INTERTWINING SEMISIMPLE CHARACTERS FOR p-ADIC
CLASSICAL GROUPS

DANIEL SKODLERACK AND SHAUN STEVENS

ABSTRACT. Let G be an orthogonal, symplectic or unitary group over a nonarchimedean
local field of odd residual characteristic. This paper concerns the study of the “wild part”
of an irreducible smooth representation of G, encoded in its “semisimple character”. We
prove two fundamental results concerning them, which are crucial steps towards a complete
classification of the cuspidal representations of G. First we introduce a geometric combi-
natorial condition under which we prove an “intertwining implies conjugacy” theorem for
semisimple characters, both in G and in the ambient general linear group. Second, we
prove a Skolem—Noether theorem for the action of G on its Lie algebra; more precisely, two
semisimple elements of the Lie algebra of G which have the same characteristic polynomial
must be conjugate under an element of G if there are corresponding semisimple strata which
are intertwined by an element of G.

1. INTRODUCTION

A major motivation for the study of the representation theory of p-adic groups is, via
the local Langlands correspondence, to understand Galois representations. The arithmetic
core of these representations, which is rather mysterious on the Galois side, is encoded in
restriction to wild inertia. On the automorphic side, this restriction corresponds to looking
at certain representations of pro-p-subgroups.

For p-adic general linear groups, Bushnell and Kutzko | | constructed, and classified,
all cuspidal irreducible representations. At the heart of this classification sit the so-called
“simple characters”; these are very particular arithmetically-defined characters of pro-p-
subgroups, which exhibit remarkable rigidity properties (see below for details). These prop-
erties were exploited, and extended, by Bushnell and Henniart | |, who defined the
notion of an “endo-class” and hence proved a Ramification Theorem | | for the local
Langlands correspondence for general linear groups: there is a bijection between the set
of endo-classes and the set of orbits (under the Weil group) of irreducible representations
of the wild inertia group. More recently, they have extended this, using the fundamental
structural properties of simple characters to prove a Higher Ramification Theorem | ].
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For p-adic classical groups — that is, symplectic, special orthogonal and unitary groups
— in odd residual characteristic, analogous characters were constructed by the second au-

thor | | as a fundamental step in the construction of all cuspidal irreducible represen-
tations [ |. This required first extending the theory of simple characters to the case of
“semisimple characters” (see also the work of Dat | ). However, the rigidity results

which allowed Bushnell and Kutzko to obtain a classification were missing — partly because
some of them are false.

In this paper, we prove many of these rigidity results for semisimple characters, which
are new even in the case of general linear groups — in particular, we prove “intertwining
implies conjugacy” and Skolem—Noether results (see below for details). In a sequel | 1,
jointly with Kurinczuk, we are then able to put this together with other work of Kurinczuk
and the second author | ], to turn the construction of cuspidal representations into a
classification, for both complex and /-modular representations, with ¢ # p prime. More
precisely, we establish the following conjugacy result for cuspidal types in p-adic classical
groups: if (J; A) and (J', \') are two types from the construction in | | which induce to
give equivalent irreducible cuspidal representations, then they are conjugate.

We anticipate further work to come from these rigidity results. Semisimple characters (or,
more precisely, their endo-classes) will give a decomposition of the category of smooth /-
modular representations of classical groups, and each subcategory should be equivalent to
the subcategory of depth zero representations of some other (endoscopic) group, for which
other techniques are available. Current work of the first author (see | | for the start of
this) aims at generalizing the results proved here to proper inner forms of classical groups,
where additional problems arise, analogous to those in the case of inner forms of general
linear groups | |. One would then expect that a Jacquet—Langlands correspondence
between inner forms would respect the decompositions of the categories by endo-class, as
for general linear groups | ], and that this would be a major step in making such a
correspondence explicit. Finally, it would be interesting to explore whether our results
on semisimple characters for general linear groups can be extended to semisimple types:
suppose (J,A) and (J', \') are Bushnell-Kutzko semisimple types for the same Bernstein
component of a p-adic general linear group, so that they intertwine; what extra condition
on the associated lattice sequences is required to be able to conclude that the types are
conjugate? The same question can also be asked in classical groups.

Now we state our results more precisely. Let F' be a nonarchimedean local field of odd
residual characteristic. Let G be the isometry group of an e-hermitian space with respect to
some automorphism of F' of order at most two, so that G is the group of fixed points under
an involution on the full automorphism group G of the underlying F-vector space V. We
similarly regard the Lie algebra of G as the fixed points of an involution on A = Endg(V).
Note that, when ¢ = 1 and the involution on F' is trivial, we are working with the full
orthogonal group; however, the set of semisimple characters for the full orthogonal group
and for the special orthogonal group coincide.
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The starting point in the construction of semisimple characters is an algebraic combina-
torial object, a so-called semisimple stratum [A,q,r,5]. The principal data here are: an
element § € A which generates a sum of field extensions £ = F[f] = @,.; E;; and a ratio-
nal point A in the (enlarged) Bruhat-Tits building of the centralizer of 8 in G, which we
think of as a lattice sequence in V' (see | ]). Associated to A, we have a filtration (ay,)nez
of A (which is the Moy-Prasad filtration) and the integer ¢ is defined by 5 € a_,\a;_,; this
is required to be positive. Finally, r is an integer between 0 and ¢ which is small enough
in the following approximate sense: the stratum [A, g, r, 3] corresponds to the coset 5+ a_,
and r must be small enough so that the formal intertwining of the coset has a nice formula
involving the centralizer of 8. (See Section 6 for more details, and a precise definition.) A
semisimple stratum [A, ¢, r, 3] as above splits according to the primitive idempotents 1° of E,
giving simple strata [A%, ¢;,r, 3;] in V' = 1'V, which are studied in [ |. In particular, a
semisimple stratum is simple if and only if its indexing set I has cardinality one.

Associated to any semisimple stratum [A, ¢, r, 3], and for any integer m > 0, we have a fam-
ily C(A, m, B) of semisimple characters. We do not recall the definition here (see Section 9)
but note only that, by applying the idempotents, we obtain from a semisimple character
a collection of simple characters 6;, for ¢ € I. For simple characters, the fundamental rigid-
ity property proved in [ ] for lattice chains (i.e. sequences without repetition), is the
following;:

Suppose 6 € Q(A,m,ﬁ) and 0 € C(A,m, (") are simple characters which
intertwine in G. Then they are conjugate in the parahoric subgroup U(A).

In the case of semisimple characters, this result is false as soon as #1 > 1: the essential reason
is that one can have two lattice sequences (or even chains) A, A’ which are conjugate in G
but such that the separate pieces A’, A’ are not (all) conjugate in Autz(V"). Equivalently,
there are points in the building of a proper Levi subgroup of G which are not conjugate
under the Levi but are conjugate under G. For similar reasons, the result would remain
false if one weakened the conclusion to only conjugacy under G. Thus one needs an extra
condition to ensure that intertwining implies conjugacy. In order to describe this condition,
we need a “matching theorem” for semisimple characters which intertwine:

Theorem (see Theorem 10.1). Let 6 € C(A,m,5) and ' € C(A',m, ") be semisimple char-
acters which intertwine in G and suppose that A and A’ have the same period. Then there
is a unique bijection ¢ between the index sets I and I' such that the simple characters 6;
and 0;,y are intertwined by an isomorphism in Homp(V?, V¢0),

This matching theorem allows us to describe a condition which is certainly necessary for con-
jugacy: if 6,6’ as in the theorem are conjugate by an element of the parahoric subgroup U(A)
then, with ¢ : I — I’ the matching given by the previous theorem, we have

(1.1) dim,, Ai/AL = dim,, AP /ASY forallie and e Z.

I+1 +1>
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Equivalently, the isomorphism in the theorem which intertwines the characters maps the
point in the building corresponding to A’ to a point conjugate to the point corresponding
to A’“®)_ It turns out that this condition is also sufficient to obtain an “intertwining implies
conjugacy” result:

Theorem (see Theorem 10.2). Let 6 € C(A,m,B) and 0" € C(A,m, ') be semisimple char-
acters which intertwine in G, let ¢ : I — I" be the matching given by Theorem 10.1, and
suppose that the condition (1.1) holds. Then 6 is conjugate to 0" by an element of U(A).

Now we turn to our results for classical groups. Suppose that our underlying strata [A, ¢, r, ]
are skew — that is, [ is in the Lie algebra of G, the associated decomposition of V' is
orthogonal with respect to the hermitian form, and A is in the building of the centralizer
in G of 3 (see | ]). Our first main result here is a Skolem—Noether theorem for semisimple
strata, which is crucial in the sequel | ].

Theorem (see Theorem 7.12). Let [A, q,r, B] and [N, q,r, 5] be two skew-semisimple strata
which intertwine in G, and suppose that B and B’ have the same characteristic polynomial.
Then, there is an element g € G such that gBg~—' = ',

Note that, for § as in the theorem, the number of G-orbits in the Lie algebra of G with
the same characteristic polynomial as 3 is 2%/, 2#/=! or 2#/=2 depending on G and 3; thus
some additional condition is certainly necessary to conclude that 3, 3" are conjugate.

Given a skew-semisimple stratum [A, ¢,r, 8], the set C_(A,m, 3) of semisimple characters
for G is obtained by restricting the semisimple characters in C(A, m, 3). Equivalently, one
may just restrict those semisimple characters which are invariant under the involution defin-
ing GG. Our final result is an “intertwining implies conjugacy” theorem for semisimple char-
acters for G.

Theorem (see Theorem 10.3). Let 0_ € C_(A,m,3) and 0" € C_(A,m, ") be two semisimple
characters of G, which intertwine over G, and assume that their matching satisfies (1.1).

Then, 0_ and 0" are conjugate under U(A) = U(A) n G.

This is the first step in an “intertwining implies conjugacy” result for cuspidal types proved
in the sequel | ], which then completes the classification of cuspidal representations
of G.

Let us say a few words about the proofs of these results, beginning with those for general
linear groups. Since a semisimple character is defined in terms of a semisimple stratum
underlying it, we must first prove similar results for strata. One major complication here
is that, although a semisimple stratum [A, g, r, 5] determines the associated splitting V' =
@,c; V", since it comes from the idempotents of E = F[f], one may have equivalent strata
with different splittings.
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Thus we prove that, given two semisimple strata [A, ¢, r, ] and [A’, ¢, r, 8'] which intertwine
and such that A, A’ have the same period, there is a canonical matching between the index
sets I, 1" of their splittings (see Proposition 7.1). The proof of this is by induction: when
the strata are minimal (that is, r = ¢ — 1), we match the primary factors of the charac-
teristic polynomials of the strata (see Definition 6.6), which are equal by intertwining. The
inductive step requires a careful analysis of the derived strata of a semisimple stratum. As
a consequence of this, one see that if the initial strata are in fact equivalent, then there is
an element of G which normalizes the (equivalence class of the) strata and conjugates the
two splittings (see Lemma 7.18).

As is the case for simple characters, the fact that a semisimple character does not determine
the underlying stratum (even up to equivalence) presents additional difficulties. First, when
we have a semisimple character # which can be defined relative to two different strata, we
need a matching between their associated splittings, which is given by conjugation by an
element of the normalizer of 6 (see Proposition 9.9). The key result, which allows one
to perform induction along defining sequences for semisimple characters, is an analogue
of Bushnell-Kutzko’s “Translation Principle” for simple characters (see Theorem 9.16). A
crucial step in this is to characterize when a stratum of the form [A, ¢, ¢ — 1, 8] is equivalent
to a semisimple one (see Proposition 6.11). With these tools all to hand, we are able to
prove the main matching and “intertwining implies conjugacy” theorems for semisimple
characters.

Now we pass our attention to the skew-semisimple case. We begin with an analysis of
the Witt groups W, (FE) of finite field extensions E of F. Given an equivariant form A :
E — F, we get a trace map from W,(F) and W,(F) and it is the understanding of this
map that allows us to make progress. In particular, the map takes hermitian F-spaces
of maximal anisotropic dimension to hermitian F-spaces of maximal anisotropic dimension
(see Theorem 4.4); moreover, outside the symplectic case the map is injective on spaces of a
given dimension. One deduces from this that, again outside the symplectic case, when there
is a self-dual embedding of a field extension E into a hermitian F-space, it is unique up
to conjugation. In the symplectic case, this is not true but we prove a Skolem—Noether for
simple strata which intertwine (see Theorem 5.2); this is proved by using the strata to twist
the symplectic form into orthogonal forms and then using a result on lifting approximate
isometries.

With this to hand, the scheme of proof of “intertwining implies conjugacy” for skew-
semisimple characters is formally very similar to the case of G described above, beginning
with the strata and then proceeding to characters, but we must prove that the matchings ob-
tained along the way give isometries between the spaces V' (which are all hermitian spaces).
In general the major difficulty occurs at the base step of an induction; for example, the base
case of Proposition 7.10 — that the matching for skew-semisimple strata which intertwine
gives isometries — is proved using an idempotent lifting result.



6 DANIEL SKODLERACK AND SHAUN STEVENS

We finish with a brief description of the organization of the paper. After setting up notation,
we begin with some basic results on classical groups: in Section 3 we prove results on the
lifting of approximate isometries in a hermitian space; in Section 4 we analyze the Witt
groups W, (F) of finite field extensions E of F' and trace-like maps from W, (E) to W, (F);
and in Section 5 we prove the first Skolem—Noether result, for embeddings of a field (the
simple case). Next we look at semisimple strata: in Section 6 we recall the definitions and
some fundamental results; in Section 7 we prove that intertwining semisimple strata have
a matching, and prove the Skolem—Noether theorem above; and in Section 8 we prove an
intertwining implies conjugacy result for semisimple strata. Finally, we turn to semisimple
characters: in Section 9 we recall the definitions and recall or prove many basic results, in
particular the translation principles; and in Section 10 we prove the remaining main results.

2. NOTATION

Let F' be a nonarchimedean local field of odd residual characteristic with valuation vy and
equipped with an involution p (which may be trivial) with fixed field F,. We write o, pr
and kg for the valuation ring, its maximal ideal and the residue field of F' respectively,
and we assume that the image of the additive valuation v := vp is Z u {0}. We also
denote by x +— Z the reduction map op — kr = op/pr. We fix a symmetric or skew-
symmetric uniformizer w € pp\p%. We use similar notation for other nonarchimedean local
fields. If E|F is an algebraic field extension then we write E*" for the maximal unramified
subextension of F|F.

Let h be an e-hermitian form (with € = £1) on an F-vector space V' of finite dimension, i.e.
for all v;,v, € V and x,y € F the bi-additive form h satisfies

h(viz,v2y) = p(x)ep(h(ve, v1))y.

We denote the ring of F-endomorphisms of V' by A and its group of units A* by G. Let G be
the group of all elements g of G such that h(guvy, guvs) is equal to h(vy, vs), for all vectors vy, vs;
this is the group of points of a reductive group over Fp, which is connected unless F' = Fj
and € = +1, in which case it is the full orthogonal group. Let o = o), be the adjoint anti-
involution of h on A. For a o-stable subset M of A, we write M, for the set of symmetric
elements and M_ for the set of skew-symmetric elements.

An op-lattice in V is a free op-module M of dimension m. The dual M# of M with respect
to h is the set of all vectors v of V such that h(v, M) is a subset of pp. A lattice sequence
in V is a map A from Z to the set of og-lattices of V satisfying

(i) As € Ay, for all integers s > ¢, and

(i) Asw = Agy. for some (unique) integer e and all integers s.

We call e =: e(A|or) the op-period of A. An injective lattice sequence is called a lattice
chain. For each integer s, we denote by x — T the reduction map Ay — Ag/Ag 1. A lattice
sequence A is called self-dual if there is an integer u such that (A,)# = A,_.
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As usual, a lattice sequence A determines the following filtrations of A and A_ (if A is
self-dual): a;(A) is the set of all elements of A which map Ay into Agy,; for all integers s
and a_;(A) is the intersection of a;(A) with A_. We skip the argument A if there is no cause
of confusion and we write a; if there is a second lattice sequence A’ given.

The sequence A also induces filtrations on G(A) = a; by GZ(A) = 1+ a; and, when A is

self-dual, on U(A) := U(A) n G by Ui(A) = U'(A) n G for i € N. The filtration on A defines
a “valuation map” v, as follows: for 5 € A, we put v(83) = sup{i | 5 € a;}, an integer or co.
The normalizer n(A) of A is the set of elements g € A* such that va(g7!) = —va(g).

The translation of A by s € Z is the lattice sequence (A + s); := A;_,, and we define the
direct sum A@ A’ of two lattice sequences A and A’ of the same period as (A; (—DA;») jez- The
lattice sequence
ADA+1)D- D (A+e(Aop) —1)

is always a lattice chain. By this construction, many theorems in | | proven for lattice
chains are valid for lattice sequences (cf. | |, and also | |, where this is called a {-
construction). If this is the case, or the proof of a result for lattice chains is valid for lattice
sequences without change, then, in the following, we just refer to the statement for lattice
chains.

Finally, for z a real number, we denote by |x| the greatest integer not greater than x.

3. LIFTING ISOMETRIES

The isomorphism type of the hermitian space (V) h) is encoded in any self-dual lattice se-
quence of V, as explained in this section. The main results are Proposition 3.1 and Corol-
lary 3.2, which explain how an approximate isometry (for example, one which induces an
isometry at the level of residue fields) can be lifted to a genuine isometry. Let us state the
main proposition:

Proposition 3.1. Let F|F’ be a finite field extension. Suppose we are given two finite-
dimensional e-hermitian spaces (V,h) and (V',h') with respect to (F,p), an F'-linear iso-
morphism f 'V — V' and two self-dual op-lattice sequences A and N’ of (V,h) and (V' 1),
respectively, such that, for all i € Z,

i f(Az) = A;;
f((Az)#) - f(Ai)#;
h(f(v), f(w)) = h(v,w) € kp, for all ve A;, we (Aiq)* and
f(UiE) = f( ).Z' € Az-{—e (Aop)vi(z / 1+it+e(AN|op)vg ()’ fOT' allv e A“ T e F.

Then there is an F-linear isometry g from (V, h) to (V', ') mapping A to A’ such that (f —
9)(N;) € Al for all integers 1.

