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Abstract

The aim of the work conducted in this thesis is to reconstruct audio speech signals

using information which can be extracted solely from a visual stream of a speaker’s

face, with application for surveillance scenarios and silent speech interfaces. Visual

speech is limited to that which can be seen of the mouth, lips, teeth, and tongue,

where the visual articulators convey considerably less information than in the audio

domain, leading to the task being difficult. Accordingly, the emphasis is on the

reconstruction of intelligible speech, with less regard given to quality.

A speech production model is used to reconstruct audio speech, where methods

are presented in this work for generating or estimating the necessary parameters

for the model. Three approaches are explored for producing spectral-envelope

estimates from visual features as this parameter provides the greatest contribu-

tion to speech intelligibility. The first approach uses regression to perform the

visual-to-audio mapping, and then two further approaches are explored using vec-

tor quantisation techniques and classification models, with long-range temporal

information incorporated at the feature and model-level. Excitation information,

namely fundamental frequency and aperiodicity, is generated using artificial meth-

ods and joint-feature clustering approaches.

Evaluations are first performed using mean squared error analyses and objec-

tive measures of speech intelligibility to refine the various system configurations,

and then subjective listening tests are conducted to determine word-level accu-
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racy, giving real intelligibility scores, of reconstructed speech. The best perform-

ing visual-to-audio domain mapping approach, using a clustering-and-classification

framework with feature-level temporal encoding, is able to achieve audio-only in-

telligibility scores of 77 %, and audiovisual intelligibility scores of 84 %, on the

GRID dataset. Furthermore, the methods are applied to a larger and more con-

tinuous dataset, with less favourable results, but with the belief that extensions

to the work presented will yield a further increase in intelligibility.
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Chapter 1

Introduction

1.1 Motivation and aims

Visual-to-audio speech reconstruction is the process of generating audio speech

signals using only visual information that can be extracted from a video of a

speaker’s face. Two major applications are envisaged for visual-to-audio speech

reconstructions: surveillance scenarios where only video footage is available of a

target, and silent speech interfaces for laryngectomy patients. To reconstruct an

audio speech signal, a model of speech production can be used where the neces-

sary parameters required to drive the model are estimated from visual speech. A

typical set of speech production model parameters include source excitation and

vocal-tract filter, or spectral-envelope. In this work, it is assumed that the only

parameter that can be estimated from visual speech, albeit with some degree of

error, is vocal-tract filter information. As only the visual articulators can be seen,

it is not possible to obtain fundamental frequency, and it will be difficult to obtain

a voicing decision. Thus, the problem is of generating suitable model parameters

given only visual speech information. An abstract representation of the problem

1
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the work in this thesis attempts to solve is shown in Figure 1.1.

Speech 
model

Excitation

Visual-to-audio 
estimation

Spectral 
envelope

Figure 1.1: A general overview of the visual-to-audio speech reconstruction process,
where visual information from the mouth of a speaker is used to estimate speech
production model parameters to reconstruct audio speech signals.

When a target is being monitored during surveillance, it is often necessary to

determine what is being spoken to understand intent and purpose. Accordingly, a

microphone would allow for capture of speech signals that can then be processed

in a passive manner using an automatic speech recognition system, or by an active

listener, to produce transcriptions. However, it may perhaps be the case that

using a microphone is infeasible, and the only signal available of the target is a

visual stream from a CCTV system or other video recorder. In such a scenario,

it is necessary to perform lip-reading, either using automatic systems, or through

the expertise of a professional lip-reader. However, automatic lip-reading systems

use information about the mouth, lips, and other visual articulators extracted

from a visual stream to produce a transcription of the utterance. This process

is analogous to automatic speech recognition systems, whereby an audio domain

signal is processed to provide a word-level transcription. The work presented in

this thesis differs in allowing for audio utterances to be reconstructed directly from

visual speech information extracted from the face of a target.

Similarly, visual-to-audio speech reconstruction has application in silent speech

interfaces, including for people who have had a laryngectomy. A laryngectomy is

an operation where the larynx is removed and, accordingly, the coupling between

the lungs and mouth, thus removing the vocal folds and ability to produce speech.

Commonly, such people use electrolarynx medical devices, otherwise known as
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artificial voice-boxes, to provide a source of voiced excitation. Another solution

is to use Permanent Magnet Articulography (PMA) [Hofe et al., 2011; Gonzalez

et al., 2015]. In PMA systems, small magnets are placed on the tongue and lips of

a speaker, with their locations during articulator movement parameterised using

a device containing magnetic sensors. The PMA parameters are subsequently

mapped to a set of speech parameters necessary to drive a speech production

model. Accordingly, given a sufficiently high audio intelligibility obtained using

the work presented in this thesis, it may be possible to construct a device that

allows for the processing of visual information with no need to use objects attached

to a speaker.

In comparison to audio speech, the primary limitation of visual speech is that

it is less effective at conveying information. This occurs as the acoustic speech

signal is a consequence of the positions of all the vocal organs in the human speech

production system, and the information which can be obtained from the visual

stream is limited to that which can be seen of the mouth, lips, teeth, and tip of

the tongue [Bernstein, 2012]. The visual modality tends to be used by normal

listeners in situations where there are high levels of audio noise, giving clues as to

the duration of words and for discerning between audibly confusable phonemes.

However, there is evidently sufficient information present in the visual stream

to allow for deaf or hard-of-hearing persons to be able to perform lip-reading;

although studies show there is a large variation in the abilities of such persons [Lan

et al., 2012]. Research investigating correlations between audio and visual speech

representations, as used in audiovisual speech processing applications, show that

good correlations can be achieved dependent on the feature representations in

question [Almajai and Milner, 2007]. It is these correlations between the audio

and visual modalities that are exploited in this work.

Due to limitations on the available audio speech information that can be ob-
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tained from visual speech, the focus in this work is on producing intelligible audio

speech reconstructions with less concern for the quality of the utterances, at least

to the extent to which intelligibility is affected. Furthermore, it should be em-

phasised that the audio speech signal is reconstructed using parameters directly

obtained from visual information. This is in contrast to producing audio speech

outputs by performing automatic lip-reading on a video signal to derive a word-

level transcript, and, therefore, linguistic features, that are subsequently input into

a text-to-speech system.

Deriving speech production model parameters from visual information can be

considered a domain mapping problem, where it is necessary to produce audio fea-

ture estimates from visual features. In addition to visual-to-audio, other domain

mappings in speech processing include acoustic-to-articulatory (and vice-versa) for

speech coding and speech synthesis applications [Toda et al., 2008], and audio-to-

visual for animation requirements [Hong et al., 2002]. Such mappings typically

require the parametrisation of the information contained within each domain us-

ing particular feature representations, which can then be mapped between using

statistical models and machine learning techniques. For this work, it is necessary

to consider audio and visual feature representations that exhibit a strong corre-

lation, and, for the audio feature, allow for the reconstruction of speech model

parameters. Moreover, having shown application in numerous area of speech pro-

cessing, Gaussian mixture models and neural networks are explored for use as the

domain mapping models.

From Figure 1.1 it can be seen that the two parameters required for the speech

production model are spectral-envelope and excitation information. Three ap-

proaches are explored in this work for performing visual-to-audio domain mapping

to produce spectral-envelope estimates. The first approach investigates various

combinations of regression models (Gaussian mixture models and neural networks),
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audio features, and visual features, where the audio features are estimated directly

from the visual features. The second approach reformulates the problem as one

of clustering-and-classification, where vector quantisation techniques are used to

produce audio feature codebooks, and the entries are estimated from input visual

features using deep neural networks. Furthermore, investigations are conducted

on incorporating longer-range temporal information (up to 350 ms in length) at

the feature-level, by grouping windows of audio and visual feature vectors. In

the third approach, temporal encoding is performed directly at the model-level,

where two methods are explored for this task: Viterbi decoding and recurrent neu-

ral networks. To produce the excitation information, three artificial methods of

fundamental frequency contour generation are proposed, and two methods of ob-

taining aperiodicity estimates are presented using vector quantisation techniques

and convolutional neural networks.

1.2 Thesis structure

The remainder of this thesis is organised as follows. The current literature is

reviewed in Chapter 2, with the main focus on domain mappings, human speech

perception, the intelligibility of speech, and the use of visual speech in myriad

areas of speech processing. As the topic of this work is to produce intelligible

audio speech reconstructions, it is first necessary to understand what occurs during

speech perception and what characteristics of the speech signal make it intelligible.

To put this work into context, the use of visual speech in the areas of ASR, speech

enhancement, lip reading, and silent speech interfaces is explored.

Chapter 3 provides an overview of the human speech production system and

the various components necessary for the process to function. In relation to human

speech production, details are given on machine models of speech production, with
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a review of commonly used speech reconstruction models, including the model

chosen for this thesis, namely STRAIGHT. Furthermore, a number of audio and

visual feature representations are described, having shown application in many

areas of speech processing.

As a necessary parameter required for speech production models, details about

excitation are considered in Chapter 4. Initially, methods for producing artificial

fundamental frequency contours are presented, which is then followed by the de-

scription of two methods for producing time-frequency aperiodicity surfaces. The

first method is based upon using convolutional neural networks as a front-end

for performing visual feature extraction, and then to perform classification; and

the second method uses a joint clustering of spectral-envelope and aperiodicity

estimation using techniques from the area of vector quantisation. The artificial

fundamental frequency methods, and the two aperiodicity methods, are evaluated

to determine their performance, and the intelligibility results they achieve.

In Chapter 5, the first method for producing spectral-envelope information

given input visual features is presented. A number of configurations of different

statistical model, audio feature representation, and visual feature representation

are explored within a regression framework. Results from subjective listening tests

are presented to show the intelligibility of the best configurations for audio-only,

audiovisual, and visual-only scenarios. It is found that using deep neural networks

results in the greatest overall correlations, despite the intelligibility results being

lower than competing configurations.

The use of deep neural networks is explored further in Chapter 6, where they are

configured for classification and used within a clustering-and-classification frame-

work for spectral-envelope estimation. Here, the techniques of vector quantisation

are used to allow class labels to be assigned to audio feature vectors, which can be
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estimated by a deep neural network. Informal listening tests show that there is a

marked improvement in intelligibility over the previous regression system. Further

improvements to the system are made by incorporating greater temporal informa-

tion at the feature-level. A number of configurations are evaluated objectively,

with the best performing model chosen for further subjective evaluations.

As an extension to the clustering-and-classification approach, work on incorpo-

rating temporal information at the model level is presented in Chapter 7. Here,

two methods are detailed. Firstly, an approach using the Viterbi algorithm, which

although performs well in certain situations, fails to provide sufficiently high ob-

jective scores. Secondly, a recurrent neural network using the long short-term

memory architecture is used to produce sequences of audio feature estimates from

input sequences of visual features. This approach is evaluated objectively, with

the best performing configuration explored further using subjective listening tests.

Evaluations of the best performing methods from chapters 5, 6, and 7 are pre-

sented in Chapter 8 for two datasets. For the first dataset, subjective intelligibility

tests are conducted to evaluate the performance of the three visual-to-audio ap-

proaches for obtaining intelligible speech reconstructions. The results from the

feature-level and model-level methods show significant improvements over the re-

gression system, and demonstrate that, for the given dataset, high intelligibility

can be achieved when reconstructing audio speech from visual information. Eval-

uations are then presented for the second dataset, which has a larger-vocabulary

and less-constrained speech, to determine how the models perform on a bigger

dataset. Lower intelligibility is achieved, however, the results suggest that higher

intelligibility could be obtained given a more concentrated effort.

Finally, in Chapter 9, the work and results presented in this thesis on intelligible

audio speech reconstruction using visual speech are summarised. Additionally, the
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limitations of this work are discussed with a number of possible avenues of future

work outlined, with a focus on applying the visual-to-audio techniques for two

specific applications, and for improving the performance of audiovisual speech

enhancement and speaker separation systems.



Chapter 2

Literature review

2.1 Introduction

This chapter presents a literature review on domain mapping models, audio and

visual speech perception, the intelligibility of speech signals including subjective

and objective measures, and applications of the visual modality in speech process-

ing. As the aim of this thesis is to perform visual-to-audio mapping, other domain

mappings are considered to motivate model selection and design choices. Audio

speech perception is considered to determine what makes speech intelligible and

how it is affected by modifications to various speech parameters. Visual speech

perception is then examined to establish how the visual modality aids normal and

hard-of-hearing listeners, especially for speech in the presence of background noise.

Objective and subjective measures of speech intelligibility are considered for use

in evaluating the performance of different system configurations when producing

intelligible audio speech reconstructions. The use of the visual modality in au-

diovisual and visual-only speech processing applications is explored to motivate

design decisions for this work.

9
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Section 2.2 begins with a review of domain mapping models as used in vari-

ous areas of speech processing. Such mappings consider articulatory and acoustic

information for a variety of applications, and audio-to-visual mappings for anima-

tion purposes. In Section 2.3, an investigation is conducted on the factors affecting

audio speech intelligibility, with an emphasis on audio speech perception and what

effect modifications to speech parameters have on intelligibility. In Section 2.4, an

overview of subjective and objective intelligibility tests is given. Subjective testing

is considered the most appropriate way for determining intelligibility as testing in-

volves real human listeners, however, for convenience, objective measures are often

to used in an attempt to predict speech intelligibility. A review of the literature on

visual speech perception is presented in Section 2.5, discussing the benefits of the

modality for normal and hard-of-hearing listeners in clean and noisy speech con-

ditions. This section is followed by details of speech processing applications using

the visual modality for combined audiovisual systems and for visual-only systems

in Section 2.6, where visual speech offers numerous benefits including, primarily,

robustness to audio noise. Lastly, this chapter is summarised in Section 2.7.

2.2 Domain mappings

One of the major components of this work is the estimation of audio information

from visual speech, which can be considered as a domain mapping problem. Other

examples of domain mappings in speech processing include articulatory-to-acoustic

(and vice versa) and audio-to-visual. Accordingly, a review of the domain map-

ping problem, with reference to estimation models and important considerations,

motivates model selection and design choices for this work.

Articulatory-to-acoustic mapping models, and the inverse problem of acoustic-

to-articulatory mapping, have application for speech coding, speech synthesis, and
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speech modification scenarios [Toda et al., 2008]. The ability to perform the map-

ping depends on the fact that articulatory information determines the resonant

characteristics of the vocal tract during speech production, where the acoustic

output is realised due to these configurations. Approaches to this problem include

using hidden Markov models to determine articulatory movements from acoustic

features with and without the use of phonemic information [Hiroya and Honda,

2004], and using joint probability density Gaussian mixture models with appli-

cation of the minimum mean square error criterion for performing the conver-

sion [Toda et al., 2008]. The primary difficulty with estimating articulator move-

ments from audio speech is that there exists a one-to-many mapping of speech

acoustics to articulatory configurations. Experiments conducted by Atal et al.

[1978], using a computer simulation to examine the relationship between vocal-

tract configuration and acoustic output, found that different vocal-tract shapes

could yield acoustic outputs with nearly identical values for the frequencies and

amplitudes of the first three formants. One proposed solution to this one-to-many

mapping between the audio and articulatory domains is achieved by incorporating

visual speech (modelled using AAM features) yielding audiovisual-to-articulatory

models [Katsamanis et al., 2009].

The inverse of the visual-to-audio domain mapping problem is that of estimat-

ing the facial movements of visual speech directly from the acoustic waveform.

Audio-to-visual mapping models have application in animation, and computer-

aided interfaces for tools such as virtual agents, email readers, and so on, where

the goal in these applications is to achieve realism. Having shown application

for other domain mapping problems, multi-stream hidden Markov models can be

utilised to map from acoustic speech features (e.g. MFCCs or LSPs) to visual

speech features (e.g. AAMs). In [Fu et al., 2005], an HMM state sequence is de-

termined from input audio using the Viterbi algorithm, and the visual output is
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taken as the mean of the Gaussian mixtures corresponding to each state. Other

approaches to performing this mapping include using neural networks [Hong et al.,

2002; Massaro et al., 1999], and more recently deep neural networks. In a system

proposed by Taylor et al. [2016], DNNs are used to estimate a temporal window

of facial movement parameters from an input window of acoustic speech features.

Averaging of the overlapping estimated visual speech features is performed to gen-

erate continuous and smooth speech animations.

Numerous investigations exist detailing the degree of correlation between acous-

tic and visual speech information (explored further in Chapter 3), however, fewer

examples are found of actually using estimated audio information output by a

visual-to-audio mapping model. Two areas of speech processing using audio esti-

mates from visual information include speaker separation and speech enhancement.

Girin et al. [2001] explore a number of techniques for incorporating visual informa-

tion into audio speech enhancement systems, where they use linear and non-linear

models to produce direct estimates of enhancement filters, and estimates of spec-

tral information from which filter coefficients are derived. In Almajai and Milner

[2011], Gaussian mixture models are used to estimate log-filterbank audio features

from visual information, which are employed for Wiener filtering of noisy speech

signals. Similar ideas are applied in Rivet et al. [2014] and Khan and Milner [2015]

for audiovisual speaker separation.

2.3 Intelligibility of audio speech

This section begins with a review of the literature pertaining to what makes audio

speech intelligible, with emphasis on audio speech perception and the effect of

modifications to speech production model parameters. For this work, it will be

beneficial to understand what characteristics of audio speech signals contribute
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to intelligibility, and what ought to be considered for design decisions and for

evaluating the performance of different systems.

The intelligibility of a signal speech is a measure indicating to what extent

it is deemed comprehensible. Weismer [2008] states that, for a given situation,

speech intelligibility is dependent on the characteristics of both the speaker and

the listener, the speech material, and the channel. Accordingly, there are a num-

ber of factors that can affect how intelligible a speech signal is. For example,

when considering the communication channel, audio signals can be negatively in-

fluenced by background noise, and acoustic effects such as reverberation and echo.

