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Abstract 17 
Integrated assessment models (IAMs) are computer-based instruments used to assess the implications 18 
of human activity on the human and earth system. They are simultaneously also used to explore 19 
possible response strategies to climate change. As IAMs operate simplified representations of real-20 
world processes within their model structures, they have been frequently criticised to insufficiently 21 
represent the opportunities and challenges in future energy systems over time. To test whether 22 
projections by IAMs diverge in systematic ways from projections made by technology experts we 23 
elicited expert opinion on prospective change for two indicators and compared these with the 24 
outcomes of IAM studies. We specifically focused on five (energy) technology families (solar, wind, 25 
biomass, nuclear, and carbon capture and storage or CCS) and compared the considered implications 26 
of the presence or absence of climate policy on the growth and diffusion of these technologies over 27 
the short (2030) to medium (2050) term. IAMs and experts were found to be in relatively high 28 
agreement on system change in a business-as-usual scenario, albeit with significant differences in the 29 
estimated magnitude of technology deployment over time. Under stringent climate policy 30 
assumptions, such as the internationally agreed upon objective to limit global mean temperature 31 
increase to no more than 2 °C, we found that the differences in estimated magnitudes became smaller 32 
for some technologies and larger for others. Compared to experts, IAM simulations projected a greater 33 
reliance on nuclear power and CCS to meet a 2 °C climate target. In contrast, experts projected a 34 
stronger growth in renewable energy technologies, particularly solar power. We close by discussing 35 
several factors that are considered influential to the alignment of the IAM and expert perspectives in 36 
this study. 37 
 38 
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1 Introduction 41 

Integrated assessment models (IAMs) are computer-based instruments used to assess the implications 42 
of human activity on the human and earth system. They are simultaneously also used to explore 43 
possible response strategies to climate change. Scenarios generated by these models inform policy 44 
makers on elements such as the timing of greenhouse gas (GHG) emission reductions, required 45 
changes in technological infrastructure, and the potential contribution of different world regions to 46 
limiting global temperature increase (e.g. Calvin et al., 2012; Kriegler et al., 2013; Riahi et al., 2015; 47 
Tavoni et al., 2015; Weyant and Kriegler, 2014). In the past these scenarios have proven to play an 48 
important role in informing society about the effects of future climate and energy policies. For 49 
example, the assessment reports by the Intergovernmental Panel on Climate Change (IPCC), reviewing 50 
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model-based scenario literature on global systems change, have helped inform negotiators and heads 51 
of state in articulating long-term ambitions in line with the internationally agreed upon objective to 52 
limit global mean temperature increase to no more than 2 °C. To illustrate, the IPCC’s fourth 53 
Assessment Report (AR4) has provided the underpinning of the European Union's ambition to reduce 54 
GHG emissions by 80%–95% in 2050 compared to 1990 levels (Council of the European Union, 2009; 55 
Gupta et al., 2007). Similarly, the IPCC’s fifth Assessment Report (AR5) has supported the 56 
communicated ambition of the G7 during the Paris Agreement to reduce global GHG emissions by 57 
40%–70% in 2050 compared to 2010 levels (G7, 2015; UN, 2015). Due to this rising importance of 58 
model-based scenarios in climate change mitigation policy and strategy, interest has sharpened on the 59 
evaluation of IAMs and their depictions of achievable technological growth under stringent climate 60 
mitigation assumptions (Anderson, 2015; Anderson and Peters, 2016; Fuss et al., 2014). 61 
 62 
Literature evaluating the ability of IAMs (and related models) to capture future energy system change 63 
has emphasised the difficulty of using formal model validation methods (Schwanitz, 2013). One reason 64 
is that IAMs are designed to capture long-run dynamics of aggregated human activity and not the 65 
dynamics of more incidental or volatile processes. This means that comparing IAM projections to 66 
recent observations has limited relevance for model evaluation (van Vuuren et al., 2010). Instead, 67 
other methods have been designed to evaluate the projected patterns in IAMs, including (1) inter-68 
model comparisons, to identify dominant or robust patterns across multiple IAMs (e.g. Kriegler et al., 69 
2015; Riahi et al., 2015; Tavoni et al., 2015), (2) comparative analysis with long-run observational 70 
datasets, to assess whether depicted trends on the speed of technological diffusion and scalability of 71 
technologies are consistent with historical evidence (e.g. Kramer and Haigh, 2009; van der Zwaan et 72 
al., 2013; van Sluisveld et al., 2015; Wilson et al., 2012) and (3) retrospective analysis, to test whether 73 
modelled system behaviour can approximate the observed historical developments of its real-world 74 
counterpart (e.g. Fujimori et al., 2016; Metayer et al., 2015; Trutnevyte et al., 2016; van Vuuren and 75 
O’Neill, 2006). Although such studies provide useful insights on the performance of IAMs, they remain 76 
focused on past insights and take little note of current or prospective innovation processes and 77 
development. Hence, comparative methods that rely on historical data and trends assume continuity 78 
of the past and may therefore be less meaningful in situations where trends are changing (National 79 
Research Council, 2010). 80 
 81 
Several strands of literature have applied alternative methods to provide insights on future 82 
developments (Wilson et al., 2017). Systematically consulting specialists in a field of expertise is one 83 
example. Experts are assumed to have the ability to interpret the wealth of (tacit) information on 84 
current societal and technological trends and consider their implications for the future. Collecting this 85 
knowledge through expert elicitation has the advantage of gauging uncertainties beyond current 86 
conditions (Bosetti et al., 2016). For example, various expert elicitations have assessed changes in the 87 
costs of electricity generation under various descriptive scenarios on RD&D funding. Examples include 88 
elicitations on the future costs of biomass energy (Fiorese et al., 2014), solar PV (Bosetti et al., 2012; 89 
Curtright et al., 2008), nuclear energy (Anadón et al., 2012; Baker et al., 2008) and carbon capture and 90 
storage (CCS) (Baker et al., 2009; Chan et al., 2011; Nemet et al., 2013; Rao et al., 2006). However, 91 
experts are known to be susceptible to cognitive biases (Marquard and Robinson, 2008), affecting the 92 
transparency, accuracy and defensibility of their judgements. Moreover, expert judgements are usually 93 
limited to a single object of interest and their projections do not stretch out over very long time scales. 94 
Given these limitations, expert elicitations may only provide limited guidance on counterfactual 95 
developments that remain aligned with the 2 °C objective over time. 96 
 97 
In this study we present a comparative analysis of two different analytical methods that are both used 98 
to assess future change. We focus particularly on quantitative projections provided by IAMs and 99 
quantitative estimates elicited from experts. To our knowledge, expert elicitations have rarely focused 100 
on technology deployment, nor have they been directly compared to IAM outcomes. The few expert 101 
elicitation studies on growth and diffusion of energy technologies have predominantly focused on 102 
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driving forces and evaluation criteria (see e.g. Napp et al., 2015; Vaughan and Gough, 2016). As these 103 
studies have mostly remained on a qualitative level, they cannot directly be compared to IAM output. 104 
We therefore confront existing IAM data with expert projections acquired through a new expert 105 
elicitation process. Given how the decarbonisation of the power sector is the principal near and 106 
medium-term response strategy in IAMs (Clarke et al., 2014), we are specifically interested in 107 
comparing projections for this sector. We focus on the five main families of electricity-supply 108 
technologies that contribute the most to decarbonisation in (IAM) projections, which are solar PV, 109 
wind, nuclear, biomass, and thermal plants with and without carbon removal technologies (CCS). In 110 
the next section we will first elaborate on the selection process for experts and scenarios and describe 111 
the applied methodology. Section 3 presents the results of the expert elicitation and the IAM scenarios. 112 
Section 4 discusses the factors that are considered to impose influence on the alignment of the IAM 113 
and expert perspectives and Section 5 summarises and concludes. 114 

