL during the developing CAO. This study focuses on addressing the

questions that were foreshadowed by previous studies, but not yet fully answered. We are

therefore trying to examine the influence of different types of heterogeneous surface forc-

ing in a developing cold-air outbreak. Although the heterogeneity in surface roughness

is expected to be an important factor, the observational studies give quite a wide range

for aerodynamic surface roughness (Gupta et al., 2014). Furthermore, observation are

generally inconclusive about the additional drag provided by the edge of ice floes which

can significantly alter the resulting aerodynamic properties of the ABL (Lüpkes et al.,

2012). Therefore, in this study we focus exclusively on the impact of spatial heterogeneity

in surface temperatures. The effect of the shape and the size of surface anomalies is ex-

amined. We are trying both to establish a better understanding of the variability within

CBL in cold-air outbreak as well as to show implications for the parametrization schemes.

The first important question is whether the local structure of the MIZ plays a signif-

icant role in the developing CBL during a CAO event. This question requires exploring

whether heterogeneity of the mix of sea-ice affects the structure of the developing CBL

and whether the impact of this heterogeneity extends beyond the surface layer. The

second important question is then whether the heterogeneity introduces more variability

in the behaviour of the CBL. This point is concerned with the variability both in the

temporal and the spatial scales. This also involves investigating the vertical transport

of heat and moisture.

Since CAOs occur in a wider range of conditions, it is important to address whether
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the impact of the local structure of the MIZ is not limited just to one specific setting

of parameters. Therefore, we investigate the impact of modifying the properties of the

heterogeneous surface:

• the temperature scale - difference between the anomalies and the mean values,

• the spatial size of the pattern;

and the impact of modification of the properties of the troposphere:

• wind forcing in the lower troposphere,

• initial stratification in the lower troposphere.

1.5 Introduction to Methodology

An indispensable part of each study is a suitable choice of research methodology. Gen-

erally speaking, “The problem is not to find the best or most efficient method to proceed

to a discovery, but to find any method at all” (Feynman, 1965). This part of the thesis

therefore introduces the methodology of our study. To thoroughly address the research

questions (stated in 1.4), we perform an extended model study with the help of a large

eddy simulation (LES). This powerful tool allows us to numerically model developing tur-

bulence in a CAO scenario. Firstly, we will explain the choice of the modelling software.

Secondly, we justify the choice of the initial conditions and the simulation framework.

Finally we briefly introduce the methods for the analysis of model results.

From a selection of various LES software packages that are currently used in atmo-

spheric research, we have selected the Met Office Large Eddy Model (LEM) that has been

extensively used in improving MetUM boundary layer schemes (see 1.1). The LEM offers

a number of features useful for modelling developing CBL, such as a well documented

dynamic core, advanced treatment of dynamics and eddy viscosity, a full three-phase

microphysics with a number of hydrometeor conversions, an interactive radiation code,

and a well calibrated surface exchange model. Although the LEM is a powerful compu-

tational tool, it has also its shortcomings. The lateral boundary conditions are strictly

periodic, and therefore the LEM does not allow us to model scenarios with a directly

prescribed inflow and outflow from the model domain. Furthermore, a spatial domain

that would include both the area over sea-ice as well as downwind over the MIZ would be

extremely large. Therefore, we instead use the Quasi-Lagrangian Approach to simulate

the downwind development of CAO.
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This study applies the quasi-Lagrangian approach of Szoeke and Bretherton (2004).

In their formulation, the entire column is assumed to move at the mean ABL velocity.

While this approach was originally used for modelling boundary-layer transition in trop-

ics, it has been successfully adjusted also for simulations of a large CAO over the Gulf

Stream where the wind velocity is not constant with height (Skyllingstad and Edson,

2009).

An issue of this method is that it does not capture the effect of the different advec-

tion speeds due to shear within the ABL. However, this issue is of a minor importance

when the ABL is mixed. The method is applied under the assumption that secondary

mesoscale circulations generated near the front of the travelling air mass are relatively

small in comparison with the direct response to the forcing at the surface. The resulting

impact of neglecting the advection on the overall flow characteristics is relatively weak

in comparison with the changes in surface temperature (Skyllingstad and Edson, 2009).

To confront this assumption with real weather scenarios, we have investigated the CAOs

observed during the ACCACIA field campaign. The specialised NWP forecast for this

campaign predicted a few developing CAOs (see figure 1.4), however it did not generally

indicate sharp fronts. Furthermore, the airborne observations from the flights in CAOs

do not show signs of a front with a strong secondary circulations.

The initial conditions of the model runs were motivated by the examples of CAO cases

from previous field studies (see figure 1.3) as well as cold outbreaks observed during the

ACCACIA field campaign. It would be possible to base the control scenarios on some

chosen CAO case, however there are some points to consider. On one hand, a scenario

directly based on a previous case modelling study could provide a direct comparison for

results. On the other hand, most of CAO cases exhibit quite complicated wind profiles

and potential temperature profiles in the lower troposphere. While inserting these pro-

files into a model is simple, it would pose a serious issue in the evaluation of model result.

Generally speaking it would be difficult to separate the effect of the surface forcing and

the effect of jumps in the initial potential temperature and humidity. While the study is

mostly concerned with investigating the impact of heterogeneous surface conditions, the

main part of the study consists of idealised model runs. Additional case scenarios are

performed with a goal to widen the scope of study on scenarios that are more similar

to “real” weather conditions. These case study runs are based on CAO events observed

during the ACCACIA field campaign, and their initial conditions are extracted from the

regional NWP forecast for this campaign.

The declaration of the surface properties is motivated by surface conditions over MIZs.

The spatial heterogeneity is introduced only into the surface temperature (see 1.4). We

implement it as a repetitive pattern of both positive and negative anomalies in the surface

skin temperature. Since there is not a single ultimate model of the distribution of water
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(a) The satellite image of the CAO
interlaid with the location of vertical
cross-section (b).
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(b) Vertical cross-section of the CAO.

Figure 1.4: The CAO observed on 21 March 2013 during ACCACIA field campaign.
The vertical cross-section starting approximately follows the direction of synoptic-scale
wind. It starts over sea-ice at S– 26.93◦E 77.50◦N and finish over open sea at F– 23.6◦E
75.60◦N

and sea-ice within an MIZ, a wider variety of temperature anomalies and their spatial

extent is considered. Three different types of patterns are considered - two different types

representing segments aggregated in the direction along the mean wind, respectively

across it, and one representing a chessboard-like pattern of ice segments. Two additional

parameters then describe:

• the spatial extent of the anomalies — defined by the length of the pattern block

including both positive and negative anomalies

• the temperature scale of the anomaly — defined by the maximum temperature

difference between the anomaly and the mean surface potential temperature

The time duration is of the heterogeneity is again motivated by the MIZ properties. The

heterogeneities grow abruptly when the air passes over the edge of ice (i.e. the mean

surface temperature starts rising), then stay constant over the MIZ, and eventually de-

cline at the end of the MIZ.

The other novel part of this study is the analysis of both the spatial and the temporal

variability in the vertical transport of heat and moisture. For this purpose, additional

model outputs are required. The time series of the horizontal mean of the sensible and

the latent heat flux are recorded at prescribed altitudes. These altitudes are chosen with

a goal to represent fluxes just above the surface layer, in the middle part of the mixed

layer, an altitude in the cloud layer, and above the clouds.

In summary, the methodology of this study is concerned with both idealised simu-

lations and case simulations of CAO. The novel approach includes the introduction of
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different types of surface boundary conditions into LEM, as well as the evaluation of

temporal variability in fluxes. Due to to limitations on the boundary conditions and the

size of the computational grid, the model is performed in a Semi-Lagrangian framework.

1.6 Thesis Structure

The thesis structure generally follows the principle introduction – methods – results –

discussion and conclusions. In this last part of the Introduction, we are going to explain

the structure of this thesis. Stress is put both on the logical order of chapters as well as

on the connections between them. The structure of the thesis is schematically shown in

the figure 1.5. A further description follows.

1. Introduction
2. Theory
of LEM

3. General
Methodology

4. Idealised CAO

5. Idealised CAO
Adjusted
Scenarios

6. Case Studies
of Cold-Air
Outbreaks

7. Conclusions

Figure 1.5: The structure of the thesis. A light blues background indicate chapters that
are based solely on previous studies, a yellow background background inidicates chapters
with new methods and new results, and a green background indicates conclusions. Lines
indicate the connection between chapters.

Due to complexity of the modelling studies, Chapter 2 focuses exclusively on the the-

ory behind the modelling software employed - The Met Office Large Eddy Model (LEM).

If you are already familiar with the LEM, you may skip this chapter and move forward

directly to the methodology presented in Chapter 3. First, it provides the overview of

model setting. Second, it describes the main properties of the model scenario and intro-

duces the spatially heterogeneous surface conditions. Then it presents the methods for
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the analysis of the LEM results. The issue of model sensitivity is then further addressed.

Finally, various possible shortcomings in model setting are discussed. The chapter is

rather long, however the size is dictated by the complexity of the study and the neces-

sity to justify the model settings.

Chapter 4 focuses on the impact of the heterogeneous surface forcing on the control

scenario. Firstly, it presents the analysis of the control run with homogeneous surface

conditions. Then it compares runs with three different types of surface heterogeneity

against the control run. Finally, it investigates the impact of modifying the temperature

scale and the spatial size of the heterogeneous pattern.

Since the model runs analysed in the Chapter 4 were so far limited just to one specific

scenario, Chapter 5 extends the scope of this study to a wider set of idealised CAO sce-

narios. It investigates the impact of modifying the wind forcing in modifying the initial

stratification in the lower troposphere. First, it defines the settings of new scenarios.

Second, it presents a qualitative comparison of CBL development between scenarios.

The chapter then presents specific results that are different from the results of control

scenarios in Chapter 4 or otherwise expanding our knowledge with respect to previous

studies.

While the idealised modelling studies might be limited by the simplification employed,

Chapter 6 presents the example of a case study using the LEM and the observational

data. Firstly, it introduces a CAO observed during the ACCACIA flight missions. Sec-

ondly, it shows an extension of the methodology from the Chapter 3. Then it provides

the results of the case LEM runs. The results and the limitations of this study are further

discussed.

Finally the last chapter, Chapter 7, summarises the progress of this study and draws

the conclusions. Furthermore, it summarises the caveats and limitations. It also pro-

poses possible questions for a future research.
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Chapter 2

Theory for Large Eddy Model

The progress in atmospheric sciences since the 1960’s has been greatly enhanced by ad-

vances in computational models. Amongst a wide palette of computational concepts used

in atmospheric sciences, Large Eddy Simulation occupies one of the prominent places.

A Large Eddy Simulation is a powerful tool for modelling turbulent motions in the at-

mosphere. It has been widely accepted as an instrumental part of methdology in the

research of boundary layers (Stull, 1988, p.424-425). While our study is concerned with

the boundary layer during cold air outbreaks, a Large Eddy Simulations is employed in

our case as well.

The main idea behind Large Eddy Simulation (LES) concept is that the largest

turbulent eddies are resolved (therefore the name) and the effect of smaller eddies is

parametrized (Deardorff, 1974). This is also the main difference between LES and di-

rect numerical simulations (DNS). While the DNS is constructed with the assumption of

a constant eddy viscosity, it is required to resolve all eddy sizes down to scales where the

effect of the dissipations becomes significant (Schaltter and Orlu, 2010). Specific imple-

mentation of DNS have been used in the studies of convective boundary layer, including

the studies roll convections (Etling and Brown, 1993). DNSs were also extensively used

for studies of turbulence affected by heterogeneous surface forcing (Heerwarden et al.,

2014). Although DNS offers a deeper insight into the structure of turbulence than LES,

it requires very high resolution and large grids just to capture a simple turbulent phe-

nomenon (Salhi and Cambon, 1997). The advantage of LES is that does not resolve

computationally expensive smaller scales. Since this study investigates a development

of cold-air outbreaks over a pattern of heterogeneities, a LES is the preferred choice.

This chapter explain the theory behind the specific LES software chosen for our study,

Met Office Large Eddy Model (LEM). A brief review of the background of LES (section

2.1) is followed by an introduction to the chosen LES software package, LEM version

2.4. Following sections further explore the theory of atmospheric modelling behind the

LEM and its implementation. First we describe the dynamical core of the LEM (2.3).
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Then we continue with describing the domain properties and the treatment of boundary

conditions (2.3), the subgrid model for parametrizing unresolved phenomena (2.4) and

the surface model (2.5). Finally we briefly review the topic of numerical methods in

LEM and their stability (2.6).

The nature of this chapter is purely theoretical and it does not show any new informa-

tion. However it is essential for establishing the methodologogy of this study. Therefore

if you are already familiar with the LEM, you may skip this chapter and move forward

directly to the methodology presented in the next chapter.

2.1 Brief Review of Large Eddy Simulations

Large Eddy Simulation (LES) is a powerful computational tool for modelling of various

boundary layer phenomena. In this part of the chapter, we briefly describe the principles

that LES built on and provide some examples of the capabilities of various LEM packages.

While the largest eddies are generated by convection or mechanically by wind shear,

the grid resolution in horizontal and vertical direction must be chosen accordingly. This

often requires a careful consideration, as the mechanically generated eddies are signifi-

cantly smaller, especially in the case of strong stratification that suppress larger vertical

motions (Arnal and Friedrich, 1992). Generally speaking, the LES resolution should be

chosen in the way that unresolved scales are within the inertia subrange of the turbulence

(Pope, 2004). Since LES does not resolve computationally expensive smaller scales, the

effect of eddies on these scales then have to be parametrized. Various advanced subgrid

models have been developed to fulfil this task (Love and Leslie, 1979). While describing

the theory of turbulence closure is far beyond the scope of this study, we will rather look

at one specific example of the subgrid model in the part 2.4.

Part of the boundary conditions in LES are not prescribed, but computed by sep-

arate routines. This usually applies to the surface layer, where the surface fluxes are

modelled by surface parametrization that is mostly based on Monin-Obukhov theory

(Monin and Obukhov, 1954). The top boundary of the model domain is usually rigid

and supplemented with a damping layer that weakens motions propagating upwards, di-

minishing the effect of waves that would otherwise be reflected by the rigid lid boundary.

In recent decades, there have been a number of LES software packages (Siebesma

et al., 2003, p.1217) (Beare et al., 2006, pp. 251-263) developed by various research in-

stitutions. A brief list follows in 2.1. The WRF, which has been increasingly popular

since mid 2000’s, also allows a LES setting with a fine grid, explicitly resolved convective
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eddies and subfilter-scale stress model. (Kirkil et al., 2012). The nesting of the LES

into the mesoscale models (Talbot et al., 2012) allowed to simulate various mesoscale

phenomena, such as turbulence developing in the offshore winds (Muñoz-Esparza et al.,

2014). More information about various LES models can be found in (Siebesma et al.,

2003) and (Beare et al., 2006).

• CSU Colorado State University
• IMUK Univerisity of Hannover
• KNMI Royal Netherlands Meteorological Institute
• LBNL/UW Lawrence Berekely National Laboratory / University of Washington
• LEM Met Office, UK
• LLNL Lawrence Livermore National Laborator
• MPI Max Planck Institute for Meteorology
• NCAR National Centre for Atmospheric Research, US
• NERSC National Energy Research Scientific Computing Center, US
• RAMS Colorado State University
• UCLA University of California, Los Angles
• UIB Universitat de les Illes Bale
• UOK University of Oklahoma
• WU Wageningen university
• WVU West Virginia University

Table 2.1: List of LES software packages from various institutions (not complete)

2.2 Large Eddy Model

From a selection of various LES that are currently used in atmospheric research, we have

selected Met Office Large Eddy Model (LEM) due to its well documented scientific part

(Gray et al., 2004), an advanced treatment of model dynamics and viscosity, full three-

phase microphysics with a number of hydrometeor conversions and interactive radiation

code (Gray and Petch, 2004, pp.5-9). The other advantage of LEM is a wide selection

of diagnostic outputs.

2.2.1 The Background of LEM

LEM was originally designed to expand LES capabilities for very fine grids. The com-

putational power in the middle of the 1980’s did not allow successful LES of stable

boundary layers (Stull, 1988, p.452), but became available around 1990 due to increase

in the power of supercomputing clusters together with development of a better descrip-

tion of a stable boundary layer (Derbyshire, 1990) and subgrid models (Chasnov, 1991).
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Since the beginning of its development at the end of 80’s (Mason, 1989) the LEM has

been used extensively for modelling of number of boundary-layer phenomena, ranging

from simple simulations of a turbulence in a dry neutral boundary layer (Gray and Petch,

2004, p.46) to advanced simulations based on scenarios from number of field experiments,

such as trade wind cumuli in BOMEX flight mission (Brown, 1999a). Further modifi-

cations of LEM allowed modelling of radiative fog and the effect of surface temperature

anomalies in the stable boundary layer (Porson et al., 2011).

The LEM has been used in a development of new boundary layer schemes for The

Met Office Unified Model (MetUM) (Lock and Edwards, 2013), where it was together

with advanced cloud resolving models applied to modelling of various boundary layer

types (Lock et al., 2000, pp.3190-3191). LEM has been thoroughly tested in a number

of regimes. It has performed well against various other LES software packages in the

intercomparison studies for neutrally stratified boundary layer (Andren et al., 1994),

convective boundary layer (Siebesma et al., 2003, pp.1217–1218), and stably stratified

boundary layer (Beare et al., 2006, pp.251–263).

The effect of the eddy cascade into unresolved scale was a motivation for the devel-

opment of the LES backscatter (Brown et al., 1994) based on the improved stochastic

backscatter of Mason and Thompson (Mason and Thompson, 1992). Recent research

(Weinbrecht and Mason, 2008) has offered the modification of the backscatter for the

CBL, including the setting with anelastic pressure approximation, however there are

number of issues with the setting of the tuning coefficients and overall implementation

(Weinbrecht and Mason, 2008, pp.137–138).

The current operational version of the LEM is 2.4. The new development stage called

Met Office-NERC Cloud Model (MONC) is scheduled to be released during the autumn

2015 (NERC, 2014). It is expected to further improve the cloud microphysics schemes

as well as to offer easier modularisation and user extensions.
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2.3 Dynamics in LEM

The central concept of the dynamical core of LEM is approximative solution of the prim-

itive equations based on filtering the motions into resolved component and “subfilter“

(subgrid) component (Mason, 1994, pp.2-3).

Denoting the Lagrangian derivative

D

Dt
=

(
∂

∂t

)
+ ui

(
∂

∂xi

)
, (2.1)

where ui is the velocity of flow, the basic equation set of the LEM is in the tensor nota-

tion (Gray et al., 2004, pp.2–3):

∂

∂xi
(ρr ui) =0, (2.2a)

Dui
Dt

=− ∂

∂x

(
p′

ρr

)
+ δi,3B

′ +
1

ρr

∂τ̃i,j
∂xj
− 2εi,j,k Ωj uk, (2.2b)

Dθ′

Dt
=

1

ρr

∂h
(θ)
i

∂xi
+

(
∂θ

∂t

)
(mphys)

+

(
∂θ

∂t

)
(rad)

, (2.2c)

Dqn
Dt

=
1

ρr

∂h
(qn)
i

∂xi
−
(
∂qn
∂t

)
(mphys)

, (2.2d)

where δi,3 is Kronecker delta, εi,j,k is Levi-Civita symbol and the other symbols represent:

ρr reference state of the air density ρ

ui components of the vector of air velocity u

p′ pressure perturbation (explained further)

B′ buoyancy

τ̃i,j component of subgrid stress tensor (further explained in 2.4)

Ωj components of the angular velocity of the Earth ( f-plane ap-

proximation for given latitude )

θ potential temperature

h
(θ)
i components of subgrid flux of potential temperature (further

explained in 2.4)(
∂θ
∂t

)
(mphys)

the source term of potential temperature due to microphysical

processes(
∂θ
∂t

)
(rad)

the source term of potential temperature due to radiation

qn other scalar quantities

h
(qn)
i components of subgrid flux of the scalar quantity qn(
∂qn
∂t

)
(mphys)

the source term of the qn due to microphysical processes
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The LEM approximates the solution of these equation on the neighbourhood of the

reference state. The definition of the reference state varies based on the scheme for pres-

sure approximation. In the setting of the Boussinesq-type approximation, the reference

state is characterised by scalar constants ρr, pr and θr for the density, pressure and the

potential temperature. While Boussinesq-type approximation is constructed under the

assumption of a shallow model domain, such setting would be unsuitable for studies with

deep stratified domain. The other option provided is anelastic approximation for pres-

sure (Durran, 1989). In the anelastic approximation, the reference state is characterised

by reference vertical profiles ρr(z), pr(z), θr(z).

The main prognostic variables of LEM are three components u, v, w of the air flow

velocity u , potential temperature perturbation θ′ and other scalar variables qn such as

water mixing ratio. Since θ = θr + θ′, the equation (2.2c) is then rewritten as:

Dθ′

Dt
= −w dθr

dx3︸ ︷︷ ︸
I

+
1

ρr

∂hθr3
∂x3︸ ︷︷ ︸
II

+
1

ρr

∂h
(θ′)
i

∂xi︸ ︷︷ ︸
III

+

(
∂θ′

∂t

)
(mphys)︸ ︷︷ ︸

IV

+

(
∂θ′

∂t

)
(rad)︸ ︷︷ ︸

V

, (2.3)

where the terms I and II account for the contribution to the resolved and subgrid fluxes

due to differences in the vertical profile of the reference potential temperature. Term III

then covers contribution of subgrid fluxes due to potential temperature perturbations.

In the Boussinesq approximation, terms I and II disappear due to θr being constant.

The buoyancy term B′ is defined as

B′ = g
θ′v
θr
, (2.4)

where the perturbation θ′v of the virtual potential temperature from its basis state is

used purely as a measure of buoyancy. The virtual potential temperature here is defined

as

θv ≡
p

R ρ
(
p
p0

R/cp
) . (2.5)

While the density is not a prognostic variable in LEM (Gray et al., 2004, p.4), the per-

turbation in virtual potential temperature is instead computed as

θ′v = θ′ + θr cn qn, (2.6)

where cn is a coefficient denoting the impact of the scalar quantity qn on the virtual

potential temperature.

The microphysics production-consumption terms in the equations (2.2c) and (2.2d)
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are calculated by selected microphysics parametrization. There are number of op-

tions for warm rain, however they would not allow us to model mixed-phase clouds

in CAO (Zuidema et al., 2005) (Morrison et al., 2009). The three-phase microphysics

parametrization in LEM combines single-moment and double-moment schemes described

by Lin et al. (1983) and Rutledge and Hobbs (1983). The parametrization schemes were

further enhanced (Gray et al., 2004, pp.17–37). The treatment of the cloud ice was

added based the parametrization scheme of Flatau (1989) for the RAMS model that was

extensively used in number of fine-resolution studies (Hosannah and Jorge, 2014). The

treatment of snow and graupel number concentrations is mostly based on the bulk ice

schemes of Ferrier (1994) and Ferrier et al. (1995). In the current version 2.4 of the

LEM, cloud and hydrometeor processes are represented by 36 different conversion terms

(Gray et al., 2004, p.22) and the alternative settings of the microphysics constants are

specified in (Gray et al., 2004, pp.48–49).

The radiation terms in the equation (2.2c) are computed by the Edwards-Slingo radi-

ation code (Edwards and Slingo, 1996) , the same scheme is used in the MetUM (Cullen,

1993). The optical properties of the atmosphere above the model domain are calculated

from supplemented Mcclatchey profiles of temperature, water vapour concentration and

ozone concentration (McClatchey et al., 1971). However, the implementation of the

Edward-Slingo radiation code in LEM differs from MetUM in the treatment of the snow

and graupel impact on the scattering of radiation, since the LEM classifies hydrometeors

into more categories than the MetUM does (Gray et al., 2004, p.38). The adjustment of

calculations is based on the work Petch (1998). The treatment of the optical properties

is based on studies Edwards and Slingo (1996) and Slingo and Schrecker (1982).

2.3.1 Model Domain and Boundary Conditions

The LEM allows both 2-dimensional (horizontal y-axis vertical z-axis) and 3-dimensional

models. For the study of the turbulent boundary layer, the later is more suitable. The

domain shape is the rectangular cuboid. The model grid is regular, with the horizontal

grid spacing being constant, but permitting a different setting for grid spacing in the

direction of x-axis and y-axis. The grid spacing in the vertical direction could vary with

height, allowing more densely packed gridpoints at the altitudes where the main resolved

features are expected (discretisation of the grid is described in 2.6).

The horizontal boundary conditions are periodic in all the main prognostic variables.

The top and bottom of the domain are rigid lid boundaries, The treatment of the heat

exchange and wind stress on the bottom boundary is further described in the section

2.5. While the top boundary should represent the effect of the other layers of the air
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above, this is achieved by two techniques:

• Adding the large scale subsidence, i.e. directly setting the values w on the top

model level, where the vertical wind velocity would be otherwise 0. (Gray and

Petch, 2004, p.15)

• Adding a Newtonian damping layer in the upper part of the model domain to pre-

vent the reflection of the gravity waves on the top rigid lid (Kanak et al., 2000).

The main principle of the Newtonian damping layer is relaxation of the values of the

prognostic variables towards their horizontal mean values (Khairoutdinov et al., 2009)

(Stevens et al., 2005). For the damping layer of the thicknessH(DL) starting at the altitude

z(DL), the damping term for each prognostic variable ϕ is given as (Gray et al., 2004, p.13)

(
∂ϕ

∂t

)
(DL)

=
−1

τ(DL)

(
exp

(
z − z(DL)

H(DL)

)
− 1

)(
ϕ− ϕ̄

)
, (2.7)

where ϕ̄ is a horizontal mean of the prognostic variable ϕ, and τ(DL) is a damping timescale

of the model. In the current version of LEM, the damping is applied in the source terms

of all prognostic variables in the region of the damping layer. The main guidelines re-

garding the choice of parameters τ(DL) and H(DL) are to set the H(DL) higher than the

longest vertical wavelengths of observed gravity waves and to set τ(DL) larger than the

expected timestep of the dynamical core of the model.

While the type of boundary conditions described are well suited for modelling turbu-

lence over a uniform surface, it brings also some limitation. It does not allow modelling

scenarios with the prescribed properties of the air on the inflow and the outflow. How-

ever, it is still possible to supplement a large scale pressure forcing by defining the large

scale geostrophic wind. Thermal wind can be supplemented by specifying the vertical

geostrophic shear. (Gray et al., 2004, p.6)

2.4 Subgrid Model in LEM

One important concept of LES is the treatment of eddy spectra. While only the larger ed-

dies are resolved, the effect of the turbulent transport on unresolved levels is parametrized

(Lilly, 1967). A detailed explanation of the theory behind the treatment of sub-filter

scales in LES would be far beyond the scope of this study. Therefore, in this part of the

thesis, we focus just on the main concept of the subgrid parametrization in LEM.
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The subgrid model of LEM is based on the work of Derbyshire (1994) and Brown et

al. (2008), while the sensitivity of the turbulent shear flows to subgrid models in LES

was further analysed by Brown (1999b). The effect of eddies on unresolved scales are

modelled as subgrid stress τ̃i,j and subgrid fluxes h
(ϕ)
i of each scalar quantity ϕ from the

set θ′, θr, qn. The subgrid stress is specified as

τ̃i,j = ρr νm Si,j, (2.8)

where νm is a subgrid eddy-viscosity and S is the rate of strain tensor, i.e.

Si,j =
∂ui
∂xj

+
∂uj
∂xi

. (2.9)

Similarly, the scalar flux hϕi is specified as

hϕi = −ρr νh
∂ϕ

∂xi
, (2.10)

where νh is a subgrid eddy-diffusivity for scalars and S is the rate of strain tensor. Based

on the extension of Smagorinsky-Lilly approach (Gray et al., 2004, pp.6–7), νm and νh

are prescribed as

νm =λ2 S fm(Rip), (2.11a)

νh =λ2 S fh(Rip), (2.11b)

where λ is the mixing length, fm and fh are functions of the pointwise Richardson num-

ber Rip, and S is the modulus of the tensor S. The specification of fm, fh and λ is

explained further.

With a goal to provide a smooth transition between the interior of the flow where

the mixing length is constant λ = λ0 and the levels near the ground where the impact of

surface eddy mixing linearly depends on the distance from the surface, the λ is specified

following Mason and Thompson (1992) as:

1

λ2
=

1

λ2
0

+
1(

κ (z + z0)
)2 (2.12)

In this equation, κ is the von Kármán constant and z0 is the aerodynamic mixing length.

The classical Smaroginski-Lilly approach usually specifies λ0 as

λ0 = c(S−L) ∆(gh) (2.13)

where 4(gh) is the grid spacing in horizontal direction and c(S−L) is a constant (Canuto

and Cheng, 1997). The resulting profile of λ is shown in the figure 2.1

The choice of the value of Smagorinsky-Lilly constant c(S−L) is often questioned. The

30



CHAPTER 2. THEORY FOR LARGE EDDY MODEL 2.4

LEM documentation suggest that the value of ” 0.23 is usually considered desirable”

(Gray et al., 2004, p.7), which is in a good agreement with Lilly (1966). The proposed

value of original coefficient for the subgrid eddy viscosity in the early numerical simu-

lation of the primitive equations was 0.28 Smagorinsky (1963). The evaluation of the

theory of eddy-viscosity lead to the approximation 0.23 (Lilly, 1966). However, Lilly

later adjusted the approximation to 0.21, and subsequently to 0.2 (Deardorff, 1971).

Generally speaking, numerical simulations have mostly used value of c(S−L) in the

range 0.2–0.22 (Canuto and Cheng, 1997). Later theoretical and model analysis showed

that these values give a reasonable results in simulations where the turbulence is gener-

ated by surface driven thermal convection. However in case of the turbulence generated

by large-scale wind shear, a significantly smaller values of 0.13 was deemed necessary

(Deardorff, 1971). A number of other model studies suggested that the value 0.2-0.22 is

significantly higher than required if the effect of the stratification and shear are taken

into account (Hunt, 1988). Under the assumption of homogeneous shear and a local dy-

namic equilibrium, the value c(S−L) is approximated as 0.11 (Canuto and Cheng, 1997).

However, even this value is not universal, and is expected to differ depending on the

properties of the flow. Moreover, the approximation c(S−L) might be influenced by var-

ious other phenomena. It is very likely that that the effect of subgrid scales is also

influenced by inhomogeneities in the forcings (Love and Leslie, 1979).
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Figure 2.1: The vertical profile of the mixing length for different settings of the
Smagorinsky-Lilly constant c(S−L)
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The pointwise Richardson number Rip is a non-dimensional number defined as

Rip =
1

S

∂B

∂z
, (2.14)

where B is the buoyancy and S is the modulus of the tensor S. While turbulence persists

for the lower values of the Richardson number and diminishes for the higher values of

the Richardson number (Stull, 1988, pp.177-178), dependent function fm and fh are set

to accordingly modify the subgrid eddy-viscosity and eddy-diffusivity. The exact defi-

nition (Gray et al., 2004, pp.7–8) goes as follows in table 2.2, where Ric is the critical

Richardson number, conventionally set to 0.25 (Stull, 1988, pp.177-178). The constants

ap, bp, cp, fp, gp, hp and rp are subgrid constants set accordingly to expected properties of

the atmosphere (see figure 2.2). In this study, the default LEM settings defined in Gray

et al. (2004, p.8) were employed.

function interval
Rip < 0 0 ≤ Rip < Ric Rip ≥ Ric

fm :=
(
1− cpRip

)1/2
(

1− Rip
Ric

)r (
1− hpRip

)
0

fh := ap
(
1− bpRip

)1/2
ap

(
1− Rip

Ric

)r (
1− gpRip

)
0

Table 2.2: Functions of the pointwise Richardson number
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Figure 2.2: The graph of functions fm and fh that characterise the eddy-viscosity in the
LEM subgrid model. Two common choices of the definition of these functions are shown:
the default variant (Gray et al., 2004) and the alternative setting used in previous studies
such as (Brown, 1999b)
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2.5 Surface Model in LEM

An important component of a LES is the surface-air exchange. This part of the chapter

explains the surface model used in LEM. Firstly, we briefly review the setting of the

surface available in LEM. Secondly, we describe the case where the surface parametriza-

tion is applied. The subsequent paragraphs are then concerned with techniques for the

evaluation of the surface model.

There are few options for the description of surface conditions, or to be precise, con-

ditions on the lower model boundary. The first possibility are no additional boundary

conditions apart from the w = 0. This option is used in model scenarios that do not

start at the ground, such as simulations of decoupled stratocumulus (Gray and Petch,

2004, p.46). For other scenarios, it is more suitable to evaluate the aerodynamic drag

based on Monin-Obukhov theory and directly prescribe the values of the surface sensible

heat and latent heat flux. This approach was employed also in the previous study of

CAO by Kershaw (1995). Finally, the LEM offers to parametrize the surface heat and

moist exchange by Monin-Obukhov theory as well. Surface conditions are then set as the

values of temperature and humidity of the surface microlayer together with the parame-

ter of the aerodynamic roughness length for scalars. We are going to focus on this set up.

The surface scheme used in LEM is a modified version of the surface scheme proposed

by Bull and Derbyshire (1990). This scheme is derived from Monin-Obukhov theory un-

der the assumption that similarity functions and roughness lengths for temperature and

water vapour mixing ratio are the same. The surface acts on the resolved wind fields

through frictional wind stress and on the resolved potential temperature and water con-

tent fields through sensible and latent heat fluxes respectively. To link the surface model

with the subgrid model, surface exchange phenomena are expressed in the viscous terms

as

νm,s
∂ui
∂z

, νh,s
∂θ

∂z
and νh,s

∂qn
∂z

The wind speed U =
√
u2 + v2 reaches zero at the height of z = z0, the aerodynamic

roughness length. Similarly, potential temperature θ reaches the temperature of the skin

surface layer at the height z = z0,θ, the roughness length for scalars (Gray and Petch,

2004, p.9). While the surface stress is defined in the kinematic terms as u2
?, and upward

temperature flux at the surface as −u?θ?, surface-layer viscosity νm,s and diffusivity νh,s

can be written in the form
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νm,s =
u2
? z1

U1

, (2.15a)

νh,s =
u2
? θ? z1

θ1 − θsurf

, (2.15b)

where θ1 and U1 denote temperature and wind speed at z1, the first grid level above the

surface (which is ZN(2) in the LEM source code). Therefore the problem is reduced to

approximating the values u? and θ?.

Recalling that the full surface exchange parametrization model is derived from the

Monin-Obukhov similarity theory, u? and θ? are present in the equations for local gra-

dients

∂U

∂z
=

u?
κ z

φm

( z
L

)
, (2.16a)

∂θ

∂z
=

θ?
κ z

φm

( z
L

)
, (2.16b)

where κ is the von Karman constant, L is the Monin-Obukhov length, while φm( z
L

) and

φh(
z
L

) are Businger–Dyer functions (Stull, 1988, pp.383-384). Monin-Obukhov length is

defined as:

L =
u2
?

gκ

θr
θ?
, (2.17)

while Businger-Dyer functions are in the empirical form (Dyer, 1974) defined as:

φm =



1 + βm
z

L
L ≥ 0

(
1− γm

z

L

)−1/4

L < 0
(2.18a)

φh =



αh + βh
z

L
L ≥ 0

αh

(
1− γh

z

L

)−1/2

L < 0
(2.18b)

where αh, βh, βm, γh and γm are empirical constants. The standard setting of these

constants is given in (Gray et al., 2004, p.13).
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The gradient equations (2.16) are then integrated from z0 to z1 to obtain the ex-

pressions in the algebraic form. While stable and convective conditions require different

treatment, a high priority is given to the classification of neutral, stable and convective

areas of the surface layer (Gray et al., 2004, pp.16–18). In each timestep before the

surface exchange computation, the buoyancy of the surface air is computed separately

for each gridpoint and the surface column is classified accordingly.

• In the trivial case of neutral stratification in the column, the limit values of φm( z
L

)

and φh(
z
L

) reach 1. This the lead to simple relation for the u? (Beljaars and

Holtslag, 1991):

u? =
κU1

log
(
z1
z0

) (2.19)

and the θ? is set to 0.

• For stable conditions, the integration of gradient equations is given by Monin and

Yaglom (1971) and Holtslag and De Bruin (1988). Explicit relations for u? and θ?

then yield (Bull and Derbyshire, 1990) in the form

u? =
κU1

log
(
z1
z0

)
+ βm

(
z1−z0
L

) (2.20a)

θ? =
κ
(
θ1 − θsurf

)
αh log

(
z1
z0

)
+ βh

(
z1−z0
L

) (2.20b)

Since L in (2.17) is a function of u?, the direct substitution into (2.20a) leads to

a polynomial equation for u?. The higher root of this equation is then directly

calculated.

• Corresponding relations for u? and θ? in the convective case are slightly more

complicated. The integration of gradient equations (2.16), leads to the expressions

u? =
κU1

log

(
z1

z0

)
− ψm

(2.21a)

θ? =
κ
(
θ1 − θsurf

)
αh

(
log

(
z1

z0,θ

)
− ψh

) (2.21b)

where ψm and ψh are functions of z
L

; the function ψm is obtained by the integration
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of φm following Panofsky (1963):

ψm

( z
L

)
=

∫ − z
L

0

1 − φm(ξ)

ξ
dξ (2.22)

and the approach for ψh is analogous.

Following the integration described by Paulson (1970), the functions ψm and ψh

yield

ψm =2 log

(
x̃1 + 1

x̃0 + 1

)
+ log

(
x̃2

1 + 1

x̃2
0 + 1

)
+ 2

(
tan−1 x̃0 − tan−1 x̃1

)
(2.23a)

where

x̃1 =
(

1− γm
z0

L

)1/4

and x̃1 =
(

1− γm
z1

L

)1/4

(2.23b)

and

ψh =2 log

(
ỹ1 + 1

ỹ0 + 1

)
(2.24a)

where

ỹ0 =
(

1− γh
z0,θ

L

)1/2

and ỹ1 =
(

1− γh
z1,θ

L

)1/2

(2.24b)

The solution for θ? and u? in the convective case is approximated using the iterative pro-

cedure (Gray et al., 2004, p.74). Results are then stored in a look up table to be used as

the initial value in for the iteration in the next timestep. This helps to reduce expensive

calculations in each timestep (Gray et al., 2004, p.13).

2.6 Numerical Methods in LEM

An essential part of each numerical model is a suitable choice of the model grid and the

computational schemes. In this part of the chapter, we briefly review numerical methods

used in LEM. Firstly, we describe the model grid. Secondly, we describe the main rules

for calculation and the conditions for stability. Finally, we briefly explain two advection

schemes used in LEM.
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The computational core of the LEM is designed to integrate the equations from the

basic set (2.2a) along with computing the parametrizations for turbulence, radiation and

microphysical processes. The model variables are discretised on a grid — in the horizontal

layers is employed the Arakawa C grid (Arakawa and Lamb, 1977, pp.180–182) and in

vertical is employed the Lorenz grid (Holdaway et al., 2013, pp.1075–1076). This results

in a situation where each velocity component is staggered in its own direction while

pressure p, potential temperature perturbation θ′and scalars qn are held on the centre

point of the grid cell, as shown in the figure 2.3.
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Figure 2.3: The scheme of the LEM discretisation, showing the relative position of main
variables. Based on (Gray et al., 2004, p.39) and (Holdaway et al., 2013, p.1075)

Time integration in the LEM can be performed both with forward and centred time

stepping. The majority of source terms on the right hand sides of equations (2.2a) are

computed in parallel with the exception of the microphysics source terms that are calcu-

lated sequentially to other source terms (Gray et al., 2004, p.39 ). In order to maintain

numerical stability, the length of the time step is constrained by the Courant-Fridrichs-

Lewy (CFL) condition (Courant et al., 1967) for both the advection schemes and the

viscosity. The numerical instabilities caused by the hydrometer fall velocities or the

damping layer are not considered.

For the stability in advection schemes, all gridpoint velocities must remain in the numer-

ically stable region. While the worst cases in each direction are considered, the resulting

the largest advective Courant number (CVEL) is given as

CVEL = ∆t

((
|u|
∆x

)
max

domain

+

(
|v|
∆y

)
max

domain

+

(
|w|
∆z

)
max

domain

)
(2.25)
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In a similar manner, the worst cases in each direction are considered in determining the

viscous stability parameter (CVIS), hence

CVIS = max
domain

(
4 ∆t max

(
νm, νh

)( 1(
∆x
)2 +

1(
∆y
)2 +

1(
∆z
)2

))
(2.26)

The maximum permitted values of the CVEL and CVIS are specified in the model setting

as CVEL(max) and CVIS(max). The CFL number, defined as

CFL =
CVIS

CVIS(max)

+
CVEL

CVEL(max)

(2.27)

is calculated (Gray et al., 2004, p.38). To maintain the numerical stability, the value of

CVEL(max) must be set to less than one, while the recommended value for CVIS(max) is

0.2 (Derbyshire, 1994).

2.6.1 Advection Schemes

For the calculation of the advection terms, the LEM offers the choice between two ad-

vection schemes, the centred difference Piascek–Williams scheme (P–W) and the total

variation diminishing (TVD) scheme known as ULTIMATE. The standard approach in

the LEM is to apply the P–W scheme in the prognostic equation for momentum and

the ULTIMATE in the prognostic equations for thermodynamic variables (Shutts and

Palmer, 2007). In the following paragraphs, we will briefly describe both schemes and

their advantages.

The P–W is a centred difference scheme where the flux advection term for the gridbox

with indices i, j, k is defined as[
∂

∂x

(
uϕ
)]

i,j,k

=
1

∆x

(
ui,j,k

ϕi+1,j,k − ϕi,j,k
2

− ui−1,j,k
ϕi,j,k − ϕi−1,j,k

2

)
(2.28)

The scheme was shown to conserve ϕ2, but it is not positive definite (Piacsek and

Williams, 1970). Despite relative simplicity, the scheme exhibits a number of advantages,

including relatively good numerical stability (Schemm, 1974). It has been used in wide

range of model studies, such as study of the flow around mountain ridges (Wells et al.,

2005) and the study of impact of spatial variability on the marine bondary layer (Wai,

1988).

Before we step to the description of the ULTIMATE scheme, we briefly explain the

TVD property. We recallthe definition of the total variance in the prognostic variable ϕ
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(Harten, 1983)

TV (ϕ) =
+∞∑
j=−∞

∣∣uj+1 − uj+1

∣∣. (2.29)

The numerical scheme is said to be TVD if there exist a time t1 such that

TV (ϕ(t2)) ≤ TV (ϕ(t1))) ∀t2 ≥ t1 (2.30)

The TVD schemes provide a number of advantages (Van Leer, 1974). Here we list the

main ones:

• The schemes do not change near a boundary. Therefore, exact boundary conditions

can be directly specified.

• For a given order of consistency, TVD schemes can be made more accurate than

the ordinary upstream finite-difference schemes.

• Disturbance at some model levels does not propagate upstream.

Overall, TVD schemes tend to suppress oscillations in prognostic variables (Roe et al.,

1985).

The ULTIMATE scheme, further described in Leonard (1991), was specifically devel-

oped to counter the issue of oscillation that appears in most of the higher–order finite

difference schemes. The main principle of the scheme is that proposed advective fluxes

are computed by a basic higher-order scheme, then taken by the postprocessor and lim-

ited to preserve positivity. In the LEM, the underlying scheme used is the QUICKEST

scheme previously proposed by Leonard (1979). While the algorithm of the scheme

is relatively complicated, we refer to the model documentation for the details on the

implementation (Gray et al., 2004, p.42-43). Although the scheme is computationally

expensive, it ensures preservation of positivity (Thuburn, 1997). It has been shown that

the scheme performs well for resolving multidimensional advection (Leonard et al., 1993).
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Chapter 3

Methodology for Idealised Model of

Cold-Air Outbreak

The phenomenon of the cold air outbreak (CAO) was scientifically observed at least as

early as mid-19th century. Already at this time, it was noted that CAO leads to rapid

changes in the bottom part of the troposphere (Murphy, 1860, p.312). Later studies

have revealed that CAOs are likely to influence the uncertainty in the prediction of ex-

tratropical weather (Wacker et al., 2005) (Papritz et al., 2014). With the advance of

atmospheric models in recent decades, this phenomenon has been subject to a number

of model studies. The data collected from field observation served to set up mesoscale

model scenarios, such as the case of a CAO developing over a wide marginal sea-ice zone

(MIZ), with a focus on the development of cloud streets (Liu et al., 2006). However,

mesoscale models on their own do not allow accurate simulation of the structure of the

convective boundary layer (CBL) developing over a MIZ and an open sea. For this pur-

pose, we need to employ a Large Eddy Simulation (LES) that serves as a very powerful

tool for numerical modelling of atmospheric boundary layer (ABL) processes and other

small scale atmospheric phenomena.

This chapter focus on a methodology for the LES modelling of CAO over a heteroge-

neous surface. It explains how LES is employed for the analysis of a developing convective

boundary layer in CAO in extra-tropical areas. The chapter starts with an overview of

the model setting for the idealised CAO scenario. The overview covers both the control

run and the set of model runs with modified surface conditions. All the defined proper-

ties are then further explained in the following parts of the chapter.

The novel part of this study - the introduction of the heterogeneity in the surface

temperatures into the Met Office Large Eddy Model (LEM) is the subject of the next

part (3.3). As the next step, the chapter moves to methods of the analysis of LEM

model results (3.4). The main purpose of these methods is to evaluate the variability

in the inner structure of a developing boundary layer and resulting properties of the
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troposphere on the mesoscale. While numerical models often exhibit a sensitivity to the

resolution and initial conditions, a summary of sensitivity study is the subject of the

next part (3.5). The technical limitations of the LEM and possible sources of bias are

then briefly discussed (3.6).

This chapter is solely concerned with the methodology, as the structure and processes

in CAO have been described in 1.3 and the theory of LEM in the previous chapter.

Results of the control run and the runs with heterogeneous surface temperatures are the

main focus of the next chapter. The results of module runs are analysed, leading to

drawing first conclusions about the impact of surface heterogeneities on the structure of

the developing boundary layer. The scope of the study is widened by the Chapter 5 that

examines CAO scenarios with a different structure of the lower troposphere. Chapter 6

then presents case studies from the ACCACIA flight mission. Since LEM is there set up

and run with a non-idealised setting, further adjustment to the LEM code are described

and explained in the section 6.2.

3.1 Overview of the Scenario Setting

The idealised model scenarios for CAO requires a cautious setting of the model runs.

