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Abstract. Let G be an orthogonal, symplectic or unitary group over a nonarchimedean
local field of odd residual characteristic. This paper concerns the study of the “wild part”
of an irreducible smooth representation of G, encoded in its “semisimple character”. We
prove two fundamental results concerning them, which are crucial steps towards a complete
classification of the cuspidal representations of G. First we introduce a geometric combi-
natorial condition under which we prove an “intertwining implies conjugacy” theorem for
semisimple characters, both in G and in the ambient general linear group. Second, we
prove a Skolem–Noether theorem for the action of G on its Lie algebra; more precisely, two
semisimple elements of the Lie algebra of G which have the same characteristic polynomial
must be conjugate under an element of G if there are corresponding semisimple strata which
are intertwined by an element of G.

1. Introduction

A major motivation for the study of the representation theory of p-adic groups is, via
the local Langlands correspondence, to understand Galois representations. The arithmetic
core of these representations, which is rather mysterious on the Galois side, is encoded in
restriction to wild inertia. On the automorphic side, this restriction corresponds to looking
at certain representations of pro-p-subgroups.

For p-adic general linear groups, Bushnell and Kutzko [BK93] constructed, and classified,
all cuspidal irreducible representations. At the heart of this classification sit the so-called
“simple characters”; these are very particular arithmetically-defined characters of pro-p-
subgroups, which exhibit remarkable rigidity properties (see below for details). These prop-
erties were exploited, and extended, by Bushnell and Henniart [BH96], who defined the
notion of an “endo-class” and hence proved a Ramification Theorem [BH03] for the local
Langlands correspondence for general linear groups: there is a bijection between the set
of endo-classes and the set of orbits (under the Weil group) of irreducible representations
of the wild inertia group. More recently, they have extended this, using the fundamental
structural properties of simple characters to prove a Higher Ramification Theorem [BH17].
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For p-adic classical groups – that is, symplectic, special orthogonal and unitary groups
– in odd residual characteristic, analogous characters were constructed by the second au-
thor [Ste05] as a fundamental step in the construction of all cuspidal irreducible represen-
tations [Ste08]. This required first extending the theory of simple characters to the case of
“semisimple characters” (see also the work of Dat [Dat09]). However, the rigidity results
which allowed Bushnell and Kutzko to obtain a classification were missing – partly because
some of them are false.

In this paper, we prove many of these rigidity results for semisimple characters, which
are new even in the case of general linear groups – in particular, we prove “intertwining
implies conjugacy” and Skolem–Noether results (see below for details). In a sequel [KSS16],
jointly with Kurinczuk, we are then able to put this together with other work of Kurinczuk
and the second author [KS15], to turn the construction of cuspidal representations into a
classification, for both complex and `-modular representations, with ` ‰ p prime. More
precisely, we establish the following conjugacy result for cuspidal types in p-adic classical
groups: if pJ, λq and pJ 1, λ1q are two types from the construction in [Ste08] which induce to
give equivalent irreducible cuspidal representations, then they are conjugate.

We anticipate further work to come from these rigidity results. Semisimple characters (or,
more precisely, their endo-classes) will give a decomposition of the category of smooth `-
modular representations of classical groups, and each subcategory should be equivalent to
the subcategory of depth zero representations of some other (endoscopic) group, for which
other techniques are available. Current work of the first author (see [Sko17] for the start of
this) aims at generalizing the results proved here to proper inner forms of classical groups,
where additional problems arise, analogous to those in the case of inner forms of general
linear groups [BSS12]. One would then expect that a Jacquet–Langlands correspondence
between inner forms would respect the decompositions of the categories by endo-class, as
for general linear groups [SS16], and that this would be a major step in making such a
correspondence explicit. Finally, it would be interesting to explore whether our results
on semisimple characters for general linear groups can be extended to semisimple types:
suppose pJ, λq and pJ 1, λ1q are Bushnell–Kutzko semisimple types for the same Bernstein
component of a p-adic general linear group, so that they intertwine; what extra condition
on the associated lattice sequences is required to be able to conclude that the types are
conjugate? The same question can also be asked in classical groups.

Now we state our results more precisely. Let F be a nonarchimedean local field of odd
residual characteristic. Let G be the isometry group of an ε-hermitian space with respect to
some automorphism of F of order at most two, so that G is the group of fixed points under
an involution on the full automorphism group G̃ of the underlying F -vector space V . We
similarly regard the Lie algebra of G as the fixed points of an involution on A “ EndF pV q.
Note that, when ε “ 1 and the involution on F is trivial, we are working with the full
orthogonal group; however, the set of semisimple characters for the full orthogonal group
and for the special orthogonal group coincide.
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The starting point in the construction of semisimple characters is an algebraic combina-
torial object, a so-called semisimple stratum rΛ, q, r, βs. The principal data here are: an
element β P A which generates a sum of field extensions E “ F rβs “

À

iPI Ei; and a ratio-
nal point Λ in the (enlarged) Bruhat–Tits building of the centralizer of β in G, which we
think of as a lattice sequence in V (see [BL02]). Associated to Λ, we have a filtration panqnPZ
of A (which is the Moy–Prasad filtration) and the integer q is defined by β P a´qza1´q; this
is required to be positive. Finally, r is an integer between 0 and q which is small enough
in the following approximate sense: the stratum rΛ, q, r, βs corresponds to the coset β ` a´r
and r must be small enough so that the formal intertwining of the coset has a nice formula
involving the centralizer of β. (See Section 6 for more details, and a precise definition.) A
semisimple stratum rΛ, q, r, βs as above splits according to the primitive idempotents 1i of E,
giving simple strata rΛi, qi, r, βis in V i “ 1iV , which are studied in [BK93]. In particular, a
semisimple stratum is simple if and only if its indexing set I has cardinality one.

Associated to any semisimple stratum rΛ, q, r, βs, and for any integer m ě 0, we have a fam-
ily CpΛ,m, βq of semisimple characters. We do not recall the definition here (see Section 9)
but note only that, by applying the idempotents, we obtain from a semisimple character θ
a collection of simple characters θi, for i P I. For simple characters, the fundamental rigid-
ity property proved in [BK93] for lattice chains (i.e. sequences without repetition), is the
following:

Suppose θ P CpΛ,m, βq and θ1 P CpΛ,m, β1q are simple characters which
intertwine in G̃. Then they are conjugate in the parahoric subgroup ŨpΛq.

In the case of semisimple characters, this result is false as soon as #I ą 1: the essential reason
is that one can have two lattice sequences (or even chains) Λ,Λ1 which are conjugate in G̃
but such that the separate pieces Λi,Λ1i are not (all) conjugate in AutF pV

iq. Equivalently,
there are points in the building of a proper Levi subgroup of G̃ which are not conjugate
under the Levi but are conjugate under G̃. For similar reasons, the result would remain
false if one weakened the conclusion to only conjugacy under G̃. Thus one needs an extra
condition to ensure that intertwining implies conjugacy. In order to describe this condition,
we need a “matching theorem” for semisimple characters which intertwine:

Theorem (see Theorem 10.1). Let θ P CpΛ,m, βq and θ1 P CpΛ1,m, β1q be semisimple char-
acters which intertwine in G̃ and suppose that Λ and Λ1 have the same period. Then there
is a unique bijection ζ between the index sets I and I 1 such that the simple characters θi
and θ1ζpiq are intertwined by an isomorphism in HomF pV

i, V 1ζpiqq.

This matching theorem allows us to describe a condition which is certainly necessary for con-
jugacy: if θ, θ1 as in the theorem are conjugate by an element of the parahoric subgroup ŨpΛq
then, with ζ : I Ñ I 1 the matching given by the previous theorem, we have

(1.1) dimκF Λi
l{Λ

i
l`1 “ dimκF Λ

1ζpiq
l {Λ

1ζpiq
l`1 , for all i P I and l P Z.
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Equivalently, the isomorphism in the theorem which intertwines the characters maps the
point in the building corresponding to Λi to a point conjugate to the point corresponding
to Λ1ζpiq. It turns out that this condition is also sufficient to obtain an “intertwining implies
conjugacy” result:

Theorem (see Theorem 10.2). Let θ P CpΛ,m, βq and θ1 P CpΛ,m, β1q be semisimple char-
acters which intertwine in G̃, let ζ : I Ñ I 1 be the matching given by Theorem 10.1, and
suppose that the condition (1.1) holds. Then θ is conjugate to θ1 by an element of ŨpΛq.

Now we turn to our results for classical groups. Suppose that our underlying strata rΛ, q, r, βs
are skew – that is, β is in the Lie algebra of G, the associated decomposition of V is
orthogonal with respect to the hermitian form, and Λ is in the building of the centralizer
in G of β (see [BS09]). Our first main result here is a Skolem–Noether theorem for semisimple
strata, which is crucial in the sequel [KSS16].

Theorem (see Theorem 7.12). Let rΛ, q, r, βs and rΛ1, q, r, β1s be two skew-semisimple strata
which intertwine in G, and suppose that β and β1 have the same characteristic polynomial.
Then, there is an element g P G such that gβg´1 “ β1.

Note that, for β as in the theorem, the number of G-orbits in the Lie algebra of G with
the same characteristic polynomial as β is 2#I , 2#I´1 or 2#I´2, depending on G and β; thus
some additional condition is certainly necessary to conclude that β, β1 are conjugate.

Given a skew-semisimple stratum rΛ, q, r, βs, the set C´pΛ,m, βq of semisimple characters
for G is obtained by restricting the semisimple characters in CpΛ,m, βq. Equivalently, one
may just restrict those semisimple characters which are invariant under the involution defin-
ing G. Our final result is an “intertwining implies conjugacy” theorem for semisimple char-
acters for G.

Theorem (see Theorem 10.3). Let θ´ P C´pΛ,m, βq and θ1´ P C´pΛ,m, β1q be two semisimple
characters of G, which intertwine over G, and assume that their matching satisfies (1.1).
Then, θ´ and θ1´ are conjugate under UpΛq “ ŨpΛq XG.

This is the first step in an “intertwining implies conjugacy” result for cuspidal types proved
in the sequel [KSS16], which then completes the classification of cuspidal representations
of G.

Let us say a few words about the proofs of these results, beginning with those for general
linear groups. Since a semisimple character is defined in terms of a semisimple stratum
underlying it, we must first prove similar results for strata. One major complication here
is that, although a semisimple stratum rΛ, q, r, βs determines the associated splitting V “
À

iPI V
i, since it comes from the idempotents of E “ F rβs, one may have equivalent strata

with different splittings.
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Thus we prove that, given two semisimple strata rΛ, q, r, βs and rΛ1, q, r, β1s which intertwine
and such that Λ,Λ1 have the same period, there is a canonical matching between the index
sets I, I 1 of their splittings (see Proposition 7.1). The proof of this is by induction: when
the strata are minimal (that is, r “ q ´ 1), we match the primary factors of the charac-
teristic polynomials of the strata (see Definition 6.6), which are equal by intertwining. The
inductive step requires a careful analysis of the derived strata of a semisimple stratum. As
a consequence of this, one see that if the initial strata are in fact equivalent, then there is
an element of G̃ which normalizes the (equivalence class of the) strata and conjugates the
two splittings (see Lemma 7.18).

As is the case for simple characters, the fact that a semisimple character does not determine
the underlying stratum (even up to equivalence) presents additional difficulties. First, when
we have a semisimple character θ which can be defined relative to two different strata, we
need a matching between their associated splittings, which is given by conjugation by an
element of the normalizer of θ (see Proposition 9.9). The key result, which allows one
to perform induction along defining sequences for semisimple characters, is an analogue
of Bushnell–Kutzko’s “Translation Principle” for simple characters (see Theorem 9.16). A
crucial step in this is to characterize when a stratum of the form rΛ, q, q´ 1, βs is equivalent
to a semisimple one (see Proposition 6.11). With these tools all to hand, we are able to
prove the main matching and “intertwining implies conjugacy” theorems for semisimple
characters.

Now we pass our attention to the skew-semisimple case. We begin with an analysis of
the Witt groups W˚pEq of finite field extensions E of F . Given an equivariant form λ :
E Ñ F , we get a trace map from W˚pEq and W˚pF q and it is the understanding of this
map that allows us to make progress. In particular, the map takes hermitian E-spaces
of maximal anisotropic dimension to hermitian F -spaces of maximal anisotropic dimension
(see Theorem 4.4); moreover, outside the symplectic case the map is injective on spaces of a
given dimension. One deduces from this that, again outside the symplectic case, when there
is a self-dual embedding of a field extension E into a hermitian F -space, it is unique up
to conjugation. In the symplectic case, this is not true but we prove a Skolem–Noether for
simple strata which intertwine (see Theorem 5.2); this is proved by using the strata to twist
the symplectic form into orthogonal forms and then using a result on lifting approximate
isometries.

With this to hand, the scheme of proof of “intertwining implies conjugacy” for skew-
semisimple characters is formally very similar to the case of G̃ described above, beginning
with the strata and then proceeding to characters, but we must prove that the matchings ob-
tained along the way give isometries between the spaces V i (which are all hermitian spaces).
In general the major difficulty occurs at the base step of an induction; for example, the base
case of Proposition 7.10 – that the matching for skew-semisimple strata which intertwine
gives isometries – is proved using an idempotent lifting result.



6 DANIEL SKODLERACK AND SHAUN STEVENS

We finish with a brief description of the organization of the paper. After setting up notation,
we begin with some basic results on classical groups: in Section 3 we prove results on the
lifting of approximate isometries in a hermitian space; in Section 4 we analyze the Witt
groups W˚pEq of finite field extensions E of F and trace-like maps from W˚pEq to W˚pF q;
and in Section 5 we prove the first Skolem–Noether result, for embeddings of a field (the
simple case). Next we look at semisimple strata: in Section 6 we recall the definitions and
some fundamental results; in Section 7 we prove that intertwining semisimple strata have
a matching, and prove the Skolem–Noether theorem above; and in Section 8 we prove an
intertwining implies conjugacy result for semisimple strata. Finally, we turn to semisimple
characters: in Section 9 we recall the definitions and recall or prove many basic results, in
particular the translation principles; and in Section 10 we prove the remaining main results.

2. Notation

Let F be a nonarchimedean local field of odd residual characteristic with valuation νF and
equipped with an involution ρ (which may be trivial) with fixed field F0. We write oF , pF
and κF for the valuation ring, its maximal ideal and the residue field of F respectively,
and we assume that the image of the additive valuation ν :“ νF is Z Y t8u. We also
denote by x ÞÑ x̄ the reduction map oF � κF “ oF {pF . We fix a symmetric or skew-
symmetric uniformizer $ P pF zp

2
F . We use similar notation for other nonarchimedean local

fields. If E|F is an algebraic field extension then we write Eur for the maximal unramified
subextension of E|F .

Let h be an ε-hermitian form (with ε “ ˘1) on an F -vector space V of finite dimension, i.e.
for all v1, v2 P V and x, y P F the bi-additive form h satisfies

hpv1x, v2yq “ ρpxqερphpv2, v1qqy.

We denote the ring of F -endomorphisms of V by A and its group of units Aˆ by G̃. Let G be
the group of all elements g of G̃ such that hpgv1, gv2q is equal to hpv1, v2q, for all vectors v1, v2;
this is the group of points of a reductive group over F0, which is connected unless F “ F0

and ε “ `1, in which case it is the full orthogonal group. Let σ “ σh be the adjoint anti-
involution of h on A. For a σ-stable subset M of A, we write M` for the set of symmetric
elements and M´ for the set of skew-symmetric elements.

An oF -lattice in V is a free oF -module M of dimension m. The dual M# of M with respect
to h is the set of all vectors v of V such that hpv,Mq is a subset of pF . A lattice sequence
in V is a map Λ from Z to the set of oF -lattices of V satisfying

(i) Λs Ď Λt, for all integers s ą t, and
(ii) Λs$ “ Λs`e for some (unique) integer e and all integers s.

We call e “: epΛ|oF q the oF -period of Λ. An injective lattice sequence is called a lattice
chain. For each integer s, we denote by x ÞÑ x̄ the reduction map Λs � Λs{Λs`1. A lattice
sequence Λ is called self-dual if there is an integer u such that pΛsq

# “ Λu´s.
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As usual, a lattice sequence Λ determines the following filtrations of A and A´ (if Λ is
self-dual): aipΛq is the set of all elements of A which map Λs into Λs`i for all integers s
and a´,ipΛq is the intersection of aipΛq with A´. We skip the argument Λ if there is no cause
of confusion and we write a1i if there is a second lattice sequence Λ1 given.

The sequence Λ also induces filtrations on ŨpΛq :“ aˆ0 by Ũ
i
pΛq “ 1 ` ai and, when Λ is

self-dual, on UpΛq :“ ŨpΛq XG by Ui
pΛq “ Ũ

i
pΛq XG for i P N. The filtration on A defines

a “valuation map” νΛ as follows: for β P A, we put νΛpβq “ supti | β P aiu, an integer or 8.
The normalizer npΛq of Λ is the set of elements g P Aˆ such that νΛpg

´1q “ ´νΛpgq.

The translation of Λ by s P Z is the lattice sequence pΛ ` sqi :“ Λi´s, and we define the
direct sum Λ‘Λ1 of two lattice sequences Λ and Λ1 of the same period as pΛj ‘Λ1jqjPZ. The
lattice sequence

Λ‘ pΛ` 1q ‘ ¨ ¨ ¨ ‘ pΛ` epΛ|oF q ´ 1q

is always a lattice chain. By this construction, many theorems in [BK93] proven for lattice
chains are valid for lattice sequences (cf. [Ste05], and also [KS15], where this is called a :-
construction). If this is the case, or the proof of a result for lattice chains is valid for lattice
sequences without change, then, in the following, we just refer to the statement for lattice
chains.

Finally, for x a real number, we denote by txu the greatest integer not greater than x.

3. Lifting isometries

The isomorphism type of the hermitian space pV, hq is encoded in any self-dual lattice se-
quence of V , as explained in this section. The main results are Proposition 3.1 and Corol-
lary 3.2, which explain how an approximate isometry (for example, one which induces an
isometry at the level of residue fields) can be lifted to a genuine isometry. Let us state the
main proposition:

Proposition 3.1. Let F |F 1 be a finite field extension. Suppose we are given two finite-
dimensional ε-hermitian spaces pV, hq and pV 1, h1q with respect to pF, ρq, an F 1-linear iso-
morphism f : V Ñ V 1 and two self-dual oF -lattice sequences Λ and Λ1 of pV, hq and pV 1, h1q,
respectively, such that, for all i P Z,

‚ fpΛiq “ Λ1i,
‚ fppΛiq

#q “ fpΛiq
#,

‚ h1pfpvq, fpwqq “ hpv, wq P κF , for all v P Λi, w P pΛi`1q
#and

‚ fpvxq “ fpvqx P Λ1i`epΛ1|oF qνkpxq{Λ
1
1`i`epΛ1|oF qνkpxq

, for all v P Λi, x P F
ˆ.

Then there is an F -linear isometry g from pV, hq to pV 1, h1q mapping Λ to Λ1 such that pf ´
gqpΛiq Ď Λ1i`1 for all integers i.

Later it will be useful to have a stronger approximation statement. For that we intro-
duce a generalization of the adjoint anti-involution. For two finite-dimensional ε-hermitian
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spaces pV, hq and pV 1, h1q with respect to pF, ρq there is a map σh,h1 from HomF pV, V
1q

to HomF pV
1, V q defined, for f P HomF pV, V

1q, by the equation

h1pfpvq, wq “ hpv, σh,h1pfqpwqq, for v P V, w P V 1.

Corollary 3.2. Let pV 1, h1q and pV 2, h2q be two ε-hermitian spaces over F (for the same ε),
let Λ1 be a self-dual lattice sequence and let f : V 1 Ñ V 2 be an F -linear isomorphism such

that Λ2 :“ fpΛ1q is self-dual. Suppose Ui is a closed subgroup of Ũ
1
pΛ1q which is invariant

under σhi for i “ 1, 2, such that σh1,h2pfq P U1f
´1U2. Then there is an isometry from pV 1, h1q

to pV 2, h2q contained in U2fU1.

Proof. The ε-hermitian spaces pV1, h1q and pV2, h2q are isometric by a map which sends Λ1

to Λ2, by Proposition 3.1. Thus we can restrict to the case where pV1, h1q “ pV2, h2q “: pV, hq
and fpΛ1q “ Λ2 “ Λ. By assumption, the double coset U2fU1 is invariant under the
automorphism g ÞÑ σhpg

´1q, and this double coset thus has a fixed point, by [KS15, 2.7(ii)(a)]
and [Ste01a, 2.2]. �

We need a sequence of lemmas to prove Proposition 3.1.