With regards to speaker characteristics, speech disorders such as dysarthria may

result in a speech signal where the intelligibility is impaired at the outset due to

poor phonation [Morales and Cox, 2009]. Furthermore, listeners may be afflicted

with hearing impairments resulting in poor frequency selectivity, and is a problem

further compounded in noisy environments [Baer et al., 1993].

2.3.1 Audio speech perception

Audio speech perception, as occurs in humans, functions by merging information

extracted from independent frequency regions, to form the sounds units of speech

(phonemes) that are then combined to form, syllables, words, and sentences [Allen,

1994]. The frequency regions exist as overlapping frequency bands, also known as

critical bands and proposed by Fletcher and Munson [1933], where the indepen-

dence of the frequency regions is important for enabling humans to continue to

recognise speech despite errors in other frequency regions caused by masking. Such

errors in an audio signal may be introduced due to the addition of noise and rever-

beration. The information extracted from each frequency channel is combined to

form a feature set to maximise the identification of the correct phoneme [Fletcher,
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1953]. For example, if a speech sound is processed by two separate channels, and

the upper channel is corrupted by noise, the phoneme information will be entirely

extracted from the lower channel.

2.3.2 Effect of speech parameter errors on intelligibility

In this thesis, audio features are estimated from visual speech information which

are subsequently input into speech production models to produce audible speech

reconstructions. As it is unlikely that the speech parameter estimates will be per-

fect, it is necessary to understand what effect errors in the parameters have on the

intelligibility of reconstructed speech signals. The speech parameters considered

are spectral-envelope, fundamental frequency, and phase.

It is assumed that only broad spectral-envelope information can be estimated

from visual speech to any real degree, where such estimates will exhibit an amount

of smoothing. It is, therefore, necessary to understand how intelligibility will be af-

fected by such alterations of the spectral-envelope. When considering fundamental

frequency, it will not be possible to determine usable information from the speech

signal, and, accordingly, artificial contours will be required as input to speech pro-

duction models. Therefore, investigations on the intelligibility of speech with f0

modifications will provide valuable information when developing the artificial-f0

methods. Similarly, phase information can not be estimated from visual speech,

yet in Paliwal and Alsteris [2003] the contribution to speech intelligibility in hu-

mans is found to be equivalent to that of the power spectrum. Studies conducted

on speech intelligibility with altered phase information will guide the selection of

speech production models in the next chapter.
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2.3.2.1 Spectral envelope

Ter Keurs et al. [1992] investigated the effect of spectral smearing on the intel-

ligibility of speech produced by a female speaker in the presence of noise. The

smearing of the spectral-envelope, simulating lowering of the frequency resolution

in the auditory system, was performed by convolution of the short-term power

spectrum with a Gaussian-shaped filter. The effect of smearing on the spectral

slope is for it to tend towards a straight line. It was found that there is a direct

relationship between the resolution of the spectral-envelope and the intelligibility

of speech in the presence of noise for sentence material. Further experiments con-

ducted determined the extent to which vowels and consonants in clean and noisy

conditions were affected by spectral smearing. Under noisy conditions the effect

of spectral smearing was more significant for vowels than consonants.

Ter Keurs et al. [1993] extended their earlier study to include speech from

a male speaker, therefore allowing them to compare their earlier results with a

female speaker. They hypothesised that any such differences between the genders

could possibly be attributed to the difference in amplitudes and bandwidth of the

formant peaks, and the depth of the valleys in between. Their results agreed with

the earlier work that showed the effect of spectral smearing on the SRT, but they

found that there was no significant difference between the intelligibility of the male

and female speakers.

2.3.2.2 Fundamental frequency

The fundamental frequency, f0, of a speech signal is the lowest harmonic produced

by the vibrating of the vocal folds. In speech perception, the fundamental fre-

quency provides important linguistic cues, and where dynamic changes in the con-

tour serve to indicate the location of important words in an utterance [Cutler et al.,
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1997]. A number of studies have been conducted on the intelligibility of speech

utterances with modified f0 contours for both English and other languages [Spitzer

et al., 2007; Laures and Weismer, 1999; Wang et al., 2013]. Flattening of the f0

contour, as occurs in some speech disorders resulting in audio utterances that are

more monotonic in nature, has a detrimental effect on intelligibility. In a study

conducted by Miller et al. [2010], a number of modifications to the contour were

performed in addition to flattening. These included exaggeration of the contour,

applying inversion, and replacing the contour entirely with a slowly-oscillating

sinusoid. Relative to utterances with the original f0 contour, those with exagger-

ated and flattened contours exhibited relative reductions in key-word recognition

accuracies of 13 %, and with a further loss of intelligibility for the inverted and

sinusoidal contours showing a relative reduction of 23 %. Furthermore, in a study

on global and fine-grained acoustic speaker characteristics, Bradlow et al. [1996]

found a similar tendency for increased intelligibility with a wider range of f0, and,

additionally, that there was no apparent correlation between increased speech in-

telligibility and mean fundamental frequency.

2.3.2.3 Phase

Experiments conducted by Shi et al. [2006] explored the effect of phase errors

on speech intelligibility. The phase of speech utterances was altered within an

analysis-modification-synthesis framework with increasing levels of corruption from

perfect phase to entirely random phase. It was found that intelligibility is depen-

dent on both the amount of phase noise, and the signal-to-noise ratio. At low

SNRs (−10 dB), an absolute increase in word error rate of 39 % results when the

phase is completely random as opposed to when there is no phase noise. These

results confirm those found by Paliwal and Alsteris [2003], where they discovered

that the phase spectrum can significantly contribute to the intelligibility of speech.
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2.4 Measures of speech intelligibility

The ideal procedure for conducting intelligibility experiments is to perform sub-

jective evaluations. However, it is not necessarily always convenient to perform

subjective listening tests as they require preparation of testing materials, organ-

isation of subjects, and time to conduct the experiments. Therefore, although

they should not be considered a replacement for subjective evaluations, objective

measures of speech intelligibility are commonly used as they are cheaper, easily

repeatable, and less time consuming [Schmidt-Nielsen, 1992]. A review of subjec-

tive test configurations and of objective measures frequently used in the literature

are provided in this section.

2.4.1 Subjective measures

When determining the intelligibility of speech signals using subjective testing,

scores are typically calculated from the number of correctly identified responses by

listeners to phonemes, words (either meaningful or nonsense), or sentences [Steeneken,

2001], and are based on the perception of speech intelligibility as that of under-

standing the speech material. When deciding upon the type of subjective listening

tests to perform, it is important to understand how the tasks evaluated in the tests

relate to the use-cases in the real-world, such that results can be extrapolated ap-

propriately. Evaluations such as rhyme tests and using nonsense syllables can be

used to determine the amount of acoustic detail pertaining to the phonetic struc-

ture of the material, and are highly repeatable despite perhaps being less realistic.

Whereas sentence material can be used to provide more realistic scores where lis-

teners are able to rely less on acoustic-phonetic information with greater emphasis

placed on context, at the compromise of being less repeatable [Schmidt-Nielsen,

1992].
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Test configurations can be either open response where no choices are presented

to the listener, or closed response where a selection of choices are offered. Proposed

by House et al. [1963], the Modified Rhyme Test (MRT) is a closed response

test consisting of fifty separate six-word lists, where each word is of the form

consonant-vowel-consonant (CVC) and are similar sounding. A carrier sentence

is typically used and the listener is asked to select which word of the six they

believe to be correct. Additionally, the MRT allows for the confusions of phonemes

to be determined. A similar closed response test is the Diagnostic Rhyme Test

(DRT) consisting of 96 rhyming word pairs where no carrier phrases are used.

The DRT provides scores for a set of phonemic features in addition to overall

intelligibility [Voiers, 1983]. Rhyme tests are suitable for evaluating segmental

acoustic-phonetic information where the difference of individual speech sounds are

important.

For evaluating suprasegmental cues (e.g. pitch, duration, and intensity) sen-

tence material can be used. In such tests, intelligibility is typically calculated on

either a per-word basis (the number of correctly identified words in a sentence),

or at the sentence level, where it is necessary for the entire sentence to be correct.

Egan [1948] provides a set of phonetically balanced sentences, where intelligibil-

ity scores are determined by the number of correct responses of five keywords

within each sentence. Other sentence material, again where keyword accuracy is

scored, include those presented by Nye and Gaitenby [1973], where the sentences

are semantically anomalous but still grammatically correct. The Speech Reception

Threshold (SRT) proposed by Plomp and Mimpen [1979] provides intelligibility

scores as the minimum signal-to-noise ratio at which a listener can understand

fifty per cent of words within a sentence.
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2.4.2 Objective measures

A number of objective measures have been proposed for evaluating intelligibility

of speech material, where assessments are based on the physical parameters of a

transmission channel [Steeneken, 2001]. It should be noted that objective measures

are used to predict intelligibility, and are unlikely to provide entirely accurate

results.

The Articulation Index (AI), proposed by French and Steinberg [1947], assumes

that a speech signal is not uniformly distributed in the frequency domain, and that

speech intelligibility can be determined based on the sum of contributions from

individual frequency channels that are audible to a listener. The Speech Intelligi-

bility Index (SII) [ANSI, 1997] is a refinement to the AI, that is able to account

for band-pass limiting and noise. A frequency-weighting function is introduced to

assign greater importance to the signal contained within certain frequency ranges.

Another traditional measure is the Speech Transmission Index (STI), developed by

Steeneken and Houtgast [1980] in response to the authors being required to con-

duct numerous subjective intelligibility assessments. The method assumes that

acoustic speech information is formed of a sequence of temporal modulations, and

that any reduction in such modulations, perhaps due to additive noise or reverber-

ation, will result in a reduction of overall intelligibility. Unlike the AI and SII, the

Speech Transmission Index is able to account for non-linear distortions including

acoustic effects such as reverb and echo.

Two commonly used measures in the literature for assessing speech intelligibil-

ity of synthesis systems [Valentini-Botinhao et al., 2011], and speaker separation

methods [Tu et al., 2014], are PESQ and STOI. Originally designed for assessing

speech quality for narrowband telephony systems, the Perceptual Evaluation of

Speech Quality (PESQ) [Rix et al., 2001] method gives results that have been
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shown to correlate well with speech intelligibility evaluations for the cases of inter-

fering speakers [Beerends et al., 2004], and background noise [Ma et al., 2009]. The

short-time objective intelligibility (STOI) measure [Taal et al., 2010], was designed

for evaluating speech material processed by speech enhancement and speaker sep-

aration systems.

Fewer measures exist for predicting speech intelligibility where signal distortions

do not result from the interference of background noise. Such distortions may

occur due to speech parameter modifications, the effects of speech production

models, or the processing of signals by hearing-aids [Kates and Arehart, 2014]. The

Normalised Frequency-weighted Distortion measure (NFD) proposed by Websdale

et al. [2015], is designed to measure the amount of spectral distortion between

an original and processed utterance, showing benefits over STOI and PESQ for

predicting utterance intelligibility with spectral-smoothing modifications.

A comprehensive review detailing the performance of various traditional and

newly-proposed objective measures for predicting subjective speech intelligibility

is presented by Ma et al. [2009] for noisy speech scenarios, and by Websdale et al.

[2015] for audio reconstructions of spectrally-smoothed speech using artificial fun-

damental frequency contours. A summary of the results on correlations between

subjective intelligibility scores and objective measures as applied to spectrally-

smoothed speech are presented in Table 2.1, using work from experiments con-

ducted in Chapter 5 of this thesis. In addition to those reviewed thus far, the

investigation also considers measures for determining the quality (Hearing Aid

Speech Quality Index, HASQI) and intelligibility (Hearing Aid Speech Percep-

tion Index, HASPI) of degraded speech for listeners using hearing aids [Kressner

et al., 2013; Kates and Arehart, 2014], other measures for objectively predicting

speech intelligibility (normalised covariance matrix, NCM; and coherence speech

intelligibility index, CSII) [Holube and Kollmeier, 1996; Kates and Arehart, 2005],
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and measures for determining spectral-envelope distortions (log likelihood ratio,

LLR; and distance, CEP) [Kitawaki et al., 1988; Quackenbush et al., 1988]. The

objective measures that exhibited the greatest correlations with the subjective

intelligibility tests results were STOI and NFD.

Table 2.1: Correlation, r, and standard deviation of the error, σe, between word-level
accuracies and objective measure scores, taken from [Websdale et al., 2015].

Measure r σe

PESQ 0.63 0.15

LLR -0.63 0.15

CEP -0.65 0.14

NCM 0.70 0.13

AI-ST 0.44 0.17

CSII 0.22 0.18

CSIIhigh 0.24 0.18

CSIImid 0.30 0.18

CSIIlow 0.44 0.17

STOI 0.75 0.12

HASQInonlin 0.62 0.15

HASQIlin 0.30 0.18

HASQIcomb 0.58 0.15

HASPI 0.64 0.14

NFD -0.81 0.11

2.5 Visual speech perception

In this section, a review is conducted on the benefits offered by the visual modal-

ity in human speech perception. For the work in this thesis, the original video

and reconstructed audio signals can be combined to produce audiovisual media,

which is expected to achieve higher intelligibility over either the audio or visual
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signals on their own. Accordingly, it is important to understand how visual speech

information aids listeners.

Before the discovery of the McGurk effect, phonetic perception of speech signals

was considered to exist only in the audio domain. The McGurk effect [McGurk and

MacDonald, 1976] occurs when visual information conflicting with audio speech

information impacts auditory perception. For example, a repetition of the syllable

/ga/ in the visual domain, mixed with the syllable /ba/ in the audio domain,

produces auditory perception of the syllable /da/ in normal hearing adults. The

effect motivated a shift from the prevailing auditory-only models of speech per-

ception to multi-modal models, where information from audio and visual speech

is combined. The two modalities are complimentary, in that, whilst audio speech

is sufficiently robust for conveying the majority of the information, visual speech

aids in identifying the place of articulation, helping to distinguish between audibly

confusable phonemes [Sekiyama et al., 2003].

In comparison to the audio speech signal, visual speech is phonetically lacking,

although not to the extent that visual-only word recognition is impossible [Bern-

stein, 2012]. Using only speech gestures of a speaker’s lips and face to understand

speech is known as lip-reading [Schwartz et al., 2004]. Summerfield [1992] finds

that there is a considerable amount of variation in the ability for humans to lip-

read, even for those who are considered better than average, with word recognition

scores typically reported in the range of 10–70%. This considerable variability can

be attributed to numerous causes including the abilities of the lip-readers them-

selves, the vocabulary of the spoken material, and the person talking. When con-

ducting subjective experiments which require subjects to lip-read, it is necessary

to try and control for this large variation in abilities.

Studies have shown that the visual modality offers benefits for degraded au-



CHAPTER 2. LITERATURE REVIEW 23

ditory signals where speech intelligibility is improved using information from the

visible articulators (lips, teeth, and tongue) [Sumby and Pollack, 1954], and non-

verbal movements of the head [Munhall et al., 2004]. The greatest contribution

of visual speech information is made when the audio speech signal is significantly

masked or corrupted, although the benefit of seeing the mouth of a speaker still

remains in clean speech. A study conducted by Middelweerd and Plomp [1987]

showed that subjects are able to tolerate an extra 4dB of audio noise using the

visual modality, where, for sentence material, a rough increase in intelligibility

of 10–15% per decibel results. Moreover, Summerfield [1987] describes further

benefits of visual speech such as aiding with speaker localisation, and providing

additional segmental speech information such as syllable and word boundaries.

2.6 Audiovisual speech processing

In the previous section, investigations into the benefits offered by the visual modal-

ity were described with reference to human speech perception. In this section, the

literature on using visual speech in speech processing applications to improve per-

formance of audio-only systems, and for visual-only systems, is examined.

The first documented use of incorporating visual speech into an automatic

speech recognition (ASR) system was presented by Petajan [1984]. Simplistic

binary images of the mouth were used to extract geometric features (area, height,

width, etc.) to complement audio features in an ASR system investigated for a

small-vocabulary isolated-word dataset, where improvements were achieved over

an audio-only system. The primary reason for incorporating visual features into

ASR systems is that they are robust to audio noise, although benefits are still seen

in clean conditions [Glotin et al., 2001]. Experiments conducted by Potamianos

et al. [2003] showed that audiovisual speech recognition (AVSR) systems outper-



CHAPTER 2. LITERATURE REVIEW 24

form audio-only ASR systems over a wide range of conditions with significant

reductions in word error rates (WER) at low SNRs. For a large vocabulary con-

tinuous speech recognition (LVCSR) task, their best performing system achieved

an 8dB gain, with the combined audiovisual system achieving results at 2dB simi-

lar to those for the audio-only system at 10dB. Additionally, as has been witnessed

in recent years with audio ASR systems, using deep neural network (DNN) models

has yielded a further increase in AVSR performance [Noda et al., 2015].

Other examples of exploiting both modalities for speech processing applications

include speaker verification [Dean and Sridharan, 2010], speech enhancement, voice

activity detection, and speaker separation. In a study conducted by Almajai and

Milner [2011], visual information was used to enhance audio speech signals in low

SNRs using a Wiener filter system, where incorporating visual information yields

significant improvements in perceptual quality of processed utterances [Abdelaziz

et al., 2013]. Given the robustness of the visual modality to noise, voice activity

detection has benefited from using both modalities, where a weighting mechanism

allows the contributions of the audio and visual streams to be controlled depending

on the level of interfering audio noise [Almajai and Milner, 2008]. Furthermore,

single channel speaker separation system, where a single microphone recording

contains a mixture of two or more speakers, have shown improvements over audio-

only systems by integrating visual information for both binary mask [Khan and

Milner, 2013] and soft-mask [Khan and Milner, 2015] configurations.