Later it will be useful to have a stronger approximation statement. For that we intro-
duce a generalization of the adjoint anti-involution. For two finite-dimensional e-hermitian
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spaces (V,h) and (V’,h') with respect to (F,p) there is a map oy from Homp(V, V')
to Homg(V', V') defined, for f € Homp(V,V’), by the equation
B (f(v),w) = h(v,onw(f)(w)), forveV, weV'

Corollary 3.2. Let (V! hy) and (V% hy) be two e-hermitian spaces over F (for the same €),
let A' be a self-dual lattice sequence and let f : VY — V2 be an F-linear isomorphism such
that A := f(A') is self-dual. Suppose U; is a closed subgroup of le(Al) which is invariant
under oy, fori = 1,2, such that op, p,(f) € U1 f~'Us. Then there is an isometry from (V1 hy)
to (V2, hy) contained in Uy fU;.

Proof. The e-hermitian spaces (Vi, h;) and (V,, hy) are isometric by a map which sends A!
to A2, by Proposition 3.1. Thus we can restrict to the case where (V1, hy) = (Va, hy) =: (V, h)
and f(A;) = Ay = A. By assumption, the double coset UsfU; is invariant under the
automorphism g — ,(¢g~1), and this double coset thus has a fixed point, by | , 2.7(ii) (a)]
and | , 2.2]. O

We need a sequence of lemmas to prove Proposition 3.1.

Lemma 3.3. Suppose that A is a self-dual lattice chain of period 1 such that AO# = A;.

Consider the form -
h: AO/Al X Ao/A1 — RF

defined by h(v,w) = h(v,w). Then every Witt basis of (Ao/A1,h) lifts to a Witt basis
of (V,h) contained in Ny, under the projection Ag — Ao/A;.
Proof. Let B be a Witt basis of h. We have

B = BOUBLfluBZfQU e \;)Br’fr,

where B; _; spans a hyperbolic space, B, spans an anisotropic space, and all these spaces are
pairwise orthogonal to each other in Ag/A;. Further we have a decomposition

BO = BO,I UBQQU Ce UBO,t

into pairwise orthogonal sets of cardinality one. Take an arbitrary lift B'®) of B to A; for
an element o € B, we write v € B'© for its lift.

Step 1: Consider By; = {g}; put W := vy and define
B'Y = {proj,y (v) | v e BO\{ve}} U {vo},
where projy, denotes the orthogonal projection onto W. We recall the formula
h(vg,v)
h(vg, vo)

and conclude that h(projy, (v), projy, (v)) is equal to
S (T3 LA T T B TR0 2T
7 h(vo, vo) p(h(vo, v0)) p(h(vo, o))

projy (v) = v — v
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and therefore equal to h(v,v’) for all v,v’ € B"®. Thus, replacing (V, h) by (W, hy) and A
by its intersection with W and then repeating, we can assume that By is empty.
Step 2: Consider By _; = {t;,7_;} and define now W := {v;,v_;1}. Then, as in Step 1,

elements v and v’ of

B'WY = {projy (v) | v e BO\{vy,v_1}} U {v1,v_1}

satisfy h(proj, (v), proju (v')) = h(v,v'), because if v € B'O\{v;,v_,} then
v = projy (v) + v_1h(vy,v) + vieh(v_y,v) (mod Ay).
Thus we have reduced to the hyperbolic case that B is equal to B _;.
Step 3: We have B = By _; = {v1,0_1}. The sequence (w;);>1 ,defined by w; := v, and

h(wi, U)l)
9 )

has a limit v] which satisfies h(v],v) = 0 and v} = 91, and analogously we find v’ ; with

similar properties. Then
1
BW .= { i }
vip(h(v),vy)

is a Witt basis of V' which lifts B. O

Wiyl = W; — V_q fori > 1,

Lemma 3.4. Suppose that A is a self-dual lattice chain of period 1 such that Ao# = Ag.
Consider the form

ITL . Ao/A1 X AO/Al — K
defined by h(v,w) = h(v,w)w'. For every Witt basis B = BywB~wB* of (Ao/A1, ), with
isotropic parts B~ and BT and anisotropic part By, there is a Witt basis B' = BywB' " wB'~
contained in A_y of (V,h) such that B, B'" and B~ w are lifts of By, B* and B~ under
the projection Ao — ANo/A1, respectively.

Here we explicitly make use of the fact that p(w) € {w, —w}.
Proof. This follows directly from Lemma 3.3 if we substitute h by hww™!. U

We need a third base case for period 2.

Lemma 3.5. Suppose that A is a self-dual lattice chain of period 2 such that A# = Ay.

Then h has anisotropic dimension zero and for any basis By of Ao/Ay there is a Witt basis
for h,

B =B, uBy,
such that B} is a subset of A;\Ai+1 for all i and such that Bj is a lift of By under the
projection Ao — Ao/Ay1. Further, h vanishes on Bj x Bj.
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Proof. First we prove that h is hyperbolic. Suppose for contradiction that it has positive
anisotropic dimension, i.e. let v be an anisotropic vector and part of a Witt basis for h
which splits A. We can multiply v by a scalar such that h(v,v) is a unit or a uniformizer of
F. We treat only the second case, because the first one is similar. There is an index ¢ such
that A; nvF is equal to vog, and then this is equal to A; "vF because h(v,v) is uniformizer.
Since, for all lattices in the image of A the homothety class is invariant under dualization,
we obtain that the index has to be zero. Thus, A_; n vF = p3' is equal to w 2(A; N vF),
which is a contradiction.

Now let us construct the lift. We start with a Witt basis B” for h which splits A. Let Bf be
the set of elements v of B” such that

vF N Ay #0vF N Aq,

and let Wy be the span of Bj. We prove that the restriction of h to Wy is zero. We define,
for v € B”, the element v* to be the element of B” such that h(v,v*) is non-zero, i.e. equal
to 1 or —1. If there is an element v € Wy n B” such that v* € Wy then A_; n (vF + v*F) =
Ao N (vF +v*F) and thus this coincides with (A_;)# n (vF + v*F). This is a contradiction
because (A_;)" is equal to A;. This shows that h is zero on Wy. Thus, multiplying elements
of B by scalars if necessary, we can assume that Bj is a subset of Ag\A;. By the definition
of Wy we have that, for all v € Bfj, the intersection of vF with A_; is vop for all v € B
and thus taking duals we get that the intersection of v*F with A; is v*pp, and thus B” is a
subset of A_1\Ag. Thus, we have now found a basis B” satisfying all the conditions except
that B} need not be a lift of By. Now a base change from B to a lift of By in Wy, together
with the adjoint base change on the span of B”\Bj, finishes the proof. O

Corollary 3.6. Under the assumptions of Lemma 3.5 there is a unique k-basis B_1 of A_1/Ag
such that, for all elements x of By, there is exactly one element y of B_y such that

- 1 ,ifz=u
h(%'z){ 0 . if 2 e By\{)

where h : A_1/Ng X Ag/A1 — K is the form induced from h. Further, there is a Witt basis
for h which lifts By v B_1.

Proof. By Lemma 3.5 the form h is non-degenerate and thus identifies the dual of Ag/A;
with A_1/Ag with o-twisted k-action. We take for B_; the basis dual to By. The remaining
part follows from Lemma 3.5. O

We put together the two previous results to treat the general case.

Lemma 3.7. Let A be a self-dual lattice chain of period e and let B be a subset of V' satisfying
the following conditions:
(i) (Ao)* e {/I\O,Al};
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(iii) B;, the image of B; in A;/N;i1, is a basis of Nj/Aivq;

(iv) for all i€ {0,1,..., ||} with (M)* ¢ {Aiy1, Nix1—e} and all v € B; there exists a
unique v' € B 0 (Ajy1)?\(Ay)* such that h(v,v') = 1;

(v) if (Ao)” = Ay then By is a Witt basis for (Ag/A1, h);

(vi) if (A[%J)# = All%ej then B[%IJ is a Witt basis of (A[e;IJ/Ae+1 ,hwo=1).

Then there is a basis B' of (V,h) such that
a) B = [?11 B, where B, := B’ n (A;\A;41), for all 1,
i=| 55 ’

(b) B = B;, for alli, and
(c) B is a Witt basis of (V,h) up to multiplication of some isotropic elements of B/[QJ

2

by w1t

Proof. The lattice chain A is split by a Witt decomposition; that is, there are pairwise

orthogonal e-hermitian spaces V', i€ {0,..., [%J} whose sum is V such that

(Vz M Az) + Ai+1 = Az and vz M (Ai+1)# + (Al)# = (Ai+1)#.

Counting dimensions we deduce that V' n A; is a subset of A;.; for all j with (A;)* ¢

{Aia, (Air1)*a | a € F*}. Now consider, for 1 <i < [$51],

B; = {projy:(v) | ve B; and Aj € {A;, (A1) }} .

For each i, the lattice sequence A N V* in V' is a multiple of a lattice chain of period 1.

Thus, after scaling, we can apply Lemma 3.3 or 3.4 or Corollary 3.6 on (Vi,A n V? B;) to
obtain B;. O

Proof of Proposition 3.1. We only have to prove that we can replace f by an F-linear iso-
morphism, i.e. that we can reduce the argument to F' = F’. The rest follows directly from
Lemma 3.7.

Since the statement depends only on im(A), without loss of generality assume that A, and
therefore A’ also, is a chain. Take a rp-basis (v;;); of A;/A;41 and lift it to (v;;);, for i =
0,...,e(Alop). Then (v;;);; is an F-splitting basis of A. Similarly we choose a lift (w;;);;

for (f(vij))ij. The F-linear map f which maps v;; to w;; satisfies the assumptions of the
Proposition and (f — f)(A;) € A4, for all ¢ € Z. Thus we can replace f by f. O

4. WITT GROUPS

In this section we fix a finite field extension E|F and an involution p’ extending p and we
denote Ej the set of p'-fixed points in E. We fix a non-zero p’-p-equivariant F-linear map

AN BE— F
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We heavily use in this section that the residue characteristic of F' is odd. We will see that
the map X induces in a natural way a map from the Witt group W, (E) of (o, €)-hermitian
forms over E to the Witt group W, (F).

We recall that the Witt group W, (F') is the set of equivalence classes of (p, €)-hermitian
forms over F', where we say two such forms are equivalent if their maximal anisotropic direct
summands are isometric. We write (h) for the class in W, (F') of signed forms equivalent
to h; similarly, for a (skew-) symmetric matrix M, we write (M) for the class of signed
hermitian forms equivalent to the form with Gram-matrix M under the standard basis.

The group structure on W, (F) is induced by the orthogonal sum. Let us recall its structure:

Theorem 4.1. The Witt group W, (F') is isomorphic to
(i) the trivial group if p is trivial and € = —1;
) Cyx Cyif =1 € (F*)? and p is non-trivial;
(iii) Cy if p non-trivial and —1 ¢ (F*)?;
) Coyx CyxCyxCyif—1e(F*)? e=1 and p is trivial;
) Cyx Cyif =1¢ (F*)2 e=1 and p is trivial.

Proof. The proof is an easy conclusion of the classification of the hermitian forms using Witt
bases, given for example in | , 1.14], and is left to the reader. O

When it is non-trivial, the group W, (F') is generated by the classes of one-dimensional
anisotropic spaces. For example, if € = 1 then: in the case ' # Fj, the one-dimensional
anisotropic spaces are {((1)) and {(0)), with 0 € Fy'\Np/p (F*); in the case ' = Fy, the
one-dimensional anisotropic spaces are ((1)), {(@)), {((4)) and {(dw)), with § a non-square
unit in og.

Definition 4.2. We define Try . from W, (E) to W, (F') by
(hy — (Ao h) =: Try ((R)).
If E|F is tamely ramified and A\ = trg p then we write Trgp . for Try .

For the remainder of the section we often skip the subscripts in Tr.

Example 4.3. In general, the map Trg, . is not injective, even if ¢ = 1. For example

consider £ = Q3(+v/3,v5), F' = Q3(+/5) and p'(v/5) = —+/5. Then
Ty (V3D = (( 5) ) =0

so that Trg . is not injective. On the other hand, we have that

Ty ) = ((§ §) ) #0.

In particular, Trp|r,, . maps the class ((v/3) @ (1)) of maximal anisotropic dimension to the
class W, .(F') of maximal anisotropic dimension. We will see that this is always the case.
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There is a unique element X in W, (F) with maximal anisotropic dimension, which we
denote by X, . . The main result of this section is the following theorem:

Theorem 4.4. Try\( Xy ) = X, r-

The following definition will be useful both in the proof of Theorem 4.4 and in several other
proofs later.

Definition 4.5. Let 7 be a (skew-)symmetric element of Autz(V). We define the signed
hermitian form

h:VxV —>F
via
R (v, w) := h(v,yw), v,we V.
We call b7 the (skew-)symmetric twist of h by 7.

Note that, if & is an e-hermitian form, then A" is e-hermitian when ~ is symmetric, and (—¢)-
hermitian when + is skew-symmetric. Twisting by a symmetric element v induces a permu-
tation of W, (F') and we observe that, by an easy check, the only classes in W, .(F') which
are preserved by every symmetric twist are the trivial class and the class X, . p of maximal
anisotropic dimension. Indeed, twisting by all symmetric elements gives a transitive action
on the classes of spaces of fixed odd (anisotropic) dimension.

Proposition 4.6. If E|F has odd degree, then, Try is injective.

Proof. There is nothing to say in the symplectic case, so we assume ¢ = 1 or F # Fj.
Moreover, we can assume that € = 1 because, if F' # Fj then a twist by a skew-symmetric
element of F'* induces bijections W, 1(E) — Wy _1(E) and W,,(F) — W, _1(F'), com-
muting with Try. Now Try({(1))) is a class of odd anisotropic dimension, all classes of
this anisotropic dimension are symmetric twists of Try({(1))) and they generate W, (F).
Thus Try is surjective and, moreover, bijective, since W, (F') is isomorphic to W, ;(E) as
groups. U

Lemma 4.7. Suppose E|F is of degree 2 and F = Fy. Then im(Trgpy 1) has at least four
elements. Further:

(i) If E # Ey then Trgp,y 1 is injective.
(ii) If E = Ey then the kernel of Trgpy 1 has exvactly 4 elements and they have an-
1sotropic dimension at most 2.

Proof. Take an element 0 € E; and a uniformizer o of E which is skew-symmetric with
respect to the generator 7 of Gal(E|F). Then Trpp,y1({(6)) has Gram matrix

( §+7(0)  ald—71(8)) )
+a(6 —1(5)) +a?(6 + 7(5))
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with respect to the F-basis {1, a}, where we have + if p is trivial and — if not. Its determi-
nant is d := +4a*Ngp(6) and we only have to choose § such that —d is not a square in F
to get that Trg g,y 1({(0))) is non-zero.

If —1 € (E*)? then, since p is odd, also —1 € Ngp(E*) and thus we can find 6 € Ej such
that —d = 4a?; this is not a square in F* because a ¢ F. If —1 ¢ (E*)? then E|F is ramified
and vp(a?) =1 so we can take 6 = 1 to get —d ¢ (F*)%.

In either case, we have that Trpg g, 1({(6))) is non-zero for a suitable ¢, and thus of anisotropic
dimension 2. Taking symmetric twists of Trgp, 1({(0))) by elements of F' (which commute
with Trg, Fp1), we see that the image of Trgp,y1 has at least two non-trivial elements and
thus, as a subgroup of a 2-group, at least four elements in total. This also shows (i).

We consider now the case E = E,. Take y € or to be a non-square unit if F|F is ramified
and a uniformizer of F' if F|F is unramified. Then (a) and (ya) are not isomorphic and
both are in the kernel of Trgpjq,1. Since the kernel consists of at most four elements, it is
the subgroup generated by {((«)) and {(y«)), which is of order four and consists of classes
of spaces of anisotropic dimensions 0,1, 1, 2. O

Proof of Theorem /./. As in the proof of Proposition 4.6, we may assume that e = 1. We
only need to prove the statement for one A, because given two such maps A;, Ao there is a
symmetric element z of E such that A;(zx) = \y(x) for all z € E. (We thank R. Kurinczuk
for pointing this out.) Moreover, we only have to prove that Try(X, g 1) is non-zero for a
suitable A, since its image is invariant under any symmetric twist with an element of F, so
must be trivial or X, ; .

If E/F is of odd degree then the result follows immediately from Proposition 4.6. Since
the result is transitive in towers of extensions, this means we can reduce to the case
that E/F is quadratic; in particular, E|F is at worst tamely ramified and we can take A =
trpp.  Moreover, we may replace E|F' by E|Fy since, if Trgp, y1(Xy1,5) is non-zero
then Trgpy1(Xy 1) is non-zero also. But then, by transitivity again and considering
the extensions E|E, and Ey|Fy, we reduce to the case F|F quadratic with F' = Fy. Now
Lemma 4.7 implies that X, ; g is not in the kernel of Trgr 1, as required. ]

5. SKOLEM-NOETHER
In this section we consider Skolem—Noether-like theorems for classical groups. We take the
notation F, p’, A from Section 4. We fix two p'-o-equivariant F-algebra embeddings
¢i: (B, p)— (Ao), i=1,2.
We attach to each ¢; an e-hermitian form
hg, :V xV - E

with respect to p’ such that
h = Xohg,.
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For the proof that such a form exists and is unique, see | |. Note that the e-hermitian
forms hg, may differ because the maps ¢; may induce different F-actions on V. In particular,
two such embeddings ¢1, ¢o are conjugate by an element of G if and only if (V, hy,) is
isomorphic to (V, hy,) as an hermitian E-space.

We then get the following corollary of Theorem 4.4.

Corollary 5.1. Suppose that p' is non-trivial and that either e = 1 or F' # Fy. Then ¢1, ¢o
are conjugate by an element of g € G, that is

gp1(z)g ™ = po(x), for all v € E.

Proof. We write W, .(E)° for the set of classes of W, .(F) with even-dimensional anisotropic
part. Then W, (E)° only consists of the trivial element and X, . i so, by Theorem 4.4,
there is a map A such that Tr) is injective on Wy (FE)°. Since Try((hg,») = (h), we deduce
that (V, he,) and (V, hy,) are isomorphic as hermitian E-spaces and the result follows. O

In the symplectic case, the analogous result is false without further hypotheses. The follow-
ing theorem gives a sufficient additional condition which will be useful.