Lemma 3.3. Suppose that Λ is a self-dual lattice chain of period 1 such that Λ#
0 “ Λ1.

Consider the form
h̄ : Λ0{Λ1 ˆ Λ0{Λ1 Ñ κF

defined by h̄pv̄, w̄q “ hpv, wq. Then every Witt basis of pΛ0{Λ1, h̄q lifts to a Witt basis
of pV, hq contained in Λ0, under the projection Λ0 � Λ0{Λ1.

Proof. Let B be a Witt basis of h̄. We have

B “ B0ŸB1,´1ŸB2,´2Ÿ . . . ŸBr,´r,
where Bi,´i spans a hyperbolic space, B0 spans an anisotropic space, and all these spaces are
pairwise orthogonal to each other in Λ0{Λ1. Further we have a decomposition

B0 “ B0,1ŸB0,2Ÿ . . . ŸB0,t

into pairwise orthogonal sets of cardinality one. Take an arbitrary lift B1p0q of B to Λ0; for
an element v̄ P B, we write v P B1p0q for its lift.

Step 1: Consider B0,1 “ tv̄0u; put W :“ vK0 and define

B1p1q :“ tprojW pvq | v P B1p0qztv0uu Y tv0u,

where projW denotes the orthogonal projection onto W . We recall the formula

projW pvq “ v ´ v0
hpv0, vq

hpv0, v0q

and conclude that hpprojW pvq, projW pv
1qq is equal to

hpv, v1q ´
hpv0, v1qhpv, v0q

hpv0, v0q
´
ρphpv0, vqqhpv0, v1q

ρphpv0, v0qq
`
ρphpv0, vqqhpv0, v1q

ρphpv0, v0qq
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and therefore equal to hpv, v1q for all v, v1 P B1p0q. Thus, replacing pV, hq by pW,h|W q and Λ
by its intersection with W and then repeating, we can assume that B0 is empty.

Step 2: Consider B1,´1 “ tv̄1, v̄´1u and define now W :“ tv1, v´1u
K. Then, as in Step 1,

elements v and v1 of

B1p1q :“ tprojW pvq | v P B1p0qztv1, v´1uu Y tv1, v´1u

satisfy hpprojwpvq, projW pv
1qq “ hpv, v1q, because if v P B1p0qztv1, v´1u then

v ” projW pvq ` v´1hpv1, vq ` v1εhpv´1, vq pmod Λ1q.

Thus we have reduced to the hyperbolic case that B is equal to B1,´1.

Step 3: We have B “ B1,´1 “ tv̄1, v̄´1u. The sequence pwiqiě1 ,defined by w1 :“ v1 and

wi`1 :“ wi ´ v´1
hpwi, wiq

2
, for i ě 1,

has a limit v11 which satisfies hpv11, v
1
1q “ 0 and v̄11 “ v̄1, and analogously we find v1´1 with

similar properties. Then

B1p1q :“

"

1

v11ρphpv
1
1, v

1
´1qq

, v1´1

*

is a Witt basis of V which lifts B. �

Lemma 3.4. Suppose that Λ is a self-dual lattice chain of period 1 such that Λ#
0 “ Λ0.

Consider the form

h̄ : Λ0{Λ1 ˆ Λ0{Λ1 Ñ κ

defined by h̄pv̄, w̄q “ hpv, wq$´1. For every Witt basis B “ B0ŸB´ŸB` of pΛ0{Λ1, h̄q, with
isotropic parts B´ and B` and anisotropic part B0, there is a Witt basis B1 “ B10ŸB1`ŸB1´
contained in Λ´1 of pV, hq such that B10, B1` and B1´$ are lifts of B0, B` and B´ under
the projection Λ0 � Λ0{Λ1, respectively.

Here we explicitly make use of the fact that ρp$q P t$,´$u.

Proof. This follows directly from Lemma 3.3 if we substitute h by h$´1. �

We need a third base case for period 2.

Lemma 3.5. Suppose that Λ is a self-dual lattice chain of period 2 such that Λ#
0 “ Λ0.

Then h has anisotropic dimension zero and for any basis B0 of Λ0{Λ1 there is a Witt basis
for h,

B1 “ B1´1 Y B10,
such that B1i is a subset of ΛizΛi`1 for all i and such that B10 is a lift of B0 under the
projection Λ0 � Λ0{Λ1. Further, h vanishes on B10 ˆ B10.
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Proof. First we prove that h is hyperbolic. Suppose for contradiction that it has positive
anisotropic dimension, i.e. let v be an anisotropic vector and part of a Witt basis for h
which splits Λ. We can multiply v by a scalar such that hpv, vq is a unit or a uniformizer of
F . We treat only the second case, because the first one is similar. There is an index i such
that ΛiXvF is equal to voF , and then this is equal to ΛiXvF because hpv, vq is uniformizer.
Since, for all lattices in the image of Λ the homothety class is invariant under dualization,
we obtain that the index has to be zero. Thus, Λ´1 X vF “ p´1

F is equal to $´2pΛ1 X vF q,
which is a contradiction.

Now let us construct the lift. We start with a Witt basis B2 for h which splits Λ. Let B20 be
the set of elements v of B2 such that

vF X Λ0 ‰ vF X Λ1,

and let W0 be the span of B20. We prove that the restriction of h to W0 is zero. We define,
for v P B2, the element v˚ to be the element of B2 such that hpv, v˚q is non-zero, i.e. equal
to 1 or ´1. If there is an element v P W0 X B2 such that v˚ P W0 then Λ´1 X pvF ` v

˚F q “
Λ0X pvF ` v

˚F q and thus this coincides with pΛ´1q
#X pvF ` v˚F q. This is a contradiction

because pΛ´1q
# is equal to Λ1. This shows that h is zero on W0. Thus, multiplying elements

of B20 by scalars if necessary, we can assume that B20 is a subset of Λ0zΛ1. By the definition
of W0 we have that, for all v P B20, the intersection of vF with Λ´1 is voF for all v P B20
and thus taking duals we get that the intersection of v˚F with Λ1 is v˚pF , and thus B2 is a
subset of Λ´1zΛ0. Thus, we have now found a basis B2 satisfying all the conditions except
that B20 need not be a lift of B0. Now a base change from B20 to a lift of B0 in W0, together
with the adjoint base change on the span of B2zB20, finishes the proof. �

Corollary 3.6. Under the assumptions of Lemma 3.5 there is a unique κ-basis B´1 of Λ´1{Λ0

such that, for all elements x of B0, there is exactly one element y of B´1 such that

h̄py, zq

"

1 , if z “ x
0 , if z P B0ztxu

where h̄ : Λ´1{Λ0 ˆ Λ0{Λ1 Ñ κ is the form induced from h. Further, there is a Witt basis
for h which lifts B0 Y B´1.

Proof. By Lemma 3.5 the form h̄ is non-degenerate and thus identifies the dual of Λ0{Λ1

with Λ´1{Λ0 with σ-twisted κ-action. We take for B´1 the basis dual to B0. The remaining
part follows from Lemma 3.5. �

We put together the two previous results to treat the general case.

Lemma 3.7. Let Λ be a self-dual lattice chain of period e and let B be a subset of V satisfying
the following conditions:

(i) pΛ0q
# P tΛ0,Λ1u;

(ii) B “
Ťt e´1

2 u

i“t 1´e
2 u

Bi, with Bi Ď ΛizΛi`1;
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(iii) B̄i, the image of Bi in Λi{Λi`1, is a basis of Λi{Λi`1;
(iv) for all i P t0, 1, . . . ,

X

e´1
2

\

u with pΛiq
# R tΛi`1,Λi`1´eu and all v P Bi there exists a

unique v1 P B X pΛi`1q
#zpΛiq

# such that hpv, v1q “ 1̄;
(v) if pΛ0q

# “ Λ1 then B̄0 is a Witt basis for pΛ0{Λ1, h̄q;

(vi) if pΛt e´1
2 uq

# “ Λt 1´e
2 u then B̄t e´1

2 u is a Witt basis of pΛt e´1
2 u{Λ e`1

2
, h$´1q.

Then there is a basis B1 of pV, hq such that

(a) B1 “
Ťt e´1

2 u

i“t 1´e
2 u

B1i, where B1i :“ B1 X pΛizΛi`1q, for all i,

(b) B̄1i “ B̄i, for all i, and
(c) B1 is a Witt basis of pV, hq up to multiplication of some isotropic elements of B1

t e´1
2 u

by $´1.

Proof. The lattice chain Λ is split by a Witt decomposition; that is, there are pairwise
orthogonal ε-hermitian spaces V i, i P t0, . . . ,

X

e´1
2

\

u whose sum is V such that

pV i
X Λiq ` Λi`1 “ Λi and V i

X pΛi`1q
#
` pΛiq

#
“ pΛi`1q

#.

Counting dimensions we deduce that V i X Λj is a subset of Λj`1 for all j with pΛjq
# R

tΛia, pΛi`1q
#a | a P Fˆu. Now consider, for 1 ď i ď

X

e´1
2

\

,

B̃i :“
 

projV ipvq | v P Bj and Λj P tΛi, pΛi`1q
#
u
(

.

For each i, the lattice sequence Λ X V i in V i is a multiple of a lattice chain of period 1.

Thus, after scaling, we can apply Lemma 3.3 or 3.4 or Corollary 3.6 on pV i,Λ X V i, ¯̃Biq to
obtain B1i. �

Proof of Proposition 3.1. We only have to prove that we can replace f by an F -linear iso-
morphism, i.e. that we can reduce the argument to F “ F 1. The rest follows directly from
Lemma 3.7.

Since the statement depends only on impΛq, without loss of generality assume that Λ, and
therefore Λ1 also, is a chain. Take a κF -basis pv̄ijqj of Λi{Λi`1 and lift it to pvijqj, for i “
0, . . . , epΛ|oF q. Then pvijqij is an F -splitting basis of Λ. Similarly we choose a lift pwijqij
for pfpvijqqij. The F -linear map f̃ which maps vij to wij satisfies the assumptions of the

Proposition and pf ´ f̃qpΛiq Ď Λi`1, for all i P Z. Thus we can replace f by f̃ . �

4. Witt groups

In this section we fix a finite field extension E|F and an involution ρ1 extending ρ and we
denote E0 the set of ρ1-fixed points in E. We fix a non-zero ρ1-ρ-equivariant F -linear map

λ : E Ñ F.



12 DANIEL SKODLERACK AND SHAUN STEVENS

We heavily use in this section that the residue characteristic of F is odd. We will see that
the map λ induces in a natural way a map from the Witt group Wρ1,εpEq of pρ1, εq-hermitian
forms over E to the Witt group Wρ,εpF q.

We recall that the Witt group Wρ,εpF q is the set of equivalence classes of pρ, εq-hermitian
forms over F , where we say two such forms are equivalent if their maximal anisotropic direct
summands are isometric. We write xhy for the class in Wρ,εpF q of signed forms equivalent
to h; similarly, for a (skew-) symmetric matrix M , we write xMy for the class of signed
hermitian forms equivalent to the form with Gram-matrix M under the standard basis.

The group structure on Wρ,εpF q is induced by the orthogonal sum. Let us recall its structure:

Theorem 4.1. The Witt group Wρ,εpF q is isomorphic to

(i) the trivial group if ρ is trivial and ε “ ´1;
(ii) C2 ˆ C2 if ´1 P pFˆq2 and ρ is non-trivial;

(iii) C4 if ρ non-trivial and ´1 R pFˆq2;
(iv) C2 ˆ C2 ˆ C2 ˆ C2 if ´1 P pFˆq2, ε “ 1 and ρ is trivial;
(v) C4 ˆ C4 if ´1 R pFˆq2, ε “ 1 and ρ is trivial.

Proof. The proof is an easy conclusion of the classification of the hermitian forms using Witt
bases, given for example in [BT87, 1.14], and is left to the reader. �

When it is non-trivial, the group Wρ,εpF q is generated by the classes of one-dimensional
anisotropic spaces. For example, if ε “ 1 then: in the case F ‰ F0, the one-dimensional
anisotropic spaces are xp1qy and xpδqy, with δ P Fˆ0 zNF {F0pF

ˆq; in the case F “ F0, the
one-dimensional anisotropic spaces are xp1qy, xp$qy, xpδqy and xpδ$qy, with δ a non-square
unit in oF .

Definition 4.2. We define Trλ,ε from Wρ1,εpEq to Wρ,εpF q by

xh̃y ÞÑ xλ ˝ h̃y “: Trλ,εpxh̃yq.

If E|F is tamely ramified and λ “ trE|F then we write TrE|F,ρ1,ε for Trλ,ε.

For the remainder of the section we often skip the subscripts in Tr.

Example 4.3. In general, the map TrE|F,ρ1,ε is not injective, even if ε “ 1. For example

consider E “ Q3p
?

3,
?

5q, F “ Q3p
?

5q and ρ1p
?

5q “ ´
?

5. Then

TrE|F,ρ1,εpxp
?

3qyq “

Bˆ

0 6
6 0

˙F

“ 0,

so that TrE|F,ρ1,ε is not injective. On the other hand, we have that

TrE|F,ρ1,εpxp1qyq “

Bˆ

2 0
0 6

˙F

‰ 0,

In particular, TrE|F,ρ1,ε maps the class xp
?

3q ‘ p1qy of maximal anisotropic dimension to the
class Wρ,εpF q of maximal anisotropic dimension. We will see that this is always the case.
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There is a unique element X in Wρ,εpF q with maximal anisotropic dimension, which we
denote by Xρ,ε,F . The main result of this section is the following theorem:

Theorem 4.4. TrλpXρ1,ε,Eq “ Xρ,ε,F .

The following definition will be useful both in the proof of Theorem 4.4 and in several other
proofs later.

Definition 4.5. Let γ be a (skew-)symmetric element of AutF pV q. We define the signed
hermitian form

hγ : V ˆ V Ñ F

via

hγpv, wq :“ hpv, γwq, v, w P V.

We call hγ the (skew-)symmetric twist of h by γ.

Note that, if h is an ε-hermitian form, then hγ is ε-hermitian when γ is symmetric, and p´εq-
hermitian when γ is skew-symmetric. Twisting by a symmetric element γ induces a permu-
tation of Wρ,εpF q and we observe that, by an easy check, the only classes in Wρ,εpF q which
are preserved by every symmetric twist are the trivial class and the class Xρ,ε,F of maximal
anisotropic dimension. Indeed, twisting by all symmetric elements gives a transitive action
on the classes of spaces of fixed odd (anisotropic) dimension.

Proposition 4.6. If E|F has odd degree, then, Trλ is injective.

Proof. There is nothing to say in the symplectic case, so we assume ε “ 1 or F ‰ F0.
Moreover, we can assume that ε “ 1 because, if F ‰ F0 then a twist by a skew-symmetric
element of Fˆ induces bijections Wρ1,1pEq Ñ Wρ1,´1pEq and Wρ,1pF q Ñ Wρ,´1pF q, com-
muting with Trλ. Now Trλpxp1qyq is a class of odd anisotropic dimension, all classes of
this anisotropic dimension are symmetric twists of Trλpxp1qyq and they generate Wρ,1pF q.
Thus Trλ is surjective and, moreover, bijective, since Wρ,1pF q is isomorphic to Wρ1,1pEq as
groups. �

Lemma 4.7. Suppose E|F is of degree 2 and F “ F0. Then impTrE|F,ρ1,1q has at least four
elements. Further:

(i) If E ‰ E0 then TrE|F,ρ1,1 is injective.
(ii) If E “ E0 then the kernel of TrE|F,ρ1,1 has exactly 4 elements and they have an-

isotropic dimension at most 2.

Proof. Take an element δ P Eˆ0 and a uniformizer α of E which is skew-symmetric with
respect to the generator τ of GalpE|F q. Then TrE|F,ρ1,1pxδyq has Gram matrix

ˆ

δ ` τpδq αpδ ´ τpδqq
˘αpδ ´ τpδqq ˘α2pδ ` τpδqq

˙
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with respect to the F -basis t1, αu, where we have ` if ρ1 is trivial and ´ if not. Its determi-
nant is d :“ ˘4α2NE|F pδq and we only have to choose δ such that ´d is not a square in F
to get that TrE|F,ρ1,1pxpδqyq is non-zero.

If ´1 P pEˆq2 then, since p is odd, also ´1 P NE|F pE
ˆq and thus we can find δ P Eˆ0 such

that ´d “ 4α2; this is not a square in Fˆ because α R F . If ´1 R pEˆq2 then E|F is ramified
and νF pα

2q “ 1 so we can take δ “ 1 to get ´d R pFˆq2.

In either case, we have that TrE|F,ρ1,1pxpδqyq is non-zero for a suitable δ, and thus of anisotropic
dimension 2. Taking symmetric twists of TrE|F,ρ1,1pxpδqyq by elements of F (which commute
with TrE|F,ρ1,1), we see that the image of TrE|F,ρ1,1 has at least two non-trivial elements and
thus, as a subgroup of a 2-group, at least four elements in total. This also shows (i).

We consider now the case E “ E0. Take y P oF to be a non-square unit if E|F is ramified
and a uniformizer of F if E|F is unramified. Then pαq and pyαq are not isomorphic and
both are in the kernel of TrE|F,id,1. Since the kernel consists of at most four elements, it is
the subgroup generated by xpαqy and xpyαqy, which is of order four and consists of classes
of spaces of anisotropic dimensions 0, 1, 1, 2. �

Proof of Theorem 4.4. As in the proof of Proposition 4.6, we may assume that ε “ 1. We
only need to prove the statement for one λ, because given two such maps λ1, λ2 there is a
symmetric element z of E such that λ1pzxq “ λ2pxq for all x P E. (We thank R. Kurinczuk
for pointing this out.) Moreover, we only have to prove that TrλpXρ1,E,1q is non-zero for a
suitable λ, since its image is invariant under any symmetric twist with an element of Fˆ0 , so
must be trivial or Xρ,1,F .

If E{F is of odd degree then the result follows immediately from Proposition 4.6. Since
the result is transitive in towers of extensions, this means we can reduce to the case
that E{F is quadratic; in particular, E|F is at worst tamely ramified and we can take λ “
trE|F . Moreover, we may replace E|F by E|F0 since, if TrE|F0,ρ1,1pXρ1,1,Eq is non-zero
then TrE|F,ρ1,1pXρ1,1,Eq is non-zero also. But then, by transitivity again and considering
the extensions E|E0 and E0|F0, we reduce to the case E|F quadratic with F “ F0. Now
Lemma 4.7 implies that Xρ1,1,E is not in the kernel of TrE|F,ρ1,1, as required. �

5. Skolem–Noether

In this section we consider Skolem–Noether-like theorems for classical groups. We take the
notation E, ρ1, λ from Section 4. We fix two ρ1-σ-equivariant F -algebra embeddings

φi : pE, ρ1q Ñ pA, σq, i “ 1, 2.

We attach to each φi an ε-hermitian form

hφi : V ˆ V Ñ E

with respect to ρ1 such that
h “ λ ˝ hφi .
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For the proof that such a form exists and is unique, see [BS09]. Note that the ε-hermitian
forms hφi may differ because the maps φi may induce different E-actions on V . In particular,
two such embeddings φ1, φ2 are conjugate by an element of G if and only if pV, hφ1q is
isomorphic to pV, hφ2q as an hermitian E-space.

We then get the following corollary of Theorem 4.4.

Corollary 5.1. Suppose that ρ1 is non-trivial and that either ε “ 1 or F ‰ F0. Then φ1, φ2

are conjugate by an element of g P G, that is

gφ1pxqg
´1
“ φ2pxq, for all x P E.

Proof. We write Wρ1,εpEq
0 for the set of classes of Wρ1,εpEq with even-dimensional anisotropic

part. Then Wρ1,εpEq
0 only consists of the trivial element and Xρ1,ε,E so, by Theorem 4.4,

there is a map λ such that Trλ is injective on Wρ1,εpEq
0. Since Trλpxhφiyq “ xhy, we deduce

that pV, hφ1q and pV, hφ2q are isomorphic as hermitian E-spaces and the result follows. �

In the symplectic case, the analogous result is false without further hypotheses. The follow-
ing theorem gives a sufficient additional condition which will be useful.

Theorem 5.2. For i “ 1, 2, let Λi be a self-dual lattice sequence in V normalized by φipEq
ˆ.

Let β be a non-zero skew-symmetric element generating E over F and write ri :“ 1 `
νΛipφipβqq. Suppose that there is an element g of G such that

g´1
`

φ1pβq ` ar1,´pΛ
1
q
˘

g X
`

φ2pβq ` ar2,´pΛ
2
q
˘

‰ H.