Using the visual modality alone gives rise to automatic lip-reading systems,

where descriptions of the visual articulators are used to produce phoneme or

word-level transcriptions. A study conducted by Lan et al. [2012] evaluated the

performance of a machine lip-reading system and that of six professional human

lip-readers. When provided with transcriptions and vocabulary of the material,

they observed a large variation in the word recognition rates of the human lip-
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readers (0–60%). In comparison, the machine lip reading system achieved a word

recognition accuracy of 14%, outperforming four of the six expert lip-readers. Re-

cent automatic lip-reading performance on a large-vocabulary (1000 words) corpus

achieves word accuracies of 85%, when using DNNs instead of conventional HMMs

for a speaker-dependent configuration [Thangthai et al., 2015]. Due to large inter-

speaker variability of the visible articulators, speaker-independent AVSP systems

have been considerably less successful than speaker-dependent systems. Experi-

ments on speaker adaptation techniques applied to visual features in a lip-reading

task by Almajai et al. [2016] yield mean word recognition accuracies of 55% across

twelve speakers, a significant improvement on previous work. However, despite

these recent improvements, the performance of state-of-the-art speaker-dependent

and speaker-independent lip-reading systems is still far lower than that of the

best-performing audio ASR systems.

2.7 Summary

This chapter presented a literature review of experiments and investigations con-

sidered important for the work conducted in this thesis. The domain mapping

problem is discussed initially, where a number of models have been explored for

performing the mapping including GMMs, HMMs, and DNNs. When considering

different domain mapping problems, the objectives for each are distinct. That is

to say, for articulatory-to-acoustic mapping the goal is to reduce parameter dimen-

sionality for speech coding applications, and for audio-to visual work the emphasis

is on producing realistic mouth and facial animations. However, for this work, the

reconstruction of intelligible audio speech is the main aim.

The intelligibility of speech signals is then considered, where intelligibility pro-

vides a measure indicating to what extent a speech signal can be understood, and



CHAPTER 2. LITERATURE REVIEW 26

is affected by a number of factors. Modifications to speech parameters such as

smoothing of the spectral-envelope and flattening of the fundamental frequency,

important to consider for speech reconstruction, are shown to affect intelligibility,

especially under noisy conditions. For measuring speech intelligibility, subjective

or objective tests can be performed. In subjective tests, listeners are asked to

transcribe responses such as phonemes, words (nonsense or meaningful), or entire

sentences, where scores are determined based on the number of correct responses.

Whereas objective measures aim to predict intelligibility, with the main benefits

being that evaluations can be performed significantly quicker and cheaper than

subjective tests. Two commonly used measures within the literature for evalua-

tion of speech synthesis systems include STOI and PESQ, and are used throughout

this thesis.

Next, the focus turns to visual speech perception as occurs in humans. The

visual modality offers benefits for both normal and hard-of-hearing listeners, pro-

viding information regarding the place of articulation to aid with the differentia-

tion of audibly confusable phonemes, the identification of word boundaries, and for

speaker localisation. The main contribution of the visual modality occurs under

low SNR conditions where there is considerable interfering background noise. Ac-

cordingly, such benefits have motivated integrating the visual modality into speech

processing applications such as ASR, speech enhancement, and speaker separation.

Even under clean conditions, ASR systems have shown improvements when both

the audio and visual modalities are combined, with the biggest reduction in WERs

occurring in low SNR conditions. Visual-only systems give rise to automatic lip-

reading, where word-level transcriptions are produced using only visual speech

information. Although WERs are considerably higher than the best performing

ASR systems, recent results have shown significant improvements.

In the next Chapter, a review of speech production is presented, initially focus-
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ing on how the process occurs in humans, and then on speech production models

as used for speech synthesis and reconstruction. This is followed by details of com-

mon audio and visual features, and the correlations that exists between them—the

relationships of which are exploited in this thesis.



Chapter 3

Speech production

3.1 Introduction

This chapter begins with an overview of human speech production to determine the

important components of the process to motivate design decisions for this work. It

is necessary to establish what is required from visual speech information to drive a

speech production model, where various models are assessed for producing audio

speech reconstructions. Evaluations are conducted on two feature representations

of the spectral-envelope, a necessary parameter of speech production models, and

two feature representations of the visual articulators, from which spectral-envelope

information can be estimated.

The thesis of this work is that an intelligible audio speech signal can be recon-

structed using solely visual speech information extracted from a video of a speaker.

Given a video focused on the face of a speaker, a sequence of visual feature vectors,

vi, can be extracted, localised about the mouth (lips, teeth, and tongue). This

visual sequence is then passed to a visual-to-audio domain mapping model to pro-

duce a sequence of corresponding audio feature estimates, âi. The audio sequence

28
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can then be transformed into a time-frequency spectral-envelope, which is used,

with the addition of source excitation information, to reconstruct an audio speech

signal using a speech production model. Figure 3.1 provides a pictorial overview

of this process.

Speech 
model

Excitation

vi
v2a

mapping

ai

X(f, i)

Figure 3.1: Audio speech reconstruction system with necessary components. Visual
features are extracted from a video of speaker which are then input to the visual-to-
audio mapping model outputting audio feature estimates, which are used to produce
spectral-envelopes. A speech production model is then used to reconstruct the audio
speech output given the spectral-envelope and an artificial excitation signal.

Speech production models have application in speech processing for reconstruct-

ing or synthesising audio speech signals given a set of input parameters. A typical

set of parameters include spectral-envelope and source excitation information, and

are motivated by the mechanisms of the human speech production system. To

reconstruct an audio speech signal, the source excitation information, which is

either a pulse-train with periodicity pertaining to the fundamental frequency for

voiced frames or simply white noise for unvoiced frames, is modulated by a filter

that models the resonances of the vocal-tract.

In this work, there is an assumption that sufficient audio speech information can

be estimated from visual speech. As discussed in Chapter 1, it is not possible to

obtain estimates of the fundamental frequency of a speaker from visual speech as

the vocal-cords cannot be seen. Obtaining a voicing decision will also be difficult

and depend on what information can be inferred from the shape of the mouth

in relation to the speech sound being produced. Therefore, it is assumed that

only spectral-envelope information can be estimated adequately from the visual
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information. Accordingly, the correlation of audio and visual speech information

is discussed, with further details provided for the selected feature representations

of each modality.

The remainder of this chapter is organised as follows. In Section 3.2, an overview

of the mechanisms for human speech production is given, discussing the main or-

gans and the separation of speech signals into source excitation and vocal-tract

filter components. Following on from human speech production, a complementary

review of common speech production models is presented in Section 3.3, includ-

ing details of their workings. Various audio features, for representing spectral-

envelope, and visual features, for representing the mouth movements of a speaker,

are examined in Section 3.4 and Section 3.5, respectively. Lastly, a summary of

this chapter is provided in Section 3.6.

3.2 Human speech production

Speech is one of the main forms of human communication, resulting from the

processing of ideas and thoughts into words and sentences, which are then vocalised

within the human speech production system. Upon reaching the auditory system of

a listener (audio speech perception is discussed in Chapter 2), the acoustic speech

signal is processed to derive the meaning of what was conveyed. The human

speech production system consists of a number of organs (the vocal organs) where

the interactions between them result in audio speech signals.

3.2.1 Anatomy

The main organs of human speech production are the lungs, larynx, pharynx, nose,

the hard and soft palates, tongue, teeth, and lips [Holmes and Holmes, 2001]. These
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Figure 3.2: Cross-section diagram of the head and upper torso showing the locations
of the various organs involved in the human speech production process.
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organs are shown in a cross-sectional diagram of a human head and upper torso

in Figure 3.2. The source of energy in human speech production comes from air

expelled from the lungs using muscular force which generates an excitation sig-

nal when passing through the glottis (the opening between the vocal-folds within

the larynx) through the process of phonation. This excitation waveform is subse-

quently modulated by the remainder of the vocal organs, termed the vocal-tract,

to produce a sound pressure waveform emanating from the mouth. Different au-

dio speech outputs are produced by engaging the various components of the vocal

organs. The separation of the human speech production process into a source exci-

tation signal and vocal-tract filter gives rise to the source-filter speech production

model, which is discussed in greater detail in Section 3.3.

3.2.2 Excitation

Air-flow from the lungs can be used to produce two major types of excitation

source. Voiced speech sounds are produced when the vocal-tract is excited with air-

flow that is modulated by vibrations of the vocal folds. As air passes through the

glottis the vocal folds begin to vibrate, thus modulating the flow of air to produce

a periodic output. This process is known as phonation. The rate at which the

vocal folds open and close determines the fundamental frequency, f0, of the speech.

Unvoiced sounds are produced through the excitation of the vocal-tract with air

from the lungs flowing through the open vocal-folds and constrictions within the

vocal-tract. The acoustic qualities of sounds produced from the excitation of

turbulent air are more noise-like (aperiodic), with a broader spectrum than voiced

excitation sounds. These two sources are not mutually exclusive, and when both

occur together speech is produced with a more breathy quality. An additional

source of excitation occurs when a build-up of pressure, due to the closing of a
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part of the vocal-tract, is released. Such sounds occur for stop consonants.

3.2.3 Vocal-tract

The modulation of the excitation sound sources occurs through the process of

acoustic resonance. The vocal-tract, beginning at the larynx and ending at the

mouth and lips, is the primary resonant structure of the human speech production

system. The main resonances that occur in the vocal-tract are known as formants,

and are important in determining the phonetic properties of audio speech. Accord-

ingly, the vocal-tract can be thought of as a filter with a series of resonances that

modulate an excitation source. The first two formants, F1 and F2, are generally

the most significant determinants of the phonetic properties of speech sounds, al-

though for certain phonemes the higher-frequency formants are important [Holmes

and Holmes, 2001]. Variation in F1 and F2 is based on the volume and shape of the

pharyngeal and oral cavities, respectively. A larger pharyngeal cavity, as occurs

when the tongue is raised, exhibits correlation with the first formant, whereas the

second formant exhibits correlation with changes within the oral cavity [Cairns

et al., 2010]. Furthermore, the nasal cavity can be incorporated into this system

by disengaging the velum (soft-palate), which allows sound to radiate from the

nostrils.

3.3 Speech production models

In the previous section, an overview was provided of the speech production system

as occurs in humans, and how the process can be viewed as a source of excita-

tion that is modulated by a filter producing an output signal. In this section,

four popular speech production models are discussed with applications ranging
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from speech coding to speech modification and synthesis. These four models in-

clude the sinusoidal model and a development known as the harmonic-plus-noise

model, and then a typical source-filter model with a further implementation called

STRAIGHT.

It is important to consider a variety of speech production models, as the one

selected for this work will be used to produce audio speech reconstructions using

spectral-envelope parameters obtained from the visual-to-audio domain mapping

models, and excitation information from other methods. As it will be difficult

to estimate the spectral-envelope accurately, due to the limitations of audiovisual

correlation, it is important that the speech production model itself will not have

a detrimental effect on the intelligibility of reconstructed utterances.

3.3.1 Sinusoidal model

The sinusoidal model of speech production was first proposed by McAulay and

Quatieri [1986] and is based on the premise that each frame of speech, where

the waveform is assumed to be stationary, can be represented by the summation

of individual sinusoids each with varying amplitude, frequency, and phase. The

model has application for low bit-rate speech coding [Marques et al., 1990], speech

enhancement [Jensen and Hansen, 2001], and speech modification [George and

Smith, 1997]. A generalised mathematical description of the sinusoidal model is

given by,

si =
L−1∑
l=0

Al sin(ωli+ φl), (3.1)

where ωl = 2πfl, and each frame of speech comprises L sinusoids, each having

frequency, fl; amplitude, Al; and phase, φl. The set of L sinusoidal components
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can be extracted from the short-term Fourier transform of a speech frame using

a peak-picking algorithm. For voiced frames of speech, the harmonics are usually

sufficiently evident to be able to easily identify the peaks of each sinusoid, and

determine the frequency and amplitude from the magnitude spectrum, and the

phase from the phase spectrum. To allow the model to function during unvoiced

speech frames, parameters are taken from sinusoids spaced 100 Hz apart.

During voiced speech frames there exists an approximate harmonic relationship

between the sinusoidal components, where the sinusoids have frequencies that are

integer multiples of the fundamental frequency. For example, with f0 = 120 Hz,

sinusoids with frequencies of approximately 120 Hz, 240 Hz, . . . , 3840 Hz, 3960 Hz

will be present. Accordingly, Equation 3.1 can be simplified to give,

si =
L−1∑
l=0

A sin(lω0i+ φl), (3.2)

which exploits the approximate harmonic relationship of the sinusoids. For un-

voiced frames as mentioned above, the fundamental frequency is chosen to be

f0 = 100 Hz. The number of sinusoids generated per frame, L, is described by,

L =

⌊
fs
2f0

⌋
. (3.3)

When synthesising speech using the per-frame sinusoid parameters, it is neces-

sary that the amplitudes, frequencies, and phase are kept continuous across frame

boundaries. To resolve these issues, frequency-matching algorithms are used in

addition to phase-unwrapping and interpolation [McAulay and Quatieri, 1995].
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3.3.2 Harmonic plus noise model

The harmonic plus noise model (HNM) is an extension of the sinusoidal model

which aims to improve the naturalness and quality of the synthesised speech. The

HNM can be implemented in one of two ways. Firstly, as in Laroche et al. [1993],

where, as the sinusoidal model only synthesises sine waves at specific frequencies,

with no energy present in between, the HNM attempts to improve the resultant au-

dio quality by adding noise to “fill-in” the frequency gaps. Secondly, as in Stylianou

[2001], where a frequency, fM , is used as a cut-off separating the frequency spec-

trum in to two regions. The lower region of the spectrum describes the voiced

speech, whereby only harmonics are used, and the upper region describes the un-

voiced speech, which comprises purely noise with no harmonics. This separating

of frequencies about a cut-off frequency is performed as the harmonic nature of

the higher-frequency region is replaced with a more noise-like characteristic.

3.3.3 Source-filter model

The source-filter model [Rabiner and Schafer, 1978; Kleijn and Paliwal, 1995], is a

notable model of speech production that separates the generation of audio speech

into an excitation signal source and vocal-tract filter parameters. In practical ap-

plications, such as vocoders, the excitation signal takes the form of white-noise,

with no controlling input for unvoiced speech, or pitch pulses, which are funda-

mental frequency dependent for voiced speech. A block diagram of the source-filter

model is provided in Figure 3.3, showing sources of excitation, vocal-tract filter,

and output audio signal.

A voicing decision (voiced/unvoiced) can be included to decide whether the ex-

citation signal is to be generated using only either noise or pitch pulses. However,

more realistic speech results from using a combination of both excitation sources
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Figure 3.3: An overview of the source-filter model of speech production, showing
voiced (glottal pulse train) and unvoiced (white noise) sources of excitation, gain
term, vocal-tract filter response, and output audio signal.

as even during voiced speech the signal is not strictly periodic, with random fluc-

tuations noticeable in the higher-frequency regions [Kawahara and Morise, 2011].

The periodicity of the pitch pulses is dictated by the fundamental frequency of the

frame of speech.

A gain term is used to control the loudness of the window, and is determined

from the energy within the window of speech. The spectral content of the excita-

tion signal is then modulated by the filter, which takes as input a number of filter

coefficients derived from the vocal-tract. A speech signal can be obtained through

application of,

si =
P∑
p=1

apsi−p +G · ei, (3.4)

where ap is the pth coefficient of the all-pole vocal-tract filter with order P , G is a

gain term, and ei is an excitation signal. A voicing decision, necessary for selecting
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the excitation source (white-noise or pitch-pulses), and fundamental frequency,

used for setting the period of pitch-pulses during voiced speech, can be obtained

using pitch detection algorithms such as PEFAC [Gonzalez and Brookes, 2014] or

YIN [De Cheveigné and Kawahara, 2002]. The filter coefficients and gain term

can be determined through signal processing techniques such as linear predictive

coding, which is discussed further in Section 3.4.

3.3.4 STRAIGHT

The STRAIGHT (Speech Transformation and Representation using Adaptive In-

terpolation of weiGHTed spectrum) toolkit, proposed originally by Kawahara et al.

[1999] and receiving major updates in Kawahara et al. [2008], is an implementa-

tion of the source-filter model that separates speech into its spectral-envelope and

source excitation components. The model was developed to allow for flexible ma-

nipulation of parameters to produce high-quality speech modifications. The speech

model has received considerable attention in the areas of text-to-speech synthesis,

where it has been used for a number of HMM-based statistical speech synthesis

systems [Yamagishi et al., 2007, 2009; Heiga et al., 2007], and for voice conversion

systems [Toda et al., 2001; Ohtani et al., 2006].

To synthesise a time-domain speech signal, STRAIGHT requires a set of three

parameters:

1. a fundamental frequency contour – f0i ,

2. a measure of aperiodicity – A(f, i),

3. and a spectral-envelope surface – X(f, i),

where i and f represent the frame index and frequency bin respectively. As an
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Figure 3.4: Original waveform of the utterance “set red at H 2 soon” and parameters
extracted using STRAIGHT of fundamental frequency, aperiodicity, and spectral-
envelope.
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example, a set of parameters extracted from a speech utterance are shown in Fig-

ure 3.4. The aperiodicity surface provides a measure of how periodic (or aperiodic)

the frequency components are in the reconstructed speech signal. During speech

production, aperiodic sounds are more noise-like (having more aperiodic compo-

nents) and are produced by means of aspiration, frication, and transient bursts due

to constrictions in the vocal-tract [Deshmukh et al., 2005]. In comparison, periodic

sounds produced during voiced speech are created by the vibration of the vocal

folds. Additionally, the filtering of these sound sources by the vocal-tract further

affects the aperiodicity of the frequency components. The measure of aperiodicity

allows for both periodic and aperiodic components to be combined, as is the case

for voiced fricatives, to give more natural sounding speech.