With an intention to maintain clarity and allow for reproducibility in future studies, all

the scenario & model settings and assumptions are defined in the following tables. The

first table summarises the simplifications under which we can model CAO. The second

and third table define the entire setting of the control run. The following tables then

just define the modification of the setting for the purpose of simulating the CAO over

a heterogeneous surface.

property constrain details

CAO

• CAO is already in progress, there is no weather front in the

modelled area

3.2.3

• horizontally homogeneous air on the inflow 3.2.2
large-scale forcings

• large-scale wind is approximately in geostrophic balance 3.2.1
• large-scale wind forcing constant in time 3.2.3
• negligible subsidence 3.2.1

MIZ

• A gradual increase in surface temperature at the beginning 3.2.3
of the MIZ without large-scale temperature discontinuities 3.3
• No feedback loop for the surface — decrease of the surface 3.2.1
temperature and freezing due to heat loss not modelled. 3.6

Table 3.1: Overview of the required assumptions
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The following tables are designed in a way to provide a clear overview. The left column list a model
properties and the central column defines its setting. The third column then provides a reference to the
following parts of this chapter that offers a detailed description and the explanation of these settings.
Finally the rightmost columns refers to the part of the software where is the setting implement. The
names of LEM code segments start with the symbol ∗ and the names of LEM namelists starts with
the & symbol. Notwithstanding, the exact implementation in the idealised scenarios in LEM code is
not included in this chapter. Due to its technical character and overall size, it is instead located in the
Appendix.

property setting details set in

initial conditions
altitude θ

[m] [K]
12000 363
5000 293

1500 257
0 253

altitude RH v
[m] [%]

[
m s−1

]
12000 0 10

2000 60 10

0 60 0

3.2.2 &INITPROF

dynamics Coriolis parameter 1.4 · 10−4 3.2.1 &DYNAMICS

forcing large scale wind forcing in y-direction
same velocities as in the initial conditions
linearly decreasing to 0 m s−1 at the surface

3.2.1 ?SET1D

run length 28 900 s 3.2.4 &TIMENML

boundary conditions
• top rigid boundary, no subsidence, stress-free for hori-

zontal velocities
with damping layer 2 km deep, located above 10 km

3.2.4 &DAMPNML

• lateral periodic boundary 3.2.4

• bottom rigid boundary, with surface model,
reference surface pressure 100 400 Pa

3.2.1 &INPUT

surface model based Monin-Obukhov theory, prescribed surface
roughness length and values for surface temperature
and humidity

2.5 ?PRAMETR

z0 = 5.0 · 10−3

z0,θ = 5.0 · 10−4
3.2.1 &INPUT

surface albedo 0.2 &RADCNTL

surface humidity saturated surface 3.2.1 ?PRAMETR

surface temperature
Time [s] -10800 0 400 1000 1400 >1400
θsurf [K] 253 253 261 265 271 271

3.2.3 &INPUT

reference profile potential temperature reference profile at the beginning

altitude θ
[m] [K]
12000 363
5000 293

1500 257
0 254

3.2.2 &THPROF

Table 3.2: Overview of model setting — control scenario
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property setting details set in

domain width in x 16 km 3.2.4 runfile

length in

y

16 km 3.2.4 runfile

height 12 km 3.2.1 &GRID

resolution

horizontal 160 m, in both directions x and y 3.2.4 runfile

vertical

altitude [m] spacing [m]
7500–12000 100
2500–7500 100
100–2500 40

0–100 10

3.2.4 &GRID

grid type Arakawa-C in horizontal, Lorenz in vertical 2.6
size 100 x 100 x 126 runfile

subgrid model LEM subgrid model based on S-L theory 2.4 &SUBMODEL

microphysics LEM 3-phase cloud microphysics

precipitation: rain, snow, graupel

3.2.1 ?
PRAMETR

radiation

•solar OFF 3.2.1 ?
PRAMETR

•longwave Edwards-Slingo radiation code 3.2.1 ?
PRAMETR

radiation update every 5 timesteps &INPUT

sub-arctic winter profiles for upper atmosphere 3.2.1 ?
CALC LEVS

numerics • maximum advective CFL number 0.2

• maximum viscous CFL number 0.2

2.6 &NUMERICS

• P–W advection scheme for momentum 2.6 ?
PRAMETR

• ULTIMATE advection scheme for scalars 2.6 ?
PRAMETR

• initialisation by perturbations in wind velocity 3.2.5 ?
START

Table 3.3: Overview of model setting — computational setting of control scenario

’40 m’ horizontal resolution
property setting details set in

resolution

horizontal 40 m, in both directions x and y 3.2.4 runfile

domain width in x 4800 m 3.2.4 runfile

length in

y

4800 m 3.2.4 runfile

height 12 km 3.2.1 &GRID

grid size 120 x 120 x 126 runfile

Table 3.4: Overview of model setting — model runs with increased horizontal resolution
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heterogeneity in surface temperatures
property setting details set in

types
type pattern
along stripes along wind
across stripes across wind

chessboard chessboard pattern

3.3 update code

spatial scales size of the square block of the pattern
(
d(h)

)
3.3.2 update code

options used horizontal
resolution [m]

400 m 40 m
1600 m 40 m and 160 m
3200 m 160 m

temperature scales maximum scale of a positive anomaly
(
δ(h)T

)
options

1 K
3 K
7 K

3.3.2 &INPUT

time development
Time [s] 0 400 1000 1400 >1400
persistent 0 1 1 1 1
diminishing 0 1 1 0 0

3.3 &INPUT

Table 3.5: Overview of model setting — model runs with surface heterogeneity

The model runs were performed in LES software package Met Office Large Eddy

Model, version 2.4 (the most recent version available during the project). All runs

were performed on the UEA supercomputing cluster Grace. Each run was performed

as a computational job on a single computational core, no parallelisation was employed

(see 3.6).

3.2 Control Scenario

While CAO events occur in a wide range of geographical locations, from the Arctic

Ocean north of Svalbard (Brümmer, 1996) to the East China Sea (Yamamoto, 2012),

there is not a single correct generic setting of the properties of the lower troposphere.

The setting of this control scenario is motivated by examples of CAO cases from previous

field studies (see 1.3.2) as well as cold outbreaks observed during the ACCACIA field

campaign. However, it is not a reproduction of any of the previous studies. Although

it would be possible to base the control scenarios on some chosen CAO case, there are

some issues to consider. On one hand, a scenario directly based on a previous case study

could provide a direct comparison for results. On the other hand, most of CAO cases

exhibit quite complicated wind profiles and potential temperature profiles in the lower
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troposphere (see figure 1.3). That would pose a serious issue in the evaluation of model

result — it would be difficult to separate the effect of the surface forcing and the effect

of jumps in the initial potential temperature and humidity. Furthermore, we would need

to consider the cross-interaction between the heterogeneous surface forcing and varia-

tions in the mean surface temperature with time. Therefore, with a goal to avoid these

aforementioned issues, the control scenario is rather prescribed as an idealised scenario,

inspired by previous case studies.

Previous LES studies of similar idealised CAO cases have usually started with a strat-

ified troposphere that follows a piecewise linear profile (Kershaw, 1995) (Gryschka et al.,

2014) — the bottom few hundred metres are almost neutrally stratified, followed by

a stronger stratification above. The large scale wind forcing followed a linear profile in

the lower troposphere and was constant above in Kershaw (1995). The idealised control

scenario in this study follows the same principles. With a goal to model the conditions

in CAO observed over coastal polynia and marginal sea-ice zone (MIZ), the control sce-

nario starts with a stratified troposphere over a cold surface. Large scale wind forcing

is supplemented. Air masses are first advected over a cold surface during the spin-up.

Later, they are advected over warming surface (specified in 3.2) which results into the

development of a CBL. The time of the transition is set to represent the time for which

an air parcel at the upper part of the boundary layer travels over the MIZ .

While the specification of the control scenario also requires an explanation of the

setting, following text is logically divided into few parts. It starts with describing the

general physical setting (3.2.1), description of the initial conditions (3.2.2), explanation

of the quasi-Lagrangian moving domain (3.2.3) and the setting for the other domain

properties (3.2.4). In continues with initialising of the turbulence by random perturba-

tions (3.2.5) and briefly explains adding the model outputs (3.2.6, 3.2.7). It is important

to stress out that this methodology is focused just on one chosen idealised scenario that

does not represent all CAOs. Therefore separate scenarios are created by adjustment of

the initial potential temperature profile in the mid-troposphere and the large scale wind

forcing, as further described in the chapter 5.

3.2.1 General Physical Setting

To represent conditions at higher latitudes during winter months, the outgoing long-wave

radiation should be taken into account. Therefore, the code for long-wave radiation is

switched on with the updates in the values of radiation computed after every 5 steps of

numerical integration. In the calculations of radiative budget, the radiative properties

of the upper atmosphere have to be taken into account as well. Since the Mcclatchey

profile supplemented with the LEM applies to the atmosphere in tropics, an adjustment
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is required. The profile for subarctic winter is implemented based on the revisited Mc-

clatchey measurements (McClatchey et al., 1971, pp.7-8).

Similarly, the choice of cloud microphysics should reflect the climate conditions of

the scenario. While mixed-phase clouds are very common in Arctic conditions (Zuidema

et al., 2005) (Klein et al., 2009), a full three-phase microphysics is required. Therefore,

we switch on the main three-phase microphysics scheme provided with the model. This

allows us to simulate the glaciation of supercooled water in clouds as well as the collec-

tions of cloud water and ice by falling hydrometeors.

The other issue is the surface roughness. Here we need to set two values of the aero-

dynamic roughness lengths — one for momentum and one for scalars, as explained in

(Gray et al., 2004, pp.11-13). Considering the lack of suitable reanalysis data for setting

these properties, we rather use the values from observational studies. The aerodynamic

roughness length for scalars is set to z0 = 5.0 · 10−3, which is value commonly measured

in Arctic (Mäkiranta et al., 2011). The aerodynamic roughness length for scalars is by

order lower than the roughness length for momentum, following the suggestion from

studies of surface properties in extratropical areas (Andreas, 1987). This means that the

value of surface roughness for scalars is set to z0,θ = 5.0 · 10−4.

Subsidence is another factor that should be considered. The large scale subsidence

plays an important role in balancing the cooling effect of the cold surface in Arctic

(Vihma at al., 2005). The subsidence was also indicated in some observed cases of cold

outbreaks such ARKTIS 1991 and ARKTIS 1993, (Brümmer, 1999), however there were

not enough data to determine its character. The climatology study of observed cold

outbreaks (Walsh et al., 2001) has also admitted that subsidence is often present, yet

difficult to estimate. Faced with the difficulty of determining the subsidence, a num-

ber of modelling studies on cold outbreaks discussed it and then set its value to zero

in the absence of suitable data (Muller et al., 1999) (Vihma at al., 2005). Fortunately,

satellite studies of cold outbreak suggest that vertical transport of heat and moisture is

not sensitive to subsidence (Chou and Atlas, 1982). However, a strong subsidence (in

order 10−2ms−1) can lead to a weak decrease in liquid water content in clouds. Never-

theless, the effect is too weak to significantly alter the development of CBL (Weinbrecht

and Raasch, 2001). Therefore, we assume that subsidence is not a significant factor in

our study. Considering the implications of previous studies, the subsidence at the top

boundary is set to zero for simplicity.

Other physical properties of the scenario are set accordingly:

• Coriolis parameter 0.00014 s−1 — Set based on Coriolis parameter for high latitudes

70− 80◦N.
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• surface pressure 100 400 Pa — This value of pressure is on a lower boundary of

long-term pressure trends in Arctic around Greenland and Svalbard (Polyakov et

al., 2003).

• saturated surface — Since the surface consists of water and sea-ice, it is expected

that the skin surface is saturated.

3.2.2 Initial Conditions

The main motivation for the choice of the control scenario is modelling rapidly devel-

oping CBL under the influence of a relatively weak wind shear. While the impact of

strong stratification and different strength of wind shear is later explored in chapter 5,

this part of the chapter is concerned with the description of the control scenario only.

In the following paragraphs, we are going to explain the reason for the specific choice of

the idealised profiles of potential temperature, humidity and the mean wind velocity.

Although most of the troposphere is strongly stratified, a weaker stratification is

achieved in the bottom few hundred metres due to effects of orography (Kilpeläinen et

al., 2012) and evaporation from leads (Esau, 2007). This property of the lower tropo-

sphere has been observed in a number of CAO cases, including CAO over Labrador Sea

(Renfrew and Moore, 1999, p.2383) and some CAOs observed during March 2013 on the

ACCACIA flight campaign (see chapter 6). Detailed description of the setting of the

initial conditions follows.
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Figure 3.1: The setting of the vertical structure of the control scenario - the profile of
the large scale wind forcing in the direction of y-axis, the initial profile of the potential
temperature and the initial profile of the relative humidity.

The initial potential temperature profile (shown in figure 3.1) is stable, with the

surface layer temperature of 253 K and stratification

∂θ

∂z
= 2.6 K km−1 in the bottom 1.5 km

∂θ

∂z
= 10.2 K km−1 in the rest of domain
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The initial profile of relative humidity is constant at the value 60 % up to altitude of

2000 m and then linearly decreasing to 5.5 % at the top of the domain.

Large scale forcing is supplemented in the form of a large scale wind in the y-axis

direction. It increases linearly from 0 m s−1 at the surface up to 10 m s−1 at the altitude

of 2000 m, and further up in the atmosphere it remains constant (see figure 3.1a).

3.2.3 Quasi-Lagrangian Approach

One of the serious concerns in the idealised model is capturing the downwind spatial ex-

tent of CAO. In the following paragraphs, we first explain the limitation of the boundary

conditions in LEM, and then we propose the approach that allows us to solve this issue.

We show the previous applications of this approach as well as indicated shortcomings.

Finally, we define the surface conditions used in out control model run.

Setting the surface and boundary conditions for a developing CAO brings some chal-

lenges. Since the LEM is limited by a periodic boundary condition in horizontal direc-

tions 3.2.4, we cannot set different conditions of air on the inflow and the outflow. An air

parcel that leaves the model domain downwind immediately appears upwind. Further-

more, a spatial domain that would include both the area over sea-ice as well as downwind

over the MIZ would be extremely large. Therefore, we instead use a Quasi-Lagrangian

Approach to simulate the downwind development of the CAO.

The main idea behind this approach can is to simulate an ’air parcel’ that is ad-

vected from over a cold surface (e.g. sea ice) to over a relatively warm surface (e.g.

MIZ or open water), the spatial changes in the surface condition along the trajectory of

the moving air parcel are replaced by temporal changes in surface conditions with time.

There have been various examples of “small domain simulations in a frame of reference

moving with the mean wind have been used to explore some aspects of the evolution of

roll convection” (Liu et al., 2004). Despite some degree of simplification, model scenarios

with periodic boundary conditions and a moving frame of reference are very useful in

the studies of convective systems (Richardson et al., 2007).

In this study, we specifically implement a quasi-Lagrangian approach similar to the

method used in the model study of the campaign EPIC 2001 by Szoeke and Bretherton

(2004). In their formulation, the entire column is assumed to move at the mean ABL

velocity. An issue of this method is that it does not capture the effect of the different ad-

vection speeds due to shear within the ABL. However, this issue is of minor importance

when the ABL is mixed. Generally speaking, their results compare well with observa-

tions from EPIC 2001 (Caldwell and Bretherton, 2009) as well as with the mesoscale
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models with directly prescribed boundary conditions based on the same field campaign

(Small et al., 2005).

Although the aforementioned approach of Szoeke and Bretherton (2004) was origi-

nally used for the boundary-layer transition in tropics, it has been successfully adjusted

also for simulations of a large CAO over the Gulf Stream where the wind velocity is not

constant with height (Skyllingstad and Edson, 2009). It is applied under the assumption

that secondary mesoscale circulations generated near the front of the travelling air mass

are relatively small, in comparison with the direct response to the forcing at the sur-

face. The resulting impact of neglecting the advection on the overall flow characteristics

is relatively weak in comparison with the changes in surface temperature (Skyllingstad

and Edson, 2009, p.1278). This model study compares well with the field observations

over the Gulf Stream (Marshall et al., 2009).

It is a common computational approach in LES with a Quasi-Lagrangian parcel is to

apply a Galilean transformation for horizontal velocities (Wyant et al., 1997). This is

defined as (
x , t,u

)
7−→

(
x ′, t′,u ′

)
=
(
x ′ − tuGal, t, u

′ − uGal

)
(3.1)

where x is the vector of position, t is the time, u is the vector of velocity and uGal is

the chosen Galilean velocity. Setting uGal to the mean advection clearly leads to weaker

velocities u ′ within the simulation. This provides a significant advantage in calculations,

since smaller velocities allow longer timesteps that still fulfils the CFL condition (see 2.6).

While LEM allows the setting of Galilean transformation within the simulation (Gray et

al., 2004, p.5), it is not suitable for simulations with surface heterogeneity. To maintain

the consistency of the model would require the surface heterogeneities to move in the

simulation with the velocity −uGal. Since the model grid consist of discrete points, this

transition of the surface heterogeneitities would not be smooth. Furthermore, it would

pose a number of possible computational issues to implement such conditions. Therefore,

we do not use Galilean transformations in this model study.

Bearing in mind the aforementioned limitations, we replace the spatial development

in surface temperatures with the domain-wise mean surface temperature that changes

with time. While the trial model runs (see Appendix) showed that the model spin-up is

reached during the second hour of the run, the surface conditions and outer forcing are

kept constant until the end of the second hour, and subsequently altered. The surface

temperature stays at the value of 253 K for the first 3 hours of the model run. Then

the surface warms over a period of 1400 s (as described in the table 3.2), until it reaches

the temperature 271 K. The surface temperature than further remains constant. The

time at which the heating starts is referred to as t0. This point serves as a reference

point for the time coordinate. The apparent location of the domain is then estimated
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based on modelled wind velocity in the boundary layer. The estimation of the position

is explained in 3.4.1.

The surface conditions have been prescribed in the table 3.2 in the model overview.

While this part of the chapter provided the explanation and likely issues identified in

previous studies, the model setting should simulate the developing CAO reasonably well.

Possible limitations of this approach are further discussed in 3.6.

3.2.4 Domain and Computational Setting

however the specific choice of the computational domain and computational properties

should be carefully considered as well. A number of studies have shown the importance

of a model resolution and the choice of subgrid parametrization (Arnal and Friedrich,

1992) (Maryon, 1989) (Pope, 2004). In the following paragraphs, focus is given to the

choice of subgrid model, model domain and the model resolution.

One of the main motivations for the choice of the domain depth is to model the

propagation of waves in the upper troposphere. Previous studies have shown that the

domain depth of 8 km or more should allow modelling of propagating waves (Young et

al., 2002). In this study, the model domain should include a large part of a stratified

troposphere without venturing into stratospheric air (McClatchey et al., 1971, pp.7-8).

However, additional requirement have to be considered as well. While convection gener-

ated waves may propagate in the stratified atmosphere up to the top model boundary,

there is danger of a reflection of waves from a rigid top boundary. To prevent this, the

damping layer is switched on. The properties of the damping layer (Gray et al., 2004,

p.13) are set to the thickness of 2 km. Considering both these issues, the depth of the

model domain was set to 12 km with the damping layer starting at the height of 10 km.

Due to the large vertical extent of the domain, the pressure is computed by anelastic

equations (Gray et al., 2004, pp.4-5). For the explanation of these calculation, please

see 2.3.

The horizontal extent of the domain is a peculiar question. The domain should be

relatively small to limit possible errors due to differential advection (Szoeke and Brether-

ton, 2004) in quasi-Lagrangian approach (as explained in 3.2.3). At the same time, the

domain should be large enough to capture the formation of larger convective structures.

A number of previous studies has investigated what domain size is required to properly

capture developing atmospheric phenomena. For modelling CBL capped with a shal-

low cumulus, a domain of a size of 6.4 km x 6.4 km is sufficiently large, and increase

in the domain size did not have a significant impact on model results (Brown et al.,

2002). However, we cannot just assume that the cloud layer in a developing CAO in
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Arctic is simplified as shallow cumulus. An extended study of LES sensitivity instead

concluded that the horizontal domain size should be at least 2.5 times larger than the

characteristic horizontal length scale of the atmospheric structure that is modelled (Agee

and Gluhovsky, 1999). Since the developing cloud rolls reach widths from 1 km to 4 km

(Brümmer, 1999) (Atkinson and Zhang, 1996), the domain size of 10 km would seem

reasonable.

Although the model is large enough to capture roll convection, this might not be

enough to properly capture the propagation of gravity waves. While gravity waves reach

sizes over 4 km (Gossard and Munk, 1954), a larger domain should be employed. Based

on an extended study of roll convection and waves, Young et al. (2002) arrived at the

conclusion that domain of the size 18 km x 18 km is already considered relatively large.

The previous chapter on model theory has already explained that LES resolves

just the large turbulent eddies and the rest of the turbulent cascade is parametrized.

For this purpose, LEM employs an advanced subgrid model based on the extension of

Smagorinsky-Lilly theory (for explanations, see 2.4). The setting of the subgrid model

representing viscosity is directly taken from LEM test case 5 (Gray and Petch, 2004,

p.47) that is based on an extended study on modelling cold outbreaks by Kershaw (1995).

altitude [m] spacing [m]

vres0 vres1

7500–12000 100 240

2500–7500 100 130

100–2500 40 40

0–100 10 20

Table 3.2: The general setting
of vertical layers in the simula-
tions

Notwithstanding, the choice of the model resolu-

tion still remains an important question (Zacharias et

al., 2012). Higher grid resolution allows us to re-

solve a wider palette of turbulent processes, however

the computational expenses grow significantly. Gen-

erally speaking, the spacing of the grid should be

within the inertia subrange (Pope, 2004). Although

a well calibrated subgrid parametrization should cor-

rectly model the inertia cascade (Arnal and Friedrich,

1992), there might be occasional errors due to inho-

mogeneities in a developing CBL (Love and Leslie,

1979).

Previous modelling studies of CAO has applied resolutions from few hundred of me-

tres to tens of metres. A horizontal grid spacing lower than 250 m was usually described

as ”fine resolution“, however there is not a clear consensus on this term. And extended

study of a roll convection by Muller et al. (1999) used a horizontal spacing of 200 m and

a vertical spacing of 32 m. On the other hand, Schröter et al. (2005) set the horizontal

spacing to 100 m, however the vertical resolution 50 m. Roode et al. (2004) also applied

the horizontal spacing 100 m, but the vertical spacing was as low as 20 m. Still, the model

domain in the majority of these studies included only the lower troposphere. While the
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model in this study spans up to 12 km, we also found that memory and computational

expenses were becoming an issue as well.

For the purpose of this study, a sensitivity testing was performed (see 3.5) for rea-

sonable settings of horizontal and vertical grid resolution. Still, any computationally

available choice of the resolution leads to the situation when the horizontal grid spacing

is larger than the height of plumes (Gibert et al., 2007) in the shallow CBL. Therefore,

the convectively generated turbulence is not resolved at this stage. To address this issue,

we have performed separate model runs with a very high resolution for the first hour of

the CBL development. A comparison between the control run and the very-high resolu-

tion runs then showed that LEM subgrid scheme covers the early development of CBL

reasonably well (see 3.5.3). Notwithstanding, this part of the CBL is not fully in the

inertia part of the spectrum (Couvreux, 2010) and therefore is deemed not representative

enough for the further analysis. Therefore, the later-described methods for the analysis

of model runs (3.4) are applied only for the model outputs after 0.75 hour when the IBL

is high enough and the larger CBL eddies are fully in the LES-resolved regime. The

resulting choice of the vertical and horizontal resolution for the control run is described

in the next two paragraphs.

The vertical resolution is generally highest by the surface and then decreases with

altitude. The highest resolution was utilised in the bottom 100 m to resolve the surface

layer properly, followed by high resolution up to 2500 m to contain the whole ABL and

part of the free atmosphere above. From a few different settings tested, two settings of

the vertical resolution were employed (described in table 3.2). The setting ’vres0’ is

used for majority of runs with a goal to properly resolve shallow boundary layers. How-

ever, model runs were usually quite time-consuming. Due to these performance issues,

the setting ’vres1’ is used for scenarios where a shallow ABL is not an issue.

Horizontal grid resolution is set to 160 m in both x-axis and y-axis direction. The

sensitivity testing showed that a further increase in resolution did not produce results

that were significantly different (see 3.5.2), but were computationally more expensive

(see Appendix). However, this resolution might not be sufficient in the model runs with

a fine heterogeneity pattern surface temperatures. The increased horizontal resolution

of 40 m in both directions was utilised in these cases with a goal to properly resolve the

secondary circulation forced by surface heterogeneities (see 3.3.2). The size of model

domain is in this case decreased to 6 km in both horizontal dimensions to avoid memory

issues. This would unfortunately mean that the domain size might not be large enough

for larger convective rolls, as further discussed in 3.6.
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3.2.5 Initial Perturbations

Generally, a LES requires some sort of the initial perturbation to disrupt the homoge-

neous flow and start an eddy motion. In the initially unstable conditions, the common

approach is a small perturbation in the potential temperature (Walko et al., 1992) on

the second vertical level that causes differences in the buoyancy of parcels, resulting in

the development of convective eddies. In the initially stable conditions, the situation is

slightly different. Perturbations in the temperature on the second layer of the model do-

main tend to quickly dissipate with time. Therefore, perturbations in some other model

variable, such as velocity (Boris et al., 1992) or turbulent kinetic energy (Beare et al.,

2006), should be used to initiate the model runs (Mason and Derbyshire, 1990).

The reasoning goes as follows: while perturbations in the vertical component of veloc-

ity would most likely just dissipate while propagating upwards, inserting a perturbation

in the horizontal components of wind velocity has the goal of introducing more vortic-

ity into the model. However, adding an independent perturbation to each horizontal

component of wind velocity might violate the continuity equation. Instead, a random

streamfunction is generated and values of wind perturbation are calculated from that.

In the LEM example simulation for the unstable conditions, perturbations between

-0.1 and +0.1 K were initially added to potential temperature on each grid point on

layers from the second layer up to 250 m, i.e.

θi,j,k(tINI) = θ̄(INI)

k + 0.1 · εi,j
{
∀ k : (k ≥ 2) ∧ (zk ≤ 250)

}
,

εi,j ∼ U(−0.5, 0.5) ∀ i, j = 1 . . . N,
(3.2)

where θi,j,k(tINI) is the potential temperature at the grid point with coordinates i, j, k at

the time tINI, i.e. at the beginning of the simulation, θ̄k
INI

is value on the k-th layer in

the initial temperature profile, zk is the height of this layer and εi,j are random numbers

drawn from U(−0.5, 0.5), the uniform distribution on the interval [−0.5, +0.5].

Based on this example, we prepared an initialisation of simulations based on the

perturbation in the horizontal components of wind velocity. First, a random 2D array

of streamfunction values is generated as

ψ̃ = ∆y α(s) ηi,j,

ηi,j ∼ U(−0.5, 0.5) ∀ i, j = 1 . . . (N − 1),

ηN,j = η1,j ∀ j = 1 . . . (N − 1),

ηi,N = η1,j ∀ i = 1 . . . N,

(3.3)

where ∆y is the grid resolution in the horizontal direction, constant α(s) sets the spread

in streamfunction perturbations, and ηi,j are again random numbers drawn from the

uniform distribution on the interval [−0.5, +0.5], . The initial values of horizontal com-
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ponents of wind velocity are then calculated as follows:

ui,j,k(tINI) =


ū(INI)

k − ψ̃i,j+1 − ψ̃i,j
∆y

,
{
∀k : (k ≥ 2) ∧ (zk ≤ zs,1)

}
ū(INI)

k − z(s),2 − zk
z(s),2 − z(s),1

· ψ̃i,j+1 − ψ̃i,j
∆y

,
{
∀k : (zk ≥ zs,1) ∧ (zk ≤ zs,2)

}
(3.4a)

vi,j,k(tINI) =


v̄(INI)

k +
ψ̃i+1,j − ψ̃i,j

∆x
,

{
∀k : (k ≥ 2) ∧ (zk ≤ zs,1)

}
v̄(INI)

k +
z(s),2 − zk
z(s),2 − z(s),1

· ψ̃i+1,j − ψ̃i,j
∆x

,
{
∀k : (zk ≥ zs,1) ∧ (zk ≤ zs,2)

}
(3.4b)

where z(s),1 and z(s),2 give an interval of the altitudes up to which the stable boundary

is likely affected by surface orography (Kilpeläinen et al., 2012, p.237). These two pa-

rameters are in the control run set to values z(s),1 = 250 m and z(s),2 = 500 m based on

indicated stable boundary layer 100–300 m in (Brümmer, 1996) and 500 m in (Bian et

al., 2013). The spread in streamfunction values is set to α(s) = 2.0. Since the initial

perturbations in the wind velocity are calculated as differences of two random numbers

drawn from uniform distribution, their resulting distribution on the horizontally equidis-

tant grid follows symmetrical triangular distribution (Johnson, 1997) with the mode 0

and the maximum
z(s),2 − zk
z(s),2 − z(s),1

α(s)

(i.e. in the bottom part of the model domain, the initial wind perturbations reach values

between from the symmetrical triangular distribution between -2 and +2).

3.2.6 Model Output

We have so far explained the simulation inputs, however the model outputs are essential

as well. Without a suitable model outputs, we would not know how is the CBL devel-

oping. Therefore, this part of the chapter explains the setting of model outputs that

are suitable for the further analysis of idealised CAO development. Due to a technical

nature of some output settings, we focus just on the main points.

The LEM routinely saves a number of timeseries, direct outputs of fields and time

averaged vertical profiles, with the first output file being generated after the set-up job

and other output files during the ’chain run’ (Gray and Petch, 2004, pp.11–13).

A time output is generated at the time t0. Other outputs then follow in intervals of the

quarter of hour (900 s). This time interval has been chosen

as a balanced pay-off, offering both enough time for time-averaged statistics and frequent

snapshots of fields for the observation of the boundary layer and cloud layer develop-
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ment. After the end of the second hour, the changes in a thickened CBL are slower.

Therefore, further outputs follow in the pace of one outputs per hour.
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Figure 3.3: Initial profiles of tracers content
for two passive tracers.

There are number of tools to gain

a deeper insight into turbulent trans-

port within the ABL. One of those

tools is adding a passive aerosols tracer

at chosen altitudes within the tro-

posphere and then observing the de-

velopment of its concentration (Do-

sio et al., 2003). This approach was

also employed in number of boundary

layer studies, including the study of

the effect of the surface temperature

anomalies on the ABL (Huang et al.,

2010).

In this study, two passive tracers were

added (see figure 3.3) into the lower part

of the domain:

1. the tracer in the bottom of the domain, with initial extent up to 200 m

2. the tracer at altitudes above the expected stable boundary layer turbulence, with

initial extent from 200 m to 500 m

Both tracers were implemented as passive scalars (Gray and Petch, 2004, p.9). The

initial vertical profiles were prescribed. No sinks or sources were defined. For the details

on technical implementation, please see the Appendix.

3.2.7 Adding Flux Timeseries

A short code update for the computation of timeseries of horizontally averaged sensible

heat flux and latent heat flux at fixed heights was constructed based on the example

of the code lines for respective fluxes at the surface. For the convenience of compar-

ing fluxes at different heights, values of fluxes are recorded both in the kinematic form,

(u′w′), (v′w′), (θ′w′) and (q′vw
′), as well as full dynamic form of the sensible heat flux

QSH and the latent heat flux QLH and the wind stress τ .
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Figure 3.4: Illustrative picture of clouds downwind of MIZ showing the altitudes at which
are the timeseries of fluxes recorded. The upper part of the model domain is not shown
in the picture.

The calculation in the LEM at the vertical layer ka could be symbolically expressed

as

QSH(ka) = Cp ρ(ka)
1

NxNy

∑
i=1...Nx
j=1...Ny

(
(θ′w′)RE(i, j, ka) + (θ′w′)SG(i, j, ka)

)
,

QLH(ka) = Lv ρ(ka)
1

NxNy

∑
i=1...Nx
j=1...Ny

(
(q′vw

′)RE(i, j, ka) + (q′vw
′)SG(i, j, ka)

)
,

(3.5)

where Nx and Ny are numbers of grid points in the directions x and y, and subscripts

RE and SG indicate the resolved and subgrid contribution respectively.

Based on the trial runs of simulations, the following seven vertical levels were chosen

based on an expected physical character of the atmosphere (see figure 3.4) at these

altitudes:

1. Within the convective surface layer (altitude za1 = 45 m), where plumes of warm

air are rising from the surface.
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2. Above the surface layer (altitude za2 = 170 m), where strong fluxes over the surface

are expected. At the same time separate small plumes are supposed to connect

below that height.

3. Lower part of the ABL (altitude za3 = 360 m), where a strong fluxes over the

surface are expected. At the same time separate small plumes are supposed to

connect below that height.

4. Bottoms of clouds or clear air below the cloud layer (altitude za4 = 520 m), where

both strong updraughts and downdraughts are likely to occur.

5. The upper part of the cloud layer (altitude za5 = 1480 m), which contains descend-

ing outer part of clouds, warm updraughts within clouds, and areas of clear air

between the cloud streets.

6. Above the cloud tops (altitude za6 = 2040 m). At this height, the fluxes are mostly

driven by the effects of cloud layer below.

7. In the mid-troposphere (altitude za7 = 3250 m), where the effect of the shallow

convection is supposed to diminish.

The setting of the altitudes for recording fluxes could be easily manually adjusted

based on specifics of new scenarios. This approach is later applied in the case simulations

in Chapter 6 where altitudes are chosen to reflect the mean altitude of horizontal flight

legs of the research aircraft.

3.3 Heterogeneity in Surface Conditions

During cold air outbreaks in Arctic, the cold air is often advected from a contiguous sea-

ice surface over a warmer marginal sea-ice zone and later to the open sea. The control

scenario shows a CAO developing over a homogeneous warming surface (see 3.2), how-

ever this is often not very realistic. The surface of marginal sea-ice zone (MIZ) generally

consists of a very heterogeneous mix of sea-water and various types of ice (Gupta et al.,

2014). There are areas of packed ice interrupted by long leads (Elvidge et al., 2016) as

well as areas of floating ice of different sizes (Inoue et al., 2004).

Studies modelling CAO over the MIZ found that inhomogeneities in MIZ affect sur-

face fluxes (Claussen, 1991) and provide favourable conditions for roll convection and

a development of secondary circulation (Gryschka et al., 2008). Therefore, this study has

considered the importance of the heterogeneous surface and investigated its influence on

a developing CBL in CAO. In the following paragraphs, we show the current state of
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knowledge of MIZ and explain the reasons for an idealisation of surface heterogeneities.

The declaration of idealised surface conditions is the subject of the 3.3.1. A brief de-

scription of the implementation of heterogeneous surface conditions to LEM then follows

in the 3.3.2.

The first issue is determining a realistic heterogeneous surface in MIZ. There have

been a number of observational studies of sea-ice morphology based on satellite prod-

ucts (Kwok, 2014), and observations from buoys, boats and aircraft (Barry et al., 1989)

(Kottmeier and Hartig, 1990). A progress in image processing and recognition also

offered methods for a faster processing of observational data and an automatise iden-

tification of sizes of ice segments (Zhang et al., 2015). Studies generally show a wide

spectrum of sizes of ice floes (Rothrock and Thorndike, 1984). Statistically speaking, the

sizes of ice floes mostly follow a power law distribution (Hudson, 1987). Some studies

further specify that this distribution is followed for large floes. Small floes of the sizes

below 40 m often follow a slightly different distribution (Toyota et al., 2006). Neverthe-

less, there is a wide variability in the parameters of these distribution. This variability

is often influenced by geographical region and the distance from coastal areas (Hudson,

1987). Furthermore, there is also a high degree of seasonal variability (Perovich and

Jones, 2014) (Wang et al., 2016). Generally speaking, there is no clear way how to pre-

scribe a common MIZ.

One of the possible solutions would be to directly choose an example of some ob-

served MIZ. Still, the knowledge of the size distribution of floes alone does not necessary

define the spatial structure. MIZs often exhibit a grouping of floes (Toyota et al., 2006)

that leads to a complicated spatial pattern of smaller and larger ice floes (Savage, 1995).

Moreover, the spatial grouping can often lead to an aggregation of floes (Inoue et al.,

2004) and refreezing in some of the gaps between them. Furthermore, a high degree

variability in physical properties was observed within an observed MIZ. The floes and

the new ice within MIZ often exhibit different physical behaviour due to height of the

packed segment, snow cover and occasional melting or flooding of the elements. This

particularly apply surface roughness (Gupta et al., 2014) and surface reflectance (Liu et

al., 2016) (Barry et al., 1989).

Considering the difficulties in inserting ”realistic“ sea-ice mixture, we will instead

prescribe an idealised heterogeneity in surface conditions. Due to difficulties in deter-

mining the variability in surface roughness (Schröder et al., 2003) (Mäkiranta et al.,

2011) and reflectance, the study is going to focus just on spatial heterogeneities in sur-

face temperatures. 3.6.
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3.3.1 Idealised Heterogeneity in Surface Temperature

In this proposal of an idealised heterogeneity in surface temperatures, we seemingly

follow examples of previous studies of a developing CBL over a heterogenous surface.

A common feature of previous studies, such as Gryschka et al. (2014) and Esau (2007)

and, is that they usually defined a strip-like anomaly in surface temperatures. Although

this approach is valid, it ignores the possible effect of changing the shape of an anomaly.

While the previous study of the impact of patches of anomalies in surface humidity

(Courault et al., 2007) have an impact dependent on the shape of patches, we consider

this parameter worth investigating. Therefore, we are going to introduce few different

idealised shape types of the anomaly in surface temperatures for the purpose of further

investigation. First, this part of the chapter defines three different types of the pattern

representing the shape parameter. Then it is going to define other parameters related to

the time duration of the temperature heterogeneity, its spatial extent and the difference

against the mean temperature.

With a goal to explore variability in a CBL over a mix of the sea water and sea-ice

in the MIZ, three different patterns types are introduced. Heterogeneity is modelled as

one of the following repetitive patterns of positive and negative anomalies:

• stripes of anomalies along the direction of the synoptic scale wind,

• stripes of anomalies across the direction of the synoptic scale wind,

• a chessboard pattern, with sides of squares aligned with the direction of the synoptic

scale wind

The positive temperature anomalies are higher and their spatial extent is smaller. This

follows the example of MIZ in Okhotsk sea during a CAO event (Inoue et al., 2004).

Negative anomalies are larger and their values are set to maintain a zero mean over all

anomalies, i.e. so the mean domain temperature is the same as the case of homogeneous

surface temperature (schematics are shown in figure 3.5). Anomalies appear at the be-

ginning of the transition, t0 = 0, and the temperature difference between the anomaly

and its surrounding grows linearly during the warming of the surface. In the basic set-

ting of heterogeneity, anomalies then stay constant for the rest of the run. This set up

represents conditions over a large area of scattered ice floats in the MIZ. (Claussen, 1991)

However the possibility of a relatively short MIZ (Williams et al., 2013) that is fol-

lowed by an open sea surface with almost homogeneous surface temperatures should to

be taken into account as well. The effect of this shorter MIZ is modelled in the set of

runs where heterogeneity declines in a given number of hours after the transition into

warm region (see figure 3.6).
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Since there is not a single ultimate model of the distribution of water and sea-ice

within MIZ, a wider variety of temperature anomalies and their spatial extent should be

considered. In this idealised version of the surface heterogeneity, they are for simplicity

represented by two defining parameters:

• the spatial extent of the anomaly, defined by the length d(h) of a side of building

block of the chessboard pattern

• the temperature scale of the anomaly δ(h)T , which is the maximum temperature

difference between the anomaly and the mean surface potential temperature.
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Figure 3.5: Illustrative schemes are showing three different patterns of anomalies in
surface temperature. The size of the building block of the pattern is clearly marked as
d(h). In each case, the direction of the large scale wind is in the positive direction of
y-axis
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Figure 3.6: The example of the setting of surface temperature. The detail of the tran-
sition is shown. Dashed lines (−−) marks positive anomalies while dotted lines (· · · )
mark negative anomalies.

3.3.2 Implementation of Heterogeneous Surface Conditions

We have so far proposed the idealised heterogeneities in surface temperatures. However,

there are still issues in implementing these heterogeneous surface conditions in the chosen

model. The LEM did not offer a setting for spatially heterogeneous surface conditions,

a substantial updates to the LEM code was required. First, the LEM source code was

thoroughly investigated by tracking the variables for surface temperature in the code.

This was followed by planning of code updates, adding them and performing extensive

testing. Due to a strongly technical nature of these steps, they are not discussed here

(instead, please see the Appendix). This part of the chapter is concerned solely with

a brief description of the implementation of code updates.

The heterogeneous surface conditions are introduced intothe LEM by adding pertur-

bations to the original scalar value assigned to the surface. For the surface temperature

values, the array of perturbations is created by setting a mask with a repetitive pattern.

The pattern is then multiplied by the temperature scale d(h) and added to the mean

surface temperature. Basic building blocks of the pattern consist of a few well defined

anomalies of a rectangular shape (for illustration, see figure 3.5). The first size of the

building block was 10x10 gridpoints, which in the basic horizontal resolution represents

the square of the size 1600 m by 1600 m. The building blocks of the size 10x10, 20x20

and 40x40 gridpoints are set in the way that the relative area of the positive anomalies

is approximately same for all three types of masks (along stripes, across stripes and

chessboard).

The mask of anomalies is taken in each timestep and multiplied by the scaling factor

before adding it to the scalar value of the original surface temperature. The scaling value
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allows for easier manipulation. It consists of temperature scale δ(h)T , which is a constant

value, and time dependent factor from the interval [0, 1], representing the development

of anomalies with time. A maximum value of anomaly allows an easy adjustment of the

heterogeneity scale between different model runs that use the same pattern of anomalies

but a different temperature scale δ(h)T . A number of model runs were set with temper-

ature scales 1 K, 3 K and 7 K. An example of fluxes over heterogeneous surface is shown

in figure 3.7, where surface fluxes clearly respond to the underlying surface temperature

pattern.

The mask in the simulations represents a sea-ice mix with the areas of packed ice and

water of different sizes. It is stressed that the masks of perturbations are always balanced

in the way that the mean value of the surface temperature over the whole domain is the

same as the original value of this scalar variable.
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Figure 3.7: Example of the heterogeneous pattern ’across’ in surface temperature with
the setting δ(h)T = 7 K, d(h) = 1600 m and surface sensible heat flux at 1 hour after t0.
The contourplots show just a part of the domain. Note that the atmospheric flow is in
the direction of y-axis (e.g. up the page).

3.4 Methods of Evaluation

With a goal to closely investigate a developing convective boundary layer (CBL) in cold

air outbreaks (CAO), a number of model runs are perforemed for the idealisced CAO

scenario. While the previous two parts of this chapter (3.2 and 3.3) described the in-

put into LEM software, this part of the methodology focuses on the evaluation of large
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quantities of data from LEM outputs.

Horizontally averaged vertical profiles of wind velocity and scalar quantities provide

a basic insight into the vertical structure of the developing CBL. Although the LEM

provides a wide palette of timeseries and averaged vertical profiles of model variables,

a further postprocessing is required for the proper assessment of the variability in the

CAO and the impact of modified surface forcing. From the model output, the distribu-

tion of updraughts and downdraughts is evaluated at different stages of the development

of the mixed boundary layer, followed by further analysis of resulting vertical fluxes of

heat, moisture and momentum. The following sections focus on some specific parts of

the evaluation of model results.

3.4.1 Boundary Layer Height

Since the LEM does not directly output boundary layer height(s) (Brooks and Fowler,

2012, pp.249-250), a careful treatment must be given to the determination of this quan-

tity (Denmead et al., 1996). While there are number of alternative formulations for the

height of the boundary layer (Vogelezang and Holtstag, 1996), a clarification is required.

In the following paragraphs, we are going to explain the detection of zbl, the total height

of ABL, and zi, the height of the mixed layer. These two quantities are then further used

for the approximation of the distance travelled by the Quasi-Lagrangian parcels during

the CAO.

The boundary layer height in this study follows the formulation ”highest levels reached

by thermals and the lowest levels attained by free atmospheric air” of Grabon et al.

(2010). Instead of estimating the boundary layer height zbl from the vertical fluxes or

the velocity variance, we apply a simplification of the approach of Brooks and Fowler

(2007) of tracking a passive tracer within the CBL. This approach is also well justified

by lidar observational studies (Morille et al., 2007). Since passive tracers were added

into the bottom part of the LES domain the extent of ABL is bounded by the tracer

concentration. However, due to effects of diffusion and the cloud detrainment (Taylor

and Baker, 1991), it is likely that some amount of tracer escapes above ABL. While

the convection facilitates a transport of the tracer up to the top of the CBL and the

cloud top entrainment is dominated by a downward transport, a rapid drop in the tracer

concentration is expected at these altitudes.

However, estimating the height of deep ABL by the steepest slope would put the top

of the ABL at the altitude of majority of cloud tops and would cut off higher clouds.

Therefore, the height of the ABL is estimated as the first altitude where the concentration
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normalised by its maximum value falls bellow a threshold, i.e.

zbl ≈ min

{
z :

qtr(z)

(max qtr)
< Ctr

}
, (3.6)

where Ctr is the threshold and max qtr is the maximum of tracer concentrations over all

the vertical levels.

Even more peculiar is estimating zi, the height of the well-mixed layer (ML) (Stull,

1988, p.12) (Brooks and Fowler, 2012, pp.251-2) , which is usually defined (IFS IV, 2013,

p.38) as

• The altitude of the capping inversion jump or discontinuity in the case of clear ML

or stratocumulus topped ML

• The altitude of the cloud base in the case of cumulus topped ML.

In the second case, the zi is set to be the level of lowest cloud base of the cumulus layer

(CuL). In the first case, we can either apply threshold for gradient in temperature or

search for a change in the gradient. In this study, the second option is preferred. The

height of the ML is estimated as the lowest altitude with a positive gradient where the

second derivation is negative. This avoids problems with an arbitrary setting of thresh-

olds that might be exceeded in a case of rapid entrainment at the top of the ML. The

question of estimating the ML height is further addressed in the discussion (3.6). To

reflect the variation of the height of ML within the domain, the estimated zi can be

calculated for a part of the domain. However, zi should not be estimated from a single

column only (Brooks and Fowler, 2012, p.461).

This estimation of zi might at first seem unnecessarily complicated in comparison

with applying the threshold on the difference in potential temperature between two lev-

els. However, in a case of a relatively weak inversion over CBL, rapid entrainment might

cause an increase in potential temperature at the top of ML. This would then require

repeated adjustment of the threshold value to fit conditions. Other problems would

arise in the case of a strong stratification that is often present in the Arctic troposphere.

Due to a strong stratification, the threshold would be exceeded in the strongly stratified

layers even before the formation of a ML. Another apparent solution is to estimate the

ML height by the minimum in the second derivative. However, this method is sensitive

to changes in the stratification of the free atmosphere above. If there is a decrease in

stratification somewhere higher up in the troposphere, the second derivation there could

be lower than at the top of the ML and the height of the ML would be misclassified.