Theorem 5.2. Fori = 1,2, let A" be a self-dual lattice sequence in V normalized by ¢;(E)*.
Let B be a non-zero skew-symmetric element generating E over F and write r; := 1 +
vai(9i(B)). Suppose that there is an element g of G such that

g7 (01(8) + ar,— (A1) g 0 (¢2(8) + ar, (M%) # &.
Then ¢1, 2 are conjugate by an element of G.

In the language of strata below (see Section 6), the hypotheses here say that the pure skew
strata [A*,r; + 1,75, ¢;(F)] intertwine. We will need the following lemma, where we recall
that A7 denotes the twist of h by a (skew-)symmetric element «y (see Definition 4.5)

Lemma 5.3. Let A be a self-dual lattice sequence and let ay,az be two non-zero symmetric
or skew-symmetric elements of the normalizer of A such that aya; " € US(A), for some s > 0.
Then there is an F-linear isometry from (V, h*') to (V, h®2) in U°(A).

Proof. We apply Proposition 3.1 for f = idy to see that the spaces (V,h*) and (V, h*?) are
isometric. Now we apply Corollary 3.2, with f = idy again, to finish the proof. U

Proof of Theorem 5.2. By Corollary 5.1 we only need to treat the case that ' = I and € =
—1. By hypothesis, there are elements g € G and ¢; € ¢;(8) +a,, _(A?) such that gc;g7" = ca.

Thus, by Lemma 5.3, we have isometries

KO8 ~ ot ~ B2 o~ hbe(B)’

where the middle isomorphism is given by g. Let f be an isomorphism from h?1(®) to h?2(%).
Since h%® are orthogonal forms, Corollary 5.1 applied to the embeddings x +— f¢;(x)f™!
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and ¢, implies that there is an isomorphism from h?'®) to h?2(%) which conjugates ¢1 to ¢s.
But any such isomorphism is an isometry of (V, h), as required. O

We will also need the following integral version of the Skolem—Noether theorem:

Proposition 5.4 (] , Theorem 1.2]). Let ¢; : (E,p") — (A, 0) be a p'-o-equivariant F-
algebra embedding, for i = 1,2. Suppose further that (V,he,) is isomorphic to (V,hg,) as
hermitian E-spaces and that there is a self-dual lattice chain A normalized by ¢;(E)*, i =
1,2. Then ¢y, ¢o are conjugate by an element of U(A).

6. SEMISIMPLE STRATA

We now turn to the notion of semisimple stratum for G. The background can be found

in | , , |, whose notation we adopt. However, many of the results in the
literature are only available for lattice chains, while other results on semisimple strata were
omitted in [ | (jumping directly to semisimple characters). Thus we gather together

here various results which we will need in our work.

A stratum is a quadruple [A,q,r, 5] consisting of an op-lattice sequence A, non-negative
integers ¢ > r and an element b € a_,(A). This stratum is called strict if A is a lattice chain.
The stratum is skew if € A_ and A is self-dual, and it is called null if § =0 and ¢ = 7.

Two strata [A,q,7, 8] and [N, ¢',7', 3'] are equivalent if 8 +a_,; = ' +a’,,_,, for all
non-negative integers j. This is equivalent to saying that A is a translate of A’, r = ' and
the cosets 8+ a_, = ' + a’_,, coincide. They intertwine under a subgroup H of G if there
is an element g of H such that g(8 + a_,)g~" intersects ' + a’,. We denote the set of
such elements by Iy ([A,q,r, B8], [N, ¢, 1", 5']). If both strata are equal we skip the second
argument and if H is G we skip H in the notation. The two strata are conjugate under H if
there is a g € H such that [gA, q,r,gBg7 '] is equal to [A', ¢, 7', ']. Two equivalence classes
of strata are called conjugate under H if there are representatives of either classes which are

conjugate under H.
Definition 6.1 (Simple stratum). A stratum [A, g, r, 3] is called

(i) pure if F[fB] is a field such that F[5]* < n(A) and vy (8) = —¢ < —r;
(i) simple if either it is null, or it is pure and the degree [F[3] : F'] is minimal among
all equivalent pure strata.

This is equivalent to | , Definition 1.5], or | ] in the case of lattice chains (see
Proposition 6.4 below).

We now want to consider strata where F'[] is a direct sum of (not necessarily separable) field
extensions. Given a decomposition V' = @, V* we write A" for Homp(V7, V*) and 1° for the
projection onto V* with kernel @, V7. A stratum [A, g, r, 8] is split by the decomposition
if 1°817 = 0 for i # j and if the decomposition splits A, i.e. A is the direct sum of the lattice
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sequences A’ := A n V. We write 3; := 1’1" and ¢; := — min{v,(5;), —r}. We are now in
a position to define a semisimple stratum.

Definition 6.2 (| , Definition 3.2]). A stratum [A, ¢, r, 8] is called semisimple if either
it is null or v (8) = —¢ < —r and there is a splitting V = @, V* such that

(i) for every 7 the stratum [A?, ¢;, 7, 5;] in A** is simple,
(ii) for all ¢ # j the stratum [A’@A?, max{q;, q;}, 7, B + 3;] is not equivalent to a simple
stratum.

A semisimple stratum is called skew-semisimple if the decomposition of V' is orthogonal and
all strata occurring in (i) are skew.

For later, to describe the intertwining of [A,q,r, 3], we need an integer ko(3,A) which
characterizes the semisimplicity of a stratum. Denote by ag : A — A the map ag(z) =
xf — Bz and put n; = agl(al) N dg.

If F[B] is a field we define, as in | , Definition 1.4]:
ko(B,A) := max{—q,max{l € Z | n; € by + a1}}, ko(0,A) = —o0.

and one writes kp(8) for ko(3,p%), where pZ denotes the lattice sequence i +— p&, the
unique op-lattice chain in the F-vector space E whose normalizer contains £*. We have
that

(6.3) ko(B, A) = e(Alop)kr(B),
by the remark after [ , Lemma 5.6]. We now prove that Definition 6.1 is equivalent to
that in [ , 1.5]

Proposition 6.4. Given a non-negative integer s, a pure stratum [A,q,s, 5] is simple if
and only if —s < ko(B,A). Further, writing A = f;g(A — 1), with e = e(Alop), we
have ko(8%, A) = ko(8,A).

Note that the lattice sequence A in the statement is in fact a lattice chain, with the same
period as A.

Proof. The second assertion follows directly from (6.3), and we thus only concentrate on
the first, which is true if A is a lattice chain by | , Theorem 2.4.1]. We compare the
two notions of simple: a stratum which is simple in the sense of Definition 6.1 is called
degree-simple, and a stratum which is either null or pure satisfying —s < ko(3, A) is called
ko-simple.

If [A,q,s, ] is ko-simple then so is [A, q, s, 3%¢], by the second assertion, and thus it is
degree-simple, because A is a lattice chain. Thus [A, ¢, s, 5] is degree-simple.
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If [A,q,s, B3] is degree- but not ky-simple, then [p%, —vg(B), {mJ,B] is not ko-simple.

But then, the latter is not degree-simple, because pZ is a lattice chain, and thus [A, g, s, 3]
is not degree-simple, using a (W, E')-decomposition as in | , 5.3]. d

Corollary 6.5. | f;ol (A —1),q,s,8%] is simple if and only if [\, q, s, B] is simple.

If F[B] is not a field we define for a semisimple stratum, as in | , (3.6)],
ko(B,A) :== —min{s € Z | [A, ¢, s, 8] is not semisimple}.

This integer is negative because [A, ¢, 7, #] is semisimple and r > 0.

Minimal strata. We begin now with an analysis of semisimple strata of the form [A, ¢, g —
1, B]. For the simple case, we recall that an element 5 of an extension E|F is called minimal
if it satisfies the following two conditions:

(i) ged(ve(B),e(EIF)) = 1;

(ii) B veB) 4 pp generates the extension KE|kE.

Then, by [ , 1.4.13(ii),1.4.15], a pure stratum [A, q,q — 1, 8] is simple if and only if 3
is minimal. By a slight abuse, we call a semisimple stratum of the form [A,q,q — 1,3] a
minimal semisimple stratum.

For minimal semisimple strata, the characteristic polynomial is very important for distin-
guishing the summands. For b an element of a finite dimensional semisimple algebra B over
some field K, we denote the reduced characteristic polynomial of b in B| K, defined in | ,
(9.20)], by xs,B/K, and the minimal polynomial by s, p|x-

Definition 6.6. Let [A,q,q — 1, 3] be a stratum with vA(8) = —q and set yz := By,
where g = ged(e, q), with characteristic polynomial ®(X) = x,, ajr € op[X]. We define the
characteristic polynomial of the stratum [A, ¢, ¢— 1, 8] to be the reduction ¢ := ® € rkp[X].
It depends only on the equivalence class of the stratum.

For a null stratum we define y := 0 and ¢o(X) := XV, where N = dimp(V).
Remark 6.7. If [A,q,q — 1, 3] and [A, ¢, ¢ — 1, 7] intertwine then ¢g = ¢,.

Proposition 6.8. If [A,q,q — 1, 3] is semisimple with associated splitting V = @, V",
then we have the following:
(1) ¢p is the product of the polynomials ¢p,, which are pairwise coprime polynomials;
(ii) each polynomial ¢p, is a power of an irreducible polynomial;
(iii) the F-algebra homomorphism induced by B — >.._; B is a bijection from F|[f] to
the product of the E; := F[5;];
(iv) krlys] is canonically isomorphic to | [,.; krlya,]-
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Proof. For all indices i, we have e = e(A|or) = e(A’|or) and ¢ = ¢; for all indices i with 3; #
0. Since also § = >, 5; with §; € A“", we get

Yp = Zﬁ;wg = Z?Jﬁia

and ¢g is equal to the product of the ¢g,. That ¢pg is primary now follows from the
fact that [A’, ¢;,r, ;] is a simple stratum and the remaining assertions are a consequence
of | , Remark 3.3]. O

It will also be useful to have another criterion by which to recognize a minimal semisimple
stratum. Recall that a stratum [A, ¢, q — 1, 8] is called fundamental if the coset 5 + a;_,
contains no nilpotent elements; in this case, the rational number £ is called the level of the
stratum, where e = e(A|op). We also define the level of the null stratum [A, ¢, ¢, 0] to be £.

Proposition 6.9. A stratum [A,q,q — 1, ] is fundamental if and only if its characteristic
polynomial is not a power of X. Two fundamental strata which intertwine have the same
level. If a null stratum intertwines a fundamental stratum, then they have different levels.

Proof. Suppose [A, q,q — 1, 3] has characteristic polynomial X™ and put e = e(A|or); then
the element (3 satisfies
Bem € w_qmal = M —gme-

Then, by | , Lemma 2.1], there is a nilpotent element in J + a;_,, so the stratum is
not fundamental. (The proof of that Lemma is valid for lattice sequences if one allows block
matrices with block sizes 0 x [ or [ x 0.) Conversely, if [A,q,q — 1, 5] is not fundamental,
then yg is congruent to a nilpotent element modulo a;, and thus the characteristic polynomial
of the stratum is a power of X. The remaining assertions now follow easily, because if one of
them were false, then there would be a fundamental stratum whose characteristic polynomial
is a power of X. O

We now give criteria for a fundamental stratum to be simple or semisimple. We recall that
a fundamental stratum is called non-split if the characteristic polynomial of the stratum is
a power of an irreducible polynomial. Given a fundamental stratum [A, ¢, ¢ — 1,b] we define
the following kp-algebra

R([A,¢,q—1,b]) :=={Teap/ay | zb=bxr (mod a;_,)}.
The following result is stated in | , 2.4.13] for strict strata but, because the quo-

tient ap/a; depends only on the image of A, is also valid for arbitrary lattice sequences.

Proposition 6.10 (| , 2.4.13]). A non-split fundamental stratum [A,q, q—1,b] is equiv-
alent to a simple stratum if and only if R([A,q,q — 1,b]) is semisimple.

To get a similar result for semisimple strata we need, for an element b € a_,(A) and an
integer n, the map

Mpqb - a—nq/al—nq - c‘—(n-‘rl)q/al—(n-‘r1)(1
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induced by multiplication by b.

Proposition 6.11. A fundamental stratum [A,q,q — 1,b] is equivalent to a semisimple
stratum if and only if R([A,q,q — 1,b]) is semisimple and, for all non-negative integers n,
the kernel of my41 45 and the image of m,, 41 intersect trivially.

Proof. Since the algebra R([A, ¢, ¢—1,b]) and the maps m,, ,;, depend only on the equivalence
class of the stratum, we are free to move to an equivalent stratum at any point.

Suppose first that R([A, ¢,q — 1,b]) is semisimple and, for all non-negative integers n, the
kernel of my, 414, and the image of m,, 4, intersect trivially. We inductively find a splitting.
For this, assume that ¢, is a product of two coprime monic factors f, and f;. Let ®
be the characteristic polynomial of y, = w%bi, where ¢ is the greatest common divisor
of e = e(A|or) and ¢. Hensel’s Lemma implies that we can factorize ® as fyf; where f; is a
monic lift of f;. By Bézout’s Lemma, there are polynomials ag, a; € op[X] such that agfy +
a;fi = 1. The map 1; = a;(y)fi(ys) is the projection onto the kernel of f;_;, and the
sum ker(fo) @ ker(fi) = V splits the stratum [A, ¢,q — 1,b]. Moreover, we have R([A, q,q —
1,b]) ~ R([A° qo,q — 1,b0]) ® R([A, q1,q — 1,b1]), by the coprimality of fy, fi, so that
both R([A%, ¢, ¢ — 1,b;]) are semisimple.

Thus, by Proposition 6.10 and 6.8, we only have to show that strata equivalent to null strata
are the only non-fundamental strata for which the kernel of m,, 41 4, and the image of m,, 4
intersect trivially. Now let us assume that [A, ¢, ¢ — 1, b] is non-fundamental. Then without
loss of generality we can assume that b is nilpotent. The conditions on the maps imply
that my g 0 M(n_1),46 0 - ©Mogqy is injective on the image of mg ;. If n is big enough, the
first product is the zero map, so the image of mq 4y is zero, i.e. [A,q,q — 1,b] is equivalent
to a null stratum.

For the converse, suppose that [A, q,q — 1,b] is a semisimple stratum with associated split-
ting V = @,,; V" Since the characteristic polynomials ¢, are pairwise coprime, we
have R([A,q,q — 1,0]) ~ @®,.; R([A", ¢i, ¢ — 1,b;]) and, since each stratum [A’, ¢;,q — 1,b;]
is simple, this algebra is semisimple by Proposition 6.10. (Note that the algebra is clearly
semisimple for the null stratum.)

The maps my, 4 preserve the decomposition A = @, i A% so we may work blockwise. On

the diagonal blocks A"'fi? the map my, 4 is either zero (in the case b; = 0) or bijective. On the
non-diagonal blocks A*7, with i # j, the map is bijective or zero by | , 3.7 Lemma4]. O

Semisimple strata. Now we turn to the case of general semisimple strata [A,q,r, 5]. A
very important tool to prove properties of semisimple strata by an inductive procedure is
the tame corestriction map, which was introduced in | , 1.3.3] in the simple case.

Definition 6.12. Let E|F be a field extension and B be the centralizer of E in A. A
non-zero B-B-bimodule map s : A — B is called a tame corestriction (relative to E|F ) if,
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for all op-lattice sequences A normalized by E*, we have
s(a;(A)) = a;(A) n B,
for all integers j.

If E = F[v] we often write s, for a (choice of) tame corestriction relative to E|F.

Remark 6.13. (i) By [ , 1.3.4], tame corestrictions exist: if ¥ r and g are addi-
tive characters of F' and F respectively then there is a unique map s : A — B such
that

Yp otrap(ab) = ¥g o trpp(s(a)b), ae A, be B.

This map is a tame corestriction and every tame corestriction arises in this way.
Moreover, tame corestrictions are unique up to multiplication by an element of oj.
(ii) If v generates the extension F|F then, by | , 1.3.2 (i)], the kernel of s, is equal
to the image of the adjoint map a, : A — A.
(iii) If £ is o-invariant, we can arrange the additive characters ¢¥r and ¥g in (i) to
be o-invariant also, and then the tame corestriction s is o-equivariant.

Given a simple stratum [A,¢,7 + 1,7] in A and an element ¢ € a_,, the tame corestriction
map allows us to define a derived stratum [A,r +1,r,s,(c)] in B,, the centralizer in A of ~,
and we can ask whether this derived stratum is (equivalent to) a fundamental or simple
stratum. The following theorem is particularly useful.

Theorem 6.14 (| , Theorems 2.2.8, 2.4.1]). Let [A,q,r + 1, 3] be a stratum equivalent
to a simple stratum [A, q,r + 1,v]. Then [A,q,r, 5] is equivalent to a simple stratum if and
only if the derived stratum [A,r + 1,7, s,(y — B)] is equivalent to a simple stratum.

As an immediate corollary, we get the following result on semisimple strata.

Corollary 6.15. Let [A,q,r+1, 5] be a stratum equivalent to a simple stratum [A, q¢,7+1,~].
Assume that we have a decomposition V. = @, V" into 8- and ~-invariant F-subspaces.
Then [A,r + 1,7, s,(v — B)] is equivalent to a semisimple stratum with associated split-
tingV =@, V" if and only if [A, q,, B] is equivalent to a semisimple stratum with associated
splitting V- = @, V".

Suppose now that [A, ¢, 0, 5] is semisimple so that, for any 0 < r < g, the stratum [A, g, r +
1, 8] is equivalent to a semisimple stratum [A, ¢, 7+1,+]. Then we can realize the assumption
on v in the previous corollary (that is, we can find v such that the splitting associated
to [A, ¢, 0, 3] is preserved by ) by the following theorem.