Then φ1, φ2 are conjugate by an element of G.

In the language of strata below (see Section 6), the hypotheses here say that the pure skew
strata rΛi, ri ` 1, ri, φipβqs intertwine. We will need the following lemma, where we recall
that hγ denotes the twist of h by a (skew-)symmetric element γ (see Definition 4.5)

Lemma 5.3. Let Λ be a self-dual lattice sequence and let a1, a2 be two non-zero symmetric
or skew-symmetric elements of the normalizer of Λ such that a1a

´1
2 P Ũ

s
pΛq, for some s ą 0.

Then there is an F -linear isometry from pV, ha1q to pV, ha2q in Ũ
s
pΛq.

Proof. We apply Proposition 3.1 for f “ idV to see that the spaces pV, ha1q and pV, ha2q are
isometric. Now we apply Corollary 3.2, with f “ idV again, to finish the proof. �

Proof of Theorem 5.2. By Corollary 5.1 we only need to treat the case that F “ F0 and ε “
´1. By hypothesis, there are elements g P G and ci P φipβq`ari,´pΛ

iq such that gc1g
´1 “ c2.

Thus, by Lemma 5.3, we have isometries

hφ1pβq – hc1 – hc2 – hφ2pβq,

where the middle isomorphism is given by g. Let f be an isomorphism from hφ1pβq to hφ2pβq.
Since hφipβq are orthogonal forms, Corollary 5.1 applied to the embeddings x ÞÑ fφ1pxqf

´1
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and φ2 implies that there is an isomorphism from hφ1pβq to hφ2pβq which conjugates φ1 to φ2.
But any such isomorphism is an isometry of pV, hq, as required. �

We will also need the following integral version of the Skolem–Noether theorem:

Proposition 5.4 ([Sko14, Theorem 1.2]). Let φi : pE, ρ1q Ñ pA, σq be a ρ1-σ-equivariant F -
algebra embedding, for i “ 1, 2. Suppose further that pV, hφ1q is isomorphic to pV, hφ2q as
hermitian E-spaces and that there is a self-dual lattice chain Λ normalized by φipEq

ˆ, i “
1, 2. Then φ1, φ2 are conjugate by an element of UpΛq.

6. Semisimple strata

We now turn to the notion of semisimple stratum for G. The background can be found
in [BK93, Ste02, Ste05], whose notation we adopt. However, many of the results in the
literature are only available for lattice chains, while other results on semisimple strata were
omitted in [Ste05] (jumping directly to semisimple characters). Thus we gather together
here various results which we will need in our work.

A stratum is a quadruple rΛ, q, r, βs consisting of an oF -lattice sequence Λ, non-negative
integers q ě r and an element b P a´qpΛq. This stratum is called strict if Λ is a lattice chain.
The stratum is skew if β P A´ and Λ is self-dual, and it is called null if β “ 0 and q “ r.

Two strata rΛ, q, r, βs and rΛ1, q1, r1, β1s are equivalent if β ` a´r´j “ β1 ` a1´r1´j, for all
non-negative integers j. This is equivalent to saying that Λ is a translate of Λ1, r “ r1 and
the cosets β ` a´r “ β1 ` a1´r1 coincide. They intertwine under a subgroup H of G̃ if there
is an element g of H such that gpβ ` a´rqg

´1 intersects β1 ` a1´r1 . We denote the set of
such elements by IHprΛ, q, r, βs, rΛ

1, q1, r1, β1sq. If both strata are equal we skip the second
argument and if H is G̃ we skip H in the notation. The two strata are conjugate under H if
there is a g P H such that rgΛ, q, r, gβg´1s is equal to rΛ1, q1, r1, β1s. Two equivalence classes
of strata are called conjugate under H if there are representatives of either classes which are
conjugate under H.

Definition 6.1 (Simple stratum). A stratum rΛ, q, r, βs is called

(i) pure if F rβs is a field such that F rβsˆ Ď npΛq and νΛpβq “ ´q ă ´r;
(ii) simple if either it is null, or it is pure and the degree rF rβs : F s is minimal among

all equivalent pure strata.

This is equivalent to [Ste05, Definition 1.5], or [BK93] in the case of lattice chains (see
Proposition 6.4 below).

We now want to consider strata where F rβs is a direct sum of (not necessarily separable) field
extensions. Given a decomposition V “

À

i V
i we write Ai,j for HomF pV

j, V iq and 1i for the
projection onto V i with kernel

À

j‰i V
j. A stratum rΛ, q, r, βs is split by the decomposition

if 1iβ1j “ 0 for i ‰ j and if the decomposition splits Λ, i.e. Λ is the direct sum of the lattice
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sequences Λi :“ Λ X V i. We write βi :“ 1iβ1i and qi :“ ´mintνΛpβiq,´ru. We are now in
a position to define a semisimple stratum.

Definition 6.2 ([Ste05, Definition 3.2]). A stratum rΛ, q, r, βs is called semisimple if either
it is null or νΛpβq “ ´q ă ´r and there is a splitting V “

À

i V
i such that

(i) for every i the stratum rΛi, qi, r, βis in Ai,i is simple,
(ii) for all i ‰ j the stratum rΛi‘Λj,maxtqi, qju, r, βi`βjs is not equivalent to a simple

stratum.

A semisimple stratum is called skew-semisimple if the decomposition of V is orthogonal and
all strata occurring in (i) are skew.

For later, to describe the intertwining of rΛ, q, r, βs, we need an integer k0pβ,Λq which
characterizes the semisimplicity of a stratum. Denote by aβ : A Ñ A the map aβpxq “
xβ ´ βx and put nl “ a´1

β palq X a0.

If F rβs is a field we define, as in [Ste05, Definition 1.4]:

k0pβ,Λq :“ maxt´q,maxtl P Z | nl Ę b0 ` a1uu, k0p0,Λq “ ´8.

and one writes kF pβq for k0pβ, p
Z
Eq, where pZE denotes the lattice sequence i ÞÑ piE, the

unique oF -lattice chain in the F -vector space E whose normalizer contains Eˆ. We have
that

(6.3) k0pβ,Λq “ epΛ|oEqkF pβq,

by the remark after [Ste01a, Lemma 5.6]. We now prove that Definition 6.1 is equivalent to
that in [Ste05, 1.5]

Proposition 6.4. Given a non-negative integer s, a pure stratum rΛ, q, s, βs is simple if
and only if ´s ă k0pβ,Λq. Further, writing Λ̃ “

Àe´1
l“0 pΛ ´ lq, with e “ epΛ|oF q, we

have k0pβ
‘e, Λ̃q “ k0pβ,Λq.

Note that the lattice sequence Λ̃ in the statement is in fact a lattice chain, with the same
period as Λ.

Proof. The second assertion follows directly from (6.3), and we thus only concentrate on
the first, which is true if Λ is a lattice chain by [BK93, Theorem 2.4.1]. We compare the
two notions of simple: a stratum which is simple in the sense of Definition 6.1 is called
degree-simple, and a stratum which is either null or pure satisfying ´s ă k0pβ,Λq is called
k0-simple.

If rΛ, q, s, βs is k0-simple then so is rΛ̃, q, s, β‘es, by the second assertion, and thus it is
degree-simple, because Λ̃ is a lattice chain. Thus rΛ, q, s, βs is degree-simple.
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If rΛ, q, s, βs is degree- but not k0-simple, then rpZE,´νEpβq,
Y

s
epΛ|oEq

]

, βs is not k0-simple.

But then, the latter is not degree-simple, because pZE is a lattice chain, and thus rΛ, q, s, βs
is not degree-simple, using a pW,Eq-decomposition as in [BK99, 5.3]. �

Corollary 6.5. r
Àe´1

l“0 pΛ´ lq, q, s, β
‘es is simple if and only if rΛ, q, s, βs is simple.

If F rβs is not a field we define for a semisimple stratum, as in [Ste05, (3.6)],

k0pβ,Λq :“ ´mints P Z | rΛ, q, s, βs is not semisimpleu.

This integer is negative because rΛ, q, r, βs is semisimple and r ě 0.

Minimal strata. We begin now with an analysis of semisimple strata of the form rΛ, q, q´
1, βs. For the simple case, we recall that an element β of an extension E|F is called minimal
if it satisfies the following two conditions:

(i) gcdpνEpβq, epE|F qq “ 1;
(ii) βepE|F q$νEpβq ` pE generates the extension κE|κF .

Then, by [BK93, 1.4.13(ii),1.4.15], a pure stratum rΛ, q, q ´ 1, βs is simple if and only if β
is minimal. By a slight abuse, we call a semisimple stratum of the form rΛ, q, q ´ 1, βs a
minimal semisimple stratum.

For minimal semisimple strata, the characteristic polynomial is very important for distin-
guishing the summands. For b an element of a finite dimensional semisimple algebra B over
some field K, we denote the reduced characteristic polynomial of b in B|K, defined in [Rei03,
(9.20)], by χb,B|K , and the minimal polynomial by µb,B|K .

Definition 6.6. Let rΛ, q, q ´ 1, βs be a stratum with νΛpβq “ ´q and set yβ :“ β
e
g$

q
g ,

where g “ gcdpe, qq, with characteristic polynomial ΦpXq “ χyβ ,A|F P oF rXs. We define the

characteristic polynomial of the stratum rΛ, q, q´1, βs to be the reduction φβ :“ Φ̄ P κF rXs.
It depends only on the equivalence class of the stratum.

For a null stratum we define y0 :“ 0 and φ0pXq :“ XN , where N “ dimF pV q.

Remark 6.7. If rΛ, q, q ´ 1, βs and rΛ, q, q ´ 1, γs intertwine then φβ “ φγ.

Proposition 6.8. If rΛ, q, q ´ 1, βs is semisimple with associated splitting V “
À

iPI V
i,

then we have the following:
(i) φβ is the product of the polynomials φβi, which are pairwise coprime polynomials;

(ii) each polynomial φβi is a power of an irreducible polynomial;
(iii) the F -algebra homomorphism induced by β ÞÑ

ř

iPI βi is a bijection from F rβs to
the product of the Ei :“ F rβis;

(iv) κF rȳβs is canonically isomorphic to
ś

iPI κF rȳβis.
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Proof. For all indices i, we have e “ epΛ|oF q “ epΛi|oF q and q “ qi for all indices i with βi ‰
0. Since also β “

ř

i βi with βi P A
i,i, we get

yβ “
ÿ

i

β
e
g

i $
q
g “

ÿ

i

yβi ,

and φβ is equal to the product of the φβi . That φβi is primary now follows from the
fact that rΛi, qi, r, βis is a simple stratum and the remaining assertions are a consequence
of [Ste05, Remark 3.3]. �

It will also be useful to have another criterion by which to recognize a minimal semisimple
stratum. Recall that a stratum rΛ, q, q ´ 1, βs is called fundamental if the coset β ` a1´q

contains no nilpotent elements; in this case, the rational number q
e

is called the level of the
stratum, where e “ epΛ|oF q. We also define the level of the null stratum rΛ, q, q, 0s to be q

e
.

Proposition 6.9. A stratum rΛ, q, q ´ 1, βs is fundamental if and only if its characteristic
polynomial is not a power of X. Two fundamental strata which intertwine have the same
level. If a null stratum intertwines a fundamental stratum, then they have different levels.

Proof. Suppose rΛ, q, q ´ 1, βs has characteristic polynomial Xm and put e “ epΛ|oF q; then
the element β satisfies

βem P $´qma1 “ a1´qme.

Then, by [Bus87, Lemma 2.1], there is a nilpotent element in β ` a1´q, so the stratum is
not fundamental. (The proof of that Lemma is valid for lattice sequences if one allows block
matrices with block sizes 0 ˆ l or l ˆ 0.) Conversely, if rΛ, q, q ´ 1, βs is not fundamental,
then yβ is congruent to a nilpotent element modulo a1, and thus the characteristic polynomial
of the stratum is a power of X. The remaining assertions now follow easily, because if one of
them were false, then there would be a fundamental stratum whose characteristic polynomial
is a power of X. �

We now give criteria for a fundamental stratum to be simple or semisimple. We recall that
a fundamental stratum is called non-split if the characteristic polynomial of the stratum is
a power of an irreducible polynomial. Given a fundamental stratum rΛ, q, q´ 1, bs we define
the following κF -algebra

RprΛ, q, q ´ 1, bsq :“ tx̄ P a0{a1 | xb ” bx pmod a1´qqu.

The following result is stated in [BK93, 2.4.13] for strict strata but, because the quo-
tient a0{a1 depends only on the image of Λ, is also valid for arbitrary lattice sequences.

Proposition 6.10 ([BK93, 2.4.13]). A non-split fundamental stratum rΛ, q, q´1, bs is equiv-
alent to a simple stratum if and only if RprΛ, q, q ´ 1, bsq is semisimple.

To get a similar result for semisimple strata we need, for an element b P a´qpΛq and an
integer n, the map

mn,q,b : a´nq{a1´nq Ñ a´pn`1qq{a1´pn`1qq
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induced by multiplication by b.

Proposition 6.11. A fundamental stratum rΛ, q, q ´ 1, bs is equivalent to a semisimple
stratum if and only if RprΛ, q, q ´ 1, bsq is semisimple and, for all non-negative integers n,
the kernel of mn`1,q,b and the image of mn,q,b intersect trivially.

Proof. Since the algebra RprΛ, q, q´1, bsq and the mapsmn,q,b depend only on the equivalence
class of the stratum, we are free to move to an equivalent stratum at any point.

Suppose first that RprΛ, q, q ´ 1, bsq is semisimple and, for all non-negative integers n, the
kernel of mn`1,q,b and the image of mn,q,b intersect trivially. We inductively find a splitting.
For this, assume that φb is a product of two coprime monic factors f̄0 and f̄1. Let Φ

be the characteristic polynomial of yb “ $
q
g b

e
g , where g is the greatest common divisor

of e “ epΛ|oF q and q. Hensel’s Lemma implies that we can factorize Φ as f0f1 where fi is a
monic lift of f̄i. By Bézout’s Lemma, there are polynomials a0, a1 P oF rXs such that a0f0`

a1f1 “ 1. The map 1i “ aipybqfipybq is the projection onto the kernel of f1´i, and the
sum kerpf0q ‘ kerpf1q “ V splits the stratum rΛ, q, q´ 1, bs. Moreover, we have RprΛ, q, q´
1, bsq » RprΛ0, q0, q ´ 1, b0sq ‘ RprΛ1, q1, q ´ 1, b1sq, by the coprimality of f0, f1, so that
both RprΛi, qi, q ´ 1, bisq are semisimple.

Thus, by Proposition 6.10 and 6.8, we only have to show that strata equivalent to null strata
are the only non-fundamental strata for which the kernel of mn`1,q,b and the image of mn,q,b

intersect trivially. Now let us assume that rΛ, q, q´ 1, bs is non-fundamental. Then without
loss of generality we can assume that b is nilpotent. The conditions on the maps imply
that mn,q,b ˝mpn´1q,q,b ˝ ¨ ¨ ¨ ˝m0,q,b is injective on the image of m0,q,b. If n is big enough, the
first product is the zero map, so the image of m0,q,b is zero, i.e. rΛ, q, q ´ 1, bs is equivalent
to a null stratum.

For the converse, suppose that rΛ, q, q ´ 1, bs is a semisimple stratum with associated split-
ting V “

À

iPI V
i. Since the characteristic polynomials φbi are pairwise coprime, we

have RprΛ, q, q ´ 1, bsq »
À

iPI RprΛi, qi, q ´ 1, bisq and, since each stratum rΛi, qi, q ´ 1, bis
is simple, this algebra is semisimple by Proposition 6.10. (Note that the algebra is clearly
semisimple for the null stratum.)

The maps mn,q,b preserve the decomposition A “
À

i,j A
i,j so we may work blockwise. On

the diagonal blocks Ai,i, the map mn,q,b is either zero (in the case bi “ 0) or bijective. On the
non-diagonal blocks Ai,j, with i ‰ j, the map is bijective or zero by [BK99, 3.7 Lemma 4]. �

Semisimple strata. Now we turn to the case of general semisimple strata rΛ, q, r, βs. A
very important tool to prove properties of semisimple strata by an inductive procedure is
the tame corestriction map, which was introduced in [BK93, 1.3.3] in the simple case.

Definition 6.12. Let E|F be a field extension and B be the centralizer of E in A. A
non-zero B-B-bimodule map s : A Ñ B is called a tame corestriction (relative to E|F ) if,
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for all oF -lattice sequences Λ normalized by Eˆ, we have

spajpΛqq “ ajpΛq XB,

for all integers j.

If E “ F rγs we often write sγ for a (choice of) tame corestriction relative to E|F .

Remark 6.13. (i) By [BK93, 1.3.4], tame corestrictions exist: if ψF and ψE are addi-
tive characters of F and E respectively then there is a unique map s : AÑ B such
that

ψF ˝ trA|F pabq “ ψE ˝ trB|Epspaqbq, a P A, b P B.

This map is a tame corestriction and every tame corestriction arises in this way.
Moreover, tame corestrictions are unique up to multiplication by an element of oˆE.

(ii) If γ generates the extension E|F then, by [BK93, 1.3.2 (i)], the kernel of sγ is equal
to the image of the adjoint map aγ : AÑ A.

(iii) If E is σ-invariant, we can arrange the additive characters ψF and ψE in (i) to
be σ-invariant also, and then the tame corestriction s is σ-equivariant.

Given a simple stratum rΛ, q, r ` 1, γs in A and an element c P a´r, the tame corestriction
map allows us to define a derived stratum rΛ, r` 1, r, sγpcqs in Bγ, the centralizer in A of γ,
and we can ask whether this derived stratum is (equivalent to) a fundamental or simple
stratum. The following theorem is particularly useful.

Theorem 6.14 ([BK93, Theorems 2.2.8, 2.4.1]). Let rΛ, q, r ` 1, βs be a stratum equivalent
to a simple stratum rΛ, q, r ` 1, γs. Then rΛ, q, r, βs is equivalent to a simple stratum if and
only if the derived stratum rΛ, r ` 1, r, sγpγ ´ βqs is equivalent to a simple stratum.

As an immediate corollary, we get the following result on semisimple strata.

Corollary 6.15. Let rΛ, q, r`1, βs be a stratum equivalent to a simple stratum rΛ, q, r`1, γs.
Assume that we have a decomposition V “

À

i V
i into β- and γ-invariant F -subspaces.

Then rΛ, r ` 1, r, sγpγ ´ βqs is equivalent to a semisimple stratum with associated split-
ting V “

À

i V
i if and only if rΛ, q, r, βs is equivalent to a semisimple stratum with associated

splitting V “
À

i V
i.

Suppose now that rΛ, q, 0, βs is semisimple so that, for any 0 ď r ă q, the stratum rΛ, q, r`
1, βs is equivalent to a semisimple stratum rΛ, q, r`1, γs. Then we can realize the assumption
on γ in the previous corollary (that is, we can find γ such that the splitting associated
to rΛ, q, 0, βs is preserved by γ) by the following theorem.

Theorem 6.16 ([Ste05, 3.4], [Ste01b, 1.10]). Let rΛ, q, r, βs be a (skew)-stratum split by V “
À

i V
i (V “ kiV

i) such that every stratum rΛ, qi, r, βis is equivalent to a simple stratum,
and such that rΛ, q, r, βs is equivalent to a simple stratum. Then rΛ, q, r, βs is equivalent to
a (skew)-simple stratum rΛ, q, r, γs split by the same direct sum.
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Proof. We observe only that, although this is not quite the statement in [Ste05, 3.4], this
is what the proof there actually demonstrates. The skew case then follows immediately by
applying [Ste01b, 1.10]. �

In particular, if rΛ, q, r, βs is a semisimple stratum with splitting V “
À

i V
i and rΛ, q, r `

1, βs is equivalent to a simple stratum rΛ, q, r ` 1, γs such that γV i Ď V i for each i, then
Corollary 6.15 implies that the derived stratum rΛ, r ` 1, r, sγpγ ´ βqs is equivalent to a
semisimple stratum with the same splitting V “

À

i V
i.

Notation 6.17. For the rest of the article we use the following notation: rΛ, q, r, βs always
denotes a stratum, and B the centralizer of β in A. If rΛ, q, r, βs is semisimple then V “
À

iPI V
i is the associated splitting and we have A “

À

i,j A
i,j and B “

À

iPI B
i,i, where Bi,i

is the centralizer of Ei “ F rβis in Ai,i. Further, we write bl for the intersection of al with B.
We use analogous notations for a second stratum rΛ1, q1, r1, β1s but all with pq1. If we want
to specify the centralizer of γ in A, for an arbitrary element γ, we write Bγ.