The other issue related to the boundary layer height is how far have air parcels trav-

elled with wind during the CAO. Estimating this distance is a vital in our setup of
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the Quasi-Lagrangian domain (see 3.2.3) Although the large scale forcing vf is linearly

increasing with height in the lower troposphere, the developing CBL alters the wind

profile. While the horizontal mean of wind velocity in the ML is approximately constant

within the ML (Stull, 1988, p.450) it serves as a good estimation of the velocity with

which the CBL is travelling downwind. The distance travelled since the reference point

t0 is then approximated as

s(t) =

∫ t

t0

v(t̃, zi) dt̃ ≈
∑

{j : t0<tj≤t}

v̄(tj, zi) · (tj − tj−1), (3.7)

where v̄(tj, z) is the velocity at given altitude averaged horizontally (over the whole do-

main) and in time (over the interval (tj−1, tj]).

3.4.2 Updraught Distribution

Parametrisation schemes for CBL make various assumptions about the inner structure

of the convection, proposing different distributions of updraughts and downdraughts.

Schemes are usually based on the application of Monin-Obukhov similarity theory, Most

of these assumptions were based on studies in tropics and mid-latitudes (Berg and

Stull, 2004) (Raupach, 1993). While these assumptions might not necessary hold for

higher latitudes, it would be reasonable to investigate further. Firstly, we briefly remind

parametrization schemes ( 1.1.1) and explain why we are focusing on eddy-diffusivity

mass-flux. Then we process with methods for the analysis of the distribution of up-

draughts and downdraughts in the boundary layer. The conditional distribution of scalar

quantities in updraughts is then the subject of the next part of the chapter.

The main idea behind eddy-diffusivity mass-flux (EDMF) schemes is that the CBL

consists of a few strong updraughts and surrounding turbulent air with weaker up-

draughts and various downdraughts (Siebesma et al., 2007). Strong updraughts are ar-

bitrarily defined as updraughts in a small fractional area au containing the strongest

upward vertical motions (Siebesma and Cuijpers, 1995). (IFS IV, 2013, pp.39–40) .

Strong updraughts at the bottom of the CBL are the basis of thermals that facilitate

mass-transport of the warm moist air parcels higher up, while smaller eddies are respon-

sible for the diffusive transport of heat and moisture in horizontal and vertical gradients.

Some models of CBL also introduce terms for small-eddy counter-gradient transport.

Although some recent articles on EDMF schemes have taken into account variation in

the distribution of strengths of updraughts (Sušelj et al., 2012), many other sources sim-

ply assume that the distribution of vertical velocity of updraughts and downdraughts

follows a normal distribution (IFS IV, 2013, pp.41-42) .
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Under the assumption that the distribution of vertical velocities w at a given level

follows a normal distribution N (0, σ2
w), the values of vertical velocities in strong up-

draughts must fulfil wu ≥ σw · z1−au , where z1−au is the 1 − au quantile of the normal

distribution. The kinetic energy Ẽw of strong updraughts is then calculated using the

pdf of the normal distribution (Casell and Berger, 2002, pp.102-103) as

Ẽw =
1

2

∫
w≥σw z

1−au

w2 1√
2 π σw

exp

(
−w2

2σ2
w

)
dw, (3.8)

which could be analytically evaluated (for details, see appendix A) as

Ẽw =
1

2
σ2
w

∫
s≥z

1−au

s2

√
2π

exp

(
−s2

2

)
ds =

1

2
σ2
w

(
z1−au√

2π

(
exp

z2
1−au
2

)
+ au

)
, (3.9)

In the case of different, non-symmetrical distributions, results might be different. For

a direct comparison, we perform a numerical estimation of the kinetic energy as

Êw =
1

2N

∑
w≥S

w, 1−au

w2, (3.10)

where N is the total number of recorded values at a given level and Sw, 1−au is the sample

quantile of the recorded vertical velocities for the probability 1− au.

3.4.3 Conditional Statistics for Updraughts

The EDMF schemes are not concerned with each single updraught plume, but with their

overall effect on the transport of heat, moisture and momentum in the areas of convec-

tion (Witek et al., 2011). The important property is the transport within the strong

updraughts. Some EDMF schemes further distinguish between updraughts with con-

densation and dry updraughts (Sušelj et al., 2012). If the potential temperature or some

other scalar quantity denoted ϕ is higher by 4u ϕ than the surrounding environmental

air, then the transport of the said quantity by strong updraughts (in a kinematic form)

yields

(w′ϕ′)u = au · wu4uϕ+ au (w′ϕ′)
(u)

u , (3.11)

where ( )
(u)

is averaging over the area of updraughts only. Some of the implementations

of EDMF schemes assume that the second term is relatively negligible in comparison with

the first term (IFS IV, 2013, pp.42). Although single updraughts and downdraughts

can attain various values of potential temperature and humidity, the essential part is

evaluating their overall distribution.

The evaluation of updraughts as described in the previous subsection is further ex-

tended by processing the values of the potential temperature and other scalar quantities.
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Figure 3.8: The example of a scatterplot of updraughts and downdraughts in the CBL,
using vertical velocity and virtual potential temperature perturbations from the mean.
This figure is generated from the values on the vertical level 320, approximately in the
middle of the ML that reaches the depth zi = 630 m at 2 hour.

To further investigate this topic, we perform a quadrant analysis (Mahrt and Paumier,

1984). The main idea behind this method is that plotting a 2D statistical distribution

of [ϕ′ vsw′] offers a good insight into differences between updraughts and downdraughts

(see figure 3.8 for example of cold and warm updraughts). This method of visualisation

has been used with various adjustments in a number of research publications (Stull, 1988,

p.463). It can be applied both for model and observational data. The common choices of

evaluated scalar quantities include potential temperature (Sullivan, 1998), liquid water

potential temperature (Sušelj et al., 2012), virtual potential temperature (Mahrt and

Paumier, 1984) and liquid water content (Kang et al., 2007).

To better assess the joint probability distribution of the vertical velocity and pertur-

bations in the scalar quantity (Berg and Stull, 2004), we can apply one of the following

two methods:

• Thresholding - setting intervals for both ϕ′ and w′, then counting number of dat-

apoints that falls into each interval.

• Gaussian Blur (Shapiro and Stockman, 2001, pp. 137–150) by the expected trust

region for the values. Each datapoint is replaced by a joint pdf of ϕ vs w repre-

senting values that are expected in the grid cell. Variances in ϕ and w are taken

from the modelled subgrid variances

(ϕ′ ϕ′)SG(zc) and (w′w′)SG(zc),
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multiplied by a tuning parameter αa, so the kernel of resulting pdf of updraughts

and downdraughts yields

f(ϕ,w) ∝
∑
i,j

exp

(
−1

2

(
(ϕ− ϕi,j)2

σ2
ϕ

+
(w − wi,j)2

σ2
w

))
,

where σ2
w = αa (ww)SG(zc), σ2

ϕ′ = αa (ϕ′ ϕ′)SG(zc),

(3.12)

and the multiplicative constant is evaluated afterwards (see example in figure 3.9). The

joint distribution P (wϕ), (as shown in the figure 3.9) then serves for further analysis of

the properties of the ABL. The marginal distribution of the scalar quantity in strong

updraughts is approximated by integration over all w ≥ Sw, 1−au .

Figure 3.9: The example of the joint pdf of perturbations in vertical velocity w and
virtual potential temperature θv that was computed from gridpoint values shown in
figure 3.8.

3.4.4 Sub-mesoscale Variability

The evaluation of the overall vertical structure of CBL in CAO and the resulting vertical

transport of the heat and momentum within the CBL are of a great importance (Song

and Yu, 2012) (Papritz et al., 2014). While there could be a significant variation in struc-

tural parameters on both large and local scales (Cheinet and Siebesma, 2009), observed

variability in structure of CBL could be divided into mesocale and sub-mesoscale fluc-

tuations (Strunin and Hiyama, 2005). The sub-mesoscale variability could be modified

by inhomogeneity in surface conditions (Shen and Leclerc, 1995) (Górska et al., 2008).

Furthermore, it can have a significant effect on results of airborne field studies and their
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comparison with numerical models (LeMone et al., 2003). Therefore, this part of the

chapter intends to provide tools for the analysis of sub-mesoscale variability.

While the distribution of updraughts and downdraught is approximated over the

whole model domain, it does not reflect local differences. To address the spatial vari-

ability in resulting boundary layer fluxes, we apply coarse sampling inspired by coarse-

grained study in a cloud resolving model (Shutts and Palmer, 2007). The model domain

is horizontally divided into a number of square shaped column subdomains (as shown in

figure 3.10). The vertical extent of each subdomain is over the whole vertical extent of

the domain. Vertical fluxes of sensible heat, latent heat and momentum are separately

evaluated in each subdomain. The length of the side of each subdomain should be set

higher than the horizontal extent of the observed convective structures.

ϕ
il

jk−1

ϕ
il
jk

ϕ
il

jk+1

(ϕ)
(l,k)

Figure 3.10: The illustrative example of a horizontal grid and the subdomains,
and subdomain mean values.

At each output time, the LEM records instantaneous values of three dimensional

fields of vertical velocity w and each observed scalar quantity ϕ. The vertical flux of

a scalar quantity ϕ at in each subdomain marked l, k then yields:

w′ϕ′
(l,k)

(z) =
1

(il+1 − il) · (jk+1 − jk)
∑

i∈[il,il+1)

j∈[jk,jk+1)

(
w(xi, yj, z)−w̄(l,k)(z)

)
·
(
ϕ(xi, yj, z)−ϕ(l,k)(z)

)
,

(3.13)

where il and jk are indices of LES gridpoints in the South–East corner of each subdo-

main, and ϕ(l,k) is a horizontal mean value of the scalar quantity ϕ within the subdomain.

Estimated values of vertical fluxes from each subdomain are then compared against the
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domain–wide horizontal mean at a given timestep w′ϕ′(z, t). For a better assessment

of the variability, minimum, maximum, 0.25 and 0.75 quantiles of resulting values over

subdomains are calculated. This allows the construction of a min–max envelope of the

subdomain set showing the likely extent of possible values. Steps of the evaluation are

depicted in figure 3.11.

0 0.02 0.04 0.06
0

500

1000

1500

2000

2500

z
 [

m
]

w’ q
v
’  [g kg

−1
 m s

−1
]

Vertical fluxes of moisture
in subdomain (2,2), at 5 hour in case control

(a)

−0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

500

1000

1500

2000

2500

z
 [

m
]

w’ q
v
’  [g kg

−1
 m s

−1
]

Vertical fluxes of moisture in subdomains

(b)

−0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

500

1000

1500

2000

2500

w’ q
v
’  [g kg

−1
 m s

−1
]

z
 [
m

]

Vertical fluxes of moisture over subdomains
at at 5 hour in case control

 

 

25%−75% envelope

min−max envelope

(c)

Figure 3.11: Illustration of steps in subdomain evaluation for kinematic moisture flux in

one timestep of the model run. The profile values of w′ϕ′
(l,k)

are computed in each (a)
subdomain separately. (b) From the set of all these profiles is then calculated (c) the
min-max envelope that encloses the whole set and [0.25, 0.75] quantile envelope.

Subdomains obtained from the runs with the same forcing and initial conditions can

be viewed not only as a separate representations of subdomain variability, but also as

a sample of a larger size. This larger set of all subdomains can be further statistically

processed. Box-and-whisker diagram (Tukey, 1977) with the standard setting of whiskers

as 1.5 of the interquartile range (IQR) provides a measure of the spread (Weisstein, 2015

) in the values of fluxes. Constructing box-and-whisker at each model level in the lower

troposphere allows to a visualisation of the spread of flux values within CBL. Further-
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more, it provides a measure for the spread of subdomain fluxes (see 3.12) in the runs

with surface heterogeneity.

The IQR and whiskers of the control run provides an expected spread in the values

of vertical fluxes. When the mean vertical fluxes differ between the model runs, the

box-and-whiskers plots allow to demonstrate whether the differences between the CBL

are larger than the variations within the CBL itself. Furthermore, the whiskers spread

suggest whether two different surface conditions lead to a similar variability within the

developing CBL.
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Figure 3.12: Illustration of steps in subdomain evaluation for kinematic moisture flux

in the control set. The set of all subdomain profiles w′ϕ′
(l,k)

in the same timestep of all
runs of control set (a) is collected. The IQR and whiskers are calculated at each model
level. The box-and-whisker illustrates that at a few chosen levels (b). In the figures
that compare some modified model runs, control set box-and-whiskers are visualised in
the form of a colour shading (c).
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A higher amount of subdomains would allow us to perform further statistical test.

One possibility would be the comparison of the subdomains that are approximately at

the same distance downwind (i.e., line of subdomains in the x-direction). This would

then allow to further investigate the spatial variability in CBL. Other option would be

to estimate the statistical distribution of the values of subdomain fluxes. However, the

size of the domain in this study is limited to single-core runs. Therefore, it was not

possible to utilise runs with larger domain that would allow division into a high number

of subdomains that would be still representative enough.

Still, it is important to stress that this analysis provides a measure of the spatial vari-

ability in instantaneous values of vertical fluxes, not a measure of the spatial variability

in their time-averaged values. Therefore, it does not show whether subdomain values

further from the mean are a longer lasting phenomenon or just a product of temporal

oscillation in the CBL (Letzel and Raasch, 2003). Nevertheless, the statistical evalua-

tion of the subdomain values provide an insight into a local sub-mesocale variability in

CAO. It might also contribute to explanations of the variability in estimated fluxes from

airborne observations (see Chapter 6).

3.4.5 Vertical Fluxes

A growing CBL is likely to trigger temporal oscillations (Kang, 2009) in vertical fluxes of

heat and momentum. Temporal oscillations have been studied both in field observations

(LeMone et al., 2003) and LES studies (Letzel and Raasch, 2003). While the effect on

large surface heterogeneities was studied in mesoscale models (Kang and Davis, 2008),

this study tries to provide an evaluation of the effect of convective scale heterogeneities

on oscillation within CBL fluxes. Therefore, this part of the chapter provides a method-

ology for the analysis of variability in vertical fluxes within the CBL.

To offer greater insight into the time variation of the vertical transport in the tropo-

sphere, timeseries of vertical fluxes of sensible heat, latent heat and momentum flux, as

well as their related fluxes in kinematic form, are recorded at chosen altitudes inside the

ABL and in the free atmosphere above. Specific setting of these altitudes representing

different part of troposphere (see 3.2.7 for details) are left the same within a batch of

model runs .

Turbulence parametrization schemes usually evaluate the general tendency in the

vertical flux (w′ϕ′) of the scalar quantity ϕ, however the spatial and temporal variability

in the value of the flux (Letzel and Raasch, 2003) is often ignored. While the spatial

variability was the subject of the previous section, now we focus on the variability in
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time. The timeseries of the horizontally averaged values of vertical flux at the altitude

z is denoted (w′ϕ′)(t; z) . This timeseries can decomposed as

(w′ϕ′)(t) = (w′ϕ′)(gen)(t) +4w′ϕ′(t), (3.14)

where (w′ϕ′)(gen)(t) represents the mean and tendency. The temporal perturbation in

source terms 4w′ϕ′(t), is then modelled as a Markov Chain

4w′ϕ′(t)
∣∣∣4w′ϕ′ (t− δt) ∼ P4,w′ϕ′ , (3.15)

where δt is the time step.

Each flux timeseries defined in 3.2.7 is first divided into three segments:

1. the stable regime

2. the propagation of the internal boundary layer (Renfrew and King, 2000, pp.336–

337) through the altitude of recording

3. the convective boundary regime

If there are visual signs of a repetitive pattern and the length of the segment allows

it, the power spectra are estimated. The segment of the series is first detrended and

periodogram estimators P̃W (fk) for frequencies fk are constructed in each segment of

detrended values (w′ϕ′)(t) marked as (cj)j=1,...N . The periodogram estimator for the

sample (cj)j=1,...N is defined (Press et al., 2007, pp.653–654) as

Ck =
N−1∑
j=1

cj exp (2πjk/N), k = 0, . . . , N − 1 (3.16a)

P̃W (fk) =
1

N2

(
|Ck|2 + |CN−l|2

)
, fk =

k

(Nδt)
k = 1, 2, . . . (N/2− 1), , (3.16b)

where δt is the length of the timestep. Under the assumption that the length of the

timestep does not significantly change in the observed segment, this method is a rela-

tively good estimator of the signal frequencies (Oppenheim et al., 1999).

With a goal to estimate the 4w′ϕ′ , a decomposition of the timeseries is performed.

Applying smoothing by the moving average (Press et al., 2007, p.767) of the length λt

in the time domain, we can divide the timeseries into a smoothed part associated with

the general trend and a series of residua

rw′ϕ′(ti) = (w′ϕ′)(ti)− (w′ϕ′)(sm),λt
(ti), (3.17)

where (w′ϕ′)(sm),λt
(ti) is the smoothed part of the series.
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The series of residua then allow an estimation of the conditional distribution of per-

turbations from the simple Markov Model. An empirical pdf is obtained by bracketing

of the values of residua. For a smooth estimation, we then apply the Gaussian Blur in

a similar way to 3.4.3

fw′ϕ′(r+δt, r) ∝
∑
j

exp

(
−1

2

(
(r+δt − r(tj + δt)2

σ̃r
2 +

(r − r(tj))2

σ̃r
2

))
,

where σ2
r = αr (w′w′)SG(zc),

(3.18)

An approximation of the joint pdf fw′ϕ′(r+δt, r) of the residual part of fluxes is then

calculated, followed by the evaluation of the conditional pdf Pw′ϕ′

Pw′ϕ′(r+δt|r) =



fw′ϕ′(r+δt, r)∑
∀r̃

fw′ϕ′(r̃, r)
for
∑
∀r̃

fw′ϕ′(r̃, r) > ε0,

0 for
∑
∀r̃

fw′ϕ′(r̃, r) < ε0,

(3.19)

where ε0 is a very small numerical threshold set to avoid problems with numerical arte-

facts. The conditional pdf shows the dependence of the values of residua in the current

step on values of residua in a previous timestep. In case the oscillations behave like

a white noise, the residua are uncorrelated and the contours would approximately attain

a shape of a one large square without any peaks inside. However if oscillations are con-

ditionally dependent, the residua are correlated and the shape will be different.

If the conditional pdf indicates a correlation in between some adjacent residua, the

next step consists of estimating the autocorrelation RA(τ) in the timeseries of residua.

Under the assumption that the length of timestep does not significantly vary in the ob-

served segment, the sample autocorrelation (Wichern, 1973, p.236) is calculated as

RA(k · δt) =
1∑N−k

j=1 (r(tj)− r̄)2

N−k∑
j=1

(r(tj)− r̄)2(r(tj+k)− r̄)2, (3.20)

where N is the number of timesteps in the segment and r̄ is the mean value of residua.

Due to a short length of the segment 2 (the propagation of the IBL) at majority of

recording altitudes, the sample autocorrelation is calculated only for segment 3 (the

CBL regime) of each flux timeseries. The values of autocorrelation are then visualised by

Autocorrelation Plot (Box and Jenkins, 1976, pp.28-32). The whole process is illustrated

in the figure 3.13.
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Figure 3.13: Illustration of steps in the evaluation of vertical fluxes. The timeseries of
the latent heat flux at chosen altitude is smoothed (a) and the residua in segment 3
are separated (b). Conditional pdf is calculated from residua (c). Autocorrelation of
residua is calculated for each run in the control set (d) and the control set min-max
evelope is prepared (e) for further comparisons.
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3.5 Sensitivity Testing

The presented methodology for the LEM model runs and their comparison with a caon-

trol set is inevitably going to raise questions on how sensitive the results are to the choice

of model parameters. To address the question of sensitivity to the setting of the grid

and the initial conditions, a set of model runs with adjusted setting was prepared. The

construction of sensitivity tests was inspired by a sensitivity testing describe by Muller

and Chlond (1996) and by Agee and Gluhovsky (1999). The focus is given both to the

questions of vertical and horizontal resolution as well as to the issue of setting of some

initial conditions.

In the part of the chapter on the computational setting of the model (3.2.4), it was

stated that the choice of the domain size and the resolution of the grid were subject to

careful consideration. Therefore, this part of the chapter will first focus on the sensitivity

of the model results to the size of the domain 3.5.1 and resolution both in vertical and

horizontal directions (3.5.2). Then we address the issue of the formation of a shallow

CBL and its early development. For this purpose, we utilise a very-high resolution LEM

runs (3.5.3).

The development of a CBL might also be affected by an increase in humidity. A higher

humidity is likely to lead to an earlier formation of clouds and their swift growth. With

a goal to check whether an increased humidity would lead to a qualitative changes in

CAO development, runs were performed with humidity increased to Rh 80 % and 85 %.

The results showed that changes in the initial humidity do not lead to any qualitative

changes in the developing CBL. In this part of the thesis, we present just the main re-

sults. Other figures on sensitivity testing are in the Appendix.

3.5.1 Sensitivity to Domain Size

While grid size and resolution are often considered a source of possible errors (Cheng et

al., 2010), we are going to evaluate how sensitive are model results to these parameters,

firstly the domain size. It is preferable to to analyse this model parameter first, since

many of the later test runs were executed with a smaller domain due to memory limi-

tations. To briefly remind, the requirement of the domain size is that it is sufficiently

large to capture cloud rolls and possibly also gravity waves (see 3.2.4) for details.

For the purpose of testing sensitivity to the domain size, we performed a set of runs

that differed from the control run (see tables 3.2 and 3.3) in the setting of the domain

size:

• Control; 16 km ×16 km.
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• Horizontal extent of the domain extended to 19.2 km ×19.2 km.

• Horizontal extent of the domain extended to 25.6 km ×25.6 km.

• Horizontal extent of the domain decreased to 12.8 km × 12.8 km.

• Horizontal extent of the domain decreased to 4.8 km × 4.8 km.

• Vertical depth of the domain decreased to 5 km. Due to changed in the depth of

the domain, damping layer of the depth 2 km is starting at the altitude 3 km.

• Vertical depth of the domain decreased to 5 km and the horizontal extent of the

domain decreased to 12.8 km × 12.8 km. Damping layer of the depth 2 km is

starting at the altitude 3 km.

k
y
 [m

-1
]

10
-5

10
-4

10
-3

10
-2

a
m

p
lit

u
d

e
 s

p
e

c
tr

a
 [

m
 s

-1
]

10
-5

10
-4

10
-3

10
-2

Comparison of amplitude spectra of
vertical velocity at altitude 6400 m, at 3 hour

control

domain: 25.6 km

Figure 3.14: The sensitivity of the spectra of the upper atmosphere to increased domain
size

The analysis of the results of this test set did not reveal any specific changes in the

development of the CBL. The surface fluxes of heat and moisture exhibited virtually no

difference. The differences in the other CBL properties were as similar between runs as

with the control setting. The evaluation of the frequency spectra in the upper atmo-

sphere showed a minor difference between the control run and the run with the domain

size ’25.6 km’. The amplitude spectra were slightly lower in ’25.6 km’ case (see figure

3.14), however the peak in the spectra was located at the same wavenumber. The slope

towards higher wavenumbers was also similar in both cases. Since the increase in the

domain size yielded no qualitative changes in results, we conclude that the domain size

in the control run (16 km × 16 km) is large enough to capture waves generated by con-

vection.
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We conclude that the simulation of CBL in CAO is not sensitive to a reasonable

decrease in the model domain size. Therefore, it is possible to execute tests with in-

creased model resolution on a smaller domain. However, it is important to stress that

this applies to CBL only. The model runs with a smaller domain will not be included in

the evaluation of the spectral properties of the upper atmosphere.

3.5.2 Sensitivity to Resolution

With an aim to evaluate the sensitivity, we performed a number of runs with modified

horizontal and vertical resolution. These runs were then compared against the control

run. While the surface conditions were the same as in the control run (ie. spatially

homogeneous), a question arises as to whether the results are applicable also on the runs

with heterogeneous surface conditions. The heterogeneity in surface temperature present

a forcing that generates a secondary circulation (Gryschka et al., 2008). It might possi-

bly exhibit a different sensitivity to model resolution. Therefore, we have also performed

additional model runs with different horizontal resolution for the same heterogeneity

setting. The description of model runs follows.

The setting of vertical resolution is defined in the table 3.7. The control run (with

’vres0’ setting) and the run with ’vres1’ resolution (see 2.3.1 for explanation) are com-

pared against the runs with the decreased vertical resolution ’vres01’ and the increased

vertical resolution ’vres01’. Again, the remaining settings were kept same as in the

control case.

height [m] spacing [m]

vres01 vres0 vres1 vres2
7500–12000 100 100 240 240

2500–7500 100 100 130 14

100–2500 20 40 40 60

0–100 10 10 20 20

Table 3.7: The setting of vertical layers in the simulations for sensitivity testing

In a similar way, the impact of the horizontal resolution in the lower troposphere

was examined. The horizontal spacing ∆x was always kept the same for both horizontal

directions. The runs were performed on a grid with the horizontal extent 120 × 120

points. Setting of other model properties remained the same as in control run unless

stated otherwise:

• ∆x = 480 m

• ∆x = 320 m
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• ∆x = 160 m

• ∆x = 80 m

• ∆x = 40 m

The additional set consisted of model runs with heterogeneous surface conditions. For

simplicity, we present the result only for the set of the model runs with the type ’along’,

of the pattern block of the size d(h) = 1600m, temperature scale δ(h)T = 3 m diminishing

over time (see 3.3.2). The setting of the horizontal resolution were following:

• ∆x = 160 m (Standard setting)

• ∆x = 80 m, performed on a grid with the horizontal extent 120× 120 points.

• ∆x = 40 m, performed on a grid with the horizontal extent 120× 120 points.

Again, the rest of the LEM setting is maintained the same as in the control run.

The runs with coarse resolution exhibited significant differences in the formation of

clouds and vertical fluxes of heat and moisture. Surface fluxes were more than 30 %

lower at 1 hour than in the control run. Although this difference vanished by 2 hour, the

amount of cloud water was still more than 3 times underestimated. We conclude that

coarse resolution is not suitable for this CAO scenario and continue with other test runs.

On the other hand, none of these test model runs with increased resolution indicate

a qualitatively different development of the boundary layer, however there are significant

quantitative variations that should be further taken into account. The increase in the

horizontal resolution altered the distribution of convective clouds, which is consistent

with previous research on shallow cumulus clouds (Brown, 1999b). Although an increase

of horizontal resolution to 20 m was suggested (Matheou et al., 2011), it would require

further decreasing in the model domain size to avoid computational issues.

Further investigation of wind velocity fields revealed that there are changes in the

structure of eddies inside clouds. The increased resolution lead to changes in resolving

the secondary circulation, as described in a study on convectively induced secondary

circulation (Ching et al., 2014). The model runs with increased finer resolution showed

an increased liquid water mixing ratio in clouds, however altitudes of the cloud base and

the cloud tops do not differ between runs (see figure 3.15).

The impact of increasing the resolution was similar also in the model runs with het-

erogeneous surface conditions. The model runs with increased finer resolution again
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show an increased liquid water mixing ratio in clouds, however this effect is similar to

the runs with homogeneous surface conditions. There were also changes in the secondary

circulation by the surface, yet relatively minor in scale. Although the variance in the

vertical velocity differed between the runs during 1-2 hour, the differences in the vertical

flux of moisture in ML did not exceed 7%.

Perhaps surprisingly, the increase in the vertical grid resolution does not lead to

significant changes in the amount of cloud liquid water, indicating that both setting

of vertical resolution are sufficient for resolution of cloud motions. We have indicated

a slightly increased spread in the vertical momentum flux during the second hour be-

tween the model runs. However, there is not a clear trend in this spread. While further

result of the model sensitivity to horizontal and vertical resolution are not essential to

this chapter, they are instead shown in the Appendix.

In summary, model results are influenced by the horizontal and vertical resolution of

the simulation. However, further increase in the model resolution leads only to a minor

quantitative changes in the amount of cloud liquid water. Although the higher hori-

zontal resolution allows us to resolve more of the secondary circulation within clouds,

the effect on the overall transport within CBL is relatively small. The impact of the

increased resolution in runs with spatial heterogeneities in surface temperature is similar

as the runs with homogeneous surface conditions. We conclude that the resolution of

the control run is suitable for this study of CBL.
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Figure 3.15: The sensitivity in the formation of clouds to the horizontal resolution Dashed
line (−−) marks liquid cloud water, dotted line (· · · ) ice cloud water.
The symbol � marks the altitude of cloud base, the symbol 4 the altitude of cloud tops.
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3.5.3 Early CBL Development

One of the main issues regarding the setting of a LES is that any computationally avail-

able choice of the resolution leads to the situation where the horizontal grid spacing

is larger than the height of plumes in the shallow CBL (see 3.2.4). Therefore, during

the formation of a shallow boundary layer, most of the heat and moisture transport

is parametrized, rather than resolved (Couvreux, 2010). While the model runs in this

study start with stratified surface conditions, we have to address the question whether

the early development of the CBL is estimated correctly.

With an aim to investigate the impact of possible errors in the early CAO develop-

ment, we set up two additional model runs with a very fine resolution and compare them

with the control run. The setting is defined in table 3.9 Due to very high resolution,

the size of the model domain is reduced. This further implies that these model runs can

properly capture convective eddies only in a shallow CBL. The size of the convective

eddies was checked from the horizontal cross-sections of velocity fields.

property setting
’fine’ ’extrafine’

domain width in x 1.2 km 0.48 km

length in y 1.2 km 0.48 km

height 5 km 5 km

horizontal resolution 10 m 6 m

vertical resolution

height [m] spacing [m]

2500–5000 125 125

500–2500 40 37

100–500 6 6

0–100 5 4

damping layer 2 km deep, located

above 10 km

Table 3.9: The setting of ’fine’ and ’extra-fine’ model runs

The comparison of the control run with the runs with fine resolutions shows that

there are some qualitative differences. The model runs ’fine’ and ’extrafine’ capture

the formation of condensation in plumes over the surface layer. Although this phe-

nomena is supported by observations (Renfrew et al., 1999), here it is just of a minor

importance. On the other hand, there are no significant differences in the surface fluxes

of the sensible and the latent heat. For a better demonstration of the quality of subgrid

estimation, we focus on the vertical flux of moisture in the early CBL. The comparison

81



CHAPTER 3. METHODOLOGY FOR IDEALISED MODEL 3.6

of the control run with the ’extrafine’ run shows that during the first half hour, only

a small portion of the moisture flux is resolved by the model (see 3.16a). In addition

to that, LEM parametrization of the subgrid flux underestimates the flux of moisture.

However, this quickly changes with the deepening of the CBL. During 0.5–0.75 hour,

more than 75 % of the model moisture flux is resolved in the control run. Furthermore,

the subgrid parametrization estimates most of the remaining portion of the flux.

In summary, the subgrid model in LEM allows to estimate the formation of the shal-

low CBL reasonable well. With the deepening of the shallow CBL during 0.5–0.75 hour,

most of the kinetic energy and flux become resolved. Although the flux of moisture is

slightly underestimated during 0–0.5 hour, it seems that this issue disappears during the

later growth of the CBL.
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Figure 3.16: The comparison of the control with the ’fine’ and ’extrafine’ resolution
during the early development of the CBL.
Note: The ’extrafine’ run is not shown in (b) since the larger eddies were not properly
captured by the model anymore at 0.75 hour.

3.6 Discussion

Although the LEM is a powerful modelling tool, there are number of issues and open

questions related to the software and its setting. In this discussion, we are going to

address the main issues that might be invoked by the idealised setting, as well as vari-

ous possible shortcomings generally attributed to LES. Firstly, we will cover the model

resolution. Secondly, we will look upon the Quasi-Lagrangian domain. And then we will

cover other setup issues that are specific to LEM.
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The common argument against the results of LES studies usually involves paraphras-

ing the fact that LES resolves just a part of the eddy cascade and therefore the results

does not fully capture the effect of processes on smaller scales. This issue has been

partially examined in the sensitivity study (see 3.5). In the current setting, a further

increase in resolution led just to small changes in results , while computational expenses

were growing much faster. Generally speaking, halving the grid spacing in all directions

increases the computational cost by about the factor of 24 (Pope, 2004). However there

are also other issues connected to increasing the resolution. On one hand, it is prefer-

able to increase both the vertical resolution in the lower troposphere and the horizontal

resolution to better resolve eddies in the early CBL development. On the other hand,

it can result in disproportionate grid cells in the upper atmosphere – grid cells that are

very narrow yet relatively high.

In addition, increasing the domain resolution soon encountered limits of processing

on a single core of the supercomputer employed (UEA HPC Grace). Due to the original

purpose of the LEM, its multicore processing scripts are optimised for a specific type of

Met Office computers (Gray and Petch, 2004, p.7) and therefore relatively complicated

to adjust for other machines. However, the successors of the LEM, which is currently

under development (NERC, 2014), is supposed to be better adjusted for multicore com-

putations. Therefore we expect that chosen batches of model runs might be rerun in the

future with adjusted setting of the vertical and horizontal resolution.

One of the related issues is the question how representative are models during the

different stages of the model development. A LES with a small horizontal extent of the

domain and a high resolution allows us to resolve the small eddies in forming CBL, but

the domain would not be large enough to model large eddies in cellular convection. On

the other hand, a LES with a large domain that allows us to capture open or closed cells

would pose and excessive requirements on memory unless the resolution was decreased.

Notwithstanding, the large convective cells would not have developed due to length of

the run (3.1). The model generally covers just the development of convective rolls. Pre-

vious observations have shown that open and closed cells does not appear until 100 km

downwind (Brümmer, 1997) Furthermore, the early cells reach sizes 3–7 km (Brümmer,

1999) and therefore it would be possible to capture them in the model.

An alternative approach that allows us to properly capture various stages of CBL

development is the adaptive resizing of the model domain by Muller and Chlond (1996).

In their framework, the simulation starts with a small high resolution domain. CBL

starts deepening and the strongest convective eddies are increasing in size. After a cer-

tain amount of time, the simulation is stopped and all the fields of prognostic variables

are interpolated onto a coarse grid. The interpolated fields are then repeated to cover

a larger domain, and used as the initial conditions for the new simulations. This process
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is then repeatedly applied to cover the transition of cloud rolls and broadening of convec-

tive cells. Although this model suffers from a number of issues related to interpolation,

it provides a good model representation for the developing CAO until late stages over

open ocean (Schröter et al., 2005) (Gryschka and Raasch, 2005). Notwithstanding, this

approach is not applicable in the LEM. Although it would be possible to modify LEM

to allow directly inserting initial values of all prognostic fields, there is still an issue of

the subgrid model. The subgrid part of the fluxes and the subgrid part of the energy

are calculated by LEM subgrid model and cannot be separately inserted. This means

that there is no way to add the contribution of resolved scales averaged through inter-

polation and the contribution of subgrid scales. The model would be therefore losing

a portion of the kinetic energy and fluxes with respect to the previous step of the last run.

We have instead employed The Quasi-Lagrangian framework (see 3.2.3) that allows

us to replace the horizontal extent of MIZ with a temporal change in surface conditions.

While the periodic lateral boundary conditions in LEM 3.2.4 might be considered a se-

rious limitation, they are suitable in case of this approach. This model property does

not allow us to set different conditions upwind of the domain and downwind of the do-

main, since air leaving the domain downwind flows in on the other side. Therefore this

approach is not suitable for modelling the development of a CBL on a sharp ice edge.

However a long marginal sea-ice zone is reasonable approximated by a temporal increase

in the surface temperature. A gradual increase in surface temperatures also allows us to

fulfil the conditions that the secondary circulation related to the front of the travelling

air is relatively small (Skyllingstad and Edson, 2009).

The Quasi-Lagrangian approach introduces a significant amount of simplification into

the model. It does not allow us to capture the differential advection speeds caused by the

wind shear (Szoeke and Bretherton, 2004). While the advection of the environmental air

above the ABL can be easily added to model forcings (Gal-Chen, 1982, pp.2282-2285),

the advection within the ABL remains an issue. However, the effect of the differential ad-

vection in a CBL is relatively weak in comparison with other simplifications used in LES

studies of CBL. A thorough analysis of the Quasi-Lagrangian approach implied that the

effect of surface temperature on variations in pressure exhibit a more significant influence

(Putrasahan et al., 2013). Therefore, the Quasi-Lagrangian frame of reference is, despite

various shortcomings an acceptable simplification in studies of convection (Richardson

et al., 2007).

While the Quasi-Lagrangian framework exhibits aforementioned shortcomings, it also

offers some advantages. Since the model time spent over a certain portion of the surface

is in order of tens of minutes, we do not have to take into account the CBL feedback on

the surface. If the timescale were larger, we would need to take into account that heat

loss from the sea surface leads to the decrease in surface temperatures and the growth

84



CHAPTER 3. METHODOLOGY FOR IDEALISED MODEL 3.7

of sea-ice. For example in CAOs with mean wind velocity similar to our model setup,

the ice edge can expand 20 km offshore within less 12 hours (Inoue et al., 2004). Adding

a surface feedback to the model would require a significant adjustment of the surface

model. Therefore in this aspect, Quasi-Lagrangian domain helps avoiding issues that are

present in static domain with prescribed inflow conditions.

Perhaps a more limiting factor in the current set-up of LEM is a treatment of aerosols

and cloud microphysics. The model of cloud microphysics in LEM has undergone very

little changes since 1998. Although the distributions of hydrometeors are treated by

double-moment schemes, some other parts of microphysics are quite simple. The dis-

tribution of cloud water droplets follows single-moment scheme, described solely by the

water mixing ratio (Gray and Petch, 2004, p.17-18). Furthermore, aerosols are treated

as passive aerosols only and therefore their concentrations do not interact with cloud

formation. However, an advanced model for microphysics and aerosols is expected in

MONC, the successor software package to LEM (NERC, 2014).

There have been a number of questions surrounding the setting of the surface humid-

ity. On the one hand, direct setting of surface microlayer that is not saturated usually

resulted in a very weak convection. On the other hand, setting a slightly oversaturated

surface microlayer with a goal to simulate conditions over a sea surface with a foam

resulted in a formation of dense near-surface clouds. In the end, the simple solution was

to switch on the model parameter for the saturated surface.

3.7 Summary of the Applicability of Methods

The main purpose of this chapter was to provide tools for extending our knowledge of

the cold-air outbreak by means of Large Eddy Simulations. The chapter introduces

the idealised CAO scenario, its setting in Met Office LEM and the methods for the

analysis of model outputs. While the setting of initial profiles of prognostic variables

is similar to previous studies of cold outbreaks performed in LEM, the novelty of the

approach lies in the introduction of heterogeneous surface boundary conditions to LEM.

The methodology presented in this chapter allows us to perform the extended study of

idealised CAO scenarios that are presented in chapter 4 and chapter 5. These chapters

also discuss the adequacy of the choice of model parameters as well as some possible

shortcomings of the implemented model. Although the methodology in this chapter

focuses on idealised large eddy simulations, it can be also applied in case studies of

CAOs observed during field campaigns. However, in requires some further adjustment

of surface conditions as well as direct input of the initial condition. The modification of

the methodology for the purpose of CAO case studies is explained in 6.2.
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Chapter 4

Idealised Large Eddy Model of

Cold-Air Outbreaks with Surface

Heterogeneity

The changing structure of sea ice (Yang and Yuan, 2014), together with high tempera-

ture gradients between the cold Arctic air and relatively warm sea water, contribute to

uncertainty in the prediction of extratropical weather (Wacker et al., 2005) (Chapman

et al., 1994). Since cold-air outbreaks contribute strongly to heat transfer in the polar

areas (Papritz et al., 2014), a proper assessment of variability in them can help both in

improving numerical weather prediction (NWP) as well as in planning future field cam-

paigns. While the observations of the atmospheric boundary layer (ABL) in the Arctic

are relatively sparse (Alexeev et al., 2012, pp.219-236) the purpose of this study is to

enhance our knowledge by other means.

One promising possibility is to employ Large Eddy Simulations to numerically model

a development of the convective boundary layer (CBL) in a cold air outbreak (CAO).

Idealised model scenarios provide an opportunity to analyse the variability in the ABL

over a heterogeneous surface in the marginal sea-ice zone (MIZ). Previous studies of a

similar problem include mesoscale 2D studies such as (Chechin, 2013) and 3d studies of

the impact of leads on CAO, for example (Gryschka et al., 2008). While some studies

such as (Heerwarden et al., 2014) focused on the impact of scaling of heterogeneous

pattern of surface fluxes in CBL, their results were limited by the choice of the fixed het-

erogeneous surface pattern. Two main questions addressed by this study are: whether

the local structure of the MIZ plays a significant role in the developing CBL during

a CAO; and whether it introduces more variability in its behaviour.

This chapter presents the results of idealised CAO scenarios simulated by the Met

Office Large Eddy Model (LEM) following the methodology that was the subject of

the previous chapter. First, it describes basic qualitative properties of the modelled
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transition from stable boundary layer (SBL) to CBL capped with developing boundary

layer clouds. The chapter further investigates variability in the developing CBL. The

distribution of updraughts and downdraughts is described in section 4.1.2, while larger

variations in the fluxes inside the domain are analysed in the section 4.1.3. With a goal

to address the variability in vertical subgrid fluxes in NWP, modelled timeseries of fluxes

of heat and momentum at chosen altitudes are evaluated and results are presented in

the section 4.1.4.

To assess the impact of a spatial heterogeneity in surface temperatures, model runs

with idealised heterogeneity in the surface temperature are compared against a control

run in 4.2.1. The ensemble of model runs with control setting then allows us to estimate

the inner variability in convection. Then, it is possible to evaluate how significant the

impact of surface heterogeneities and surface roughness are against the background noise.

Limitations of this study and other related issues are discussed (4.3). The scope of the

study is further expanded on a wider palette of CAO scenarios in Chapter 5. While the

this chapter is concerned with an idealised model, the impact of heterogeneous surface

forcing in an CAO case study is presented in Chapter 6. Although this study is mostly

concerned with the ABL, the effects of the convection the troposphere above is also taken

into account. Waves generated by convection and propagating into stratified layers above

(Lane and Moncrieff, 2010). While the analysis of the gravity waves goes beyond the

scope of this study, it is instead presented in the Appendix D.

4.1 Cold-air Outbreak over a Homogeneous Surface

The control run is an idealised example of a CAO over a spatially homogeneous surface.

A cold air mass is advected over a cold homogeneous surface that starts warming up at

time t0 leading to a development of a CBL with convective clouds. The exact setting of

large scale forcing as well as initial profiles of potential temperature and humidity follows

3.2. This part of the chapter first offers a brief qualitative comparison of CAO devel-

opment that is followed by the evaluation of the internal structure of the CBL and the

impact on fluxes averaged over the whole domain. The time coordinate is always given

with respect to the reference point t0, i.e. the time when the surface started warming.

4.1.1 Basic Qualitative Results

A rapid development of the convective boundary layer is observed after the increase of

the surface temperature. Very shallow mixed layer (ML) starts developing during the

first hour, with thermals forming over 900 – 1800 s and growing upwards in the fol-

lowing hours (see figure 4.1). Due to shallow depth of the early CBL the convectively
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Figure 4.1: The potential temperature and the vertical velocity at the bottom of a
shallow CBL, 0.5 hour after t0.

generated turbulence is not resolved at this stage (see for details 3.2.4). The sensitivity

study showed that the subgrid model covers this early development relatively well (see

for details 3.5.3), however CBL is not fully in the inertia part of the spectrum. Therefore

is not considered representative enough. The further analysis is applied for model model

result after 0.75 hour when the larger CBL eddies are fully in the LES-resolved regime.

While the bottom part of the atmosphere is swiftly warming after 0.75 hour, mild

cooling is observed at altitudes above 500 m (see figure 4.2a). This phenomena is caused

by penetrative updraughts and resulting displacement of the potentially warmer air from

above. A contribution of the convection inside clouds should be also taken into account.

Scattered clouds appear already at the end of the first hour, and the cloud layer then

develops during the second hour. The radiative cooling at the top of the clouds then lead

to a rapid growth of water droplets (Jiang and Cotton, 2000, p. 587). Developing clouds

exhibit a shape prolonged in the direction of a large scale wind forcing. The location

of clouds indicate a random pattern (see figure 4.3) without larger organised structures

such as cloud streets.

Apart from large convective eddies of the size 2 km and larger, described also in

number of observational studies (Atkinson and Zhang, 1996, p. 406–407), there are

number of smaller structures. A cross-section of larger clouds reveals a secondary cir-

culation as well as pockets of ambient air descending around them. A representative

example of the developing cloud (see figure 4.4) exhibits both large convective eddies

with strong updraught in the middle of the cloud as well as the secondary circulation.

The indicated structure of clouds would classify them as cumulus clouds (Stull, 1988,

pp.562–564) which is further supported by the potential temperature profiles (see figure

4.2a) showing an increase in the mean potential temperature inside the cloud layer.
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Figure 4.2: The development of the potential temperature and the wind velocity in the
mean wind direction in the lower troposphere with the growing ABL. The symbol �
marks the altitude of cloud base, the symbol 4 the altitude of cloud tops.

The structure of the cloud further shows that the centre of the strong updraught con-

tinues nearly up to the top of the cloud (see figure 4.4a). The centre is further surrounded

by weaker updraughts and circulating patterns (see figure 4.4b). These organised circu-

lating patterns were identified in other model studies of cumulus clouds (Klaassen and

Clark, 1985). The circulating pattern are involves both the air within the cumulus cloud

as well as around it. They indicate that the entrainment to the cumulus occurs not

just at the top, but at all levels of the cloud (Blyth, 1993). The model results further

shows that the descending air is mostly on the edges of clouds. The model results did

not show any downdraughts that would be penetrating through the centre of the cloud.

That agrees well with the study of Blyth et al. (1988) and their concept of the undiluted

cloud core that drives the entrainment into the rest of the cumulus clouds. However,

their observational study was concerned with cumuli in mid-latitudes. Therefore, our

results differ both in the vertical extent of the clouds and the extent of the turbulent

wake generated by the cloud core.
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x [km]

y
 [

k
m

]

 

 

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6
a

lt
it
u

d
e

 [
m

]

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

(b)

Figure 4.3: Indicated altitude of cloud bottoms and cloud tops at the end of the third
hour. Note that some parts of clouds are displaced against the lowest cloud basis. The
light green frame marks the area of horizontal and vertical cross-section in figure 4.4
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Figure 4.4: The structure of a cloud in a developing convective boundary layer at the
time 3 hour. The value of large scale wind forcing vf (z) was subtracted from wind
velocity to provide a clear representation of circulation.