2 Methodology 115 

2.1 Models and scenarios 116 

To study future change from an IAM perspective we use the outcomes of a multi-model inter-117 
comparison study (MIP), which allow us to sample the results of multiple high resolution IAMs that 118 
have run under harmonised settings. The benefit of using high resolution IAMs is that they typically 119 
represent relevant interactions and feedbacks that can be used to assess the implications of human 120 
activity on the system (as opposed to the more highly aggregated IAMs used for cost-benefit analyses) 121 
(Edmonds et al., 2012). In this study we specifically focus on an ensemble of high resolution IAMs that 122 
have participated in the LIMITS project, a multi-model inter-comparison project aimed at assessing 123 
policies and timescales consistent with limiting global mean temperature increase to 2 °C within the 124 
21st century (Kriegler et al., 2013). 125 
 126 

2.1.1 Selection of integrated assessment models 127 
The ensemble of models included for study encompasses a set of high resolution IAMs that are widely 128 
used to assess systemic change over time and under various pressures, contributing over half the 129 
scenarios in the IPCC’s AR5 Scenario Database (IPCC, 2014; Krey et al., 2014b). Next to having 130 
contributed to the previous large-scale IPCC assessment reports, they also play a central role in the 131 
forthcoming scenario framework which is to be used in future assessment reports (also referred to as 132 
SSPs and RCPs, see e.g. Moss et al., 2010; O’Neill et al., 2014 and the Supplementary information for 133 
details). As such, the results produced by the models in our ensemble can be considered representative 134 
in the field of IAM studies. 135 
 136 
The IAMs in this study provide a wide range of possible transition pathways over time and towards the 137 
2 °C objective (see Figure A1 in the Supplementary information). This breadth in outcome is a result of 138 
methodological and structural differences between these IAMs, which can be expressed in terms of 139 
variation in the coverage of the economy, the degree of foresight, the level of detail in spatial, sectoral 140 
and technological resolution, and assumptions or constraints on the speed of technology diffusion (see 141 
Table 1) (Kriegler et al., 2015). By combining diverse models in an inter-comparison study, we can 142 
assess the robustness of projected long-term developments within a range of embedded structural 143 
uncertainty (Wilson et al., 2017). In this study it is therefore more of interest to focus on the collective 144 
pattern observed across these IAMs than the individual model responses. To prevent a selective draw 145 
of model outcomes, we tested whether the patterns of the current subset of IAM models and scenarios 146 
deviate significantly from the full set of result as found in the IPCC's AR5 Scenario Database (IPCC, 147 
2014). We found that the IAM models and scenarios in Table 1 broadly represent the middle of the 148 
road in all IPCC's AR5 result (see Annex A in Supplementary information). 149 
 150 
 151 
  152 
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Table 1 - Key model characteristics, adapted from Kriegler et al. (2015)  153 
Name*1 Time 

horizon 
Model category  Intertemporal Solution 

Methodology 
Tech diversity 
in low carbon 

supply 

Classification*2 

AIM-Enduse 2050 Partial equilibrium Recursive dynamic High Medium response 

GCAM 2100 Partial equilibrium Recursive dynamic High High response 

IMAGE 2100 Partial equilibrium Recursive dynamic High High response 

MESSAGE 2100 Partial equilibrium Intertemporal optimisation  High High response 

REMIND 2100 General equilibrium Intertemporal optimisation High High response 

TIAM-ECN 2100 Partial equilibrium Intertemporal optimisation High*3 High response*3 