Let rΛ, q, r, βs be a semisimple stratum. We define a tame corestriction sβ : A Ñ B for β
by sβpaq :“

ř

i sipaiiq, where si is a tame corestriction for βi as in Definition 6.12. If si is
defined relative to additive characters ψF , ψEi as in Remark 6.13(i), then we put ψBi,i “
ψEi ˝ trBi,i|Ei and define an additive character of B by

ψBpbq “
ź

iPI

ψBi,ipbiq, b “
ÿ

iPI

bi, bi P B
i,i.

Writing ψA “ ψF ˝ trA|F , the map sβ is then a non-zero pB,Bq-bimodule homomorphism
satisfying

ψApabq “ ψBpsβpaqbq, a P A, b P B,

and
sβpa

1
lq “ b1l

for all lattice sequences Λ1 which are split by V “
À

i V
i into a direct sum of oEi-lattice

sequences.

Lemma 6.18. The sequence A
aβ
Ñ A

sβ
Ñ B is exact and the kernel of sβ is split by the

decomposition A “
À

Ai,j.

Proof. By definition, the kernel of sβ is the direct sum of the Ai,j, for i ‰ j, and of the
kernels of si, for i P I. The sequence is exact on the pi, iq components, by [BK93, 1.3.2], and
it is therefore enough to prove that for j ‰ i the restriction of aβ on Ai,j is bijective onto Ai,j.
It has the form aβpaijq “ βiaij ´aijβj, which is injective because βi and βj have no common
eigenvalue, because their minimal polynomials are coprime since rΛi‘Λj,maxtqi, qju, r, βi`
βjs is not equivalent to a simple stratum. �

To describe the intertwining of a semisimple stratum rΛ, q, r, βs, recall that we have defined
the integer k0 “ k0pβ,Λq and the lattices nl “ a´1

β palq X a0, for l an integer. We will also



INTERTWINING SEMISIMPLE CHARACTERS FOR p-ADIC CLASSICAL GROUPS 23

need the unit subgroups 1 ` ml, where ml “ nl`k0 X al, for integers l ě 1. As the first of
several intertwining results we have:

Theorem 6.19 (see [Ste05, 4.4], [BK93, 1.5.8] for simple strata). Let rΛ, q, r, βs be a
semisimple stratum.

(i) IprΛ, q, r, βsq “ p1`m´pk0`rqqB
ˆp1`m´pk0`rqq.

(ii) If the stratum is skew then

IGprΛ, q, r, βsq “ pp1`m´pk0`rqq XGqpB
ˆ
XGqpp1`m´pk0`rqq XGq.

The crucial ingredient for the proof is:

Lemma 6.20 ([Ste05, 3.7]). For all integers s we have

(i) ni,j´s Ď a´pk0`sq for i ‰ j.
(ii) n´s “ b0 ` n´s X a´pk0`sq

In [Ste05], this lemma was formulated for s ď ´k0, but the case s ě ´k0 is trivial. From
this we deduce

Lemma 6.21. Take i ‰ j. The restriction of aβ to Ai,j is an F -linear homeomorphism
and a´1

β pasq
i,j is equal to ni,js for all integers s ě k0.

Proof. The map aβ is a linear automorphism on Ai,j by Lemma 6.18; thus the image of
an oF -lattice contains an oF -lattice and the restriction of aβ to Ai,j is a homeomorphism. It

follows that, for s big enough, we have that a´1
β pasq

i,j :“ a´1
β pasq X Ai,j is contained in ai,j0

and is therefore equal to ni,js ; in particular, it is contained in ai,j´k0`s
by Lemma 6.20(i). By

periodicity we have that a´1
β pasq

i,j is contained in ai,j´k0`s
for all integers s and thus ni,js is

equal to a´1
β pasq

i,j for all integers s with s ě k0. �

Proof of Theorem 6.19. We follow the proof of [BK93, 1.5.8]. For a null stratum there is
nothing to prove, so we assume the stratum is non-null. The main ingredients which have
to be verified are the exact sequences of [BK93, 1.4.10], which hold by Lemma 6.20, and the
analogue of [BK93, 1.4.16], which we prove now. We write d for ´pr ` k0q and put

‚ M “ nt`jd`k0 X at`jd X pγ1pn´r X adq ` pn´r X adqγ2 ` pnt`jd´r X at`pj`1qdqq,
‚ L “ at`jd`k0 X pγ1a´r ` a´rγ2 ` at`jd´rq,

for integers t ě 0, j ě 1 and elements γ1, γ2 of Bˆ. The sequence M
aβ
Ñ L

sβ
Ñ B is exact if

all its restrictions on the Ai,j are exact. For i “ j the proof is done in [Ste01a, (5.2)] and
for i ‰ j it follows from Lemma 6.20(i), 6.21 and 6.18. The same cohomology argument as
in [Ste05, Corollary 4.14] proves (ii). �

A completely analogous proof using [BK93, 1.5.12] provides:

Theorem 6.22. Let rΛ, q, r, βs and rΛ1, q1, r1, βs be semisimple strata in A. Then
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(i) IprΛ, q, r, βs, rΛ1, q1, r1, βsq “ p1`m1
´pk10`r

1q
qBˆp1`m´pk0`rqq.

(ii) If both strata are skew then

IGprΛ, q, r, βs, rΛ
1, q1, r1, βsq “ pp1`m1´pk10`r1qq XGqpB

ˆ
XGqpp1`m´pk0`rqq XGq.

7. Matching for intertwining strata

In this chapter we show that, if we have semisimple strata which intertwine, then there is a
canonical bijection between their associated splittings. This will then allow us to deduce a
Skolem–Noether theorem for skew-semisimple strata which intertwine.

7.1. For general linear groups. We fix a pair of semisimple strata rΛ, q, r, βs, rΛ1, q1, r1, β1s,
with splittings

À

iPI V
i and

À

jPI 1 V
1j respectively. The main result of this subsection is:

Proposition 7.1. Suppose that rΛ, q, r, βs intertwines rΛ1, q1, r, β1s and that Λ,Λ1 have the
same period. Then

(i) If one stratum is null and q “ q1 then the other stratum is null.
(ii) If both strata are non-null then q “ q1 and there is a unique bijection ζ : I Ñ I 1 such

that rΛi ‘ Λ1ζpiq,maxtqi, q
1
ζpiqu, r, βi ` β1ζpiqs is equivalent to a simple stratum, for all

indices i P I. Moreover, V i and V 1ζpiq have the same F -dimension.

Note that, in case (i), both splittings are trivial so we trivially have a (unique) bijection ζ
as in (ii). We call the bijection ζ a matching of rΛ1, q1, r, β1s and rΛ, q, r, βs.

Remark 7.2. If Λ,Λ1 do not have the same period then we can scale them so that they do.
In particular, we only require the intertwining hypothesis in Proposition 7.1 in order to get
a matching ζ.

To prove Proposition 7.1 (and, later, other results on semisimple strata), we introduce the
notion of a defining sequence for a semisimple stratum, which allows us to prove properties of
semisimple strata by an inductive process (cf. [BK93] for the simple case). Let ∆ “ rΛ, q, r, βs
be a (skew)-semisimple stratum with associated splitting V “

À

iPI V
i. A defining sequence

for ∆ is a finite sequence of (skew)-semisimple strata
`

∆k
˘

k“0,...,q´r´1
defined as follows:

‚ ∆0 “ ∆;
‚ for 0 ă k ď q ´ r ´ 1, we have ∆k “ rΛ, q, r ` k, γks a (skew)-semisimple stratum

equivalent to rΛ, q, r ` k, βs with γk P
ś

iA
i,i (see Theorem 6.16).

Note that there is a significant degree of choice in producing a defining sequence for a
(skew)-semisimple stratum.

Suppose now we want to prove a statement P p∆,∆1q for all pairs of semisimple strata ∆,∆1.
The inductive procedure, which we call strata induction, to prove P is given by the following
steps.
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‚ The base case: Here one proves P for all minimal semisimple strata.
‚ The induction step:

(i) The step r ` 1 to r: From the induction hypothesis and possibly an auxiliary
statement (S1) we restrict to the case where the first elements ∆p1q and ∆1p1q of
defining sequences of ∆ and ∆1 have the same element γ, and hence the same
associated splitting.

(ii) Taking a second auxiliary statement (S2), we show that the derived strata
sγp∆q and sγp∆

1q satisfy the assumptions of P . In this article, (S2) will always
be the description of the intertwining of ∆p1q with ∆1p1q (see Proposition 7.3
below).

(iii) The base case shows P psγp∆q, sγp∆
1qq and, together with a third auxiliary

statement (S3), provides P p∆,∆1q. For (S3) we will use Theorem 6.14.
Strata induction can be restricted to simple strata by substituting the word semisim-
ple by simple.

In the following, we use the notation for tame corestrictions as in the previous section.

Proposition 7.3. Let rΛ, q, r, βs and rΛ1, q1, r1, βs be semisimple strata with splitting V “
À

iPI V
i. Suppose we are given elements a P a´r and a1 P a1´r1 such that there is an element g

of G̃ which intertwines rΛ, q, r ´ 1, β ` as with rΛ1, q1, r1 ´ 1, β ` a1s. Using Theorem 6.22,
write g “ p1`u1qbp1`vq, with b P Bˆ. Then the component bi,i intertwines rΛ, r, r´1, sipa

i,iqs

with rΛ1, r1, r1 ´ 1, sipa
1i,iqs, for all i P I.

Proof. Again we only have to consider a non-zero element β. This is essentially the cal-
culation in [BK93, 2.6.1] which we want to recall, to show that its validity for different
semisimple strata. Note that the hypotheses imply that g certainly intertwines rΛ, q, r, βs
and rΛ1, q1, r1, βs so that, by Theorem 6.22, we can write g “ p1 ` u1qbp1 ` vq, with u1 P
m1
´pk10`r

1q
, b P Bˆ and v P m´pk0`rq.

Let p1` w1q be the inverse of p1` u1q. By the intertwining property of g, we have

gpβ ` aq ” pβ ` a1qg pmod ga1´r ` a11´r1gq.

Multiplying by p1` w1q on the left and p1` vq´1 on the right we obtain

(7.4) bp1` vqpβ ` aqp1` vq´1
” p1` w1qpβ ` a1qp1` w1q´1b pmod ba1´r ` a11´r1bq.

We firstly consider the right hand side.

p1` w1qpβ ` a1q “ β ´ aβpw
1
q ` a1 ` w1a1 ` βw1

“ pβ ´ aβpw
1
q ` a1qp1` w1q ` w1a1 ´ a1w1 ` aβpw

1
qw1

” pβ ´ aβpw
1
q ` a1qp1` w1q pmod a11´r1q,

because a1 P a1´r1 , w
1 P a11 and aβpw

1q P a1´r1 . A similar calculation for the left hand side and
equation (7.4) leads to

(7.5) bpβ ´ aβpvq ` aq ” pβ ´ aβpw
1
q ` a1qb pmod ba1´r ` a11´r1bq.
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We apply sβ to get

bsβpaq ” sβpa
1
qb pmod bb1´r ` b11´r1bq

and thus bi,i intertwines the derived strata rΛ, r, r´ 1, sipa
i,iqs and rΛ1, r1, r1´ 1, sipa

1i,iqs, for
all i P I. �

Proposition 7.6 (cf. [BK93, 2.2.1]). Suppose that rΛ, q, r, βs and rΛ1, q1, r1, βs are simple
and that there are a P a´r and a1 P a1´r1 such that sβpaq ” sβpa

1q pmod b1´r ` b11´r1q. Then,
there are elements w1 P m1

´pk10`r
1q

and v P m´pk0`rq such that

p1` w1qpβ ` a1qp1` w1q´1
” p1` vqpβ ` aqp1` vq´1

pmod a1´r ` a11´r1q.

Moreover, if the strata and the elements a and a1 are skew and the strata intertwine in G,
then we can choose 1` v and 1` w1 in G.

Before the proof let us recall that the Cayley transform of an element v of pa1q´ is the

element
`

1` v
2

˘ `

1´ v
2

˘´1
. It is an element of U1

pΛq Ă G.

Proof. Let β be non-zero and write C for the kernel of sβ. Without loss of generality we can
assume that sβpaq and sβpa

1q are equal, since the map sβ : a1´r Ñ b1´r is surjective. The
map

m´r´k0 `m1´r1´k10
aβ
Ñ C X pa´r ` a1´r1q

is surjective because C X pa´r ` a1´r1q is equal to pC X a´rq ` pC X a1´r1q by [BK93, 1.3.17]

and a´1
β pa´rq is a subset of B `m´r´k0 by Lemma 6.20(ii). Thus, we can find w1 P m´r1´k10

and v P m´r´k0 to satisfy (7.5) for b “ 1. We now follow the calculation in the proof of
Proposition 7.3 backwards to show the desired congruence. In the skew situation we can find
skew-symmetric elements, say ṽ and w̃1, which satisfy (7.5) and we define 1` v and 1` w1

to be the Cayley transforms of ṽ and w̃1 respectively. �

We need one final lemma before we can prove Proposition 7.1, which will play the role
of (S1).

Lemma 7.7. Let rΛ, q, r, βs and rΛ1, q, r, β1s be semisimple strata for which there is a (unique)
bijection ζ : I Ñ I 1 such that rΛi ‘Λ1ζpiq,maxtqi, q

1
ζpiqu, r, βi ` β

1
ζpiqs is equivalent to a simple

stratum, for all indices i P I, and dimF V
i “ dimF V

1ζpiq. Then there are an element g of G̃
and an element γ P

ś

iA
i,i such that V i “ gV 1ζpiq, for all indices i P I, and:

‚ rgΛ1, q, r, gβ1g´1s is equivalent to rgΛ1, q, r, γs;
‚ rΛ, q, r, βs is equivalent to rΛ, q, r, γs; and
‚ rgΛ1, q, r, γs and rΛ, q, r, γs are semisimple strata with the same associated split-

ting V “
À

iPI V
i.

Proof. Applying Theorem 6.16 to the strata rΛi‘Λ1ζpiq,maxtqi, qζpiqu, r, βi`β
1
ζpiqs, for each i,

we find an equivalent simple stratum rΛi ‘Λ1ζpiq,maxtqi, qζpiqu, r, γi ` γ
1
ζpiqs; in particular, γi
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and γ1ζpiq have the same irreducible minimal polynomial, and the same characteristic poly-

nomial since dimF V
i “ dimF V

1ζpiq.

Further, for i ‰ j in I, the stratum rΛi ‘ Λj,maxtqi, qju, r, γi ` γjs is equivalent to rΛi ‘

Λj,maxtqi, qju, r, βi ` βjs, which is not equivalent to a simple stratum, so that the stra-
tum rΛ, q, r, γs is semisimple, where γ “

ř

iPI γi. The same applies to rΛ1, q, r, γ1s, where γ1 “
ř

iPI γ
1
ζi. Finally, since γi and γ1ζpiq have the same characteristic polynomial, we can find g P G

such that V i “ gV 1ζpiq and gγ1g´1 “ γ, and the result follows. �

Proof of Proposition 7.1. (i) and the equality q “ q1 in (ii) follow from the results on level
in Proposition 6.9. The existence of ζ in (ii) is proved by strata induction, where we take
Lemma 7.7 for (S1), Proposition 7.3 for (S2), and Theorem 6.14 for (S3). The base case
follows because the characteristic polynomials are equal, so we match the primary factors
using [Ste05, 3.3(ii)]. The equality of dimensions follows from the fact that the degree of
the ith primary factor is the dimension of V i.

For the inductive step, suppose that ∆ “ rΛ, q, r, βs and ∆1 “ rΛ1, q, r, β1s are semisimple
strata as in the proposition which intertwine. Then the stratum rΛ, q, r` 1, βs is equivalent
to a semisimple stratum ∆γ “ rΛ, q, r ` 1, γs whose splitting is a coarsening of that of ∆,
by Theorem 6.16; similarly we have a semisimple stratum ∆1

γ “ rΛ
1, q, r ` 1, γ1s. Since the

strata ∆γ, ∆1
γ intertwine, we may apply the inductive hypothesis to them. In particular,

they satisfy the hypotheses of Lemma 7.7 and, replacing ∆1 by its conjugate g∆1, we may
assume γ1 “ γ.

Now we apply (S2) – Proposition 7.3 – to the strata ∆γ and ∆1
γ, with a “ β´γ and a1 “ β1´γ.

The conclusion is that the derived strata intertwine so that the base case gives us a bijection
between the index sets ζ : I Ñ I 1 such that, for each i P I, the stratum rΛi ‘ Λ1ζpiq, r `
1, r, sγipβi ´ γiq ` sγζpiqpβ

1
ζpiq ´ γζpiqqs is equivalent to a simple stratum. (Here γi “ 1iγ1i,

where 1i is the idempotent corresponding to V i, and similarly γ1ζpiq “ 11ζpiqγ11ζpiq, correspond-

ing to V 1ζpiq; note also that γi and γζpiq have the same characteristic polynomial so that we can

view both V i and V 1ζpiq as F rγis-vector spaces.) But then rΛi‘Λ1ζpiq,maxtqi, q
1
ζpiqu, r, βi`β

1
ζpiqs

is equivalent to a simple stratum, by (S3) – Theorem 6.14.

The existence of ζ implies, in particular, that both strata have the same number of blocks,
i.e. the sets I and I 1 have the same cardinality. Finally, we prove the uniqueness of ζ.
Assume, for contradiction, that there are two distinct indices i, j P I and an index i1 P I 1

such that rΛi ‘ Λ1i
1

,maxtqi, q
1
i1u, r, βi ` β1i1s and rΛj ‘ Λ1i

1

,maxtqj, q
1
i1u, r, βj ` β1i1s are both

equivalent to simple strata. From this (and the equality of periods) it follows that the
integers qi, qj and q1i1 are all equal; we denote this integer by q.

By the proof of the existence, the spaces V i and V i1 have the same dimension, and thus, by
conjugating, we can assume that they are equal. By Theorem 6.16, the strata rΛi, q, r, βis
and rΛ1i

1

, q, r, βi1s intertwine. Then the stratum rΛi‘Λj, q, r, βi`βjs intertwines with rΛ1i
1

‘

Λj, q, r, βi1 ` βjs and the latter is equivalent to a simple stratum. Thus the semisimple
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stratum rΛi ‘ Λj, q, r, βi ` βjs, which has two blocks, is intertwined with a simple stratum,
which has only one block. This is a contradiction since the existence shows that semisimple
strata which intertwine have the same number of blocks. �

As a useful consequence, we see that, given two semisimple strata which intertwine, we can
find equivalent semisimple strata with elements which are conjugate.

Corollary 7.8. Suppose that the semisimple strata rΛ, q, r, βs and rΛ1, q, r, β1s intertwine
and that Λ,Λ1 have the same period, and let ζ : I Ñ I 1 be the matching between their index
sets. Then there are semisimple strata rΛ, q, r, β̃s and rΛ1, q, r, β̃1s, equivalent to, and with

the same associated splitting as, rΛ, q, r, βs and rΛ1, q, r, β1s respectively, such that β̃1ζpiq has

the same characteristic polynomial as β̃i, for all indices i P I.

Proof. This follows immediately from Lemma 7.7 (whose hypotheses are satisfied, thanks to

Proposition 7.1) by putting, in the notation of the Lemma, β̃ “ γ and β̃1 “ g´1γg. �

If rΛ, q, r, βs and rΛ1, q1, r1, β1s are strata in spaces V and V 1 respectively, then we put

IprΛi, q, r, βs, rΛζpiq, q, r, β1sq “
 

g | V
„
ÝÑ V 1 | gpβ ` a´rqg

´1
X pβ1 ` a1´r1 ‰ H

(

.

This generalizes the notion of intertwining and we say that any element of this set inter-
twines rΛ, q, r, βs with rΛ1, q1, r1, β1s.

Corollary 7.9. Suppose that the semisimple strata rΛ, q, r, βs and rΛ1, q, r, β1s intertwine
and that Λ,Λ1 have the same period, and let ζ : I Ñ I 1 be the matching between their index
sets. Then the intertwining set IprΛ, q, r, βs, rΛ1, q, r, β1sq is equal to

p1`m1´pr`k10qqp
ź

i

IprΛi, q, r, βs, rΛζpiq, q, r, β1sqqp1`m´pr`k0qq.

Proof. By Corollary 7.8 we may replace the strata with equivalent strata such that there
is g P G̃ such that β1 “ g´1βg. The result now follows by applying Theorem 6.22 to the
strata rΛ, q, r, βs and rgΛ1, q, r, βs. �

7.2. For classical groups. We continue with the notation from the previous section but
assume now that all our strata are skew. We will prove the following strengthening of
Proposition 7.1 in this case.