Moreover, the vertical profile of variance in specific humidity (see figure 4.5a) attains

maxima at altitudes 600–900 m in the lower part of clouds, indicating a clear change

in the character of the air surrounding clouds. Therefore, it is safe to deduce that the

cloud layer is not a part of ML and should be classified as separate cumulus layer (CuL)

(Betts, 1976, pp.2367-68) (Johnson, 1978, pp.1496, 1501). That further implies that zi,

the height of ML, is set to the height of the cloud base (IFS IV, 2013, p.38).
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Figure 4.5: Domain averaged potential temperature profile and variance in specific hu-
midity.
The symbol � marks the altitude of cloud base, the symbol 4 the altitude of cloud tops.

The development of CuL is connected to a sharp increase in the vertical flux of kinetic

energy during the second hour. As the ML continues warming, the CuL further grows

in thickness both upwards and downwards (see figure 4.6a). Between the beginning of

the second hour and the end of the fifth hour, the altitude of the top of cloud grows at

a decreasing rate from 900 m to 1900 m. These altitudes compare well with results of

observational studies that measured the total boundary layer depth as 900–2200 m over
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sea during wintertime CAO events (Brümmer, 1996).

Although the cloud base slowly descends to 500 m by the end of the hour 4, the max-

ima of the cloud water mixing ratio shifts upwards (see figure 4.6a). This might indicate

a development of cores of active cumuli clouds, i.e. cumuli clouds where the latent heat

release is effectively driving further increase in the convection, venting out additional air

from the ML (Stull, 1985, pp.50–51). Further investigation of the vertical velocity and

vertical fluxes of moisture (see figure 4.7a) supports this hypothesis. Results imply that

cumuli clouds in the CAO scenario differ from shallow marine cumulus not only in the

thickness, but also in the internal structure, since maxima in the amount of cloud water

are located in the middle part of clouds instead of at bottoms (Jiang and Cotton, 2000,

pp.589-591).
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Figure 4.6: The development of potential temperature and cloud water mixing ration in
the lower troposphere with the growing CBL.

While the turbulent kinetic energy (TKE) initially reaches high values in the middle

of ML (at 250–300 m), an increase is observed at altitudes in the cloud layer during the

second and third hour (see 4.8b). The kinematic moisture flux in the vertical direction

increases strongly during the third hour, with values in the cloud layer exceeding values

at the surface by 60 % at 4–5 hour (see again figure 4.7a). Moreover, peaks in vertical

fluxes of both passive tracers shift in 2-3 hour towards the upper part of the CuL ( see

figure 4.7b). These effects of the forcing by active cumuli cloud cores need to be taken

into account in the later analysis of the impact of variations in surface forcing (part 4.2).

While the wind velocity is nearly constant in the most of the ML and the bottom part

of CuL, the top parts of clouds are located in the area of increased wind shear (see figure

4.2b). This agrees well with the previous LES studies claiming that the shear is confined

mostly to the cloud tops (Skyllingstad and Edson, 2009, p.1283). Moreover, most of the
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shear TKE production occurs by the tops of clouds (see figure 4.8a), contributing to the

total TKE budget (see 4.8b).
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Figure 4.7: Vertical profiles of moisture flux and passive tracer flux in the control run
compared with the mean amount of cloud water content.

At the top of the CuL, vertical fluxes of passive tracers exhibit a sharp decline show-

ing that there is just a negligible amount of tracers escaping from clouds. Vertical profiles

of variance in potential temperature peak at this altitude and decline higher up. The

decline in the variance of the wind component across the mean flow is similar (see figure

4.5b), indicating a turbulent mixing at these altitudes. These findings suggests that

there is an ongoing cloud entrainment and a relatively negligible cloud-top detrainment.
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Figure 4.8: Shear produced TKE and total TKE
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The changes in the structure of the

CBL can be also expressed in the terms of

similarity theory (see figure 4.9 ). At the

end of the first hour, there is a steep in-

crease in w∗, the convective velocity scale

(also known as Deardorff velocity). The

increase continues during the second hour

together with the increase in u∗, the fric-

tion velocity. The increase in u∗ from 0.12

0.2 m s−1 and in w∗ from 1.3 1, 7 m s−1

agree with the result of previous field cam-

paigns. Similar result from observation of

growing convective rolls during the ARK-

TIS project (Brümmer, 1996). The u∗ con-

tinues slowly increasing during 3–5 hour,

while w∗ slightly declines during 3–5 hour.

This is mostly due to lower temperature

gradient between the surface and the ML.

4.1.2 Updraught Distribution

The study of the distribution of updraughts and downdraughts is motivated by the use of

eddy-diffusivity mass-flux (EDMF) schemes (Huang et al., 2013) implemented in a num-

ber of meteorological models including ECMWF (Watson et al., 2015). The main idea

behind EDMF schemes is that the CBL consist of a few strong updraughts and surround-

ing turbulent air with weaker updraughts and various downdraughts. The transport of

mass and energy within CBL is then modelled as a combination of upward transport in-

side the strong updraught and a diffusion into the rest of CBL. While these schemes make

some restrictive assumptions about the distribution of updraughts and properties of the

air inside them (Sušelj et al., 2012), the question remains whether these assumptions fit

on the CBL in a developing CAO. This section present the distribution of updraught

evaluated by the methodology from 3.4.2 and 3.4.3.

A basic evaluation at model levels chosen (see figure 3.4) to represent distinctive

parts of the CBL (45 m, 170 m, 360 m, 520 m, 1480 m, 3250 m) reveals high spatial

variability in the vertical velocity w, potential temperature θ and humidity qv. Con-

tourplots of these variables show a high spread in the values of respective variables.

Generally speaking, their character is slightly more complicated than just a basic clas-

sification into updraughts and downdraughts. This is well shown in the figure 4.10 –
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while majority of columns are in a cluster of weak downdraughts, there are also number

of warm updraughts forming, though without any specific gap from the downdraught

cluster. With the deepening of CBL and the formation of large convective eddies, there

is further differentiation in downdraughts and updraughts. The spread in vertical ve-

locities of downdraughts increases. Updraughts also exhibit increased spread in vertical

wind velocities, together with an increase in the amount of weak cold updraughts.
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Figure 4.10: The joint distribution of [θ w] and [qv w] in the lower part of the bound-
ary layer in the early development of the CBL.

Although values of w′ θ′ and q̄v at constant levels approximately follow the normal

distribution in the SBL before the transition and at levels above the convection, the

assumption of normality does not hold for the developing CBL. The distribution of w at

altitudes just above the surface layer shows a peak in negative vertical velocities, with a

slow decline into negative velocities (see figure 4.11a). The distribution of w at altitudes

170 m and 360 m then shows distribution skewed towards negative values, however with

a long tail into positive numbers (see 4.11b), indicating a number of forming strong up-

draughts at a bottom of thermals.
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Figure 4.11: The comparison of histograms of vertical velocities at the bottom part of
ML and in the middle of ML
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An important quantity used in the EDMF schemes is Ew, the kinetic energy of strong

updraughts. Values of Ew at different altitudes are estimated from wind velocity vari-

ance (IFS IV, 2013, p.41) under the assumption of normality (using the 0.05 fraction

definition for the equation 3.9) and compared against values directly calculated from

wind velocity fields by formula 3.10. The results show that Ew is slightly overestimated

at the top of the surface layer (45 m) and underestimated at majority of other recording

levels. In the middle of the ML and in the sub-cloud layer, Ew is usually underestimated

by 20-25 % (see figure 4.12). These results pose some concerns for currently used EDMF

schemes. Even if the surface parametrization in a forecast model is well calibrated, Ew

in EDMF scheme would be underestimated or overestimated based on the altitude of

the model level where EDMF algorithm is initiated. The numerical results in this study

suggest that the lowest bias would be achieved for EDMF scheme initiated over the top

of surface layer at 135–170 m.
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Figure 4.12: The time development of the ratio of estimated value of kinetic energy of
updraughts to its modelled value.

Although the distribution of the potential temperature is not normal, the distribu-

tion of the potential temperature inside the strong updraughts at the bottom of ther-

mals (135 m) approximately follows normal distribution. The vast majority of strong

updraughts are warmer than the horizontal mean value. Moreover, all the warmest

gridpoints are inside strong updraughts (see figure 4.13). This finding agrees with lidar

observations of convective plumes that found a correlation between temperature and

vertical velocity (Gibert et al., 2007).

The joint distribution of [θ w] and [qv w] in the figure 4.10 clearly shows that

there is a majority of weaker updraughts and downdraughts followed by the a into more

prevalent updraughts that are usually warmer and more moist than the surrounding air.

The situation at the bottom of CuL is similar, however it changes inside the CuL. In

the upper part of CuL (altitude 1480 m), a significant portion of strong updraughts are
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Figure 4.13: The distribution of potential temperature in strong updraughts compared
to the distribution in all columns. Displayed as logarithmic histograms for an easier
reading. The red line — marks the distribution within strong updraughts while the
black line — marks the distribution for all point in the horizontal layer.

cold, indicating convective overshoots. Furthermore, the joint distribution [qv w] inside

CuL clearly shows the difference between clouds and the surrounding air. There are two

distant clusters of higher probability density that account for ambient air (lower cluster)

and clouds (upper cluster). In the ambient air, humidity is generally lower and both

weak updraughts and downdraughts are present. In comparison with that, clouds show

less variability in humidity, however there is a higher spread of vertical velocities and

a long tail into high vertical velocities that indicates penetrative updraughts. Further-

more, it agrees with a previous LES studied of convection (Schröter et al., 2005) that

found updraughts mostly in areas with high liquid water content.

Strong updraughts facilitate a significant portion of the transport of heat, moisture

and momentum. At the time 1 hour, strong updraughts account for more than 50% of

the kinematic heat flux budget at altitude 360 m and more than 100 % at 520 m (i.e. re-

maining columns are dominated by downward transport of heat). These results compare

well with the studies on resolved plumes in the boundary layer (Couvreux, 2010) that

estimated that resolved thermals account for 50–60% of heat transport bellow 0.6 zi. The

portion of kinematic moisture flux facilitated by strong updraughts is slightly smaller,

20–40 % . After second hour, this decreases to 20–60 % of the kinematic heat flux budget

and 20–30 % of the kinematic moisture flux (see figure 4.14). However, the contribution

to the kinematic heat flux later increases with a the development of larger convective

eddies forced by active cumuli clouds.

The evaluation of the distribution of updraughts and downdraughts in the modelled

CBL has shown that the assumption of normal distribution of velocities used in EDMF

leads to an underestimation of the kinetic energy of strong updraught in the middle

of the ML and in the sub-cloud layer. While strong updraught are always associated

with higher values of both potential temperature and specific humidity in the ML, the

situation changes within CuL. Strong updraughts still show increased values of specific
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humidity, however they do not exhibit any clear trend for the potential temperature.

Overall, strong updraught facilitate a very significant portion of the transport of heat

and moisture.
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Figure 4.14: The portion of vertical kinematic heat flux and kinematic moisture flux
facilitated by strong updraughts.

4.1.3 Variability on Domain and Subdomain level

This section focuses on a comparison of the control run with the other model runs with

the same setting that differed only in the random seed used in the model initialisation.

The evaluation of the control set allows to account for the inner variability of the model,

providing a vital reference scale for the assessment of the impact of heterogeneous surface

forcing.
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Figure 4.15: The comparison of profiles of variance in wind velocity and horizontal flux
of momentum at time 5 hour.
The symbol � marks the altitude of cloud base, the symbol 4 the altitude of cloud tops.
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The comparison of updraughts and domain averaged profiles shows that there are

generally very small differences in resulting development of the boundary layer between

the runs of the control set (see Appendix). There are slight differences in the modulus

of vertical wind velocity distributions, however they are relatively small and generally

diminish by the beginning of hour 2.

Although domain averaged profiles virtually do not differ for any model variable,

there are significant differences in the variance of wind velocity across the mean wind

direction at altitudes 1000–1500 m (see figure 4.15a). This phenomena is most likely

connected to the turbulent mixing of the ascending thermals with the air inside cumulus

clouds. While horizontal fluxes of momentum (see figure 4.15b) show a high spread in

the lower part of clouds, differences in vertical fluxes of the heat and moisture do not

vary by more than 5 %. While domain-averaged values of vertical kinematic fluxes show

relatively few differences, the question of variability on smaller scales needs to be inves-

tigated for the purpose of variability in subgrid fluxes in NWP models. Following the

methodology described in 3.4.5, instantaneous values of fluxes through subdomains of

the side size 4000 m are estimated.

Although the majority of subdomain profiles of the kinematic heat flux do not sig-

nificantly differ in the ML, there are strong variations in the CuL above, as figure 4.16

shows. There is a wide extent of min-max envelopes, however the 0.25–0.75 quantile

envelopes are relatively narrow for each run in the control set. Profiles of the kinematic

moisture flux show higher variability, both for min-max envelope and for 0.25–0.75 quan-

tile envelope. In the control run, the min-max envelope extends from 75 % to 120 % of

the values of the mean profile. control∼3, reaching from 50 % to 125 % of the values

of its mean profile. This increase in the variability is most likely linked to the cumulus

convection and gives some further implications for the variation in parametrization in

NWP on the 4 km grid. (see chapter 7).

Since subdomains in all runs from the ABL have developed from the same forcing

and initial conditions, the set of all subdomains provides a larger sample size for the es-

timation of the variability in fluxes of heat and moisture. Box-and-whisker diagram with

standard setting of the whiskers as 1.5 of the interquartile range (IQR) then displays the

spread in fluxes. The control set IQR and the whiskers allows to later asses the spread

in the subdomain values for cases with surface heterogeneity (see figure 3.12).

In summary, there are relatively few differences in the developing CBL on the scale

of the model domain. On a smaller scale, there are significant variations in the vertical

fluxes of heat and moisture. The variations in the kinematic moisture flux increase with

the height in the ML and slowly decrease within the CuL. On the other hand, variations

in kinematic heat flux are relatively low in the ML and reach higher values in the CuL.
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These sub-mesoscale variation in CBL properties should be taken into account in field

observations as well as in NWP models with a fine grid.
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Figure 4.16: The comparison of the kinematic fluxes in subdomains showing the min-max
envelope and the [0.25, 0.75] quantile envelope at 5 hour.

4.1.4 Variability in Flux Timeseries

In the nowcasting and customised forecast for some field missions, there are number of

NWP models run on relatively fine resolution and with relatively short time steps. While

the previous section has addressed the spatial variability in the CBL, the other question

is whether the vertical fluxes of heat, moisture and momentum exhibit variability on a

short time scales, as indicated in (Kang, 2009) and (LeMone et al., 2003).

While the time averaged model statistics and instantaneous outputs provide a valu-

able information about the vertical and horizontal structure of the developing CAO, they

do not allow us to fully assess the variability in fluxes with time. For this purpose, a

set of fine timeseries of vertical fluxes is recorded in the model. In addition to already

existing timeseries of the sensible and the latent heat flux at the surface, recordings

at other altitudes are added into the model, as described in 3.2.7. In this section, the

recorded timeseries are closely examined for the control set, with focus both on general

trends and a variability in values.

The kinematic heat flux and kinematic moisture flux close above the surface rise

steeply in the first hour after t0, followed by a stagnation later (see figure 4.17). Time-

series of the kinematic heat flux at the chosen altitudes in lower troposphere exhibit

rapid increase, followed by a stagnation after and a slight decrease. The exception are

the altitudes atop the Cul (1480 m) and above it (2080 m), where the displacement

of colder air from below and the entrainment of air into clouds lead to negative values
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of fluxes (for details, see 4.1.1). Although the kinematic moisture flux by the surface

stagnates during the hour 3, fluxes at other altitudes continue to rise due to venting by

active cumuli clouds and the entrainment of dry air from free troposphere above.
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Figure 4.17: Timeseries of the kinematic heat flux and the momentum flux at different
recording altitudes with the marks separating the segments.
Circles mark the passing of the internal boundary layer through each recording altitude and
squares mark the peak of the early abrupt growth in vertical fluxes.

All model runs in the control set follow the same trends at each chosen altitude,

however they differ in oscillations. Figure 4.17 clearly shows an abrupt rise in the kine-

matic flux of potential temperature during the propagation of IBL through the recording

altitude, followed by a weaker growth with oscillations. The same phenomena is demon-

strated by the kinematic momentum flux in the direction along. An abrupt growth in

downward flux is then followed by a later development with nearly-linear trend at ma-

jority of altitudes.

Dividing the timeseries onto disjunct segments – the ’stable’, ’IBL-propagation’ and

the ’CBL-regime’ (described in 3.4.5) marked in the figure 4.17, allows to evaluate mean

trends and oscillations. The ’IBL-propagation’ segment is mostly concerned with the

propagation of the rising IBL through the recording altitude. Mild oscillations at the
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beginning indicate propagation of waves from below, followed by an increase in oscilla-

tions indicating the turbulent entrainment and penetrative updraughts, and finally an

abrupt growth in flux values marks that the internal boundary layer has passed through

the altitude. The ’CBL-regime’ segment exhibits approximately constant or linear trends

with significant oscillations in values.

Due to the relatively short length of the ’IBL-propagation’ segment at some recording

altitudes, the further analysis applies just for the ’CBL-regime’ segment. Note: For the

convenience, values of the latent heat flux and sensible heat flux are used in the later

analysis instead of their kinematic forms.
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Figure 4.18: The comparison of smoothed flux timeseries and remaining residua

The trial of the smoothing of flux timeseries at all three recording altitudes inside

CBL for the segment 3 has revealed that the optimal results in the terms of sum of

residua and simple long-term trend is obtained for the smoothing lengths 400–600 s (for

details, see Appendix). Based on the trial of smoothing, later segments of flux time-

series were smoothed by the moving average of the length 500 s. The figure 4.18 shows

negligible differences between smoothed timeseries of LH flux of runs in the control set

as well as histograms of residua. The vast majority of residua (97.5 % probability) of

the latent heat flux falls into the interval [−5W,+6W ]. The figure 4.19 of the condi-

tional distribution p
(
rQLH (t)|rQLH (t−4t)

)
, shows that a new residuum is always likely

to attain values in a relative proximity of the value in the previous timestep, indicating

a high degree of autocorrelation.

The evaluation of the autocorrelation in residua of latent heat fluxes at different

altitudes (figure 4.20a) shows that autocorrelation of residua decline gradually within

few hundred seconds. The values of autocorrelation decrease bellow the threshold 0.3 for

time lag 200–300 s and below the threshold 0.1 for time lag 280-380 s. These values com-
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Figure 4.19: Conditional distribution of residua in time series of the latent heat flux.
Dashed lines mark 0.3 and 0.1 thresholds for autocorrelation values.

pare well with values of ML timescale t(ML)
? = 360 s during 3–5 hour. A slightly stronger

autocorrelation is attained at the upper part of the ML (520 m) and upper part of the

CuL (1480 m) in the majority of control runs. The decline in autocorrelation values is

steeper at the altitudes above ABL (2040 m). The situation for the SH flux is equivalent,

with values of autocorrelation declining to values bellow the threshold 0.3 for the time

lag 200–260 s for residua at altitudes within ABL and for the time lag 140-180 s for

residua at altitude 2040 m. The situation differs for the fluxes of momentum. There are

no obvious differences between the autocorrelation of residua at chosen altitudes. Au-

tocorrelation values decline below the threshold 0.3 for time lags between 200 s and 300 s.

Runs in the control set slightly differ in the autocorrelation in flux residua. The high-

est spread in autocorrelation values is reached for residua of the LH flux at the altitude

520 m. This is consistent with the previous results for spectra of flux timeseries and

most likely influenced by the variation in cumulus cloud base.
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Figure 4.20: The estimated autocorrelation in the residua of flux timeseries at different
recording altitudes. Dashed lines mark 0.3 and 0.1 thresholds for autocorrelation values.
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To summarize – The evaluation of flux timeseries indicates oscillations in the val-

ues in the vertical fluxes of SH, LH and momentum. These oscillation should be taken

into account when explaining the spread in measured values in observational studies.

Although some newcasting models might approximate them as a white noise, the high

degree of autocorrelation in residua suggests that autoregressive models should be ap-

plied in models with timesteps shorter than the ML timescale. The min-max envelope of

the control set is later employed as a reference frame for evaluating the impact of surface

heterogeneity on the flux development.

4.2 The Impact of the Surface Temperature Hetero-

geneity

While a MIZ consists of a mix of sea water and patches of various kinds of ice (Gupta

et al., 2014) of different temperatures, these surface heterogeneities are likely to influ-

ence the atmospheric conditions (Gryschka et al., 2008, p.5), including CAOs developing

over the MIZ (Pagowski and Moore, 2001). The presence of the MIZ prompts questions

whether surface heterogeneous forcing plays a significant role in the formation of the

CBL and whether its effects persist with time. Therefore, this part of the chapter deals

with an investigation of the impact of a heterogeneous modification of the surface on the

developing convection in CAO.

For the purpose of this study, the heterogeneity is modelled as positive and negative

spatial anomalies in the surface temperature. To represent different shapes of ice floats

and shapes of leads in the ice, three distinctive patterns of the surface temperature

heterogeneities were considered for simplicity (see figure 3.7):

• stripes of anomalies along the direction of the synoptic scale wind,

• stripes of anomalies across the direction of the synoptic scale wind,

• anomalies following a chessboard pattern.

These surface conditions were implemented in LEM as further described in the method-

ology in 3.3.2 and number of model runs were set for each type with a different setting

of the temperature scale of the positive anomaly (δ(h)T ) and the size of the building

block (d(h)) in the pattern. Results of model runs with different setting of heterogeneous

surface temperature are compared against each other and against the control set.

Although the majority of the model runs used the same setting of the grid as the

control set, a few runs with a smaller scale heterogeneity required the increased horizon-

tal resolution (see model setting in 3.1). The increased resolution also allows to better
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Figure 4.21: An example of the secondary circulation induced by heterogeneity ’along’,
of the pattern size d(h) = 800 m and the temperature scale δ(h)T = 3 K.
Green circles mark examples of forced eddies that are part of the secondary circulation.

demonstrate the secondary circulation pattern inside the ML, which is caused by the

surface heterogeneous forcing (Gryschka et al., 2008) in the early stages of the growth

of CBL (Liu et al., 2011). Figure 4.21 displays an example of the secondary circulation

with forced eddies up to size 400 m.

4.2.1 Comparison of Types of Heterogeneity

This section provides a comparison of 4 runs with a different surface conditions — the

control run and runs with repeating heterogeneous surface patterns of types along, across

and chessboard. In each run with heterogeneity, the block size was set d(h) = 1600 m

and the temperature scale to relatively high δ(h)T = 7 K.

In the model runs with a spatial heterogeneity in the surface temperature, a clear

impact on the structure of near surface eddies and spatial distribution of the surface

fluxes of the sensible heat and latent heat is observed. The spatial distribution of fluxes

clearly follows the pattern of underlying surface temperature (see figure 4.22). The sur-

face pattern is generally more prevalent in the spatial distribution of the surface LH flux

than the surface SH flux.

Although the differences in surface fluxes remain high during the further development

of the ML, the direct influence of the surface heterogeneity on the structure of ML mostly
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Figure 4.22: The latent heat flux over the heterogeneous surface - a comparison of values
of fluxes in the model runs with temperature anomalies in directions along the large scale
wind and across it. The underlying patter of the surface heterogeneity shown bellow.

disappears. The differences in the spatial structure of convective eddies and the varia-

tions in air temperature diminish during the first three hours after t0 (figure 4.23). This

result stands in a contrast with the previous study of the convection over heterogeneous

surface (Maronga et al., 2014) that found a persistent heterogeneity-forced pattern up

to altitude 100–200 m. This would however agree with the concept of blending height

– i.e. that the IBL above the temperature anomaly at some altitude blends with the

surrounding air (Sühring and Raasch, 2013). However, study of Mahrt (2000) suggested

that the IBL often does not develop. However, our data are not sufficient for the evalu-

ation of this hypothesis.

Furthermore, while the vertical concentration of passive tracer flux in the first three

hours varies strongly between the model runs, by the fourth hour the passive tracer

profiles reach nearly same values (see figure 4.25a) in all four runs. The vertical profiles

of variance in the velocity component across the mean wind and vertical velocity attain

similar values earlier, at the end of the second hour (see figure 4.25b) during the increase

in cloud turbulence and the deepening of clouds. This would imply that the turbulent

mixing and the effect of latent heat release in developing clouds are more deciding factors
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Figure 4.23: The contours of potential temperature over the heterogeneous surface
’across’ at altitude 45 m - comparison of the horizontal structure at times 0.75 hour
and 3 hour

for the structure of maturing ML than the distribution of surface temperature forcing.

Similar results were reached in other studies. Mahrt (2000) suggested that the effect of

heterogeneity is decreased with increasing CBL depth. However this hypothesis is not

fully suggested by our results, since there was only minor increase in the CBL depth

between 2 hour and 3 hour (from 1400 to 1550 m, see figure 4.6).

The analysis of the updraughts and downdraughts finds clear differences between the

model runs in the early development of the CBL. The quadrant analysis in figure 4.24

demonstrate the differences in updraughts and downdraughts over a heterogeneous sur-

face. While the control run and the run with ’chessboard’ heterogeneity are dominated

by warm updraught and cold updraughts, there are also some warm downdraught and

cold updraughts. Run ’along’ and ’across’ differ, as the exhibit a significant amount

of warm downdraughts. As the study of Sullivan (1998) shows, these downdraught are

mostly caused by the entrainment of the air towards the ground. This suggest that might

caused an increased entrainment at the top of CBL and therefore faster CBL growth.

However, a further comparison with the results of Sullivan (1998) is not possible since

they did not take into account moist process. Nevertheless, these differences are rela-

tively short-lived. They virtually disappear by the third hour after t0 (compare the left

and right column in figure 4.24). Results show that the differences between model runs

diminish with the thickening of the CuL.

Each type of heterogeneity affects the forming ML in a slightly different way. Gen-

erally speaking, the orientation of the temperature anomalies along the mean wind di-

rection facilitate a formation of moist updraughts, while the anomalies oriented across

the wind allow an increased flow of the drier air towards the surface. These differences

diminish with time as the ML is deepens.
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Figure 4.24: Joint distribution of vertical wind velocity and potential temperature per-
turbation at altitude 170 m over different types of heterogeneous surface at 0.75 hour
(left column) and at 2 hour (right column)
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Figure 4.25: The comparison of profiles of mean vertical concentration of the passive
tracer 1 at different times and the comparison of profiles of wind velocity along the
mean wind direction at different times. Full lines (–) show averaged profiles for 0.75-1
hour and dashed lines (- -) show averaged profiles for 2-3 hours.
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Figure 4.26: The timeseries of the sensible
hat flux (−−) and the latent heat flux (· · · )
at the surface for runs with different type of
heterogeneity.

While there are clear differences in spa-

tial distribution of surface fluxes, domain

averaged values follows the same develop-

ment for all three types of heterogeneous

pattern (see figure 4.26). For the model

runs with the same setting of d(h) and

δ(h)θ, initial abrupt growth of the surface

fluxes peaks between 2 hour and 3 hour,

followed by a stagnation and even a slight

decrease in the SH flux in later hours. Val-

ues of the SH flux for the case ’along’

are by up to 15 % higher than in other

cases until 3 hour. The LH flux is also

higher in the case ’along’ until the time

3 hour. Differences in fluxes later slightly

decrease — they do not exceed 7 % after

3 hour. Fluxes in case ’chessboard’ later

reach lower values than in the control run.

There are noticeable differences in the early formation of clouds, as figure 4.27 shows.

In the ’chessboard’ case, scattered glaciated clouds appear at altitudes of 200–600 m in

the first half hour. This phenomenon is to lesser extend observed in the case of ’along’

anomalies but is virtually non-existent in the ’across’ case, most likely owning to the

increased mixing of warmer and colder air due to the direction of the anomalies.
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Figure 4.27: The comparison of vertical profiles of the mean value of cloud water content
at 1.5–1.75 hour and 2–3 hour. Dashed line (−−) marks liquid cloud water, dotted line (· · ·
) ice cloud water.
The symbol � marks the altitude of cloud base, the symbol 4 the altitude of cloud tops.

In the early development of clouds, the anomalies in the direction of the mean wind

pose a direct influence on a pattern in cloud formation, as demonstrated by figure 4.28.

This clear pattern of cloud streets disappears during the third hour as clouds grow larger

and more latent heat is released inside them (see figure 4.29). At the end of the fifth

hour, only the case ’along’ shows cloud structures with a pattern different from other

runs.
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Figure 4.28: Cloud patterns over heterogeneous surface at 1.75 hour. The blue lines
highlight the organisation of cloud streets that develop in the case of heterogeneity
’along’.

Although the direct influence of surface heterogeneities on the ML structure vanishes

in the later hours of the development of the convection, there are still significant differ-
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Figure 4.29: Profiles of the kinematic heat flux, the kinematic moisture flux and the
kinematic mometnum flux for runs with different type of heterogeneity.
Full lines (–) show averaged profiles for 0.75-1 hour, whiled dashed and dotted lines
show averaged profiles for 2-3 hours. The symbol � marks the altitude of cloud base,
the symbol 4 the altitude of cloud tops.

ences in the kinematic heat flux in the CuL. Figure 4.29 further shows that there are

moderate differences in the moisture flux both in the ML and the CuL, with relative

differences between the ’along’ and ’control’ up to 10 % in the lower part of clouds.

This likely indicates that venting of the ML by active cumuli clouds differs between the

cases. At the same time, differences in the potential temperature flux are much smaller,

practically negligible.

The development of momentum fluxes is slightly more complicated. In the middle

of the first hour, momentum fluxes are generally stronger in both cases with stripe-like

heterogeneities. As the ML deepens and larger convective eddies appear, momentum

fluxes in the ’across’ case are exceeded by both ’chessboard’ and ’control’. The differ-

ences between the momentum fluxes tend to decrease. During the fifth hour, momentum

fluxes in each of three heterogeneous cases vary from the control by less than 10 %.
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The comparison of the subdomains shows relatively small differences between the

model runs in terms of the kinematic heat flux. In the early development of the CBL,

all three model runs show a wide extent of the min-max envelopes. By the 3rd hour, the

differences in the ML diminish (see figure 4.30a), and all three cases show an increased

variability in the CuL, mostly at altitudes of 820 m.

However there are number of differences in the kinematic flux of moisture. The ’along’

case shows higher values of maxima of subdomains than the other cases. Despite that,

the full width of the min-max envelope is higher in the ’across’ case. However, it does

not significantly exceeds the width of the whisker span of the control set, apart for the

case ’along’ (see figure 4.30b). Furthermore, the [0.25, 0.75] quantile envelopes remain

similar for all three cases. These results indicate that stripes in the direction ’along’

allow the formation of large eddies that can locally result in a higher transport of the

moisture, while the stripes in the direction ’across’ generally lead to a higher variability

in moisture transport.

In summary, heterogeneous surface patterns play a significant role in the CBL devel-

opment. Each type of the surface pattern leads to a slightly different structure of eddies

during the formation of the ML and the first hour of its thickening. The distribution of

updraughts and forming clouds also show a clear influence of the surface pattern. These

differences later diminish, most likely due to the effect of the forcing by active cloud

cores and the entrainment in the CuL.
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Figure 4.30: Comparison of min-max envelops of the kinematic heat flux and the kine-
matic moisture flux for runs with different type of heterogeneity at 3 hour. The shaded
areas mark the IQR (light purple) and span (light blue) of the control set.
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4.2.2 Impact of Scaling of Heterogeneity

Due to a number of ongoing processes in sea-ice (Meylan et al., 1997), it would be too

simplifying to model temperature anomalies in MIZ just as one chosen difference in the

surface temperature. Therefore, this section shows how adjustment of the temperature

scale δ(h)T of anomalies modify the development of ABL in a specific way for each het-

erogeneity type.

The effect of δ(h)T = 3 K heterogeneities ’along’ is significantly less profound than

for δ(h)T = 7 K. The higher temperature scale leads to an earlier formation of clouds

(see figure 4.31b), however further growth of clouds is slower than in the control case.

All three model runs reach same amounts of cloud liquid water content as the control

run by the 4th hour. Similarly, the variance in the wind velocity attains higher values

for stronger surface temperature heterogeneities, however these differences mostly van-

ish by the end of 3 hour with the thickening of CuL. Figures for other wind variance

components are shown in the Appendix.
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Figure 4.31: The comparison of averaged profiles of cloud water mixing ratios for ’along’
heterogeneity with different temperature scales and the velocity variance at same times.
Full lines (–) show averaged profiles for 0.75-1 hour and dashed-dotted lines (− · −·)
show averaged profiles for 2-3 hour. The symbol � marks the altitude of cloud base, the
symbol 4 the altitude of cloud tops.

In contrast, increasing the δ(h)T of stripes ’across’ the mean wind direction weak-

ens the turbulence in growing ML. The variance in both horizontal components of wind

velocity is weaker then in the control run. While the runs with lower heterogeneities

converge to the control at the beginning of the second hour, the run with δ(h)T = 7 K

maintains lower values until the third hour of model runs. The effect of the scaling of the

heterogeneity ’across’ on updraught distribution is also significant in the estimation of

kinetic energy of strong updraught. During the rapid growth of ML and development of
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CuL, the Ew in δ(h)T = 7 K is less underestimated than in other cases (see figure 4.32).

This

Altering the temperature scale of the ’chessboard’ heterogeneous pattern leads

mainly to differences in the early growth of the ML. Profiles of the vertical flux of

passive tracers indicate that the IBL in model runs with δ(h)T = 7 K grows up to 750 m

during the second half of the first hour, exceeding the runs with weaker heterogeneities

by more than 40 %. However, this difference in the IBL height is relatively short-lived.

As the depth of ML increases, large temperature differences generally act against the

formation of larger eddies. This is demonstrated by profiles of wind variances – model

runs with strong surface heterogeneity maintain slightly higher velocity variances in the

component along the mean wind direction but a lower kinematic moisture flux at the end

of the first hour. The differences between the runs with different temperature scales of

chessboard heterogeneity and the control run decrease below 5 % during the second hour.
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Figure 4.32: The time development of the ratio of estimated values of kinetic energy of
updraughts to its modelled values at altitude 520 in runs with heterogeneity

The coarse study of vertical fluxes reveals an increased spread in kinematic fluxes

in subdomains. Although estimated kinematic fluxes of potential temperature are after

the hour 1 found within the control set span, estimated fluxes of moisture often exceed

the control set span even during the 3–4 hour. The effect is strongest for ’along’. While

all estimated subdomain fluxes for case δ(h)T = 3 K are within the control range, the

situation in the case δ(h)T = 7 K strongly differs. More than 25 % of the subdomain

fluxes between the 1 hour and 3 hour exceed the control range in ML (see figure 4.33).

Generally speaking, the adjustment of the temperature scale of the heterogeneity

δ(h)T does not change the structure of eddies, but rather modifies how strong is the

effect of the forcing. Higher temperature scale of the heterogeneity ’along’ leads to a

faster growth of the CBL in the early hours after transition, while the heterogeneity

’chessboard’ leads to relatively negligible differences from the control run.
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Figure 4.33: The comparison of estimated kinematic moisture fluxes in subdomains for
scaled heterogeneity ’along’ against the control set at 1.5 hour and 3 hours.

4.2.3 Impact of the Size of Heterogeneity

The size of ice floats and leads in sea-ice sheet can vary in scales from few metres to few

kilometres (Esau, 2007) (Inoue et al., 2005b). Due to ongoing processes of freezing and

melting as well as dynamics of ice sheet, these properties can often change. Therefore

it was reasonable to model runs with a different spatial extent of surface temperature

anomalies. While the previous section has addressed the impact of adjustments in the

temperature scale, this section is going to show how is the developing CBL affected by

adjusting d(h), the size of the blocks of the heterogeneous pattern.

Increasing d(h) for the ’chessboard’ type heterogeneity to 3200 m allows a formation

of clear cloud streets during 2-3 hour. The larger size of anomalies enables the formation

of forced circulation. However, the clear pattern in clouds disappears at the end of the

3rd hour (see figure 4.34). This generally agrees with the findings of Gryschka et al.

(2008) that forced rolls and free rolls might coexist. There are also significant differences

in horizontal velocity variance that continue to grow until 2–3 hour (see figure 4.35 ).

Later decrease in these differences follows. By the time 5 hour, vertical variance in the

run with a large ’chessboard’ heterogeneity does not differ from the control by more than

5 %.

Decreasing the d(h) in the case ’along’, i.e. decreasing the width of stripes of positive

and negative anomalies, generally leads to an increased mixing near the surface and a

quick formation of a shallow ML. Although the mass flux and the flux of passive tracer

are in the first half hour after t0 highest in the case with the fine heterogeneity pattern,
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Figure 4.34: The comparison of cloud top altitudes at time 1.75 hour and 3 hour over
the heterogeneous surface ’chessboard’, d(h) = 3200 m

d(h) = 400 m, they are surpassed by respective fluxes in the run with d(h) = 1600 m.

The effect on the vertical fluxes of moisture is negligible from 1 hour onwards (see 4.36).

With the deepening of the ML, the size of large convective eddies soon exceeds the block

size of the fine heterogeneus pattern. As a consequence, runs with fine heterogeneity do

not exhibit any clear impact on cloud patterns.
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Figure 4.35: Profiles of variance in horizontal components of wind velocity for different
sizes of ’chessboard’ heterogeneity at the time 2 hour.
Full lines (–) show averaged profiles for 0.75-1 hour and dashed lines (- -) show averaged profiles
for 2-3 hours. The symbol � marks the altitude of cloud base, the symbol 4 the altitude of
cloud tops.
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Increasing the d(h) for heterogeneity ’along’ leads to even more distinct impact. The

first obvious difference is an earlier formation of clouds, with some of them appearing

close to surface, effectively within the surface layer. Although majority of cloud bases

are located at altitudes 580 m or higher, some scattered glaciated clouds form as low as

50–200 m over the surface. This phenomena is clearly driven by near-surface plumes,

since it was not indicated for any of the control set runs. Forming clouds follow a street-

like pattern forced by positive surface anomalies. With the growth of the CuL and the

increased cloud-top forcing, lines of clouds in the case d(h) = 1600 m veer off the original

direction and start connecting into wider cloud streets (see figure 4.37). It is likely that

these wider cloud streets would later transform into open cells, which are commonly

found downwind in CAO cases (Atkinson and Zhang, 1996, pp.404,410).

For a lower values of d(h), street-like patterns effectively disappear once the height of

IBL exceeds the size of heterogeneity. Furthermore, single active clouds grow to extend

of 2–4 x size of heterogeneity. On contrary, a larger size of the heterogeneity allows

to maintain patterns aligned with the mean wind. The model run with d(h) = 3200 m

demonstrates this phenomena (see figure 4.38). Nevertheless, it is clearly shown that

the cloud streets do not follow all the pattern of the surface heterogenity anymore. This

is mostly due to fact that the growing width of convective rolls (Atkinson and Zhang,

1996) has exceeded the width of the heterogeneous pattern.
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Figure 4.36: The impact of fine heterogeneous forcing of the type ’along’ on the profiles
of wind variances and the kinematic moisture flux averaged over 1–1.25 hour.
Full lines (–) show averaged profiles for 0.75-1 hour and dotted lines (· · ·) show averaged profiles
for 2-3 hours. The symbol � marks the altitude of cloud base, the symbol 4 the altitude of
cloud tops.
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While the estimated depth of ML is zi = 600−700 m during 3–5 hour, the total ABL

height is calculated to be zbl = 1600 − 1800 m in the same time period. Relative ratios

of surface heterogeneities to ML depth and total ABL height are then

4 <
d(h)

zi
< 6, 1.5 <

d(h)

zbl

< 2,

which according to the previous study (Patton et al., 2005, pp.2088-89) is the case when

the effect of surface heterogeneous forcing is the strongest.

Larger size of anomalies also affect the organisation of updraughts. Although the

updraughts with velocities over 1 ms−1 occupy smaller fraction of the area in the middle

of ML, updraughts are generally warmer and more moist, leading to higher SH and LH

flux. Despite the different spatial organisation of updraughts, there are (surprisingly)

no clear differences in the overall statistical distribution of vertical wind velocities in the

surface layer.

Generally speaking, an increase in d(h), the size of the blocks of the heterogeneous

pattern, leads not only to a stronger impact of temperature anomalies but also to a

modification of the structure of the CBL. In case of heterogeneous surface temperature

pattern ’along’ of the large size (3200m), the pattern of cloud streets is maintained with-

out significant changes in the direction or the width of these streets. Decreasing the d(h)

generally leads to an increased mixing during the early development of CBL and a quick

formation of a shallow ML.
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Figure 4.37: The comparison of cloud top altitudes at times 1.75 hour and 5 hour over
the heterogeneous surface ’along’, d(h) = 3200 m
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Figure 4.38: The comparison of cloud top altitudes at times 1.75 hour and 5 hour over
the heterogeneous surface ’along’, d(h) = 1600 m

4.2.4 Diminishing Surface Heterogeneities

Since the main motivation for the introduction of spatial heterogeneity in surface tem-

peratures is to model conditions over a MIZ, it is realistic to assume that some short

MIZs (Brümmer, 2002, p.111) are followed by open sea with small spatial differences in

surface temperatures. This case is pragmatically modelled as a heterogeneous pattern

that diminishes with time (see figure 3.6). The scale of anomalies starts to decrease after

0.5 hour and reaches zero by 1 hour instead of staying constant like in previous cases

(for details, see the LEM setting in 3.3.2 and the Appendix). To investigate the impact

of these relatively short-lived heterogeneities, model runs runs with the diminishing het-

erogeneity (’diminish’) setting are compared against the model runs where the surface

heterogeneity persisted (’per’).

The impact of heterogeneities ’across’ and ’chessboard’ is relatively minor. Both

cases lead to an increased mixing in comparison with the control during the first hour,

however their effects disappear together with the forcing.

The ABL modified by a temperature heterogeneity ’along’ the direction of the mean

wind maintains its character significantly longer, for at least one hour after the surface

heterogeneity diminishes The velocity variance and the kinematic moisture flux in the

model run with the diminishing heterogeneity (’diminish:along’) differs strongly from

the control run even at the end of 2nd hour. Figure 4.39 shows that the values are actu-

ally closer to values of the run with the persistent heterogeneity (per:along). However,

’diminish:along’ values are closer to the control? run after 3 hour.
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In essence, a short-lived heterogeneity in surface temperature during the formation

of CBL can have impact on the properties of CBL downstream. The effect of the di-

minishing heterogeneity of the type ’along’ is maintained for at least one hour after the

heterogeneity disappears.
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Figure 4.39: The impact of the diminishing heterogeneus forcing on the profiles of wind
variances and the kinematic moisture flux. Full lines (–) show averaged profiles for 0.75-1
hour and dash-dotted lines (− ·−·) show averaged profiles for 2-3 hours. The symbol � marks
the altitude of cloud base, the symbol 4 the altitude of cloud tops.

4.2.5 Timeseries of Fluxes

It has been stressed in the introduction that one of the main goals of this study is to

estimate the impact of uncertainty in conditions on the distribution of vertical fluxes of

the momentum, the latent heat and the sensible heat different altitudes in the boundary

layer and the free troposphere above. The evaluation of flux timeseries follows the same

path as in 4.1.4.

While the recorded timeseries (see figure 4.40) do not vary in the general tendency of

the development, there are differences in oscillations. Apparently, the ’across’ case shows

slightly larger oscillations in flux values. However, normalised power spectra follow the

same slope as in other cases (for details, see Appendix) Larger fluctuations clearly ap-

pear in histograms of residua — the ’across’ case exhibits a higher spread in residua,

particularly at altitudes 520 m and 1480 m (see figure 4.41). In all three cases, the

distributions of residua are mostly symmetrical around 0, with the exception of residua

of the LH flux at the altitude 800 m in ’along’ and ’chessboard’ cases that shows a longer

tail into negative values.
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Figure 4.40: The comparison of the timeseries of the SH flux and wind stress at the
altitude 360 m between the runs with different type of heterogeneity.

While results indicate that the oscillation in fluxes of the latent heat, the sensible

heat and the wind stress depends on the type of the heterogeneity, the character of the

conditional distribution of fluxes is similar to the control. New values of residua are

located with a high probability close to values from the previous step.

Autocorrelation in the timeseries of LH and SH fluxes at altitudes inside the ABL

are generally stronger in the ’across’ case. The autocorrelation values decrease below the

threshold 0.3 for the time lags between 280 s and 300 s. This stands in the contrast to

’along’ case where autocorrelation values decrease below the threshold 0.3 for time lags

of 150–200 s (see 4.43).

(a) (b)

Figure 4.41: The comparison histograms of residua of wind stress at altitude 360 m.
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Figure 4.42: The comparison of the autocorrelation of wind stress residua at altitudes
45 m and 520 m for runs with different heterogeneity.

The autocorrelation in the timeseries of wind stress by the surface is also stronger

for ’across’ case. At higher altitudes in the ABL, autocorrelation is enclosed within the

control set min-max envelope (see figure 4.42). In the free atmosphere, autocorrelation

values reached for both ’across’ and ’chessboard’ case are similar as for the control run,

however the autocorrelation in the ’along’ case is generally weaker.

The temperature and the size scaling of heterogeneities further modify the nature of

oscillations in vertical fluxes. Increasing the d(h) usually affects the spread in residua of

momentum fluxes. In the case ’chessboard’, it also leads to a stronger autocorrelation

in momentum flux residua at altitudes within the ML.
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Figure 4.43: The comparison of the autocorrelation in the segment 3 of SH and LH flux
residua at altitude 170 m for runs with different heterogeneity.
The blue shading indicates the min-max envelope of the control set.

121



CHAPTER 4. IDEALISED CAO WITH SURFACE HETEROGENEITY 4.3

Increasing the d(h) for heterogeneity ’along’ leads to generally weaker autocorrelation

in the sensible and latent heat flux. On the other hand, stronger autocorrelation is calcu-

lated for the wind stress at 520 m and 1480 m (see figure 4.44). These are the altitudes

corresponding to the sub-cloud layer and cloud tops, respectively. Since most of the

wind shear is confined to the top part of clouds (see 4.1.1), the stronger autocorrelation

in the wind stress at this altitude most likely indicates that larger heterogeneities lead

to slower fluctuation in the shear-generated momentum flux.

Overall, the heterogeneity in surface temperatures effects the oscillation in vertical

fluxes of LH, SH and momentum in the CBL and above it. Similarly to other studies,

there was no significant gap in the spectra of flux timeseries (Kang, 2009, pp.77-78).

Model runs with the heterogeneity ’across’ exhibit stronger autocorrelation in flux time-

series residua. Increasing the size of heterogeneity ’along’ can lead to a slower fluctuation

in shear and cloud convection generated momentum flux. This impact of surface hetero-

geneity on oscillation in fluxes should be taken into account both in field measurements

as well as in NWP with short timesteps.
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Figure 4.44: A comparison of autocorrelation in the later segment of LH flux and wind
stress residua at altitude 1480 m for different sizes of the heterogeneity ’along’.