Theorem 6.16 (| , 3.4, [ , 1.10]). Let [A,q,r, 5] be a (skew)-stratum split by V =
@B,V (V = &,V?) such that every stratum [A, g, r, ;] is equivalent to a simple stratum,
and such that [\, q,r, B] is equivalent to a simple stratum. Then [A, q,r, 3] is equivalent to
a (skew)-simple stratum [A,q,r,~] split by the same direct sum.
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Proof. We observe only that, although this is not quite the statement in | , 3.4], this
is what the proof there actually demonstrates. The skew case then follows immediately by
applying | , 1.10]. O

In particular, if [A, ¢, r, 8] is a semisimple stratum with splitting V' = @, V* and [A, ¢, 7 +
1, 3] is equivalent to a simple stratum [A, q,7 + 1,v] such that yV* < V* for each 4, then
Corollary 6.15 implies that the derived stratum [A,r + 1,7, s,(y — )] is equivalent to a
semisimple stratum with the same splitting V = @, V".

Notation 6.17. For the rest of the article we use the following notation: [A, ¢, r, §] always
denotes a stratum, and B the centralizer of 5 in A. If [A,q,r, 5] is semisimple then V =
@,.; V" is the associated splitting and we have A = @,,; A and B = @, ; B"', where B"'
is the centralizer of E; = F[f;] in A“'. Further, we write b, for the intersection of a; with B.
We use analogous notations for a second stratum [A’,¢/,7’, 5] but all with (). If we want
to specify the centralizer of v in A, for an arbitrary element ~, we write B,.

Let [A, ¢, 7, 5] be a semisimple stratum. We define a tame corestriction sz : A — B for /8
by sg(a) := >, si(a;;), where s; is a tame corestriction for f; as in Definition 6.12. If s; is
defined relative to additive characters ¥, ¥ as in Remark 6.13(i), then we put ¥pii =
Ypi o trpii| g and define an additive character of B by

Ypb) = [ [vpu(b:),  b=>b, beB"
el el
Writing 14 = g o trajp, the map sg is then a non-zero (B, B)-bimodule homomorphism
satisfying
Ya(ab) = Yp(ss(a)b), ae A, be B,
and
sa(ay) = b

for all lattice sequences A’ which are split by V = @, V" into a direct sum of ogi-lattice
sequences.

Lemma 6.18. The sequence A 8 A 25 B s exact and the kernel of sz 1is split by the
decomposition A = P A,

Proof. By definition, the kernel of sz is the direct sum of the A%, for i # j, and of the
kernels of s;, for i € I. The sequence is exact on the (i,7) components, by | , 1.3.2], and
it is therefore enough to prove that for j # i the restriction of ag on A™7 is bijective onto A™.
It has the form ag(a;;) = Biaij — a;j3;, which is injective because 3; and ; have no common
eigenvalue, because their minimal polynomials are coprime since [A'@ A7, max{q;, ¢;},7, B; +
B;] is not equivalent to a simple stratum. O

To describe the intertwining of a semisimple stratum [A, g, r, 5], recall that we have defined
the integer kg = ko(8,A) and the lattices n; = agl(al) N dag, for [ an integer. We will also
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need the unit subgroups 1 + my, where m; = n;, N a;, for integers [ > 1. As the first of
several intertwining results we have:

Theorem 6.19 (see | , 4.4], [ , 1.5.8] for simple strata). Let [A,q,r, 5] be a
semisimple stratum.

(1> I([A, q,71, 6]) = (1 + m—(ko-l,-r))BX (]. + m_(k0+r)).
(i) If the stratum is skew then

I6([A. .7, B]) = (L+ m_rgn)) 0 CY(B* A G)(1+ M) 0 G).

The crucial ingredient for the proof is:

Lemma 6.20 (| , 3.7)). For all integers s we have

(1) ni_’j;g S A (ko+s) fori #j.
(ii) n_g = bo + n_g N A_(gy+s)

In | ], this lemma was formulated for s < —kg, but the case s = —kq is trivial. From
this we deduce

Lemma 6.21. Take i # j. The restriction of ag to A is an F-linear homeomorphism
and agl(as)"’j is equal to 0% for all integers s = ky.

Proof. The map ag is a linear automorphism on A%/ by Lemma 6.18; thus the image of
an op-lattice contains an op-lattice and the restriction of ag to A%/ is a homeomorphism. It
follows that, for s big enough, we have that agl(as)i’j = agl(as) N A% is contained in ag’
and is therefore equal to n}’; in particular, it is contained in a} ., by Lemma 6.20(i). By
periodicity we have that a;'(a,)™ is contained in a* . for all integers s and thus ni is
equal to ag'(a,)™ for all integers s with s > ko. O

Proof of Theorem 6.19. We follow the proof of | , 1.5.8]. For a null stratum there is
nothing to prove, so we assume the stratum is non-null. The main ingredients which have
to be verified are the exact sequences of | , 1.4.10], which hold by Lemma 6.20, and the
analogue of | , 1.4.16], which we prove now. We write d for —(r + kq) and put

o M =ijarr O Grja N (i(nor nag) + (o, noag)ye + (Mg jar O at+(j+1)d))7

o L =jark, N (Ma—y +a_rv2 + Arpja—r),

for integers t > 0, j > 1 and elements 7,7, of B*. The sequence M %8 L 2% B is exact if

all its restrictions on the A% are exact. For i = j the proof is done in | , (5.2)] and
for i # j it follows from Lemma 6.20(i), 6.21 and 6.18. The same cohomology argument as
in | , Corollary 4.14] proves (ii). O
A completely analogous proof using | , 1.5.12] provides:

Theorem 6.22. Let [A,q,r, 5] and [N, ¢, 7", 5] be semisimple strata in A. Then
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<1> I([A> q,7, B]a [A/7 q/7 rla B]) = (1 + ml_(k6+7~/))BX (1 + m*(ko+r))‘
(ii) If both strata are skew then
Ie([A g, B[N ¢, B]) = (ML + ml ) 2 G)(B™ 0 G) (1 + m_gygir)) N G).

7. MATCHING FOR INTERTWINING STRATA

In this chapter we show that, if we have semisimple strata which intertwine, then there is a
canonical bijection between their associated splittings. This will then allow us to deduce a
Skolem—Noether theorem for skew-semisimple strata which intertwine.

7.1. For general linear groups. We fix a pair of semisimple strata [A, g, 7, 8], [A', ¢, ', B'],
with splittings @,_, V* and @ er V" respectively. The main result of this subsection is:

Proposition 7.1. Suppose that [A,q,r, 5] intertwines [N, ¢, r, B'] and that A, N’ have the
same pertod. Then

iel

(i) If one stratum is null and g = ¢’ then the other stratum is null.

(ii) If both strata are non-null then ¢ = ¢' and there is a unique bijection ¢ : [ — I’ such
that [A* ® A0 max{q;, qé(i)}, r, 3; + 52(1')] is equivalent to a simple stratum, for all
indices i € I. Moreover, V' and V') have the same F-dimension.

Note that, in case (i), both splittings are trivial so we trivially have a (unique) bijection
as in (ii). We call the bijection ¢ a matching of [A',¢',r, 5] and [A, q, 7, (]

Remark 7.2. If A, A’ do not have the same period then we can scale them so that they do.
In particular, we only require the intertwining hypothesis in Proposition 7.1 in order to get
a matching (.

To prove Proposition 7.1 (and, later, other results on semisimple strata), we introduce the
notion of a defining sequence for a semisimple stratum, which allows us to prove properties of
semisimple strata by an inductive process (cf. | | for the simple case). Let A = [A, q,, (]
be a (skew)-semisimple stratum with associated splitting V = @._, V'. A defining sequence
for A is a finite sequence of (skew)-semisimple strata (Ak) _, defined as follows:

el

k=0,....q—7r

o AV = A;

e for 0 < k < q—r—1, we have A*¥ = [A, q,7 + k, ] a (skew)-semisimple stratum
equivalent to [A, g, 7 + k, 8] with 4, € []; A** (see Theorem 6.16).

Note that there is a significant degree of choice in producing a defining sequence for a
(skew)-semisimple stratum.

Suppose now we want to prove a statement P(A, A’) for all pairs of semisimple strata A, A’.
The inductive procedure, which we call strata induction, to prove P is given by the following
steps.
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e The base case: Here one proves P for all minimal semisimple strata.
e The induction step:
(i) The step r + 1 to r: From the induction hypothesis and possibly an auxiliary
statement (S1) we restrict to the case where the first elements A® and A'® of
defining sequences of A and A’ have the same element v, and hence the same
associated splitting.
(ii) Taking a second auxiliary statement (S2), we show that the derived strata
s4(A) and s, (A’) satisfy the assumptions of P. In this article, (S2) will always
be the description of the intertwining of A® with A’ (see Proposition 7.3
below).
(i) The base case shows P(s,(A),s,(A)) and, together with a third auxiliary

statement (S3), provides P(A, A’). For (S3) we will use Theorem 6.14.
Strata induction can be restricted to simple strata by substituting the word semisim-
ple by simple.

In the following, we use the notation for tame corestrictions as in the previous section.

Proposition 7.3. Let [A,q,r, 3] and [N, ¢, r', B] be semisimple strata with splitting V =
@,e; V' Suppose we are given elements a € a_, and a’ € a’_, such that there is an element g
of G which intertwines [A,q,r — 1,5 + a] with [N, ¢, — 1,8 + d']. Using Theorem 6.22,
write g = (14+u/)b(14v), withb € B*. Then the component b"* intertwines [A,r,r—1, s;(a*")]
with [N, 7', 7" —1,s;(a™)], for all i e I.

Proof. Again we only have to consider a non-zero element 5. This is essentially the cal-
culation in [ , 2.6.1] which we want to recall, to show that its validity for different
semisimple strata. Note that the hypotheses imply that g certainly intertwines [A, g, r, ]
and [A',¢,r', 5] so that, by Theorem 6.22, we can write g = (1 + «/)b(1 + v), with «’ €
ml(k6+T,), be B* and v € m_(44r).
Let (1 + w’) be the inverse of (1 4+ «’). By the intertwining property of g, we have
g(B+a)=(B+ad)g (mod gai, +a_.g).
Multiplying by (1 + w’) on the left and (1 + v)~* on the right we obtain
(74)  bA1+v)(B+a)(l+v) =0 +w)(B+d)(1+w) b (mod ba;_, + a)_.b).
We firstly consider the right hand side.
1+uw)(B+d) = B—asg(w)+d+wd+ pu
= (B-as(w)+d)(1+w)+wd —duw +ag(w)w
= (B—ag(w)+d)(1+w) (modd_.),
because ¢’ € a’ ., w' € a} and ag(w’) € a’_,. A similar calculation for the left hand side and
equation (7.4) leads to

(7.5) b(f—ag(v) +a) = (8 —ag(w') +a)b (mod ba;_, + aj_,.b).

/
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We apply ss to get
bsg(a) = sg(a’)b  (mod bby_, + b}_,.b)

and thus b intertwines the derived strata [A,r,r — 1, s;(a*")] and [A’, 7/, 7" — 1, s;(a’*")], for
all 1 e 1. U

Proposition 7.6 (cf. | , 2.2.1]). Suppose that [A,q,r, 3] and [N, 7", 5] are simple
and that there are a € a_, and o’ € a’_, such that sg(a) = sp(a’) (mod by_, +b}_,). Then,

there are elements w' € m’_(k6+r,) and v € m_ 4,y such that

1+uw)(B+d)1+w)t=0+v)(B+a)(l+v)" (moda, +da)_,.)

Moreover, if the strata and the elements a and o' are skew and the strata intertwine in G,
then we can choose 1 +v and 1 + w' in G.

Before the proof let us recall that the Cayley transform of an element v of (a;)_ is the
element (1+ %) (1 - g)_l. It is an element of U'(A) < G.

Proof. Let 3 be non-zero and write C' for the kernel of szg. Without loss of generality we can
assume that sg(a) and sg(a’) are equal, since the map sz : a;_, — by_, is surjective. The
map

Moy Wy = 0 (@ o+ al)

is surjective because C' n (a_, +a’ ) is equal to (C na_,) + (Cna’,) by | , 1.3.17]
and agl(a_r) is a subset of B +m_,_, by Lemma 6.20(ii). Thus, we can find w’ e m_,._y
and v € m_,_j, to satisfy (7.5) for b = 1. We now follow the calculation in the proof of
Proposition 7.3 backwards to show the desired congruence. In the skew situation we can find
skew-symmetric elements, say ¢ and w’, which satisfy (7.5) and we define 1 + v and 1 + v’
to be the Cayley transforms of @ and w’ respectively. O

We need one final lemma before we can prove Proposition 7.1, which will play the role
of (S1).

Lemma 7.7. Let [A, q,r, 5] and [N, q,r, B'] be semisimple strata for which there is a (unique)
bijection ¢ : I — I' such that [A'® A® max{g;, Qaybs 1 Bi+ Bl is equivalent to a simple
stratum, for all indices i € I, and dimp V* = dimp V@ . Then there are an element g ofé
and an element v € [ [, A% such that V' = gV"*® for all indices i € I, and:

o [gN, q,r, g8 g7 is equivalent to [gN', q,r,7];

o [A q,r 3] is equivalent to [A, q,r,7]; and

o [gN q,r,v] and [A, q,r,v] are semisimple strata with the same associated split-

ting V= @,; V"

Proof. Applying Theorem 6.16 to the strata [A’@ A, max{qg;, Q@) t>ms Bi+ ﬂé(i)], for each 1,
we find an equivalent simple stratum [A? @ A"*®) max{q;, ey}, 1 Vi + ’yé(i)]; in particular, 7;
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and 72(7;) have the same irreducible minimal polynomial, and the same characteristic poly-
nomial since dimp V¥ = dimp V6@,

Further, for i # j in I, the stratum [A* @ A7, max{q;, q;},7, v + ;] is equivalent to [A* @
A max{q;,q;},r, B + B;], which is not equivalent to a simple stratum, so that the stra-
tum [A, ¢, r,v] is semisimple, where v = >._; 7;. The same applies to [A’, ¢,r, 7], where 7/ =
2ier V- Finally, since 7; and 7 ;) have the same characteristic polynomial, we can find g € G

such that V¢ = gV"@ and g7'g~! = ~, and the result follows. O

Proof of Proposition 7.1. (i) and the equality ¢ = ¢’ in (ii) follow from the results on level
in Proposition 6.9. The existence of ¢ in (ii) is proved by strata induction, where we take
Lemma 7.7 for (S1), Proposition 7.3 for (S2), and Theorem 6.14 for (S3). The base case
follows because the characteristic polynomials are equal, so we match the primary factors
using | , 3.3(ii)]. The equality of dimensions follows from the fact that the degree of
the ith primary factor is the dimension of V.

For the inductive step, suppose that A = [A,q,r, ] and A" = [A',q,r, '] are semisimple
strata as in the proposition which intertwine. Then the stratum [A, g, + 1, 5] is equivalent
to a semisimple stratum A, = [A, ¢, + 1,v] whose splitting is a coarsening of that of A,
by Theorem 6.16; similarly we have a semisimple stratum A’ = [A’,¢,r + 1,7']. Since the
strata A, Al intertwine, we may apply the inductive hypothesis to them. In particular,
they satisfy the hypotheses of Lemma 7.7 and, replacing A’ by its conjugate gA’, we may
assume v = 7.

Now we apply (S2) — Proposition 7.3 —to the strata A, and A, witha = f—yand a’ = §'—7.
The conclusion is that the derived strata intertwine so that the base case gives us a bijection
between the index sets ¢ : I — I’ such that, for each i € I, the stratum [A* @ A® r +
L1, 85 (Bi = i) + Syc (BLsy — Ye)] is equivalent to a simple stratum. (Here v; = 1917,
where 1 is the idempotent corresponding to V*, and similarly 7/ ;) = 1€@0~1%@) | correspond-
ing to V'*®; note also that ; and Y¢(iy have the same characteristic polynomial so that we can
view both V? and V/¢®) as F[;]-vector spaces.) But then [A'®A®) max{g;, Qaybs 1 Bit By
is equivalent to a simple stratum, by (S3) — Theorem 6.14.

The existence of ¢ implies, in particular, that both strata have the same number of blocks,
i.e. the sets I and I’ have the same cardinality. Finally, we prove the uniqueness of (.
Assume, for contradiction, that there are two distinct indices 7,5 € [ and an index i’ € I’
such that [A* ® A max{q;, q,},r, B + 8] and [AJ @ A", max{q;,q,},r, B; + B4] are both
equivalent to simple strata. From this (and the equality of periods) it follows that the
integers ¢;, ¢; and ¢}, are all equal; we denote this integer by g.

By the proof of the existence, the spaces V? and V¥ have the same dimension, and thus, by
conjugating, we can assume that they are equal. By Theorem 6.16, the strata [A, q,r, 3]
and [A q, 7, B] intertwine. Then the stratum [A’@® A7, ¢, 7, B; + ;] intertwines with [A" ®
A q,r, By + ;] and the latter is equivalent to a simple stratum. Thus the semisimple



28 DANIEL SKODLERACK AND SHAUN STEVENS

stratum [A°@® A, q,r, B; + B;], which has two blocks, is intertwined with a simple stratum,
which has only one block. This is a contradiction since the existence shows that semisimple
strata which intertwine have the same number of blocks. U

As a useful consequence, we see that, given two semisimple strata which intertwine, we can
find equivalent semisimple strata with elements which are conjugate.

Corollary 7.8. Suppose that the semisimple strata [A,q,r, 5] and [N, q,r,B'] intertwine
and that A, A" have the same period, and let ( : I — I’ be the matching between their index
sets. Then there are semisimple strata [A,q,r, 3] and [N, q,r, ("], equivalent to, and with
the same associated splitting as, [\, q,r, 5] and [N, q,r, B'] respectively, such that Bé(i) has

the same characteristic polynomial as BZ-, for all indices i € I.

Proof. This follows immediately from Lemma 7.7 (whose hypotheses are satlsﬁed thanks to
Proposition 7.1) by putting, in the notation of the Lemma, B = ~ and B =g Lyg. O

If [A,q,7, 8] and [N, ¢, 7', B] are strata in spaces V and V' respectively, then we put
I([Aq,r, B, A9 g, B = {g |V >V [ g(B+a,)g 0 (B +d, + T}

This generalizes the notion of intertwining and we say that any element of this set inter-

twines [A, ¢,r, 8] with [A, ¢, ', B'].