Proposition 7.10. Suppose that rΛ, q, r, βs and rΛ1, q, r, β1s are two skew-semisimple strata
which intertwine in G and let ζ : I Ñ I 1 be the matching given by Proposition 7.1. Then:

(i) pV i, h|V iq – pV
1ζpiq, h|V 1ζpiqq, for all i P I;

(ii) the intertwining set IGprΛ, q, r, βs, rΛ
1, q, r, β1sq is equal to

pp1`m1´pr`k10qq XGqpp
ź

i

Iiq XGqpp1`m´pr`k0qq XGq,

where Ii “ IprΛi, q, r, βs, rΛ1ζpiq, q, r, β1sqq.
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Remark 7.11. Part (ii) of Proposition 7.10 is a consequence of (i): Indeed, if (i) is true
then, by conjugating, we can assume that V i “ V 1ζpiq, for all i P I, and (ii) follows from
Corollary 7.9 and a simple cohomology argument as in [Ste05, Corollary 4.14].

As an immediate consequence of Proposition 7.10 and the simple Skolem–Noether Theo-
rem 5.2, we get a Skolem–Noether Theorem for semisimple strata.

Theorem 7.12. Let rΛ, q, r, βs and rΛ1, q, r, β1s be two skew-semisimple strata which inter-
twine in G, and suppose that β and β1 have the same characteristic polynomial. Then there
is an element g P G such that gβg´1 is equal to β1.

For the proof of Proposition 7.10 we need the following idempotent lifting lemma.

Lemma 7.13. Let pkrqrě0 be a decreasing sequence of oF -lattices in A such that krks Ď kr`s,
for all r, s ě 0, and

Ş

rě1 kr “ t0u. Suppose there is an element α of k0 which satisfies α2´α P
k1. Then there is an idempotent α̃ P k0 such that α̃´ α P k1. Moreover, if σpαq “ α then we
can choose α̃ such that σpα̃q “ α̃.

Proof. We define e1 :“ α, and put e2 :“ 3e2
1 ´ 2e3

1 P k0. A straightforward calculation shows
that

e2
2 ´ e2 “ 4pe2

1 ´ e1q
3
´ 3pe2

1 ´ e1q
2
P k2r.

Continuing this process, we construct a sequence penqně1 in h0 which satisfies

(i) en ” ei pmod k2irq and
(ii) en ” e2

n pmod k2nrq,

for all positive integers i ă n. This sequence has a limit α̃ in b0 which is, by construction,
an idempotent congruent to α modulo kr. Moreover, by construction the sequence penq is
symmetric if α is, in which case the limit α̃ is also symmetric. �

Corollary 7.14. Let pkrqrě0 be as in Lemma 7.13. Suppose that α1, . . . , αl are elements of k0

such that α2
i ´αi P k1 and αiαj P k1, for all i ‰ j. Suppose further that

ř

i αi ” 1 pmod k1q.
Then there are idempotents α̃i such that α̃i´αi P k1, with α̃iα̃j “ 0, for i ‰ j, and

ř

i α̃i “ 1.
If further σpαiq “ αi, for all i, then we can choose the α̃i such that σpα̃iq “ α̃i, for all i.

Proof. We find α̃1 by Lemma 7.13 and set α̃K1 “ 1 ´ α̃1. Consider the space V p1q :“ α̃K1 V ,

the lattices k
p1q
r :“ α̃K1 krα̃

K
1 and the elements α

p1q
i :“ α̃K1 αiα̃

K
1 for i ě 2. These satisfy the

hypotheses of the corollary, which now follows by induction. If σpα1q “ α1 then we choose α̃1

such that σpα̃1q “ α̃1, and V p1q is then the orthogonal complement of α̃1V so that the result
again follows by induction. �

We also need the classical group analogue of Lemma 7.7.

Lemma 7.15. Let rΛ, q, r, βs and rΛ1, q, r, β1s be skew-semisimple strata which intertwine
in G and let ζ : I Ñ I 1 be the matching given by Proposition 7.1. Suppose moreover
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that pV i, h|V iq – pV
1ζpiq, h|V 1ζpiqq, for all i P I. Then there are an element g P G and a skew

element γ P
ś

iA
i,i such that V i “ gV 1ζpiq, for all indices i P I, and:

‚ rgΛ1, q, r, gβ1g´1s is equivalent to rgΛ1, q, r, γs;
‚ rΛ, q, r, βs is equivalent to rΛ, q, r, γs; and
‚ rgΛ1, q, r, γs and rΛ, q, r, γs are skew-semisimple strata with the same associated

splitting V “
À

iPI V
i.

Proof. The proof is the same as that of Lemma 7.7. We only need to note that, once
we have found γi and γ1ζpiq with the same irreducible minimal polynomial then there is

an element g P G such that V i “ gV 1ζpiq, since pV i, h|V iq – pV 1ζpiq, h|V 1ζpiqq, and then the
elements gγ1ζpiqg

´1 and γi are conjugate inGi “ Ai,iXG by Remark 7.11 and Theorem 5.2. �

Proof of Proposition 7.10. It is sufficient to prove (i) by Remark 7.11. We prove (i) by
strata induction, giving first the inductive step. Suppose that ∆ “ rΛ, q, r, βs and ∆1 “

rΛ1, q, r, β1s are skew-semisimple strata as in the proposition which intertwine in G. Then
the stratum rΛ, q, r ` 1, βs is equivalent to a skew-semisimple stratum ∆γ “ rΛ, q, r ` 1, γs
whose splitting is a coarsening of that of ∆, by Theorem 6.16; similarly we have a skew-
semisimple stratum ∆1

γ “ rΛ
1, q, r`1, γ1s. Since the strata ∆γ, ∆1

γ intertwine, we may apply
Lemma 7.15 and, replacing ∆1 by its conjugate g∆1, we may assume γ1 “ γ.

Now, if h P G intertwines the strata ∆γ and ∆1
γ then Theorem 6.22 allows us to write h “ xby,

with b P B X G (and x, y in certain compact subgroups). Then Proposition 7.3, applied
as in the proof of Proposition 7.1, implies that the derived strata rΛ, r ` 1, r, sγpβ ´ γqs
and rΛ1, r`1, r, sγpβ

1´γqs intertwine. On the other hand, these derived strata are equivalent
to skew-semisimple strata so the base step (below) now implies that the bijection ζ : I Ñ I 1

has the property that pV i, hi,φiq – pV
1ζpiq, h

1φ1
ζpiq

ζpiq q, where φi : F rγis Ñ Ai,i is the embedding

given by the splitting, and hi,φi is such that hi “ λi ˝ hi,φi and hi “ h|V i . But then we also
have pV i, hiq – pV

1ζpiq, h1ζpiqq, as required.

It remains to show the base case r “ q ´ 1. The lattice sequences have the same level, and
so the same period, by Proposition 6.9. Since they intertwine, the strata have the same
characteristic polynomial. If two minimal strata with the same level intertwine and one of
them is null, then the other is null, by Proposition 6.9, and both have the trivial associated
splitting. Thus we need only consider non-null semisimple strata.

Replacing rΛ1, q, q ´ 1, β1s by a conjugate if necessary, we may assume that the strata are
intertwined by 1 so that

pβ ` a1´qq X pβ
1
` a11´qq ‰ H.

Thus there are elements a P a1 and a1 P a11 such that

z :“ yβ ` a “ yβ1 ` a
1.

By the bijectivity of ζ we can assume that I “ I 1 and ζ is the identity. Let i P I.
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We show that there is an idempotent e such that e ” 1i pmod a1q and e ” 11i pmod a11q:
There is a polynomial Q P oF rXs such that Qpyβq ” 1i pmod a1q. Moreover, by replac-
ing QpXq by 1

2
pQpXq ` σpQqp˘Xqq, we can choose Q such that, for all j, the coefficient

of Xj is symmetric (resp. skew-symmetric) if and only if yjβ is symmetric (resp. skew-
symmetric). We have a canonical isomorphism from κrȳβs to κrȳβ1s (mapping ȳβ to ȳβ1)
so Qpyβ1q is congruent to some idempotent modulo a11, and indeed Qpyβ1q ” 11i pmod a11q
since the matching ζ is given by matching minimal polynomials. By Proposition 7.13 applied
with kr “ ar X a1r, there is a symmetric idempotent e P a0 X a10 congruent to Qpzq modulo
both radicals.

The idempotent e gives a new splitting V “ Ṽ i ‘ pṼ iqK for both lattice sequences.

Finally, we show that V i and Ṽ i are isomorphic signed hermitian spaces. We define the
map ψ : V i Ñ Ṽ i to be the restriction of e to V i. We first show that the map is injective.
If v is a non-zero element of its kernel, then there is an integer l such that v P Λi

lzΛ
i
l`1. But

then
0 ı v ” 1iv ” ev ” 0 pmod Λi

l`1q,

where the third congruence uses that e ” 1i pmod a1q. Similarly, the restriction of 1i

to Ṽ i is injective and these maps induce pairwise inverse κF -isomorphisms between Λi
l{Λ

i
l`1

and Λ̃i
l{

˜Λi
l`1 where Λ̃i

l is the intersection of Λl with Ṽ i. Thus ψpΛiq is equal to Λ̃i.

We now compare the hermitian structures. For v P Λi
l and w P pΛi

l`1q
# we have

hpv, wq “ hpv, 1iwq “ hpv, ewq “ hpv, e2wq “ hpev, ewq “ hpψpvq, ψpwqq

By Proposition 3.1 there is an F -linear isometry

ψ̃ : pV i, h|V iq Ñ pṼ i, h|Ṽ iq

such that

‚ ψ̃pΛiq “ Λ̃i and

‚ ψ̃ and ψ induce the same isomorphism on Λi
l{Λ

i
l`1, for all integers l.

Thus, V i, Ṽ i, and similarly V 1i, are isomorphic signed hermitian spaces. �

7.3. Matching for equivalent strata. We need to understand the matching between two
equivalent strata, and for that reason we have the following three results.

Lemma 7.16. Suppose that e is an idempotent in
ś

iA
i,i such that every non-zero element x

of
ś

iA
i,i satisfies νΛpex ´ xeq ą νΛpxq. Then e is a central idempotent of

ś

iA
i,i, i.e.

commutes with all elements of
ś

iA
i,i.

Proof. Let x be an element of
ś

iA
i,i and put x1 “ aepxq “ ex ´ xe. Then ex1e is zero and

one checks aepaepx
1qq “ aepx

1q. The condition on e now implies aepx
1q “ 0 and thus ex1 “

eaepx
1q “ 0 “ aepx

1qe “ x1e. This implies ex “ exe “ xe and, since x was arbitrary, e is
central. �
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Lemma 7.17. Let rΛ, q,m, βs and rΛ, q,m, β1s be two semisimple strata, such that

Ũ
1
paqBβ1Ũ

1
paq “ Ũ

1
paqBβŨ

1
paq

then there are a bijection τ : I Ñ I 1 and an element g of Ũ
1
paq such that

(i) 1i ” 1τpiq pmod a1q, and
(ii) g1ig´1 “ 1τpiq

for all indices i P I. Moreover, the bijection τ satisfies

dimκF pΛ
i
j{Λ

i
j`1q “ dimκF pΛ

τpiq
j {Λ

τpiq
j`1q, for all i P I, j P Z.

Proof. By the equality of the two sets and Lemmas 7.13 and 7.16, every primitive central
idempotent of Bβ has to be congruent modulo a1pΛq to a sum of primitive central idempo-
tents of Bβ1 , and vice versa. The first part follows from this. For the second part, take the
map g which sends v P V to

ř

i 1
τpiq1iv. Finally, the map v ÞÑ 1iv induces, for each j P Z, a

linear map Λ
τpiq
j {Λ

τpiq
j`1 Ñ Λi

j{Λ
i
j`1 whose inverse is induced by v ÞÑ 1τpiqv. �

Lemma 7.18. Let rΛ, q,m, βs and rΛ, q,m, β1s be equivalent semisimple strata. Then there
is an element g of 1 ` m´pk0`mqpβ,Λq such that rΛ, q,m, βs and rΛ, q,m, gβ1g´1s have the
same associated splitting.

Proof. Note that we may replace rΛ, q,m, βs by an equivalent stratum with the same splitting
(and likewise for rΛ, q,m, β1s). Thus, by applying Corollary 7.8, we may assume that β
and β1 have the same characteristic polynomial and thus there is an element x of G̃ such
that xβx´1 “ β1. Note that this implies that xV i “ V ζpiq.

Since the strata intertwine, Proposition 7.1 gives us a matching ζ : I Ñ I 1 such that the
minimal polynomials satisfy µβi “ µβ1

ζpiq
and dimF V

i “ dimF V
ζpiq, for each i P I. We can

also compare the intertwining sets of the strata (which are equal) and then Lemma 7.17 gives
us a map τ : I Ñ I 1 such that 1i ” 1τpiq pmod a1q, for all i P I. Since the identity intertwines

the two strata, Corollary 7.9 implies that we can write the identity as uyv, with u, v P Ũ
1
pΛq

and y “
ś

iPI yi such that yiV
i “ V ζpiq. Moreover, we have y “ u´1v´1 P Ũ

1
pΛq so

that yiΛ
i “ Λζpiq. Thus

1i ” y1iy´1
“ 1ζpiq pmod a1q.

In particular, we get 1τpiq ” 1ζpiq pmod a1q so that ζ “ τ , and then Lemma 7.17 also implies
that ζ satisfies the extra condition

dimκF pΛ
i
j{Λ

i
j`1q “ dimκF pΛ

ζpiq
j {Λ

ζpiq
j`1q, for all i P I, j P Z.

Now Λi and x´1Λζpiq are oF rβis-lattice sequences in V i with successive quotients of the same

dimensions so there is an element zi of Bˆβi such that ziΛ
i “ x´1Λζpiq. In particular, writ-

ing z “
ś

iPI zi, the element xz conjugates β to β1 and lies in ŨpΛq.



INTERTWINING SEMISIMPLE CHARACTERS FOR p-ADIC CLASSICAL GROUPS 33

Finally, since the strata rΛ, q,m, βs and rΛ, q,m, β1s are equivalent, the element xz also
lies in n´mpβ,Λq X ŨpΛq which, by Lemma 6.20, is p1 ` m´pk0`mqpβ,Λqqb

ˆ
0 . Hence we can

write xz “ gb, with b P bˆ0 and g P 1`m´pk0`mqpβ,Λq. �

We end this section with a criterion for a minimal semisimple stratum to be equivalent to a
skew-semisimple stratum, in terms of its characteristic polynomial.

Lemma 7.19. Suppose rΛ,m,m ´ 1, βs is a semisimple stratum such that Λ is self-dual
and σpβq ” ´β pmod a1´mq. Put e0 “ epF |F0q, e “ epΛ|oF q and g “ gcdpm, eq, and
set η “ p´1qp2m`ee0q{ge0. Let φ be the characteristic polynomial of rΛ,m,m ´ 1, βs and
suppose that its primary factors φi satisfy

σpφiqpXq “ ηdegpφiqφipηXq.

Then the stratum is equivalent to a skew-semisimple stratum.

Proof. Let p1iq be the idempotents of the associated splitting of β. By hypothesis, the
stratum rΛ,m,m´ 1, βs is equivalent to the rΛ,m,m´ 1,´σpβqs, which is also semisimple,
with associated idempotents pσp1iqq. Then Lemma 7.17 implies that there is a bijection τ
of I such that σp1iq is congruent to 1τpiq modulo a1, for all indices i. Recalling that φ is
the characteristic polynomial of (the reduction of) yβ “ βe{g$m{g and noting that σpyβq is
congruent to ηyβ modulo a1, it follows that σpφiqpXq is equal to ηdegpφτpiqqpηXq, whence φi “
˘φτpiq, by the hypotheses of the lemma. However, the characteristic polynomials for different
simple blocks (i.e. for different i) are coprime and thus τpiq “ i for all i.

Now we apply Corollary 7.14 to the elements p1i ` σp1iqq{2 (and kr “ ar) to obtain pair-
wise orthogonal symmetric idempotents ei with

ř

i ei “ 1. Then we conjugate the stratum
by

ř

i ei1
i to obtain a stratum equivalent to rΛ,m,m´ 1, βs whose simple blocks are equiv-

alent to skew-simple strata by [Ste01b, 1.10]. This finishes the proof. �

8. Intertwining and conjugacy for semisimple strata

In the case of simple strata on a fixed lattice chain, intertwining implies conjugacy up
to equivalence (see [BK93, 2.6.1]). The same result is true for arbitrary lattice sequences
and, as we prove here, for simple skew strata (that is, G-intertwining implies G-conjugacy).
However, the analogous result is no longer true for semisimple strata. As well as giving some
examples to illustrate this, we give a useful sufficient additional condition to guarantee that
the strata are indeed conjugate.

8.1. For general linear groups.

Theorem 8.1 (cf. [BK93, 2.6.1]). Suppose rΛ, q, r, βs and rΛ, q, r, β1s are simple strata which
intertwine. Then, up to equivalence they are conjugate by an element of ŨpΛq.
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Proof. By Corollary 7.8, we can assume that β and β1 have the same characteristic polyno-
mial. By [BH96, Lemma 1.6], there is an element of ŨpΛq which conjugates β to β1. �

In contrast to simple strata we cannot achieve intertwining implies conjugacy for semisimple
strata.

Example 8.2. Let V be a 4-dimensional vector space over F with basis v1, . . . , v4 and let Λ
be the lattice chain of period 2 such that

Λ0 “ v1oF ` v2oF ` v3oF ` v4oF , Λ1 “ v1oF ` v2oF ` v3oF ` v4pF .

Then, with respect to the basis, a0pΛq is
¨

˚

˚

˝

oF oF oF oF
oF oF oF oF
oF oF oF oF
pF pF pF oF

˛

‹

‹

‚

The two elements:

b :“ diagp$´1, $´1,´$´1,´$´1
q, b1 :“ diagp´$´1,´$´1, $´1, $´1

q

give two semisimple strata rΛ, 2, 1, bs and rΛ, 2, 1, b1s which intertwine but whose equivalence
classes are not conjugate over AutF pV q. Indeed, suppose for contradiction that the strata are
conjugate under an element of G̃; then this element has to be an element of the normalizer
of Λ and thus by Lemma 7.18 we can assume after conjugation that the associated splittings,
which are the same for both strata, are conjugated to each other. Note that this splitting is
given by V 1 “ v1F `v2F and V 2 “ v3F `v4F . The minimal polynomials of the strata force
that the matching has to be given by exchanging the two blocks V 1 and V 2. But this is not
possible, because the image of Λ1 “ Λ X V 1 contains only one homothety class of lattices,
while the image of Λ2 “ ΛX V 2 contains two.

Thus we impose an extra condition in the following Theorem.

Theorem 8.3. Suppose that rΛ, q, r, βs and rΛ, q, r, β1s are two non-null semisimple strata
which intertwine and let ζ be the matching between their index sets. Suppose moreover that

(8.4) dimκF pΛ
i
j{Λ

i
j`1q “ dimκF pΛ

ζpiq
j {Λ

ζpiq
j`1q, for all i P I, j P Z.

Then the strata are conjugate by an element of ŨpΛq X
ś

iA
i,ζpiq.

Proof. Fix an index i of I. By Proposition 7.1 and Corollary 7.9 there is an F -linear iso-
morphism gi : V i Ñ V ζpiq such that rgiΛ

i, q, r, giβ
ig´1
i s intertwines rΛζpiq, q, r, β1ζpiqs. Now

condition (8.4) implies that the lattice sequences giΛ
i and Λζpiq are conjugate so, modi-

fying gi if necessary, we may assume giΛ
i
j “ Λ

ζpiq
j , for each j P Z. Now we can apply
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Theorem 8.1 so that, replacing gi by a translate by an element of ŨpΛζpiqq, we can assume
that rgiΛ

i, q, r, giβ
ig´1
i s is equivalent to rΛζpiq, q, r, β1ζpiqs. Then

˜

ź

iPI

gi

¸

Λj “
à

iPI

giΛ
i
j “

à

iPI

Λ
ζpiq
j “ Λj.

so that
ś

iPI gi P ŨpΛq conjugates the first to the second stratum. �

8.2. For classical groups. We give here the similar “intertwining implies conjugacy” state-
ments for skew-semisimple strata, beginning with the simple case.

Theorem 8.5. Suppose rΛ, q, r, βs and rΛ, q, r, β1s are two skew-simple strata which inter-
twine in G. Then they are conjugate over UpΛq.