4.3 Discussion

While the sensitivity testing shows that increasing the horizontal resolution does not

lead to significant changes in model results apart from shapes of clouds 3.5, majority of

cases used the control setting of the horizontal resolution. However, there was a seri-

ous concern about modelling the heterogeneous surface pattern of the size d(h) smaller

than 1600 m. In the control setting of the resolution, positive anomalies in each block

were represented just by a few gridpoints. While it was not clear whether the impact
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of heterogeneous surface heating would be properly resolved, additional runs with the

increased horizontal resolution (40 m) were set as well (see description in 3.1) Due to

memory constrains, the domain size in these runs was necessary smaller With the width

of the domain set in that case to 6 km, which is 3-5 times the width of a developed

cumulus cloud (Craig and Cho, 1988) (Jiang and Cotton, 2000), it was deemed unrea-

sonable to use these runs for the analysis of gravity waves and the analysis of subdomain

variability. Dividing the domain into subdomains would result in a cut-off issues as in

some subdomains would be just a part of cumulus cloud while in some other would be a

few cumuli clouds.

The background reading for this study has also revealed some noticeable limitations

in the previous studies of the ABL over a heterogeneous surface. Despite wide variety of

scenarios and model setting, previous studies usually focused just on one specific regular

shape of heterogeneity (Kang and Lenschow, 2014) or employed some randomly gen-

erated patters of surface patches (Maronga et al., 2014). Furthermore, the majority of

studies have usually focused on the transport in stable or near-neutral layer (Esau, 2007).

Although there have been also studies of the heterogeneous surface during CAO, they

have modelled surface heterogeneity in a slightly different way. Often, the prescribed

property of the surface was not temperature but surface SH and LH fluxes. This kind

of setting used in (Avissar and Schmidt, 1998), is likely to rise some specific issues.

1. Heterogeneous heating cause significant differences in buoyancy of air parcels, gen-

erating secondary circulation within CBL.

2. Secondary circulation alters the spatial distribution of wind velocities by the sur-

face.

3. Different wind velocity leads to different conditions for the heat and moisture

transport from the surface to the ABL

If the surface SH and LH fluxes are already prescribed in the model surface condi-

tions, then the feedback of the secondary circulations is not properly represented. On

the other hand, if the surface conditions are characterised by surface temperature and

humidity, the model evaluates the fluxes based on relations for the surface transport.

Therefore, this study uses model setting where the surface heterogeneity is prescribed as

a difference in the surface temperature.

The regular pattern of surface anomalies in number of previous studies usually con-

sisted of stripes in the direction of the wind or across it. The other common choice

was a regular wave pattern in anomalies. In some studies it was two-dimensional wave

pattern (Kang and Davis, 2008), in others it was a wave in one dimension only (Kang

and Lenschow, 2014), either in the direction along the mean wind or across it. Values of
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anomalies followed the sinus function in one direction and remained constant in the other

direction. The main advantage of this set-up was that it allowed to propose a simple

analytical formula for the circulation forced by fluxes. However, it was generally used

in the cases where the scale of anomaly was same as the size of convective eddies. The

conflict between the size of convective rolls and the size of surface forcing was usually not

addressed. Furthermore, in scenarios that started with initially unstable boundary layer,

the model essentialy represented the semi-stationary CBL. This presents two moderate

shortcomings:

• The ratio of the wavelength of surface anomalies to ABL height is nearly constant.

• The effect of the heterogenous heating on the formation of shallow CBL and its

subsequent growth is not explored. The possibility that heterogeneous pattern

determines the shape of the early convective eddied is practically omitted.

While some studies noted that surface fluxes decrease with increased number of het-

erogeneous patches (Courault et al., 2007), our study shows that it happens in case of

stripes ’across’ and ’chessboard’. On the other hand, in case of stripes ’along’, the fluxes

are generally higher.

Although the regular chessboard-like or stripe-like patterns of the temperature anoma-

lies might not represent the real shapes and distribution of sea ice and areas of open water

in the MIZ (Meylan et al., 1997) , they serve as a basic approximation of heterogeneous

structures. Although there have been various observational studies of the distribution of

sizes of ice floats (Inoue et al., 2004) and (Gupta et al., 2014), they have unfortunately

not provided guidelines for the respective shapes and widths of areas of water between

the floats. There has been also an argument that the boundary layer fluxes are much

more dependent on the amount of open water (Inoue et al., 2005b), however other case

study (Cooper et al., 2000) showed that surface fluxes over partially ice-covered sea are

not negligible. Nevertheless, the pattern can be easily modified in the upcoming years

when comprehensive observations of MIZ morphology and variation in surface tempera-

tures become available.

The other factor that might have an impact on the development of the CBL is the

setting of microphysical properties used by the model. The intercomparison of various

LES of the Arctic mixed-phase clouds (Ovchinnikov et al., 2014) showed that the ice

particle size can play a significant role. While the setting of microphysics in the current

version of the LEM is limited, there is a strong incentive for improved aerosol modelling

in MONC, the successor software package to LEM. (NERC, 2014)

While some studies of cold-air outbreak show that cloud street tilt sideways in a sim-

ilar way as in observations (Kristovich, 1993), this phenomena is in this study indicated
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only in the case ’along’. The fact that LEM uses periodic boundaries is likely to be the

culprit. Once the direction of the streets slightly tilts from the direction parallel to axis

y, the clouds leaving the domain downwind appears at the upwind side of the domain

at different place than the previous beginning of the street, possibly causing subsequent

merging of cloud streets.

4.4 Conclusion and Outputs

The study based on idealised Large Eddy Simulation of a simple cold air outbreak scenar-

ios assessed the variability in the development of the convective boundary layer. While

number of previous studies of heterogeneous surface forcing, for example (Avissar and

Schmidt, 1998) and (Heerwarden et al., 2014), addressed the impact of a chosen type of

heterogeneity on the growth of convective boundary layer, this study has taken a differ-

ent path.

The main novel part of this study is that it focused on the comparison of different

patterns of the surface heterogeneity. The other novel part of this study is the analy-

sis of the variability in the fluxes of heat and moisture at different altitudes above the

surface. With these study aims (1.4), we introduced three distinctive types of hetero-

geneous pattern in surface temperatures and executed scenarios starting with initially

stable stratified atmospheric boundary layer. The impact of the chosen patterns of sur-

face heterogeneity in surface temperatures was then analysed and compared with the

variability in the ensemble of model runs with homogeneous conditions.

In the agreement with many other studies such as (Kang et al., 2007), (Maronga

et al., 2014) or (Beyrich and Mengelkamp, 2006), the heterogeneous surface conditions

modify the properties of the atmospheric boundary layer. The results are consistent

with the findings of studies on surface inhomogeneity in the MIZ. The surface inhomo-

geneities affect the vertical structure of the ABL (Lüpkes et al., 2008) and contribute

to the formation of convective rolls (Gryschka and Raasch, 2005). The most significant

is the impact on the structure of the growing convective boundary layer in the first two

hours over the warm surface. During the formation of the mixed boundary layer and the

first hour of its thickening, each type of surface heterogeneity leads to a slightly different

structure of eddies and a different distribution of updraughts and clouds.

Surface temperature heterogeneities play an important role in the formation of con-

vective rolls and cloud streets. Model runs with a different setting of the heterogeneous

forcing vary from the control run, however domain averaged statistics show relatively

small differences in vertical profiles of potential temperature and vertical fluxes. This
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stand in a good agreement with other studies (Cheinet and Siebesma, 2009), which con-

cluded that vertical profiles behave accordingly to mixed layer similarity theory (Stull,

1988, pp.450-456).

In the later development of the convection, differences between the model runs with

surface heterogeneities tend to diminish. The thickening of the mixed-phase cloud layer

leads to positive cloud forcing, recognised also in other studies (Zuidema et al., 2005).

The formation of active cumuli cores leads to an increase in the turbulent kinetic energy.

This top-driven forcing contributes to the decline in the impact of the surface forcing.

In less than 4 hour after t0, there are no significant qualitative differences between the

behaviour of model runs with different setting of heterogeneity. From the quantitative

point of view, the differences between the model runs are relatively small yet not neg-

ligible. Values of fluxes and horizontally averaged prognostic variables do not differ by

more than 7 % between the model runs.

The question of the scaling of the heterogeneity was investigated. On one hand,

adjusting the temperature scale of the heterogeneity results in a weaker or a stronger

effect of the heterogeneous pattern. On the other hand, adjusting the spatial extent

of heterogeneity may lead to qualitative differences. While some studies claimed that

larger size of surface anomalies lead to stronger surface fluxes (Kang and Davis, 2008),

and increasing number of surface patches lead to lower surface fluxes (Courault et al.,

2007), findings of our study indicates that the effect depends on the type of heterogeneity.

In case of the heterogeneity type with the stripes along the mean wind direction, pattern

of the size d(h) = 3200 m not only influences the formation of cloud streets, but also

allows to maintain the organisation of cloud streets along the mean wind.

The study has also taken into account different widths of marginal ice zones (Claussen,

1991). The role of short-lived surface heterogeneities in a sea-ice marginal zone is not

negligible. Heterogeneous surface forcing that was applied in the first hour of the CBL

development affects the structure of the CBL for the following 1–2 hours. This represents

the distance of 18–30 km downwind of the edge of ice. Although this distance might

seem relatively short, it is likely the area where field observations of the boundary layer

over marginal sea-ice zone are taking place.

The evaluation of updraughts showed that strong updraughts facilitate a significant

portion of the heat and moisture transport. Other conclusions about the structure of

updraughts and downdraughts in a developing convective boundary layer follows:

• The distribution of the vertical velocities in a developing ML shows a heavier tail

into positive values (4.1.2).

• The vertical wind velocity distribution in the ML is generally not symmetric,
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skewed towards positive numbers near the surface and towards negative in the

upper part of the ML. This indicates a number of forming strong updraughts at a

bottom of thermals (4.1.2).

• Although the distribution of potential temperature perturbations does not follow

normal distribution, the distribution of potential temperature inside strong up-

draughts is approximately normal (see figure 4.13).

• While the distribution of vertical velocities in ML is not normal, the approximation

by normal distribution results mostly in an underestimation of the kinetic energy

of updraughts (see figure 4.12).

• The initial development of the convective boundary layer over surface anomalies

might influence the structure of the developing clouds. This effect might persist

despite the fact that mean properties of the developed ML do not differ (4.2.4).

The coarse study of fluxes has revealed that although the domain-averaged values of

kinematic fluxes are similar, there might be a large spread in the values estimated in

limited subdomains (here set 4 km x 4 km for the purpose of the evaluation). This result

is important both for computing fluxes in fine-resolution NWP and for the evaluation of

field measurements. It is very likely that there might be high differences in the estimated

fluxes along short flight trajectories.

The timeseries of fluxes of the sensible heat, latent heat and momentum show a

number of oscillations. The oscillation is usually strongest in model runs with surface

temperature anomalies oriented in the direction across the mean wind. A high degree

of autocorrelation is found in the oscillation of flux timeseries. Significant time lags

are generally shorter than the ML timescales. Nevertheless, the autocorrelation in flux

oscillations should be taken into account in NWP with short timesteps.

Findings of this study extend our knowledge of the convective boundary layer in cold

air outbreaks. The impact of the different shapes of surface temperature heterogeneities

is shown, as well as the importance of the surface heterogeneity for the formation of cloud

streets. The results of the study give further implications for the explanation of the vari-

ability in aircraft measurements, presented in the chapter 5, and the adjustment of the

parametrization schemes, presented in the chapter 7. However, first I must address the

question whether the surface heterogeneities play similar role also in cold outbreaks with

stronger wind forcing or different initial conditions. Therefore, adjusted cold outbreak

scenarios are the subject of the next chapter.
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Chapter 5

Adjusted Scenarios of Cold-Air

Outbreak with Surface

Heterogeneity

Cold-air outbreaks occur in a wide range of geographical locations (Papritz et al., 2014).

During the winter season in the northern hemisphere, cold outbreaks are observed both

in high latitudes of Arctic (Brümmer, 1996) (Ebner et al., 2011), areas over Labrador Sea

(Liu et al., 2004) as well as in mid-latitudes (Inoue et al., 2005a) (Yamamoto, 2012). In

CAO events at all these geographical locations (see 1.3.2), it is reasonable to assume that

the cold air masses are advected over a surface that is not strictly homogeneous — in the

inner Arctic, marginal sea-ice zone consist of large areas covered with a broken sea-ice

sheet and ice floes (Inoue et al., 2004). Similarly, coastal polynyas of the Laptev Sea

consist of patches of ice and open water (Ebner et al., 2011). Regions around Labrador

and Greenland are dominated by areas of ocean convection where patches of colder water

sink and are replaced with warmer water from below (Renfrew et al., 2002).

While the vertical structure of the troposphere varies between different locations and

seasons, it is logical to ask how does the heterogeneity in surface temperatures influence

a developing CAO. Chapter 4 has demonstrated how the different types of heteroge-

neous surface temperature modify the developing CAO in one chosen idealised scenario.

However, the question remains whether these results are applicable on other CAO cases

as well. This chapter therefore logically aims to address this question by extending the

model study on a wider palette of CAOs. It introduces new idealised CAO scenarios and

explores the impact of heterogeneous surface conditions on the development of convective

boundary layer (CBL) in each scenario. The numerically modelling is again performed in

the Met Office Large Eddy Model (LEM). The setting of different scenarios is explained

in the part 5.2. Each scenario is prepared with a set of model runs with a different

setting of the surface heterogeneity.
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Before the chapter investigates the impact of heterogeneity, it first presents a qualita-

tive comparison of CBL development between scenarios (5.3). While increased stratifica-

tion or increased wind forcing might modify the vertical structure of the CBL (Liu et al.,

2011) (Fedorovich and Conzemius, 2008), it is reasonable to discuss specific properties

of each scenarios first. The chapter then moves to the analysis of the impact of surface

heterogeneity on a developing CBL, first in the scenarios with increased wind forcing

(5.4), followed by scenarios with increased stratification (5.5) and scenarios where both

increased stratification and adjusted wind forcing were present. However, these parts

of the chapter do not provide a catalogue description of the results of simulations with

heterogeneities in each model setting. Since the purpose of this study is to extend our

understanding of the role that heterogeneous surface temperatures play in CAO, this

chapter instead presents specific results that are different from the results of control

scenarios or otherwise expanding our knowledge with respect to previous studies. The

results are then compared, further discussed and possible limitations of this study are

addressed (5.6).

5.1 Brief Review of Previous Studies

Due to a wide range of wind conditions observed in the Arctic (Kilpeläinen and Sjöblom,

2010) (Mäkiranta et al., 2011) a variety of wind velocities are considered in the studies

of turbulent fluxes over wide Arctic leads (Esau, 2007). A number of observational and

modelling studies have shown that a decrease in wind shear can result in a stronger

impact of the anomalies in the surface temperature (Gryschka et al., 2008). These result

were similar to a number of other studies of the impact of inhomogeneities in surface

temperatures (Sühring et al., 2014) and inhomogeneities in surface fluxes (Avissar and

Schmidt, 1998) where stronger winds lead to a diminishing impact of surface inhomo-

geneities.

Furthermore, an extensive study of the impact of heterogeneities on the vertical

structure of the ABL (Mahrt, 2000) concluded that the effect of surface heterogeneities

generally increase with the scale of heterogeneity and decreased with the wind speed,

boundary layer depth and stability. Idealised studies of the atmospheric boundary layer

with heterogeneous surface conditions (Heerwarden et al., 2014) often indicated a ratio

between the depth of the boundary layer and the wavelength of the heterogeneous pat-

tern when the effect of the heterogeneous forcing is the strongest (Patton et al., 2005).

However, it was not generally addressed whether the results are not directly dependent

on the stratification in the troposphere.

Although previous studies provided interesting insight into the impact of heteroge-
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neous surface conditions, they were often limited on one chosen shape of heterogeneity.

Therefore, the main hypothesis investigated in this chapter is that:

• stronger wind forcing leads to a weaker effect of the heterogeneity in surface tem-

peratures

• increased stratification alters the effect of the heterogeneity in surface temperatures.

5.2 Settings of Adjusted Scenarios

Previous idealised studies of CAO, for example (Kershaw, 1995) and (Gryschka et al.,

2014), have usually started with a stratified troposphere that follows a piecewise linear

profile - the bottom few hundred metres are almost neutrally stratified, followed by a

stronger stratification above. Relative humidity was usually highest by the surface and

then continued decreasing with height. The large scale wind forcing generally consisted

of a linear profile in the lower troposphere and was constant above. This study generally

follows this approach to setting of the properties of the troposphere, however model runs

always start with a stable boundary layer (SBL). The main reason for this setting is that

it allows us to record early stages of a developing CBL. A description of specific cases

follows.

A case of a moderate wind shear and a weaker stratification in the bottom tropo-

sphere was chosen as a control scenario and explored in the previous chapter. While the

sensitivity testing has already addressed the case of troposphere with increased humidity,

cases of other changes in the vertical structure of the troposphere are examined in this

chapter. The scenarios setting adjusted in LEM are:

• increased stratification in the lower troposphere

• increased large scale wind forcing

• weaker wind shear

In the setting assumes a multilayer structure with the possible temperature inversion in

the lower troposphere (Bian et al., 2013). All model runs start without clouds, since

most of observed CAO cases are cloud-free over the ice-edge (Brümmer, 2002).

Initial profiles of potential temperature are adjusted to represent cases of stronger

and weaker stratification (see figure 5.1). They generally followed the conditions over the

Arctic Ocean where the troposphere exhibits a multi-layer structure with a strong strat-

ification the stable boundary layer (SBL) (Bian et al., 2013). The profile strat2 was set

to represent the influence of strongly stratified boundary layer on developing convection.

The potential temperature lapse rate in the bottom 1500 m reached 13.2 K km−1. Profile
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strat3 exhibit stratification 9.5 K km−1 above 1500 m and slightly weaker (8.7 K km−1)

bellow. The profile strat4 then implements basic McClatchey profile for winter subarctic

conditions (McClatchey et al., 1971), which represents standard observed stratification

in the outer Arctic areas during the winter months. Finally the profile ’strat5’ with the

potential temperature lapse rate 5.3 K km−1 covered the gap between the stratified sce-

narios and a relatively weak potential temperature lapse rate 2.6 K km−1 in the control

scenario (see figure 3.1b). All profiles with the exception of ’strat4’ started with a tem-

perature 253.0 K at the bottom of the boundary layer, following the setting of the study

on modelling the convective internal boundary layer (IBL) in the off-ice flow (Renfrew

and King, 2000). The exact numerical values of the initial potential temperature profiles

are displayed in the Appendix.
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Figure 5.1: The setting of initial potential temperature profiles for adjusted cases
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Figure 5.2: The setting of large scale wind forc-
ing for adjusted cases

Adjustment of the large scale wind

forcing (see figure 5.2) represents

idealised cases with stronger quasi-

geostrophic wind, which reach in the

scenario wind2 value of 20 m s−1

and in the scenario wind3 value of

30 m s−1. Evaluation of scenarios

with stronger wind is important be-

cause cases where convection occurs in

subarctic areas often coincide with re-

gions of stronger winds (Moore et al.,

2014). The possibility of a weak wind

shear is represented by case wind4

where the wind speed does not reach

10 m s−1 bellow 6000 m.
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The possibility of CAO with a high wind shear in a strongly stratified troposphere is

covered by the combination of large scale scale wind forcing from ’wind2’ and the initial

temperature profile ’strat2’. This scenario is further referred as wind2-strat2. In a

similar manner, the model scenario wind4-strat2 represents a CAO with a weak wind

conditions and a strongly stratified lower troposphere.

A batch of model runs is prepared for each model scenario with a goal to investi-

gate the impact of heterogeneous surface forcing. One run is always set with a surface

temperature that is constant over whole model domain. These runs are marked as ’ho-

mogeneous’. Other runs are set with a pattern of anomalies in the surface temperature

(introduced in 3.3). There are three distinctive patterns - ’along’, ’across’ and ’chess-

board’ (see figure 3.5) The heterogeneity is modified by two parameters:

• the spatial extent of the anomaly, defined by the length d(h) of a side of building

block of the chessboard pattern

• the temperature scale of the anomaly δ(h)T , which is the maximum temperature

difference between the anomaly and the mean surface potential temperature.

The full list of model runs is located in the Appendix.

The setting of the growth of surface temperature with time remains the same as in

the control case (see figure 3.6). The setting of other ambient parameters, as well as the

setting of the grid and other parameters in LEM remain the same as described in the

general setting in 3.2.1. The mechanical turbulence in the SBL is again initialised by

random perturbations in the potential vorticity (see 3.2.5). It should be stressed that in

the rest of the chapter, the time coordinate is always given with respect to the reference

point t0, i.e. the time when the mean surface temperature starts rising.

5.3 CAO under Various Wind and Stratification

The main purpose of this chapter is to assess the impact of a heterogeneous surface in

a wide range of CAO scenarios, however each of these scenarios have its specifics. CAO

scenarios vary both in the temperature gradient at the surface that drives the convec-

tion as well as in wind shear and stratification in the lower troposphere that modifies the

growth of the CBL (Fedorovich and Conzemius, 2008). Although a direct description of

model runs in each scenario would manifest an impact of the surface forcing, it might

overlook some of the distinctive features of each model run. Therefore, this part of the

chapter provides a comparison of the development of CBL between the scenarios. Runs

with homogeneous surface are analysed and the qualitative differences between the sce-

narios discussed.
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The chosen set of model scenarios cover a wide range of CBL regimes. This is demon-

strated on the comparison of friction of friction velocity scales and convective velocity

scales in figure 5.3).The modelled values of u∗ and w∗ agree with observed cases of roll

convection in Arctic (Brümmer, 1996). All of the scenarios show a quick development

of a shallow CBL. The IBL between the CBL and remains of the SBL continues to grow

and exceed the original SBL height within 0.3–1 hour. During 2–5 hour, the estimated

CBL height reaches values between 700 m and 2400 m (see figure 5.4). This is consistent

with previous observations of atmosphere over sea in Arctic that recorded the thick-

ness of the boundary layer over open sea between 900 m and 2200 m (Brümmer, 1996).

Clouds start forming between 1.25 hour in the scenarios ’wind3’ and 3 hour in the sce-

nario ’strat2’. The scenario ’strat4’ remain nearly cloud free. Though unusual, examples

of cloud-free CBL were also observed in some CAO field studies (Chou and Fergusson,

1991). In scenarios ’wind2’, ’wind3’, ’wind4’ and ’strat5’ the cloud layer quickly deepens.
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Figure 5.3: The development of the friction velocity scale and the convective velocity
scale for ML. The comparison of show all control runs of each scenario.

Growing clouds exhibit a vertical structure (see example of ’wind2’ in the figure 5.5a)

where the highest cloud water mixing ratio is reached around the middle part of the cloud

layer and the potential temperature is increasing nearly linearly with height (see again

figure 5.4). Similarly to the clouds in the control scenario (see figure 4.4), they show

signs of a developing secondary circulation as well as pockets of ambient air around them

(not shown here). Furthermore, kinematic heat flux in the middle of cloud again reach

positive values 5.5b).

Due to describe properties, the cloud layer in scenarios ’wind2’, ’wind3’, ’wind4’ and

’strat5’ is classified (Stull, 1985) as a separate cumulus layer (CuL). On the other hand,

in scenarios ’strat2’ and ’strat3’, clouds remain relatively shallow with cloud water con-

centration increasing towards the top (see 5.5a) The bottom part of the cloud remains the

same. However, the potential temperature higher up in the clouds increases rapidly due
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Figure 5.4: The comparison of virtual potential temperature profiles in runs with homo-
geneous surface. All lines show horizontally-averaged values of virtual potential temper-
ature at 3 hour. Symbol ◦ marks the estimated height of CBL in each scenario.

to entrainment. Due to clear qualitative differences in the vertical structure of the CBL,

the further description of cases is split on scenarios with the weaker and the stronger

stratification in the lower troposphere.

Note: due to a different depth of the CBL, vertical profiles are displayed up to 3000 m

in scenarios with a weaker stratification and up to 1200 m in scenarios with a stronger

stratification.

5.3.1 Scenarios with Weaker Stratification

The general development of the CBL with a cumuli cloud has been overly described in

the previous chapter (see 4.1.1 and 4.1.2 ). However, scenarios exhibit some differences

in the vertical transport of heat, moisture and momentum. Since these properties might

play a role in the response to heterogeneous surface forcing, we briefly investigate them

here.

The scenario ’strat5’ exhibit slightly slower growth of the CBL than the control sce-

nario and the development of CuL is delayed until the 4 hour. The scenarios with the

higher wind forcing exhibit an increased upward transport of heat and moisture. As a

consequence, clouds generally appear earlier and grow faster. Strong winds forcing in

scenarios ’wind2’ and ’wind3’ lead to situations that that wind shear in CBL is not

exclusively confined to the cloud tops, but partially spread across whole CuL and ML
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(see figure 5.6a). As a consequence, upper parts of clouds are often horizontally displaced

along the direction of wind with respect to their cloud base. Although the difference

between the height of the cloud bases and cloud tops is lowest in the scenario with low

wind shear (’wind4’), the cloud layer achieves higher vertical maxima in the amount

of total cloud water than the control run. This is due to the fact that lower horizontal

winds do not inhibit formation of organised convective eddies (Maronga, 2014).
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Figure 5.5: The comparison of a different development of the CBL in scenarios with a
weaker stratification and in scenarios with a stronger stratification. Thin vertical lines
over the countour-plots of total liquid water mixing ratio (a) and (c) mark the times
of outputting the averaged flux profiles shown on the right side of the page. Note that
colourbars of total water mixing ratio are not up to scale. Symbols O and ◦ indicate the
approximated top of the ML and the top of the CBL respectively.

The statistical distribution of updraught and downdraughts does not qualitatively

vary between the scenarios. Although the stronger wind forcing leads to faster growth

of the CBL, by the end of the second hour, all observed levels between the 45 m and

1480 m (upper part of clouds) exhibit relatively minor differences between the model

scenarios in the spread of potential temperature perturbations and humidity perturba-

tions. The distribution of the vertical wind velocity is in all five scenarios slightly skewed
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towards negative numbers. With a strong wind forcing, the spread in values increases

and the strong updraughts also reach higher values. Strong updraught in ML generally

attain values above 2.1 m s−1 in the control scenario, while in scenarios ’wind3’, strong

updraught in ML are almost always above 2.5 m s−1.
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Figure 5.6: The comparison of mean wind profiles and the profiles of kinematic heat
during 2–3 hour. The symbol � marks the altitude of cloud base and the symbol ◦
indicate the top of the CBL.

The kinematic moisture flux in the MBl is higher in scenarios with higher wind shear.

Figure 5.7a shows that during the 2–3 hour, maxima are reached at the bottom of CuL.

By the fifth hour, moisture fluxes exceed the surface fluxes in all four scenarios (see figure

5.7a), indicating venting of the air from the ML by active cumuli cores. The differences

in each scenario are approximately 40 %. The kinematic heat flux in ML follow a linear

profile, followed by a negative heat flux in the bottom part of CuL. In the middle of

cloud layer, values are close to 0, falling deep into negative number bellow the cloud

tops (see figure 5.6b). The negative heat flux below the top of clouds is approximately

proportional to wind shear.

This phenomenon is caused by the increased entrainment of the warm air into the

CuL due to stronger wind shear and stronger turbulence inside clouds. Increased turbu-

lence in the scenarios with increased wind shear is clearly demonstrated by comparison of

vertical profiles of the variance in the vertical velocity (see figure 5.8a). Unlike in the con-

trol case, the variance in the vertical velocity in both horizontal wind components grow

with altitude in cases ’wind2’ and ’wind3’, reaching maxima in the upper part of clouds.

The variance in the wind component across the main wind exhibit even stronger impact

of the increased wind forcing. There, the values for ’wind3’ scenario are approximately

four times higher than for ’control’. Overall, turbulent kinetic eddy energy (TKE) in-
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creases with the wind-shear. This finding agrees with comprehensive study on transport

on the grey-zone area (Shin and Hong, 2013). The increase in fluxes of momentum (not

shown, see Appendix) is also disproportionally higher than the increase in the wind shear.
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Figure 5.7: Profiles of the kinematic moisture flux in scenarios with a weaker stratifica-
tion. The symbol O indicates the top of the ML and the symbol ◦ indicates the top of
the CBL.

In summary, the scenarios with weaker stratification generally experience a rapid

growth of the CBL and development of CUL after 2 hours. The scenarios with the

increased wind forcing differs form the control scenario mostly in the amount of shear

generated TKE.
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Figure 5.8: The comparison of vertical wind velocity and turbulent kinetic energy in
scenarios with weaker stratification. The symbol O indicates the top of the ML and the
symbol ◦ indicates the top of the CBL.
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5.4 Heterogeneity under Wind Shear

One of the main research questions of this chapter is whether an increased wind forcing

decreases the effect of heterogeneous surface forcing. Studies of convection over terrain

with patches of different temperature have showed that the wind reduces the effect of

heterogeneous heating. Near-surface wind of 2.5 m s−1 were enough to reduce the ef-

fect of the surface forcing and winds exceeding 5 m s−1 eliminated all impact (Avissar

and Schmidt, 1998). Moreover, there are indications that the fluxes from the surface

layer exhibit qualitatively different properties for wind regimes below 4 m s−1 and above

8 m s−1 (Grossman et al., 2005).

However, these studies were mostly performed in mid-latitudes. While the CAO

are generally dominated by high temperature gradients and strongly stratified tropo-

sphere above, the impact of higher wind speed might differ. Furthermore, weak vertical

wind shear over inhomogeneous MIZ can increases the chance of formation of cloud rolls

(Gryschka et al., 2008). Although the aforementioned studies provided some vital find-

ings, they focused mostly on the convective-scale structures and have not sufficiently

discussed the impact on heat and moisture transport. With a goal to extend findings

of previous studies, this part of the chapter investigates the impact of heterogeneities in

surface temperatures under different wind shear conditions.

5.4.1 The Impact of Weak Wind Shear

The near-surface winds in the control scenario reached mean values 3.5 m s−1 by 4 hour,

which is above the aforementioned threshold 2.5 m s−1 sufficient for reducing the effect

of surface forcing (Avissar and Schmidt, 1998). Since the effect of the surface hetero-

geneity might have been already diminished, it would be reasonable to ask whether the

surface heterogeneity plays a more important role in case of a weaker forcing. Therefore,

this section investigates the impact of different types of surface patterns on a developing

CBL in a scenario ’wind4’ where the near-surface wind speed reached values between

0 and 2 m s−1 (see figure 5.6a).

Three runs with a different setting of the type surface heterogeneity (’along’, ’across’,

chessboard’) of the temperature scale ∆(h)T = 7 K and the size d(h) = 1600 m are added

to the ’homogeneous’ run (see again figure 3.5). The investigation starts with the com-

parison of basic properties of the CBL. After the rapid formation of the CBL, strongest

vertical flux of passive tracer is indicated in the run ’chessboard’, followed by the run

’across’. During 0.5–0.75 hour, the IBL propagates highest in the run ’chessboard’. The

height of the IBL reaches generally 100–200 m higher than in other runs. This stands in
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the contrast with the control scenario, where the case ’across’ lead to increased mixing

and the growth of the IBL was fastest in case ’along’ (see figure 4.25). However, due

to weaker mean wind by the surface in ’s4’ scenario, ’chessboard’ pattern drives the

formation of eddies by the surface. Nevertheless, as CBL continues in deepening, large

forced rolls starts forming in ’along’. As a results, the IBL height in ’along’ exceeds the

IBL in ’chessboard’ at the end of the first hour.

However, organised convective structures are indicated in all three runs with sur-

face heterogeneity. This is clearly demonstrated in spatial distribution of vertical wind

velocity in the slice at the top of the mixed layer (see figure 5.10c and 5.10e). Both

figures show well-defined thermals that facilitate the transport of heat and moisture fur-

ther into the CuL. These results stand in a stark contrast to the results of the effect

of surface heterogeneities in the control scenario (see 4.2.1). While the effect of surface

heterogeneity ’across’ on the structure of the CBL in the control scenario was limited

to the surface layer, figure 5.10e shows a clear pattern even at the top of the ML. A

clear structure of the pattern of surface heterogeneity propagating up to 600 m greatly

exceeds the altitudes of 100-200 m indicated by previous studies (Maronga et al., 2014).

This indicates that in case of a weak mean wind, heterogeneities in surface temperatures

drive formation of large convective structures that can span across the whole ML.

Although the cloud layer starts forming at the end of the first hour, it is not until

the end of the second hour that the active cumuli cloud cores start developing. After

the development of the active cumuli cores, the turbulent mixing at the top of the CBL

increases and the organised convective structures in the ML disappear during the time

period 2–3 hour. A CBL later undergoes formation of larger convective structures that

exhibit wide areas of weak downdraughts surrounded by weaker updraughts. This is

clearly demonstrated by the spatial distribution of the vertical velocities at the top of

ML at 5 hour (see figure 5.10d and 5.10f). Modelled structures bear the characteristic

open cells — convective updraught is mostly contained on the edges while the inner

consists of descending cold air. This generally agree with observations of open cells are

downwind of the edge of ice in CAO cases (Atkinson and Zhang, 1996).

Despite the formation of large organised convective structures in all three runs with

the surface heterogeneity, there are no significant differences in domain-averaged values

of surface fluxes between the runs ’across’ and ’along’ and the runs with homogeneous

surface temperature. The timeseries of the surface SH and LH flux (see figure 5.9)

show that only the run with the heterogeneity ’along’ exhibits significantly higher val-

ues. During the abrupt growth of the CBL in the period 0.5–1.5 hour, the SH flux

in ’along’ exceeds the SH flux in the ’homogeneous’ case by more than 13 %. It has

been already established that during the same time period, the case ’along’ exhibited

much faster propagation of the IBL and exceed the indicated CBL height in other runs
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with heterogeneities by 100–200 m. This indicates that the convective structures ori-

ented along the mean wind direction drive the formation of convective structures that

improves further growth of the CBL. On the other hand, convective structures driven by

heterogeneities ’across’ and ’chessboard’ generally slows down further growth of the CBL.

While the difference between the ’along’ and ’homogeneous’ run disappears during

the second hour, there is a persisting difference in the surface LH flux. This effect of the

surface heterogeneity is maintained even after the suppression of organised convective

structures by cloud-top forcing in the CuL. The likely explanation is that the orienta-

tion of the stripes of positive and negative temperature anomalies in the pattern ’along’

allow a secondary circulation close to the surface without disturbing larger convective

structures that has formed around. These results also support the findings of the previ-

ous study of the heat budget in CAO in Arctic that on the edge of the ice the SH flux

is the most important, while the LH flux starts playing more dominant role downwind

(Brümmer, 1997).
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Figure 5.9: Timeseries of the surface SH and LH flux for the runs with heterogenous
surface forcing in the scenario with a weak wind shear.

In summary, weaker wind conditions allow the formation of larger convective struc-

tures for all three types of heterogeneous patterns. However, structures oriented by

anomalies across and chessboard generally do not lead to increase in surface SH and

LH flux. On the other hand, convective structures driven by heterogeneities of the type

along improves the surface LH and SH flux. In the absence of a wind shear, a larger

convective structures tend to develop and suppress smaller organised convection within

ML.
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Vertical wind velocity, slice at 600 m
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Vertical wind velocity, slice at 480 m
at 5 hour, case control
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Vertical wind velocity, slice at 560 m

at 1.75 hour, case along
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Vertical wind velocity, slice at 480 m
at 5 hour, case along
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(d)
Vertical wind velocity, slice at 600 m

at 1.75 hour, case across
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Vertical wind velocity, slice at 480 m
at 5 hour, case across
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Figure 5.10: A detail of the horizontal cross-section is showing vertical velocity in the
horizontal slice at the top of the ML over heterogeneous surface in the scenario with
a weak wind shear.
Arrows (↑) indicate the mean wind direction and dashed lines (- -) indicate the organised
convective structures.
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5.4.2 The Impact of the Size of Heterogeneity under Strong

Wind Forcing

Studies of the air-sea interaction in Labrador Sea region have shown that high winds

often coincide with regions where convection regularly occurs (Moore et al., 2014). A

partial sea-ice cover is also present in some of these areas (Fang and Wallace, 1994).

While the spatial extend of patches of ice floes and patches of open water can greatly

vary in scales up to few kilometres (Inoue et al., 2005b), this section investigates the

impact of the size of heterogeneity on developing CBL in high wind shear cases.

The impact of the size of temperature heterogeneities ’across’ and ’chessboard’ in

high winds-shear cases is analogous to the impact in the control scenario (4.2.3). For

more details, see Appendix. On the other hand, the surface temperature heterogeneities

of the type ’along’ alters the development of the CBL in high wind shear scenarios in

a slightly different way than in the control scenario (4.2.1). The stripes of temperature

anomalies oriented along the mean wind direction lead to formation of organised struc-

ture of convective rolls (see figure 5.11). This not only accelerates the upward growth of

CBL but exhibits some additional effects. While the ’wind2’ is dominated by high wind

shear in the lower troposphere (see section 5.2), forced eddies improve the downward

transport of momentum, leading to higher mean wind velocity in the ML. During the

1–2 hour after t0, the velocity in the mean wind direction in the homogeneous case is

exceeded by 0.5 m s−1 in the case with heterogeneities of the size d(h) = 1600 m and by

more than 1 m s−1 in the case with heterogeneities of the size d(h) = 3200 m (see figure

5.12b).
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Figure 5.11: A detail of the horizontal cross-section is showing vertical velocity in the
middle of the ML over heterogeneous surface along in the scenario with strong wind
shear and the underlying pattern of surface temperature heterogeneities.
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Figure 5.12: The vertical kinematic flux of heat and moisture in scenarios with stronger
initial stratification.
The symbol � marks the altitude of cloud base, the symbol 4 the altitude of cloud tops.
The full line (—) marks the profile at 1.5–1.75 hour while the dash-dotted line (− · −)
marks the profile at 2–3 hour.

Due to more localised transport of moisture, clouds start forming earlier in the runs

with heterogeneities. Furthermore, in the case (d(h) = 3200 m), clouds bases are generally

located up to 100 m lower than in the homogeneous case or case with smaller anoma-

lies. Clouds follow a clear cloud-street pattern in both cases with heterogeneity (not

shown) Despite the clear differences in the spatial structure, the overall distribution of

updraughts and downdraughts (see 3.4.2 and 3.4.3) does not significantly differ between

the cases. Runs with heterogeneities exhibit slightly higher spread in perturbation of the

potential temperature and moisture (at altitude 170 m and 360 m), however the vertical

velocity distributions are similar. Furthermore, there are no significant differences in the

amount of the heat and moisture transported by strong updraughts. Nevertheless, the

heterogeneities of the type ’along’ tend to alter the overall properties of the CBL. Both

lead to a lower convective velocity scale w∗ by approximately 15 % against the control

run. The difference between the control and the run (d(h) = 1600 m) disappears soon

after 1 hour, while in the case (d(h) = 3200 m) maintains the difference until the hour 2.

After the deepening of the CuL and the development of the active cumuli cores dur-

ing the second hour, the differences between the model runs starts decreasing. Similarly

to the results of analysis of the runs with the heterogeneities in the control scenario

(4.2.3) the forcing by active cumuli clouds acts against the structures forced by het-

erogeneous surface forcing. However, in this scenario, the run with heterogeneity size

(d(h) = 3200 m) is affected as well. The clear structure of cloud streets disappear by the

time 3 hour.
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The next step is to evaluate domain-averaged timeseries of vertical fluxes of the LH,

the SH and the momentum. The differences in the vertical SH flux between the runs

are relatively small, the timeseries differ in oscillations while the smoothed values are

within less than 1 % after 2 hour. While the differences in the vertical LH fluxes between

the homogeneous run and runs with heterogeneities are by approximately 25 % higher

during 1–2 hour, they later decrease to about 10 % both for the recording at the surface

and in the upper part of the ML (see figure 5.13b). The differences in the values of

fluxes between the run with (d(h) = 1600 m) and (d(h) = 3200 m) are relatively small

and mostly diminish during the third hour.

While the depth of the ML is estimated during the 3–5 hour to be zi = 500− 600 m

during the 3-4 hour, the estimation of the total ABL height is zbl = 2000 − 2100 m

during the same time period. These values are in the intervals

4 <
d(h)

zi
< 6, 1.5 <

d(h)

zbl

< 2, (5.1)

that is according to the previous study (Patton et al., 2005), the case when the effect

of surface heterogeneous forcing is the strongest. for the case d(h) = 3200 m (previously

discussed in 4.2.3). However the effect of the heterogeneous surface forcing has mostly

disappeared and the differences between the case d(h) = 3200 m and d(h) = 1600 m are

almost negligible This stands in the contrast with the prediction that the effect of the

heterogeneity would be strongest for the heterogeneity size of the ration (1.5, 2)to the

ABL depth These results show that the forcing by active cumuli clouds and strong wind

shear override even the effect of ’ideal’ surface heterogeneous forcing.
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Figure 5.13: The effect of heterogeneity size in high wind forcing on the surface SH and
LH flux and on the SH and LH flux at the altitude 520 m.
The full line (—) marks the SH flux and the dashed (- -) marks the LH flux.
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In summary, the analysis of runs with heterogeneities in the scenarios with high wind

shear has revealed that the impact the depends on the type of heterogeneity. While

the surface temperature pattern ’across’ and ’chessboard’ leads just to slightly increased

mixing in the developing convection, the type ’along’ exhibit a significant influence on a

developing CBL. This type of the pattern drives the forced convective rolls in the first

2 hours after t0. Unlike in the control scenario, larger size of the heterogeneity leads to

an increased wind velocity in the ML. The thickening of the cloud layer again leads to

an increase in the top-driven mixing by deep cumuli clouds, the effect of heterogeneous

surface forcing on the structure of CBL quickly diminishes. Surface heterogeneities also

exhibit a persisting influence on the surface LH flux. The increase in the surface LH

flux does not significantly differ between the runs with d(h) = 1600 m and d(h) = 3200 m

’along’ heterogeneities.

5.4.3 The Impact of the Size of Heterogeneity under Very Strong

Wind Forcing

Although the previous pars showed the impact of high wind shear, it is reasonable to

ask whether the influence of heterogeneities would disappear in case of a stronger wind

shear. Therefore, the impact of the combination of the wind shear and the heterogeneous

surface forcing is further investigated in in scenario ’wind3’, i.e. in the scenario where

the wind forcing linearly increases up to the extreme value 30 ms−1 This value of wind

shear is not very common, yet it is still well bellow values occasionally observed in some

areas of Northern Atlantic (Renfrew and Moore, 1999).

The stripes of temperature anomalies located along the mean wind direction again

drive the formation of forced rolls. These forced rolls significantly speed-up the growth of

the CBL. During the first two hours, the ABL height is in the runs with heterogeneities

significantly higher than in the case with homogeneous surface. The estimated zcb in the

case d(h) = 3200 m exceeds the homogeneous case by 300–500 m at the end of the first

hour. The downward transport of momentum facilitated by forced eddies lead to high

differences in the mean wind velocity between the runs with heterogeneities and the ho-

mogeneous surface (see figure 5.14b). The mean wind velocity in the cases d(h) = 3200 m

exceeds the mean wind velocity in the ’homogeneous’ case by more than 1.5 m s−1 in the

time interval 1.25–1.75 hour. Cloud bases in the case d(h) = 3200 m are not only forming

lower, but some of the glaciated clouds start apparently in the surface convective layer.

This phenomenon is caused by condensation in large updraughts columns that are the

part of large forced rolls. Examples of this near-surface condensation were observed in

flows off the ice edge in Baltic Sea (Brümmer, 2002).
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Figure 5.14: The vertical kinematic flux of heat and moisture in scenarios with stronger
initial stratification.
The full line (—) marks the profile at 1.5–1.75 hour while (− · −) marks the profile at
2–3 hour.

In the cases with heterogeneity, clouds again form a clear street patterns. These

patterns are similar to the patterns in scenario ’wind2’. However, there are differences

in the horizontal displacement of the cloud tops due to increased wind shear (see again

figure 5.6a). The abrupt growth of cumuli clouds continues and active cumuli cores form

during 1.5–2 hour. The top forcing by cumulus clouds then again leads to changes in

the spatial structure of clouds and updraughts. The differences between the model runs

starts diminishing.

The results of the domain-averaged timeseries of vertical fluxes of the LH, the SH and

the momentum are consistent with the results for ’wind2’ 5.4.3. The differences in the

vertical fluxes of moisture between the homogeneous run and runs with heterogeneities

are about 25 % during 1–2 hour, they later decrease to about 10 % both for the recording

at the surface and at the top of ML ( see figure 5.15) The differences in the values of

fluxes between the run with (d(h) = 1600 m) and (d(h) = 3200 m) within ML do not

exceed 10 % in the first 2 hours. After 2 hour, they fall bellow 3 %.

The ABL height in the case d(h) = 3200 m grows during the 1–3 hour from 1700 m

to 2200 m. Therefore, values of the ratio
d(h)
zbl

are during this whole time period in the

interval (1.5, 2). However, this time period includes both the stage when the differences

between the runs are highest as well as the stage when the differences quickly diminish.

This further supports the findings of the previous section ( 5.4.3) that the effect of the

heterogeneous surface forcing is in high wind-shear cases diminished by the forcing by

cumuli clouds.
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In essences, the analysis of the impact of surface temperature heterogeneity of the

type ’along’ in the scenario ’wind3’ further supports the findings of the previous section.

A larger size of the heterogeneity leads in first 2 hours to a faster growth of the CBL and

increased wind velocity in the ML. Differences start diminishing due to forcing by active

cumuli clouds, however runs with heterogeneity still maintain a slightly higher LH flux

than the homogeneous case. The increase in the surface LH flux does not significantly

differ between the runs with d(h) = 1600 m and d(h) = 3200 m ’along’ heterogeneities.

The main difference in comparison with scenario ’wind2’ is that large heterogeneities

lead to an increased condensation within the ML and formation of scattered glaciated

clouds low above the surface during the first 1.5 hour.
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Figure 5.15: The effect of heterogeneity size in high wind forcing on the timeseries of
surface SH and LH flux and on the SH and LH flux at the altitude 520 m in a scenario
a very high wind forcing.
The full line (—) marks the SH flux and the dashed (- -) marks the LH flux.