To allow for high-quality speech reproductions, STRAIGHT performs successive

refinements of the source and spectral parameters. A pitch-adaptive smoothing

algorithm is applied to the spectral-envelope surface, X(f, i), to remove interfer-

ence caused by periodic components in the frequency and time domains. Fur-

thermore, as speech reconstructed using simple channel vocoders can exhibit a

buzzy-quality due to the characteristics of the input glottal pulse-train excitation

source, an all-pass filter is used to better control the temporal structure of the

pulse-train [Kawahara, 1997].

The STRAIGHT toolkit provides both a source-filter and a sinusoidal imple-

mentation for resynthesising a speech signal. The source-filter approach is used in

this work, which requires vocal-tract filter and source excitation information. The

vocal-tract filter impulse response, hi(t), can be obtained using,

hi(t) = F−1
[
Hi(f)Φi(f)

]
, (3.5)

where F−1 signifies the inverse Fourier transform, Hi(f) is the Fourier transform
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of the minimum phase impulse response derived from the spectral-envelope sur-

face [Kato, 2017], and Φi(f) is the all-pass filter. The minimum phase impulse

response is desired as specific types of phase characteristics can have an adverse

affect on the resultant reconstructed speech [Kawahara et al., 1999].

The excitation signal, ei(t), is obtained by combining both periodic and aperi-

odic sources of excitation as follows,

ei(t) =
1√
f0i

δ(n mod
fs

f0i

) + F−1
[
Ai(f)|N(f)|

]
, (3.6)

where the delta function is described by,

δ(x) =

1 if bxc = 0,

0 otherwise,

(3.7)

|N(f)| is the magnitude spectrum of random white noise, and fs is the sampling

frequency. The first term in Equation 3.6 gives the periodic source of excitation

by using the delta function to produce pitch-pulses at the fundamental frequency,

f0i . The second term gives the aperiodic excitation source by taking the inverse

Fourier transform of the magnitude spectrum of random white noise multiplied by

the aperiodicity surface.

A frame of speech, yi(t), can be reconstructed by convolving the excitation

source, ei(t), with the vocal-tract filter response, hi(t), as follows,

yi(t) = hi(t) ∗ ei(t), (3.8)

where ∗ denotes the convolution operator. To produce the entire utterance, overlap-

and-add is applied to the sequence of frames to give the final output speech signal.
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Given the successful application of STRAIGHT in a number of areas of speech

processing, and its ability to reconstruct high-quality speech signals, the speech

production model has been chosen for generating intelligible audio speech utter-

ances in this thesis.

3.4 Audio features

There are two primary considerations to take into account when selecting the audio

feature representations of the spectral-envelope information for use in the visual-

to-audio domain mapping models. Firstly, that there exists sufficient correlation

between the audio and visual features, so that they can be estimated with high

accuracy using mapping models. Secondly, that a suitable spectral-envelope sur-

face can be reconstructed from the audio feature coefficients, for use within the

STRAIGHT speech production model.

Previous studies have shown there to exist good correlation between visual infor-

mation and audio features such as mel-frequency cepstral coefficients (MFCCs) [Al-

majai et al., 2006], also commonly used as the front-end for ASR systems, and the

line spectral pairs (LSPs) representation of linear predictive coding (LPC) coef-

ficients [Yehia et al., 1998; Barker and Berthommier, 1999], commonly used in

speech coding tasks. In this section, LPC coefficients and mel-filterbank channel

amplitudes are discussed, with equations detailing how spectral-envelope recon-

structions are obtained from each type of feature.

3.4.1 Linear predictive coding coefficients

Linear predictive coding (LPC) is a common analysis technique for estimating

vocal-tract filter coefficients, and has application in tasks requiring codifying of
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speech signals, such as in the CELP [Schroeder and Atal, 1985] and SILK [Vos

et al., 2010] speech codecs. The principal behind linear prediction is that future

values of a discrete-time signal, produced by a slowly varying linear filtering pro-

cess, can be estimated as a linear combination of previous values [O’Shaughnessy,

1988]. LPC analysis is able to produce compact and precise representations of

the magnitude spectrum for short signals, where it is assumed that the signal is

briefly stationary, which for speech relates to configurations of the vocal-tract. For

most LPC analysis, it is satisfactory to assume that the filter is an all-pole model,

where the signal spectrum can be adequately modelled by resonances indicating

the spectral peaks.

An all-pole spectral shaping filter, H(z), with order P , can be described by:

H(z) =
1

1−
∑P

k=1 akz
−k

(3.9)

where ak are the filter coefficients, and z−k is a delay of k samples. To derive a set

of coefficients, ak, for parametrising the all-pole model, H(z), two least-squares

methods can be applied, autocorrelation and covariance. To suitably model the

formants in a frame of speech, two or more poles are required per resonance,

where, in practice, for an 8 kHz sampling frequency, ten poles are typically ade-

quate [O’Shaughnessy, 1988].

To obtain a spectral-envelope from a set of LPC coefficients, ak, the frequency

response of the filter is evaluated at equally spaced frequencies up to the band-

width, through application of,

XLPC(f, i) = 10 log10

∣∣Hi(e
j2πf )

∣∣2 , (3.10)

where to reproduce the power spectrum, assuming the set of linear predictor co-
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efficient were obtained from the magnitude spectrum, it is necessary to perform

additional logarithmic and power operations. In Chapter 5, the linear predictor

order is evaluated to find an optimum size.

3.4.2 Filterbank channel amplitudes

Filterbank representations of speech signals encode the high-resolution information

of the frequency domain as a low-dimensional feature vector, where the coefficients

are outputs taken from a bank of bandpass filters with the objective of retaining

the most perceptually important information. The bandwidths and centre fre-

quencies of the filterbank channels are typically chosen to increase with frequency,

and are motivated by auditory filter models of the frequency resolving abilities

of the cochlea. The spacing and bandwidth of the channels is commonly chosen

to conform to perceptual scales such as the Bark or mel scales. Filterbank chan-

nel amplitudes, with a mel spacing, for speech recognition applications were first

advocated by Davis and Mermelstein [1980]. Cepstral analysis can be applied

to Mel-spaced filterbank amplitudes yielding the popular Mel-frequency cepstral

coefficient (MFCC) audio feature, frequently used in ASR applications.

To obtain a set of Mel-filterbank channel amplitudes, aMEL
i , the ETSI Aurora

standard [ETSI, 2002] is followed. First, a bank of triangular bandpass filters is

applied to the short-term magnitude spectrum of a frame of speech. The spac-

ing and bandwidths of the channel conforms to the mel scale, with a channel

number of 23 typically used for speech processing applications having a sampling

frequency of 8 kHz. The frequency energies within each band are summed to give a

single output for that particular channel. The logarithmic transform of the chan-

nel amplitudes is then performed, motivated by the compressive non-linearity of

the basilar membrane, whereby a large range of input sound pressure levels are
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compressed into a smaller range [Holmes and Holmes, 2001].

A spectral-envelope representation can be reconstructed from a set of filterbank

channel amplitudes, aMEL
i , through application of,

XMEL(f, i) = interp(
√
ea

MEL
i ), (3.11)

where linear interpolation is applied to the transformed channel amplitudes at the

mel-spaced frequencies, to convert from the non-linear frequency spacing of the

filterbanks to a linear spacing, resulting in an spectral-envelope covering the fre-

quency range of 0 to 4 kHz. Experiments are conducted in Chapter 5 to determine

the optimum number of channels required for this work.

3.5 Visual features

Raw visual information is collected in the form of video recordings of a speaker’s

face, where, for even low-resolution video footage, there will be a large number

of pixel intensities. Furthermore, unless the video is capturing only the mouth of

a speaker, the majority of pixels within each frame will be redundant. Accord-

ingly, for encoding visual speech information, it is not necessary to use all of the

information within each frame, and, therefore, this high-dimensional data can be

transformed into a considerably lower-dimension without any loss of important

information. Numerous feature types exist for representing the visual speech in-

formation of a speaker, and can be broadly classified into four categories [Zhou

et al., 2014]:

1. Motion-based – where the observed motion of the mouth over time is en-

coded,
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2. Geometric-based – where combinations of the height, width, area, and perime-

ter of the mouth are extracted,

3. Image-based – where pixel intensities located about the mouth are either

used directly or after application of an image transform,

4. Model-based – where parameters are derived from a compact statistical

model describing the shape and appearance of the mouth.

Two visual feature representations that have been successfully applied in various

areas of audiovisual speech processing are the image-based two-dimensional dis-

crete cosine transform (2D-DCT), and the model-based active appearance model

(AAM). Both types of feature have been explored for AVSR [Potamianos et al.,

2003] and automatic lip reading [Lan et al., 2009].

3.5.1 Two-dimensional discrete cosine transform

The discrete cosine transform (DCT) has application in a number of areas of signal

processing and image coding where signal compression is desired [Rao and Yip,

2014]. The idea behind the DCT is that a signal can be expressed as a weighted

summation of a number of cosine functions each with a different frequency, where

the majority of the signal information is concentrated within the low-frequency

coefficients of the transformed signal. When used in signal processing applica-

tions, such as for lossy compression in the MP3 audio codec, the high-frequency

coefficients can be discarded as they are deemed to be perceptually unimportant.

The two-dimensional discrete cosine transform (2D-DCT) has application for lossy

compression of images, and is implemented in the JPEG imaging coding standard.

For use in visual speech applications, 2D-DCT features are extracted from a ma-

trix of pixel intensities, P, centred on the mouth of a speaker, yielding a coefficient
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(a)  Input image (b)  DCT matrix

Figure 3.5: An input image of a speaker’s mouth is shown in (a), and the cor-
responding top left of the DCT matrix is shown in (b). The application of zigzag
scanning is shown by the red line in (b).

matrix, C, through application of,

Cv,u = 4
M−1∑
y=0

N−1∑
x=0

Py,xcos
[π(2y + 1)v

2M

]
cos
[π(2x+ 1)u

2N

]
,

0 ≤ v ≤M − 1, 0 ≤ u ≤ N − 1,

(3.12)

where M is the number of rows and N is the number of columns of matrices P and

C. After application of Equation 3.12, the output coefficient matrix C has the

same dimensionality as the input matrix P, where the low-frequency information

is concentrated in the upper-left corner, and the high-frequency information is

concentrated in the lower-right corner. The application of the 2D-DCT transform

to an example mouth image is shown in Figure 3.5. To convert matrix C to a

vector, zigzag-scanning is applied beginning at the low-frequency region [Sayood

and Fow, 2000]. This yields a DCT coefficient vector,

c = [c0,0, c0,1, c1,0, ..., , cM−1,N , cM,N−1, cM,N ], (3.13)
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which can subsequently be truncated to produce an output J-dimensional visual

feature vector, v2D-DCT
i .

3.5.2 Active appearance model

Proposed by Cootes et al. [2001], an active appearance model (AAM) represents

the shape and appearance of an object, and has application for tracking objects

described by the model in an new image, such as for locating faces. An AAM is

constructed from a set of training images and associated hand-labelled landmark

data describing the objects of interest within each image, where the training im-

ages are typically chosen so as to cover the range of variations exhibited by the

object. Principal component analysis (PCA) is applied to shape and appearance

parameters determined from the training data to produce a model. In audiovisual

speech processing applications, an AAM can be used to model the shape and ap-

pearance of a speaker’s mouth, an example of which can be seen in Figure 3.6,

from which visual features can then be extracted.

Figure 3.6: Shape, shown as the red line on the inner and outer lip contours, and
appearance information of a speaker’s mouth.

The shape parameter, s, is the concatenated coordinates of n vertices detailing

the contours of the inner and outer lips, s = (x1, y1, . . . , xn, yn)ᵀ, and can be



CHAPTER 3. SPEECH PRODUCTION 49

described by,

s = s̄ + Qsbs, (3.14)

where s̄ is the mean shape of the model, matrix Qs describes the modes of shape

variation derived from the training data, and bs defines the contribution of each

mode. The columns in Qs are the leading eigenvectors of the covariance matrix

defining these modes of variation, or principal components. For a shape model

of a mouth, these principal components capture variation such as rounding of the

lips, and opening and closing of the mouth [Newman et al., 2010].

The appearance parameter, a, is defined by the pixel intensities located within

the mean shape, s̄, after the shape of the input image is normalised, and can be

described by,

a = ā + Qaba, (3.15)

where ā is the mean appearance image of the model, matrix Qa describes the

modes of appearance variation derived from the training data, and ba defines the

contribution of each of the variation modes. The principal components of the

appearance model capture variations in texture.

To extract visual features of a speaker’s mouth from an input visual frame using

an AAM, the model is first applied to determine a set of tracked landmarks located

about the inner and outer lips of the speaker. These landmarks are then processed

using Equation 3.14 to derive the shape parameters, and after warping the image

to the mean shape, the appearance parameters are extracted using Equation 3.15.

A final application of PCA is performed to the concatenated shape and appearance

parameters to produce an output AAM visual feature vector, vAAM
i .
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3.6 Summary

The aim of this chapter has been to identify and select an appropriate speech

production model, and suitable audio and visual speech feature representations,

for developing the work in this thesis. To begin, an overview of the human speech

production process is given, discussing the anatomy of the vocal organs and their

use in producing audio speech signals. The production of speech can be viewed

as a source-filter model, whereby an excitation source is modulated by a time-

varying filtering process. The excitation source takes the form of pitch-pulses

produced when the vocal-folds vibrate for voiced sounds, and of turbulent air

due to constrictions in the vocal-tract for unvoiced sounds. The vocal-tract filter

modulates the excitation by introducing acoustic resonances, that are dependent

on the configuration of the articulators, and can be seen in the frequency domain

as peaks, otherwise known as formants. This source-filter model view of speech

production is exploited in speech production models.

Following this, four speech production models are reviewed, with STRAIGHT

being identified as the best choice for this work, due to its ability to produce

high-quality speech reconstructions and as it has received significant attention for

numerous speech processing tasks in the literature. The necessary parameters for

the model include excitation information in the form of a fundamental frequency

contour and aperiodicity surface, and vocal-tract configuration in the form of a

spectral-envelope surface. The application of all-pass filtering to the glottal pulse-

train during voiced speech yields a more natural temporal structure, with the pitch-

adaptive smoothing applied to the spectral-envelope surface removing periodic

interferences that affect the quality of other speech models.

As this work relies on the ability to map between the visual and audio domains,

two audio and two visual feature representations are considered, with reference to
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the correlations that exists between the modalities and, additionally, the features

in question. Linear predictive coding coefficients are able to model the spectral-

envelope surface and formants therein providing an adequate order is chosen. Fil-

terbanks are motivated by the auditory-filter model of the cochlea, where using a

mel-scale yields greater resolution at the lower frequencies, and where applying the

log transform to the channel amplitudes reproduces the non-linear compressibility

of the basilar membrane. Unlike in the audio domain, where there is an obvi-

ous choice for audio speech representations, for audiovisual and visual-only tasks

there is little consensus on the best visual features to use. Two features that have

shown good performance for AVSR and lip-reading tasks include the image-based

2D-DCT features, and the model-based AAM features, where the AAM features

are typically shown to perform best for representing visual speech information.

In the next chapter, the work progresses onto the excitation information as re-

quired by STRAIGHT. A small number of audio-only experiments are conducted

to motivate excitation choices, and to further explore the two spectral-envelope

features described here. In Chapter 5, combinations of the audio and visual fea-

tures, using two mapping models, are explored, with decisions made as to which

configurations to focus on.



Chapter 4

Excitation

4.1 Introduction

In this chapter, an overview is provided of various methods for producing exci-

tation information, fundamental frequency contour and aperiodicity surface, as is

required by the STRAIGHT speech production model. The fundamental frequency

contour describes the first harmonic for voiced sections of a speech signal, and is

the frequency at which the vocal folds open and close. During sections of voiced

speech, the f0 contour will fluctuate around the average fundamental frequency

of a speaker, whereas during unvoiced sections, no fundamental frequency exists

as the vocal folds do not vibrate. In practice, the f0 contour during unvoiced

(and non-speech) sections is zero. The aperiodicity surface describes the relative

aperiodicity of signals over the frequency domain. Generally, during voiced sec-

tions there is less aperiodicity as speech is produced from the vibration of the vocal

folds, whereas during unvoiced sections, the aperiodicity is greater as speech is pro-

duced from turbulent air, resulting in greater noise-like characteristics. Obtaining

spectral-envelope information will be discussed in Chapters 5, 6, and 7.

52



CHAPTER 4. EXCITATION 53

It is not possible to derive fundamental frequency and aperiodicity values from

visual speech as the articulators which can be “seen” provide little, if any, informa-

tion with regards to these. Perhaps the only information that can be extracted is

a voicing decision (non-speech, unvoiced, or voiced) due to the visual realisations

of voiced and unvoiced phonemes, although there is likely to be a large number of

confusions. Accordingly, in this chapter, three artificial methods are proposed and

evaluated for providing fundamental frequency contour values. These methods are

inspired by work from Miller et al. [2010] on the intelligibility of speech signals

with various f0 modifications. The generation of an aperiodicity surface is then

explored using two methods. The first method investigates voicing classification

of visual speech using neural networks and convolutional neural networks, where

non-speech, unvoiced, and voiced aperiodicity vectors are selected based on esti-

mated class labels. The second model of aperiodicity estimation uses vector quan-

tisation techniques, where a codebook is produced from joint spectral-envelope

and aperiodicity vectors, where aperiodicity estimates can be output given input

spectral-envelope vectors. Both methods are evaluated to determine the most

suitable choice.

The remainder of this chapter is organised as follows. In Section 4.2, an overview

of the proposed artificial fundamental frequency contour methods is given. Visual

voicing classification for producing an aperiodicity surface using neural networks,

including using convolutional neural networks for visual feature extraction, is pre-

sented in Section 4.3. Details of the second aperiodicity estimation model using

vector quantisation techniques are given in Section 4.4. Finally, the various excita-

tion information methods and models are evaluated in Section 4.5, with conclusions

drawn in Section 4.6.
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4.2 Artificial-f0 methods

In the STRAIGHT speech production model, the source excitation information

is split into two separate parameters: fundamental frequency and aperiodicity.