Proof. The proof is mutatis mutandis that of Theorem 8.1: we apply Corollary 7.8, then
Theorem 5.2, and then Proposition 5.4. �

As in the non-skew case, this is no longer true if one replaces simple by semisimple.

Example 8.6. Consider a ramified quadratic field extension F |F0 and a skew-hermitian
form on V “ F 4 whose Gram matrix phijq with respect to the standard basis is the anti-
diagonal matrix with entries

h41 “ h32 “ ´1 “ ´h23 “ ´h14,

and write G for the isometry group of this form. Let $ be a skew-symmetric uniformizer
of F and let z be a non-square in F0. Let Λ be the self-dual lattice chain corresponding to
the hereditary order

¨

˚

˚

˝

oF pF pF pF
oF oF pF pF
oF oF oF pF
oF oF oF oF

˛

‹

‹

‚

We define the skew-symmetric elements:

b :“ diagp$´1z,$´1, $´1, z$´1
q, b1 :“ diagp$´1, $´1z,$´1z,$´1

q.

The minimal skew-semisimple strata rΛ, 4, 3, bs and rΛ, 4, 3, b1s intertwine over G because b
is conjugate to b1 under G, but the strata are not conjugate under G because they are not
conjugate under ŨpΛq.

As an immediate consequence of Proposition 7.10 and Theorem 8.5 (as in the non-skew case
above) we have:

Theorem 8.7. Suppose that rΛ, q, r, βs and rΛ, q, r, β1s are two non-null skew-semisimple
strata which intertwine in G, with matching ζ, such that (8.4) holds. Then the strata are
conjugate by an element of UpΛq.
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9. Semisimple characters

Associated to the semisimple strata studied in the previous sections, we have sets of charac-
ters of certain compact open subgroups, which are call semisimple characters. The purpose of
this section is both briefly to recall their definitions and properties (from [BK93] and [Ste05])
and to ensure that all the results we need are available for arbitrary lattice sequences.

9.1. Semisimple characters for G̃.

Fix a semisimple stratum rΛ, q, 0, βs. Define r :“ ´k0pβ,Λq and let rΛ, q, r, γs be a semisim-
ple stratum equivalent to rΛ, q, r, βs such that γ commutes with the projections 1i of the
associated splitting of β. If rΛ, q, r, βs is minimal then we take γ to be zero.

The rings of a semisimple stratum (cf. [BK93, 3.1]). We start with the orders hpβ,Λq
and jpβ,Λq, defined inductively by

‚ hpβ,Λq “ bβ,0 ` hpγ,Λq X at r2u`1,

‚ jpβ,Λq “ bβ,0 ` jpγ,Λq X at r`1
2 u,

with hp0,Λq “ jp0,Λq “ a0. We define now the groups

Hm`1
pβ,Λq :“ hpβ,Λq X Ũ

m`1
pΛq, Jm`1

pβ,Λq :“ jpβ,Λq X Ũ
m`1

pΛq,

for m ě ´1, and write H and J instead of H0 and J0.

We now begin the proofs of the statements in [BK93, Section 3.1] for semisimple strata.
(Note that some of these are already in [Ste05].)

Proposition 9.1 (cf. [BK93, (3.1.9)]). (i) For all ´1 ď t ď r, the lattice ht t2upβ,Λq is
a bimodule over the ring n´tpβ,Λq.

(ii) If r ă n, hkpβ,Λq is equal to hkpγ,Λq for k ě
X

r
2

\

` 1.

(iii) For k ě 0, hkpβ,Λq is a bβ-bimodule.
(iv) hpβ,Λq is a ring and in particular an oF -order in A and hkpβ,Λq is a two-sided ideal

of hpβ,Λq, for all non-negative integers k.
(v) Let t ď r ´ 1 and let rΛ, q, t, β1s be a semisimple stratum equivalent to rΛ, q, t, βs.

Then hkpβ,Λq is equal to hkpβ1,Λq, for all non-negative integers k ą t´
X

r`1
2

\

.

Proof. In [BK93, (3.1.9)] the statement is proven for strict simple strata. In the case of a
non-strict simple stratum rΛ, q,m, βs, the stratum

r

epΛq´1
à

l“0

pΛ´ lq, q,m, β‘es

is a strict simple stratum and, using the identity

1V h
k
pβ‘e,‘lpΛ´ lqq1V “ hkpβ,Λq
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(where 1V denotes projection onto the first copy of V in
ÀepΛq´1

l“0 V ) we get the result for all
simple strata. Thus we continue with the case of semisimple strata.

We begin with the proof of (v), but only for the case where the strata in (v) have the
same associated splitting; we prove the general case after the next four lemmas. We use
the idea of [Ste05, Lemma 3.9]. Assume that hkpβ,Λq and hkpβ1,Λq are defined using the
same γ and that rΛ, q, t, β1s has the same associated splitting as rΛ, q, t, βs. In particular,
we immediately get that hkpβ,Λq X Ai,j “ hkpβ1,Λq X Ai,j, for i ‰ j, from the definition,
while hkpβ,Λq X Ai,i “ hkpβ1,Λq X Ai,i follows from the simple case.

Before proving (v) in general, we show how the remaining assertions follow from it. (ii) is
straightforward while induction and (v) imply that the definition of hpβ,Λq does not depend
on the choice of γ. Now (i) follows from [Ste05, 3.10(ii)], (iv) follows by induction from (i)
and (ii), and finally (iii) follows from (iv) and (i).

To finish the proof of Proposition 9.1(v) we need the following sequence of lemmas.

Lemma 9.2. hmaxt0,1`t´t r`1
2 uu is an n´tpβ,Λq-bimodule for all r ě t ě 0.

For this we need the analogue of [Ste05, Lemma 3.10] for h instead of j (see the sentence
following loc. cit.).

Lemma 9.3 (cf. [Ste05, Lemma 3.10(i)]).

(i) For all integers k ă r
2
, we have n´k X ar´k Ď hr´kpβ,Λq.

(ii) For all integers k ď r
2
, we have n´k X ar´k Ď jr´kpβ,Λq

Proof of Lemma 9.2. The proof is by induction on r “ ´k0pβ,Λq. We have the two impor-
tant identities:

htpβ,Λq “ bβ,t ` hmaxtt,t r2u`1u
pγ,Λq

and

n´t “ bβ,0 ` n´tpβ,Λq X ar´t

We write t0 for maxt0, 1` t´
X

r`1
2

\

u so that

(9.4) t0 ` r ´ t ě 1`
Yr

2

]

and 2pr ´ t` t0q ą r.

We have to show that n´th
t0pβ,Λq is a subset of ht0pβ,Λq. We have

‚ hmaxtt0,t r2u`1u
pγ,Λq “ hmaxtt0,t r2u`1u

pβ,Λq is a bβ,0-module.
‚ pn´tpβ,Λq X ar´tqbβ,t0 is contained in nt0´tpβ,Λq X at0`r´t, which is a subset of

hmaxtt0,t r2u`1u
pγ,Λq by (9.4) and Lemma 9.3.

The last containment we need, that n´tpβ,ΛqXar´th
maxtt,t r2u`1u

pγ,Λq is a subset of ht0pβ,Λq,
is proved by induction. The case of γ “ 0 is trivial, while the induction step is a result of
the equality n´tpβ,Λq X ar´t “ n´tpγ,Λq X ar´t and the induction hypothesis. �
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Finally, we see that the proof of the general case of Proposition 9.1(v) follows from Lem-
mas 9.2 and 7.18. �

Given now the preliminary results on semisimple strata that we have obtained in previous
sections and Proposition 9.1, we can follow the definitions and proofs of [BK93, Section 3.1],
from (3.1.3) to (3.1.21), to see that if one makes the obvious substitution

‚ “replace bβ,tnl by at X nt`l”,

then everything is true except possibly for the equalities in (3.1.9)(iii), in (3.1.10)(iii) and
in (3.1.11). (Some of these are already described in [Ste05].) Thus, from now on, we will
use these statements from [BK93] for semisimple strata by referring to [BK93] (and giving
the reference to [Ste05] if there is one).

Characters (cf. [BK93, 3.2]). Here we introduce the semisimple characters and their
groups exactly the same way as it was done in [BK93, Section 3.2] for simple characters. This
definition is equivalent to the definition given in [Ste05, Section 3]. We fix an additive char-
acter ψF of F of level one (that is, trivial on pF but not on oF ). We define ψA :“ ψF ˝ trA|F
and a character

ψβ : Ũ
t q2u`1

pΛq Ñ Cˆ, ψβp1` xq :“ ψApβxq.

The kernel of ψβ contains Ũ
q`1
pΛq because ψF has level one.

Definition 9.5. Suppose 0 ď m ă r. If q “ r then we define the set CpΛ,m, βq to be the
set of all characters θ : Hm`1pβ,Λq Ñ C such that:

(i) the restriction of θ to Hm`1pβ,Λq X Ũ
t q2u`1

pΛq is equal to ψβ;
(ii) the restriction of θ to Hm`1 X Bˆβ factors through the determinant map detBβ :

Bˆβ Ñ F rβsˆ.

If q ą r then we define CpΛ,m, βq inductively to be the set of all characters θ : Hm`1pβ,Λq Ñ
C such that:

(i) θ is normalized by npΛq XBˆβ ;

(ii) the restriction of θ to Hm`1 X Bˆβ factors through the determinant map detBβ :

Bˆβ Ñ F rβsˆ;

(iii) if m1 “ maxpm,
X

r
2

\

q, then θ|Hm1`1pβ,Λq is of the form θ0ψc, for some θ0 P CpΛ,m1, γq
and c “ β ´ γ.

We also define CpΛ,m, 0q to be the set consisting of the trivial character on Ũ
m`1

pΛq.

Remark 9.6. (i) For m ě
X

q
2

\

we have CpΛ,m, βq “ tψβu
(ii) This definition of the set of semisimple characters is a priori different from the one

introduced in [Ste05, 3.13], which we temporarily call CpΛ,m, βqBKS:
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(a) If Λ is strict and the stratum is simple then CpΛ,m, βqBKS is defined as in
Definition 9.5, see [BK93, (3.2.1)(3.2.3)]. In [Ste05], the set CpΛ,m, 0qBKS is

defined to be the set consisting of the trivial character on Ũ
m`1

pΛq.
(b) If Λ is a lattice sequence and the stratum is simple then CpΛ,m, βqBKS is defined

in [BK94, Section 5] in the following way. We take an oE-lattice chain Λ0 of the
same period as Λ, in some space V 0, and restrict all elements of CpΛ0‘Λ,m, β‘
βqBKS to Hm`1pβ,Λq. The obtained restrictions form the set CpΛ,m, βqBKS.

(c) If Λ is a lattice sequence and the stratum is semisimple and non-null with
associated splitting V “

À

i V
i then CpΛ,m, βqBKS is defined to be the set

of characters θ such that θi :“ θ|Hm`1pβi,Λiq is an element of CpΛi,m, βiqBKS

and, for m1 “ maxpm, t´k0pβ,Λq
2

uq, the restriction of θ to Hm1`1pβ,Λq is equal
to ψβ´γθ0 for some element θ0 of CpΛ,m1, γqBKS where rΛ, q,´k0pβ,Λq, γs is an
element of a defining sequence of the stratum with β (see [Ste05, 3.13]).

We write IHpθ, θ
1q for the intertwining of two characters in a group H, i.e. g P H is an

element of IHpθ, θ
1q if and only if θg : x ÞÑ θpgxg´1q and θ1 agree on the intersection of their

domains. In the case H “ G̃ we omit the subscript.

Proposition 9.7. The sets CpΛ,m, βqBKS and CpΛ,m, βq coincide. In particular the defi-
nition is independent of the choice of γ.

Proof. Let us first remark that the definition of CpΛ,m, βq is independent of the choice of γ
once we have established the equality for all possible strata which can occur as a first member
with respect to a jump sequence of pΛ, βq, by [Ste05, 3.14(ii)]. We prove the equality at
first for simple strata. Note that we fix here q and that we do an induction on the critical
exponent k0. If the stratum is null, then both sets only consists of the trivial character

on Ũ
m`1

pΛq.

Suppose now that k0 ě ´q: The set CpΛ,m, βqBKS is a subset of CpΛ,m, βq because of [BK93,
(3.2.1)(3.2.3)]. (The normalizing property is also satisfied in the case of lattice sequences
because the lattice chain Λ0 in Remark 9.6(ii)(b) can be chosen to be principal.)

For the other containment in the case of m ě t´k0

2
u we have that CpΛ,m, βq is contained

in CpΛ,m, γqψβ´γ which is equal to

CpΛ,m, γqBKSψβ´γ “ CpΛ,m, βqBKS

by induction hypothesis. In the case m ă t´k0

2
u we follow an induction on m, where we

use t´k0

2
u as the start for the induction, which is know by the first case.

Take an element θ of CpΛ,m, βq. Consider case (ii)(b) in Remark 9.6. Writing Λ̄ “ Λ0 ‘

Λ, we have to show that there is an element of CpΛ̄,m, β ‘ βqBKS which restricts to θ.

By the induction hypothesis on m there is a character θ̃ in CpΛ̄,m ` 1, β ‘ βqBKS which
restricts to θ|Hm`2pβ,Λq. On the other hand, by definition θ|

Ũ
m`1

pΛEq
factorizes through the
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determinant, i.e. has the form χ ˝ detB, with χ a smooth character of Eˆ. We define θ̄ a
character on

Hm`1
pβ ‘ β, Λ̄q “ Ũ

m`1
pΛ̄EqH

m`2
pβ ‘ β, Λ̄q

via θ̄pbxq “ χpdetB̄pbqqθ̃pxq. If this is well-defined then it lies in CpΛ̄,m, β ‘ βqBKS and its
restriction to Hm`1pβ,Λq is θ.

For θ̄ to be well-defined we only need that χ ˝ detB̄ |Ũm`1
pΛ̄Eq

and θ̃ coincide on the inter-

section of their domains, which is Ũ
m`2

pΛ̄Eq. The image of detB̄ on Ũ
m`2

pΛ̄Eq coincides

with the image of detB on Ũ
m`2

pΛEq (it is equal to Ũ
t m`1
epΛEq

u`1
poEqq and the restriction of θ̃

to Ũ
m`2

pΛ̄Eq factorizes through detB̄. Thus this restriction has to be equal to the corre-

sponding restriction of χ ˝ detB̄ because θ̃ and θ coincide on Ũ
m`2

pΛEq. This finishes the
proof in the simple case.

We consider now the semisimple case for k0 ě ´q. We have that CpΛ,m, βqBKS is a subset
of CpΛ,m, βq because the simple restrictions of an element θ of the first set satisfies the nor-
malizing and the factorizing condition and θ is trivial on the unipotent parts of the Iwahori
decomposition of Hm`1pβ,Λq with respect to β by [Ste05, 3.15]. For the other containment
the case m ě t´k0

2
u follows as in the simple case. If m ă t´k0

2
u then we show by induction

on m that the restriction θi of an element θ of CpΛ,m, βq is an element of CpΛi,m, βiqBKS.
By induction hypothesis θi|Hm`2pβi,Λiq is an element of CpΛi,m ` 1, βiqBKS and the axioms
for θ imply the factorization condition for θi. Thus θi is an element of CpΛi,m, βiq because it
is normalized by npΛi

Ei
q (because θi|Hm`2pβi,Λiq and θi|Ũm`1

pΛiEi
q

are) and because θi|Hm`2pβi,Λiq

is an element of CpΛi,m`1, βiq by the simple case. Thus θi is an element of CpΛi,m, βiqBKS
again by the simple case. This finishes the proof. �

Let us recall the intertwining formula for a semisimple character:

Proposition 9.8 ([Ste05, 3.22], [BK93, (3.3.2)]). The intertwining of a semisimple charac-
ter θ P CpΛ,m, βq is given by SpβqBˆβ Spβq where

Spβq “ SpΛ,m, βq “ 1`m´k0´m ` jt
´k0`1

2 upβ,Λq.

Reading the proofs of [BK93] from (3.2.1) to (3.5.10) we see that all statements are true
for semisimple characters (after replacing bβ,tnl by at X nt`l throughout) except the state-
ments (3.3.17) and (3.5.1). However, there are obvious modifications of (3.3.17) and (3.5.1)
which are still true.

Proposition 9.9 (see [BK93, (3.5.1)]). Let rΛ, q,m, βs and rΛ, q,m, β1s be semisimple strata
such that CpΛ,m, βq X CpΛ,m, β1q is non-empty. Then there is a bijection τ : I Ñ I 1 such
that 1i ” 1τpiq pmod a1q, and:

(i) k0pβ,Λq “ k0pβ
1,Λq;

(ii) the field extensions Ei|F and E 1τpiq|F have the same inertia degree and the same
ramification index;
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(iii) the dimensions of V i and V τpiq as F -vector spaces coincide;
(iv) there is an element g of Spβq such that gV i is equal to V τpiq. In fact, the element g “

ř

i 1
τpiq1i is an example.

Proof. The existence of τ follows from the two descriptions of the intertwining of an ele-
ment θ P CpΛ,m, βq X CpΛ,m, β1q,

Ipθq “ SpβqBβSpβq “ Spβ1qBβ1Spβ
1
q,

together with Lemma 7.17. We now follow the proof of [BK93, (3.5.1)] to get that bβ,0{bβ,1
is isomorphic to bβ1,0{bβ1,1, by an isomorphism of κF -algebras which maps 1i to 1τpiq. We
also have that p1ia01iq{a1 “ p1

τpiqa01τpiqq{a1 and thus, as in the proof of [BK93, (2.1.4)], we
get the desired equalities.

The equality of the additive closures of the intertwining set IpθqX ŨpΛq in terms of β and β1

implies that, for each i P I, we can write 1τpiq “ p1` uqbp1` vq with p1` uq, p1` vq P Spβq
and b P Bβ. By Lemma 7.13 applied with k0 “ a0 X Bβ and kr “ pSpβq ´ 1q X ar, there is
an idempotent e in Bβ which is congruent to b pmod Spβq ´ 1q. Since, in particular, e ”
b ” 1τpiq ” 1i pmod a1q, Lemma 7.16 implies that e is a central idempotent in Bβ, in
particular a sum of primitive central idempotents of Bβ. Since e ” 1i pmod a1q, we see that
in fact e “ 1i. Thus in fact 1i ” 1τpiq pmod Spβq ´ 1q and we deduce that g “

ř

i 1
τpiq1i is

an element of Spβq with the required property. �

Remark 9.10. Recall that a semisimple character θ is called simple if there is a simple
stratum rΛ, q,m, βs such that θ P CpΛ,m, βq; then, by Proposition 9.9, every semisimple
stratum rΛ, q,m, β1s such that θ P CpΛ,m, β1q has to be simple.

Proposition 9.11 (see [BK93, (3.3.17)]). For every element of θ of CpΛ,m, βq the intersec-
tion of the normalizer npθq of θ with npΛq is the set SpβqnpΛEq. In particular the intersection
of npθq with Ũ1pΛq is equal to

(9.12) 1` b1 `m´k0´mpβ,Λq ` Jt
´k0`1

2
u
pβ,Λq

and pŨ1pΛq X npθqq ´ 1 is a b0-bimodule and is closed under multiplication.

Proof. An element of npθq X npΛq intertwines θ and normalizes Λ thus it is contained
in SpβqnpΛEq by the intertwining formula. The latter set is contained in the normalizer of θ
because Spβq and npΛEq are. This finishes the proof of the first statement. If we intersect the

set npθqXnpΛq further with Ũ
1
pΛq then we obtain the formula (9.12) and pŨ1pΛqXnpθqq´1

is a b0-bi-module and closed under multiplication by [BK93, (3.1.10)]. �

By [BK93, Theorem 3.5.8], a non-trivial intersection of CpΛ,m, βq with CpΛ,m, β1q implies
equality of the sets. We will generalize this theorem to a block-wise version. If V “

À

k V
k is

a splitting for V which splits a semisimple stratum rΛ, q,m, βs, we write θk for the restriction
of θ to Hm`1pβk,Λ

kq.
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Lemma 9.13. Suppose that V “
À

k V
k is a splitting which refines the associated splittings

of two semisimple strata rΛ, q,m, βs and rΛ, q,m, β1s. Suppose further that the sets CpΛ,m`
1, βq and CpΛ,m ` 1, β1q coincide and that CpΛk,m, βkq is equal to CpΛk,m, β1kq, for all k.
Let a P a´m´1 X

ś

k A
k,k, θ P CpΛ,m, βq and θ1 P CpΛ,m, β1q be given such that θk coincides

with θ1kψak for all indices k. Then rΛ, q,m, β1`as is equivalent to a semisimple stratum with
the same associated splitting as β, and the sets CpΛ,m, βq and ψaCpΛ,m, β1q coincide and
both contain θ “ θ1ψa.