5.5 Impact of Stratification on the Heterogeneous

Surface Forcing

The analysis of CAO has already showed that top forcing by the cumuli clouds leads to

the diminishing of the effect of surface heterogeneous forcing (see parts 5.4 ). However an

increased stratification in the troposphere leads to a qualitatively different CBL that is

not topped by the CuL (general description in 5.3.1) Therefore, it is important to inves-

tigate how a different top-forcing interacts with the heterogeneous surface forcing. This

part of the chapter first presents the analysis of model runs with surface temperature

heterogeneities in scenarios with increased stratification of the lower troposphere. Later,

the impact of the wind shear in scenarios with increased stratification is investigated.
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5.5.1 Scenarios with Stronger Stratification and Homogeneous

surface

Scenarios with increased initial stratification, have undergone rapid formation of the

CBL after the increase of the surface temperature, with warm plumes penetrating up to

100–200 metres and larger organised thermals forming by the 0.45 hour followed by a

very slow deepening to height 600 m in ’strat4’, 700 m in ’strat2’ and 1000 m in ’strat3’

Due to increased stratification of the initial potential temperature profile, the depth of

the CBL grows more slowly than in the control scenario, but the potential temperature

rises faster (see again figure 5.4). This further leads to a smaller difference in the sur-

face temperature gradient, and consequently lower surface SH and LH flux. An abrupt

increase in surface fluxes during the transition is later followed by a stagnation. Unlike

in the control case, the surface SH flux not only stagnates, but also gradually decreases

in scenarios ’strat2’, ’wind2-strat2’ and ’strat4’.

Scattered clouds appear at the top of the boundary layer, however they do not form

continuous layers. Unlike in the case of the control scenario, the ML is not divided from

the free atmosphere by CuL.An entrainment occurs at the top of the CBL and a clear

capping inversion with a high potential temperature gradient develops in ’strat2’ and

’strat3’ cases.

The depth of clouds in ’strat2’ and ’strat3’ does not exceed 400 metres. The upper

part of the clouds are mostly liquid and the amount of ice increases towards the bottom,

with a number of ice particles scattered in below the cloud bases. This phenomena was in

the previous study of cold clouds (Forbes and Ahlgrimm, 2014) accounted to aggregated

ice particles falling below.

The vertical structure of the troposphere further differs from the control scenario.

Wind velocity in the main direction is nearly constant in most of the ML and cloud

shear is confined to cloud tops (see figure 5.16a). Both the variance in the wind com-

ponent along and the variance across the mean wind follow similar vertical profiles.

Maxima in velocity variance are generally reached by the surface and in the bottom part

of clouds (in ’strat4’ at the top of ML’), followed by a sharp decline above. Maxima

in the vertical velocity variance are reached in the lower half of ML (below 200-300

m), similarly to ’control’. However variance in the vertical velocity steeply decrease by

the top of CBL, unlike in the control scenario with active cumuli clouds (see figure 4.5b).

Profiles of the vertical kinematic fluxes of heat and moisture (see figure 5.17) follow

simple linear shape in the mid 80 % of the boundary layer, in a good agreement with the
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Figure 5.16: Vertical profiles of mean velocity and variance in the velocity across the
mean wind direction. The symbol � marks the altitude of cloud base and the symbol ◦
indicate the top of the CBL.

similarity theory for mixed layer (Cheinet and Siebesma, 2009). At the top they decline

deep into negative numbers indicating a downward flux of the heat and moisture in the

capping inversion. This phenomena is explained by the combination of the turbulent

entrainment with the strong temperature and humidity inversion.

The analysis of updraughts and downdraughts (3.4.3) reveals that majority of strong

updraughts are warm. Unlike in the control case, the positive temperature perturbations

in strong updraughts often do not exceed perturbations in the majority of weak warm

downdraughts. Despite that, strong updraughts play a decisive role in the transport of

heat and moisture. For example in the scenario ’strat2’, strong updraughts facilitated

60 – 90 % of the kinematic heat flux in ML from the hour 2 onwards.

To sum up, the idealised scenarios investigated in this chapter represent a wide palette

of cold air outbreaks. All scenarios exhibit quick formation of a shallow CBL at the

bottom of the troposphere, followed by the propagation of the IBL upwards. Further

development of the scenarios diverge both in the rate of CBL growth as well as in the

qualitative properties of the CBL. Scenarios with a weaker stratification undergo a for-

mation of the CuL in the upper part of the CBL. On the other hand, scenarios with a

stronger stratification exhibit a formation of strong entrainment layer in the upper part

of the CBL. Some of these scenarios remain nearly cloud free (strat4), in others a shallow

cloud layer is formed. The contribution of strong updraughts to the transport of heat

and moisture is more pronounced in scenarios with increased stratification.
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Figure 5.17: The vertical kinematic flux of heat and moisture in scenarios with stronger
initial stratification. The symbol O indicates the top of the ML and the symbol ◦
indicates the top of the CBL.

5.5.2 Heterogeneous Surface in Strongly Stratified Scenario

The scenario ’strat2’ presents an interesting case of CAO starting with a strongly strat-

ified lower troposphere and leading to a ML topped with shallow stratocumulus clouds

(see figure 5.5c) and a strong entrainment layer above. This section then shows how is

the CBL in the strongly stratified scenario modified by different types of surface hetero-

geneity.

Three runs with different types of surface heterogeneity (’along, ’across’, ’chessboard’)

of the size d(h) = 1600 m and the temperature scale δ(h)T = 7 K are compared against

the run with homogeneous surface temperature. During the first half hour after t0,

heterogeneous surface forcing in the ’across’ case facilitates the fastest development of

plumes. The kinematic heat flux is up to an order of magnitude higher than in the

’homogeneous’ case and by more than 30 % higher than in the case ’along’. While the

stripes of anomalies located across the mean wind flow greatly increase the mixing in a

shallow CBL, this phenomenon is relatively short-lived. As the IBL grows over 200 m,

the stripes of temperature anomalies generally act against the formation of larger eddies

and rolls. On the other hands, stripes of temperature anomalies along the mean wind

force the formation of rolls parallel to the direction of the wind (see figure 5.18).

At the beginning of the second hour, ML deepens in all four cases and the differences

mostly vanish. Passive tracer propagate slightly higher in the case ’along’ due to organ-

ised forced rolls, however the differences are relatively small. Scattered clouds appear

in all cases during the third hour, thought the subsequent growth of clouds is faster in

the case ’along’, followed by the case ’across’. Case ’along’ exhibited a clear pattern of

cloud streets located over positive anomalies in surface temperatures (see figure 5.18)
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Although the horizontal scale of heterogeneous pattern (1600 m) is smaller than in many

previous studies (Gryschka et al., 2014), a clear pattern of convective rolls is maintained

well beyond the time 5 hour.

The runs ’across’ and ’chessboard’ do not exhibit any organised pattern of clouds,

Although each case shows a slightly different spatial organisation of updraughts and

downdraughts, the differences in the overall distributions of vertical wind velocities and

perturbations in the potential temperature are relatively small. The case ’along’ exhibit

higher wu, velocity of strong updraughts, particularly in the upper part of the ML. It

generally exceeds values for other 3 runs by 20-50 %. This difference in the vertical

velocities is caused by forced eddies over the anomalies oriented along the mean wind

direction. On the other hand, the velocities of strong updraught in case ’chessboard’ and

’across’ do not significantly differ from the homogeneous case.

However in all four cases, strong updraughts facilitate a dominant part of the vertical

transport of heat and moisture. The ratio of the vertical kinematic heat flux by strong

updraughts to the total vertical kinematic heat flux is almost always above 60 % The

ratio can occasionally exceeds 100 %, i.e. the vertical transport in the remaining 95 %

is actually negative. For the vertical kinematic flux of moisture, the ratio of the contri-

bution by strong updraughts also attains values than in the control scenario, generally

between 30 % and 50 %. Both these ratios are slightly higher than in the control scenario

(see figure 4.14). In indicates that in case of a strong stratification over the ML, well

defined strong updraughts in convective roll facilitate majority of the vertical transport

heat and significant portion of transport of moisture.

Cloud base altitude, along 5 hour

↑          x [km]          ↑

→
  
  
  
  
y
 [
k
m

] 
  
  
  

→

 

 

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

→
  

  
  

  
a

lt
it
u

d
e

 [
m

] 
  

  
  

→

450

500

550

600

650

700

(a)

↑          x [km]          ↑

→
  

  
  

  
y
 [

k
m

] 
  

  
  

→

Vertical wind velocity, slice at 320 m
at 5 hour, case along

 

 

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6
→

  
  

  
  

w
 [

m
 s

−
1
] 

  
  

  
→

−1.5

−1

−0.5

0

0.5

1

1.5

(b)

Figure 5.18: The height of clouds and the cross-section of the vertical velocity in the
middle of the ML over heterogeneous surface of the type ’along’.
Arrows (↑) indicate the mean wind direction.
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The analysis of fluxes averaged over the horizontal extent of the domain reveals a

significant impact of the heterogeneities on the vertical SH and LH flux. The timeseries

of the SH heat mostly vary in oscillations. If smoothed by the averaging window, values

do not vary between the cases by more than 3 %. On the other hand, the LH in the

convective regime is always higher in the runs with heterogeneities (see figure 5.19a). At

the recording altitude 170 m, LH flux in the case ’across’ is by 10–12 % higher than in

the ’homogeneous’ case. In the ’along’ case, it is even 12–15 % higher. Furthermore, at

altitude 360 m, the ’along’ case exceeds the LH flux of the ’homogeneous’ case by almost

20 % (see figure 5.19b). The further analysis of the timeseries of vertical fluxes reveals

also other differences between the model runs. In LH and SH flux timeseries at lower

recording altitudes (45 m, 170 m and 360 m), there are generally higher oscillations in

the case ’across’.

These large differences in the LH flux can be explained by the presence of forced rolls

(Gryschka et al., 2014) that improve the transport of the moist air up from the warm

patches and allows to reach higher vertical wind velocities in organised updraughts. Dif-

ferences in the vertical SH flux remain relatively small mostly due to high stratification

above the CBL. Unlike in the control scenario, a local increase in a SH flux does not lead

to a growth of a cumulus on the top of a thermal, but to an increase in the potential

temperature at the top of ML and in the entrainment layer. Descending updraughts are

then warmer and the surface sensible heat flux decreases.

On the other hand, a temporary increase in LH flux at the surface leads only to a

slight increase in humidity. Since the air at the bottom of ML is relatively far from

saturation, the subsequent decrease in LH flux at the surface would be just negligible.

Furthermore, the strong inversion layer at the top of the CBL does not allow the forma-

tion of a layer of active cumuli clouds. In the absence of the CuL, the cloud entrainment

is still driven by convective rolls. Therefore the top of the CBL generally does not act

against the surface forcing.

To sum up, the impact of surface temperature inhomogeneities in the scenario with

strongly stratified lower troposphere is qualitatively different from the impact in the

control scenario. Due to the strong inversion layer and the top of the CBL and the

absence of CuL, the effect of heterogeneous surface forcing is not diminished by the

cloud-top forcing. Each run maintains its specific properties at least for 5 hours. In the

run ’along’, a clear structure of forced rolls oriented along the mean wind directions is

maintained. Model run differ in values of LH flux at the surface and at the recording

altitudes within the ML. Unlike in the control scenario, this differences in the surface

LH flux are maintained not only in the run ’along’, but also in the run ’across’. On the

other hand, differences in SH flux between the runs are generally smaller than in the

control case. The orientation of anomalies in run ’across’ leads to higher oscillation for
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both LH and SH flux at the surface, as well as at altitudes in lower half of the ML.
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Figure 5.19: The effect of heterogeneity type on the timeseries of the surface LH flux
and the LH flux at the altitude 520 m in the scenario ’strat2’.

5.5.3 Size of Anomalies in Strongly Stratified Scenario

Previous idealised model studies of atmospheric boundary layer with heterogeneous sur-

face conditions have often investigated how does the effect of the surface forcing depends

on the spatial extend of the heterogeneity (Huang and Margulis, 2013). The study of

Patton et al. (2005) indicated a ratio between the depth of the boundary layer and the

wavelength of the heterogeneous pattern where the effect of the heterogeneous forcing

is the strongest. Similar results were obtained by Heerwarden et al. (2014). However,

model scenarios investigated in these studies usually started with a semi-stationary CBL

(as was discussed in 4.3). Furthermore, it was generally not taken into account how are

the results influenced by the stratification in the lower troposphere.

While the thickness of gradually growing CBL in scenarios with increased stratifica-

tion is usually between 400 and 900 m, the ratio of the ML height to the spatial extent

of temperature anomalies in MIZ is higher than in the scenarios with the weaker initial

stratification. Since the previous section 5.5.2 has demonstrated that the impact of the

surface heterogeneity does not diminish in stratified scenarios, it is important to investi-

gate whether this property is not dependent on the size of the heterogeneity. Therefore,

the study of the developing CBL in the conditions of strong stratification continues with

the comparison of model runs with different spatial extent of the heterogeneity in the

surface temperature.
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The analysis of the impact of modifying the size of heterogeneous patterns ’across’

and chessboard’ unveils just a minor quantitative differences between runs with the dif-

ferent setting of the size. While the impact of the heterogeneous pattern ’across’ and

’chessboard’ in the stratified scenario is generally limited to the lower part of the ML

(established in 5.5.2) this section is further going to focus on the impact of modifying

the size of the heterogeneity ’along’.

The investigation of convective patterns show that runs with the heterogeneities along

the mean wind direction with d(h) > 400 m tend to maintain the organised structure of

forced convective rolls. Due to organised convection, theses runs exhibit a clear structure

of cloud streets (see example in figure 5.20). The height of cloud tops generally does

not vary between the runs. Domain-averaged timeseries of vertical SH and LH fluxes

then exhibit some interesting trends. As has been already established in previous sec-

tion, the heterogeneity ’along’ increases the surface flux. The effect of a larger size of

the heterogeneity is just minor (see 5.21a). However timeseries of the LH flux at higher

altitudes within the ML show much larger differences between the runs (see the example

in figure 5.21b). This indicates that although the larger heterogeneities do not increase

the surface flux, the improve the upward transport of moisture. In the presence of strong

inversion above the ML, these large differences in LH flux generally leads to an increased

generation of clouds.
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Figure 5.20: The height of clouds tops over the heterogeneous surface patterns of the
type ’along’.
Arrows (↑) indicate the mean wind direction.
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Figure 5.21: The effect of heterogeneity type on the timeseries of the surface LH flux
and the LH flux at the altitude 520 m in the scenario strat2’.

In essence, adjusting the size heterogeneities in surface temperatures generally lead

to just minor impact on the surface SH and LH flux. However increasing the size of

’along’ type of heterogeneity can modify the properties of the rest of the ML. Larger

heterogeneities lead to an increase in the LH flux upward and a increased amount of

cloud water.

5.5.4 The Combination of Stratification and Wind Shear

The previous sections have investigated the impact of heterogeneous surface forcing in

scenarios with different surface stratification, however all of them maintained the same

large scale wind forcing. Field observations of CAO cases described stratocumulus-

topped CBL with wind speeds lower than as well as wind speed as high as. To reflect

these possibilities, the impact of surface heterogeneities should be compared between

strongly stratified scenarios with a different strength of winds. This section is therefore

going to focus on the analysis of runs with heterogeneities in scenarios ’wind4-strat2’,

’strat2’ and ’wind2-strat2’.

In all three scenarios, heterogeneities of the type ’across’ and ’chessboard’ accelerate

the formation of larger plumes and the upward propagation of the IBL during the first

hour. In runs with heterogeneities ’along’, the orientation of the temperature anomalies

along the mean wind direction drives the formation of forced rolls. The development of

CBL in ’wind4-strat2’ and ’wind2-strat2’ with surface heterogeneities generally follows

same trends as in ’strat2’, albeit with some minor differences. With a goal to better

explain these differences, we focus on the results on heterogeneity of the patter type
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Figure 5.22: The impact of heterogeneity on the LH flux in scenarios with varying wind
shear.

’across’ of the temperature scale δ(h) = 7 K and the size d(h) = 1600 m.

Runs with the heterogeneity exhibit higher LH flux at the surface and at recording

altitudes within the ML (see figure 5.22). The relative increase in the LH flux caused

by the heterogeneity ’across’ is then displayed in figure 5.23. It clearly shows that the

impact of ’across’ heterogeneity is more pronounced during the first two hours of the

CBL growth. The telative impact in ’strat2’ is temporary exceeded by ’wind4-strat2’

during the time period 0.75–2 hour The relative impact in LH flux is lowest in the sce-

nario ’wind2-strat4’. A similar, albeit weaker effect was found also in the case of the

heterogeneity ’chessboard’ (not shown here).

0 1 2 3 4 5
−0.2

−0.1

0

0.1

0.2

0.3

0.4

∆
 Q

L
H

 /
 Q

L
H

time  [hour]

Ralative differerences of ’across’ to homogeneous  

 

 

wind4−strat2: across

strat2: across

wind2−strat2: across

Figure 5.23: The relative increase in the surface LH flux due to heterogeneity ’across’
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To sum up, increased wind velocity forcing in a CAO scenarios with high stratifica-

tion leads to a decreased impact of anomalies ’across’ and ’chessboard’ during the first

two hours of CBL growth. The differences in the latent heat flux between the runs with

heterogeneities and the ’homogeneous’ is generally smaller in scenarios with an increased

wind forcing.

5.6 Discussion

Since this study has taken a slightly unusual approach to the investigation of heteroge-

neous surface forcing, this part of the chapter is going to address possible limitations

in the model setting as well as in model results. The question of the model sensitivity

to the horizontal and the vertical resolution has been already discussed in (3.6). While

there is a possibility that scenarios with increased stratification might be more sensitive

to resolution, this issues was also investigated. For details, see the results of sensitivity

testing in the Appendix.

One of the main question in this study was the selection of the set of the idealised

model scenarios. The main requirements was to represent a large palette of possible

tropospheric conditions in CAO upwind of the MIZ while at the same time keeping the

setting relatively simple. Since trial runs of control scenario presented the CAO case with

an abrupt growth of clouds, the other scenarios were set with an increased stratification

in the lower troposphere. The main purpose of the scenario ’strat4’ is to represent mean

winter temperature profile in the sub-Arctic areas. The comparison of model scenarios

(5.3) shows that they cover both CBL with CuL and boundary layer topped by stratocu-

mulus or nearly cloud free. Therefore, model scenarios account for at least two types of

ABL as per classification of both ECMWF IFS and MetUM.

The other factor that might have an impact on the development of the CBL is setting

of microphysical properties used by the model. Model result regarding cloud formation

in the Arctic should be always view with caution. The intercomparison of various LES of

the Arctic mixed-phase clouds (Ovchinnikov et al., 2014) showed that the ice particle size

can play a significant role. Numerical models generally tend to underestimate ice water

path and overestimated liquid water path (Morrison et al., 2009) (Klein et al., 2009).

Furthermore, modelled clouds are often thinner and displaced downward (Tjernström

et al., 2008). Nevertheless, the presence of mixed-phase stratucumulus alone plays an

important role in the turbulent mixing. (Solomon et al., 2014).

The apparent limitation of this study is that the setting of the growth of the surface

temperature with time remains the same as in the control case. However, introducing

other settings of the mean surface temperature would be adding extra degree of free-
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dom into the set of scenarios and would require a number of additional runs. Generally

speaking, adjusting the mean surface temperature would mostly lead to an increase of

decrease in the temperature gradient at the surface and therefore to an increased or de-

creased surface fluxes. It would also modify the relative ratio of temperature anomalies

to the surface temperature gradient. However, the same effect is already achieved by

adjusting δ(h)T , the temperature scale of anomalies. Nevertheless, the model scenario

with a slower growth in the surface temperatures was run for the purpose of sensitivity

testing. The results of the scenario did not show a qualitatively different development

of the CBL. The results are briefly described in the Appendix.

Due to different settings of the wind forcing and the initial stratification, there is

a high variability how far off the edge of sea ice has the observed air parcel travelled.

Particularly with regard to the strong wind forcing in the scenario ’wind3’, it is relevant

to ask whether such a long MIZ is actually realistic. However, most of the wind shear

is contained in the CuL, placing the estimated velocity of the ML parcel see 3.4.1 in the

scenario ’wind’ between 7.9 m s−1 during the formation of cloud and 11.8 m s−1 later.

The total distance travelled by parcel within ML is therefore 129–137 km, which is still

consistent with the usual length of MIZ 30–150 km (Claussen, 1991).

There are also other issues with the scenario ’wind3’. Since the mean wind velocity

is gradually increasing within the ML 5.6a it does not follow the constant wind velocity

profile expected by Monin-Obukhov (M-O) theory (Cheinet and Siebesma, 2009). While

previous studies of the ABL over an ice-free Arctic fjord found that M-O theory is ap-

plicable in moderate and strong winds (Kilpeläinen and Sjöblom, 2010), the wind-shear

within the ML in the scenario ’wind3’ suggests that there should be an upper bound

in the applicable wind velocities. In addition, issues with the applicability of the M-O

theory in higher wind-shear scenarios have also dissuaded us from applying the similar-

ity dimensionless scaling (Stull, 1988). The impact of heterogeneous surface forcing is

instead listed with respect to the ’homogeneous’ run of the same scenario.

In a number of studies, the effect of surface heterogeneities was increasing with higher

stability (Grossman et al., 2005) However, these studies generally examined scenarios

where a CBL did not develop, or where where the instability was relatively weak (Mahrt

and Khelif, 2010). On contrary, other study has found a decrease in the effect of het-

erogeneities with an increase in the stratification (Mahrt, 2000). Generally speaking, it

has proved rather difficult to separate the effect of the ratio of the heterogeneity size to

boundary layer depth and the effect of increased stratification. In the “optimal” ratio

between the heterogeneity size and the CBL depth, fluxes usually reach maxima (Pat-

ton et al., 2005). Further growth then results in result into the decrease in this ratio

and possibly transition into the different turbulent regime (Heerwarden et al., 2014).

Now, considering an increased stratification in the lower troposphere, there effect on the
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growth of the CBL could be viewed in two different way. On one hand, it puts poses

an obstacle to further vertical growth of a CBL. On the other hand, this may allow to

maintain favourable ration between the size of the heterogeneity and the boundary layer

depth for a longer period of time.

Previous studies of a CAO over a MIZ showed the temperature heterogeneities might

be important factor in the formation of cloud rolls (Gryschka et al., 2008) (Liu et al.,

2006). However, our study has shown that different pattern types lead to qualitatively

different impact on the developing CAO. The formation of well-organised convective roll

was identified only in the case of heterogeneities ’along’ the direction of the wind. There-

fore without an information about the orientation of surface temperature anomalies in

MIZ, it would be rather difficult to predict the impact of sea-ice heterogeneity. However,

previous studies of remote sea-ice sensing have shown that leads in Arctic generally tend

to be aligned in the direction of prevailing geostrophic wind (Barry et al., 1989). There-

fore, the development of cloud rolls is likely in cases of CAO where the wind follows the

direction of the recent geostrophic winds.

5.7 Conclusion

This study has addressed the impact of the heterogeneous surface forcing in surface

temperatures in a wide set of cold-air outbreak scenarios. It continued from the findings

of the previous chapter and extended the scope of the study on idealised scenarios with

a different setting of the wind shear and the initial temperature profile in the lower

troposphere. Two main points of the hypothesis were:

• A stronger wind forcing leads to a weaker effect of the heterogeneity in surface

temperatures

In our study, the weaker effect was indicated (5.4.2) for scenarios with friction

velocity above u∗ > 0.3.

• An increased stratification alters the effect of the heterogeneity in surface temper-

atures.

– Stronger impact of the heterogeneity on the LH flux and weaker impact on

the SH flux 5.5.2.

– Weaker impact on the size of heterogeneity on the SH flux (see figure 5.19).

– The structures of convective rolls forced by the surface heterogeneity is main-

tained for longer 5.5.2.
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The novel approach of this study involves introducing three three distinctive types

of heterogeneous pattern in surface temperatures into selected idealised scenarios. While

the selection of idealised scenarios is supposed to reflect the conditions in cold-air out-

breaks events, the adjusted properties of the troposphere are: the large scale wind forcing

and the initial stratification in the lower troposphere. All model scenarios start with the

initially stable stratified atmospheric boundary layer. The result of different scenarios

are compared and the impact of heterogeneities in each scenario analysed by comparing

runs with the different setting of the surface heterogeneity.

First and foremost, the results have again shown that there are qualitative differences

in the effects of different types of heterogeneous patter. The heterogeneities of the pat-

tern types ’across’ and ’chessboard’ mostly modify the developing plumes in the early

stages of convection. After the formation of mixed layer, their main impact is slightly

increased surface latent heat flux. The heterogeneities of the pattern type ’along’ modify

the structure of the mixed layer and drive the formation of convective rolls. Although

some studies found an increase in sensible heat flux due to patches of the surface tem-

perature (Avissar and Schmidt, 1998) (Górska et al., 2008), our study indicated that the

impact of surface heterogeneities of the sensible heat flux was just minor (not exceeding

2–3 %).

With regard to the initial stratification, an increase in the initial stratification can

qualitatively alter the effect of the surface heterogeneous forcing. The model results have

shown a clear differences between two stratification regimes — the weaker stratification

that permits the development of cumulus layer and the stronger stratification that leads

to boundary layer that remains clear or topped with stratocumuli clouds. In the regime

with the weaker stratification, the effect of surface heterogeneities on the height and

structure of the boundary layer generally diminished with the thickening of the cumulus

layer. The cloud-top forcing by active cumulus cores and entrainment leads pose domi-

nant effect on the resulting convective structures in the CBL. On the other hand, in the

regime of stronger stratification, the effect of surface heterogeneities on the structure of

boundary layer is mostly maintained. This is particularly demonstrated by the effect of

the heterogeneity ’along’. The stripes of temperature anomalies drives the formation of

distinctive forced cloud rolls (Gryschka et al., 2014). The previous chapter showed that

the structure of these rolls disappears soon after the formation cumuli layer. However in

the absence of cloud-top forcing by cumulus cores and entrainment, forced rolls persist

well beyond 5 hour. Model results generally agree that inhomogeneities in the surface

present favourable conditions for roll convection (Gryschka et al., 2008).

The first point of the hypothesis, the issues of the impact of an increased wind forc-

ing, is separately addressed in both stratification regimes. In the scenarios without the

cumulus layer, the increased wind velocity in the mixed layer leads to a decreased impact
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of anomalies ’across’ and ’chessboard’. The differences in the latent heat flux between

the runs with heterogeneities and the ’homogeneous’ run was smaller in scenarios with

an increased wind forcing. The impact of the increased wind velocity in case of hetero-

geneity ’along’ did not exhibit any clear trends.

In the scenarios with the weaker initial stratification, the results again slightly differ

for each heterogeneity type. During the first hour, runs with heterogeneities ’across’

and ’chessboard’ exhibit a faster growth in the scenario with a weak wind shear The

comparison of scenarios with other wind forcing do not reveal any specific trends. The

heterogeneity ’along’ drives the formation of of cloud rolls. Resulting differences be-

tween the run with heterogeneity ’along’ and the ’homogeneous’ run are higher in the

scenarios with increased wind forcing. The impact of heterogeneities on the structure of

CBL disappears in majority of scenarios after the formation of CuL. The effects of all

three types of heterogeneities are then limited to an increased values in the surface latent

heat flux. These values generally do not differ between the scenarios with 10, 20 and

30 m/s−1 Therefore, we conclude that in the regime with cumulus layer, increased wind

forcing does not lead to a decrease in the effect of the heterogeneities. On contrary, it

can actually lead to its increase. This indicates that findings of previous LES studies of

the impact of heterogeneous forcing (Grossman et al., 2005) and (Avissar and Schmidt,

1998) are often limited to specific atmospheric conditions and size of heterogeneities.

Furthermore, the combination of the high wind forcing and the surface heterogeneities

’along’ exhibited a specific influence on the development of the ABL. Before the forma-

tion of the CuL, heterogeneity of the type ’along’ leads to a higher mean wind velocity

in the mixed layer. This phenomenon is caused by forced convective rolls that improve

downward transport of momentum. After the thickening of the CuL, these forced con-

vective rolls diminish and the difference in mean wind velocity disappears.

The evaluation of updraughts and downdraught has further extended the findings

of the previous chapter. The distribution of the vertical wind velocities within the ML

is not normal in any of the model runs evaluated. Furthermore, the approximation by

normal distribution mostly results into an underestimation of the kinetic energy of up-

draughts. These results are generally consistent over the whole set of model results. The

evaluation of the heat and moisture flux by strong updraught has then unveiled a clear

differences between the model scenarios. In the scenarios with the stronger stratification,

the ratio of the heat and moisture transport facilitated by strong updraught is signifi-

cantly higher than in the runs with a weaker stratification This finding is consistent with

the previous modelling study of updraughts in CBL (Hellsten et al., 2013). Moreover,

the heterogeneities of the type ’along’ lead to a higher ratio of the heat and moisture

transport by strong updraughts in strongly stratified scenarios. These phenomena can

be explained by the more organised structure of strong updraughts in the absence of
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the additional turbulence by cumuli clouds. The implication of these findings for the

parametrization schemes are going to be further addressed in the Chapter 6.

Due to the large number of scenarios investigated, we have not presented results of

the analysis of residua in flux timeseries. Since these results are relatively complicated,

they were rather placed in the appendix. The analysis of the gravity was also not in-

cluded in this chapter. However the main reason was that none of the model scenarios

exhibited differences in the power spectra in the upper atmosphere between the model

runs with the different heterogeneous patterns.

Findings of this study improve our understanding of the impact of heterogeneity in

surface temperatures on the convective boundary later. Presented results further extend

the findings of the previous chapter on a wider palette of cold air outbreaks. Model results

further serve for an adjustment of parametrization schemes presented in the Chapter 6.

Since all model runs presented so far were based on some idealised setting, the link to

real weather conditions should be addressed. Therefore, the following chapter is going

to focus on a selected case of an observed cold-air outbreak.
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Chapter 6

Case Studies

Although an idealised large eddy simulation (LES) provides a valuable tool for un-

derstanding the development of the atmospheric boundary layer (ABL), it might seem

slightly disconnected from “real” weather scenarios. Idealised LES model scenarios are

usually designed to represent some observed weather phenomena, however a number of

simplifications are introduced both in the initial conditions as well as in the forcings

applied. On the one hand, various simplifications in the model setting allow us to clearly

define model scenarios and examine the impact of modifying some of the model param-

eters (see chapter 4). On the other hand, the model might not correctly capture the

inner variability within the ABL. Furthermore, simplifications in the setting of surface

conditions often ignore some feedback loops in the physical processes (see discussion on

surface fluxes in 4.3). In a case study, LES model runs are instead directly based on

a previously observed weather scenario. Therefore, a case study provides an opportunity

to compare the model results with the observational data.

The main purpose of this chapter is to extend the scope of this thesis to an observed

cold-air outbreak (CAO). Although there was an extended LES study of the impact of

MIZ heterogeneities on a developing CAO (Gryschka et al., 2014), it lacks a comparison

with airborne data. A number of other case studies used mesoscale models (i.e. not eddy

resolving) instead of a LES. These were, for example, studies of Pagowski and Moore

(2001) and Wacker et al. (2005). There have been a number of LES case studies that

focused on the heterogeneity in surface conditions, however they were usually concerned

with the atmosphere in mid-latitudes and tropics. Bertoldi et al. (2013) performed an

interesting LES study and compared it with airborne observations, however the lower

troposphere was mostly neutrally stratified. This was also the study of heterogeneous

surface patches by Maronga et al. (2014). Studies of the heterogeneity over deserts in

Central Asia (Li et al., 2011) and the Sahara (Huang et al., 2010) whitch were concerned

with much deeper ABL than in a CAO.
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As a suitable example for our case study, we chose CAO that occurred over a marginal

sea-ice zone (MIZ) during the ACCACIA field campaign in spring 2013. The main aims

of this case study are:

• Investigate the impact of heterogeneous surface conditions in a specific CAO case.

• Compare the model results with airborne data.

• Analyse the likely variability due to uncertainty in surface conditions.

The approach applied in the preparations of this case study is inspired by the previous

case studies of Kosovic and Curry (2000) on turbulent boundary layer and by Klein et

al. (2009) on the impact of microphysics parametrization . Since the main goal of this

chapter is to assess a likely impact of the spatial heterogeneity in surface temperature,

a small ensemble of model runs is constructed — each run follows a different setting of

surface conditions. The control run of each set is based exclusively on the data extracted

from regional NWP used during the campaign. Three separate sets with different initial

positions are constructed with the aim to cover the horizontal variability in CAO. Fur-

thermore, they provide a better opportunity for comparison with the airborne data.

This chapter first explains the choice of the CAO case, the flight mission B760 that

took place on 21 March 2013. It will continue with the description of the datasets

available for this study (6.1). This is followed by the methodology. Firstly, it explains

the construction of the sets of modified runs. Secondly, it provides a clear overview of

model settings (6.2.2). The specific aspect of the methods are then further described and

explained. Results of the case study then consist of the analysis of model runs (6.3.2)

and their comparison with the airborne observations (6.3.3).

6.1 Data

The Aerosol-Cloud Coupling And Climate Interactions in the Arctic (ACCACIA) field

campaign took place in 2013 over the seas surrounding Svalbard. The main purpose of

the campaign was to measure concentrations of different aerosol particles in the Arctic

and investigate the interaction between the aerosols, boundary layer structures, and low

level clouds (Young et al., 2016b). The purpose of this part of the chapter is to provide

a basic description of the observed CAO case and introduce the datasets used in this case

study. Firstly, we briefly review the main specifics of the ACCACIA flight campaign.

Secondly, we focus on a chosen CAO case. The following paragraphs then focus on the

airborne observations (6.1.3), the NWP forecast used during the campaign (6.1.4), and

satellite observations of sea-ice.
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6.1.1 ACCACIA

ACCACIA is a research project focusing on studying the interactions between clouds

and aerosols in Arctic. One of the goals of the project is to improve the understanding

of the effect of aerosols and other processes on the low-level clouds in Arctic (Carslaw et

al., 2015). Field campaigns took place in spring and summer 2013. It involved observa-

tions from a research ship and two research aircraft: Facility for Airborne Atmospheric

Measurements (FAAM) BAe-146 and the British Antarctic Survey MASIN Twin Otter

(ACCACIA, 2013). The part of the campaign in spring 2013 consisted of a number of

flight missions over sea-ice and MIZs in the seas around Svalbard (see figure 6.1 for an

overview). The planning of the flight missions was enhanced by the specialised regional

NWP forecast performed with the MetUM (Met Office, 2014).

The ACCACIA project has so far achieved interesting results on iodine particles in

the Arctic (Allan et al., 2015) as well as on the distribution of other aerosols in the

Arctic (Young et al., 2016a). Furthermore, the project provided detailed measurements

of spring time stratocumulus clouds (Lloyed et al., 2015). It also provided new results

for studies on the momentum flux over MIZs (Elvidge et al., 2016).

Figure 6.1: The trajectories of flight missions during the spring season of the ACCCACIA
field campaign. Reproduced from the Quicklookbook of the ACCACIA project FAAM
et al. (2015).
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ACCACIA field campaigns provided a few opportunities for an observation of a CAO

over a MIZ. After a careful consideration, we chose the CAO case observed during the

FAAM flight B760. In the following paragraph, we are going to justify our choice and

describe this CAO case.

6.1.2 Chosen Flight Day

The main reasons for the choice of the flight day 21 March 2013 is the availability of

turbulent measurements over a MIZ. The mesoscale weather conditions are schemati-

cally shown in the figure 6.2a. A mass of cold air was advected from the inner Arctic

over the MIZ that is located in Barents Sea. While most of the air mass is strongly

stratified, the warm surface in the MIZ (see figure 6.4) lead to the formation of a CBL.

This then continued deepening in the downwind direction. While the area over the MIZ

was mostly cloud free, there were uuper level clouds at the end of the MIZ and low level

clouds were forming further downwind over open water. The transition on the cumulus-

caped boundary layer was observed further downwind. The cumulus topped CBL was

indicated in the forecast, as well as in the satellite and airborne data.

(a) annotated satellite image
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Figure 6.2: Overview of the CAO case on 21 March 2013 in the area East from Svalbard
that was observed during the FAAM flight mission B760. Sea-ice fraction and wind
vectors derived from the NWP forecast are shown in (b). The trajectory of the FAAM
research aircraft is added.

This flight mission consisted of a number of profiles and horizontal flight legs in areas

both East and West of Svalbard. However, the other flight legs are not relevant for

this study. Our wider area of interest consists of the area Southeast of Svalbard (see

figure 6.2b). The main focus is then on the part of MIZ in vicinity of the stack of three

horizontal flight legs through a developing CBL (marked in bold in the figure 6.4) and
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upwind from them. For the details on flight legs, see table 6.2. The time interval of

interest spanned from 6:00 until 16:00 on 21 March 2013 .

leg 7 leg 8 leg 9

starting time (UTC) [s] 13:30 13:56 14:27

starting position 24.5◦ E 24.5◦ E 24.61◦ E
76.9◦ N 75.5◦ N 77.0◦ N

ending position 24.5◦ E 24.5◦ E 24.5◦ E
75.5◦ N 77.0◦ N 76.05◦ N

average altitude [m] 108.0 181.2 303.1

average aircraft speed [m s−1] 101.3 101.7 103.8

Table 6.2: Overview of flight legs in the area of interest

6.1.3 Airborne Observations

The flight mission on 21 March 2013 was performed by the FAAM aircraft. This aircraft

has participated in a number of research flights over the last two decades. For the

ACCACIA field campaign, it was equipped with a number of state-of the art science

instruments. In the following paragraphs, we briefly describe the airborne data that

were used in this case study. For further details on the instrument specification, we refer

to documentation on the FAAM website (FAAM, 2017).

• An essential part of the airborne measurements is the recording of the positions

of the aircraft. FAAM utilises GPS-aided Inertial Navigation system that pro-

vides longitude, latitude, altitude and velocity data. This navigational system is

comprised of an Applanix POS AV 510 system, designed explicitly for the geo-

referencing of airborne sensor data. The high frequency outputs of this system are

sampled as 32 Hz for the data recording.

• The basic recording of the temperature was performed with the Rosemount/Goodrich

type 102 Total Air Temperature probes. It generally consists of two probes. One is

enclosed in the de-iced housing while the other one is non de-iced. The temperature

data are sampled at 32 Hz.

• The main source of the data on humidity was the General Eastern GE 1011B

Chilled Mirror Hygrometer. This instrument provides 4 Hz recordings of the dew-

point temperature.

• A turbulent measurements were enabled by FAAM CORE 5-hole turbulence probe.

The location of the probe in the tip of the aircraft allows it to measure the incident
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airflow and 3-D wind components. The data output from the turbulent probe is

combined with the filtered output from the Inertial navigation system (Petersen

and Renfrew, 2009). The turbulent measurements are in the end sampled at 32 Hz.

• The FAAM aircraft was further equipped with a number of instrument for sampling

aerosol concentrations as well as advanced instruments for cloud microphysics.

Although those data were essential to the success of the ACCACIA flight campaign,

they are not relevant for this case study.

All of the listed instruments were recording in the flight legs 7, 8 and 9 of the mission

B760. No severe instrument conditions were reported. A pre-processing of the instru-

ment outputs performed by FAAM specialists did not indicate any significant errors in

the data apart from isolated error values in the flight leg 8. As the non-deiced probe

stayed ice-free in listed flight legs (see figure 6.3), we use this timeseries in the further

calculation of thermodynamic variables.
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Figure 6.3: The series of temperature and the dew point temperature derived from the
airborne observations in the flight legs 7, 8 and 9. The added vertical lines mark the
latitudes between which is the aircraft flying above the MIZ (as derived from the MetUM
forecast and the aircraft trajectory).
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6.1.4 Operational NWP Data

The availability of a cutting edge NWP weather forecast is essential for planning of flight

missions (Renfrew et al., 1999). The ACCACIA flight campaign used the specialised re-

gional NWP forecast (Met Office, 2014) from the Met Office Unified Model (MetUM).

It allowed researchers to decide which days would be suitable for observing specific phe-

nomena and to propose the mission flight path. Furthermore, the NWP forecast allowed

an identification of some of the observed atmospheric phenomena in the later data anal-

ysis.

The specialised regional forecast was performed with the operational version of the

MetUM. The computational domain span from the longitude 23◦ W to 23◦ E and from

70◦ N to 82◦ N and in the vertical direction from the surface up to the pressure level

100 hPa. While the region was located in the vicinity of the north pole, the computations

were performed on a non-standard grid where the pole was shifted to the position 154.8◦

N◦ for the purpose of avoiding various computational issues (Randall et al., 1998). In the

rotated coordinate system, the horizontal resolution was 0.036 degree. This translates

as approximately 4 km in the target area. The boundary layer was parametrized by the

standard MetUM scheme (see 1.1.1 for the description).

Figure 6.4: The surface temperature during the FAAM flight mission B760 on
21 March 2013. The surface temperature and wind vectors were derived from MetUM
forecast.

The NWP simulation used for the chosen mission B760 started with the initial condi-

tions at 00:00 on 21 March 2013. The model outputs consisted of the fields of prognostic

variables and various model diagnostics. They were produced every 3 hour. Although

the outputs included a number of diagnostics such as cloud types and the long-wave
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radiation at the top of the atmosphere, the data on ABL were quite limited. The diag-

nostics of the ABL type and the diagnostics of the ABL depth were provided, however

the estimation of the vertical fluxes of heat and moisture in the ABL were not included.

6.1.5 Sea-Ice Data

While this case study is focused on the impact of surface conditions in the MIZ on

the CAO, further attention is given to the data on MIZ. For this purpose, we compare

the distribution of the sea-ice in the MetUM forecast with the observational data. In

this part of the thesis, we describe the sea-ice observations and the main implications

for the NWP.

High-resolution satellite observations of the sea-ice fraction are obtained from the

AMSR2 Sea Ice Maps (Spreen et al., 2008). The sea-ice map for 21 March 2013 in

the figure 6.5a shows a wide extent of the MIZ southeast of Svalbard with a number of

smaller areas of open water . The comparison of sea-ice fraction in MetUM with the

observations reveals that the southward extent of the MIZ is underestimated (see figure

6.5b). Furthermore, the concentration of the ice within the MIZ in the area upwind from

the flight legs is also underestimated.
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Figure 6.5: The comparison of the observed of the sea-ice fraction on 21 March 2013 and
the prediction of the sea-ice fraction used in the MetUM
regional forecast.

Since the MetUM uses a different surface parametrization of surface fluxes for the

sea-ice surface (Lock and Edwards, 2013), underestimation of the sea-ice extent might

lead to the overestimation of surface fluxes. Furthermore, the underestimation of the
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sea-ice extent might also lead to incorrect evaluation of the aerodynamic surface rough-

ness. While there are significant differences in the sea-ice fraction between the MetUM

and the AMSR2 data, we further employ the observational data in the construction of

surface heterogeneities for the case model runs in 6.2.6.

6.2 Methods for Case Studies

The construction of this case study was inspired by the study of Kosovic and Curry

(2000) and the M-PACE comparison study (Klein et al., 2009). The former study mo-

tivated the construction of the set of runs, while the later served mostly as a guideline

how to set the model based on NWP forecasts and observations of a CAO case. While

the model runs presented in the previous result chapters introduced idealised initial and

boundary conditions, the case study would employ conditions derived from a NWP fore-

cast. Therefore, it requires a substantial adjustment to the methodology presented in 3.2.

In this part of the chapter, we first explain the main principle of the framework for

case simulations. Then we provide the overview of model setting. The following sections

then focus on specific parts of the methodology. The methods for the evaluation of the

model runs remain essentially the same as for idealised model scenarios ( 3.4). The main

part of the analysis is again performed for the interval of model runs when larger CBL

eddies are fully in the resolved regime (see 3.2.4 for clarification). The interval of the

model run when the larger CBL eddies are properly resolved is again determined by

a comparison of resolved portion and subgrid portion of the vertical fluxes (see 3.5.3).

Additional methods are then introduced for the comparison between the model results

and the airborne data (6.2.7).

6.2.1 Framework for Case Study

Since the main goal is to assess the likely impact of the heterogeneous surface forcing,

a small ensemble of model runs is constructed — each run follows a different setting of

surface conditions. The control run is set exclusively on the data extracted from the

specialised MetUM forecast used during the campaign. Although the MetUM forecast

includes the estimated sea-ice fraction, it does not provide information on the structure

of ice floes within the MIZ. Therefore, the control run assumes homogeneous surface

conditions, similarly to control runs described in 3.2 and 5.2.

Same initial conditions and the large scale wind forcing are applied in other runs.

However the setting of the surface temperature is modified by adding spatial heterogene-

ity over the MIZ. In addition, we should consider the form drag produced by ice floes
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Figure 6.6: The location of the flight legs of the FAAM flight mission B760 on
21 March 2013 and the trajectories of modelled parcels. The sea-ice fraction and wind
vectors were derived from MetUM forecast.

within the MIZ. While the MIZ is expected to influence the air friction (Lüpkes and

Gryanik, 2015), it would be reasonable to include it in the analysis of the variability in

the MIZ (Carper and Porté-Agel, 2007). Furthermore, it would allow us to compare the

relative influence of form drag and the influence of surface temperature heterogeneities

on a developing CBL. Therefore, the resulting ensemble consists of the following runs:

1. control run with variable surface roughness and albedo set accordingly to UM

forecast; surface is locally homogeneous

2. modified runs according to MetUM forecast setting

(a) surface roughness adjusted based on sea-ice fraction

(b) heterogeneous surface based on sea-ice fraction

3. modified runs according to observations of sea-surface temperature and sea-ice

fraction

(a) homogeneous surface temperature, surface roughness based on sea-ice fraction

(b) heterogeneous surface temperature based on sea-ice fraction

(c) heterogeneous surface temperature and surface roughness based on sea-ice

fraction
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Figure 6.7: The location of the flight legs of the FAAM flight mission B760 on
21 March 2013 and the trajectories of modelled parcels. (a) shows the location of
flight legs against the sea-ice fraction in the MIZ while (b) compares altitudes of flight
legs against the vertical structure of the troposphere in sl-2. Green line indicates the
boundary layer height. The sea-ice fraction and potential temperature were derived from
the MetUM forecast.

The framework is further extended with the aim to represent the mesoscale variabil-

ity within the CAO and to provide a comparison between the model and airborne data:

Three different Quasi-Lagrangian model parcels (see 1.5 for explanation) are considered.

We denote them sl-1, sl-2 and sl-3 for clarity. The parcels are projected to move approx-

imately along the direction of the synoptic-scale geostrophic wind. Their initial positions

(see table 6.4) are located approximately on an East-West line with a longitude spacing

of 1.5 degree. They are chosen in the way that the Quasi-Lagrangian parcels trajectories

starting from these positions intersect the aircraft legs in the sector of flight legs 7, 8, 9

(see figure 6.6). Moreover, the intersections occur at specific part of the flight legs. The

trajectory of the parcel sl-1 intersect flight legs over the early part of the MIZ, while

parcel trajectories sl-2 and sl-3 intersect flight legs further downwind over the MIZ and

the open sea respectively (see figures 6.7a and 6.7b). Therefore, each of these three sets

of model runs should provide us with data for the comparison with airborne observations

at different stages of the CBL development.