Corollary 7.9. Suppose that the semisimple strata [A,q,r, 5] and [N, q,r,B'] intertwine
and that A, A" have the same period, and let { : I — I’ be the matching between their index
sets. Then the intertwining set I([A,q,r, 8], [N, q,r, B']) is equal to

(1 + ml—(r-&-k/o))(n [<[Al7 q,T, 5]7 [AC(i)a q,T, ﬁ/]))(l + m—("“"‘]fo))'

Proof. By Corollary 7.8 we may replace the strata with equivalent strata such that there
is g € G such that ' = g~ !8g. The result now follows by applying Theorem 6.22 to the
strata [A, q,r, 8] and [gA, ¢, 7, (] O

7.2. For classical groups. We continue with the notation from the previous section but
assume now that all our strata are skew. We will prove the following strengthening of
Proposition 7.1 in this case.

Proposition 7.10. Suppose that [\, q,r, 5] and [N, q,r, '] are two skew-semisimple strata
which intertwine in G and let ¢ : I — I' be the matching given by Proposition 7.1. Then:
(1) (V% h|yi) = (VD hlyew), foralliel;
(i) the intertwining set Ig([A,q,r, 5], [N, q,r, B']) is equal to

(T+ml )0 G)((H L) 0 G)((L+m_ing)) 0 G),

where I; = I([A?, q,r, 5],[ND), q,7, B])).
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Remark 7.11. Part (ii) of Proposition 7.10 is a consequence of (i): Indeed, if (i) is true
then, by conjugating, we can assume that V' = V) for all i € I, and (ii) follows from
Corollary 7.9 and a simple cohomology argument as in | , Corollary 4.14].

As an immediate consequence of Proposition 7.10 and the simple Skolem—Noether Theo-
rem 5.2, we get a Skolem—Noether Theorem for semisimple strata.

Theorem 7.12. Let [A,q,r, 3] and [N, q,r, '] be two skew-semisimple strata which inter-
twine in G, and suppose that B and ' have the same characteristic polynomial. Then there
is an element g € G such that gBg~" is equal to 3.

For the proof of Proposition 7.10 we need the following idempotent lifting lemma.

Lemma 7.13. Let (8.),50 be a decreasing sequence of op-lattices in A such that €.t; < €.,
forallr,s =0, and ﬂr>1 . = {0}. Suppose there is an element o of €y which satisfies a*—a €
t,. Then there is an idempotent & € ¥y such that & — o € €1. Moreover, if o(a) = « then we
can choose & such that o(&) = @.

Proof. We define e; := «, and put e, := 3e? — 2¢} € €. A straightforward calculation shows
that
e3 — ey =4(ed —e1)® — 3(ef —e1)? € by,

Continuing this process, we construct a sequence (e,),>1 in ho which satisfies

(i) e, =e; (mod £yi,) and
(ij) e, = 6% (mod Eznr),

for all positive integers ¢ < n. This sequence has a limit & in by which is, by construction,
an idempotent congruent to « modulo ¢.. Moreover, by construction the sequence (e,) is
symmetric if « is, in which case the limit & is also symmetric. U

Corollary 7.14. Let (£,.),>0 be as in Lemma 7.15. Suppose that oy, . .., o are elements of &
such that o — oy € €1 and ayo; € ¥y, for all i # j. Suppose further that Y, a; =1 (mod &).
Then there are idempotents &; such that &;— o € €1, with &;a; = 0, fori # j, and ). &; = 1.
If further o(a;) = oy, for all i, then we can choose the &; such that o(&;) = &;, for all i.

Proof. We find &; by Lemma 7.13 and set i = 1 — @;. Consider the space V1) := a1V,

the lattices &) = ait.af and the elements ozgl) = afo;a; for i > 2. These satisfy the
hypotheses of the corollary, which now follows by induction. If o(a;) = a; then we choose &;
such that (&) = a4, and VM is then the orthogonal complement of a;V so that the result

again follows by induction. O

We also need the classical group analogue of Lemma 7.7.

Lemma 7.15. Let [A,q,r, 8] and [N, q,r, '] be skew-semisimple strata which intertwine
in G and let ¢ : I — I' be the matching given by Proposition 7.1. Suppose moreover
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that (V' hlyi) = (V9D h|y,cw), for alli e I. Then there are an element g € G and a skew
element v € [ [, A% such that Vi = gV'*®©_ for all indices i € I, and:

® [QA/, q,T, gﬂlg_l] is GQUiUG,ZGTLt to [gAla q,T, f}/] ;

o [A q,r 5] is equivalent to [A, q,r,7]; and

o [gN,q,7m,v] and [A,q,r,y] are skew-semisimple strata with the same associated

splitting V= @, V"

Proof. The proof is the same as that of Lemma 7.7. We only need to note that, once
we have found ~; and ’yé(l.) with the same irreducible minimal polynomial then there is
an element g € G such that Vi = gV"® since (V hly:) = (V@ h|co), and then the
elements gvé(i)g*1 and 7; are conjugate in G; = A" nG by Remark 7.11 and Theorem 5.2. [J

Proof of Proposition 7.10. 1t is sufficient to prove (i) by Remark 7.11. We prove (i) by
strata induction, giving first the inductive step. Suppose that A = [A,q,r, 3] and A’ =
[N, q,r, 0] are skew-semisimple strata as in the proposition which intertwine in G. Then
the stratum [A, ¢,r + 1, 5] is equivalent to a skew-semisimple stratum A, = [A,q,7 + 1, 7]
whose splitting is a coarsening of that of A, by Theorem 6.16; similarly we have a skew-
semisimple stratum A’ = [A’, ¢,r +1,7]. Since the strata A,, A’ intertwine, we may apply
Lemma 7.15 and, replacing A’ by its conjugate gA’, we may assume ' = ~.

Now, if h € G intertwines the strata A, and A’ then Theorem 6.22 allows us to write h = zby,
with b € B n G (and z,y in certain compact subgroups). Then Proposition 7.3, applied
as in the proof of Proposition 7.1, implies that the derived strata [A,r + 1,7,5,(8 — 7)]
and [A',7+1,7,5,(8'—7)] intertwine. On the other hand, these derived strata are equivalent
to skew-semisimple strata so the base step (below) now implies that the bijection ¢ : I — I’
has the property that (V¢ h;4,) = (VO hgif)“), where ¢; : F[v;] — A% is the embedding
given by the splitting, and h; 4, is such that h; = \; o h; 4, and h; = h|y:. But then we also
have (V7 h;) = (V<O he(s))s as required.

It remains to show the base case r = ¢ — 1. The lattice sequences have the same level, and
so the same period, by Proposition 6.9. Since they intertwine, the strata have the same
characteristic polynomial. If two minimal strata with the same level intertwine and one of

them is null, then the other is null, by Proposition 6.9, and both have the trivial associated
splitting. Thus we need only consider non-null semisimple strata.

Replacing [A',q,q — 1, 5] by a conjugate if necessary, we may assume that the strata are
intertwined by 1 so that

(Braig)n(f +d_,)#T.

Thus there are elements a € a; and ' € a} such that
zi=ys+a=ysg +d.

By the bijectivity of { we can assume that [ = I’ and ( is the identity. Let i € I.
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We show that there is an idempotent e such that e = 1° (mod a;) and e = 1" (mod a}):
There is a polynomial Q € op[X] such that Q(ys) = 1° (mod a;). Moreover, by replac-
ing Q(X) by 3(Q(X) + 0(Q)(£X)), we can choose @ such that, for all j, the coefficient
of X7 is symmetric (resp. skew-symmetric) if and only if yé is symmetric (resp. skew-
symmetric). We have a canonical isomorphism from [ys] to k[gs] (mapping 7z to ys)
so Q(yp) is congruent to some idempotent modulo af, and indeed Q(yg) = 1" (mod a})
since the matching ( is given by matching minimal polynomials. By Proposition 7.13 applied
with &. = a, n a., there is a symmetric idempotent e € ay N af, congruent to Q(z) modulo
both radicals.

The idempotent e gives a new splitting V' = Vi (f/%)l for both lattice sequences.

Finally, we show that V* and Vi are isomorphic signed hermitian spaces. We define the
map ¢ : V' — V' to be the restriction of e to V. We first show that the map is injective.
If v is a non-zero element of its kernel, then there is an integer ! such that v € A)\A}, ;. But
then

0O#v=1v=ev=0 (modAj,,),
where the third congruence uses that e = 1° (mod a;). Similarly, the restriction of 1°

to V' is injective and these maps induce pairwise inverse xp-isomorphisms between Aj/Aj.

and Ai/Al, | where A! is the intersection of A; with V7. Thus (A7) is equal to A’.
We now compare the hermitian structures. For v e A} and w € (AL, ;)# we have
h(v,w) = h(v, 1'w) = h(v, ew) = h(v, e?w) = h(ev, ew) = h(1p(v), Y (w))
By Proposition 3.1 there is an F-linear isometry
O (Vi h|yi) — (Vi h

i)
such that
) zé(/\z) = [~\Z and

e ¢ and 1 induce the same isomorphism on Aj/Aj, |, for all integers [.

Thus, V%, Vi, and similarly V", are isomorphic signed hermitian spaces. O

7.3. Matching for equivalent strata. We need to understand the matching between two
equivalent strata, and for that reason we have the following three results.

Lemma 7.16. Suppose that e is an idempotent in | [, A" such that every non-zero element x
of [T, A" satisfies vy(ex — xe) > vp(x). Then e is a central idempotent of ||, A*, i.e.
commutes with all elements of | [, A™".

Proof. Let = be an element of [[; A" and put 2’ = a.(x) = ex — xe. Then ex’e is zero and
one checks a.(a.(2’)) = a.(z'). The condition on e now implies a.(z’) = 0 and thus ex’ =
eae(x') = 0 = a.(z')e = 2’e. This implies ex = exe = xe and, since x was arbitrary, e is
central. U
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Lemma 7.17. Let [A, q,m, 3] and [A,q,m, '] be two semisimple strata, such that
U (0)BsU' (a) = U'(0)B5U ' (a)

then there are a bijection T : I — I' and an element g of ﬁl(a) such that
(i) 1'=1" (mod a,), and

for all indices i € I. Moreover, the bijection T satisfies

dim, . (AL/AL ) = dim (AJY/ATY), forallie I, jeZ.

J+1

Proof. By the equality of the two sets and Lemmas 7.13 and 7.16, every primitive central
idempotent of Bs has to be congruent modulo a;(A) to a sum of primitive central idempo-
tents of Bg/, and vice versa. The first part follows from this. For the second part, take the
map g which sends v € V to X, 17@1%. Finally, the map v > 1'v induces, for each j € Z, a

linear map A;(i) /A]Tiq — AL/A§ | whose inverse is induced by v — 170o, O

Lemma 7.18. Let [A, q,m, 3] and [A,q, m, '] be equivalent semisimple strata. Then there

is an element g of 1+ m_(,4m)(8,A) such that [A,q,m, ] and [A,q,m,gf'g"] have the
same associated splitting.

Proof. Note that we may replace [A, ¢, m, 3] by an equivalent stratum with the same splitting
(and likewise for [A,q,m,’]). Thus, by applying Corollary 7.8, we may assume that
and 3’ have the same characteristic polynomial and thus there is an element z of G such
that z8xz~" = /. Note that this implies that 2V = V<O,
Since the strata intertwine, Proposition 7.1 gives us a matching ¢ : I — I’ such that the
minimal polynomials satisfy pi5, = g and dimp Vi = dimp V<@, for each i € I. We can
also compare the intertwining sets of the strata (which are equal) and then Lemma 7.17 gives
us amap 7 : I — I’ such that 1’ = 17 (mod a,), for all i € I. Since the identity intertwines
the two strata, Corollary 7.9 implies that we can write the identity as uyv, with u,v € ﬁl(A)
and y = [[,.; ¥ such that y;V' = VSO Moreover, we have y = u~'v™! € le(A) SO
that y; A" = A®. Thus

1'=yl'y ' =10 (mod ay).
In particular, we get 17 = 1¢® (mod a,) so that ¢ = 7, and then Lemma 7.17 also implies
that ( satisfies the extra condition

dim,.,. (A} /A%, ) = dim,,, (Ag(i)/l\q“)7 forallie I, jeZ.

j+1 j+1
Now A’ and 271AS® are opps,-lattice sequences in V! with successive quotients of the same
dimensions so there is an element z; of By such that zA’ = £~ 'AS@  In particular, writ-
ing 2 = [[,; 2, the element xz conjugates 3 to 4’ and lies in U(A).
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Finally, since the strata [A,g,m, 8] and [A,q,m, '] are equivalent, the element xz also
lies in n_,, (3, A) n U(A) which, by Lemma 6.20, is (1 4+ m_(x4m)(8,A))b;. Hence we can
write 2 = gb, with b € by and g € 1 +m_1m)(5, A). O

We end this section with a criterion for a minimal semisimple stratum to be equivalent to a
skew-semisimple stratum, in terms of its characteristic polynomial.

Lemma 7.19. Suppose [A,m,m — 1,[] is a semisimple stratum such that A is self-dual
and o(f) = —f (mod a1_,,,). Put ey = e(F|Fy), e = e(A|op) and g = ged(m,e), and
set n = (—1)@mteellgeo  Let ¢ be the characteristic polynomial of [A,m,m — 1,5] and
suppose that its primary factors ¢; satisfy

o (¢:)(X) = n**5) (0 X).

Then the stratum is equivalent to a skew-semisimple stratum.

Proof. Let (1') be the idempotents of the associated splitting of 3. By hypothesis, the
stratum [A,m, m — 1, 3] is equivalent to the [A, m,m — 1, —o ()], which is also semisimple,
with associated idempotents (o(1°)). Then Lemma 7.17 implies that there is a bijection
of I such that o(1%) is congruent to 17 modulo a;, for all indices i. Recalling that ¢ is
the characteristic polynomial of (the reduction of) ys = $9%™9 and noting that o(ys) is
congruent to nys modulo aj, it follows that o(¢;)(X) is equal to n9°&(¢-») (nX), whence ¢; =
+¢-3i), by the hypotheses of the lemma. However, the characteristic polynomials for different
simple blocks (i.e. for different i) are coprime and thus 7(i) = ¢ for all i.

Now we apply Corollary 7.14 to the elements (1° + ¢(1%))/2 (and €& = a,) to obtain pair-
wise orthogonal symmetric idempotents e; with > . e; = 1. Then we conjugate the stratum
by Y, €;1" to obtain a stratum equivalent to [A, m,m — 1, 8] whose simple blocks are equiv-
alent to skew-simple strata by | , 1.10]. This finishes the proof. U

8. INTERTWINING AND CONJUGACY FOR SEMISIMPLE STRATA

In the case of simple strata on a fixed lattice chain, intertwining implies conjugacy up
to equivalence (see [ , 2.6.1]). The same result is true for arbitrary lattice sequences
and, as we prove here, for simple skew strata (that is, G-intertwining implies G-conjugacy).
However, the analogous result is no longer true for semisimple strata. As well as giving some
examples to illustrate this, we give a useful sufficient additional condition to guarantee that
the strata are indeed conjugate.

8.1. For general linear groups.

Theorem 8.1 (cf. | , 2.6.1]). Suppose [A,q,r, 5] and [A, q,r, 5] are simple strata which
intertwine. Then, up to equivalence they are conjugate by an element of U(A).
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Proof. By Corollary 7.8, we can assume that 3 and 8’ have the same characteristic polyno-
mial. By | , Lemma 1.6], there is an element of U(A) which conjugates § to /. O

In contrast to simple strata we cannot achieve intertwining implies conjugacy for semisimple
strata.

Example 8.2. Let V be a 4-dimensional vector space over F' with basis vy, ...,v4 and let A
be the lattice chain of period 2 such that

AO = V10 + U0F + V30fp + U40F, A1 = V10F + V20F + U30fp + VaPF.
Then, with respect to the basis, ag(A) is

O Or OfF Of
O Or OfF Of
O Orp OfF Of
Pr Pr Pr OF

The two elements:

1 1 -1

b:=diag(w ", w ,—w ! ! Lo

,—w 1), V:=diag(—~=w ', —w L, w ,w

give two semisimple strata [A, 2, 1,b] and [A, 2, 1, '] which intertwine but whose equivalence
classes are not conjugate over Auty(V'). Indeed, suppose for contradiction that the strata are
conjugate under an element of G ; then this element has to be an element of the normalizer
of A and thus by Lemma 7.18 we can assume after conjugation that the associated splittings,
which are the same for both strata, are conjugated to each other. Note that this splitting is
given by V! = v; F + v, F and V2 = v3F + v, F. The minimal polynomials of the strata force
that the matching has to be given by exchanging the two blocks V! and V2. But this is not
possible, because the image of A' = A n V! contains only one homothety class of lattices,
while the image of A> = A n V2 contains two.

Thus we impose an extra condition in the following Theorem.

Theorem 8.3. Suppose that [A, q,r, 5] and [A,q,r, 5] are two non-null semisimple strata
which intertwine and let ¢ be the matching between their index sets. Suppose moreover that

(8.4) dim,, (AL/A%L ) = dim,, (ASY/ASY)), forallie I, jeZ.

j+1 j+1

Then the strata are conjugate by an element of fJ(A) NI L A,

Proof. Fix an index ¢ of I. By Proposition 7.1 and Corollary 7.9 there is an F-linear iso-
morphism ¢; : V¥ — V<@ such that [g;A’, q,7, ¢:8°g; "] intertwines [A¢®) q,7, 3®]. Now
condition (8.4) implies that the lattice sequences g;A* and AS®) are conjugate so, modi-
fying g; if necessary, we may assume giA;'- = Ag(i), for each j € Z. Now we can apply
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Theorem 8.1 so that, replacing g; by a translate by an element of O(AC(“), we can assume
that [g;A?, q, 7, g:B°g; ] is equivalent to [AS® g, r B¢D]. Then

(Hg") A= @it = DA = A,

el el iel

so that [ [,.; 0 € U(A) conjugates the first to the second stratum. 4

8.2. For classical groups. We give here the similar “intertwining implies conjugacy” state-
ments for skew-semisimple strata, beginning with the simple case.