WITCH 2100 General equilibrium Intertemporal optimisation Low Low response 

*1 Sources: AIM-Enduse (Kainuma et al., 2004); GCAM (Clarke et al., 2007); IMAGE (Stehfest et al., 2014); MESSAGE 154 
(Messner and Strubegger, 1995); REMIND (Bauer et al., 2013; Luderer et al., 2013); WITCH (Bosetti et al., 2006) and TIAM-155 
ECN (Keppo and van der Zwaan, 2011) 156 
*2 Classification represents a pattern of common model behaviour in response to a carbon tax in terms of cumulated 157 
carbon reduction, carbon over energy intensity reduction and structural changes in energy use (primary energy) (Kriegler et 158 
al., 2015). 159 
*2 The TIAM-ECN model was not part of the Kriegler et al. (2015) evaluation study – based on the model characteristics for 160 
the TIAM-ECN model it is assumed that it behaves similarly to comparable models. 161 
 162 

2.1.2 Scenarios 163 
We analyse two different scenarios that outline a future with and without climate policy. In order to 164 
ensure that model responses are clearly traceable to the differences in the model structure, we 165 
explicitly selected the standard (idealised) baseline and mitigation scenarios that are created by 166 
(solely) harmonising assumptions on the presence or absence of future climate policy. Scenarios that 167 
implement richer narratives of change (such as those including detail on the timing of international 168 
collaboration or technology availability, see e.g. Krey et al., 2014a; Riahi et al., 2015 for examples) are 169 
not further analysed in this work. Our two scenarios are: 170 
 171 

1) A baseline (Baseline) scenario, describing a business-as-usual case in which there will be no 172 
global agreement on international climate policy. Changes in the energy system will therefore 173 
mostly be driven by other factors than climate policy, such as growing energy demand linked 174 
to demographics and resource price developments which reflect scarcity and innovation. In 175 
general the Baseline scenario does not entail major technology shifts over time, while 176 
greenhouse gas emissions increase over the century, peaking only towards the end of the 177 
century as population stabilises (see Tavoni et al. (2015); van Sluisveld et al. (2013) for regional 178 
and global decomposition analyses). A business-as-usual scenario allows consideration of 179 
system change over time as adopted within the model structure without the influence of 180 
additional exogenous pressure. 181 
 182 

2) A climate policy (2 Degrees) scenario, describing a mitigation pathway that will restrict the 183 
increase in global mean temperature to a maximum of 2 °C in the year 2100 (all corresponding 184 
to a likely (>66%) probability of meeting 2 °C, see Annex A in the Supplementary information). 185 
To maintain narrative simplicity, this scenario assumes an immediate and universal 186 
implementation of a global carbon tax to induce the deployment of low-carbon technologies 187 
in a most cost-effective manner while ignoring the normative (fair) distribution of efforts. The 188 
carbon tax increases the price of energy carriers with a carbon content, creating a price-based 189 
preference order in favour of low-carbon or carbon-removal alternatives over unabated fossil-190 
fuel technologies. These additional costs add to the system change drivers already included in 191 
the business-as-usual scenario. In general the 2 Degrees scenario leads to an immediate move 192 
away from fossil-fuel dependent technologies and towards a diverse blend of decarbonisation 193 
options, such as (1) renewable (non-combustible) power supply; (2) deployment of carbon 194 
removal technologies (such as carbon capture and storage, CCS); and (3) energy efficiency 195 
improvements. 196 
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 197 

2.2 Expert elicitation 198 

To collect expert projections along similar assumptions about future climate policy as adopted by IAMs, 199 
we employed the lower bound of the CO2 emission reduction range as reported in the IPCC’s 4th 200 
Assessment Report (50%–85% by 2050 compared to 2000 levels) (IPCC, 2007) as an indication of 201 
needed transformative change. We used the value of the 4th Assessment Report (2007) as the 5th 202 
Assessment Report (2014) had not been published yet at the time. As both ranges are considered 203 
broadly comparable (Van Vuuren et al., 2015), it is assumed that this does not impose influence to the 204 
end result of this study. No other assumptions on future change were provided to the expert to prevent 205 
the narrowing of the experts' focus. In the following section we outline our elicitation protocol in more 206 
detail. 207 
 208 

2.2.1 Expert selection 209 
To gain an alternative perspective on future change, we selected technology experts with a 210 
comprehensive view of all the various factors that may stimulate or inhibit the development of a 211 
specific technology (both technical aspects, as well as whole energy system dynamics). To identify 212 
relevant participants, we drew on the lead authors of technology-focused chapters of key assessment 213 
and synthesis products such as the IPCC’s 4th Assessment Report (Sims et al., 2007), the Global Energy 214 
Assessment (GEA, 2012), the IPCC’s Special Report of Renewable Energy Sources and Climate Change 215 
Mitigation (Edenhofer et al., 2011) and the Global Status Report (REN21, 2014). We thus extended 216 
earlier selection procedures that identified relevant expertise. Each expert was contacted via email, 217 
explained the project aim and invited to take part in the elicitation. To boost sample sizes, participating 218 
experts were also requested to propose alternative or additional participants following a snowball 219 
sampling technique. This network approach proved particularly useful for identifying bioenergy and 220 
nuclear experts in our study. 221 
 222 
A total of 39 experts took part in our elicitation (33% of the 117 experts contacted), including 223 
representatives of universities or research institutes (51%), member-based organisations dedicated to 224 
a specific technology (21%), governmental agencies (15%), private sector (8%) and intergovernmental 225 
organisations (5%) (see Table 2 and Annex B in the Supplementary materials). Overall, the participating 226 
experts formed a diverse group covering both theoretical and practical knowledge. Per energy supply 227 
technology individually, the samples vary in size (see Table 2). Although no rule exists on how many 228 
experts are needed in an expert elicitation, five to six specialists are considered to be a lower bound 229 
for representing most of the expertise and breadth of opinion, provided that the experts have a broad 230 
understanding of the problem (Keeney and von Winterfeldt, 1991; Morgan, 2014). If we compare our 231 
sample of experts to other elicitations on future system change (see Bosetti et al., 2016 for an 232 
overview), we find that the number of experts sampled in this elicitation are in the range of comparable 233 
expert elicitations although near the lower bound for each technology individually. 234 
 235 