6.2.2 Overview of Model Setting

The case study requires a cautious setting of the model runs. With an intention to

maintain clarity and allow for reproducibility in future studies, all the scenario & model

settings are defined in the following tables. The first and the second table defines the set-

ting of control runs. The following tables then define setting of modified runs in each set.
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The following tables are designed in a way to provide a clear overview. The left column list a model

properties and the central column defines its setting. The third column then provides a reference to the

following parts of this chapter that offers a detailed description and the explanation of these settings.

Finally the rightmost columns refers to the part of the software where is the setting implement. The

names of LEM code segments start with the symbol ∗ and the names of LEM namelists starts with

the & symbol. Notwithstanding, the exact implementation in the idealised scenarios in LEM code is

not included in this chapter. Due to its technical character and overall size, it is instead located in the

Appendix.

property setting details set in

domain width in x 16 km 3.2.4 runfile

length in

y

16 km 3.2.4 runfile

depth 12 km 3.2.1 &GRID

resolution

horizontal 160 m, in both directions x and y runfile

vertical

altitude [m] spacing [m]
7500–12000 100
2500–7500 100
100–2500 40

0–100 10

2.3.1 &GRID

grid type Arakawa-C in horizontal, Lorenz in vertical 2.6
size 100 x 100 x 126 runfile

subgrid model LEM subgrid model based on S-L theory 2.4 &SUBMODEL

microphysics LEM 3-phase cloud microphysics

precipitation: rain, snow, graupel

6.2.3 ?
PRAMETR

radiation

• solar Edwards-Slingo radiation code 6.2.3 ?
PRAMETR

• long-

wave

radiation update every 5 timesteps 6.2.3 ?
&INPUT

sub-arctic winter profiles for upper atmosphere 6.2.3 ?
CALC LEVS

numerics • maximum advective CFL number 0.2

• maximum viscous CFL number 0.2

2.6 &NUMERICS

• P–W advection scheme for momentum 2.6 ?
PRAMETR

• ULTIMATE advection scheme for scalars 2.6 ?
PRAMETR

• initialisation by perturbations in wind velocity 3.2.5 ?
START

Table 6.3: Overview of model setting — computational setting of control scenario
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property setting details set in

initial positions

parcels
sl-1 sl-2 sl-3

Longitude (East) 25.54 26.93 28.4
Latitude (North) 77.58 77.50 77.57

6.2.1

azimuth of the

trajectory

sl-1 sl-2 sl-3
azimuth [deg] 237.0 240.3 243.2

6.2.1

initial conditions Potential temperature, humidity and wind velocity
follows values at 06:00, 21 March 2016 from MetUM
forecast

6.2.5 &INITPROF

dynamics Coriolis parameter for 77◦ North &DYNAMICS

forcing large scale wind forcing in both directions derived

from the forecast along the trajectory

6.2.4 forcing file

boundary conditions

• top rigid boundary, no subsidence, stress-free for hori-

zontal velocities

with damping layer 2 km deep, located above 10 km

3.2.4 &DAMPNML

• lateral periodic boundary 2.3.1

• bottom rigid boundary, with surface model,

reference surface pressure 1004 hPa

6.2.3 &INPUT

surface model based Monin-Obukhov theory, prescribed surface

roughness length and values for surface temperature

and humidity

2.5 ?
PRAMETR

roughness length derived from the forecast 6.2.6 &INPUT

surface albedo derived from the forecast &RADCNTL

surface humidity saturated surface 3.2.1 ?
PRAMETR

surface temperature derived from the forecast 6.2.6 &INPUT

reference profile temperature reference profiles at the beginning

are derived from the forecast along the trajectory

6.2.5 &THPROF

Table 6.4: Overview of model setting — control runs
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’40 m’ horizontal resolution
property setting details set in

resolution

horizontal 40 m, in both directions x and y 3.2.4 runfile

domain width in x 4800 m 3.2.4 runfile

length in

y

4800 m runfile

height 12 km 3.2.1 &GRID

grid size 120 x 120 x 126 runfile

Table 6.5: Overview of model setting — model runs with increased horizontal resolution

heterogeneity in surface temperatures
property setting details set in

types
type pattern
along stripes along wind
across stripes across wind

chessboard chessboard pattern

3.3 update code

spatial scales size of the square block of the pattern
(
d(h)

)
3.3.2 update code

options used horizontal
resolution [m]

1600 m 40 m and 160 m
3200 m 160 m

temperature scales maximum scale of a positive anomaly δ(h)T = 3 K 3.3.2 &INPUT

time development Defined by the equation 6.7 dependent on the values

of surface temperature and sea-ice fraction extracted

from:

options

MetUM forecast
sea-ice observations

6.2.6 &INPUT

Table 6.6: Overview of model setting — model runs with modified surface conditions

modified surface roughness
property setting details set in

surface roughness Defined by the equation 6.11 dependent on the val-

ues of sea-ice fraction extracted from:

options

MetUM forecast
sea-ice observations

6.2.6 &INPUT

Table 6.7: Overview of model setting — model runs with modified surface roughness
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6.2.3 General Setting

The setting of the physical properties in the model generally follows the setting of the

control run in 3.2 The following paragraphs focus on the aspects of the model setting

that differ from idealised model runs or otherwise require further explanation.

The downwind development of the CAO is again simulated with the help of Quasi-

Lagrangian approach of Szoeke and Bretherton (2004). For detailed description and

justification, see 3.2.3. The Quasi-Lagrangian parcels move into the area over the MIZ

at least 6 hours after the front of the CAO has passed. This allows us to avoid the

issues with the secondary circulation at the CAO front that might otherwise invalidate

the Quasi-Lagrangian approach (Skyllingstad and Edson, 2009). The effect of lateral

advection is neglected after a careful consideration due to homogeneity in prognostic

variables in the lateral direction (see 6.2.4 for details).

While the CAO we are studying occurred around the spring equinox, the atmosphere

was receiving solar irradiation for most of the modelled time interval. Although the

incoming SW radiation is weaker than the OLR, it might effect the properties of shallow

stratiform clouds (Slingo and Schrecker, 1982). As we do not want to neglect the effect

of SW on newly formed clouds, the code for SW radiation in LEM (2.3) is switched on.

We further consider the radiation properties of the atmosphere above the model domain.

Since the CAO case is taking place at the beginning of the spring, the upper atmosphere

is again represented by the McClatchey profile for the subarctic winter (McClatchey et

al., 1971).

6.2.4 Large Scale Forcing

The setting of the large scale wind forcing in this study is motivated by the M-PACE

comparison study (Klein et al., 2009) where the large scale forcing were derived from

a NWP forecast. In our case study, the large scale forcing is based on the consecutive

steps of the MetUM regional forecast. In the following paragraphs, we describe the whole

process step by step. Then we also address the issue of differential advection.

Firstly, we interpolate the values of wind velocity on the slice along the parcel tra-

jectory. The interpolation in the horizontal direction is performed on each vertical level

separately. Since the grid is not equidistant, we employ the tri-scattered interpolation

technique (Amidror, 2002). While this method is already implemented in Matlab as the

function TriScatteredInterp, we simply call it on the set of gridpoints at each hori-

zontal level and then connect the outputs together. The advantage of this approach over

applying tri-scattered interpolation on the whole field is the effective use of the memory.

We repeat this approach for each MetUM timestep within the interval of interest.
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Secondly, we decompose the wind velocity into the component parallel to the direction

of the parcel trajectory and perpendicular to it.While the wind velocity is stored in

eastward and northward component, a simple linear transformation suffices. The new

decomposition into the parallel component v and the perpendicular component u of wind

is therefore obtained as: (
u

v

)
=

(
cosα sinα

− sinα cosα

)
·

(
uE

uN

)
(6.1)

where uE is the eastward wind component, uN is the northward wind component, and

α is the azimuth of the parcel trajectory. The advantage of this choice of the wind

components is that the horizontal wind vector (u, v) is consistent with the right-handed

Cartesian coordinate system (x, y, z) in the LES grid.

Thirdly, we evaluate the resulting wind field (see figure 6.8). The large scale forcing in

the direction parallel with the trajectory is approximately constant with time. This sim-

plifies the transformation of the spatially-dependent wind forcing on the time-dependent

forcing required in the LEM. We reclaim that the horizontal mean of wind velocity in

ML is approximately constant within the ML (Stull, 1988, p.450) and that the distance

travelled by a parcel since some reference point t0 can be expressed as

s(t) =

∫ t

t0

v̄(t̃, zi) dt̃ (6.2)

where zi is the ML height and v̄ is the horizontal mean of wind velocity in the direction of

the parcel trajectory (see 3.4.1). The time interval ∆tj required by the Quasi-Lagrangian

parcel to travel between two points on the trajectory (denoted sj+1 and sj) is then ap-

proximated as

∆tj ≈
sj+1 − sj
v̄(sj+1, zi)

(6.3)

where v̄(sj+1, zi) is the mean wind velocity in the direction of the parcel trajectory

between the points sj+1 and sj. The time coordinate of Quasi-Lagrangian parcel therefore

yields

tn ≈ tINI +
n−1∑
j=0

sj+1 − sj
v̄(sj+1, zi)

(6.4)

where tINI is the initial time (6:00 on 21 March).

In the stratified troposphere over the sea-ice, v̄(sj+1, zi) was replaced with the mean

velocity at the indicated boundary layer top. A further testing revealed that values of

tn are generally not sensitive to the exact choice of sampling sj in (6.4), as long as it is
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on the same order of magnitude as MetUM horizontal resolution or finer. Furthermore,

replacing the sj+1 with sj also does not lead to significant changes in tn.

Finally, we construct the wind forcing for the LEM. The wind forcing vf in the

direction parallel to parcel trajectory yields

vf (tj, z) = v(tj, sj, z), (6.5)

for all points sj on the trajectory and all altitudes z within the LEM domain. The changes

in the wind velocity component in the direction perpendicular to the parcel trajectory

should be then included as an additional large-scale forcing (Szoeke and Bretherton,

2004). The calculation of uf , wind forcing in the perpendicular direction, is analogous

to (6.5).The forcing in both wind directions is then included in the LEM setup as forcing

files (Gray and Petch, 2004). The exact setting of the wind forcing is provided in the

Appendix.

The effect of the differential advection should be considered. While the NWP data are

available, the advection of the environmental air into the Quasi-Lagrangian parcel can

be included following the work of Richardson et al. (2007). However, the NWP forecast

show relatively small differences in the direction perpendicular to the wind trajectory.

Furthermore, the potential temperature and humidity are approximately homogeneous

in the horizontal direction above the ABL. Therefore, we neglect the effect of the hori-

zontal advection of the environmental air by the perpendicular wind component. This

approach is consistent with the previous studies of CAOs by Muller et al. (1999) and

Skyllingstad and Edson (2009).
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Figure 6.8: The cross-section of wind forcing in the vertical slice following the parcel
sl-2.
The small square indicates the start of the MIZ in MetUM forecast.
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6.2.5 Initial Conditions

Initial conditions in a number of case studies followed the data obtained from sound-

ings (Desai et al., 2006) or from the dropsondes released from an observational aircraft

(Huang et al., 2010). Unfortunately, neither of these is available in our CAO case.

Although a number of dropsondes were used during the ACCACIA flight missions, none

of them was released during the flight mission B760. With an aim to accurately represent

the vertical structure of the troposphere over ice in this CAO case, the initial conditions

for each parcel are instead extracted from the MetUM regional forecast.

The evaluation of the initial conditions again requires additional processing of the

MetUM forecast data. The interpolation of the potential temperature and humidity fol-

lows the approach from 6.2.4. However unlike the large-scale forcing on pressure levels,

the initial conditions are required on altitude levels. Therefore, said variables are in

addition linearly interpolated in the vertical direction on fixed altitudes. The vertical

profiles of potential temperature, humidity and both wind components at the start of

the slice in the first time step are then inserted as the initial conditions into the case

model run. The rest of the slice is then used for further comparison with LEM results.
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Figure 6.9: Initial conditions in potential temperature and water vapour content of for
all three sets or runs.
(Note: Profiles of potential temperature are virtually almost the same)

6.2.6 Surface Conditions

The important part of the model scenario is the description of the surface forcing. This

is also the only aspect in which the runs in the same set differ from each other. The

following paragraphs describe the setting of the mean surface temperature and the set-

ting of heterogeneities in surface temperature. The effect of the form drag on the surface
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exchange in the MIZ is also taken into account. Due to significant differences between

the ice-fraction in the MetUM forecast and the observational data, we employ them

separately in the setting of model runs. In the following paragraphs, we first define the

surface properties in the control run. Then we define the setting of heterogeneity in

surface conditions. Finally we define the modification of surface roughness.

The time dependent setting of surface temperature and aerodynamic roughness in the

control run of each parcel is directly derived from the MetUM forecast. This approach

is similar to the approach on deriving wind velocities in 6.2.4. The values of surface

properties from the forecast dataset are first interpolated on the parcel trajectory. We

again employ tri-scattered interpolation in the horizontal layer of the surface. The linear

interpolation is then used in the time coordinate. The time-dependent values of surface

temperature Ts, c, aerodynamic surface roughness z0, c and the surface albedo als, c for the

control run are then derived as

Ts, c(tj) = Ts(tj, sj),

z0, c(tj) = z0(tj, sj),

als, c(tj) = als(tj, sj)

(6.6)

where Ts, z0 and als are the respective values on the line interpolated from the MetUM

dataset. While the MetUM forecast does not provide data on the aerodynamic surface

roughness for scalars, we set them to the same values as z0, c for simplicity (Derbyshire

et al., 2004).

Since the description of the size and shape of floes within the MIZ is not available, we

use a semi-idealised setting similar to 3.3.2. All three types of the pattern of heterogeneity

are considered. The surface temperature Ts, (h) in the runs with heterogeneity should

represent conditions in the MIZ. Therefore, we expect it to fulfil the following criteria:

• Ts, (h) is homogeneous over the contiguous sea-ice and open sea-water.

• The mean value of Ts, (h) is the same as Ts, c in the control run.

• The MIZ is not colder than the ice further upwind. Therefoe, the Ts, (h) in the

patches of negative anomalies is always greater or equal than Ts over sea-ice surface

upwind.

• The water in MIZ is not warmer than on the open sea. Therefore, Ts, (h) in the

patches of positive anomalies is always lesser of equal than Ts over open water

downwind.

• The difference between Ts in the patches of negative anomalies and the mean Ts

in MIZ should reach δ(h)T if possible.
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The values of surface temperature anomalies are therefore dependent on Ts, c and sea-ice

fraction cic. The spatial scales 1600 m and 3200 m are tested. The temperature scale

δ(h)T of anomalies is set to 3 K (which was the middle value in the idealised model runs).

Before we introduce the heterogeneity in surface temperatures, we obtain the sea-ice

fraction cic(sj) at each point of the trajectory by interpolating from the MetUM dataset

(note: cic is constant with time in the dataset). We find indices

• jc,0 — the first point where cic(pj) < 1 and Ts, c(tj) is rising.

• jc,3 — the last point where cic(pj)� 0

• jc,1 — the last point where Ts, c(tj) < Ts, c(tjc,0) + δ(h)T

• jc,2 — the first point where Ts, c(tj) > Ts, c(tjc,1)− δ(h)T

The surface temperature Ts, (h)+ over the patches of positive anomaly is then defined as:

Ts, (h)+ (tj) =



Ts, c (tj) j < jc,0

Ts, c (tj) +
sj − sjc,0
sjc,1 − sjc,0 δ(h)T j ∈

[
jc,0, jc,1

)
Ts, c (tj) + δ(h)T j ∈

[
jc,1, jc,2

]
Ts, c (tj) +

sjc,3 − sj
sjc,3 − sjc,2 δ(h)T j ∈

(
jc,2, jc,3

]
Ts, c (tj) j > jc,3

(6.7)

The similar approach is then applied in the construction of model runs based on the

observational sea-ice data. The only difference is that cic(sj) is derived from the obser-

vational dataset for 20 March 2013 (see 6.1.5 for description of the AMSR2 dataset).

In the modification of surface roughness, we take into account the increase in the

surface roughness due to the additional drag in the MIZ (Elvidge et al., 2016). The

neutral drag coefficient over a mixture of sea-ice and water is usually formulated as

Cdn = (1− cic) Cd,w + cic Cd,ic + Cd,f , (6.8)

where Cd,w is the drag coefficient over open open water, Cd,ic is the drag coefficient over

packed sea-ice and Cd,f , is the form drag (Lüpkes and Birnbaum, 2005). The form drag

accounts for the drag caused by large roughness elements such Shao and Yang (2008)

such as edges of ice floes and other obstacles in the packed ice. Lüpkes et al. (2012)
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proposed the a number of set of drag parametrization for MIZ that were extensively

tested in the sea-ice exchange models (Tsamados et al., 2014). Since the distribution

of ice floes sizes in the MIZ in the area of interest is not known fully, we apply the

parametrization formula:

Cd,f =
ce
2 κ

(
ln
(
hf/z0,w

)
ln
(
z1/z0,w

))2

(1− cic)
β
f cic, (6.9)

where κ is von Kármán constant, z1 is the height at which the drag coefficient is cal-

culated, z0,w is the aerodynamic surface roughness over water, hf is the parameter rep-

resenting the vertical extent of ice floes, here set to 0.41 m, ce = 0.3 is the parameter

representing the drag exchange, and βf is the parameter representing the floe size dis-

tribution, here set to 1 (Lüpkes et al., 2012).
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Figure 6.10: The setting of the surface time-dependent forcing for modified runs in the
set for the parcel sl-2.

Since the LEM does not allow to insert drag coefficients directly, we need to express

the increase in drag as an updated aerodynamic surface roughness length. We reclaim

that in the neutral stratification, the relation between the drag coefficeint and the surface

roughness yields (Stull, 1988):

Cdn = κ2
(
ln
(
z1/z0

))−2
, (6.10)

where we combine this equation with (6.8) and (6.9). After a number of simple algebraic
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operations, we obtain the explicit formula for the updated value of z0:

z̃0 = z1 exp


− ln

(
z1
z0,ic

)
ln
(

z1
z0,w

)
√

(1−cic)

(
ln
(

z1
z0,w

))2

+ cic

(
ln
(
z1
z0,ic

))2

+ cic ce (1−cic)
βf

2 κ

(
ln
(

hf
z0,w

)
ln
(

z1
z0,w

))2


(6.11)

Since we want to maintain a smooth transitions between the MIZ and both sea-ice and

open water, we set z0,ic and z0,w to values from MetUM forecast over the sea-ice, respec-

tively over open water.

6.2.7 Methods for the Analysis of Airborne Data

In this part of the methodology, we briefly introduce the methods for the analysis of

airborne data. Firstly, we explain the basic quality control. Secondly, we describe the

eddy-covariance method for the estimation of vertical fluxes.

Core instruments on aircraft are measuring wide variety of physical properties of

surrounding atmospheric environment. Some sensitive instruments get occasionally iced

or otherwise compromised due to severe atmospheric conditions. Therefore, we have to

pay a lot of attention to pre-processing of data, removing corrupted datapoints from

timeseries. An extensive quality control of recorded time series was proposed by French

et al. (2007). This process can be summarised as (Petersen and Renfrew, 2009):

• Evaluate the power spectra of the along-wind velocity component, temperature and

water vapour content. In the inertial subrange, the spectra should follow a well

defined power law decay slope of -5/3 with respect to the wavenumber.

• Calculate the covariances of vertical velocity and along-wind velocity, tempera-

ture and water vapour content. The linear cumulative sum should exhibit a near

constant slope over the entire flight leg.

• The cospectra of the covariances should not have power at wavenumber smaller

than 10−4 m−1.

The vertical fluxes of heat and moisture in the area of flight legs are estimated by the

eddy–covariance method. The flight legs are first divided into runs of a fixed length (also

called ”data window“ in some studies (Stull, 1988) ). We denote θ′, q′v, u
′
E, u

′
E, w

′ the

perturbations in the potential temperature, water vapour, and three wind components.

They are calculated in each run by the standard procedure of subtracting the mean
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value from recorded values . The vertical kinematic fluxes of temperature and moisture,

denoted (w′ θ′), (w′ q′v), are then evaluated in each run.

The choice of the length of the run and the explicit computational technique is often

questioned. In the analysis of time series from ships, meteorological masts, the processing

of the data often included detrended and smoothing (Moncrieff et al., 2004). However

this approach is less common in airborne measurement. The choice of the length of the

runs is motivated by the need for runs to be long enough to cover several wavelengths of

the turbulence but at the same time short enough to provide sampling over a homogeneous

surface (Petersen and Renfrew, 2009). Studies of the vertical fluxes over MIZ and open

water often used run lengths between 9 km and 12 km. This was also applied in the

study of momentum fluxes during the ACCACIA by Elvidge et al. (2016). However for

flight legs in B760, a shorter runs are preferable due to the structure of the MIZ. Here

we therefore divide flight legs into runs of the length 4000 m following the guidelines of

Gioli et al. (2004) on aircraft-based eddy covariance fluxes.

6.3 Results

Since the previous result chapters have already examined the impact of different types of

surface heterogeneity under diverse atmospheric conditions, the main aim of this chapter

was to expand the scope of the study to an observed CAO scenario. Instead of repeating

step by step the description of model results presented in Chapter 4, this chapter would

rather focus on the overall effect of the heterogeneous surface forcing and new findings

that differ from previous results. Firstly, we compare the CBL in the controls runs for

sl-1, sl-2 and sl-3. Secondly, we focus on the comparison of the impact of heterogeneous

surface forcing. Finally we compare the model results with the processed airborne ob-

servations.

6.3.1 Results of Control Runs

The increase in the surface temperature over the MIZ leads to a rapid development of

the CBL. The formation and the growth of the CBL is clearly shown in all three control

runs. A further increase in the surface temperature then leads to a rapid warming and

deepening of the CBL. By the downwind distance 50 km from the edge of ice, the ABL

depth reaches the depth 550 m. Further increase in the ABL depth is then relatively

slow due to higher stratification above the CBL. This stage of the CAO development

also shows a gradual increase in the humidity.

The vertical structure of the lower troposphere shows that CBL consist mostly of

185



CHAPTER 6. CASE STUDIES 6.3

the well-mixed ML. The top of the CBL is occupied by a relatively strong entrainment

layer. Convective rolls develop during the deepening of the CBL in all three control

runs. The axis of newly formed convective rolls is pointing approximately 20◦ from the

direction of the mean wind (see figure 6.12a). This is in a good agreement with previous

studies observational and model studies on CAO that found that axis are usually point-

ing 15◦ to 20◦ left from the direction of the geostrophic wind (Atkinson and Zhang, 1996).
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Figure 6.11: The basic comparison of the virtual potential temperature in the atmo-
spheric conditions on 21 March 2013 in the vertical slice following the parcel sl-2 between
the MetUM forecast and the LEM model values. The small triangle indicates the start
of the MIZ.
The comparison below 300 m is complicated by lack of output layers in the MetUM.

The comparison of the LEM with the MetUM forecast is slightly complicated by the

lack of the data within the ABL. Due to the setting of MetUM grid, only a part of the

lowest MetUM model level is within the CBL. Therefore, it does not provide enough data

for the comparison of the vertical structure with the LEM. This also explains why most

of the increase in potential temperature and humidity in the CBL is not shown in the

cross-sections obtained from UM (see figure 6.11). Moreover, the forecast dataset does

not include the diagnostics of the vertical transport in the ABL and the entrainment.

However, the classification of the boundary layer type and the boundary layer depth

generally agrees with the LEM model results.

6.3.2 Impact of the Surface Modification

Previous chapters have shown the impact of heterogeneity in surface temperatures on

the development of CAO . In this part of the case chapter, we analyse the effect of sur-

face heterogeneity in each slice of this case scenario. The main focus is on the vertical

structure of the CBL and the vertical fluxes of heat and moisture. Firstly, we address

possible qualitative differences between model runs. Secondly, we describe the main dif-
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ferences between the runs with surface heterogeneity and the control run for each parcel

trajectory. Then we compare the impact of different settings of surface heterogeneity in

relative terms. This is followed by a further comparison the effect of heterogeneity in

surface temperatures with the effect of the modification of the surface roughness.

All model runs show the formation and the growth of the CBL. All the modified runs

in each set show warming and the deepening of the CBL that is similar to the develop-

ment in the control run of the set. While the surface properties of model runs in the set

vary, the model runs can differ in the distance travelled by the parcel during the model

time. Although the modification of surface roughness and the surface heterogeneity af-

fect the wind velocity, the differences in the resulting mean wind velocity are relatively

small. The difference between runs with modified surface in the set and the control run

does not exceed 0.15 m s−1. The resulting differences in the downwind distance travelled

by parcel reach maxima 740 m for runs with modified surface roughness and 600 m for

runs with surface heterogeneity. While these differences are relatively small in compar-

ison with the downwind distance travelled by parcels, it is safe to assume that model

outputs from the same model time can be directly compared.

The heterogeneity in surface temperatures affect the distribution of updraughts and

downdraughts in the ML (see 4.2.1). The surface fluxes of heat and moisture mostly

follows the structure of surface heterogeneities. The heterogeneous surface forcing of the

type ’across’ and ’chessboard’ lead to changes in the velocity variance. However, their

effect of the structure of the CBL is otherwise relatively weak. Vertical fluxes of heat and

moisture and moisture in runs with heterogeneity ’across’ and ’chessboard’ are slightly

higher than in the control run. However these differences do not exceed 5 % percent of

fluxes (see figure 6.13).

The impact of the heterogeneous surface forcing on the structure of the CBL is

strongest in the case along. A clear organisation of updraughts is demonstrated on the

cross-section of wind velocities in the middle of the ML (see figure 6.12) The pattern

of surface temperatures drives the structure of growing convective rolls. Unlike in the

control runs, the axis of convective rolls are parallel to the direction of the mean wind.

These results are in agreement with previous studies that showed the convective rolls

can be forced by surface heterogeneities (Gryschka et al., 2008). However, this organised

convection does not strictly follow the pattern of surface heterogeneities. In the runs

with heterogeneity type along and the block width d(h) = 3200 m the convective rolls

attain the similar width as in the runs with the block width d(h) = 1600 m.

With the stagnation of the growth of the CBL and the thickening of the entrainment

layer, the organised structure of cloud rolls mostly diminish. The axis of convective rolls

veer off and attains similar direction as in the control run of each set. This stands in
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Figure 6.12: The comparison of roll structure between different runs with surface het-
erogeneity. The comparison is made for chosen runs from the set sl-3 at the downwind
distance 60 km from the start of the MIZ when the ML depth reaches 500 m. Contour-
plots show the vertical wind velocity at the cross-section in the middle of the ML. The
arrows on sides indicate the direction of the large-scale wind.

a contrast with the findings of the chapter on idealised model runs. The organisation of

rolls forced by the surface heterogeneity in idealised scenarios disappeared mostly due to

the forcing of the cumuli clouds (see 4.2.1). However, in the case model run of the slice

sl-3, the effect is diminished with the thickening of the entrainment layer. The results

for the sl-1 and sl-2 are similar.

The runs with the modified surface roughness exhibit a similar structure of convec-

tive rolls as the control run. The modification of the surface roughness for the form

drag also leads to a slight increase in vertical fluxes of heat and moisture. Neverthe-

less, the increase in the vertical fluxes is nearly an order of magnitude lower than in

the case of runs with heterogeneity in surface temperature. The effect is stronger in the

case of surface modification based on the observations of sea-ice where the MIZ is sig-

nificantly longer. Still, the effect on the overall properties of the CBL is almost negligible.
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Figure 6.13: The comparison of vertical fluxes between model runs in the set sl-3. The
kinematic flux of temperature and the kinematic flux of moisture are evaluated approx-
imately 60 km from the start of MIZ (148 km from the run initial point)

In summary, the impact of the modification of surface properties in the case scenario

is limited. The effect of adding heterogeneous surface forcing in surface temperatures

is generally stronger then the effect of adding the form drag. The heterogeneity of the

surface temperatures of the type across and chessboard affect the spatial distribution of

surface fluxes, however they do not show any significant impact on the structure of the

ML. On the other hand, heterogeneity of the type ’along’ drives the formation of forced

convective rolls. However the effect of this surface forcing is later diminished.

6.3.3 Comparison with Airborne Measurements

An important part of the evaluation of the case is the comparison of model results with

the airborne observations. Firstly, we briefly describe the values of thermodynamic vari-

ables observed in flight legs. Secondly, vertical fluxes of heat and moisture estimated

from the airborne data and compare them with the vertical fluxes in model runs. Finally,

we asses the spread in values both in the model and airborne data.

The FAAM airborne measurement show the changing structure in the lower tropo-

sphere above the MIZ. The timeseries of thermodynamic variables obtained from legs 7

and 8 exhibit an increase in the dew point temperature and the absolute temperatures

in the areas further from the ice edge (see figures 6.3a and 6.3b). This is consistent with

the increase of the temperature and the humidity in the CBL predicted by model runs.

However, there are significant difference between the leg 9 (altitude ≈ 300 m) and

model results. The series of potential temperature and humidity show relatively small
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changes along the flight leg. There is no indication of a propagating boundary layer.

Although the MetUM forecast and the LEM runs show that the intersection of the flight

leg 9 with the sl-2 should be at least 150 m bellow the top of the top of the CBL (see

figure 6.7b), this is not indicated in the observational data. The observational data sug-

gest that the flight leg 9 was above the CBL and therefore that models overestimate the

growth of the CBL.

The turbulent measurements from the airborne instruments were processed to esti-

mate the vertical fluxes of heat and moisture. There is a relatively high spread in fluxes

from airborne measurements, particularly in the area over over the middle of the MIZ.

In this area, there are also significant differences between the neighbouring runs. The

modelled vertical fluxes of the intersection of sl-2 with flight legs are generally higher

than the fluxes estimated from airborne data. This particularly applies to w′θ′, the ver-

tical kinematic heat flux of temperature (see figure 6.14). The estimated fluxes in leg 7

at the intersection with the sl-2 are close to 0, followed by an increase in fluxes further

south (i.e. downwind). The values in fluxes on the intersection with sl-3 generally agrees.

This would again suggest that the ML propagates through the flight leg further south.

The estimated fluxes in leg 8 show negative values at the intersection with sl-2. This

indicates the presence of the entrainment layer, however at altitude that is 250 m lower

than in model runs.
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Figure 6.14: The comparison of vertical fluxes between model runs in the set sl-3. The
kinematic flux of temperature and the kinematic flux of moisture are evaluated approx-
imately 60 km from the start of MIZ (148 km from the run initial point)

To account for the variability in the boundary layer caused by the uncertainty in

surface heterogeneity in roughness, we evaluate the sub-mesoscale variability in model

runs (see 3.4.4). Only the sl-2 and sl-3 sets are included in this part of the analysis since

the model runs in sl-1 are not yet at the fully-resolved regime (see 6.2 and 2.3.1) on the

intersection of sl-1 with flight legs. The subdomain sets of the whole ensemble set are
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then compared with the estimated fluxes from flight legs. The comparison reveals that

spread min–max envelope of the whole ensemble set sl-2 is relatively low and does not

cover the fluxes estimated from airborne data. As figures 6.15 show, the vertical kine-

matic heat flux is outside of the min–max envelope of the set sl–2. Since the envelopes

of the subdomains in the ensemble set does not cover the estimated fluxes, it is shown

that values of estimated fluxes cannot be explained by the modified surface conditions

nor the sub-mesoscale variability.
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Figure 6.15: The comparison of vertical fluxes in the flight leg 7 with the model ensemble
sets. The model data show the min–max envelope of the whole ensemble sets for the
sub-mesoscale variations in the vertical fluxes.

In summary, the comparison of model runs with the airborne data showed differ-

ences in the boundary layer depth in the area of interest. Both model and observational

data show a growing CBL, however they disagree on the growth of the boundary layer

downwind. Since the spread in the flux values between the model runs with modified

surface conditions does not cover the fluxes from observations, the difference between the

airborne observations and models cannot be explained by the heterogeneity in surface

temperature in MIZ nor by the increase in surface roughness. This further implies that

the difference is caused by some other part of the model conditions.

6.4 Conclusions

In this case study, we have investigated the possible impact of the surface conditions

within the MIZ on the developing CAO observed on 21 March 2016 during the ACCA-

CIA field campaign. The novelty of this study lies in the construction of the ensemble

set of runs with modified surface conditions — heterogeneity in surface temperature and

the increased surface roughness. This approach is applied to three different starting

191



CHAPTER 6. CASE STUDIES 6.4

positions to account for the mesoscale variability in conditions within the CAO. The

setting of the scenario is based on the NWP regional forecast performed by MetUM and

the observations of sea-ice cover. Results of model runs are further compared with the

airborne observations from the FAAM aircraft.

The growth of the CBL in the LEM model runs generally agree with the MetUM

forecast. However the comparison of model results with airborne data shows that the

model runs overestimate the boundary layer depth over the MIZ. While the vertical

fluxes of heat and moisture further downwind generally agree, it is indicated that the

boundary layer growth in the model is overestimated. This difference between the air-

borne observations and models cannot be explained by the mild heterogeneity in surface

temperature in MIZ nor by the increase in surface roughness (see 6.3.3). However we do

not have sufficient data to say which part of the MetUM surface conditions is responsible

for this difference.

Furthermore, there is much higher spread in the vertical fluxes of heat and moisture

in the aircraft measurements than in the in the model results. The values of (w′ θ′),

(w′ q′v) estimated by the eddy-covariance method (6.2.7) show particularly high spread

in values over the MIZ. The sub-mesoscale variability in fluxes estimated from model

results was significantly smaller. This applied even when the spread in each ensemble

set was considered. These results imply that there was another factor influencing the

variability in the vertical transport over the MIZ which was not accounted for in the

setting of our ensemble spread.

If we consider the CAO scenario defined by the MetUM forecast without the air-

borne data, we can draw further conclusions about the impact of the heterogeneities in

surface temperatures. The heterogeneity in surface temperatures alters the structure of

developing convective rolls. While the axis of growing convective rolls in the control run

are pointing approximately 20◦ from the mean wind direction, the convective rolls in the

case of heterogeneity along generally follow the direction of heterogeneities (6.3.2). This

agree both with the previous studies (Gryschka et al., 2008) and the results of idealised

model scenarios (4.2.1).

The impact of heterogeneity on the structure of convective rolls is diminishing down-

wind with the thickening of the entrainment layer. This stands in contrast with the

findings of the chapter on idealised model runs. The organisation of rolls forced by the

surface heterogeneity in idealised scenarios disappeared mostly due to the forcing of the

cumuli clouds. In this case study, the effect of heterogeneity diminished in the presence

of stronger winds above the CBL and strong entrainment. This generally agrees with

finding of Sühring et al. (2014) and Mahrt (2000).
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The anomalies in surface temperature oriented along the direction of the mean wind

lead to the increase in vertical fluxes of heat and moisture (6.3.2). However this increase

does not exceed 5 % within the mixed layer. Still, this effect is usually an order of

magnitude higher than the increase in vertical fluxes due increased surface roughness

over surface heterogeneity. The influence of heterogeneity in surface temperature in the

resulting vertical transport of heat and moisture in the CBL are generally lower than in

the idealised model scenarios. This suggest that the additional forcing generally decrease

the effect of the heterogeneity.
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Chapter 7

Conclusions

This thesis has analysed the variability within the cold air outbreaks (CAO). The main

focus was on the impact of heterogeneous surface temperatures on the developing con-

vective boundary layer (CBL) in a cold air outbreak (CAO). The study then aimed to

investigate the structure of the convective boundary layer and provide implications for

the boundary layer parametrization schemes. Therefore, the thesis focused on the anal-

ysis of vertical fluxes of heat, moisture and momentum, as well as on the variation in

their values. The main research questions of this thesis (stated in 1.4) were:

• Does a local structure of the marginal sea-ice zone (MIZ) plays a significant role

in the developing CBL during a CAO event?

• Does a heterogeneity introduce more variability in the behaviour of the CBL?

• What is the impact of modifying the properties of the heterogeneous surface and

the troposphere?

Where the properties of the heterogeneous surface were:

– the temperature scale - difference between the anomalies and the mean

values,

– the spatial size of the pattern;

and the modified properties of the troposphere were:

– wind forcing in the lower troposphere,

– initial stratification in the lower troposphere.

The main novelty of this thesis lies in:

• Firstly, introducing three different patterns of heterogeneity in surface temperature

to represent the surface conditions in MIZ;
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• Secondly, investigating both the spatial and temporal variability in the developing

CBL.

This chapter is first going to summarise the chapters of the thesis (7.1) and subse-

quently address these main questions (7.2). Then it will explain the implications for the

parametrization of CBL (7.3). Part 7.4 will present known caveats of the study. There

are also ways how to further extend the findings of this thesis. The unfinished research

tasks and suggestion for new research directions are discussed in part 7.5.

7.1 Summary of Chapters

The Chapter 1 explained the motivation behind this study. Firstly, it introduced the

topic of importance of parametrizing small-scale processes and parametrizing the under-

lying variability in weather. Secondly, it explained the significance of the phenomenon

of cold-air outbreak and justified. The chapter further narrowed the topic on the study

of the impact of the spatial heterogeneity in surface temperature. This was followed by

the overview of thesis aims and the introduction to the methodology.

Chapter 2 focused exclusively on the theory behind the modelling software employed

- The Met Office Large Eddy Model. Firstly, it explained the choice of LEM for this

study. Secondly, it described the main dynamical core of the model. Then it the specific

parts of the theory that were particularly relevant with respect to this study.

The methodology was presented in Chapter 3. Firstly, it provided the overview

of model setting. Secondly, it described the main properties of the model scenario and

justified the applicability of the model framework. Thirdly, it introduced the spatial het-

erogeneity in surface temperatures. The rest of the chapter then dealt with the methods

for the analysis of the model output.

The first result chapter, Chapter 4 focused on the analysis of variability in a con-

trol scenario. It has demonstrated that the surface temperature heterogeneities plays

an important role in the formation of convective rolls and cloud streets. Overall, the

heterogeneous surface conditions modify the properties of the atmospheric boundary

layer. These results stand in a good agreement with many other studies such as (Kang

et al., 2007), (Maronga et al., 2014) or (Beyrich and Mengelkamp, 2006). The impact of

heterogenities on the variability of the convective boundary layer was compared against

the control set and the conclusion were drawn about the impact of the heterogeneous

forcing on both spatial and temporal variability.

The chapter has further addressed the impact of modifying the temperature scale and
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the size of the heterogeneity. It has shown how changing of the size of the heterogeneous

pattern leads to slightly different effect for each type of the heterogeneous pattern. The

chapter has also investigated the impact of a heterogeneity that was diminishing with

time. It was shown that the impacts of heterogeneity persists beyond the removal of the

heterogeneity, diminishing slowly over time.

The second result chapter, Chapter 5 , then extended the scope of the study on

idealised scenarios with a different setting of the wind shear and the initial tempera-

ture profile in the lower troposphere. The model results have shown a clear differences

between two stratification regimes — the weaker stratification that permits the develop-

ment of cumulus layer and the stronger stratification that leads to boundary layer that

remains clear or topped with stratocumuli clouds.

In case of weaker stratification, a thick cumulus layer develops. It was demonstrated

that the formation of active cumuli cores then leads to an increase in the turbulent

kinetic energy. This top-driven forcing contributes to the decline in the impact of the

surface forcing. The effects of all three types of heterogeneities are then limited to an

increased values in the surface latent heat flux. These values generally do not differ

between the scenarios with different wind forcing. In the regime of stronger stratifica-

tion that inhibits formation of cumuli clouds, the effect of surface heterogeneities on the

structure of boundary layer is mostly maintained. The effect was particularly strong

for the heterogeneity type where temperature anomalies are oriented along the winds.

In this case, stripes of temperature anomalies drive the formation of distinctive forced

cloud rolls.

Chapter 6, based on case studies, analysed a weak cold-air outbreak that was ob-

served during the ACCACIA field campaign on 21 March 2013. It has shown that the

heterogeneous forcing in the MIZ would lead to differences in a developing convective

boundary layer. The further comparison with airborne observations showed that there is

generally higher variability in observed fluxes than in the model. The comparison with

model ensemble implied that this variability in observed fluxes could not be explained

by heterogeneities up to 3 km in the MIZ or by increased surface roughness.
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7.2 Main Conclusions

In this section, we directly address the main research question of the thesis.

Does a local structure of the marginal sea-ice zone (MIZ) plays a significant role in

the developing CBL during a CAO event?

True, introducing heterogeneous surface forcing in surface temperature affect the de-

velopment of the convective boundary layer. The impact depends on the type of the

heterogeneity that was introduced (see 4.2.1). This was further demonstrated in scenar-

ios with a different setting of the properties of a lower troposphere.

Does a heterogeneity introduce more variability in the behaviour of the CBL?

Inconclusive. The heterogeneous surface forcing has slightly increased the spatial vari-

ability on a sub-mesoscale. However these differences were not deemed significant.

Vertical fluxes of the latent heat have shown higher temporary oscillation for the hetero-

geneity of the type ’across’. Further analysis of timeseries than revealed that in case of

latent heat flux, these oscillations exhibit stronger autocorrelation than for other types

of the heterogeneities. However differences in the sensible heat flux did not exhibit a

clear trend.

What is the impact of modifying the properties of the heterogeneous surface and the

troposphere?

One of the most influential factors is the initial stratification. An increase in the ini-

tial stratification can qualitatively alter the effect of the surface heterogeneous forcing.

As was already stressed in 7.1, model results have shown a clear differences between

two stratification regimes. In a stronger stratification that inhibits formation of cumuli

clouds, the effect of surface heterogeneities on the structure of boundary layer is mostly

maintained. The differences in the values of surface fluxes of latent heat usually stay

constant.

The weaker stratification that permits the development of cumulus layer lead into

a reduction in the effect of heterogeneity within 1 hour after the development of active

cumuli cores.

The effect of a weaker wind forcing allowed to propagate the pattern of hetero-

geneities higher up into the atmosphere. The effect of a stronger wind forcing was

dependent was on the combination of the type of heterogeneity and a stratification of

the lower troposphere. In a stronger stratification, an increase in the wind velocity de-

creased the effect of the heterogeneity of types ’across’ and ’chessboard’. In the weaker

initial stratification, the increase in the wind forcing increased the effect of heterogeneities

’along’,
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Increasing the temperature scale of the heterogeneity generally lead to a stronger

effect of the heterogeneity. This effect was consistent amongst all three heterogeneous

patters examined. However, even a relatively high temperature difference of δ(h)T = 7 K

was not sufficient to overcome the effect of wind and the entrainment. This particularly

applies for the heterogeneity of the type ’across’ and ’chessboard’.

Decreasing the spatial size of the pattern generally lead to a faster development of

a convective boundary layer. However, the subsequent growth was usually slower. The

effect of the increased size of the heterogeneity lead to some qualitative changes, that

were explained in 4.2.3 and 5.4.2. In case of the heterogeneity type with the stripes

along the mean wind direction, pattern of the size d(h) = 3200 m not only forced the

formation of cloud streets along the mean wind, but also maintained the organisation of

cloud streets along the mean wind. This agrees with the findings of some other studies

that there is no blending height for larger scale heterogeneities (Sühring and Raasch,

2013).

7.3 Implication for Parametrization

The improvements in the parametrization in NWP have been one of the main motiva-

tions behind this study (1.1). While the previous section summarised the general findings

of this study, this section focuses on the findings that bears direct implications for the

parametrization schemes.

The analysis of updraught has revealed that the distribution of vertical velocities

in the convective boundary layer is generally skewed towards negative values. The ap-

proximation of wind velocities by normal distribution results might often result into

an incorrect estimation of the kinetic energy of updraughts (4.1.2). That bears some

unfortunate implications for eddy-diffusivity mass-flux (EDMF) schemes (Huang et al.,

2013) implemented in a number of meteorological models including ECMWF IFS (Wat-

son et al., 2015). The analysis of updraught showed that the assumption of normal

distribution in vertical velocities might lead to a bias in the kinetic energy of updraughts.

Furthermore, figure 4.12 showed the bias in the values of estimated updraughts

changes with the altitude. The numerical results in this study suggest that the low-

est bias would be achieved for EDMF scheme initiated over the top of surface layer at

135–170 m. These results is generally not affected by size or the temperature scale of the

heterogeneity. Similar estimation was performed also for runs with modified wind forc-

ing and initial stratification in the lower troposphere, but generally lead to similar results.
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These results pose some concerns for the representation of the effect of CAO in cur-

rently used EDMF schemes. Even if the surface parametrization in a forecast model is

well calibrated, Ew in EDMF scheme would be underestimated or overestimated based

on the altitude of the model level where EDMF algorithm is initiated.

The evaluation of the heat and moisture flux by strong updraught has then unveiled

a clear differences between the model scenarios with modified initial stratification. In the

scenarios with the stronger stratification, the ratio of the heat and moisture transport

facilitated by strong updraught is significantly higher than in the runs with a weaker

stratification This finding is consistent with the previous modelling study of updraughts

in CBL (Hellsten et al., 2013).

Regarding cases with an increased stratification in the lower troposphere, the hetero-

geneities of the type ’along’ (i.e. stripes of anomalies oriented along the direction of the

wind) lead to a higher ratio of the heat and moisture transport by strong updraughts.

This difference is mostly caused by more organised structure of strong updraughts in the

absence of the additional turbulence by cumuli clouds. Ratios of the kinematic heat and

moisture flux in cases with the heterogeneity of the ’along’ type were in the middle part

of the boundary by 10–15 % higher than in cases with other types of the heterogene-

ity. This suggest thay surface heterogeneity might actually require an adjustment in the

parametrization schemes.

7.4 Caveats

Despite the best efforts to analyse the research questions thoughtfully and precisely,

the study has also its caveats and shortcomings. This section therefore address known

caveats of the study and proposes possible countermeasures.

A very limiting factor in the current set-up of LEM is the treatment of aerosols and

cloud microphysics. The model of cloud microphysics in LEM has undergone very little

changes since 1998 (Gray et al., 2004). The distribution of cloud water droplets follows

single-moment scheme, described solely by the water mixing ratio. The distributions of

hydrometeors are treated by double-moment schemes (Gray and Petch, 2004, p.17-18).

Furthermore, aerosols are treated as passive aerosols only and therefore their concentra-

tions do not interact with cloud formation.

The other limiting factor was the setting the grid resolution. Increasing the model

resolution and model domain size soon encountered memory issue in a single-core com-

putations. Due to the original purpose of the LEM, its multicore processing scripts are

optimised for a specific type of Met Office computers (Gray and Petch, 2004, p.7) and
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therefore relatively complicated to adjust for the computing cluster available during the

study.