Proof. The group Hm`1pβ,Λq is the same as Hm`1pβ1,Λq by [BK93, (3.5.9)]. We show
that rΛ, q,m, β1`as is equivalent to a semisimple stratum rΛ, q,m, β2s which is split by V “
À

k V
k. Let s1 be a tame corestriction with respect to γ1, a parameter for a first mem-

ber of a defining sequence for rΛ, q,m, β1s. Since θ1kψ´ak P CpΛk,m, β1kq, we have that the
coset s1pakq`b1γ1k,´m

is intertwined by the centralizer of γ1k and thus s1pakq is congruent to an

element of F rγ1ks modulo a´m. Further, the stratum rΛk,m` 1,m, s1pβ1k ´ γ
1
kqs is equivalent

to a simple stratum because rΛk, q,m, β1ks is simple. Thus the stratum rΛk,m`1,m, s1pβ1k`
ak ´ γ1kqs is equivalent to a simple stratum and it follows that rΛk, q,m, β1k ` aks is equiv-
alent to a simple stratum by Corollary 6.15. By coarsening the splitting

À

k V
k we find a

semisimple stratum rΛ, q,m, β2s equivalent to rΛ, q,m, β1 ` as and by Theorem 6.16 we can
choose the desired stratum to be spilt by

À

k V
k.

Since rΛ, q,m, β1 ` as is equivalent to the semisimple stratum rΛ, q,m, β2s, it follows that
CpΛ,m, β2q is equal to CpΛ,m, β1qψa and intersects CpΛ,m, βq non-trivially, i.e. they coincide
by [BK93, Theorem 3.5.8].

It remains to show that β and β2 in fact have the same associated splittings. The cor-
responding idempotents p1iqi and p1i

1

qi1 of the associated splittings commute because the
idempotents p1kqk commute with all of them and are a refinement of both. By Proposi-
tion 9.9 there is a bijection τ from I to I 1 such that 1τpiq is congruent to 1i modulo a1. The
product 1i1i

1

is congruent to zero for i1 ‰ τpiq and thus it is zero, because they commute
(take powers). Thus 1i and 1τpiq coincide, that is, the splittings coincide. �

Corollary 9.14. Suppose that V “
À

k V
k is a splitting which refines the two splittings

associated to the semisimple strata rΛ, q,m, βs and rΛ, q,m, β1s, and suppose that there are
semisimple characters θ P CpΛ,m, βq and θ1 P CpΛ,m, β1q such that for every index k the
characters θk and θ1k coincide. Then CpΛ,m, βq “ CpΛ,m, β1q and both contain θ “ θ1.

Proof. This follows inductively from Lemma 9.13 with a “ 0. �

9.2. The transfer principle for G̃.

We would like to be able to get an analogue of strata induction for semisimple characters,
for which we need

‚ the “translation principle” initially introduced for simple characters in [BK94, 2.11],
and
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‚ a result on “derived characters” (see Proposition 9.17 below).

From now on the element γ can be arbitrary, i.e. we free γ from the requirements of the
beginning of the previous section.

In the following we use the notation mp∆q for the set m´pk0pβ,Λq`m`1qpβ,Λq for a stratum ∆ “

rΛ, q,m, βs. Equivalent strata ∆ and ∆1 give coinciding sets mp∆q “ mp∆1q.

Lemma 9.15. Suppose ∆ “ rΛ, q,m, βs is a semisimple stratum split by V “
À

i V
i

and rΛ, q,m, β1s is a semisimple stratum equivalent to ∆. Then there is an element u
of 1`mp∆q such that uβ1u´1 is split by V “

À

i V
i.

Proof. By the intertwining formula, taking the intersection with ŨpΛq and then the additive
closure, we get

mp∆q ` bβ “ mp∆q ` bβ1 .

Thus for every index i there is an element αi P bβ1 congruent to the idempotent 1i mod-
ulo mp∆q. Corollary 7.14 provides idempotents 11i P bβ1 congruent to 1i which sum to 1.
The element u “

ř

i 1
i11i has the desired property. �

Theorem 9.16. Let ∆ :“ rΛ, q,m ` 1, γs and ∆1 :“ rΛ, q,m ` 1, γ1s be semisimple strata
with the same associated splitting V “

À

j V
j such that

CpΛ,m` 1, γq “ CpΛ,m` 1, γ1q.

Let rΛ, q,m, βs be a semisimple stratum with associated splitting V “
À

iPI V
i such that ∆ is

equivalent to rΛ, q,m` 1, βs and γ is an element of
ś

iPI A
i,i. Then there exist a semisimple

stratum rΛ, q,m, β1s with associated splitting V “
À

i1PI 1 V
1i1 and an element u P p1`mp∆1qqX

ś

j A
j,j such that rΛ, q,m` 1, β1s is equivalent to ∆1, with uγ1u´1 P

ś

i1PI 1 A
i1,i1 and

CpΛ,m, βq “ CpΛ,m, β1q.

Proof. (i) Let us first remark that, given a semisimple stratum ∆2 “ rΛ, q,m ` 1, γ2s
with the same associated splitting as γ, once we know the assertion for p∆,∆1q and
for pu.∆1,∆2q, for some u P p1`mp∆1qqX

ś

j A
j,j, then we know it also for p∆,∆2q.

(ii) The case where ∆ and ∆1 are equivalent follows directly from Lemma 9.15 applied
to ∆,∆1, taking u to be as there and β1 “ uβu´1.

(iii) We now reduce to the case that ∆ is simple so assume that the result has already
been proven in this case. Then, applying this to the simple strata rΛj, q,m, βjs, for
each j, we can find rΛj, q,m, β1js and elements uj P 1`mp∆q such that CpΛj,m, βjq

is equal to CpΛj,m, β1jq and ujγ
1
ju
´1
j is split by the associated splitting of β1j. More-

over, by conjugating βj with an element of Spβjq we can assume that βj and β1j
have the same associated splitting, see Proposition 9.9(iv). Then the semisimple
strata rΛ, q,m, βs and rΛ, q,m, β1s have the same associated splitting, where β1 “
ř

j β
1
j.
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Take θ P CpΛ,m, βq. Although we know that, for each i, the restriction of θ to
block i lies in CpΛi,m, β1iq, it does not follow that θ P CpΛ,m, β1q, since the definition
of semisimple character entails a certain compatibility between the blocks. However,
there is an element a P

ś

iA
i,iX a´m´1 such that θψ´a is an element of CpΛ,m, β1q.

Then, by Lemma 9.13, the stratum rΛ, q,m, β1 ` as is equivalent to a semisimple
stratum with the same associated splitting as β1 with the same set of semisimple
characters as the stratum with entry β. This finishes the proof of this case.

(iv) Finally, we assume that ∆ is simple., so that ∆1 is simple too, by Proposition 9.9.
By [BK93, (3.5.9)] there is a simple stratum rΛ, q,m` 1, γ2s, equivalent to ∆1, such
that CpΛ,m, γq is equal to CpΛ,m, γ2q. Thus by (i) and (ii) we can assume γ1 “ γ2.
As in [BK94, 5.2(iii)], we take two tame corestrictions s and s1 for γ and γ1 such
that spxq ” s1pxq pmod at`1q, for all elements x of at and all integers t.

We put c “ β ´ γ. Then rΛ,m` 1,m, spcqs is equivalent to a semisimple stratum
by Corollary 6.15. As in [BK94, 5.3], the fact that rΛ,m`1,m, spcqs is fundamental
implies that rΛ,m`1,m, s1pcqs is fundamental too; however, we need that the latter
stratum also satisfies the criterion on the maps mn,m`1,s1pcq of Proposition 6.11. Note
that the same proposition implies that the maps mn,m`1,spcq do satisfy this criterion.

The tame corestrictions s and s1 are surjective as maps from at to bγ,t and
to bγ1,t, respectively, and thus we obtain an isomorphism of κF -vector spaces φt
from bγ,t{bγ,t`1 to bγ1,t{bγ1,t`1, for all integers t, by sending the class of spxq to that
of s1pxq; note that this is well defined by the choice of s and s1. Then mn,m`1,s1pcq is
equal to φn´m´1 ˝mn,m`1,spcq ˝φ

´1
n and thus, varying n, the maps mn,m`1,s1pcq satisfy

the additional criterion of Proposition 6.11.
The arguments after [BK94, (5.4)] show that the algebras RprΛ,m ` 1,m, spcqsq

and RprΛ,m ` 1,m, s1pcqsq are isomorphic, which implies, by Proposition 6.11,
that rΛ,m ` 1,m, s1pcqs is equivalent to a semisimple stratum, say with associated
splitting p1i

1

q. By Corollary 6.15 the stratum rΛ, q,m, γ1 `
ř

i1 1
i1c1i

1

s is equivalent
to a semisimple stratum rΛ, q,m, β2s with the same splitting and by Proposition 7.6
there is an element u of 1 ` mp∆q such that uβ2u´1 is equivalent to γ1 ` c mod-
ulo a´m. Thus, setting β1 “ uβ2u´1, the stratum rΛ, q,m, β1s satisfies the desired
properties, as

CpΛ,m, βq “ ψcCpΛ,m, γq “ ψcCpΛ,m, γ1q “ CpΛ,m, β1q,

where the last equality follows from [BK93, (3.3.20)(i)].

�

Proposition 9.17. Suppose m ă q ´ 1 and let rΛ, q,m, βs and rΛ, q,m, β1s be semisimple
strata which have defining sequences with a common first element rΛ, q,m ` 1, γs. Sup-
pose θ P CpΛ,m, βq and θ1 P CpΛ,m, β1q are semisimple characters which agree on restriction
to Hm`2pγ,Λq, so that we can write θ1 “ θ0ψβ1´γ and θ “ θ0ψβ´γ`c, for some θ0 P CpΛ,m, γq
and c P a´pm`1q. Let sγ be a tame corestriction with respect to γ.
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(i) For any g P Ipθ, θ1q there are elements x, y P Spγq and g1 P Bγ such that g “ xg1y;
moreover, g1 intertwines ψsγpβ´γ`cq with ψsγpβ1´γq.

(ii) For any g1 P IBˆγ pψsγpβ´γ`cq, ψsγpβ1´γqq, there are elements x, y of 1 ` m´k0pγ,Λq´m´1

such that xg1y intertwines θ with θ1.
(iii) If the characters ψspβ´γ`cq and ψspβ1´γq are equal, then there is z P 1`m´k0pγ,Λq´m´1

such that θz “ θ1.

Remark 9.18. The strategy of the proof of Proposition 9.17(ii) is as follows: we take x
and y such that xg1y intertwines the stratum rΛ, q,m, β1s with rΛ, q,m, β ` cs (see also
Proposition 7.6) and prove that xg1y intertwines θ with θ1. Thus, if c is an element of

ś

iA
i,i

and g1 maps the splitting associated to β1 to that of β, then we can choose x P
ś

iA
i,i

and y P
ś

i1 A
i1i1 which satisfy the assertions of Proposition 9.17(ii).

Proof. We have Hm`1pβ,Λq “ Hm`1pβ1,Λq “ Hm`1pγ,Λq by [BK93, (3.1.9)], so we just
write Hm`1.

(i) The decomposition g “ xg1y follows directly from Proposition 9.8. We remark also
that, by [BK93, (3.6.2) and (3.1.15)(ii)], the elements x and y normalize Hm`1.

Thus g1 P Ipθx, θ1y
´1
q. By [BK93, (3.3.9)] we have

θx “ θ0ψx´1γx´γψβ´γ`c, and θ1y
´1

“ θ0ψyγy´1´γψβ1´γ.

We have ψx´1γx´γ “ ψaγpxq and ψyγy´1´γ “ ψ´aγpyq (as characters of Hm`1) and thus

their restrictions to Ũ
m`1

pΛq XBˆγ are trivial. Thus, on Ũ
m`1

pΛq XBˆγ , we have

θx “ θ “ θ0ψβ´γ`c “ θ0ψsγpβ´γ`cq,

and analogously for θy
´1

. Since g1 intertwines θx with θy
´1

and θ0 with itself, it also
intertwines ψsγpβ´γ`cq with ψsγpβ1´γq.

(ii) If some element g1 P Bˆγ intertwines ψsγpβ´γ`cq with ψsγpβ1´γq then it intertwines
the stratum rΛ,m ` 1,m, sγpβ

1 ´ γqs with rΛ,m ` 1,m, sγpβ ´ γ ` cqs and thus,
by Proposition 7.6, there are elements x, y of 1 ` m´k0pγ,Λq´m´1 such that g1 in-
tertwines rΛ, q,m, yβ1y´1s with rΛ, q,m, x´1pβ ` cqxs; that is, g1 is an element
of Ipψx´1pβ`cqx, ψyβ1y´1q. Now we have

ψx´1pβ`cqx “ ψβ`c´γψx´1γx´γψγ,

and an analogous equation for ψyβ1y´1 . Since g1 intertwines each of θ0 and ψγ|Hm`1

with themselves, we deduce that g1 intertwines θx with θ1y
´1

.
(iii) This follows immediately from (ii) applied to the identity element by putting z “ xy,

which normalizes Hm`1.

�

Corollary 9.19. Let rΛ, q,m, βs and rΛ, q,m, β1s be semisimple strata which have semisim-
ple approximations rΛ, q,m ` 1, γs and rΛ, q,m ` 1, γ1s respectively with a common associ-
ated splitting V “

À

j V
j. Suppose that Hm`2pβ,Λq is equal to Hm`2pβ1,Λq and let θ P



46 DANIEL SKODLERACK AND SHAUN STEVENS

CpΛ,m, βq and θ1 P CpΛ,m, β1q be two intertwining semisimple characters which coincide
on Hm`2pβ,Λq. Then there is an element in

ś

jpA
j,jqˆ which intertwines θ with θ1.

Proof. By the translation principle, Theorem 9.16, there are rΛ, q,m, β2s, a semisimple stra-
tum which has rΛ, q,m ` 1, γs as an approximation, and an element u P p1 ` mγq X

ś

Aj,j

such that CpΛ,m, β2q “ CpΛ,m, β1q and uγu´1 is split by the associated splitting of β2.
Replacing β1 by u´1β2u, we reduce to the case where γ1 “ γ.

Now set θ0 “ ψγ´βθ P CpΛ,m, γq. Then there is an element c P
À

j A
j,j such that θ1 “

θ0ψβ1´γ`c, because θ0ψβ1´γ and θ1 are trivial on the lower and upper unipotent parts of the
Iwahori decomposition with respect to V “

À

j V
j. As we know that θ and θ1 intertwine,

Proposition 9.17(i) provides an element of
ś

jpB
j,jqˆ which intertwines the corresponding

derived characters. Now fix a block j, then Proposition 9.17(ii) provides an element gj
of pAj,jqˆ which intertwines θj with θ1j. Thus g “ pgjq intertwines θ with θ1 because both
characters are trivial on the unipotent parts of the Iwahori decomposition with respect
to V “

À

j V
j. �

9.3. Semisimple characters for G. Suppose now that rΛ, q,m, βs is a skew-semisimple
stratum and continue with the notation of the previous subsection. The adjoint anti-
involution σ of the signed hermitian form h acts on CpΛ,m, βq via

pσ ¨ θqpgq :“ θpσpg´1
qq, g P Hm`1

pβ,Λq.

Definition 9.20. We define the set of semisimple characters C´pΛ,m, βq to be the set of all
restrictions θ|Hm`1pΛ,βqXG where θ run through all elements of CpΛ,m, βqσ, the set of σ-fixed
points.

We call an element of C´pΛ,m, βq a semisimple character for G.

Remark 9.21 ([Ste05, 3.6], [Ste01b, 2.5]).

(i) The restriction map from CpΛ,m, βqσ to C´pΛ,m, βq is bijective, in particular injec-
tive.

(ii) For two skew-semisimple strata rΛ, q,m, βs and rΛ, q,m, β1s, g P G, and charac-
ters θ P CpΛ,m, βqσ and θ1 P CpΛ,m, β1qσ the following conditions are equivalent:
‚ g P IGpθ, θ

1q;
‚ g P IGpθ|Hm`1pΛ,βqXG, θ

1|Hm`1pΛ,βqXGq.

We have an analogous description to that of Proposition 9.8 of the intertwining of a semisim-
ple character for G.

Proposition 9.22 ([Ste05, 3.27]). For θ´ P C´pΛ,m, βq a semisimple character of G, we
have

IGpθ´q “ pSpβq XGqpBβ XGqpSpβq XGq.

For two skew-semisimple strata giving the same set of semisimple characters we have a
stronger version of Proposition 9.9.
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Proposition 9.23. Let rΛ, q,m, βs and rΛ, q,m, β1s be skew-semisimple strata such that the
intersection C´pΛ,m, βq X C´pΛ,m, β1q is non-empty.

(i) The sets CpΛ,m, βq and CpΛ,m, β1q coincide.

Let τ : I Ñ I 1 be the bijection given by Proposition 9.9, such that 1i ” 1τpiq pmod a1q.

(ii) The spaces V i and V τpiq are isomorphic as hermitian spaces, for all indices i P I
(iii) There is an element of U1

pΛq which normalizes every element of CpΛ,m, βq and
sends V i onto V τpiq.

Proof. We prove the first statement by induction on m. If m “ q then β “ β1 “ 0 and both
sets only contain the trivial character on ŨpΛq, i.e. they coincide, so we suppose m ă q.
Let γ and γ1 be entries of a first member of defining sequences of the skew-semisimple
strata rΛ, q,m, βs and rΛ, q,m, β1s respectively. Then by the induction hypothesis we can
assume that CpΛ,m` 1, γq and CpΛ,m` 1, γ1q coincide so, by [BK93, (3.1.9)(ii),(3.5.1)], we
have

Hm`1
pβ,Λq “ Hm`1

pγ,Λq “ Hm`1
pγ1,Λq “ Hm`1

pβ1,Λq,

a group which we denote by Hm`1. There is, by Glauberman’s correspondence, then a
unique σ-invariant lift of an element θ´ P C´pΛ,m, βq X C´pΛ,m, β1q to Hm`1, and this lies
in both CpΛ,m, βq and CpΛ,m, β1q. The result now follows by Corollary 9.14.

The second statement follows directly from Proposition 3.1 applied to the map f : v ÞÑ
ř

iPI 1τpiq1iv, which lies in Ũ1pΛq. We are left to prove the third statement. We write the
map f as a tuple f “ pfiq where fi “ 1τpiq1i. We write Spβqi for 1iSpβq1i. Then σpfiqfi “
1i1τpiq1i P Spβqi so the double coset Spβ1qτpiqfiSpβqi contains an isometry, by Corollary 3.2.

We can write this isometry as p1τpiq ` uτpiqqp1
i ` viq, since fi “ 1τpiq1i can be absorbed into

the other terms. We define g “
ř

ip1
τpiq ` uτpiqqp1

i ` viq P G so we have to show that g ´ 1

is an element of npθq X Ũ
1
pΛq.

By Proposition 9.11 the set pnpθq X Ũ
1
pΛqq ´ 1 is a b0- and a b10-bimodule, and is closed

under multiplication. Thus the products uτpiqp1
i ` viq, uτpiq1

i and 1τpiqvi and p1τpiq ´ 1iq1i

are all elements of pnpθq X Ũ
1
pΛqq ´ 1, and g is an element of npθq X Ũ

1
pΛq as required. �

We also get an analogue to [BK93, 3.5.9] for semisimple characters for G.

Proposition 9.24. Suppose rΛ, q,m, β1s and rΛ, q,m, βs are skew-semisimple strata with the
same associated splitting, such that m ą 0 and

CpΛ,m, βq “ CpΛ,m, β1q.

Then Hmpβq “ Hmpβ1q and there is a skew-semisimple stratum rΛ, q,m, β2s equivalent
to rΛ, q,m, βs, with the same associated splitting, such that

CpΛ,m´ 1, β2q “ CpΛ,m´ 1, β1q.
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Proof. The same proof as in the first part of [BK93, 3.5.9] shows that Hmpβq “ Hmpβ1q.
Now we take a character θ in CpΛ,m ´ 1, βqσ and a skew-symmetric element b of a´mpΛq
in

ś

iA
i,i such that θψb is an element of CpΛ,m ´ 1, β1q. The same proof as in the second

part of [BK93, 3.5.9] shows that there is a semisimple stratum rΛ, n,m ´ 1, β2s equivalent
to rΛ, n,m´1, β`bs such that β2 P

ś

iA
i,i. Since β`b is skew-symmetric, β2 can be chosen

skew-symmetric, by [Ste01b, 1.10]. Then

CpΛ,m´ 1, β2q “ CpΛ,m´ 1, βqψb

has a non-trivial intersection with CpΛ,m´ 1, β1q, and thus they are equal by the analogue
of [BK93, Theorem 3.5.8]. �

Next we obtain an analogue of the translation principle, Theorem 9.16, for which we need
the following lemma.