Table 2 - Overview of invited experts per technology 236 
 Wind Solar Nuclear Biomass CCS 

Number of experts contacted 24 19 16 33 25 
Responses 7 (29%) 7 (37%) 6 (38%) 12(36%) 7 (28%) 
Year of elicitation 2014-2015 2014-2015 2014-2015 2014-2015 2015-2016 

Academia / research institutes 2 3 3 6 6 
Governmental agency 1 2 1 1 1 
Intergovernmental organisation   2   
Member-based organisations 3 1  4  
Private organisations 1 1  1  

TOTAL 7  7 6 12 7 

 237 
 238 
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2.2.2 Elicitation method 239 
In the elicitation, we used both direct and indirect elicitation methods (O’Hagan et al., 2006) to identify 240 
and limit possible cognitive biases. Recognised biases in expert elicitations are (1) motivational biases 241 
(due to personal interests or other context-related factors), (2) accessibility biases (relating to 242 
information first coming to mind), (3) anchoring and adjustment biases (not being able to adjust above 243 
or below a benchmark or reference point), and (4) overconfidence bias (as a result of reinforcing 244 
evidence found in newly available information) (Martin et al., 2012). 245 
 246 
The first two types of bias may be limited via the framing of questions. In order to expose motivational 247 
bias, the survey started with a question in which experts were asked to rank the contribution of their 248 
technology to total electricity supply within a subset of eight technology families under varying future 249 
pathways for 2050. This question functioned as a self-assessment, providing insights on potential 250 
biases within a particular group of technology experts compared to the group as a whole. To reduce 251 
accessibility biases, we selected and pre-tested metrics based on literature (van der Zwaan et al., 2013; 252 
van Sluisveld et al., 2015; Wilson et al., 2012) to ensure their familiarity to both the IAM community 253 
and the technology experts. The selected metrics, covering both technology stock and growth over 254 
different timescales, are shown in Table 3. 255 
 256 
Anchoring and overconfidence biases are harder to overcome given the unfamiliar nature of long-term 257 
future development. In order to test the consistency of experts throughout the elicitation protocol, 258 
several methods were used. First, to limit overconfidence and anchoring (Morgan, 2014), we asked 259 
experts to provide lower limit, mean and upper limit expected values rather than point estimates for 260 
future developments under different climate policy assumptions and for different periods in time. 261 
Additionally, the experts were asked to provide these quantitative values before they were shown 262 
results from IAMs. Secondly, we used the method of ‘rephrasing with alternative wording’ (Martin et 263 
al., 2012; Morgan, 2014). Instead of asking the same questions multiple times with different wordings, 264 
we asked experts about two different metrics that are logically interconnected. In this study we chose 265 
to focus on (1) total installed capacity which contains information about technology stocks and growth, 266 
and (2) market share which contains information about the impact of a technology on the electricity 267 
system. We assumed that these metrics are alternative but complementary indicators to describe 268 
future technological change in the power sector. 269 
 270 
Table 3 - overview of aggregate system metrics included in the expert elicitation 271 

Group Metric Description 

Wind,  
Solar,  
Nuclear,  
Biomass 

Total installed capacity (GW) Total amount of technology stock  

Share in total electricity 
production (% ) 

Contribution of a technology to the electricity mix  

CCS CO2 capture rate (MtCO2/yr) Total capture capacity in the power sector 

Share in total electricity 
production (% ) 

Contribution of a technology to the electricity mix 

 272 
In a later stage of the survey, the experts were confronted with a visual representation of the IAM 273 
outcome on the same set of metrics. As another means to test for consistency we asked the experts 274 
to assess the presented values by using verbal statements on a five-point Likert scale, ranging from 275 
“very low” to “very high” with three evenly distributed intermediate steps in between. Although Likert 276 
scale results cannot reflect the breadth of possible response in much depth, they were preferred over 277 
open-ended questions as they allowed for quick sampling. Moreover, the method yields standardised 278 
output which improves the comparability between experts and expert groups. Using verbal statements 279 
as a means of expressing a judgement can also allow for more intuitive responses than when asking 280 
for numbers, especially when intuition can be considered a more appropriate form of analysis (as may 281 
be the case for forward-looking analysis). Their use may be also more desirable over more quantitative 282 
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probability estimates which are more prone to errors or bias (O’Hagan et al., 2006). To avoid a forced 283 
response, the survey also offered experts the option of opting out of any question. For all questions, 284 
the experts could also provide (optional) comments to explain their reasoning (see Annex C in the 285 
Supplementary materials for the elicitation protocol per technology group). 286 
 287 
We distributed the survey online for experts to self-complete in their own time. Advantages of online 288 
surveys include geographical flexibility, cost-effectiveness and the option for participants to take the 289 
survey at any time and place of choice. However, a limitation of online surveys is that it is hard to know 290 
whether the question was understood correctly by the experts, or whether the experts took shortcuts 291 
to complete the survey faster, leading to less reliable responses or missing data (Baker et al., 2014). To 292 
prevent this we carried out a pre-test with an expert in each technology domain to assess the clarity 293 
of the questions, as well as to consider whether questions were being interpreted similarly across 294 
various technology expert groups. The pre-tests provided confidence that experts had a good overall 295 
understanding of the elicitation metrics shown in Table 3. 296 
 297 