To produce the necessary fundamental frequency contour for an utterance, three

artificial-f0 methods are presented:

1. monotone,

2. time-varying,

3. unvoiced.

To provide values for the monotone and time-varying methods, an analysis is

performed of the fundamental frequency contours of a speaker. The f0 contour is

extracted from each training utterance of a speaker where the non-voiced frames

are ignored in the analysis. The short-time fast Fourier transform (STFT) of the

signal is taken to provide approximate estimates of the parameters used for the

time-varying method, although a certain amount of trial-and-error is required to

find suitable values.

4.2.1 Monotone

The monotone method imitates monotonic speech by using a constant fundamental

frequency value for all frames of the utterance. To derive a constant value, f0

contours are extracted from training utterances of a speaker, with the mean taken

of the f0 values from voiced sections of speech, giving

f0i = µf0 . (4.1)
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From the fundamental frequency analysis, it was determined that the appropri-

ate mean fundamental frequency values, µf0 , were 100 Hz and 207 Hz for the male

and female speakers used in this work, respectively.

4.2.2 Time-varying

The time-varying method is motivated by experiments conducted by Miller et al.

[2010] where one of the f0 modifications is to use a slowly-oscillating sinusoid. The

method modulates the monotone f0 contour from Equation 4.1 using a 0.25 Hz co-

sine wave with an amplitude that gives a frequency change, ∆f0 , of±17.5 Hz for the

male speaker, and ±28 Hz for the female speaker. The delta values for each speaker

are taken as the standard deviations of the mean fundamental frequency analysis

described previously for the monotone method, and the oscillation frequency was

determined using informal listening tests. An f0 contour can be produced using

f0i = µf0 + ∆f0cos
[2πi

400
+ φr

]
, (4.2)

where φr is a random phase offset in the range −π to π. The phase offset is

included to ensure that the beginning of each utterance does not start with an

immediate decrease in frequency value due to the standard output of the cosine

function. This is performed in an attempt to produce more natural f0 contours.

4.2.3 Unvoiced

The unvoiced method uses fundamental frequency contour values of zero. Al-

though in reality no values exist for f0 during sections of unvoiced speech, for

implementation purposes a value of zero is used. Speech reconstructed using an

unvoiced contour yields utterances where the excitation source is white noise.
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4.2.4 Method analysis

To provide better intuition for the three artificial-f0 methods, a brief analysis is

provided including a visual description of the contours produced by the monotone

and time-varying methods in comparison to the original, and spectrograms of ut-

terances reconstructed using the three methods. Figure 4.1 shows a waveform of an

utterance from the female speaker, and the corresponding fundamental frequency

contours for the original ground-truth, and the monotone and time-varying meth-

ods. For each of the artificial-f0 methods, no consideration is given as to whether

frames are voiced, unvoiced, or non-speech. That is, the values generated by each

of the methods is used for all frames in the utterance. For the monotone method,

the single value can be seen throughout the utterance, whereas for the time-varying

method the slow-oscillation of the contour is apparent.

Narrowband spectrograms of the same utterance reconstructed using the origi-

nal and three artificial-f0 methods are shown in Figure 4.2. For the monotone and

time-varying methods the harmonics can be seen, where they are constantly spaced

for the monotone method, and slowly-oscillating for the time-varying method. In

certain sections of the signal the time-varying method appears to follow quite faith-

fully the general structure of the original contour, although it is also visible that

the fine-grained contour changes are missing. For the unvoiced method, there is

no apparent harmonic structure, which is expected as the signal is excited with

white noise.

From informal listening tests, the sound of utterances produced by the mono-

tone method exhibit a slight buzzy quality with a robotic character, although

remain relatively faithful to the original utterances. The oscillating f0 contour of

the time-varying method is quite noticeable and unnatural sounding, especially in

sections where it does not mimic the original contour. Utterances produced using
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Figure 4.1: Comparison of the utterance “bin white in F 8 soon” spoken by the
female speaker, showing the original waveform and ground-truth f0 contour, and
contours produced by the monotone and time-varying artificial-f0 methods.
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Figure 4.2: Narrowband spectrograms for the utterance “bin white in F 8 soon” spo-
ken by the female speaker, with reconstructions using the original and three artificial-
f0 fundamental frequency contour methods.
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the unvoiced method have a harsh, raspy character that is emphasised by sections

of the speech signal with high energy.

Reconstructed utterances using contours generated from the three proposed

artificial-f0 methods are evaluated using subjective listening tests briefly in Sec-

tion 4.5, and in more detail in Chapter 5. Having developed methods for producing

the required fundamental frequency information, the next two sections detail ap-

proaches to estimating aperiodicity information.

4.3 Aperiodicity estimation using visual voicing

classification

In this section, the first approach to aperiodicity estimation is described, where

voicing classification models applied to input visual speech features are used to

output voicing class labels. The predicted class labels are then used to select

either non-speech, unvoiced, or voiced aperiodicity vectors. Two neural network

architectures are explored for performing voicing classification. The first method

estimates class labels using a standard single hidden-layer neural network from

input 2D-DCT visual features, and the second uses convolutional neural networks

(CNN) applied to raw pixels located about the mouth of the speaker for performing

visual feature extraction.

Voicing classification is the challenge of classifying speech frames (either audio,

visual, or audiovisual) as being either non-speech, unvoiced, or voiced. In this

work, the aim is to learn a function, f , to estimate the voicing class, ĉVC
i , of the

input visual speech feature vector, vi, described by

ĉVC
i = f(vi), (4.3)
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where ĉVC
i ∈ {ns, u, v} for voicing classification. Grouping the unvoiced and voiced

class labels together allows for a voicing classification system to function for voice

activity detection, where the problem is of determining speech and non-speech

frames.

In the remainder of this section, the standard and convolutional neural network

architectures are described, including techniques for performing regularisation to

ensure the networks do not overfit on the training data. The generation of aperi-

odicity surfaces is then explained using these voicing classification models. These

experiments also serve as an investigation into using CNNs for visual feature ex-

traction, where motivations for their use are provided.

4.3.1 Neural network

Neural networks are a group of learning algorithms loosely based on the biologi-

cal operations of neurons in the brain. Inputs are fed through a series of layers

comprised of individual units (neurons), where a non-linear activation function is

then applied to the output of certain layers. An example fully-connected neural

network, where the units in layer m are connected to all of those in layer m − 1,

is shown in Figure 4.3a. The hidden layers perform feature extraction by learning

non-linear combinations of the inputs, where individually the features may not be

particularly descriptive [Murphy, 2012]. Care must be taken when training neural

networks as they are prone to over-fitting on the training set if there is a lack

of training material. In this section, the use of neural networks is described for

performing voicing classification from input 2D-DCT visual speech features.

To estimate the voicing class of a frame given input visual features, a feed-

forward neural network model can be used for function f in Equation 4.3. The

function f is comprised of a single hidden layer between the input and output
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layers, with the model weight parameters derived from a set of training data using

the backpropagation of errors algorithm.

The output of the hidden layer, h, is a function of the input visual parameters,

v, and the weight connections between the two layers, Whv. A bias term, bv,

is included to provide each neuron in the input layer with a constant output,

performing a similar role to the intercept in standard linear regression. In practice,

however, the bias terms are usually incorporated into the weight parameter matrix.

The output from the hidden layer can be obtained from

h = σ (Wᵀ
hvv + bh) , (4.4)

where σ is a non-linear and differentiable activation function such as the sigmoid

(logistic) or tanh functions, or the rectified linear unit (ReLU). The ReLU function

is a non-saturating activation function proposed by Nair and Hinton [2010], and is

calculated as σ(x) = max(0, x). Conversely, the tanh and sigmoid functions both

saturate given large input values. One benefit of building neural networks using

the ReLU activation function is that training concludes several times faster over

sigmoid activations [Krizhevsky et al., 2012]. It is important that a non-linearity

is applied after the weight multiplications as otherwise the network will learn

functions that are linear combinations of the inputs. Furthermore, the activation

function is required to be differentiable as the gradient descent method is used for

training of the weight parameters.

To obtain a voicing class estimate, ĉVC
i , from a feed-forward neural network

with a single hidden layer architecture, a visual feature vector, vi, is presented as

input to

ẑi = softmax
[
Wohσ (Whvvi)

]
, (4.5)
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where Whv is the weight connection matrix between the input layer and hidden

layer, and Woh is the weight connection matrix from the hidden to output layers

applied to the result of the hidden layer after application of the non-linear activa-

tion function, σ. The softmax function is applied to the outputs of the final layer

to give a set of posterior probabilities for the output classes conditioned on the

input visual features, i.e. the a posterior probability p(cj|v) is the probability of

codebook entry cj given the input visual feature vector v.

Given a K-dimensional real-valued vector, x, the softmax function can be ap-

plied to obtain K class probabilities, through application of

zj = softmax(xj) =
exj∑K
k=1 exk

, (4.6)

where each element in z lies within the range (0, 1), and all coefficients sum to a

total of one. To obtain the estimated class label, ĉVC
i , with the greatest probability,

the arg max can be taken over the output class probabilities, ẑ, using

ĉVC
i = arg max

z
ẑi. (4.7)

To derive the required weight parameters for each of the layer connections, the

backpropagation of errors algorithm, used in conjunction with gradient descent

optimisation, is applied to minimise the categorical cross-entropy between the

output of the final softmax layer and correct class labels.

Cross-entropy, from the field of information theory, is used as the basis of the

cost function, which provides a measure of similarity between two probability

distributions. More formally, for two probability distributions, p and q, where p

is a true distribution and q is a given distribution over the same set of events,

the cross-entropy measures the average number of bits required to identify an
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event from a set of possibilities, if using q rather than p. Basic intuition for using

cross entropy is that unlikely events are regarded as more informative than likely

events. For classification tasks in machine learning, q takes the form of estimated

class probabilities produced by a model, and p are the corresponding correct class

labels. For multi-class problems, the categorical cross-entropy loss function is given

as,

L(p, q) = −
∑
x

p(x)logq(x), (4.8)

where, in this work, q(x) is the output from the final softmax layer of the neural

network, and p(x) is the correct class labels. The outputs of the softmax function

can be interpreted as posterior probabilities as, for classification problems where

the desired outputs are zero or one, the cross-entropy cost function is minimised

when the softmax outputs are posterior probabilities [Richard and Lippmann,

1991].

The correct and estimated class labels, p(x) and q(x), are encoded as “one-hot”

vectors, where one-hot encoding allows for the representation of multiple classes in

classification models. For example, given a task with four possible classes, an input

example of the first class would have be assigned a one-hot vector of [1, 0, 0, 0], an

example of the second class would be assigned [0, 1, 0, 0], and so on.

To prevent over-fitting of the model on the training data, the dropout tech-

nique [Srivastava et al., 2014], among other regularisation techniques, is used

within the neural network architecture. During training, neurons are selected

at random and dropped. That is, the neuron and its connections are temporarily

removed from the network for that particular instance or set of training examples.

Figure 4.3a shows an example of a fully-connected neural network with a sin-

gle hidden layer, whereas Figure 4.3b shows the same network after dropout has
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(a) Fully connected (b) Using dropout

ns s

v1 v2 v3 v4

Figure 4.3: A fully-connected network is shown in (a), and the same network after
dropout has been applied in (b).

been applied. A probability of p = 0.5 is typically used for dropout applied to

fully-connected hidden layers, and a probability of zero, or close to, for dropping

input units. The effect of applying dropout during training is to train a number

of “thinned” models. For estimation, the classifications are then taken from the

average of all the thinned networks. The effect is similar to training a large en-

semble of models and averaging the predictions of each model [Goodfellow et al.,

2013].

Training of the networks is performed using the resilient backpropagation algo-

rithm [Riedmiller and Braun, 1993], with the primary benefit over the standard

backpropagation algorithm being that training concludes considerably faster. The

training visual vectors are grouped into mini-batches of 1024 examples, with z-

score normalisation applied to the input 2D-DCT visual features. The weight

values are initialised with uniformly distributed random variables in the range

−0.01 to 0.01, and the learning rate is fixed at 0.001. The model training is

completed once validation scores converge, and there is no further increase in the

prediction accuracy of the models. More details of the neural network used are

given in Appendix B.2.1.
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Two neural network models are explored: NN DCT that takes static 2D-DCT

visual features as input, and NN DCT ∆ that takes the static 2D-DCT visual features

with the first and second order temporal derivatives as input.

4.3.2 Convolutional neural network

The convolutional neural network architecture is now explored for voicing classifi-

cation, where the convolutional layers are used for visual feature extraction. The

idea is that, instead of pre-extracting visual speech features using a 2D-DCT or

an AAM, the model will extract suitable features from raw pixels located about

the mouth of a speaker. Convolutional neural networks have shown application

for myriad computer-vision tasks such as handwritten digit recognition and im-

age classification, and are motivated by the function of the primary visual cor-

tex [Murphy, 2012]. More recently, they have been successfully applied to the

tasks of large-vocabulary continuous speech recognition (LVCSR) [Sainath et al.,

2013], and have begun to be applied for audiovisual ASR [Noda et al., 2015].

Convolutional layers differ from fully-connected layers (as shown in Figure 4.3a)

in that the units in layer m are connected to only a local subset (representing

a “receptive field”) of the units in layer m − 1. Outputs from convolutional

layers are named feature maps, and are calculated by convolving the inputs with

multiple square matrices, which are analogous to filter kernels as used for image

edge detectors or blurring. Weight sharing of the kernels ensures that features can

be extracted independent of where they occur in the input.

An example CNN architecture is shown in Figure 4.4. In this example, an

input image is convolved with four kernels producing four feature maps (shown

in pink). A down-sampling stage (shown in green) is performed following the

convolution stage to reduce the size (width and height) of the feature maps. Max-
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Input Convolution ConvolutionDownsample Downsample Fully connected

Figure 4.4: An example convolutional neural network architecture with two convo-
lutional and down-sampling layers, connected to a final fully-connected output layer.

pooling is used to perform this sub-sampling, whereby the maximum output of

a small square window is taken where the windows are non-overlapping. The

size of the window determines the amount of down-sampling achieved, where, for

example, a size of two will reduce the height and width of the feature maps by half.

A further convolutional stage extracts eight feature maps, and is subsequently

followed by another down-sampling layer. The output of the final sub-sampled

layer is then input to a fully-connected layer. Stacking multiple convolutional and

fully-connected layers together leads to the discovery of more higher-level global

features [Sun et al., 2013].

The architecture used for this work follows Figure 4.4 and consists of two sets

of convolution–max-pooling layers, followed by a fully-connected hidden layer, and

a final output softmax layer. The first convolutional layer consists of thirty-two

filters of size 3× 3, and the second, sixty-four filters of size 3× 3. Non-overlapping

max-pooling follows each convolutional layer with square regions of size 2 × 2.

The single fully-connected layer consists of 512 units, with dropout applied having

probability p = 0.5. The window sizes and number of filters are chosen based

on experiments conducted by Krizhevsky et al. [2012]. Rectified Linear Units are

used throughout for the non-linear activation function. Further details of the CNN

architecture used are given in Appendix B.2.2.

Training is performed using a graphics processing unit (GPU) card, which allows
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for significantly quicker training over standard central processing units (CPU).

The visual frame pixel intensities are scaled to be in the range of zero to one, and

training is performed using mini-batches of size fifty. The network is trained using

Nesterov’s Accelerated Gradient Descent [Nesterov et al., 2007], with learning rate

annealing performed, decreasing at a rate of 1 % per epoch. As with the standard

neural network architecture, training is completed once validation scores converge

and no further increase in classification accuracy is observed.

4.3.2.1 Temporal information

When using deep neural networks for large-vocabulary continuous speech recogni-

tion applications, contiguous frames of audio vectors are concatenated to produce

a single large feature vector to exploit longer-range temporal information [Hinton

et al., 2012]. Applications where input data is a visual stream, such as objective

video quality assessment and human action recognition, have led to the develop-

ment of CNN architectures that incorporate temporal information. An approach

using early-fusion has shown success in large-scale video classification [Karpathy

et al., 2014], and is applied here.

Single frame Early fusion

Figure 4.5: Static frame and early-fusion CNN architectures for including temporal
information. Blue frames denote those that have current interest.
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Figure 4.5 shows the single frame and early-fusion architectures, including the

convolutional and fully-connected connections as shown in Figure 4.4. Early-fusion

functions at the input layer, where the depth of the first convolutional layer filters

is extended to convolve across neighbouring video frames. The idea being that the

network will extract motion features including the visual feature representations.

To explore the performance of this architecture, three video frames are stacked

together, covering 30 ms of visual speech signal.

Experiments are conducted using two convolutional neural network systems, the

first using a single frame input, CNN STATIC, and the second using the early-fusion

technique to stack three neighbouring frames together, called CNN STACK3.

4.3.3 Aperiodicity estimation

The mapping from the class label, ĉVC
i , to aperiodicity information is now de-

scribed. To derive an aperiodicity surface using the voicing classification class

labels, an aperiodicity output, pi, for each label from Equation 4.14 is required.

To obtain an output for each label, the mean is taken from a set of training ape-

riodicity vectors, grouped by voicing class, resulting in µv for voiced frames, µu

for unvoiced frames, and µns for non-speech frames. For example, given a voiced

prediction from the voicing classification model, the aperiodicity vector, µv, will

be used for that frame. The necessary mean aperiodicity vector can be output

based on the estimated voicing class labels using

pi =


µv if ĉVC

i is voiced,

µu if ĉVC
i is unvoiced ,

µns otherwise.