Theorem 8.5. Suppose [A,q,r, ] and [A, q,r, 5] are two skew-simple strata which inter-
twine in G. Then they are conjugate over U(A).

Proof. The proof is mutatis mutandis that of Theorem 8.1: we apply Corollary 7.8, then
Theorem 5.2, and then Proposition 5.4. O

As in the non-skew case, this is no longer true if one replaces simple by semisimple.

Example 8.6. Consider a ramified quadratic field extension F|Fy and a skew-hermitian
form on V' = F* whose Gram matrix (h;;) with respect to the standard basis is the anti-
diagonal matrix with entries

hyr = hgg = =1 = —ho3 = —hya,

and write GG for the isometry group of this form. Let w be a skew-symmetric uniformizer
of F and let z be a non-square in F. Let A be the self-dual lattice chain corresponding to
the hereditary order

OF Pr Pr Pr

OF OF PFr Pr

OF OF OfF Pr

O O Op Of
We define the skew-symmetric elements:

1 1 1 1)
)

2, W, W, 2w ! L ! .

b := diag(w™ b =diag(w ", w2, w2z,

The minimal skew-semisimple strata [A,4,3,b] and [A, 4, 3,b] intertwine over G because b

is conjugate to 0" under G, but the strata are not conjugate under G because they are not
conjugate under U(A).

As an immediate consequence of Proposition 7.10 and Theorem 8.5 (as in the non-skew case
above) we have:

Theorem 8.7. Suppose that [A,q,r, 3] and [A,q,r, 5] are two non-null skew-semisimple
strata which intertwine in G, with matching ¢, such that (8.4) holds. Then the strata are
conjugate by an element of U(A).
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9. SEMISIMPLE CHARACTERS

Associated to the semisimple strata studied in the previous sections, we have sets of charac-
ters of certain compact open subgroups, which are call semisimple characters. The purpose of
this section is both briefly to recall their definitions and properties (from | ] and | 1)
and to ensure that all the results we need are available for arbitrary lattice sequences.

9.1. Semisimple characters for G.

Fiz a semisimple stratum [A,q,0,3]. Definer := —ko(5,A) and let [A,q,r,v] be a semisim-
ple stratum equivalent to [A,q,r, 3] such that v commutes with the projections 1° of the
associated splitting of 5. If [A, q,r, 8] is minimal then we take y to be zero.

The rings of a semisimple stratum (cf. | , 3.1]). We start with the orders h(5,A)
and j(5,A), defined inductively by

¢ D(3A) = b0+ (3. A) g
b ](ﬁ7A> = bﬁ,O +J(7>A) M a[%lja

with (0, A) =j(0,A) = ay. We define now the groups
H™ N (B,A) == (8,A) n U (A),  J™HBA) = (8, 0) A U7 (),

for m > —1, and write H and .J instead of H° and J°.

We now begin the proofs of the statements in | , Section 3.1] for semisimple strata.
(Note that some of these are already in | ].)
Proposition 9.1 (cf. | , (3.1.9))). (i) For all =1 <t <r, the lattice hléj(ﬂ,A) is

a bimodule over the ring n_.(5, A).
(ii) If r < n, B*(B,A) is equal to b*(y,A) for k = [gJ + 1.
(iii) For k=0, b*(B,A) is a bg-bimodule.
(iv) B(B,A) is a ring and in particular an op-order in A and H*(B, A) is a two-sided ideal
of h(B,N), for all non-negative integers k.
(v) Let t < r —1 and let [A,q,t, '] be a semisimple stratum equivalent to [A,q,t, 5].
Then b* (B, A) is equal to H*(8', \), for all non-negative integers k >t — [%J
Proof. In | , (3.1.9)] the statement is proven for strict simple strata. In the case of a
non-strict simple stratum [A, ¢, m, 5], the stratum

e(A)—1

[ D (A-1),q,m, %]

=0

is a strict simple stratum and, using the identity

Lyh™(B%, @ (A — 1)1y = b¥(B,A)
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(where 1y denotes projection onto the first copy of V' in @fi%)‘l V') we get the result for all
simple strata. Thus we continue with the case of semisimple strata.

We begin with the proof of (v), but only for the case where the strata in (v) have the
same associated splitting; we prove the general case after the next four lemmas. We use
the idea of | , Lemma 3.9]. Assume that h*(3,A) and h¥(5’, A) are defined using the
same v and that [A,q,t, 5] has the same associated splitting as [A, ¢, ¢, §]. In particular,
we immediately get that h*(3,A) n A% = h*(B3',A) n A%, for i # j, from the definition,
while h*(3, A) n A% = h* (B, A) n A% follows from the simple case.

Before proving (v) in general, we show how the remaining assertions follow from it. (ii) is
straightforward while induction and (v) imply that the definition of h(5, A) does not depend
on the choice of 7. Now (i) follows from | , 3.10(ii)], (iv) follows by induction from (i)
and (ii), and finally (iii) follows from (iv) and (i).

To finish the proof of Proposition 9.1(v) we need the following sequence of lemmas.

Lemma 9.2. f)maX{O’Ht_lr#J} is an n_(8, N)-bimodule for all r =t = 0.

For this we need the analogue of | , Lemma 3.10] for b instead of j (see the sentence
following loc. cit.).
Lemma 9.3 (cf. | , Lemma 3.10(i)]).

(i) For all integers k < %, we have n_p na,_x S h"*(3, A).

27
(ii) For all integers k < %, we have n_j, n a,_, < " *(3,A)

27

Proof of Lemma 9.2. The proof is by induction on r = —kq(5, A). We have the two impor-
tant identities:

(8. A) = b, + ™12 (5, )
and
n_y=bgo+n_(B,A)na._,
We write ¢y for max{0,1+ ¢ — |= |} so that

(9.4) t0+r—t>1+{gJ and 2(r —t +tg) > r.

We have to show that n_;h (3, A) is a subset of h* (3, A). We have

o hmax{to,l%JJrl}(/y’A) _ bmax{to,[%J+l}(B7A) is a bﬂvo—module.
o (n_¢(B,A) N a,_4)bgy, is contained in ny (8, A) N ay4r—y, which is a subset of

hmax{to,[gj+1}(%/\) by (9.4) and Lemma 9.3.

The last containment we need, that n_,(5, A)n aT_tbmaX{t’[%J+1}(7, A) is a subset of b (3, A),
is proved by induction. The case of v = 0 is trivial, while the induction step is a result of
the equality n_;(8,A) na,_y = n_4(v,A) n a,_; and the induction hypothesis. O
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Finally, we see that the proof of the general case of Proposition 9.1(v) follows from Lem-
mas 9.2 and 7.18. O

Given now the preliminary results on semisimple strata that we have obtained in previous
sections and Proposition 9.1, we can follow the definitions and proofs of | , Section 3.1],
from (3.1.3) to (3.1.21), to see that if one makes the obvious substitution

e “replace bgn; by a; n 7,

then everything is true except possibly for the equalities in (3.1.9)(iii), in (3.1.10)(iii) and
in (3.1.11). (Some of these are already described in | |.) Thus, from now on, we will
use these statements from [ | for semisimple strata by referring to | | (and giving
the reference to | | if there is one).

Characters (cf. | , 3.2]). Here we introduce the semisimple characters and their
groups exactly the same way as it was done in | , Section 3.2] for simple characters. This
definition is equivalent to the definition given in | , Section 3]. We fix an additive char-
acter ¢p of F of level one (that is, trivial on pr but not on op). We define 14 := g o trap
and a character

g UlEJH(A) — C*, ¢p(1+x) :=a(px).
The kernel of ¢5 contains [~Jq+1(A) because 1r has level one.

Definition 9.5. Suppose 0 < m < r. If ¢ = r then we define the set C(A,m, ) to be the
set of all characters 6 : H™"(3, A) — C such that:

(i) the restriction of 6 to H™ (8, A) n GL%JH(A) is equal to g;
(ii) the restriction of 6 to H™' n Bj factors through the determinant map detp,
B; — F[B]*.

If ¢ > r then we define C(A, m, 3) inductively to be the set of all characters 6 : H™ (5, A) —
C such that:

(i) 0 is normalized by n(A) n BJ;

(i) the restriction of § to H™' n Bj factors through the determinant map detp,

Bi — F[B]";
(iii) if m’ = max(m, |%]), then Ol grmr+1(5.0 18 of the form 6yi., for some 0y € C(A, m’,7)
and ¢ = 5 — 7.

~m-+1

We also define C(A,m,0) to be the set consisting of the trivial character on U
Remark 9.6. (i) For m > |£] we have C(A,m, 8) = {15}

2
(ii) This definition of the set of semisimple characters is a priori different from the one

introduced in | , 3.13], which we temporarily call C(A, m, 5)pks:

(A).
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(a) If A is strict and the stratum is simple then C(A,m, 5)pxs is defined as in
Definition 9.5, see | , (3.2.1)(3.2.3)]. In [ |, the set C(A,m,0)pKks is

defined to be the set consisting of the trivial character on ot (A).

(b) If A is a lattice sequence and the stratum is simple then C(A, m, ) gk s is defined
in [ , Section 5] in the following way. We take an og-lattice chain A° of the
same period as A, in some space V', and restrict all elements of C(A°@A, m, 3D
B)Brs to H™ (B, A). The obtained restrictions form the set C(A, m, 8)pxs-

(c¢) If A is a lattice sequence and the stratum is semisimple and non-null with
associated splitting V' = @, V* then C(A,m, 3)pks is defined to be the set
of characters 6 such that ¢; := 0|gm+1(s, Ay is an element of C(A',m, 3;) ks

and, for m’ = max(m, [MJ), the restriction of 8 to H™*(B,A) is equal
to 13_-0p for some element 6y of C(A, m’, v) pxs where [A, q, —ko(5,A), 7] is an

element of a defining sequence of the stratum with 8 (see | 3.13)).

We write Iy5(0,6') for the intertwining of two characters in a group H, i.e. g € H is an
element of Iy (6,0') if and only if 69 : x — 6(gxg™') and @' agree on the intersection of their
domains. In the case H = G we omit the subscript.

Proposition 9.7. The sets C(A,m, B)pxs and C(A,m, ) coincide. In particular the defi-
nition is independent of the choice of 7.

Proof. Let us first remark that the definition of C(A, m, ) is independent of the choice of
once we have established the equality for all possible strata which can occur as a first member
with respect to a jump sequence of (A, 3), by | , 3.14(ii)]. We prove the equality at
first for simple strata. Note that we fix here ¢ and that we do an induction on the critical
exponent kg. If the stratum is null, then both sets only consists of the trivial character
on ﬁmH(A).

Suppose now that kg = —¢: The set C(A, m, ) pks is asubset of C(A, m, ) because of | ,
(3.2.1)(3.2.3)]. (The normalizing property is also satisfied in the case of lattice sequences
because the lattice chain A in Remark 9.6(ii)(b) can be chosen to be principal.)

For the other containment in the case of m > |=2| we have that C(A,m, ) is contained

2
in C(A, m,7y)ys_~ which is equal to
C(A,m,y)Brss— = C(A,m, B)BKs

by induction hypothesis. In the case m < |=X2| we follow an induction on m, where we

2
use [‘T’“OJ as the start for the induction, which is know by the first case.

Take an element 6 of C(A,m,3). Consider case (ii)(b) in Remark 9.6. Writing A = A°®
A, we have to show that there is an element of C(A,m,8 ® 8)sxs which restricts to 6.
By the induction hypothesis on m there is a character 6 in C(A,m + 1,8 @® B)pxs which
restricts to 0[gm+2(5.4). On the other hand, by definition 6];m-+1 (A lactorizes through the
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determinant, i.e. has the form y o detg, with y a smooth character of E*. We define 6 a
character on

H™ (3@ 8,8) = U™ (R) H™ (8@ B, A)
via 0(bz) = x(detz(b))0(x). If this is well-defined then it lies in C(A,m, 3® f)pxs and its
restriction to H™(3, A) is 6.

For @ to be well-defined we only need that y o detp |Ijm+l (ip) and 6 coincide on the inter-

section of their domains, which is meH(]\E). The image of detz on ﬂmﬁ(]\};) coincides
~m | m+1

with the image of detg on U +2(AE) (it is equal to Ulﬁ(AE)JH(

to meH(/_\E) factorizes through detz. Thus this restriction has to be equal to the corre-

sponding restriction of y o dets because 6 and 6 coincide on ﬁm+2(AE). This finishes the

proof in the simple case.

o)) and the restriction of 0

We consider now the semisimple case for kg > —¢. We have that C(A, m, 3)pks is a subset
of C(A, m, B) because the simple restrictions of an element 6 of the first set satisfies the nor-
malizing and the factorizing condition and 6 is trivial on the unipotent parts of the Iwahori
decomposition of H™1(3, A) with respect to 8 by | , 3.15]. For the other containment
the case m > |=52| follows as in the simple case. If m < |=22| then we show by induction
on m that the restriction 6; of an element 6 of C(A,m, ) is an element of C(A*, m, 3;)pks.
By induction hypothesis ;| gm+2(s, ai) is an element of C (A",m + 1, 8;)pxs and the axioms
for 6 imply the factorization condition for §;. Thus 6; is an element of C(A*, m, 3;) because it
is normalized by n(A%; ) (because 6;] gm+2(g;,p1) and Hi]ﬁmH(AE) are) and because ;| gm-2(g, A1)

is an element of C(A’, m+ 1, 3;) by the simple case. Thus 6; is an element of C(A?, m, ;) pxs
again by the simple case. This finishes the proof. U
Let us recall the intertwining formula for a semisimple character:

Proposition 9.8 (| , 3.22], | , (3.3.2)]). The intertwining of a semisimple charac-
ter 6 € C(A,m, B) is given by S(B)Bj S(B) where

—kg+1

S(B) = S(A,m.B) =1+ m_pym +il = 1(8, ).

Reading the proofs of | ] from (3.2.1) to (3.5.10) we see that all statements are true
for semisimple characters (after replacing bg,n; by a; n nyy; throughout) except the state-
ments (3.3.17) and (3.5.1). However, there are obvious modifications of (3.3.17) and (3.5.1)
which are still true.

Proposition 9.9 (see | , (3.5.1)]). Let [A,q,m, B] and [A, q,m, 5'] be semisimple strata
such that C(A,m,B) n C(A,m, (") is non-empty. Then there is a bijection T : I — I' such
that 1 = 170 (mod a,), and:
<1> kO(/BaA) = ]{70(5/,/\>;
(ii) the field extensions Ei|F and E ;) |F have the same inertia degree and the same
ramification index;
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(iii) the dimensions of V' and V™ as F-vector spaces coincide;
(iv) there is an element g of S(B) such that gV is equal to V™®. In fact, the element g =
> 17017 s an ezample.

Proof. The existence of 7 follows from the two descriptions of the intertwining of an ele-
ment 6 € C(A,m, 3) nC(A,m, ),

1(0) = S5(B)BsS(8) = S(8)BaS (),
together with Lemma 7.17. We now follow the proof of | , (3.5.1)] to get that bgo/bg 1
is isomorphic to bg o/bg 1, by an isomorphism of kp-algebras which maps 1¢ to 17®. We
also have that (1’agl?)/a; = (1" ay17®) /a; and thus, as in the proof of | , (2.1.4)], we
get the desired equalities.

The equality of the additive closures of the intertwining set 1(8) n U(A) in terms of 3 and £’
implies that, for each i € I, we can write 170 = (1 + u)b(1 4 v) with (1 +u), (1 +v) € S(B)
and b € Bz. By Lemma 7.13 applied with ¢y = ag n Bg and ¢ = (S(8) — 1) n a,, there is
an idempotent e in Bz which is congruent to b (mod S(5) — 1). Since, in particular, e =
b= 1" = 1' (mod a;), Lemma 7.16 implies that e is a central idempotent in By, in
particular a sum of primitive central idempotents of Bs. Since e = 1* (mod a;), we see that
in fact e = 1°. Thus in fact 1’ = 17 (mod S(8) — 1) and we deduce that g = >, 1701 is
an element of S(/3) with the required property. O

Remark 9.10. Recall that a semisimple character 6 is called simple if there is a simple
stratum [A, ¢, m, §] such that 6 € C(A,m,5); then, by Proposition 9.9, every semisimple
stratum [A, ¢, m, §'] such that 6 € C(A, m, f’) has to be simple.

Proposition 9.11 (see | , (3.3.17)]). For every element of 8 of C(A, m, ) the intersec-
tion of the normalizer n(0) of 0 with n(A) is the set S(B)n(Ag). In particular the intersection
of n(A) with Uy(A) is equal to

—kg+1

(9.12) 1+ by + Mmoo (B8,A) + 3172 1(8,A)

and (U1(A) nn(6)) — 1 is a by-bimodule and is closed under multiplication.

Proof. An element of n(f) n n(A) intertwines # and normalizes A thus it is contained
in S(B)n(Ag) by the intertwining formula. The latter set is contained in the normalizer of 6
because S(f) and n(Ag) are. This finishes the proof of the first statement. If we intersect the

set n(0) nn(A) further with 61(/\) then we obtain the formula (9.12) and (U;(A) nn(6)) — 1
is a bg-bi-module and closed under multiplication by | , (3.1.10)]. O

By | , Theorem 3.5.8], a non-trivial intersection of C(A,m, ) with C(A, m, 8") implies
equality of the sets. We will generalize this theorem to a block-wise version. If V = @, V" is

a splitting for V' which splits a semisimple stratum [A, ¢, m, 3], we write 6y, for the restriction
of 6 to H™ (B, A¥).



42 DANIEL SKODLERACK AND SHAUN STEVENS

Lemma 9.13. Suppose that V- = P, V* is a splitting which refines the associated splittings
of two semisimple strata [A, q,m, 5] and [A, q,m, B']. Suppose further that the sets C(A, m+
1,8) and C(A,m + 1,8') coincide and that C(A*,m, By) is equal to C(A*,m,(3,), for all k.
Letaea 1 n]], A%, 6 € C(A,m,B) and 0’ € C(A,m, 3') be given such that 0y, coincides
with 0., for all indices k. Then [A,q,m, ' +a] is equivalent to a semisimple stratum with
the same associated splitting as (3, and the sets C(A,m, ) and ¥,C(A,m, ') coincide and
both contain 6 = 0'1,.