2.2.3 Overall structure of the survey 298 
The surveys were carried out between September 2014 and June 2016. To open the elicitation, experts 299 
were asked to rank the relative roles of various technologies by their importance (in terms of share in 300 
total power supply by 2050). This question was asked to all experts, requiring them to also assess 301 
technologies outside their specialist field of expertise. Results are presented and discussed in Section 302 
3.1. 303 
 304 
The elicitation groups were then guided through a two-step approach (see Annex C in the 305 
Supplementary information for a visual representation), beginning with questions asking for 306 
quantitative estimates (lower, mean and upper values) for the metrics shown in Table 3. Experts in 307 
each elicitation group were asked to estimate each metric for the technology in their field of expertise 308 
for both the near future (2030) and medium-term future (2050) under both Baseline and 2 Degrees 309 
assumptions. In a second step, the elicitation groups were asked to qualitatively evaluate technology 310 
projections provided by IAMs using the same metrics. Experts could evaluate the IAM values for the 311 
near (2030) and medium-term (2050) future under Baseline and 2 Degrees assumptions as “very low”, 312 
“low”, “reasonable”, “high” or “very high”. The results of this two-step approach are further discussed 313 
in Section 3.2. 314 
 315 

3 Results 316 

3.1 Comparing power supply system projections 317 

In the first part of the comparative analysis we focused on the relative contribution of specific energy 318 
technologies to total electricity supply under Baseline and 2 Degrees policy assumptions by 2050. For 319 
experts, ranking the energy technology's contribution to future power supply was an explicit question. 320 
For IAMs, a similar ranking was constructed by assigning ranks to the average relative contribution of 321 
energy technologies to total power supply (with the largest relative contribution receiving the number 322 
one ranked position, the second largest relative contribution the second ranked position, etc.). Results 323 
are presented in Figure 1, plotting the mean and spread of expert rankings (y-axis, representing the 324 
10th and 90th percentile of 39 responses) versus the mean and spread from IAM projections (x-axis, 325 
representing the 10th and 90th percentile of 7 IAM outcomes). We have added a diagonal line to the 326 
graph to represent the position in the plot where experts and IAMs are in consensus about the relative 327 
position of an energy technology in a future power supply. A 1-point margin of difference is considered 328 
as being broadly in agreement as well (dashed area in Figure 1). 329 
  330 
 331 
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 332 
Figure 1 - Mean ranking of energy technologies in the energy system in 2050 for both the experts and IAMs. Rank 1 333 
represents the technology with the largest expected share in electricity supply by 2050, while rank 8 represents the lowest: 334 
reading left to right on the x-axis therefore goes from technologies with the smallest share to technologies with the largest 335 
shares. Ranges shown are the 10th and 90th percentile of the outcomes from 7 IAMs and 39 experts. The diagonal line 336 
indicates agreement; shaded area represents a range of max 1-point difference in rankings. 337 
 338 
We find that the IAMs and experts are broadly in agreement about the role of different technologies 339 
under business-as-usual conditions in 2050 (Baseline, left panel of Figure 1). Both IAMs and experts 340 
expect fossil fuels to remain the dominant energy source, followed by renewable power sources 341 
(particularly wind). Some differences are found for the relative position of solar and nuclear power, 342 
showing experts' greater preference for solar power and IAMs' preference for nuclear power. Overall, 343 
the expert responses reach a wider range of results than IAMs, which appears to be independent of 344 
the scenario and to some degree the technology being considered (see also Annex D in the 345 
Supplementary information). This difference in perspective could be a reflection of IAMs adopting a 346 
more optimal techno-economic perspective, while experts are able to implicitly or explicitly 347 
incorporate, for example, socio-political considerations into their assessment. 348 
 349 
Under stringent climate policy considerations (2 Degrees, right panel of Figure 1) a noticeable 350 
difference emerges between IAMs and expert rankings as data points move further away from the 351 
diagonal line representing consensus. This deviation is also noticeable among the experts and among 352 
the IAMs themselves (reflected by an increasing spread). IAMs tend to rank fossil + CCS, 353 
bioenergy + CCS and nuclear technologies in a higher position than experts whereas experts tend to 354 
give higher ranks for solar power (both photovoltaic (PV) and concentrated solar power (CSP)) and 355 
bioenergy. A major contrast between IAMs and experts is observed in the deployment of bioenergy, 356 
whose position directly relates to model preferences for bioenergy + CCS. This may be a reflection of 357 
our choice to focus on a standard (idealised) mitigation pathway, as the inclusion of other, non-358 
idealised, mitigation pathways, such as available in AR5 (Clarke et al., 2014) (see Annex D) shows to 359 
shift the rank of some technologies in the assumed long-term solution strategy in IAMs (e.g. 360 
Fossil + CCS may be replaced with solar PV and bioenergy). Wind power is the main exception, showing 361 
an overall consensus between experts and IAMs on its relative position. This could be a result of the 362 
large experience base for large-scale wind energy deployment and the observed stable growth over 363 
decades. 364 
 365 

3.2 Individual technology projections and evaluations 366 



9 
 

3.2.1 Direct elicitation methods 367 
The experts were then asked next to focus on their technology of expertise and provide quantitative 368 
estimates for their short (2030) to medium (2050) term expectations for the metrics as presented in 369 
Table 3. In Figure 2 we depict the range of outcomes for the Baseline scenario and in Figure 3 for the 370 
2 Degrees scenario. For comparison, we show elicited results together with IAM outcomes. Alongside 371 
this visual comparison of IAM and expert projections, we used a simple statistical test to assess the 372 
difference between the means of IAM and expert estimates. As the estimates in both the IAM and 373 
expert groups are not consistently normally distributed (based on Shapiro-Wilk normality test, see 374 
Annex D in the Supplementary information), we used the Wilcoxon rank sum test for comparing mean 375 
differences between the two groups. We used this difference testing mainly to draw out further 376 
insights on the magnitude of agreement or disagreement among estimates. Experts were also 377 
presented with the mean IAM results and asked to rate the values as “very low” to “very high” with 378 
three intermediate steps in between. This combination of quantitative estimates, Wilcoxon rank sum 379 
test results, and the qualitative rating exercise, allowed for a thorough comparison of IAM results with 380 
the views of the experts. 381 
  382 