Lemma 9.25. Suppose ∆ “ rΛ, q,m, βs and rΛ, q,m, β1s are equivalent skew-simple strata
and suppose that ∆ is split by the orthogonal sum

À

i V
i. Then there is an element u

of p1`mp∆qq XG such that uβ1u´1 is an element of
ś

iA
i,i.

Proof. As in the proof of Lemma 9.15 we find elements αi P bβ1 congruent to 1i modulo mp∆q.
We can replace αi by pαi ` σpαiqq{2 to ensure that the elements αi are symmetric. By
Corollary 7.14 we obtain pairwise orthogonal symmetric idempotents 11i congruent to αi who
sum up to 1. As in the proof of Proposition 9.23(iii) we see that p11i `mp∆iqqp1

i `mp∆iqq

has a σ-fixed element, say uiu
1
i. Then g :“

ř

i u
1
iui has the desired property. �

Theorem 9.26. Let ∆ “ rΛ, q,m`1, γs and ∆1 “ rΛ, q,m`1, γ1s be skew-semisimple strata
with the same associated splitting V “

À

j V
j such that

CpΛ,m` 1, γq “ CpΛ,m` 1, γ1q.

Let rΛ, q,m, βs be a skew-semisimple stratum, with associated splitting V “
À

iPI V
i, such

that rΛ, q,m` 1, βs is equivalent to ∆ and γ is an element of
ś

iPI A
i,i. Then, there exists a

skew-semisimple stratum rΛ, q,m, β1s, with splitting V “
À

i1PI 1 V
1i1 and an element u P p1`

mp∆1qqX
ś

j A
j,jXG, such that rΛ, q,m`1, β1s is equivalent to ∆1, with uγ1u´1 P

ś

i1PI 1 A
i1i1

and

CpΛ,m, βq “ CpΛ,m, β1q.

Proof. The proof is analogous to the proof of Theorem 9.16, following the same four steps.
Step (i) is the same (with the added requirement that u P G), while step (ii), the case
where ∆,∆1 are equivalent, follows from Lemma 9.25. Step (iii), the reduction from the
semisimple to the simple case, is line by line the same because we can take the element a
block-wise skew and Theorem 6.16 ensures that the stratum rΛ, q,m, β1 ` as is equivalent
to a skew-semisimple stratum with the same associated splitting as β1; the splitting of βj is
conjugate in G to that of β1j by Proposition 9.23(iii).
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There is more to say in step (iv), the case where ∆ is simple. We can modify γ1 by Proposi-
tion 9.24 to assume CpΛ,m, γq “ CpΛ,m, γ1q. We choose s a σ-equivariant tame corestriction
relative to γ, and likewise s1 relative to γ1. The proof of [BK94, 5.2(iii)] shows that there
is λ P kˆF rγs such that spxq`at`1 “ λps1pxq`at`1q, for all x P at and all integers t. Since s, s1

are σ-equivariant, we deduce that λ is symmetric, i.e. λ̄ “ λ. Then, choosing a symmetric
lift λ̂ of λ to oˆF rγs and replacing s1 by λ̂s1, we see that we may assume that spxq ” s1pxq

pmod at`1q, for all x P at and all integers t.

We put c “ β ´ γ, so that the derived stratum rΛ,m ` 1,m, spcqs is equivalent to a
skew-semisimple stratum by Corollary 6.15 and [Ste01b, 1.10]. In particular, denoting
by φi P kF rγspXq the primary factors of its characteristic polynomial, we have σpφiqpXq “

ηdegpφiqφipηXq, where η “ p´1qp2pm`1q`ee0q{ge0 for e “ epΛ|oF rγs, e0 “ epF rγs|F rγs0q and g “
gcdpm` 1, eq.

Now the strata rΛ,m ` 1,m, spcqs and rΛ,m ` 1,m, s1pcqs have the same characteristic
polynomial, by the choice of s, s1, and the duality σ acts in the same way on the residue
fields kF rγs, kF rγ1s, since they have the same image in a0{a1 by [BK94, 5.2]. Hence rΛ,m `
1,m, s1pcqs satisfies the hypotheses of Lemma 7.19 and is equivalent to a skew-semisimple
stratum. The argument now finishes as in step (iv) of Theorem 9.16. �

Finally, we get an analogue of Proposition 9.17, with the same proof (replacing the reference
to Proposition 9.8 by Proposition 9.22).

Proposition 9.27. Suppose m ă q ´ 1 and let rΛ, q,m, βs, rΛ, q,m, β1s be skew-semisimple
strata which have defining sequences with a common first element rΛ, q,m ` 1, γs. Let θ P
CpΛ,m, βqσ and θ1 P CpΛ,m, β1qσ be semisimple characters which agree on Hm`2pΛ, γq, so
that we can write θ1 “ θ0ψβ1´γ and θ “ θ0ψβ´γ`c, for some θ0 P CpΛ,m, γqσ and c P
a´pm`1q,´. Let sγ be a σ-equivariant tame corestriction with respect to γ.

(i) For any g P IGpθ, θ
1q there are elements x, y P Spγq X G and g1 P Bγ X G such

that g “ xg1y; moreover, g1 intertwines ψsγpβ´γ`cq with ψsγpβ1´γq.
(ii) For any g1 P IBγXGpψsγpβ´γ`cq, ψsγpβ1´γqq, there are x, y P p1 ` m´k0pγ,Λq´m´1q X G

such that xg1y intertwines θ with θ1.
(iii) If ψsγpβ´γ`cq “ ψsγpβ1´γq then there is z P p1`m´k0pγ,Λq´m´1q XG such that θz “ θ1.

Corollary 9.28. Let rΛ, q,m, βs and rΛ, q,m, β1s be two skew-semisimple strata such that we
can chose elements rΛ, q,m`1, γs and rΛ, q,m`1, γ1s in defining sequences (with skew strata)
such that γ and γ1 have a common associated splitting, say pV jq, and such that Hm`2pβ,Λq is
equal to Hm`2pβ1,Λq. Let θ P CpΛ,m, βqσ and θ1 P CpΛ,m, β1qσ be two semisimple characters
which are intertwine by an element of G and which coincide on Hm`2pβ,Λq. Then there is
an element in

ś

jpA
j,jqˆ XG which intertwines θ with θ1.

Proof. The proof is the same as that of Proposition 9.19, where we use Theorem 9.26 in place
of Theorem 9.16 and Proposition 9.27 in place of Proposition 9.17. Note that the element c in
the proof of Proposition 9.19 can be chosen to be skew-symmetric by Pontrjagin duality. �
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10. Matching and conjugacy for semisimple characters

In this final section we prove that there is an analogue of the matching Proposition 7.1 for
semisimple characters which intertwine. One might think that this matching could just come
from that for the underlying semisimple strata, but these do not necessarily intertwine so this
is not possible. Then the sufficient condition (8.4) for an “intertwining implies conjugacy”
result for semisimple strata is also sufficient for semisimple characters, also in the case of
semisimple characters for G.

10.1. For general linear groups. For a semisimple character θ P CpΛ,m, βq, with de-
composition V “

À

iPI V
i associated to rΛ, q, 0, βs, we write θi for the restriction of θ

to Hm`1pβi,Λ
iq “ Hm`1pβ,Λq X Ai,i, for each index i P I.

Theorem 10.1. Let θ P CpΛ,m, βq and θ1 P CpΛ1,m, β1q be semisimple characters which
intertwine and suppose that Λ and Λ1 have the same period. Then there is a unique bijec-
tion ζ : I Ñ I 1 such that there is an element g P G̃ with

(i) gV i “ V 1ζpiq, for all i P I;

(ii) θg
´1

i and θ1ζpiq intertwine, for all i P I.

Moreover, all elements of G̃ which satisfy (i) also satisfy (ii).

Proof. First we prove the uniqueness of ζ under the assumption that the existence statement
is proven. If there are two bijections from I to I 1 satisfying the assertions of the theorem
then there are indices i1, i2 P I and i1 P I 1 such that θi1 and θi2 intertwine with θ1i1 . By (i), we
can conjugate θ1i1 to V i1 and to V i2 , and afterwards θ1i1bθ

1
i1 is the Levi-part (under an Iwahori

decomposition) of a simple character, which intertwines with θi1 b θi2 . The index set of the
latter two semisimple characters have different cardinalities and we obtain a contradiction.

To prove the final assertion of the statement let us assume that g1 is another element of G̃

which satisfies (i). Then by the uniqueness of ζ the characters θg
´1

i and θg
1´1

i are conjugate

by the restriction of g1g´1 to V 1ζpiq. Thus θg
1´1

i and θ1ζpiq intertwine, because θg
´1

i and θ1ζpiq
do.

We now turn to the existence proof. First we reduce to the case of lattice chains, in fact
to the case where both lattice chains are block-wise principal lattice chains – that is, for
each index i the dimension dimκF Λi

k{Λ
i
k`1 is independent of k. For that we repeat the :-

construction Λ: :“ ‘e´1
j“0pΛ´ jq, where e is the period of Λ (which we assume coincides with

that of Λ1), and Λ1: similarly. Let us remark that Λ: is the direct sum of the pΛiq:. We will
also need to use the notion of endo-equivalence of simple characters, for which we refer the
reader to [BH96] and [BSS12].

By assumption, θ and θ1 intertwine and thus θ: and θ1: intertwine. Assume that we have
proven the existence of ζ for the case of block-wise principal lattice chains. In particular
we find an element g which maps, for each index i, the vector space pV iq: to pV 1ζpiqq:, and



INTERTWINING SEMISIMPLE CHARACTERS FOR p-ADIC CLASSICAL GROUPS 51

then pθ:i q
g´1

and θ
1:

ζpiq intertwine. In particular, this implies that V ζpiq and V i have the same

dimension and that θ:i and θ
1:

ζpiq are endo-equivalent. (More precisely, they are realizations

of endo-equivalent ps-characters.) Thus there is an isomorphism gi : V i Ñ V 1ζpiq and, for

any such, the simple characters θ
g´1
i
i and θ1ζpiq intertwine, since they are realizations of endo-

equivalent ps-characters on the same space. Thus the element
ř

iPI gi has all the required
properties. This finishes the proof of the reduction to the block-wise principal case.

Now we assume we are in the block-wise principal case and prove the existence of ζ. We
proceed via induction on m, with the case m ě

X

q
2

\

following directly from Proposition 7.1.

For m ă
X

q
2

\

, let rΛ, q,m`1, γs be a semisimple stratum equivalent to rΛ, q,m`1, βs with γ P
ś

iA
i,i, and similarly for rΛ1, q,m ` 1, γ1s. We write J for the index set of the splitting

of rΛ, q,m` 1, γs, and similarly J 1. We have the character θγ “ θ|Hm`2pγ,Λq P CpΛ,m` 1, γq,
and similarly θ1γ1 , and these characters intertwine. In particular, by induction, there are a

bijection ζγ : J Ñ J 1 and g P G̃ such that gV j “ V 1ζγpjq and θg
´1

γ,j intertwines θ1γ1,ζγpjq for

all j P J , where θγ,j “ θγ|Hm`2pγj ,Λjq. Since gΛj and Λ1ζγpjq are then principal lattice chains
of the same period in the same space, they are conjugate so, changing g, we may assume
they are equal; that is, g P ŨpΛq.

In particular, conjugating everything by g, we may assume that the strata rΛ, q,m ` 1, γs
and rΛ, q,m ` 1, γ1s have the same associated splitting and θγ,j intertwines θ1γ1,j. Since Λj

and Λ1j are again principal lattice chains of the same period in the same space, they are
conjugate, and we can assume Λj “ Λ1j for all indexes j. Then [BK93, Theorem 3.5.11]
implies that θγ,j and θ1γ1,j are conjugate by an element of ŨpΛjq so, by conjugating, we can
assume they are equal. By Corollary 9.14 this implies that θγ is equal to θγ1 . Corollary 9.19
provides an intertwiner for θ and θ1 which preserves every V j. Now, since we can then prove
the existence of ζ separately for each block V j, we may assume that θγ “ θγ1 is simple.
By [BK93, Theorem 3.5.8] we then have that

Hm`1
pβ,Λq “ Hm`1

pγ,Λq “ Hm`1
pγ1,Λq “ Hm`1

pβ1,Λq.

Thus we abbreviate Hm`1, and similarly Hm`2. By the translation principle Theorem 9.16,
we can find a semisimple stratum rΛ, q,m, β2s with splitting V “

À

iPI2 V
2i2 and an ele-

ment u P p1`mγ1q X
ś

j A
j,j such that

‚ rΛ, q,m` 1, β2s is equivalent to rΛ, q,m` 1, γ1s;
‚ CpΛ,m, β2q “ CpΛ,m, βq and
‚ uγ1u´1 P

ś

i2 A
i2i2 .

Note that rΛ, q,m`1, β2s is then also equivalent to rΛ, q,m`1, uγ1u´1s. Since CpΛ,m, β2q “
CpΛ,m, βq, Proposition 9.9 implies that we have a bijection τ : I Ñ I2 and y P Spβq

such that yV i “ V 2τpiq. Moreover, the element y normalizes θ, thus θy
´1

i “ θτpiq. In
particular, we may replace the pair pβ, γq by pβ2, uγ1u´1q, since we can then compose the
bijection ζ : I2 Ñ I that we obtain with τ (and right multiply the element g we obtain
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by y). Thus we may assume that γ “ uγ1u´1. Now conjugating back with u (that is,
replacing pβ, γ, θq by pu´1βu, u´1γu, θuq), we may assume that γ “ γ1.

Now let sγ be a tame corestriction with respect to γ. We write θ and θ1 as in Proposition 9.17,

θ “ θ0ψβ´γ`c, and θ1 “ θ0ψβ1´γ,

with θ0 P CpΛ,m, γq and c P a´pm`1q. Moreover, by Remark 9.18, we can assume that c is
decomposed by the splitting V “

À

iPI V
i. Since θ0 and ψcθ0 are both elements of CpΛ,m, γq,

both are intertwined by every element of Bˆγ ; in particular, we deduce that the derived
stratum rΛ,m ` 1,m, sγpcqs is intertwined by every element of Bˆγ and thus sγpcq is an
element of F rγs ` bγ,´m, by [BK93, Lemma 2.4.11]. Then, since c, β are both decomposed
by the splitting V “

À

iPI V
i, there is a semisimple stratum rΛ,m ` 1,m, δs equivalent

to rΛ,m ` 1,m, spβ ´ γ ` cqs with splitting V “
À

iPI V
i. Similarly, there is a semisimple

stratum rΛ,m` 1,m, δ1s equivalent to rΛ,m` 1,m, spβ1 ´ γqs with splitting V “
À

iPI 1 V
i1 .

By Proposition 9.17 there is an element of Bγ which intertwines rΛ,m ` 1,m, spβ1 ´ γqs
with rΛ,m`1,m, spβ´γ`cqs, so intertwines the semisimple strata rΛ,m`1,m, δs and rΛ,m`
1,m, δ1s. Then the matching for semisimple strata, Proposition 7.1, implies that there is g P
Bˆγ which matches their splittings; indeed, since we are in the block-wise principal case,

we may choose such g P ŨpΛq X Bγ. In particular, conjugating by this element (which
centralizes γ), we may assume that I “ I 1 and the strata rΛ,m`1,m, δs and rΛ,m`1,m, δ1s
are intertwined by an element of Bγ X

ś

iA
i,i. But then, by Proposition 9.17 again, θi

intertwines with θ1i for all i P I, which finishes the proof. �

Theorem 10.2. Let θ P CpΛ,m, βq and θ1 P CpΛ,m, β1q be semisimple characters which
intertwine, let ζ : I Ñ I 1 be the matching given by Theorem 10.1, and suppose that condi-
tion (8.4) holds. Then θ is conjugate to θ1 by an element of ŨpΛq X

ś

iA
i,ζpiq.

Proof. We first remark that the result is transitive: that is, if the hypotheses are also satisfied
for a pair pθ1, θ2q of semisimple characters then the same is true of the pair pθ, θ2q and,
similarly, the conclusion for the pairs pθ, θ1q and pθ1, θ2q implies that for pθ, θ2q. Similarly,
if pθ2, β2q is conjugate to pθ1, β1q then the result for pθ, θ1q is equivalent to that for pθ, θ2q.

We need to consider three steps.

(i) Suppose first that θ is equal to θ1. Then, by Proposition 9.9(iv) we can find an
element of Spβq which maps V i onto V ζpiq. This element normalizes θ.

(ii) Suppose q ą m and that rΛ, q,m, βs and rΛ, q,m, β1s have simple strata rΛ, q,m `
1, γs and rΛ, q,m ` 1, γs in their defining sequences, respectively, and suppose
that θ|Hm`2pγ,Λq and θ1|Hm`2pγ1,Λq coincide; in particular the sets of simple characters
for the strata for γ and γ1 coincide. Then the translation principle Proposition 9.16
provides a semisimple stratum with element β2, such that β2 ´ γ is an element
of a´m´1 and CpΛ,m, β2q “ CpΛ,m, β1q, and an element u of 1`mγ such that uγu´1

is split by the associated splitting of β2.
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Now we can apply part (i) to pθ1, β1q and pθ1, β2q so, by transitivity, we reduce
to the case where γ1 “ uγu´1. Then, by conjugating by u, we reduce to the case
where γ “ γ1. Now writing θ, θ1 as in Proposition 9.17, we get that the derived strata
intertwine so, by Theorem 8.3, are conjugate by elements of ŨpΛq X Bγ. But then

Proposition 9.17(iii) gives us an element of ŨpΛq which conjugates θ to θ1. Part (i)
enables us to modify the conjugating element such that V i is mapped to V ζpiq for
all indices i.

(iii) We now prove the general case by induction on m. If the strata are null strata
(m “ q), then we can take the identity as the conjugating element. Suppose
now m ă q. Take for the strata first members of the defining sequences with
entries γ and γ1, respectively. By the induction hypothesis θ|Hm`2pγ,Λq is conjugate
to θ1|Hm`2pγ1,Λq by an element which conjugates the splittings; thus, by conjugating,
we may assume that these restrictions are equal, and further that γ and γ1 have the
same associated splitting, say V “

À

j V
j. Now Corollary 9.19 provides an inter-

twiner of θ with θ1 which preserves V j, for all indices j. We apply Part (ii) for each j
to obtain an element g “ pgjq of ŨpΛq X

ś

iA
i,ζpiq which conjugates θj to θ1j for all

indices j. Finally, Corollary 9.14 applied to θg
´1

and θ1 and the splitting
À

i V
ζpiq

gives that θg
´1

and θ1 coincide, and the element g is as required.

�

10.2. For classical groups. If two characters θ´ P C´pΛ,m, βq and θ1´ P C´pΛ,m, β1q
intertwine then their lifts θ P CpΛ,m, βqσ and θ1 P CpΛ,m, β1qσ intertwine and we get a
matching ζ : I Ñ I 1 from Theorem 10.1. Let us state the main theorem:

Theorem 10.3. Let θ´ P C´pΛ,m, βq and θ1´ P C´pΛ,m, β1q be two semisimple characters
of G, which intertwine in G, and assume that their matching satisfies (8.4). Then, θ´ and θ1´
are UpΛq X p

ś

iA
i,iq-conjugate.

Proof. The proof is completely the same as for Theorem 10.2 by using σ-fixed lifts of the
characters and the relevant results for G in place of those for G̃. Specifically: In step (i), we
use Proposition 9.23(iii). In step (ii), we use the translation principle for G, Theorem 9.26,
to reduce to the case of a common γ and we use Proposition 9.27(i) to reduce to the derived
strata; the case of minimal strata is done in Theorem 8.7. In step (iii), we use Corollary 9.28
to reduce to the case where the stratum with γ is simple. �

We also conjecture a more natural version of the Matching Theorem 10.1 for G.

Conjecture 10.4. Let rΛ, q,m, βs and rΛ1, q,m, β1s be skew-semisimple strata and θ P
CpΛ,m, βqσ and θ1 P CpΛ1,m, β1qσ two semisimple characters which are intertwined by an
element of G. Let ζ : I Ñ I 1 be the matching from Theorem 10.1. Then, there is an
element g P G such that gV i “ V 1ζpiq, for all i P I.
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