Proof. The group H™'(S,A) is the same as H™ (8, A) by | , (3.5.9)]. We show
that [A, ¢, m, 8’ + a] is equivalent to a semisimple stratum [A, ¢, m, "] which is split by V' =
@, V*. Let s be a tame corestriction with respect to 7/, a parameter for a first mem-
ber of a defining sequence for [A,q,m, 3']. Since 0}1)_,, € C(A¥,m, B;), we have that the
coset s'(ax) + b/, 18 intertwined by the centralizer of v, and thus s'(ag) is congruent to an

element of F[v}] modulo a_,,. Further, the stratum [A*, m + 1,m, s'(8}, — )] is equivalent
to a simple stratum because [A¥, ¢, m, 8;] is simple. Thus the stratum [A¥, m + 1, m, s'(3, +
ar, — 7,)] is equivalent to a simple stratum and it follows that [A*, g, m, 8, + ai] is equiv-
alent to a simple stratum by Corollary 6.15. By coarsening the splitting @, V* we find a
semisimple stratum [A, ¢, m, "] equivalent to [A, ¢, m, ' + a] and by Theorem 6.16 we can
choose the desired stratum to be spilt by @, V*.

Since [A, q,m, 3’ + a] is equivalent to the semisimple stratum [A, ¢, m, "], it follows that
C(A,m, ") is equal to C(A, m, 5')1, and intersects C(A, m, $) non-trivially, i.e. they coincide
by [ , Theorem 3.5.8].

It remains to show that S and S” in fact have the same associated splittings. The cor-
responding idempotents (1°); and (1*); of the associated splittings commute because the
idempotents (1¥), commute with all of them and are a refinement of both. By Proposi-
tion 9.9 there is a bijection 7 from I to I’ such that 17® is congruent to 1* modulo a;. The
product 11" is congruent to zero for i’ # 7(i) and thus it is zero, because they commute
(take powers). Thus 1¢ and 17 coincide, that is, the splittings coincide. Il

Corollary 9.14. Suppose that V. = @, V* is a splitting which refines the two splittings
associated to the semisimple strata [A,q,m, 3] and [A,q,m, '], and suppose that there are
semisimple characters @ € C(A,m, ) and 0 € C(A,m, ") such that for every index k the
characters 0y, and 0, coincide. Then C(A,m, ) = C(A,m, ") and both contain 6 = 0'.

Proof. This follows inductively from Lemma 9.13 with a = 0. U
9.2. The transfer principle for G.

We would like to be able to get an analogue of strata induction for semisimple characters,
for which we need

e the “translation principle” initially introduced for simple characters in | , 2.11],
and
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e a result on “derived characters” (see Proposition 9.17 below).

From now on the element v can be arbitrary, i.e. we free v from the requirements of the
beginning of the previous section.

In the following we use the notation m(A) for the set m_ (4, (5,0)+m+1)(3, A) for a stratum A =
[A, q¢,m, B]. Equivalent strata A and A’ give coinciding sets m(A) = m(A').

Lemma 9.15. Suppose A = [A,q,m,[] is a semisimple stratum split by V = @, V"
and [A,q,m,B'] is a semisimple stratum equivalent to A. Then there is an element u

of 1 + m(A) such that uf'u™" is split by V = @, V".

Proof. By the intertwining formula, taking the intersection with INJ(A) and then the additive
closure, we get

m(A) + bg = m(A) + bg.
Thus for every index ¢ there is an element «; € bg congruent to the idempotent 1° mod-

ulo m(A). Corollary 7.14 provides idempotents 1 € bg congruent to 1° which sum to 1.
The element u = >}, 1'1" has the desired property. O

Theorem 9.16. Let A := [A,q,m + 1,7v] and A" := [A,q,m + 1,'] be semisimple strata
with the same associated splitting V = (—Dj V7 such that

C(A,m+1,7)=C(A,m+1,7").

Let [A, q,m, B] be a semisimple stratum with associated splitting V = @,_; V* such that A is
equivalent to [A, q,m + 1, 8] and ~ is an element of | [,.; A"". Then there exist a semisimple
stratum [A, g, m, B'] with associated splitting V = @,ep V" and an element u € (1+m(A"))n
Hj A% such that [A,q,m + 1, 8'] is equivalent to A, with uy'u™" € [ [,..p A" and

C(A,m,B) =C(A,m,[).

Proof. (i) Let us first remark that, given a semisimple stratum A” = [A, g, m + 1,7"]
with the same associated splitting as 7, once we know the assertion for (A, A’) and
for (u.A", A”), for some u € (1+m(A")) N[, A%, then we know it also for (A, A”).

(ii)) The case where A and A’ are equivalent follows directly from Lemma 9.15 applied
to A, A/, taking u to be as there and 3 = ufu~"!.

(iii) We now reduce to the case that A is simple so assume that the result has already
been proven in this case. Then, applying this to the simple strata [A7, ¢, m, 3;], for
each j, we can find [A7, ¢, m, ;] and elements u; € 1+ m(A) such that C'(A7, m, §;)
is equal to C(A7,m, ;) and uj'y;uj’l is split by the associated splitting of 3;. More-
over, by conjugating ; with an element of S(3;) we can assume that 3; and f;
have the same associated splitting, see Proposition 9.9(iv). Then the semisimple
strata [A, q¢,m, 5] and [A, ¢, m, f’] have the same associated splitting, where ' =

2 55
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Take 0 € C(A,m, ). Although we know that, for each i, the restriction of # to
block i lies in C'(AY, m, 3!), it does not follow that 6 € C(A, m, 3'), since the definition
of semisimple character entails a certain compatibility between the blocks. However,
there is an element a € [ [, A% N a_,,_1 such that 6¢_, is an element of C(A, m, 3').
Then, by Lemma 9.13, the stratum [A, g, m, " + a] is equivalent to a semisimple
stratum with the same associated splitting as ' with the same set of semisimple
characters as the stratum with entry §. This finishes the proof of this case.
Finally, we assume that A is simple., so that A’ is simple too, by Proposition 9.9.

By | , (3.5.9)] there is a simple stratum [A, ¢, m + 1,~"], equivalent to A’, such
that C(A, m,~) is equal to C(A, m,~”). Thus by (i) and (ii) we can assume ' = ~".
As in | , 5.2(iii)], we take two tame corestrictions s and s’ for v and 7' such

that s(z) = ¢'(z) (mod a;41), for all elements x of a; and all integers ¢.

We put ¢ = 5 —+. Then [A,m + 1,m, s(c)] is equivalent to a semisimple stratum
by Corollary 6.15. Asin | , 5.3], the fact that [A,m+1,m, s(c)] is fundamental
implies that [A, m+1,m, '(¢)] is fundamental too; however, we need that the latter
stratum also satisfies the criterion on the maps m,, y41,¢(c) of Proposition 6.11. Note
that the same proposition implies that the maps 1, ;,,41,5(¢) do satisfy this criterion.

The tame corestrictions s and s’ are surjective as maps from a; to b,; and
to by 4, respectively, and thus we obtain an isomorphism of kp-vector spaces ¢,
from b., /b, 441 to by /by 411, for all integers ¢, by sending the class of s(x) to that
of s'(x); note that this is well defined by the choice of s and s’. Then 1, ;m41,5/(c) 18
equal to @pn_m—1 0 My m1,5(c) © gb;l and thus, varying n, the maps m,, ;;,41,¢(c) satisfy
the additional criterion of Proposition 6.11.

The arguments after | , (5.4)] show that the algebras R([A,m + 1,m, s(c)])
and R([A,m + 1,m,s'(c)]) are isomorphic, which implies, by Proposition 6.11,
that [A,m + 1,m, s'(c)] is equivalent to a semisimple stratum, say with associated
splitting (1*). By Corollary 6.15 the stratum [A, g, m,y + 3, 17¢17] is equivalent
to a semisimple stratum [A, ¢, m, 8”] with the same splitting and by Proposition 7.6
there is an element u of 1 + m(A) such that uf"u™" is equivalent to 7' + ¢ mod-
ulo a_,,. Thus, setting ' = ufB"u™!, the stratum [A, ¢, m, 3'] satisfies the desired
properties, as

C(A7m7 5) = wcC(Aa m?V) = wcC(Aa m,,}/) = C<A>m7 ﬁ/)y

where the last equality follows from | , (3.3.20)(1)].
U

Proposition 9.17. Suppose m < q — 1 and let [A,q,m, 5] and [A,q, m, ('] be semisimple
strata which have defining sequences with a common first element [A,q,m + 1,7]. Sup-
pose 0 € C(A,m,3) and 0" € C(A,m, ') are semisimple characters which agree on restriction
to H™2(v, A), so that we can write §' = Oytbg_, and 6 = Ogtbs_ ¢, for some Oy € C(A,m, )
and ¢ € a_(y,41). Let s, be a tame corestriction with respect to -y.
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For any g € 1(0,0") there are elements x,y € S(v) and ¢’ € B,, such that g = xg'y;
moreover, g intertwines Vs (Brte) With P (51—

For any ¢ € IBWX (Vs (B=y+c)» Vs, (8—)), there are elements x,y of 1 + M_jy(y.A)—m—1
such that xg'y intertwines 0 with 6'.

If the characters V¥ys—~qc) and Ygg—yy are equal, then there is 2 € 14+mM_p (4 A)—m—1
such that 6* = ¢'.

Remark 9.18. The strategy of the proof of Proposition 9.17(ii) is as follows: we take x
and y such that xzg¢'y intertwines the stratum [A,q, m, '] with [A, ¢, m, 5 + ¢] (see also
Proposition 7.6) and prove that z¢'y intertwines 6 with . Thus, if ¢ is an element of | [, A**
and ¢’ maps the splitting associated to 3’ to that of 3, then we can choose z € [], A"
and y € [ [,/ A" which satisfy the assertions of Proposition 9.17(ii).

Proof. We have H™(3,A) = H™™(B',A) = H™ ' (y,A) by | , (3.1.9)], so we just

write H™+1,

(i)

(iii)

The decomposition g = xg'y follows directly from Proposition 9.8. We remark also
that, by | , (3.6.2) and (3.1.15)(ii)], the elements z and y normalize H™'!.

Thus ¢’ € I(6*,6"). By | , (3.3.9)] we have

0" = ‘901/193—17%71?5—7%7 and ely_l = eowy'yy—lf'ywﬂ’f'y-
We have ;-1 = Yo (z) and Yyy—1_, = _q () (as characters of H™*!) and thus

their restrictions to meH(A) N B are trivial. Thus, on meH(A) n B, we have
0" =0 = 00¢B—7+c = 90%7(5—%,:),

and analogously for 6V . Since ¢’ intertwines % with 8%~ and 6, with itself, it also
intertwines ¥ (3—y+c) With ¥, (g_).

If some element ¢’ € B intertwines v, (51 With 1, (g then it intertwines
the stratum [A,m + 1,m,s,(8" — )] with [A,m + 1,m,s,(8 — v + ¢)] and thus,
by Proposition 7.6, there are elements x,y of 1 + m_j (, A)—m—1 such that ¢" in-
tertwines [A,q,m,yBy '] with [A,q,m, 27 (8 + c)z]; that is, ¢’ is an element
of I(wx*1(5+c)xa d}yﬁ’y’l)' Now we have

2/}:Jc—l(BJrc):Jc = ¢5+c77¢x—wzﬂ¢w
and an analogous equation for 1,4,-1. Since ¢’ intertwines each of 6y and ., |gm+1
with themselves, we deduce that ¢ intertwines 6% with 8 .
This follows immediately from (ii) applied to the identity element by putting z = xy,

which normalizes H™ !,

g

Corollary 9.19. Let [A,q,m, 3] and [A, q,m, 3] be semisimple strata which have semisim-
ple approxzimations [A,q,m + 1,7v] and [A,q,m + 1,7'] respectively with a common associ-
ated splitting V.= @D, V7. Suppose that H™**(B, A) is equal to H™*(3',A) and let 0 €
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C(A,m,B) and ¢ € C(A,m, (") be two intertwining semisimple characters which coincide
on H™2(B,A). Then there is an element in [ [;(A77)* which intertwines 0 with ¢'.

Proof. By the translation principle, Theorem 9.16, there are [A, ¢, m, "], a semisimple stra-
tum which has [A, ¢, m + 1,7] as an approximation, and an element u € (1 + m,) n [ A%
such that C(A,m,3") = C(A,m, (') and uyu~! is split by the associated splitting of 3.
Replacing 3’ by u=!3"u, we reduce to the case where ' = ~.

Now set 0y = 1,0 € C(A,m,7). Then there is an element ¢ € (@; A’/ such that ¢' =
0013 —+c, because Oytpz_, and @ are trivial on the lower and upper unipotent parts of the
Iwahori decomposition with respect to V = P ; V7. As we know that 6 and #’ intertwine,
Proposition 9.17(i) provides an element of [ ],(B77)* which intertwines the corresponding
derived characters. Now fix a block j, then Proposition 9.17(ii) provides an element g;
of (A%7)* which intertwines 6; with 6. Thus g = (g;) intertwines 6 with 6 because both
characters are trivial on the unipotent parts of the Iwahori decomposition with respect

toV =@,V O

9.3. Semisimple characters for G. Suppose now that [A, ¢, m, 3] is a skew-semisimple
stratum and continue with the notation of the previous subsection. The adjoint anti-
involution o of the signed hermitian form h acts on C(A, m, ) via

(0-0)(g) :=0(c(g7")), ge H" (B, A).
Definition 9.20. We define the set of semisimple characters C_(A, m, ) to be the set of all
restrictions 0|gm+1(s gync Where 6 run through all elements of C(A, m, 3)?, the set of o-fixed
points.

We call an element of C_(A, m, 3) a semisimple character for G.

Remark 9.21 (] , 3.6], [ , 2.5]).

(i) The restriction map from C(A, m, 5)? to C_(A,m, 3) is bijective, in particular injec-
tive.
(ii) For two skew-semisimple strata [A,q,m, 5] and [A,q,m, ('], g € G, and charac-
ters 6 € C(A,m, ) and ¢ € C(A, m, ") the following conditions are equivalent:
® (g€ Ig(g, 9/);
o gelg(0lgmiiagne O m+1(a,806)-

We have an analogous description to that of Proposition 9.8 of the intertwining of a semisim-
ple character for G.

Proposition 9.22 (| , 3.27)). For 0_ € C_(A,m, ) a semisimple character of G, we
have

I6(0-) = (S(B) n G)(Bs n G)(S(B) N G).

For two skew-semisimple strata giving the same set of semisimple characters we have a
stronger version of Proposition 9.9.
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Proposition 9.23. Let [A, q,m, ] and [A, g, m, B'] be skew-semisimple strata such that the
intersection C_(A,m, 5) n C_(A,m, ") is non-empty.

(i) The sets C(A,m, ) and C(A,m, ") coincide.
Let 7: I — I’ be the bijection given by Proposition 9.9, such that 1* = 17 (mod a;).

(ii) The spaces V' and V™ are isomorphic as hermitian spaces, for all indices i € I
(iii) There is an element of U'(A) which normalizes every element of C(A,m,B3) and
sends V' onto V70,

Proof. We prove the first statement by induction on m. If m = ¢ then 8 = 8 = 0 and both
sets only contain the trivial character on U(A), i.e. they coincide, so we suppose m < q.
Let v and 7/ be entries of a first member of defining sequences of the skew-semisimple
strata [A, q,m, 5] and [A, ¢, m, '] respectively. Then by the induction hypothesis we can
assume that C(A,m + 1,v) and C(A, m + 1,7) coincide so, by | , (3.1.9)(ii),(3.5.1)], we
have

Hm+1(ﬁ,/\) _ Hm+1<,.y’A> _ Hm+1(’7/,A) _ Herl(B/,A),

a group which we denote by H™*!. There is, by Glauberman’s correspondence, then a
unique o-invariant lift of an element _ € C_(A,m, ) nC_(A,m, ") to H™"! and this lies
in both C(A,m, ) and C(A,m, 5’). The result now follows by Corollary 9.14.

The second statement follows directly from Proposition 3.1 applied to the map f : v —
3o 170 1%, which lies in U(A). We are left to prove the third statement. We write the
map f as a tuple f = (f;) where f; = 17@1". We write S(3); for 1°:S(8)1°. Then o(f;)f; =
1117017 € S(B); so the double coset S(B'),u fiS(3); contains an isometry, by Corollary 3.2.
We can write this isometry as (17) 4 ury) (1" + v;), since f; = 1717 can be absorbed into
the other terms. We define g = 3,(17® + u,(;)(1* + v;) € G so we have to show that g — 1
is an element of n(#) N ﬁl(A).

By Proposition 9.11 the set (n(#) n le(A)) — 1 is a bp- and a bj-bimodule, and is closed
under multiplication. Thus the products w,¢;)(1" + v;), u-;1" and 170y, and (170) — 19)1°
are all elements of (n(#) N ﬁl(A)) — 1, and ¢ is an element of n(6) N le(A) as required. [

We also get an analogue to | , 3.5.9] for semisimple characters for G.

Proposition 9.24. Suppose [A, g, m, 5] and [A, q,m, B] are skew-semisimple strata with the
same associated splitting, such that m > 0 and

C(A,m,B) = C(A,m, 3).

Then H™(B) = H™(P') and there is a skew-semisimple stratum [A,q,m,B"] equivalent
to [A, q,m, B], with the same associated splitting, such that

CA,m—1,8")=C(A,m—1,8).
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Proof. The same proof as in the first part of | , 3.5.9] shows that H™(8) = H™((').
Now we take a character § in C(A,m — 1, 3)? and a skew-symmetric element b of a_,,(A)
in [, A" such that 6¢, is an element of C(A,m — 1, 8'). The same proof as in the second
part of | , 3.5.9] shows that there is a semisimple stratum [A,n,m — 1, 8”] equivalent
to [A,n,m—1, 3+0b] such that 8" € [ [, A*". Since S+ is skew-symmetric, 3” can be chosen
skew-symmetric, by | , 1.10]. Then

C(Aam - 17ﬁﬂ) = C(A7m - 175)%

has a non-trivial intersection with C(A,m — 1, '), and thus they are equal by the analogue
of | , Theorem 3.5.8]. O

Next we obtain an analogue of the translation principle, Theorem 9.16, for which we need
the following lemma.