 383 
Figure 2- Elicited indicators under Baseline assumptions per technology-specific expert group. The broader grey bars 384 
represent the breadth in IAM outcomes per technology, with the median value shown as a black line. The smaller coloured 385 
bars represent the breadth in expert outcome for their lower, mean and upper estimates, with the median value shown 386 
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as a black line. The numbers (n) at the top show the number of elicitations per technology for the quantitative assessment. 387 
Experts were free to provide estimates of the lower, mean and/or upper limits, or opt out. This resulted in different sample 388 
sizes than those shown in Table 2. The tables below each graph show the p-values of the Wilcoxon rank sum test: p-values 389 
<0.05 indicate statistically different means between experts and IAMs. The tables also show the average outcome of the 390 
qualitative rating exercise (Eval.) of IAM results: VLO = “Very Low”, LO = “Low”, OK = “Reasonable”, HI = “High”, 391 
VHI = “Very High” (see Annex F in the Supplementary information for details). Under Baseline assumptions no growth and 392 
diffusion of technologies such as Bio + CCS and CCS in general are taken into consideration. Some of the data has been 393 
cropped for overview purposes, full ranges can be found in Annex E of the Supplementary Information. 394 
  395 
Under Baseline assumptions (see Figure 2), the experts reported overall higher (median) estimates for 396 
installed capacity than projected by IAMs, with nuclear power as an exception. This difference can be 397 
observed for both the 2030 and 2050 period. Particularly solar PV shows a substantially higher estimate 398 
in the expert projections compared to the IAM projections, with an approximately six-fold higher 399 
estimate for installed capacity in 2030 and a twenty-fold higher estimate in 2050 (assuming median 400 
values, see also Annex E in the Supplementary information). For the share of technologies in total 401 
electricity production, experts also assigned significantly greater roles to solar PV than IAMs. This is 402 
consistent with Figure 1. A similar pattern can be observed for wind power at a different level of 403 
magnitude. Over time the discrepancy between experts and IAMs diminishes gradually, as is also 404 
shown by the increasing p-values in Figure 2. 405 
 406 
The experts projected more conservative values for installed capacity for nuclear power in the short-407 
term, which may be a result of assumptions on the economics and likelihood of new construction in 408 
the light of the expected retirement of existing capital in the coming decade (World Nuclear 409 
Association, 2016). Nonetheless, as seen in the share of nuclear power in total electricity production, 410 
the experts assume widely diverging futures for nuclear power, ranging from 'conservative' to 411 
'ambitious' perspectives. For biomass power generation the IAMs reproduce a similar result as 412 
observed in Figure 1, showing only limited contribution and growth for this technology, whereas 413 
experts are more optimistic for the near to medium-term future. In the Baseline scenario no growth 414 
or diffusion is considered for power sources combined with carbon capture and storage (CCS) 415 
technologies. 416 
 417 
Under 2 Degrees scenario assumptions, several differences between experts and IAMs are found, 418 
particularly for solar PV, Bio + CCS and Total CCS (see Figure 3). For solar PV, the growth and diffusion 419 
expectations are again significantly different for both the short and medium term, implying either a 420 
structural underestimation of solar power development by IAMs, or a systematic underestimation of 421 
the challenges of intermittent technologies by experts. For CCS deployment, experts consistently 422 
estimated lower values than IAMs. Although some CCS deployment is assumed to materialise in the 423 
power sector, we observe that experts are greatly divided about the extent to which this can occur. 424 
This may be partly explained by the lack of actual experience in the (commercial) application of CCS 425 
and Bio + CCS technologies in the power sector, as well as the large uncertainties surrounding the 426 
(joint) application of these technologies (Fuss et al., 2014; Smith et al., 2016). Experts mostly assume 427 
the application of CCS technologies linked to fossil-fuel based power plants by 2030, whereas IAMs 428 
consider a significant growth of Bio + CCS in 2050. Interestingly, the IAMs appear to be more-or-less in 429 
agreement on the depicted magnitude of CCS deployment (as indicated by the rather narrow grey 430 
band for this technology family in Figure 3). 431 
 432 
We also found some areas of agreement between the estimates of experts and IAMs in a 2 Degrees 433 
scenario. This is clearly observed for wind power in the short-term, showing that IAM and expert 434 
estimates converge and reach greater agreement under 2 Degrees than depicted earlier under Baseline 435 
considerations (as shown by the p-value and the reasonable or "OK" evaluation for installed capacity). 436 
However, IAMs' projected share of wind in power production is considerably lower than adopted by 437 
experts, which underscores a difference in the implied capacity factor between experts and IAMs. As 438 
the study considers technology “families” on a global scale, this difference may also be an outcome of 439 
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conflating expectations for (onshore and offshore) wind technologies and regional potentials. For 440 
bioelectricity we also observe that the estimates of experts and IAMs converge in a 2 Degrees scenario, 441 
implying that both agree that stringent climate policies can mobilise more large-scale application of 442 
biomass in power generation. This is confirmed in the open-ended comments where experts 443 
articulated that biomass co-firing can be very effective as it can be installed relatively quickly and 444 
retrofitted into existing capital. The experts, however, emphasised that this is only possible if explicit 445 
incentives are implemented that move biomass into power generation and away from other 446 
applications. Some limits to this alignment can be observed, as perspectives start to diverge again by 447 
2050 (as indicated in the high or "HI" evaluation in Figure 3) which relates to the observed preference 448 
of IAMs to deploy bioenergy with CCS instead (Figure 1). 449 
 450 
For nuclear power no significant or consistent difference can be observed between experts and IAMs. 451 
Both provide higher estimates in the 2 Degrees scenario than assumed under Baseline considerations 452 
over the short-term, underlining that both elicitation groups employ implicit near-term assumptions 453 
on newly planned capacity. Moreover, despite a greater tendency in IAMs to adopt nuclear energy in 454 
the electricity mix (Figure 1), the estimated shares in power production are considered relatively equal 455 
between experts and IAMs (as also indicated by a p-value > 0.8). 456 
 457 