(4.9)
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Figure 4.6 shows the mean aperiodicity vectors for each class label for the female

speaker extracted from the training data. As no speech exists during non-speech

frames, the aperiodicity surface will be influenced by any noise and small mis-

classifications in speech boundaries, and is uniformly distributed in the range of

−5 to −10 dB. The mean unvoiced vector has a lower intensity at the lower-

frequencies, suggesting that even for unvoiced speech these components are still

slightly periodic, and from 1 kHz onwards is around −10 dB, signifying more ape-

riodic components. The aperiodicity surface for the voiced frames exhibits a far

lower intensity, indicating that the majority of components are strongly periodic.

The increase in intensity to −10 dB at 4 kHz complies with the motivations behind

harmonic plus noise models, where speech exhibits more noise-like characteristics

at the higher-frequencies and can be incorporated into the models to yield a more

natural speech output.

4.4 Aperiodicity estimation using joint feature

clustering

The second method for aperiodicity estimation is presented using techniques from

the area of vector quantisation, to produce codebooks of joint audio and aperiod-

icity features. The aperiodicity vectors are output given an input Mel-filterbank

audio feature estimated from visual speech. Speech synthesis systems, such as

HMM–TTS models, typically compress the aperiodicity surface into frequency

bands [Silen et al., 2011]. Five frequency bands (0–0.5 kHz, 0.5 kHz–1 kHz, 1 kHz–

2 kHz, 2 kHz–3 kHz, and 3 kHz–4 kHz) are used for audio with a sampling frequency

of 8 kHz. To produce an output for each band, the mean of the frequency energies
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Figure 4.6: Mean aperiodicity vectors for the female speaker of the non-speech,
unvoiced, and voiced class labels.
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within each band is taken as follows

pi =
[
p

(0−0.5)
i , p

(0.5−1)
i , p

(1−2)
i , p

(2−3)
i , p

(3−4)
i

]
, (4.10)

where p
(f1−f2)
i is the aperiodic energy within the frequency band f1 to f2. In-

terpolation can be applied to reproduce a full aperiodicity surface in the range

0–4 kHz.

To produce the codebook, a joint clustering is performed on combined Mel-

filterbank audio feature and band aperiodicity feature vectors, zi. The joint feature

vectors,

zi = [ai,pi], (4.11)

where ai is a spectral-envelope audio feature vector, and pi is a corresponding

band aperiodicity feature vector, are extracted from the set of N training features.

The mini-batch k-means algorithm, discussed in greater detail in Chapter 6, is

then applied to this set of joint training vectors, to produce a codebook, Cap, with

K cluster centres, c ∈ Cap.

For aperiodicity estimation, given an estimated audio vector, âi, (obtained using

the visual-to-audio models in Chapters 6 and 7), the audio vector component of

the codebook entries, cAj , are searched and the aperiodicity component, cPj∗ , of the

closest matching entry, j∗, is output using

p̂i = cPj∗ where j∗ = arg min
j

∥∥cAj − âi
∥∥2

, (4.12)

and where p̂i is the estimated band aperiodicity feature vector. That is, as the

joint feature vectors are modelled, by finding the cluster centre that has the lowest

Euclidean distance between the spectral-envelope components, the aperiodicity
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component of the selected cluster centre can be output.

4.5 Evaluation

To evaluate the performance of the methods proposed in this section for producing

fundamental frequency and aperiodicity excitation parameters, each component is

analysed separately. First, subjective intelligibility results of utterances recon-

structed using the three artificial-f0 methods are presented, with the spectral-

envelope representations modelled using LPC coefficients and Mel-filterbank am-

plitudes. Secondly, classification accuracies for the voicing classification exper-

iments are presented using the two neural network architectures, with an eval-

uation on the ability for convolutional neural networks to perform visual feature

extraction. Finally, comparisons are made between the two aperiodicity estimation

methods, voicing classification and joint-feature modelling, for producing aperiod-

icity surfaces.

4.5.1 Fundamental frequency

To evaluate the performance of the three artificial-f0 methods for providing values

of the fundamental frequency contour as required by STRAIGHT, subjective intel-

ligibility experiments are conducted. Utterances from a male and female speaker

from the GRID dataset are processed within an analysis-modification-synthesis

framework, with the f0 contour for each utterance modified using the artificial

methods during reconstruction. The spectral-envelope representations are pro-

vided using two approaches for comparison: LPC coefficients and Mel-filterbank

amplitudes. Utterances reconstructed using the original contour are also included,

and form a baseline. The aim of these experiments is to determine what effect
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the artificial contours have on intelligibility, whilst leaving the other parameters

unchanged.

The intelligibility results described here are a subset of those from a larger

experiment, where modifications are also explored for the spectral-envelope infor-

mation. For reference, the subjective tests were conducted with twenty listeners,

where each listener was presented with reconstructions of modified utterances from

the GRID corpus (see Appendix A). Each utterance contains six words, with no

context, and intelligibility is calculated as the word-level accuracy. More informa-

tion on the experimental framework is provided in Section 5.2.

Table 4.1: Subjective intelligibility scores (and standard error) for the three artificial-
f0 methods plus the original, for the LPC coefficients and Mel-filterbank amplitudes
spectral-envelope representations, for the female speaker.

Audio feature Original Monotone Time-varying Unvoiced

LPC 94.17 (1.78) 94.17 (2.44) 96.67 (1.90) 96.67 (1.49)

Mel-filterbank 94.17 (2.13) 95.83 (2.00) 94.17 (2.13) 88.33 (3.35)

The subjective intelligibility results, and standard error of the mean, calculated

by,

SEx̄ =
σ√
n

, (4.13)

where σ is the standard deviation of the accuracy scores of all n listeners, are

reported in Table 4.1 for the female speaker. The scores are comparable for the

majority of the different combinations of fundamental frequency contour type and

spectral-envelope representation. Using the monotone f0 contour resulted in the

highest intelligibility (95.83%) for the Mel-filterbank amplitudes, and for the LPC

audio features the time-varying and unvoiced contours were both best at 96.67%.

The corresponding male results are shown in Table 4.2, where, again, the ma-

jority of combinations are all similar. The intelligibilities are generally higher
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Table 4.2: Subjective intelligibility scores (and standard error) for the three artificial-
f0 methods plus the original, for the LPC coefficients and Mel-filterbank amplitudes
spectral-envelope representations, for the male speaker.

Audio feature Original Monotone Time-varying Unvoiced

LPC 96.67 (1.90) 95.83 (1.61) 95.83 (1.61) 98.33 (1.12)

Mel-filterbank 96.67 (1.90) 92.50 (2.49) 97.50 (1.33) 97.50 (1.33)

overall than for the female speakers. The time-varying and unvoiced artificial-f0

contours gave the best scores (97.50%) for the Mel-filterbank features, and the un-

voiced method was the best contour for the LPC audio features with an accuracy

of 98.33%. For both audio feature representations, the unvoiced artificial contour

yields the highest accuracies for both speakers, except for the female speaker when

using Mel-filterbank amplitudes.

Importantly, the subjective intelligibility scores recorded show that the artifi-

cial fundamental frequency methods are not having an adverse effect on the in-

telligibility of the reconstructed utterances, which is important for the thesis of

reconstructing intelligible audio speech using visual speech information.

4.5.2 Voicing classification accuracy

To determine the ability of the voicing classification system to produce a suitable

aperiodicity surface output, it is necessary to first determine the classification

accuracies for the system. Accordingly, accuracy results are presented for voicing

classification, and voice activity detection, of the neural network and CNN systems,

including a GMM method as a baseline. Accuracies are recorded for the multi-

class voicing classification task, and then by grouping the unvoiced and voiced

estimations, the voice activity detection results are obtained.

To measure voicing classification, reference labels are required for each frame of
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speech, i, classifying each as either non-speech, unvoiced, or voiced. Voice activity

labels are first used to set frames as either non-speech or speech. The PEFAC

pitch-extraction algorithm [Gonzalez and Brookes, 2014] is then used to provide

a probability that a given frame of speech is voiced. A threshold is applied to

the voiced speech probabilities output from PEFAC, with speech fames having

probability p(t) ≥ 0.5 labelled as voiced, and frames with p(t) < 0.5 labelled as

unvoiced. Voicing class labels can then be assigned to frames using

cVC
i =


v if speech and p(i) ≥ 0.5,

u if speech and p(i) < 0.5,

ns otherwise.

(4.14)

The baseline GMM and standard neural network system uses 2D-DCT visual

features as input, whereas for the CNN system raw pixel-intensities are provided.

The video data is up-sampled to 100 Hz to match a typical audio speech frame rate,

with each video frame converted to greyscale. Matrices of size 96 × 96 pixels are

extracted about a centre-point of the speakers mouth, calculated from landmark

data, and resized to 64×64 pixels. For the CNN STACK3 configuration, the greyscale

matrices from three contiguous frames are stacked centred on a middle frame,

producing a three-dimensional matrix with dimensions of 64× 64× 3.

4.5.2.1 Baseline model

In Almajai and Milner [2008], Gaussian mixture models are used to model visual

feature vectors for the task of visual-only voice activity detection. In this work, a

similar idea is applied to form the baseline against which to compare the neural

network and CNN systems. A more detailed review of Gaussian mixture models
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is given in Section 5.3.1. Vectors are grouped by class label and individual GMMs

are trained: Φns for non-speech frames, Φu for unvoiced frames, and Φv for voiced

frames. Classification is performed by taking the arg max of the probabilities

produced by each class GMM, Φl, given the input visual vector, vt, using

ĉVC
t = arg max

l

(
p(vt|Φl)

)
, (4.15)

where l ∈ {ns, u, v}. Through experimentation it was found that using sixteen

clusters for each GMM gave the best performance.

The two GMM models are named GMM DCT and GMM DCT ∆, for the static and

temporal models respectively. The voice activity detection results are obtained by

grouping the unvoiced and voiced class labels to give a speech/non-speech decision.

4.5.2.2 Experiment results

The experiments described here are used to evaluate the classification accuracy of

the three models: GMM, NN, and CNN. Each of the models are trained on input

visual data, either 2D-DCT or greyscale pixel intensities, to predict the voicing

class labels. From the female speaker, 800 utterances are used for training, and

200 utterances are used for testing. The accuracy is determined by recording the

number of correct class predictions on the test data.

Table 4.3 shows voicing classification and voice activity detection accuracies

for the female speaker. The CNN STACK3 achieves the best accuracy for voicing

classification, with 87.55 % of frames classified correctly. Accordingly, the same

system outperforms both the GMM and neural network systems for voice activity

detection with an accuracy of 97.66 %. Surprisingly, the CNN STATIC system is able

to achieve 86.05 % voicing accuracy using static information. In comparison, the
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static GMM and neural network systems achieve accuracies of 11.76 % and 6.44 %

lower, respectively. This suggests that by using convolutional neural networks,

suitably descriptive visual speech feature representations can be found. Further-

more, and as is to be expected, the accuracies achieved for voice activity detection

are higher than the voicing classification scores.

Table 4.3: Voicing classification and voice activity detection accuracies in per cent.

Configuration Voicing accuracy VAD accuracy

GMM DCT 74.29 92.61

GMM DCT ∆ 78.99 94.34

NN DCT 79.61 96.00

NN DCT ∆ 86.35 96.80

CNN STATIC 86.05 96.99

CNN STACK3 87.55 97.66

Increased voicing classification accuracy by including temporal information is

readily apparent for both the neural network and GMM systems. A classification

accuracy increase of 4.7 % and 6.7 % is gained for the GMM and neural network

respectively. However, the same increase does not occur when using the CNN.

Interestingly, it appears that due to the only slight increase in performance between

the CNN STATIC and CNN STACK3 systems of 1.5 %, using the early-fusion technique

for including temporal information in the CNN architecture is not ideal for this

work. Accordingly, other techniques of incorporating temporal information, such

as recurrent neural network architectures with convolutional layers [Donahue et al.,

2015], could result in a greater accuracy as they are better able to exploit longer-

range dependencies in the data.

Table 4.4 shows a confusion matrix for voicing classes predicted by the CNN STACK3

model. The majority of voicing classification errors occur with the misclassifica-

tion of unvoiced frames as voiced frames, with 27.25 % doing so. The problem

experienced with voicing classification occurs when different voiced and unvoiced
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Table 4.4: Confusion matrix of per cent classification accuracy using the CNN STACK3

model.

Non-speech Unvoiced Voiced

Non-speech 98.23 1.49 0.28

Unvoiced 5.91 66.84 27.25

Voiced 0.72 8.93 90.36

phonemes have the same visual speech realisations. Phonemes sharing the same

visual realisations can be grouped by phoneme equivalence class (PEC), a general-

isation of the viseme. The idea behind PECs, proposed by Auer Jr and Bernstein

[1997], is that similar visual realisations of different phonemes can be grouped to-

gether into the same class. Regarding the problem of voicing classification, a PEC

comprised of /s t z/ consists of two unvoiced consonants, /s/ and /t/, and a voiced

consonant, /z/, for example. A PEC comprised of /f v/ has a voiced and unvoiced

consonant. Voice activity detection errors can be seen where unvoiced or voiced

frames are classified as non-speech, and vice versa. The problem in this case is

that visual realisations of certain PECs have a mouth shape that is very visually

similar to the neutral. For example, this is the case with the PEC comprised of the

phonemes /b m p/, where the mouth tends to be closed. The majority of errors

occur when unvoiced frames are misclassified as non-speech frames, happening for

5.91 % of unvoiced frames.

This set of experiments on comparing a baseline Gaussian mixture and neu-

ral network models using DCT visual features, and a CNN approach using non-

engineered raw visual frames, was intended to show that the CNN systems gave

results comparable to more typical approaches that used pre-extracted, engineered

visual features. The CNN system contains a number of convolution and max-

pooling layers functioning as feature-extractors, the output of which are fed into

a fully-connected hidden layer before the output softmax layer. When this area
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of work was published in Le Cornu and Milner [2015], it was in an attempt to

motivate further exploration into the technique. Using a CNN for visual-feature

extraction is now a common technique and numerous papers have been published

using this approach with great success [Noda et al., 2015; Assael et al., 2016; Chung

et al., 2016].

4.5.3 Codebook size for joint aperiodicity estimation

For producing accurate aperiodicity estimations using the joint-feature codebook

approach, it is first necessary to evaluate various codebook sizes. To find an

optimal number of cluster centres, K, to use in the aperiodicity codebook, Cap, the

mean squared error is recorded for audio-only comparisons between the original

band-aperiodicity feature vectors and their quantised counterparts with various

codebook sizes. The quantised aperiodicity features are output using Equation 4.11

given the original Mel-filterbank audio features as input.
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Figure 4.7: Mean squared error (with error bars showing a single standard error)
between original and quantised band-aperiodicity features with increasing codebook
size, K.

In Figure 4.7, the MSE is shown with respect to codebooks with increasing num-
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bers of clusters, K. The MSE decreases quickly as the codebook size is increased

to K = 4, with the optimal number of codebook entries found at K = 8, and

then increases again from K = 16 onwards. This effect confirms informal listen-

ing tests that suggest codebooks with fewer entries are beneficial, as aperiodicity

surfaces derived from codebooks with a large number of entries exhibit extremely

erratic frame-by-frame changes, resulting in adversely affected reconstructed audio

speech.

4.5.4 Aperiodicity estimation

Experiments conducted on aperiodicity estimation using the two methods pre-

sented in this chapter are now evaluated. The first method utilises a voicing

classification system to predict voicing class labels, where mean aperiodicity vec-

tors can then be output based on whether the label is non-speech, unvoiced, or

voiced. The second method uses techniques from the area of vector quantisation

to produce a joint Mel-filterbank and band aperiodicity codebook, from which an

aperiodicity vector can be obtained by searching for the codebook entry to which

the input Mel-filterbank vector is closest.

Experiments are conducted for both audio-only and visual-to-audio configura-

tions. For the voicing classification method, the audio-only experiments are con-

ducted by producing the three mean aperiodicity vectors (non-speech, unvoiced,

and voiced) from the training data, and then using the ground-truth voicing la-

bels from the test set to produce the quantised aperiodicity surfaces. For the

joint-feature method, the codebook is built using the training data, and then the

ground-truth Mel-filterbank vectors from the test set are used to select the appro-

priate aperiodicity vectors. Conversely, the visual-to-audio experiments explore

the aperiodicity estimation as if the models where being used as part of a fi-
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nal system. For the voicing classification method, the CNN STACK3 model is used

to predict the voicing labels on the test set from input visual features, with the

mean aperiodicity vectors output based on the label. Whereas for the joint-feature

method, estimates of the Mel-filterbank audio features are obtained using the best

performing visual-to-audio model from Chapter 6.

Table 4.5: Mean squared error for the two proposed aperiodicity estimation methods
for both audio-only and visual-to-audio scenarios.

Method Audio-only Visual-to-audio

Voicing classification 0.717 (0.079) 0.770 (0.097)

Joint aperiodicity 0.561 (0.058) 0.626 (0.096)

Table 4.5 shows the MSE between the original and estimated aperiodicity fea-

tures for the audio-only and visual-to-audio configurations for each of the two

systems. It is readily apparent that the joint-feature method achieves lower MSEs

over the voicing classification method, for both configurations. For the audio-only

scenario, the joint-feature method shows an MSE of 0.561, in comparison to 0.717

when using voicing classification, indicating that even with ground-truth test data

the aperiodicity estimates are poorer using the later system. This observation is

further confirmed in the visual-to-audio scenario, where the joint-feature method

shows an MSE of 0.626, in comparison to 0.770 when using voicing classifica-

tion. As the voicing classification method relies on accurate class label predictions

for aperiodicity estimation, any errors in predicting the voicing labels will result

in a higher MSE. Accordingly, given the lower MSEs recorded, the joint-feature

method is used for producing aperiodicity estimations for the remainder of the

work conducted in this thesis.
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4.6 Summary

In this chapter, various methods are proposed for generating the necessary excita-

tion information as required by the STRAIGHT speech production model. Three

artificial methods are developed for producing fundamental frequency contours,

including two methods of aperiodicity estimation.