There were also ongoing issues with the bugs in LEM model code. Some model set-

ting unfortunately lead to conflicts during the model compilation and often resulted in

physically implausible model results. These issue were finally overcome, however lead to

significant time constrains in finishing this study.

7.5 Future Work

While this study has answered a number of research questions, it has also yielded some

new ones. Due to a limited time and number of technical obstacles encountered, some of

the research direction were stopped half-way to new discoveries due to time constrains.

While it would be nice to further continue in the exploration of this interesting topis,

this part of the thesis suggest possible ways how to continue in future and extend the

finding of this thesis.

The first apparent expansion of this study will be implementation of heterogeneous

surface conditions in the successor software to the LEM. This will allow to investigate

the impact of heterogeneity in model domains with a larger size and a higher resolution.

Perhaps the second expansion of this study will be further evaluation of case model

studies. The ACCACIA flight campaign provided a number of airborne observation in

cold outbreak cases.

The other logical step in the expansion of this study will be an a comparison of the

impact of heterogeneous surface forcing in different LES software packages. This would

also allow to investigate whether LEM model with a clouds developing over surface het-

erogeneities are affected by the setting of the schemes for cloud microphysics.
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Chamorro, L. P., and F. Porté-Agel (2010). Wind-tunnel study of surface boundary
conditions for large-eddy simulation of turbulent flow past a rough-to-smooth surface
transition. Journal of Turbulence, 11, N1.

Chapman, W. L., Welch, W. J., and Bowman, K. P. (1994). Arctic sea ice variability:
Model sensitivities and a multidecadal. Journal of Geophysical Research, 99 (C1),
pp. 919–935.

Chasnov, J. R. (1991). Simulation of the Kolmogorov inertial subrange using an
improved subgrid model. Physics of Fluids, A3, pp. 188–200.
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Lüpkes, C., and G. Birnbaum (2005). Surface drag in the Arctic marginal sea-ice zone:
a comparison of different parameterisation concepts. Boundary-layer meteorology,
117 (2), pp. 179-211.
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Appendix A

List of LEM Runs

The first appendix presents the list of the model runs. For each run, there is a corre-
sponding runfile. The filename is:
<name>.txt Each runfile consists of the lines difining the basis LEM setting as well as
definition of which namelists and code updates are used. The format of namelists is
a Fortran namelist while the format of the code updates mostly follows the standart
Fortran95.

The runfiles, namelist and code updates for idealised LEM runs are included in the
folder:
./appendices/lem files/cao idelised/

Similarly, the namelist and code updates for idealised LEM runs are included in the
folder ./appendices/lem files/cao idelised/

Both the list of case runs and the list of idealised runs include just the relavant model
runs. The trial runs, test runs, and failed runs are not included.

A.1 List of Case Runs

The model runs generally follows the setting defined in 6.2.2, unless stated otherwise.

no. name parcel setting

3101 case b760 sl1mod1 control val0 sl1 control

3102 case b760 sl1mod2 rough um val2 sl1 surface roughness adjusted based on Me-

tUM

3103 case b760 sl1mod3 rough ice val2 sl1 surface roughness adjusted based on ob-

servations

3104 case b760 sl1mod4 het surf um al10 val3 sl1 heterogeneity ’along’ δ (h)T =

3 K, d (h) = 1600 m, based on Me-

tUM
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no. name parcel setting

3105 case b760 sl1mod5 het surf um al20 val3 sl1 heterogeneity ’along’ δ (h)T =

3 K, d (h) = 3200 m, based on Me-

tUM

3106 case b760 sl2mod1 control val0 sl2 control

3107 case b760 sl2mod2 rough um val2 sl2 surface roughness adjusted based on Me-

tUM

3108 case b760 sl2mod3 rough ice val2 sl2 surface roughness adjusted based on ob-

servations

3109 case b760 sl2mod4 het surf um al10 val3 sl2 heterogeneity ’along’ δ (h)T =

3 K, d (h) = 1600 m, based on Me-

tUM

3110 case b760 sl2mod5 het surf um ac10 val3 sl2 heterogeneity ’across’ δ (h)T =

3 K, d (h) = 1600 m, based on Me-

tUM

3111 case b760 sl2mod6 het surf um ch10 val3 sl2 heterogeneity ’chessboard’ δ (h)T =

3 K, d (h) = 1600 m, based on MetUM

3112 case b760 sl2mod7 het surf um al20 val3 sl2 heterogeneity ’along’ δ (h)T =

3 K, d (h) = 3200 m, based on Me-

tUM

3113 case b760 sl3mod1 control val0 sl3 control

3114 case b760 sl3mod2 rough um val2 sl3 surface roughness adjusted based on Me-

tUM

3116 case b760 sl3mod3 rough ice val2 sl3 surface roughness adjusted based on ob-

servations

3117 case b760 sl3mod4 het surf um al10 val3 sl3 heterogeneity ’along’ δ (h)T =

3 K, d (h) = 1600 m, based on Me-

tUM

3118 case b760 sl3mod5 het surf um ac10 val3 sl3 heterogeneity ’across’ δ (h)T =

3 K, d (h) = 1600 m, based on Me-

tUM

3118 case b760 sl3mod6 het surf um ch10 val3 sl3 heterogeneity ’chessboard’ δ (h)T =

3 K, d (h) = 1600 m, based on MetUM

3119 case b760 sl3mod7 het surf um al20 val3 sl3 heterogeneity ’along’ δ (h)T =

3 K, d (h) = 3200 m, based on Me-

tUM

3120 case b760 sl3mod8 het surf ice al10 val3 sl3 heterogeneity ’along’ δ (h)T =

3 K, d (h) = 1600 m, based on ob-

servations

3121 case b760 sl3mod9 het surf ice al20 val3 sl3 heterogeneity ’along’ δ (h)T =

3 K, d (h) = 3200 m, based on ob-

servations
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A.2 List of Idealised Runs

The model runs generally follows the setting defined in 3.1, unless stated otherwise.

no. name type setting

0952 cao test control 03 control control run

0957 cao test control 03 additional run with control setting

0961 cao tests rh85 sensitivity initial humidity increased to RH = 85 %

1101 cao test control 03 part of control set

1115 cao test long 03 sensitivity increased duration of run, control scenario

1211 cao strat2 03 stratification stratification ’strat2’, homogeneous surface

1212 cao strat2 resh40 lowdom 03 sensitivity stratification ’strat2’, lower domain, horizontal resolution

∆x = 40 m

1213 cao strat2 long 03 sensitivity stratification ’strat2’, increased duration of run,

1214 cao strat2 s2 03 combination stratification ’strat2’, wind shear ’wind2’

1215 cao strat2 s4 03 combination stratification ’strat2’, wind shear ’wind4’

1216 cao strat4 s2 03 combination stratification ’strat4’, wind shear ’wind2’

1217 cao strat4 s2 03 combination same as 1216

1224 cao strat4 s2 03 3a10h07 combination stratification ’strat4’, wind shear ’wind2’, heterogeneity ’per-

sistent’ ’along’ δ (h)T = 7 K, d (h) = 1600 m

1226 cao strat2 s4 03 3a10h03 combination stratification ’strat2’, wind shear ’wind4’, heterogeneity ’per-

sistent’ ’along’ δ (h)T = 3 K, d (h) = 1600 m

1227 cao strat4 s4 03 3a10h03 combination stratification ’strat4’, wind shear ’wind4’, heterogeneity ’per-

sistent’ ’along’ δ (h)T = 3 K, d (h) = 1600 m

1228 cao strat4 s2 03 3a10h03 combination stratification ’strat2’, wind shear ’wind2’, heterogeneity ’per-

sistent’ ’along’ δ (h)T = 3 K, d (h) = 1600 m

1321 cao s2 03 wind shear wind shear ’wind2’, homogeneous surface

1322 cao s2 03 3a10h03 wind shear wind shear ’wind2’, heterogeneity ’persistent’ ’along’

δ (h)T = 3 K, d (h) = 1600 m

1323 cao s2 03 3a10h07 wind shear wind shear ’wind2’, heterogeneity ’persistent’ ’along’

δ (h)T = 7 K, d (h) = 1600 m

1324 cao s2 03 3a20h07 wind shear wind shear ’wind2’, heterogeneity ’persistent’ ’along’

δ (h)T = 7 K, d (h) = 3200 m

1331 cao s3 03 wind shear wind shear ’wind3’, homogeneous surface

1332 cao s3 03 3a10h07 wind shear wind shear ’wind3’, heterogeneity ’persistent’ ’along’

δ (h)T = 7 K, d (h) = 1600 m

1333 cao s3 03 3a20h07 wind shear wind shear ’wind3’, heterogeneity ’persistent’ ’along’

δ (h)T = 7 K, d (h) = 3200 m

1340 cao s4 03 wind shear wind shear ’wind4’, homogeneous surface

1341 cao s4 03 3a10h01 wind shear wind shear ’wind4’, heterogeneity ’persistent’ ’along’

δ (h)T = 1 K, d (h) = 1600 m

1342 cao s4 03 3a10h03 wind shear wind shear ’wind4’, heterogeneity ’persistent’ ’along’

δ (h)T = 3 K, d (h) = 1600 m

1343 cao s4 03 3a10h07 wind shear wind shear ’wind4’, heterogeneity ’persistent’ ’along’

δ (h)T = 7 K, d (h) = 1600 m
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no. name type setting

1344 cao s4 03 3a20h03 wind shear wind shear ’wind4’, heterogeneity ’persistent’ ’along’

δ (h)T = 3 K, d (h) = 3200 m

1345 cao s4 03 3a20h07 wind shear wind shear ’wind4’, heterogeneity ’persistent’ ’along’

δ (h)T = 7 K, d (h) = 3200 m

1346 cao s4 03 3c10h03 wind shear wind shear ’wind4’, heterogeneity ’persistent’ ’across’

δ (h)T = 3 K, d (h) = 1600 m

1347 cao s4 03 3c20h03 wind shear wind shear ’wind4’, heterogeneity ’persistent’ ’across’

δ (h)T = 3 K, d (h) = 3200 m

1348 cao s4 03 2a10h03 wind shear wind shear ’wind4’, heterogeneity ’persistent’ ’along’

δ (h)T = 3 K, d (h) = 1600 m

1349 cao s4 03 2a20h03 wind shear wind shear ’wind4’, heterogeneity ’persistent’ ’along’

δ (h)T = 3 K, d (h) = 3200 m

1351 cao test 03 3a10h01 heterogeneity ’persistent’ ’along’ δ (h)T = 1 K, d (h) =

1600 m

1352 cao test 03 3a10h03 heterogeneity ’persistent’ ’along’ δ (h)T = 3 K, d (h) =

1600 m

1353 cao test 03 3a10h07 heterogeneity ’persistent’ ’along’ δ (h)T = 7 K, d (h) =

1600 m

1365 cao test het16r3 vres01 sensitivity vertical resolution ’vres01’

1366 cao test het16r3 vres2 sensitivity vertical resolution ’vres2’

1401 cao test het16r3control additional run with control setting

1402 cao test het16r3 ac10dh03 heterogeneity ’diminishing’ ’across’ δ (h)T = 3 K, d (h) =

1600 m,

1403 cao test het16r3 al10dh03 heterogeneity ’diminishing’ ’along’ δ (h)T = 3 K, d (h) =

1600 m,

1404 cao test het16r3 al20dh03 heterogeneity ’diminishing’ ’along’ δ (h)T = 3 K, d (h) =

3200 m,

1405 cao test het16r3 ch10dh03 heterogeneity ’diminishing’ ’chessboard’ δ (h)T =

3 K, d (h) = 1600 m,

1406 cao test het16r3 l2 sensitivity slower increase in surface temperature

1407 cao test het16r3 ac10dh03 l2 sensitivity slower increase in surface temperature, heterogeneity ’dimin-

ishing’ ’across’ δ (h)T = 3 K, d (h) = 1600 m,

1408 cao test het16r3 al10dh03 l2 sensitivity lower increase in surface temperature, heterogeneity ’dimin-

ishing’ ’along’ δ (h)T = 3 K, d (h) = 1600 m,

1409 cao test het16r3 al20dh03 l2 sensitivity lower increase in surface temperature, heterogeneity ’dimin-

ishing’ ’along’ δ (h)T = 3 K, d (h) = 3200 m,

1410 cao test het16r3 ch10dh03 l2 sensitivity lower increase in surface temperature, heterogeneity ’dimin-

ishing’ ’chessboard’ δ (h)T = 3 K, d (h) = 1600 m,

1411 cao test het16r3 vz0 sensitivity longer tranisition, adjusted surface roughness

1412 cao test het16r3 l2 vz0 sensitivity longer tranisition, adjusted surface roughness

1603 cao strat2 het16r3 ch10h07 03 stratification stratification ’strat2’, heterogeneity ’diminishing’ ’chess-

board’ δ (h)T = 7 K, d (h) = 1600 m

1604 ao strat2 het16r3 ch20h07 03 stratification stratification ’strat2’, heterogeneity ’diminishing’ ’chess-

board’ δ (h)T = 7 K, d (h) = 3200 m

231



APPENDIX A. LIST OF LEM RUNS A.2

no. name type setting

1612 cao strat2 het16r3 al20h03 hres40 03 stratification stratification ’strat2’, heterogeneity ’persistent’

’along’ δ (h)T = 3 K, d (h) = 800 m, horizontal

resolution ∆x = 40 m

1613 cao strat2 het16r3 al40h03 hres40 03 stratification stratification ’strat2’, heterogeneity ’persistent’

’along’ δ (h)T = 3 K, d (h) = 1600 m, horizontal

resolution ∆x = 40 m

1614 cao strat2 het16r3 al40h07 hres40 03 stratification stratification ’strat2’, heterogeneity ’persistent’

’along’ δ (h)T = 7 K, d (h) = 1600 m, horizontal

resolution ∆x = 40 m

1615 cao strat2 het16r3 ch20h03 hres40 03 stratification stratification ’strat2’, heterogeneity ’persistent’

’chessboard’ δ (h)T = 3 K, d (h) = 800 m, hori-

zontal resolution ∆x = 40 m

1616 cao strat2 het16r3 ch40h03 hres40 03 stratification stratification ’strat2’, heterogeneity ’persistent’

’chessboard’ δ (h)T = 3 K, d (h) = 1600 m, hor-

izontal resolution ∆x = 40 m

1617 cao strat4 het16r3 h0 hres40 03 stratification stratification ’strat4’, homogeneous surface, hori-

zontal resolution ∆x = 40 m

1618 cao strat4 het16r3 al10h03 hres40 03 stratification stratification ’strat4’, heterogeneity ’persistent’

’along’ δ (h)T = 3 K, d (h) = 400 m, horizontal

resolution ∆x = 40 m

1619 cao strat4 het16r3 al20h03 hres40 03 stratification stratification ’strat4’, heterogeneity ’persistent’

’along’ δ (h)T = 3 K, d (h) = 800 m, horizontal

resolution ∆x = 40 m

1620 cao strat4 het16r3 al40h03 hres40 03 stratification stratification ’strat4’, heterogeneity ’persistent’

’along’ δ (h)T = 3 K, d (h) = 1600 m, horizontal

resolution ∆x = 40 m

1621 cao strat4 het16r3 al40h07 hres40 03 stratification stratification ’strat4’, heterogeneity ’persistent’

’along’ δ (h)T = 7 K, d (h) = 1600 m, horizontal

resolution ∆x = 40 m

1622 cao s2 strat2 het16r3 h0 03 combination stratification ’strat2’, wind shear ’wind2’, homoge-

neous surface

1623 cao s2 strat2 het16r3 ac10h07 03 combination stratification ’strat2’, wind shear ’wind2’, hetero-

geneity ’persistent’ ’across’ δ (h)T = 7 K, d (h) =

1600 m

1624 cao s2 strat2 het16r3 ch10h07 03 combination stratification ’strat2’, wind shear ’wind2’, het-

erogeneity ’persistent’ ’chessboard’ δ (h)T =

7 K, d (h) = 1600 m

1625 cao s2 strat2 het16r3 al20h07 03 combination stratification ’strat2’, wind shear ’wind2’, hetero-

geneity ’persistent’ ’along’ δ (h)T = 7 K, d (h) =

3200 m

1626 cao strat3 het16r3 h0 03 stratification stratification ’strat3’, homogeneous surface

1627 cao strat3 het16r3 al10h07 03 stratification stratification ’strat3’, heterogeneity ’persistent’

’along’ δ (h)T = 7 K, d (h) = 1600 m

1628 cao strat3 het16r3 ac10h07 03 stratification stratification ’strat3’, heterogeneity ’persistent’

’across’ δ (h)T = 7 K, d (h) = 1600 m

1629 cao strat3 het16r3 ch10h07 03 stratification stratification ’strat3’, heterogeneity ’persistent’

’chessboard’ δ (h)T = 7 K, d (h) = 1600 m

1630 cao strat3 het16r3 al20h07 03 stratification stratification ’strat3’, heterogeneity ’persistent’

’along’ δ (h)T = 7 K, d (h) = 3200 m
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no. name type setting

1631 cao strat4 het16r3 h0 03 stratification stratification ’strat4’, homogeneous surface

1632 cao strat4 het16r3 al10h07 03 stratification stratification ’strat4’, heterogeneity ’persistent’ ’along’

δ (h)T = 7 K, d (h) = 1600 m

1633 cao strat4 het16r3 ac10h07 03 stratification stratification ’strat4’, heterogeneity ’persistent’ ’across’

δ (h)T = 7 K, d (h) = 1600 m

1634 cao strat4 het16r3 ch10h07 03 stratification stratification ’strat4’, heterogeneity ’persistent’ ’chess-

board’ δ (h)T = 7 K, d (h) = 1600 m

1635 cao strat4 het16r3 ch20h07 03 stratification stratification ’strat4’, heterogeneity ’persistent’ ’chess-

board’ δ (h)T = 7 K, d (h) = 3200 m

1636 cao strat4 het16r3 al20h07 03 stratification same as 1635

1637 cao strat5 het16r3 h0 03 stratification stratification ’strat5’, homogeneous surface

1638 cao strat5 het16r3 al10h07 03 stratification stratification ’strat5’, heterogeneity ’persistent’ ’along’

δ (h)T = 7 K, d (h) = 1600 m

1639 cao strat5 het16r3 ac10h07 03 stratification stratification ’strat5’, heterogeneity ’persistent’ ’across’

δ (h)T = 7 K, d (h) = 1600 m

1640 cao strat5 het16r3 ch10h07 03 stratification stratification ’strat5’, heterogeneity ’persistent’ ’chess-

board’ δ (h)T = 7 K, d (h) = 1600 m

1641 cao strat5 het16r3 al20h07 03 stratification stratification ’strat5’, heterogeneity ’persistent’ ’along’

δ (h)T = 7 K, d (h) = 3200 m

1642 cao s2 het16r3 ac10h07 03 wind shear wind shear ’wind2’, heterogeneity ’persistent’ ’across’

δ (h)T = 7 K, d (h) = 1600 m

1643 cao s2 het16r3 ch10h07 03 wind shear wind shear ’wind2’, heterogeneity ’persistent’ ’chess-

board’ δ (h)T = 7 K, d (h) = 1600 m

1644 cao s3 het16r3 ac10h07 03 wind shear wind shear ’wind3’, heterogeneity ’persistent’ ’across’

δ (h)T = 7 K, d (h) = 1600 m

1645 cao s3 het16r3 ch10h07 03 wind shear wind shear ’wind3’, heterogeneity ’persistent’ ’chess-

board’ δ (h)T = 7 K, d (h) = 1600 m

1646 cao strat2 het16r3 ch10h07 03 stratification stratification ’strat2’, heterogeneity ’persistent’ ’chess-

board’ δ (h)T = 7 K, d (h) = 1600 m

1647 cao strat2 het16r3 ch20h07 03 stratification stratification ’strat2’, heterogeneity ’persistent’ ’chess-

board’ δ (h)T = 7 K, d (h) = 3200 m

1648 cao s2 strat2 het16r3 al10h07 03 combination stratification ’strat2’, wind shear ’wind2’, heterogeneity

’persistent’ ’along’ δ (h)T = 7 K, d (h) = 1600 m

1649 cao s4 strat2 het16r3 h0 03 combination stratification ’strat2’, wind shear ’wind4’

1651 cao s4 strat2 het16r3 al10h07 03 combination stratification ’strat2’, wind shear ’wind4’, heterogeneity

’persistent’ ’along’ δ (h)T = 7 K, d (h) = 1600 m

1652 cao s4 strat2 het16r3 ac10h07 03 combination stratification ’strat2’, wind shear ’wind4’, heterogeneity

’persistent’ ’across’ δ (h)T = 7 K, d (h) = 1600 m

1653 cao s4 strat2 het16r3 ch10h07 03 combination stratification ’strat2’, wind shear ’wind4’, heterogeneity

’persistent’ ’chessboard’ δ (h)T = 7 K, d (h) = 1600 m

1654 cao strat4 het16r3 al20h07 03 stratification startification ’strat4’, heterogeneity ’persistent’ ’along’

δ (h)T = 7 K, d (h) = 3200 m
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no. name type setting

1655 cao s4 het16r3 h0 03 wind shear wind shear ’wind4’

1656 cao s4 het16r3 al10h07 03 wind shear wind shear ’wind4’, heterogeneity ’persistent’

’along’ δ (h)T = 7 K, d (h) = 1600 m

1657 cao s4 het16r3 ac10h07 03 wind shear wind shear ’wind4’, heterogeneity ’persistent’

’across’ δ (h)T = 7 K, d (h) = 1600 m

1658 cao s4 het16r3 ch10h07 03 wind shear wind shear ’wind4’, heterogeneity ’persistent’

’chessboard’ δ (h)T = 7 K, d (h) = 1600 m

1659 cao s4 het16r3 al20h07 03 wind shear wind shear ’wind4’, heterogeneity ’persistent’

’along’ δ (h)T = 7 K, d (h) = 3200 m

1660 cao s4 het16r3 ch20h07 03 wind shear wind shear ’wind4’, heterogeneity ’persistent’

’chessboard’ δ (h)T = 7 K, d (h) = 3200 m

1661 cao s3 het16r3 al10h07 03 wind shear wind shear ’wind3’, heterogeneity ’persistent’

’along’ δ (h)T = 7 K, d (h) = 1600 m

1662 cao s3 het16r3 al20h07 03 wind shear wind shear ’wind3’, heterogeneity ’persistent’

’along’ δ (h)T = 7 K, d (h) = 3200 m

2600 cao test het16r3 control v00 additional run with control setting

2601 cao test het16r3 control v01 sensitivity larger domain - grid 120x120

2602 cao test het16r3 hres80 sensitivity coarse resolution, ∆x = 320 m, grid 120x120

2603 cao test het16r3 hres40 sensitivity coarse resolution, ∆x = 480 m, grid 120x120

2604 cao test het16r3 hres80 sensitivity increased resolution, ∆x = 80 m, grid 120x120

2605 cao test het16r3 hres40 sensitivity increased resolution, ∆x = 40 m, grid 120x120

2606 cao test het16r3 al10dh03 v01 sensitivity, heterogeneity ’dimininishing’ ’along’ δ (h)T =

3 d (h) = 1600 m

2607 cao test het16r3 al20dh03 v01 sensitivity heterogeneity ’dimininishing’ ’along’ δ (h)T =

3 d (h) = 3200 m

2608 cao test het16r3 al20dh03 v01 sensitivity same as 2607

2609 cao test het16r3 al20dh03 hres80 sensitivity heterogeneity ’dimininishing’ ’along’ δ (h)T =

3 K, d (h) = 1600 m, horizontal resolution ∆x =

80 m

2610 cao test het16r3 al40dh03 hres40 sensitivity heterogeneity ’dimininishing’ ’along’ δ (h)T =

3 K, d (h) = 1600 m, horizontal resolution ∆x =

40 m

2701 cao test het16r3 control v00 additional run with control setting

2702 cao test het16r3 low01 v00

2703 cao test het16r3 low01do01 v00 sensitivity smaller vertical and horizontal extend of the do-

main

2704 cao test het16r3 low01 hr02 v00 sensitivity test of very fine horizontal resolution, ∆x =

10 m, smaller domain

2705 cao test het16r3 low01 hr02vr02 v00 sensitivity very fine resolution, ∆x = 10 m, smaller domain

2706 cao test het16r3 low01 hr02vr03 v00 sensitivity extra fine resolution, ∆x = 6 m, smaller domain

2707 cao test het16r3 low01 hr02vr04 v00 sensitivity increased horizontal and vertical resolution

2708 cao test het16r3 low01 hr02vr04 v00 sensitivity same as 2705

2708 cao test het16r3 low01 hr02vr04 v00 sensitivity same as 2707

2710 cao test het16r3 control v00 additional run with control setting

2711 cao test het16r3 low01 hr02vr04 v00s sensitivity fine resolution, smaller domain extent
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Derivation of expressions

B.1 Kinetic Energy of Strong Updraughts

The part of the methods on the analysis of updraughts (3.4.2) provided a compari-

son between the estimated properties of strong updraughts in EDMF schemes and the

quantities directly sampled from the model. This part of the appendix provides the

derivation of the formula (3.9) for the kinetic energy of strong updraught estimated by

EDMF schemes.

We want to compute the portion of the kinetic energy caused by the the vertical

velocity in strong updraughts, i.e.

Ew,u =

∫
1
2
w dP (w) (B.1)

where w
(au)
u is the upper au-quantile of the distribution of vertical velocites.

Some EDMF schemes assumes that vertical velocity follows the normal distribution,

i.e.

w ∼ N
(
0, σ2

w

)
,

where σ2
w is the variance in vertical velocities. The set of strong updraughts can be then

expresses as

wu =
{
w : w ≥ z(1−au) σw

}
(B.2)

where z(1−au) is the inverse au-quantile of the standard normal distribution. Recalling

the pdf of normal distribution, the kinetic energy of strong updraughts yields:
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Ew,u =

∫{
w : w≥ z(1−au) σw

} 1

2
w2 1√

2π σ2
w

exp

(
−w2

2σ2
w

)
dw

{
substitution s = w

σw

ds = 1
σw

dw

}

=
1

2

∫
s≥z(1−au)

s2 σ2
w

1√
2 π σ2

w

exp

(
− s2 σ2

w

2σ2
w

)
σw ds

=
σ2
w

2

∫
s≥z(1−au)

1√
2π

exp

(
− s2

2

)
ds


per partes

a = s a′ = 1

b = − exp
(
− s2

2

)
b′ = s exp

(
− s2

2

)


=
σ2
w

2

([
− 1√

2π
s exp

(
− s2

2

) ]+∞

z(1−au)
− 1√

2π

∫
s≥z(1−au)

− exp
(
− s2

2

)
ds

)

=
σ2
w

2

(
z(1−au)√

2π
exp

(
− (z(1−au))

2

2

)
+
(
1− φN (z(1−au))︸ ︷︷ ︸

=1−au by definition

))

=
σ2
w

2

(
z(1−au)√

2π
exp

(− (z1(1−au))
2

2

)
+ au

)

(B.3)

where φN (x) is the cumulative distribution function of the standard normal distribution.

B.2 Form Drag

The paramaterization of the surface drag over the mix of sea-ice and water in 6.2.6 is

provided in the form of the formula for the surface exchange coefficient. Since LEM re-

quires an input in the form of aerodynamic surface roughness z0, we derive the formula

6.11 for the apparent aerodynamic surface roughness. This part of the appendix provides

the justification of this formula.

The neutral drag coefficient over a mixture of sea-ice and water is usually formulated
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as

Cdn = (1− cic) Cd,w + cic Cd,ic + Cd,f , (B.4)

where Cd,w is the drag coefficient over open open water, Cd,ic is the drag coefficient

over packed sea-ice and Cd,f , is the form drag (Lüpkes and Birnbaum, 2005). Since the

distribution of ice floes sizes in the MIZ in the area of interest is not known fully, we

apply the parametrization formula:

Cd,f =
ce
2 κ

(
ln
(
hf/z0,w

)
ln
(
z1/z0,w

))2

(1− cic)
β
f cic, (B.5)

where κ is von Kármán constant, z1 is the height at which the drag coefficient is cal-

culated, z0,w is the aerodynamic surface roughness over water, hf is the parameter rep-

resenting the vertical extent of ice floes, here set to 0.41 m, ce = 0.3 is the parameter

representing the drag exchange, and βf is the parameter representing the floe size distri-

bution, here set to 1 (Lüpkes et al., 2012). We reclaim that in the neutral stratification,

the relation between the drag coefficient and the surface roughness yields (Stull, 1988):

Cdn = κ2
(
ln
(
z1/z0

))−2
, (B.6)

and insert this on the left hand side of the equation (B.4). We denote z̃0 the apparent

value of the aerodynamic surface roughness. Combining it with (B.5), we derive

κ(
ln
(
z1
z̃0

))2 =
(1−cic) κ(
ln
(
z1
z0,w

))2 +
cic κ(

ln
(
z1
z0,ic

))2 +
ce
2 κ

(
ln
( hf
z0,w

)
ln
(
z1
z0,w

))2

(1−cic)
βf cic

(
ln
(
z1
z0,w

)
ln
(
z1
z0,ic

))2

=
(

ln
(
z1
z̃0

))2
(

(1−cic)

(
ln
(
z1
z0,ic

))2

+ cic

(
ln
(
z1
z0,w

))2

+

ce
2 κ2

(
ln
( hf
z0,w

)
ln
(
z1
z0,ic

))2

(1−cic)
βf cic

)

(
ln
(
z1
z̃0

))2

=

(
ln
(

z1
z0,ic

)
ln
(

z1
z0,w

))2

(1−cic)

(
ln
(

z1
z0,w

))2

+ cic

(
ln
(
z1
z0,ic

))2

+ cic ce (1−cic)
βf

2 κ

(
ln
(

hf
z0,w

)
ln
(

z1
z0,w

))2

(B.7)

Since both sides of the equation are positive, we can apply the operation of square root.

We expect that z1 >> z0,w and z1 >> z0,ic, and therefore we keep only the positive root.
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Finally we remove the logarithm from left hand side and obtain:

z̃0 = z1 exp


− ln

(
z1
z0,ic

)
ln
(

z1
z0,w

)
√

(1−cic)

(
ln
(

z1
z0,w

))2

+ cic

(
ln
(
z1
z0,ic

))2

+ cic ce (1−cic)
βf

2 κ

(
ln
(

hf
z0,w

)
ln
(

z1
z0,w

))2


(B.8)

which was to prove.
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Further Results of Sensitivity

Testing

An essential part of a model study is an extensive testing of the model sensitivity. While

the main results of the sensitivity study were presented in 3.5 it was not possible to show

all the relevant results. The impact of increasing the initial humidity was originally part

of Sensitivity testing (Chapter 3). However, due to the increasing size of the chapter, it

was moved to the appendix to C.1. The model runs with very fine resolution allowed to

asses the performance of the subgrid scheme in the early steps of model runs. Further

insight into the early development of the convective boundary layer is provided in the

part

C.1 Diminishing Impact of Humidity

Since the humidity profile in the lower troposphere in Arctic plays a significant role in the

development of the stratified boundary layer, its impact on model results is questioned

as well. While the relative humidity in the lower troposphere in the control run is 60 %

(see figure 3.1c), scenarios with initial profile of relative humidity increased to 80 % and

85 % were set up (see figure C.1).
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Figure C.1: The setting of initial profiles
of relative humidity

A higher relative humidity in the initial

conditions leads not only to an earlier de-

velopment of the cloud layer, but also to

slightly warmer CBL. The higher humid-

ity and slightly higher potential tempera-

ture decreased the temperature gradient in

the surface layer. Furthermore, the higher

humidity of ambient air in the lower tropo-

sphere ushers smaller differences in the vir-

tual potential temperature between the free
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atmosphere and the top of CBL, and thus

lowers differences in the buoyancy. This negative feedback slows down the development

of the CBL. By the third hour hour, the vertical fluxes of heat and moisture in both

runs with higher humidity are exceeded by the fluxes in the control case, as shown in

the figure C.3b.

Although clouds in runs with increased humidity start forming earlier and at lower

altitude, the cloud tops spans to the same height as in the control case (see again C.2 ).

With the increase in the potential temperature of the ML, the cloud bases start rising

and reach the same altitude as in the control case by the time 4 hour. During the second

hour, runs with increased humidity also exhibit higher variance in specific humidity in

the ML. On the other hand, the control run exhibit much higher variance in specific

humidity in the cloud layer (see figure C.3a). This phenomena is caused by smaller

differences in humidity between the air developing CBL and the ambient air entrained

from above. The differences in the variance of specific humidity also disappear by 4 hour.

0 1 2 3 4 5
0

500

1000

1500

2000

2500

a
lt
it
u
d

e
 [
m

]

time  [hour]

Timeseries of cloud tops and bottoms

 

 

control

Rh 80%

Rh 85%

(a)

0 0.005 0.01 0.015
0

500

1000

1500

2000

2500

r
cl

 [g kg
−1

] 

a
lt
it
u

d
e

 [
m

]

Profiles of liquid and ice cloud water mixing ratio
at the end − 4−5 hour

 

 

control

Rh 80%

Rh 85%

(b)

Figure C.2: The sensitivity in the formation of clouds to the initial humidity.
The dashed line (−−) marks liquid cloud water, the dotted line (· · · ) ice cloud water. The
symbol � marks the altitude of cloud base, the symbol 4 the altitude of cloud tops.

Due to the aforementioned negative feedback in forcing, the amount of cloud water

increases at a slower rate then in the control run. During the 2–4 hour, the amount of

cloud liquid water in the control run exceeds amounts in both run ’Rh 80 %’ and run

’Rh 85 %’. Finally during the 4–5 hour, vertical profiles of liquid water mixing ratio do

not differ by more than 10 %. Furthermore, timeseries of vertical fluxes of the momen-

tum and the latent heat at all altitudes within CBL exhibit faster growth followed by

a stagnation. During the 4–5 hour, values of fluxes are in the same interval as in the

control case.

The analysis of flux residua reveals that values of autocorrelation for timeseries in runs
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with higher humidity are higher than in the control case, however the difference is smaller

than the spread in autocorrelation values between the cases with the different type of

the surface heterogeneity.

In summary, the increase in the initial humidity does not lead to any qualitative

changes in the developing CBL. findings of the sensitivity testing for humidity are in

a good agreement with the previous research on mesoscale structures in CAO (Ya-

mamoto, 2012) that stressed out the dominating influence of the SST on resulting specific

humidity of air.
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Figure C.3: The negative feedback of initial humidity – variance in specific humidity
and kinemtic moisture flux at different times. Full lines (–) show averaged profiles for
1.5–1.75 hour and dash-dotted lines (− · −·) show averaged profiles for 4–5 hours. The
symbol � marks the altitude of cloud base, the symbol 4 the altitude of cloud tops.
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C.2 Very fine resolution

The sensitivity testing of the runs with a very fine resolution was expained in 3.5.3.

However it was not possible to show all the interesting results. In this part of the

appendix, we would like to demonstrate the differences in the modelled structure of

bottom part of the boundary layer between the control run and the run with extra fine

resolution. Early convective plumes in the control run are not properly resolved. Most

of the transport in the control run is parametrized. The run with extra fine resolution

than clearly show the shape of convective plumes in the early convective boundary layer

(see figure C.4).
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Figure C.4: The comparison of control run and the run with extra fine resolution at the
time 900 s after t0. Vertical cross-section of the vertical structure shows the developing
convective boundary layer. The run with the extra-fine resolution clearly shows the
forming convective plumes
Arrows in the control run mark the direction of the wind.
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Appendix D

Appendix C – Gravity Waves

The Analysis of gravity waves was originally part of chapter 3, 4 and 5. However, the

results of the analysis did not show results that would be interesting enough. This part

of the Appendix therefore presents the methods for the analysis of gravity waves and th

D.1 Introduction for Gravity Waves

As thermals of the developing CBL penetrates into stratified free atmosphere above,

gravity waves are generated (Melfi and Palm, 2012). The gravity waves facilitate the

transport of the momentum (Nappo, 2013) through the stratified layers above the bound-

ary layer (Kerman, 1974). As they propagate higher into troposphere, they might reach

resonance (Fritts and Alexander, 2003) at some altitudes. While the gravity waves travel

within the stratified layer, they can alter the shear production in the troposphere (Finni-

gan and Einaudi, 1981), modify surface stress over water (Winstead et al., 2002), induce

residual circulation and modulate the feedback of planetary waves (Fritts et al., 2005).

Therefore, there is solid reason to analyse the gravity waves generated by a developing

CBL in our idealised scenarios. In this part of the appendix, we are going to provide the

methodology for the evaluation of the waves in the upper troposphere.

D.2 Methods for Gravity Waves

While areas of the free atmosphere with a high variance in vertical velocity might be

an indication of gravity waves, wind fields in LEM outputs are further processed. If

there is a repetitive wave pattern in a wind fields, it will show a response in the spectral

decomposition of model wind fields. Still, a response in the upper atmosphere might be

also caused by shear generated turbulence. In theory, air velocity in the in the upper

atmosphere can be clearly decomposed into the part of advection, waves and turbulence

(Einaudi and Finnigan, 1981). However, in the evaluation of model and observational

data, the decomposition into the wave and the turbulent part pose quite a big issue. One
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Figure D.1: The comparison of mean profiles for the vertical flux of momentum and the
vertical flux of moisture. Values of fluxes are taken in absolute values and plotted on
logarithmic axis to better display the difference.

possibility is comparing the vertical momentum transport against the vertical transport

of moisture and passive tracers, or rather lack of it. Since the waves transport the

momentum but not scalar quantities, there should be a large difference in the vertical

transport terms (Stewart, 1969). Nevertheless, there is no clear-cut difference between

the waves and turbulence. Furthermore, a turbulence can be also generated by the

breaking of gravity waves (Kerman, 1974) (Tjernström and Maueitsen, 2008). Despite

all the progress in the analysis of gravity aves in recent decades (Galperin et al, 2010),

there is no clear way how to separate the turbulent and wave part when they coexist

(Jacobitz et al., 2005).

In this study, we will use the aforementioned suggestion of Stewart (1969) and com-

pare the profiles of the vertical transport for moisture and momentum (see figure D.1).

The part of the troposphere above clouds exhibit a sharp drop in the vertical fluxes of

moisture while the momentum flux u′w′ decreases just slightly. The momentum flux in

the upper part of the atmosphere is 15 times lower than its maximum, but still reaches

values similar close to the surface. While the values of the vertical fluxes of moisture are

by 4 to 5 orders of magnitude lower than in the CBL, it could be considered an indicator

of the likely present of the waves in the upper atmosphere. However, a further evaluation

of spectral properties is preferable.

With an aim to analyse the spectral properties of the troposphere, horizontal slices

are extracted from the model fields (see example from altitude 6496 m in figure D.2a) and

their 2D power spectra are calculated by employing the Fast Fourier Transform in 2 Di-

mensions (Press et al., 2007, pp.631-636). Peaks in 2D spectra identify the wavelengths

of dominant frequencies. To further process the prevailing wavelengths the 2 spectra

244



APPENDIX D. APPENDIX C – GRAVITY WAVES D.2

Vertical wind velocity at altitude 6400 m
3 hour, control

↑          x [km]          ↑

-5 0 5

→
  

  
  

  
y
 [

k
m

] 
  

  
  

→

-6

-4

-2

0

2

4

6

→
  

  
  

  
w

 [
m

 s
-1

] 
  

  
  
→

-1

-0.5

0

0.5

(a)

wavenumber [m
-1

]

10
-4

10
-3

n
o

rm
a

lis
e

d
 p

o
w

e
r 

s
p

e
c
tr

u
m

10
-4

10
-3

10
-2

10
-1

10
0

Averaged normalised power spectra in vertical velocity
at 3 hour

k
x
 at 6496 m

k
y
 at 6496 m

k
x
 at 340 m

k
y
 at 340 m

(b)
Amplitude spectra of vertical wind velocity

at altitude 6400 m, control

k
x
 [m

-1
]

10
-4

10
-3

k
y
 [
m

-1
]

10
-4

10
-3

a
m

p
lit

u
d
e
 s

p
e
c
tr

a
 [
m

 s
-1

]

0.005

0.01

0.015

0.02

0.025

0.03

(c)

Amplitude spectra of vertical wind velocity
at altitude 340 m, control

k
x
 [m

-1
]

10
-4

10
-3

k
y
 [
m

-1
]

10
-4

10
-3

a
m

p
lit

u
d
e
 s

p
e
c
tr

a
 [
m

 s
-1

]

0.005

0.01

0.015

0.02

0.025

0.03

0.035

(d)

Figure D.2: Illustration of steps in the evaluation of gravity waves. Wind velocity are
extracted from the chosen level in the upper troposphere (a) and 2D amplitude spectra
are calculated (c). The spectra in the middle of the ML stands in contrast (d). Spectra
at both altitudes are separately integrated over kx and ky to produce 1D spectra (b).

are separately integrated along the x-axis and the y-axis. That allows us to look sep-

arately on the dominant wavenumbers in the direction along the mean wind and across it.

This approach is demonstrated on the comparison of spectra ow vertical wind ve-

locity in the upper troposphere and in the CBL. For the upper atmosphere, we select

an aforementioned slice from the altitude 6400 m. For the CBL, we select a slice ap-

proximately in the middle of ML. In our example, we can see a clear difference between

the 2D spectra of these two slices (compare figures D.2c and D.2d). The evaluation of

1D spectra in x and y direction a clear difference (see figure D.2b). The spectra in the

ML exhibit a steady line until approximately 5 · 10−4, followed by a gradual decline for

higher wavenumbers. This stands in a good agreement with previous studies (Roode et

al., 2004). The spectra of vertical wind velocity in the upper atmosphere differ. Firstly,

the decline in spectra is significantly sharper. Secondly, there is a clear differences be-

tween the spectral decomposition in the direction x and y. The spectra show a clear

peak for a value of ky between 2 · 104 and 4 · 104. This is consistent with the previous
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observations and model studies of gravity waves (Gossard and Munk, 1954) (Yoshiki and

Sato, 2000).

This peak in spectra will be discussed later (in Chapter 4). The choice of altitudes

of horizontal slices used further in this study is constrained by two conditions. They

should be high above the CBL to avoid a direct influence of convective overshoots but

also well below the start of the damping layer (Kershaw, 1995). In our basic setting, the

altitude 3150 m represents the mid-troposphere and the altitude 6400 m represents the

upper troposphere.

D.3 Results

D.3.1 Gravity waves in Control Run

A growing CBL is not fully isolated from the rest of the troposphere. The turbulence

in the boundary layer generates waves in the stratified layers above (Stull, 1988, 477).

These waves then propagate further upwards and travel also horizontally (Lane and

Moncrieff, 2010). The study of gravity waves is motivated by their effects, including

the influence on surface stress (Winstead et al., 2002) and inducing residual circulation

(Fritts et al., 2005). Case studies usually focus on situation over semi-stationary CBL,

however the impact of a growing CBL should be questioned as well. This section inves-

tigates gravity waves generated by the developing CBL in the control set. The analysis

of spectra follows the methods described in 2.5.5.

A high turbulent kinetic energy in the free atmosphere above the ABL (see again

the figure 4.8b) indicates a likely presence of gravity waves. Two-dimensional spectral

decomposition of the vertical velocity at chosen altitudes then shows a number of peaks

in wavenumbers (see figure D.3).

Multiple peaks in the x-component between 0.1 · 10−4 and 1.7 ·1 0−4 might indicate a

complicated character of waves. Similarly, 2D spectra of potential temperature pertur-

bations show high values for wavenumbers x-direction between 1.1 · 10−4 and 1.5 · 10−4

and wavenumbers in y-direction between 0.1 · 10−4 and 1.7 · 10−4.

While averaging the spectra in the y-component leads to approximately constant 1D

spectra for lower wavenumbers in x-component with a decline for wavenumebers larger

than 2 · 10−4, averaging in the x-component reveals a single clear peak for the wavenum-

ber ky. During the third hour, peaks in spectra of vertical velocities at altitude 3200 m

and 6400 m are achieved for ky = 3.8 ·10−4 m−1 and ky = 3.1 ·10−4 m−1 respectively. This

indicates that gravity waves in the direction of the mean wind flow are of wavelengths
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Figure D.3: 2D amplitude spectra of the vertical velocity variance in the upper atmo-
sphere at 5 hour

between 2.7 km and 3.2 km.
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Figure D.4: The spectra of the vertical wind velocity in the upper atmosphere at 5 hour
for runs from the control set.

The comparison of the model runs (an example in figure D.5) does not show any

significant differences in the resulting normalised power spectra estimations, implying

that the temporary and spatial variations inside the CBL do not affect the resulting

characteristic of the free atmosphere. The peak in each power spectra is surrounded

by a drop in powers for lower wavenumbers as well as for higher ones. Furthermore,

initially sharp decline for wavenumbers higher than 3.97 · 10−4m−1 changes into a less

steep decline for wavenumbers above 8.1 · 10−4m−1. This further reinforces the hypoth-

esis of well-defined gravity waves and smaller disturbances followed by an inertia cascade.
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Figure D.5: The comparison of averaged ky spectra in the upper troposphere for different
times and runs

In summary, the analysis of stratified layer above the CBL has shown developing

waves patterns in the upper troposphere. The patterns are dominated by waves aligned

in the direction of the mean wind flow with the wavelengths between 2.7 and 3.2 km,

indicating well defined gravity waves.

D.3.2 In Scenarios with Weak Wind Shear

An increased amount of kinetic energy is being transported into upper atmosphere in the

scenarios with strong wind forcing. Repetitive pattern in vertical velocity is indicated

already at 2 hour after the transition. Further analysis then reveals that while there

are again relatively negligible differences in normalised power spectra for kx, normalised

power spectra for ky clearly demonstrate the impact of increased wind shear. Peaks of

spectra are shifted toward lower wavenumbers, 2 · 10−4 for ’wind2’ and 1.1−−1.5 · 10−4

for ’wind3’. The slope to lower higher wavenumbers is slightly less steep than in the

control case, -6 against -7.

D.3.3 Scenarios with Stronger Stratification

The flux of momentum from the ML into upper atmosphere is in all ’strat#’ scenarios

weaker than in the control scenario, however that does not necessary imply the absence

of gravity waves. Calculated 2D spectra of vertical velocity and potential temperature

at altitudes clearly show multiple peaks for wavenumbers ky between 10−4 and 3 · 10−4.

While normalised marginal spectra for wavenumber kx return similar results as for con-

trol, there are differences in the marginal spectra for ky. Peaks in the power spectra in

strat-scenarios are at slightly lower wavenumbers than in the control scenario, The slope

to lower wavenumbers is less steep than in the control scenario, indicating less distinct

gravity waves compared with the background noise.
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