 458 
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Figure 3 - Elicited indicators under 2 Degrees assumptions per technology-specific expert group. The broader grey bars 459 
represent the breadth in IAM outcomes per technology, with the median value shown as a black line. The smaller coloured 460 
bars represent the breadth in expert outcome for their lower, mean and upper estimates, with the median value shown 461 
as a black line. The numbers (n) at the top show the number of elicitations per technology for the quantitative assessment. 462 
Experts were free to provide estimates of the lower, mean and/or upper limits, or opt out. This resulted in different sample 463 
sizes than those shown in Table 2. The tables below each graph show the p-values of the Wilcoxon rank sum test: p-values 464 
<0.05 indicate statistically different means between experts and IAMs. The tables also show the average outcome of the 465 
qualitative rating exercise (Eval.) of IAM results: VLO = “Very Low”, LO = “Low”, OK = “Reasonable”, HI = “High”, 466 
VHI = “Very High” (see Annex F in the Supplementary information for details). Some of the data has been cropped for 467 
overview purposes, full ranges can be found in Annex E of the Supplementary Information. 468 
 469 
 470 

3.2.2 Indirect elicitation methods 471 
Experts were also asked to rate the mean (point) estimate of IAM projections for their field of expertise 472 
and the metrics as shown in Table 3 using verbal expressions ranging from “very high” to “very low”. 473 
Overall these ratings were found to be consistent with the direct elicitation outcomes, meaning that 474 
visually and statistically different estimates were subsequently evaluated as either (very) high or (very) 475 
low, and vice versa. Some exceptions can be found, which may be a result of including a broader 476 
spectrum of perspective in the indirect elicitation method (such as found for the Biomass elicitation 477 
group, representing a larger sample of experts than considered during the direct elicitation method, 478 
see Annex F in the Supplementary information), the demarcation of the assessment classes (in which 479 
the average score may sit between labels, such as the case for solar and wind power, see Annex F in 480 
the Supplementary information) and possible different interpretations of the verbal expressions 481 
among the experts in the rating exercise (O’Hagan et al., 2006). This sensitivity to context may 482 
particularly be observed for nuclear power and CCS technologies which could have elicited different 483 
patterns of response (intuitive response) than the more direct elicitation methods (analytical 484 
response). 485 