The subjective intelligibility experiments conducted on the three artificial-f0

methods show that, for accurate spectral-envelope representations, the contours

do not adversely affect the intelligibility of the reconstructed audio. For both the

LPC coefficients and Mel-filterbank amplitude spectral-envelope representations,

the audio is highly intelligible for both the male and the female speakers, across all

three artificial methods. Accordingly, their use is explored further in the following

chapter to see what effect they have when used for spectrally smoothed speech.

The work on voicing classification, and voice activity detection, has shown

that frame-level accuracies of 88 % and 98 % result for voicing classification and

VAD, respectively. The convolutional neural network approach outperforms the

baseline GMM and neural network systems for both voicing classification and voice

activity detection, where the high accuracy achieved for the CNN using static

information shows promise for their ability to discover descriptive visual speech

feature representations.

The experiments conducted on aperiodicity estimation have shown that the

joint-feature method outperforms the voicing classification method for both audio-

only and visual-to-audio configurations, and is used throughout the remainder of

this work for audio speech reconstructions using STRAIGHT. Although the voicing

classification method performs poorly for aperiodicity estimation, in comparison

to the joint-feature method, the technique still has application for voice activity

detection using visual speech.
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In the following three chapters, work is presented on producing spectral-envelope

estimates from visual speech information, which can be used for reconstructing in-

telligible audio speech signals using STRAIGHT.



Chapter 5

Regression system

5.1 Introduction

Two methods are explored in this thesis for producing spectral-envelope estimates

from visual speech input, the first approach, detailed in this chapter, explores

using regression methods for this task. That is, given the input visual features,

the mapping models are used to estimate real-valued and continuous audio feature

coefficients. The audio feature representations of the spectral-envelope and visual

feature representations of the visual articulators have been discussed previously in

Chapter 3. An overview of the system configuration explored in this chapter is

shown in Figure 5.1. Statistical models commonly used in many areas of speech

processing are Gaussian mixture models and deep neural networks. Both have

had successful application for tasks such as large-vocabulary continuous speech

recognition [Sainath et al., 2013], speech enhancement [Xu et al., 2014], and text-

to-speech (TTS) synthesis [Qian et al., 2014]. Additionally, both models can be

configured to perform regression [Xu et al., 2015; Park and Kim, 2000].

In this Chapter, various system configurations are explored with different com-

84
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Figure 5.1: Regression system overview. Visual features are extracted from the
mouth of a speaker and input to the visual-to-audio regression mapping models,
outputting audio feature estimates. Interpolation is applied to produce spectral-
envelopes, which are input to a speech production model along with artificial excita-
tion to reconstruct audio speech.

binations of audio and visual feature representations, and with the two types of

model. Furthermore, subjective experiments are presented on audio speech re-

constructed from reduced-dimensionality audio features. This is motivated by the

idea that it may be beneficial to estimate feature vectors with fewer coefficients,

resulting in greater overall intelligibility. The effect of reducing the dimensionality

of the audio features introduces a smoothing effect on the spectral-envelope. This

smoothing effect is explored initially in a controlled manner to determine whether

reduced dimensionality features can still yield sufficiently intelligible speech re-

constructions. Their use within the proposed visual-to-audio framework is then

explored further, to see if the hypothesis is valid.

The remainder of this Chapter is organised as follows. In Section 5.2, the spec-

tral smoothing experiments are discussed. For obtaining audio domain estimates

from visual domain information, two types of models are explored in Section 5.3,

specifically: multivariate Gaussian mixture models and deep neural networks. Re-

sults from objective and subjective intelligibility experiments, including an analysis

of reconstructed audio utterances, are presented in Section 5.4. Lastly, an overview

of this section of work is given in Section 5.5.
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5.2 Spectral smoothing

Smoothing of the spectral-envelope, by using audio feature representations with

fewer coefficients, is explored with the expectation that it may be beneficial for the

visual-to-audio mapping model to estimate fewer coefficients with greater accuracy.

The hypothesis being that audio features with fewer coefficients, i.e. a lower di-

mensionality, can be estimated with a greater overall accuracy than audio features

with a larger number of coefficients, and that the resultant reconstructed audio

speech has greater intelligibility over the features with a higher dimension, yet

potentially poorer accuracy. For example, LPC audio features with order P = 4

estimated with a total accuracy of, say, 90 % may result in speech with an intelli-

gibility of 80 %, as opposed to LPC features with order P = 10 estimated with an

accuracy of 75 %, resulting in reconstructed audio speech with an intelligibility of

less than 80 %.

The effect of smoothing the spectral-envelope is similar to that of smearing the

spectral information in the frequency domain. That is, to reduce the intensity

of the spectral peaks and to raise the intensity of the spectral troughs, resulting

in a flatter spectrum with increased formant bandwidths. The overall energy of

the spectral-envelope remains the same, where the energy of the frequencies with

greater amplitudes is distributed to the neighbouring frequencies with less ampli-

tude. This effect is observed for certain types of hearing loss where impairments

are attributed to broadening of the auditory filters in the ear, resulting in lower

speech intelligibility [Baer et al., 1993].

To achieve this smoothing effect, the number of audio feature coefficients used

to represent the spectral-envelope information for each frame is reduced. From

Chapter 3, the audio features explored in this work are linear predictive coding

(LPC) coefficients and Mel-filterbank channel amplitudes. The amount of smooth-
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Figure 5.2: Comparison of LPC features with increasing levels of smoothing applied.
The red lines show the smoothed spectral-envelopes, whereas the blue lines show the
spectral-envelope of a frame using LPC features with an order of P = 14.
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Figure 5.3: Comparison of Mel-filterbank features with increasing levels of smooth-
ing applied. The red lines show the smoothed spectral-envelopes, whereas the blue
lines show the spectral-envelope of a frame using Mel-filterbank features with a chan-
nel number of K = 20.
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ing applied is varied by using orders of P = {2, 4, 6, 8, 14} for the LPC features,

and filterbank sizes of K = {4, 7, 10, 15, 20} for the Mel-filterbank features. The

effect of applying increasing amounts of smoothing for a single frame is shown in

Figure 5.2 for LPC, and for Mel-filterbank in Figure 5.3. An order of P = 2, and a

filterbank size of K = 4, give the greatest amount of smoothing, with a noticeable

reduction in intelligibility from informal listening tests. The result of smoothing is

that there is a loss of formant structure in the reconstructed speech. Conversely,

speech reconstructed from the audio features with the greatest order and filter-

bank size, for LPC and Mel-filterbank respectively, is near indistinguishable from

the original utterances in terms of both intelligibility and quality. Spectrograms

for the utterance “lay blue at j 6 please” spoken by a female speaker, and recon-

structed from LPC features with smoothing applied are shown in Figure 5.4, and

from Mel-filterbank features in Figure 5.5.

Ultimately, for the hypothesis of producing intelligible speech from audio fea-

tures with reduced parameters to be valid, it is necessary to determine the in-

telligibility of reconstructed audio speech utterances with the various levels of

smoothing applied. To explore this, audio speech utterances are processed within

an analysis-modification-synthesis (AMS) framework. Using the AMS framework,

speech parameters are extracted during an analysis stage with modifications ap-

plied to the parameters through smoothing of the spectral-envelope and use of the

artificial-f0 methods. The modified parameters are provided as inputs to recon-

struct audio utterances in the speech synthesis stage. Subjective listening tests are

then conducted to determine intelligibility scores. The GRID audiovisual corpus

is used for this set of experiments, and is detailed in Appendix A.1.
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Figure 5.4: Wideband spectrograms of utterances reproduced from LPC features
with spectral smoothing applied. The original utterance is included for comparison.
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Figure 5.5: Wideband spectrograms of utterances reproduced from Mel-filterbank
features with spectral smoothing applied. The original utterance is included for com-
parison.
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5.2.1 Subjective tests

Subjective listening tests were conducted with twenty listeners to determine how

the intelligibility of audio utterances is affected through increased application of

spectral-envelope smoothing. Each subject is presented with 82 different utter-

ances, of which 41 are from a female speaker and 41 from a male speaker. The 41

utterances comprise the three artificial-f0 methods, as discussed in Chapter 4, plus

reproductions with the original (ground-truth) fundamental frequency contours.

For the audio representations, LPC features with orders of P = {2, 4, 6, 8, 14}, and

Mel-filterbank channel amplitudes with channel numbers of K = {4, 7, 10, 15, 20}

were used. An unprocessed utterance from the corpus was included for each

speaker to obtain a baseline level of intelligibility.

command colour preposition letter digit adverb

bin blue at A-Z 1-9 again

lay green by minus W zero now

place red in please

set white with soon

Table 5.1: GRID sentence grammar, with available choices per word.

For each utterance, the subjects were asked to select which of the available word

choices, as shown in Table 5.1, for each component of the grammar:

<command> <colour> <preposition> <letter> <digit> <adverb>,

they believed to be correct. Therefore, accuracy was calculated on a per-word

basis. To remove any bias that could affect the results, utterances were presented

to the subjects in a random order, and for each of the 82 utterance types there

was a choice of twenty utterances, with one utterance being selected at random.

That is, assuming twenty listeners took part, on average each listener would hear
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an utterance unheard by the other listeners. Furthermore, utterances were not

replaced, and so a listener would only here a particular utterance once.

Figure 5.6: Screen capture of a question page of the web-based subjective experiment
test interface. In this example, an audio file can be listened to with the word choices
presented in the selection boxes below.

Testing was conducted using a web-based interface, as can be seen in Figure 5.6,

with the utterances displayed in an audio player. The subjects could listen to each

utterance as many times as they desired. To select their word choices, six drop-

down selection boxes were displayed. Subjects who did not complete the test in a

sound-proof room were asked to situate themselves in a quiet environment using

a pair of high-quality headphones, and to complete the test in one sitting.

5.2.2 Evaluation

Results were averaged across all listeners for each utterance configuration and were

scored based on word accuracy, giving a per cent intelligibility score for each of

the 82 configurations. Figure 5.7 shows the intelligibility scores for combinations

of each of the artificial fundamental frequency methods with the LPC and Mel-

filterbank audio features, where the male and female speaker results have been

grouped.
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Figure 5.7: Intelligibility scores (with error bars showing a single standard error)
for the various combinations of artificial-f0 method and audio features, with various
levels of smoothing applied. Results from the male and female speakers have been
grouped by audio feature type.

The results in Figure 5.7 show that using LPC coefficients results in better

intelligibility than using Mel-filterbank amplitudes for similar numbers of features.

It is believed the greater accuracy for LPCs is due to the spectral-envelope fitting

the spectral peaks better than the Mel-filterbank channels. If the Mel-filterbank

channels are not located at the spectral peaks then a further distortion of the

original spectral-envelope is being introduced, adversely affecting the reproduced

utterances. Interestingly, using only two LPC coefficients gives an accuracy of

77 % when using the original f0, and 68 % when using the monotone contour. The

level of spectral detail retained using only two LPC coefficients (see Figure 5.4) is

extremely low, yet there is evidently enough information to achieve relatively high

accuracy scores. Increasing the number of coefficients to four results in an average

accuracy of roughly 85 % across all artificial-f0 methods.

A comparison of the artificial-f0 for the LPC audio features shows that the time-
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varying contour achieves the lowest accuracy for all numbers of coefficients except

fourteen. With two coefficients, the monotone contour is the best artificial method,

with an absolute accuracy over 10 % greater than the next best artificial method:

unvoiced excitation. However, with four coefficients the unvoiced method is around

4 % higher than the monotone, and comparable to the accuracy achieved using the

original contour. With six coefficients the accuracies achieved are roughly equal,

yet with eight coefficients the monotone method manages to outperform even the

utterances with the original f0 contour. With fourteen coefficients, all artificial-f0

methods differ by only a few per cent.

Comparing the artificial-f0 methods for the Mel-filterbank audio features shows

that the unvoiced excitation performs the worst across all numbers of channels.

With four channels the time-varying and original methods achieve similar accura-

cies of around 43 %. With seven channels the performance of the monotone method

increases and becomes comparable with the time-varying method, although the

original method is best overall. With channel numbers of ten and fifteen, the

monotone and original methods are equivalent, at roughly 86 % and 94 % respec-

tively. With twenty channels the artificial method results differ by roughly 4 %,

with the time-varying contour achieving the best accuracy. The unvoiced, time-

varying, and original results, are still increasing from fifteen to twenty channels,

suggesting that a greater number of channels may result in a further increase in

intelligibility.

In Figure 5.8, the intelligibility scores are divided between the two audio feature

types for the individual male and female speakers. The intelligibility scores are

comparable across all LPC orders for both the female and male utterances. There

appears to be no general trend for one artificial excitation method to outperform

the others, as the performance of the methods differs for each LPC order. For both

genders, the time-varying contour typically under-performs the other artificial-f0
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Figure 5.8: Comparison of male and female intelligibility scores for LPC and Mel-
filterbank audio features.
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methods, suggesting that the contour itself is affecting the intelligibility of the

reproduced speech more so than the other methods. Surprisingly, using the original

excitation with only two LPC coefficients for the female speaker, an accuracy of

82.5 % results.

For the Mel-filterbank audio features, the intelligibility scores are similar with

four channels for both genders, except for the female speaker using unvoiced exci-

tation. With seven and ten channels the male scores are greater than the scores

for the female, and at fifteen and twenty they are similar. The tendency for the

unvoiced excitation to be worse for the female occurs across all numbers of fil-

terbank channels. The male result for Mel-filterbank with seven channels using

the original excitation appears to be an anomaly with a score of 94.17 %. This is

significantly higher than the other artificial methods for this number of channels,

and greater than the scores achieved for all f0 methods for both ten and fifteen

channels, except monotone excitation with fifteen channels.

A known problem with the LPC model is that it is unable to model the nasal

cavity [Kang and Lee, 1988]. An informal experiment comparing confusion ma-

trices of the letters between the LPC and Mel-filterbank utterances shows no ob-

vious evidence of this drawback. Confusions exist between the nasal consonant

phonemes /m/ and /n/ for both audio feature representations. Given the already

poorer intelligibility of the reconstructed utterances when compared to the unal-

tered equivalents, the intelligibility will likely only be marginally affected by this

deficiency.

In summary, of the two audio features, the LPC features give speech reproduc-

tions with greater intelligibility over Mel-filterbank amplitudes when using fewer

features. With regards to the artificial-f0 contours, for LPC features the monotone

and unvoiced methods perform best, and for Mel-filterbank amplitudes, the mono-
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tone method outperforms all of the others. The female speech reproductions result

in greater intelligibility with a reduced number of features. This suggests that ini-

tial experimental work for the visual-to-audio project should first focus on a highly

intelligible female speaker, and then on a male speaker. Additionally, using the

original fundamental frequency contour results in greater intelligibility scores over

the artificial methods, for the majority of audio feature configurations, indicating

the importance of having the correct f0 contour, and accordingly, voicing.

5.3 Visual-to-audio mapping models

Having determined how spectral smoothing affects the intelligibility of speech, and

the effect introduced by the artificial-f0 methods, the next step is to explore the

models for performing the visual-to-audio domain mapping for estimating spectral-

envelope from visual speech. Various machine learning approaches and statistical

techniques can be explored for producing spectral-envelope estimates from input

visual features. Two commonly used probabilistic models with wide-ranging ap-

plication in speech processing are multivariate Gaussian mixture models and deep

neural networks. Only a brief overview of the specific details of each of the two

models is given in this section, for a more detailed treatise the reader is encouraged

to consult the work of Murphy [2012].

5.3.1 Gaussian mixture models

Gaussian mixture models (GMMs) are a type of probabilistic model that have

been used for a number of decades in various applications of audio and audiovisual

speech processing. For speech recognition tasks, GMMs were the de facto method,

until the recent advances and successful employment of deep neural networks for
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performing acoustic modelling. As with all mixture models, the underlying data

is assumed to belong to a mixture distribution, and in the case of GMMs, the

individual distributions can be modelled using a multivariate Gaussian.

To perform the mapping from the visual to the audio domain, a GMM is created

to model the joint density of audio and visual features from an individual speaker.

A joint audiovisual feature vector, zi is produced by augmenting audio feature

vectors with their corresponding visual feature vectors,

zi = [ai,vi] , (5.1)

where ai and vi correspond to the ith audio and visual feature vectors, respec-

tively. The dimensionality of the joint feature vector is the summation of the

dimensions of the individual feature vectors. To build a joint audiovisual GMM,

Φav, the expectation-maximisation (EM) algorithm is applied to a training set

of joint audiovisual features. To initialise the algorithm, the standard Lloyd’s

k-means algorithm is used to produce a set of C clusters, where C indicates the

number of mixture components desired, i.e. the number of individual distributions.

The GMM, Φav, can be described by,

Φav =
C∑
c=1

γcφc(z) =
C∑
c=1

γc N (z;µc,Σc), (5.2)

where γc represents the prior probability of the cth cluster; and φc(z) is the cth

multivariate Gaussian probability density function (PDF) parameterised by mean

vector, µc, and covariance matrix, Σc. As the model is produced from joint au-

diovisual feature vectors, parts of the mean and covariance parameters correspond

to the separate feature vector inputs. The mean vector, µc, of cluster c can be
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written as,

µc = [µac ,µ
v
c ] (5.3)

where µac and µvc are the audio and visual vector means, respectively. The covari-

ance matrix, Σc, can be written as,

Σc =

Σaa
c Σav

c

Σva
c Σvv

c

 (5.4)

where Σaa
c is the covariance matrix of the audio feature vectors, Σvv

c is the covari-

ance matrix of the visual feature vectors, and Σav
c and Σva

c are the cross-covariance

matrices of the audio and visual feature vectors.