Lemma 9.25. Suppose A = [A,q,m, 5] and [A,q,m, '] are equivalent skew-simple strata
and suppose that A is split by the orthogonal sum @, V"'. Then there is an element u
of (1 +m(A)) NG such that uf'u™" is an element of ||, A*.

Proof. As in the proof of Lemma 9.15 we find elements «; € bg congruent to 1° modulo m(A).
We can replace «; by (a; + o(;))/2 to ensure that the elements a; are symmetric. By
Corollary 7.14 we obtain pairwise orthogonal symmetric idempotents 1’* congruent to o; who
sum up to 1. As in the proof of Proposition 9.23(iii) we see that (1" + m(A;))(1" + m(A;))
has a o-fixed element, say u;u;. Then g := > . u/u; has the desired property. O

Theorem 9.26. Let A = [A,q,m+1,v] and A" = [A, g, m+1,7'] be skew-semisimple strata
with the same associated splitting V = (—Bj V7 such that

C(A,m+1,7)=C(A,m+1,7).

Let [A, q,m, B] be a skew-semisimple stratum, with associated splitting V = @,_, V*, such
that [A, ¢, m +1, 8] is equivalent to A and ~y is an element of | [,.; A**. Then, there exists a
skew-semisimple stratum [A, q,m, B8], with splitting V = @, V'* and an element u € (1 +
m(A") n[]; A% NG, such that [A,q,m+1, 3] is equivalent to A', with uy'u™" € [ [, AT
and

C(A,m,B) = C(A,m, ).

Proof. The proof is analogous to the proof of Theorem 9.16, following the same four steps.
Step (i) is the same (with the added requirement that u € G), while step (ii), the case
where A, A" are equivalent, follows from Lemma 9.25. Step (iii), the reduction from the
semisimple to the simple case, is line by line the same because we can take the element a
block-wise skew and Theorem 6.16 ensures that the stratum [A, ¢, m, ' + a] is equivalent
to a skew-semisimple stratum with the same associated splitting as 3'; the splitting of 3; is
conjugate in G' to that of 8} by Proposition 9.23(iii).
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There is more to say in step (iv), the case where A is simple. We can modify 4’ by Proposi-
tion 9.24 to assume C(A, m,~y) = C(A, m,~"). We choose s a g-equivariant tame corestriction
relative to 7y, and likewise ¢ relative to 4/. The proof of | , 5.2(iii)] shows that there
is A € kg, such that s(z) + aj41 = A(s'(2) + ay41), for all z € a, and all integers ¢. Since s, s’
are o-equivariant, we deduce that A\ is symmetric, i.e. A = A. Then, choosing a symmetric
lift A of A to Ory @nd replacing s’ by As', we see that we may assume that s(z) = ¢/ (z)
(mod a;41), for all x € a; and all integers t.

We put ¢ =  — 7, so that the derived stratum [A,m + 1,m,s(c)] is equivalent to a
skew-semisimple stratum by Corollary 6.15 and | , 1.10]. In particular, denoting
by ¢; € kpp,(X) the primary factors of its characteristic polynomial, we have o(¢;)(X) =
)¢ (nX), where n = (—1)tmtecooco for e = e(Aloppy), e = e(F[Y]|Fy]o) and g =
ged(m + 1, e).

Now the strata [A,m + 1,m,s(c)] and [A,m + 1,m,s'(c)] have the same characteristic
polynomial, by the choice of s,s’, and the duality ¢ acts in the same way on the residue

fields kg1, Ky, since they have the same image in ag/a; by | , 5.2]. Hence [A,m +
1,m, s'(c)| satisfies the hypotheses of Lemma 7.19 and is equivalent to a skew-semisimple
stratum. The argument now finishes as in step (iv) of Theorem 9.16. U

Finally, we get an analogue of Proposition 9.17, with the same proof (replacing the reference
to Proposition 9.8 by Proposition 9.22).

Proposition 9.27. Suppose m < q—1 and let [A,q,m, B3], [A,q,m, '] be skew-semisimple
strata which have defining sequences with a common first element [A,q,m + 1,v]. Let 6 €
C(A,m,B)? and 0" € C(A,m, ') be semisimple characters which agree on H™2(A,~), so
that we can write 8 = Oypg_, and 6 = pYg_ric, for some 6y € C(A,m,v)? and c €
a_(m+1),—- Let s, be a o-equivariant tame corestriction with respect to .

(i) For any g € 15(0,0") there are elements x,y € S(v) n G and ¢' € B, n G such
) that g = xg'y; moreover, g' intertwines Vs (5—yyc) With Yy (5.
(ii) For any g' € Ip,nc(Vs,(8-1+), Ys, (—y)), there are z,y € (1 + M_gy(y,0)-m-1) N G
such that xg'y intertwines 6 with 6'.
(iii) If s (8—y+c) = Vs, (3—r) then there is z € (1 4+M_gy(y.a)—m—1) N G such that 07 = 0'.

Corollary 9.28. Let [A, q,m, 3] and [A, q,m, B'] be two skew-semisimple strata such that we
can chose elements [A, ¢, m~+1,v] and [A, ¢, m+1,~'] in defining sequences (with skew strata)
such that y and ' have a common associated splitting, say (V7), and such that H™ (3, \) is
equal to H™2(B', ). Let 6 € C(A,m,3)? and 0’ € C(A,m, 3')7 be two semisimple characters
which are intertwine by an element of G and which coincide on H™ (3, A). Then there is
an element in [ [;(A7)* n G which intertwines 0 with ¢'.

Proof. The proof is the same as that of Proposition 9.19, where we use Theorem 9.26 in place
of Theorem 9.16 and Proposition 9.27 in place of Proposition 9.17. Note that the element ¢ in
the proof of Proposition 9.19 can be chosen to be skew-symmetric by Pontrjagin duality. U
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10. MATCHING AND CONJUGACY FOR SEMISIMPLE CHARACTERS

In this final section we prove that there is an analogue of the matching Proposition 7.1 for
semisimple characters which intertwine. One might think that this matching could just come
from that for the underlying semisimple strata, but these do not necessarily intertwine so this
is not possible. Then the sufficient condition (8.4) for an “intertwining implies conjugacy”
result for semisimple strata is also sufficient for semisimple characters, also in the case of
semisimple characters for G.

10.1. For general linear groups. For a semisimple character § € C(A, m, ), with de-
composition V = @, ,; V" associated to [A,q,0,], we write §; for the restriction of 0
to H™(3;, A) = H™(B,A) n A%, for each index i € I.

Theorem 10.1. Let 6 € C(A,m,3) and &' € C(N',;m, (') be semisimple characters which
intertwine and suppose that A and A" have the same period. Then there is a unique bijec-
tion ¢ : I — I’ such that there is an element g € G with

(i) gVi=V"W foralliel;

(ii) Qf_l and 0, intertwine, for all i€ I.

Moreover, all elements of G which satisfy (i) also satisfy (ii).

Proof. First we prove the uniqueness of ( under the assumption that the existence statement
is proven. If there are two bijections from I to I’ satisfying the assertions of the theorem
then there are indices i1, 45 € I and ¢’ € I’ such that 6;, and 6;, intertwine with #/,. By (i), we
can conjugate 6, to V' and to V2, and afterwards 6/, ®#/, is the Levi-part (under an Iwahori
decomposition) of a simple character, which intertwines with 6;, ® ¢;,. The index set of the
latter two semisimple characters have different cardinalities and we obtain a contradiction.

To prove the final assertion of the statement let us assume that ¢’ is another element of G
—1 /—1
which satisfies (i). Then by the uniqueness of ¢ the characters 6 and 6/  are conjugate
- /—1 —
by the restriction of ¢’g~* to V¢@). Thus ¢  and 0. intertwine, because 67 " and Octi)
do.

We now turn to the existence proof. First we reduce to the case of lattice chains, in fact
to the case where both lattice chains are block-wise principal lattice chains — that is, for
each index i the dimension dim,, A}/A} ;| is independent of k. For that we repeat the f-
construction AT := @Z((A — j), where ¢ is the period of A (which we assume coincides with
that of A’), and A’" similarly. Let us remark that AT is the direct sum of the (A%)". We will
also need to use the notion of endo-equivalence of simple characters, for which we refer the

reader to [ | and | ].

By assumption, 6 and ¢ intertwine and thus 67 and 7 intertwine. Assume that we have
proven the existence of ¢ for the case of block-wise principal lattice chains. In particular
we find an element g which maps, for each index i, the vector space (V) to (V@) and
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then (87)9" and Qg(i) intertwine. In particular, this implies that V<® and V* have the same
dimension and that 93 and 92(2.) are endo-equivalent. (More precisely, they are realizations
of endo-equivalent ps-characters.) Thus there is an isomorphism g¢; : V' — V’¢0) and, for

-1
any such, the simple characters #° and 92(1’) intertwine, since they are realizations of endo-

equivalent ps-characters on the same space. Thus the element ) ._; g; has all the required
properties. This finishes the proof of the reduction to the block-wise principal case.

Now we assume we are in the block-wise principal case and prove the existence of (. We

proceed via induction on m, with the case m > [%J following directly from Proposition 7.1.
For m < [gJ, let [A, ¢, m+1,~] be a semisimple stratum equivalent to [A, ¢, m+1, 5] with v €
[, A", and similarly for [A’,¢,m + 1,7']. We write J for the index set of the splitting
of [A,q,m +1,v], and similarly J’. We have the character 0, = 0|gm+2(y,2) € C(A,m +1,7),

and similarly 9;,, and these characters intertwine. In particular, by induction, there are a

bijection ¢, : J — J and g € G such that gV/ = V'¢U) and 9,%1 intertwines 6/, ¢, () for
all j € J, where 0, ; = 0, Hm+2(y; Ad)- Since g\ and A’“U) are then principal lattice chains
of the same period in the same space, they are conjugate so, changing g, we may assume

they are equal; that is, g € U(A).

In particular, conjugating everything by ¢, we may assume that the strata [A,q,m + 1,7]
and [A, g, m + 1,7] have the same associated splitting and 6, ; intertwines ¢, ;. Since N
and A7 are again principal lattice chains of the same period in the same space, they are
conjugate, and we can assume A’ = A" for all indexes j. Then | , Theorem 3.5.11]
implies that 6, ; and ¢/, ; are conjugate by an element of [NJ(Aj ) so, by conjugating, we can
assume they are equal. By Corollary 9.14 this implies that 6, is equal to 6.,. Corollary 9.19
provides an intertwiner for # and 6’ which preserves every V7. Now, since we can then prove
the existence of ¢ separately for each block V7, we may assume that 6, = 6., is simple.
By | , Theorem 3.5.8] we then have that

Hm—H(B,A) _ Hm—H(’y,A) _ Hm+1(’y/,/\) _ Hm—H(ﬁ/,A).

Thus we abbreviate H™!, and similarly H™"2. By the translation principle Theorem 9.16,
we can find a semisimple stratum [A, ¢, m, 5”] with splitting V' = @, V""" and an ele-
ment u € (1 +m,) N []; A% such that

e [A,q,m+ 1,5"] is equivalent to [A, g, m + 1,7];
e C(A,m,p") =C(A,m, ) and
o uyute [, A7,

Note that [A, ¢, m+1, 8”] is then also equivalent to [A, ¢, m+1,uy'u""]. Since C(A,m, ") =
C(A,m, 3), Proposition 9.9 implies that we have a bijection 7 : I — [” and y € S(f)
such that yV* = V"7 Moreover, the element y normalizes 0, thus 0;’71 = 0:4. In
particular, we may replace the pair (3,7) by (8”,uy'u™'), since we can then compose the
bijection ¢ : I” — I that we obtain with 7 (and right multiply the element g we obtain
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by y). Thus we may assume that v = uy'u™'. Now conjugating back with u (that is,

replacing (8,7, 0) by (u™'Bu, utyu,0")), we may assume that v = 7/

Now let s, be a tame corestriction with respect to . We write 6 and ¢ as in Proposition 9.17,

0= 901/)5—7-&-0’ and 0 = 00¢5’—w

with 6 € C(A,m,~) and ¢ € a_(,11). Moreover, by Remark 9.18, we can assume that c is
decomposed by the splitting V = @,_, V*. Since y and 9.6, are both elements of C(A, m, ),
both are intertwined by every element of B; in particular, we deduce that the derived
stratum [A,m + 1,m, s,(c)] is intertwined by every element of B and thus s,(c) is an
element of F[y] + b, _,,, by [ , Lemma 2.4.11]. Then, since ¢, § are both decomposed
by the splitting V' = @,.; V*, there is a semisimple stratum [A,m + 1,m,d] equivalent
to [A,m + 1,m,s(8 — v + ¢)] with splitting V' = @,_; V*. Similarly, there is a semisimple
stratum [A,m + 1,m, '] equivalent to [A,m + 1,m, s(8 — 7)] with splitting V = @, V7.

By Proposition 9.17 there is an element of B, which intertwines [A,m + 1,m, s(8" — 7)]
with [A, m+1,m, s(B—~+c)], so intertwines the semisimple strata [A, m+1,m, 6] and [A, m+
1,m,d']. Then the matching for semisimple strata, Proposition 7.1, implies that there is g €
B which matches their splittings; indeed, since we are in the block-wise principal case,

we may choose such g € U(A) n B,. In particular, conjugating by this element (which
centralizes v), we may assume that I = I’ and the strata [A,m+1,m, ] and [A, m+1,m, |
are intertwined by an element of B, n []; A**. But then, by Proposition 9.17 again, 0;
intertwines with 6/ for all ¢ € I, which finishes the proof. O

Theorem 10.2. Let 0 € C(A,m,[3) and 0" € C(A,m, ") be semisimple characters which
intertwine, let ¢ : I — I' be the matching given by Theorem 10.1, and suppose that condi-
tion (8.4) holds. Then 0 is conjugate to §' by an element of U(A) n ], A»®.

Proof. We first remark that the result is transitive: that is, if the hypotheses are also satisfied
for a pair (0',0”) of semisimple characters then the same is true of the pair (6,0") and,
similarly, the conclusion for the pairs (0,6’) and (¢',0”) implies that for (6,60"”). Similarly,
if (0", 5") is conjugate to (¢, 5’) then the result for (0, 6’) is equivalent to that for (,6").

We need to consider three steps.

(i) Suppose first that € is equal to 6’. Then, by Proposition 9.9(iv) we can find an
element of S(/3) which maps V' onto V<@, This element normalizes 6.

(ii) Suppose ¢ > m and that [A, g, m, 5] and [A, g, m, 5] have simple strata [A,q,m +
1,7] and [A,q,m + 1,7] in their defining sequences, respectively, and suppose
that 0] gm+2(y,4) and ¢'|gm+2(y 4y coincide; in particular the sets of simple characters
for the strata for v and " coincide. Then the translation principle Proposition 9.16
provides a semisimple stratum with element 3”, such that 5”7 — ~ is an element
of a_,,—1 and C(A,m, ") = C(A,m, '), and an element u of 1+m, such that uyu™!
is split by the associated splitting of 5”.
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Now we can apply part (i) to (¢, 8") and (6’, ") so, by transitivity, we reduce
to the case where v/ = uyu~t. Then, by conjugating by u, we reduce to the case
where v = /. Now writing 6, 6" as in Proposition 9.17, we get that the derived strata
intertwine so, by Theorem 8.3, are conjugate by elements of G(A) N B,. But then
Proposition 9.17(iii) gives us an element of U(A) which conjugates 6 to #'. Part (i)
enables us to modify the conjugating element such that V* is mapped to V<@ for
all indices .

(iii) We now prove the general case by induction on m. If the strata are null strata
(m = q), then we can take the identity as the conjugating element. Suppose
now m < q. Take for the strata first members of the defining sequences with
entries v and 7/, respectively. By the induction hypothesis 0|gm+2(, ay is conjugate
to 0| gm+2(,.a) by an element which conjugates the splittings; thus, by conjugating,
we may assume that these restrictions are equal, and further that v and +’ have the
same associated splitting, say V = @ ; V7. Now Corollary 9.19 provides an inter-
twiner of § with 6 which preserves V7, for all indices j. We apply Part (ii) for each j
to obtain an element g = (g;) of U(A) n [T, A*® which conjugates 6; to ¢} for all
indices j. Finally, Corollary 9.14 applied to 89 ' and ¢’ and the splitting @, V¢®)
gives that 69" and ¢’ coincide, and the element g is as required.

g

10.2. For classical groups. If two characters §_ € C_(A,m,B) and 0" € C_(A,m,[)
intertwine then their lifts 6 € C(A,m,)? and 6’ € C(A,m,’)? intertwine and we get a
matching ¢ : I — I’ from Theorem 10.1. Let us state the main theorem:

Theorem 10.3. Let _ € C_(A,m,[3) and 0’ € C_(A,m, ") be two semisimple characters
of G, which intertwine in G, and assume that their matching satisfies (8.4). Then, 0_ and 6"
are U(A) n (T]; A%")-conjugate.

Proof. The proof is completely the same as for Theorem 10.2 by using o-fixed lifts of the
characters and the relevant results for G in place of those for G. Specifically: In step (i), we
use Proposition 9.23(iii). In step (ii), we use the translation principle for G, Theorem 9.26,
to reduce to the case of a common v and we use Proposition 9.27(i) to reduce to the derived
strata; the case of minimal strata is done in Theorem 8.7. In step (iii), we use Corollary 9.28
to reduce to the case where the stratum with v is simple. U

We also conjecture a more natural version of the Matching Theorem 10.1 for G.

Conjecture 10.4. Let [A,q,m,5] and [N, q,m,B'] be skew-semisimple strata and 0 €
C(A,m,B)? and 0" € C(N',m, )7 two semisimple characters which are intertwined by an
element of G. Let ¢ : I — I' be the matching from Theorem 10.1. Then, there is an
element g € G such that gV* = V@ for allie I.
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