4 Discussion 486 

In this study we have identified areas in which IAM projections either compare or diverge in systematic 487 
ways from expert interpretations of future energy system change. In the following section we will 488 
discuss several aspects that are considered to be of importance to understanding the results. 489 
 490 
An important aspect in interpreting the results is time. Both experts and IAM models are exposed to 491 
information on long-term historical trends (e.g. of the last thirty years) and short-term historical trends 492 
(e.g. of the last five years). However, IAM models are more dependent on long-term historical datasets 493 
than experts, as they use these datasets to draw out empirical patterns to build a perspective on the 494 
future. In order to account or correct for unforeseen developments over time, IAM models are 495 
continuously updated or calibrated, with some years between each modification cycle. During such an 496 
interval, IAM studies progressively build on ageing knowledge or model formulations, which 497 
particularly affect the (Baseline) representations of emerging technologies in IAMs. This becomes 498 
apparent when one looks at modelling efforts of a later date, such as published in Pietzcker et al. 499 
(2016), which show a higher use of renewable energy technologies than currently presented in this 500 
study. Surprisingly, although the issues and opportunities in system integration have been an active 501 
frontier for IAM development (see Pietzcker et al., 2016), these new projections still do not reach the 502 
deployment levels as estimated by the experts in this study. It may be argued that IAMs lack the 503 
necessary detail or resolution in representing technological progress (Creutzig et al., 2017; Geels et al., 504 
2017; Metayer et al., 2015; Schwanitz, 2013). Or it may be that IAMs are less sensitive to volatile 505 
developments, preventing them from over-anchoring to incidental successes. Experts on the other 506 
hand, may be affected by short-term successes, as unprecedented growth rates year-on-year may 507 
reinforce the experts' perceptions of higher possible future growth rates than considered in IAMs. We 508 
argue that wind and solar PV experts may be liable to overconfidence biases (observed to some degree 509 
in this study, see Annex D in the Supplementary materials), as both technology groups have seen higher 510 
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growth rates in recent years than on average over the last decade (see Global Wind Energy Council, 511 
2015; IRENA, 2016). The continued fast growth in renewable energy technologies, a wave of interest 512 
in emerging technologies (Melton et al., 2016), and the continued absence of large-scale CCS 513 
demonstration projects are all considered salient developments for experts to convey different 514 
responses than those provided by IAMs. 515 
 516 
A second aspect considered important in interpreting the results is the role of simplification in 517 
modelling and scenario analysis. In order to assess global developments over time in a consistent and 518 
structured framework, several necessary simplifications of complex real-world processes need to be 519 
adopted in IAMs. As a result, IAMs have limitations in their spatial, technological and temporal 520 
resolution which inherently compromise their system representativeness and their reflection of 521 
current trends and developments. It may be argued that models as a result do not accommodate the 522 
breadth of possible transition pathways to be considered under Baseline or 2 Degrees scenarios. 523 
Indeed, experts have articulated specific roles for technologies and policy measures in the comment 524 
boxes that had not been a part of this assessment (Figure 1). For example, decentralised power 525 
systems, geothermal energy or onshore and offshore wind technologies have been mentioned by the 526 
experts as important elements in a decarbonisation strategy, but these technologies were not 527 
consistently or explicitly represented in the participating IAMs at that time (and therefore not included 528 
into the analysis). As IAMs can only depict decarbonisation strategies that are included in the 529 
(technology) portfolio, this may have led to an analytical gap between IAMs and experts. Secondly, the 530 
2 Degrees scenario reflects an idealised best-case scenario with immediate global action in the IAM 531 
interpretation. Although narrative simplicity provided advantages to both IAMs and experts, it also 532 
carried some vulnerability into the representability and interpretability of the results. Particularly if 533 
one considers that the conditions in our current 2 Degrees formulation are not expected to arise in the 534 
real world (e.g. immediate global action), this may have posed challenges for experts to imagine 535 
technology developments along a similar trajectory. To test the sensitivity of our analysis to the choice 536 
of a scenario, we compared the same expert estimates to the outcomes of other (non-idealised) 537 
scenario storylines as given in the IPCC’s AR5 Scenario Database (IPCC, 2014). As illustrated in Annex D 538 
of the Supplementary information, non-idealised mitigation scenarios appear to show IAM estimates 539 
that are closer aligned to the expert expectations for both the ranking (as can be deducted from the 540 
central nodes moving towards the diagonal line in Figure D2 of Annex D) as the quantitative projection 541 
exercise (particularly showing for solar PV in Figure D4 in Annex D). However, an exception is observed 542 
for bioenergy with CCS, which maintains its deviating position under a wide variety of scenario 543 
narratives, underscoring again the structural difference in perspective between IAMs and experts for 544 
this technology. 545 
 546 
A third aspect considered important in interpreting the results is the considered range of result and 547 
associated uncertainty. In order to focus on the robust patterns, we have compared the median 548 
estimates of IAMs and experts in this study and used the range of outcome as a measure of agreement 549 
among the different elicitation groups. In light of the discussions in scenario literature on the 550 
differences in needed mitigation efforts between a 1.5 °C and 2 °C objective, it would have been 551 
interesting to have also confronted experts with the high estimates of both the IAM and expert 552 
projections. Future work could therefore extent the current analysis by confronting the same set of 553 
experts with the broader range of outcomes. Such a procedure would bring different sources of 554 
knowledge together to reflect on the different outcomes, yielding further insights on the assumed 555 
context, depicted magnitudes and the implications of such development over time. This may be 556 
particularly relevant in areas for which experts and IAMs have structural differences in perspective. 557 
For example, experts articulated an explicit need for policy to move biomass into power generation 558 
and away from liquid fuel production in order to reach the levels of deployment as presented in this 559 
study. Interestingly, Calvin et al. (2013) found that most of the scrutinised IAMs in this study dedicate 560 
a larger share of biomass resources to liquid fuel production than to power generation, implying an 561 
substantial increase in the use of bioenergy in both sectors. These differences in scale and perspective 562 
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underline a more structural disagreement between IAMs and experts on the availability and economics 563 
of mitigation alternatives in the liquids and electricity production sectors, which ideally would need to 564 
be further discussed in future work. 565 

5 Conclusion 566 

In this study we have used the outcomes of IAMs and the estimates of experts to systematically 567 
compare two forward-looking perspectives on future technology deployment. We examine projections 568 
by 7 IAMs and 39 experts divided over 5 technology families under two different climate policy 569 
scenarios for the near (2030) and medium (2050) term. Our main findings from this analysis are: 570 
 571 
Experts and IAMs are broadly in agreement on the development of power system change and 572 
technological diffusion over time under Baseline scenario assumptions 573 
The study found agreement between experts and IAMs on the direction of system change under status-574 
quo (Baseline) conditions. Overall, the experts and IAMs consider fossil fuels the major power source 575 
if climate policy is absent, with some contribution of renewable power sources. Despite agreement on 576 
the direction of change, differences are observed in the estimated magnitudes for technology 577 
deployment over time. Particularly expert estimates on renewable energy technologies are 578 
systematically higher than those projected by IAMs. 579 
 580 
Under 2 Degrees scenario assumptions the speed and direction of change in the power sector start 581 
to diverge both within and between experts and IAMs 582 
Under stringent climate policy assumptions the observed differences in estimated magnitudes of 583 
technology deployment become smaller for some technologies. However, greater systematic 584 
differences in the considered direction of change are observed between IAMs and experts. Overall, 585 
experts assign a greater role to renewable energy sources in total power production by 2050, 586 
particularly for solar PV, whereas IAMs are more likely to deploy nuclear power and thermal power 587 
plants with carbon removal technologies. Moreover, experts assume a role for bioenergy in mitigation 588 
strategies if deliberate choices are made to utilise this resource in power production, whereas IAMs 589 
mostly consider the use of bioenergy if combined with carbon capture and storage technologies. 590 
Deviations in the estimated magnitudes for these technologies can be partly attributed to different 591 
expectations in the availability and economics of different mitigation options. 592 
 593 
Contradictory insights between experts and IAMs highlight areas in need of further 594 
(transdisciplinary) study 595 
Although the future is inherently uncertain, by contrasting two different analytical methods in a single 596 
comparative analysis, it allows to draw a level of reference while simultaneously evaluating the 597 
assumed context, considered magnitudes and the implications of such development over time. The 598 
current study described a more static analysis of the expectations of expert and IAMs on future change 599 
by drawing insights from a single interaction, but future work could consider a more dynamic approach 600 
to further unravel the assumed prerequisites and sensitivities in the estimates. A structural 601 
confrontation of different analytical lenses may even be considered the desirable way forward in 602 
future studies, particularly in those areas where contradictory insights have been observed between 603 
experts and IAMs. 604 
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