Given an input visual feature vector, vi, and the joint audiovisual GMM, Φav,

the maximum a posteriori probability (MAP) estimate of the audio feature esti-

mate, âi, can be produced using,

âi = arg max
a

[
p (ai|vi,Φav)

]
, (5.5)

which can also be expressed as,

âi = µac + Σav
c (Σvv

c )−1 (vi − µvc) . (5.6)

Furthermore, estimates from each of the C cluster components in the GMM can

be combined to form a weighted summation according to the posteriori probability,

wc(vi), of the visual feature vector having come from cluster c. Accordingly, the
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weighted MAP estimate of the audio feature vector can be written as,

âi =
C∑
c=1

wc(vi)
[
µac + Σav

c

(
Σvv
c

)−1

(vi − µvc)
]
, (5.7)

where wc(vi) can be obtained from,

wc(vi) =
p (vi|φvc) γc∑C
c=1 p (vi|φvc) γc

, (5.8)

and where p(vi|φvc) is the marginal distribution of the visual feature vector, vi

having being produced by the Gaussian component φvc .

To find an optimal number of mixture components to use within the model,

evaluations are performed on a test set of the speech corpus. For various numbers of

components, C, a GMM is built using a joint audiovisual feature training set, with

the desired number of clusters. Audio estimates from the test set visual features

are obtained through application of Equation 5.7. The error between the estimated

audio feature vectors, âi, and the original audio feature vectors, ai, is recorded for

that number of components. Typical error metrics used include the mean squared

error, percentage difference error, or objective quality and intelligibility measures

of the reconstructed spectral-envelope such as the those discussed in Section 2.4.

5.3.2 Deep neural networks

Deep neural networks are an extension to standard artificial neural network archi-

tectures, as discussed previously in Section 4.3, that have multiple hidden layers

stacked together between an input and output layer. Whereas Gaussian mixture

models were the major choice for acoustic modelling in speech recognition sys-

tems, deep neural networks become more widely applied circa 2009–2012, with
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significantly lower word-error-rates (WER) reported [Hinton et al., 2012]. Cur-

rently, deep neural networks, and various other neural network architectures, are

state-of-the-art in many areas of speech processing, and other fields such as image

processing [Krizhevsky et al., 2012; Ciresan et al., 2010]. The power of deep neural

networks lies in their ability to extract progressively higher abstract feature repre-

sentations. An example deep neural network architecture is shown in Figure 5.9,

where three hidden layers are stacked between the input and output layers.

yx h1 h2 h3

Figure 5.9: Standard feed-forward deep neural network architecture with three
hidden layers, h1, h2, and h3; between the input layer, x, and output layer, y. The
network is fully-connected, i.e. all units in one layer are connected to all other units
in the adjoining layers.

To perform the mapping from the visual to the audio domain, a deep neural

network can be expressed simply as,

âi = f(vi), (5.9)

where f is a feed-forward neural network configured for regression. The function

f is comprised of two or more hidden layers between the input and output layers,

with the model weight parameters derived from a set of training data using the

backpropagation of errors algorithm. Neural networks configured for regression do

not have the final application of the softmax function as in Equation 4.5, as is

performed for the voicing classification tasks presented in Chapter 4. Rather, the

output is linear, which is required for estimating the real-valued audio coefficients.
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To derive the required weight parameters for each of the layer connections,

the backpropagation of errors algorithm, using gradient descent optimisation, is

applied to minimise the mean squared error between the audio features estimated

by the network, âi, and the original audio features, ai. The mean squared error

function to minimise is expressed as,

E(w) =
1

N

N∑
i=1

|âi − ai|22 , (5.10)

where N is the total number of training samples. In the case of mini-batch stochas-

tic gradient descent, N is equal to the batch size. The weight values are initialised

with uniformly distributed random variables in the range −0.01 to 0.01. No pre-

training is conducted as whilst it is beneficial for preventing overfitting on smaller

datasets, it is not so important when training on more, well-balanced data [LeCun

et al., 2015]. Although GRID is a comparatively small dataset, it has the benefit

of having numerous examples in the data of each word in the grammar.

Aside from obtaining the weight parameters through training of the network,

a number of model hyper-parameters can be optimised to further improve the

performance of the network. Random or grid search can be used over the set

of hyper-parameters to acquire a combination that gives the best performance.

Random search tends to reach comparable solutions to grid search quicker within

a much shorter search time [Bergstra and Bengio, 2012]. More details of the DNN

architecture used are given in Appendix B.3.

5.4 Speech reconstruction

Initial experiments are conducted to objectively determine how accurately audio

features (LPC and Mel-filterbank) can be estimated from visual features (2D-DCT
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and AAM) using the two domain mapping models. Using the results collected in

Section 5.2 on spectral smoothing, the accuracy of estimating audio features with

various levels of smoothing applied is measured. Furthermore, the two best per-

forming configurations of mapping model, and audio and visual features, are eval-

uated further with subjective listening tests, to establish whether intelligible audio

speech can indeed be reconstructed from visual speech information. The subjective

tests are conducted using utterances reconstructed for the female speaker (speaker

four in the GRID corpus). Finally, a detailed analysis is presented to determine

the characteristics of reconstructed audio speech in the visual-to-audio system as

described by Figure 5.1.

5.4.1 Objective results

To determine how accurately the audio feature vectors have been estimated, the

correlation, r, is calculated between the original audio feature vectors, ai, and the

estimates, âi, using,

r =

∑n
i=1(ai − ā)(âi − ¯̂a)√∑n

i=1(ai − ā)2
∑n

i=1(âi − ¯̂a)2

, (5.11)

where ā and ¯̂a are the means of the original and estimated audio feature vectors

respectively. Mean squared error comparisons, whilst informative when considering

each audio feature individually, were found to not work well when comparing

between the two audio feature representations due to differences in the magnitudes

of the errors.

Correlations are reported in Table 5.2 and Table 5.3 for each of the visual feature

representations and model combinations, and for the LPC and Mel-filterbank audio

features. It can be seen that Gaussian mixture model are superior at estimating
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LPC audio features over DNNs, as higher correlations results. Although only a

small difference is exhibited, the AAM visual features perform marginally better

than 2D-DCT features. For the Mel-filterbank audio features, the DNN achieves

slightly higher correlations over using GMMs, with, again, a small tendency for

the AAM visual features to outperform the 2D-DCT features.

Table 5.2: Correlation scores, r, for LPC configurations.

DNN GMM

Num. coeffs AAM 2D-DCT AAM 2D-DCT

2 0.59 0.62 0.73 0.72

4 0.61 0.62 0.72 0.71

6 0.57 0.59 0.72 0.72

8 0.62 0.65 0.73 0.71

14 0.52 0.53 0.71 0.72

Table 5.3: Correlation scores, r, for Mel-filterbank configurations.

DNN GMM

Num. channels AAM 2D-DCT AAM 2D-DCT

4 0.82 0.81 0.79 0.81

7 0.83 0.82 0.79 0.81

10 0.83 0.82 0.81 0.81

15 0.83 0.82 0.81 0.81

20 0.82 0.82 0.81 0.81

Furthermore, regarding the ability of the models to estimate fewer audio coef-

ficients with greater accuracy, the results show that there is not a great difference

between the audio feature estimates with various levels of smoothing applied. For

each of the feature and model combinations, except when using a DNN for es-

timating LPC audio features, there is little difference between the correlations.

Accordingly, this suggests that the dimensionality of the audio features should be

chosen such that audio speech reproductions have the highest intelligibility possi-
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ble, i.e. using LPC features with order P ≥ 8, and Mel-filterbank channel numbers

of K ≥ 15.

The models selected for the subjective tests are highlighted in bold, and have

been chosen as they result in approximately the highest correlations, and have

configurations such that there is no overlap between the different types of audio

feature, visual feature, and statistical model.

5.4.2 Subjective results

The aim of the subjective intelligibility experiments is threefold. First, to examine

whether reconstructing audio speech from visual features can produce intelligible

speech. Second, to compare the intelligibility of the reconstructed audio with the

intelligibility from just the video of the speaker, i.e. lip reading. Third, to examine

whether combining reconstructed audio with the video improves intelligibility. To

address these questions the subjects are presented with samples from three different

multimedia configurations: the reconstructed audio-only, the original video-only,

and the reconstructed audio combined with the original video (audiovisual).

To generate the reconstructed audio, four different configurations are examined.

Two methods of estimating the time-frequency surface are used, one using a GMM

with AAM and 8th-order LPC audio features, and the second using a DNN with

2D-DCT and 15-channel Mel-filterbank audio features. It is apparent that these

two systems represent only a small subset of the configurations analysed in Section

5.4.1. However, whilst the results indicate that all of the systems would have been

good contenders, it would have been prohibitive to include all combinations (or in-

deed more combinations) in the subjective experiments as the listening tests would

have been too long for the subjects. Instead, the approach chosen was to use two

very different configurations to examine their impact on intelligibility. Addition-



CHAPTER 5. REGRESSION SYSTEM 107

Table 5.4: Methods of reconstructing speech from visual features.

Method Time-frequency surface Excitation

GMM ORIG GMM + AAM + LPC Original

GMM UNV GMM + AAM + LPC Unvoiced

DNN ORIG DNN + 2D-DCT + Filterbank Original

DNN UNV DNN + 2D-DCT + Filterbank Unvoiced

ally, one of the motivating factors for running this set of experiments was to test

the hypothesis that intelligible audio speech could in fact be reconstructed from

visual speech. These were combined with two methods for creating the speech

excitation—using the original voicing and fundamental frequency, and using fully

unvoiced excitation. Again, it would be prohibitive to try all combinations of ex-

citation in the listening tests, so preliminary tests determined that the unvoiced

excitation gave the most intelligible audio of the three methods introduced in Sec-

tion 4.2. These two choices of excitation allow the impact of having no knowledge

of the voicing/fundamental frequency to be compared to having full knowledge.

The four methods are summarised in Table 5.4.

Twenty listeners took part in the tests, which were conducted in a quiet en-

vironment with subjects using headphones and positioned in front of a monitor.

Each subject was played (in a random order to remove any bias) 12 audio-only

sentences, 12 audiovisual sentences, and 3 video-only sentences. The 12 audio sen-

tences, and 12 audiovisual sentences, comprise 3 examples from each of the four

configurations in Table 5.4. Only 3 video-only sentences were included as, with no

audio present, repeating for the four configurations in Table 5.4 was not required.

This gave a total of 27 sentences, all with different utterances. Each listener was

allowed to replay the audio/video as many times as they wished before entering

the words they heard. The tests were conducted in this manner as a potential

application of the work would be to transcribe speech from recordings where lis-
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teners would be able to replay the media multiple times. Overall accuracy was

calculated by dividing the total number of words correctly identified by the total

number of words presented.

Table 5.5 shows the intelligibility (word accuracy) for the four different meth-

ods of reconstructing audio, listed in Table 5.4, and are shown for both the re-

constructed audio only and when combined with the original video (audiovisual).

The intelligibility obtained using the video alone was 50 %, with a range of scores

from 0 % to 72 %. This variability is observed in the literature [Summerfield, 1992;

Lan et al., 2012], were there exists large variation in lip-reading performance. To

control for this, a sufficient number of listeners were required to conducted the ex-

periments, and the scores of all the listeners are averaged. Furthermore, presenting

the questions to the listeners as closed-response (using multiple-choice) makes the

task easier than if the questions were open-response.

For the GRID grammar shown in Table A.1, the intelligibility that would be

expected by chance alone is 19 %, and can be calculated for a single utterance

using,

(0.25 + 0.25 + 0.25 + 0.1 + 0.04 + 0.25)÷ 6 = 0.19, (5.12)

where the probability of selecting the correct choice at random for each of com-

mand, colour, proposition, and adverb is 1
4
; for digit it is 1

10
; and for letter the

probability is 1
25

.

The results show that for both configurations without any prior knowledge of

the original excitation (GMM UNV and DNN UNV), audio speech can be recon-

structed from visual features with intelligibility greater than chance. When these

are supplemented by the original video signal, the intelligibility increases further.

Audiovisual intelligibility with GMM UNV is higher than using only the video,
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Table 5.5: Intelligibility (word accuracy in per cent) and standard error of recon-
structed audio-only and audiovisual speech.

Method Audio-only (%) Audiovisual (%)

GMM ORIG 49.2 (5.7) 60.8 (5.0)

GMM UNV 40.3 (4.9) 52.2 (5.5)

DNN ORIG 37.5 (4.8) 56.4 (5.7)

DNN UNV 27.2 (5.3) 45.8 (4.7)

and agrees with studies that show that an audiovisual signal is more intelligible

over using a single modality [Summerfield, 1992]. The audiovisual intelligibility

of DNN UNV remains lower than visual-only, and is attributed to the lower intel-

ligibility of the audio, at approximately 13 % lower than with GMM UNV-based

audio. Identifying the reason for this difference is not straightforward as the two

configurations differ in their audio and visual features as well as the method of

estimation. However, informal listening tests indicate that speech produced by a

range of different configurations suggests that the audio feature is most important

when considering intelligibility, rather than the visual feature or method of esti-

mation. The spectral-envelope produced from estimated LPC coefficients is closer

to the original spectral-envelope than that produced by the Mel-filterbank features

due to its relative coarseness.

Reconstructing audio using the fundamental frequency and voicing estimated

from the original speech gives an absolute increase in intelligibility of 7.5 % over

using a purely unvoiced excitation. This demonstrates the importance of voicing

and is attributed to several of the vocabulary items requiring voicing to be classified

correctly, such as /s/ and /z/ confusions.

Interestingly, the correlation scores from Table 5.2 and Table 5.3 suggest that

the DNN ORIG and DNN UNV systems would outperform the equivalent GMM

systems, with audio feature correlations of 0.82 and 0.73 for the DNN and GMM,
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respectively. However, the subjective intelligibility results show that the GMM

utterances were more intelligible than the equivalent DNN utterances for all com-

binations of f0 contour and media. This suggests that correlation between original

and estimated audio feature representations is not a good measure of intelligibility

for reconstructed utterances. Accordingly, the mean squared error is used for the

remainder of this work when evaluating the accuracy of estimated audio features

as the results obtained are more informative.

5.4.3 Utterance analysis

To further evaluate the thesis of being able to reproduce intelligible audio speech

using only visual information with regression models, an analysis is performed on

whole utterances and also individual frames of speech in an attempt to determine

the characteristics of the reproduced audio speech.

Wideband spectrograms are presented in Figure 5.10 for an original utterance

and two reproductions, the first using a GMM with LPC and AAM features, and

the second using a DNN with Mel-filterbank and 2D-DCT features. It can be seen

in the spectrogram of the original utterance that the formants are clear and that

greater spectral detail is present, whereas it is not as readily apparent in the two

audio reconstructions. The utterance reproduced from the GMM model appears to

be more faithful to the original utterance in comparison to the DNN model, where,

although an amount of smoothing is exhibited, there is nevertheless some spectral

detail present. This effect is confirmed through informal listening tests, where

speech reproductions from LPC coefficient spectral-envelope representations sound

more “speech-like” than the utterances derived from the estimated Mel-filterbank

features. From the spectral structure of the utterances, it is apparent that the

DNN system produces a more sparse spectral structure compared to the GMM
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Figure 5.10: Wideband spectrograms for the original utterance “bin blue at Z 1
now” spoken by the female speaker, and of reproductions from the GMM and DNN
visual-to-audio domain mapping models. Some higher-resolution formant detail is
present in the GMM audio reproduction, whereas very little is present in speech
reproduced from the DNN.
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system, with more energy in the lower frequencies. These observations explain

the accuracies achieved in the subjective listening tests, where the GMM system

results in greater intelligibility over the DNN system.
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Figure 5.11: Correlations of frequency bins between the original and estimated
spectral-envelope surfaces for the Mel-filterbank and LPC audio features, respectively.

To further understand the difference in spectral detail, investigations are con-

ducted on the correlations over all test utterances between the original spectral-

envelope surface and those estimated by both systems. The difference between the

two configurations is shown further in Figure 5.11a for Mel-filterbank, and Fig-

ure 5.11b for LPC, where correlations between frequency bins of the original and

estimated spectral-envelope surface have been recorded. The DNN system using

Mel-filterbank features exhibit strong correlation in the frequencies below 1.8 kHz,

and then weaker correlations for frequencies above. Whereas for the GMM system

using LPC features, the correlations appear to be somewhat more uniform over

the frequency domain, with troughs at 1.5 kHz and 3.1 kHz. The correlations over

the frequency domain for the spectral-envelopes confirms what is observed in the

spectrograms of the different configuration utterances shown in Figure 5.10, where
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the lower-frequencies are better estimated using Mel-filterbank features, and the

higher-frequencies are more accurate when using LPC.
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Figure 5.12: Comparisons of original and estimated Mel-filterbank features with
low and high error spectral-envelope reconstructions for a chosen frame. The left
graph shows a reconstructed envelope with very little error, in comparison to the
right graph.
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Figure 5.13: Comparisons of original and estimated LPC audio features with low
and high error spectral-envelope reconstructions for a chosen frame. The left graph
shows a reconstructed envelope with very little error, in comparison to the right graph.
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Next investigations are conducted at the frame level, where examples of recon-

structed spectral-envelopes with low and high-error, when compared to the original

spectral-envelopes, are shown in Figure 5.12 for the Mel-filterbank features esti-

mated by a DNN, and in Figure 5.13 for LPC features estimated by a GMM. For

both types of audio feature, when there is low error between the original and esti-

mated spectral-envelopes, the estimated audio features have been estimated from

input visual features using the visual-to-audio domain mapping models with suffi-

ciently high accuracy. However, when the error is high, it is readily apparent that

the spectral-envelopes are significantly dissimilar, causing the resultant speech to

have a far lower intelligibility. One issue with using LPC features is that they

are not robust to individual errors in the coefficients. That is, errors in the coef-

ficients may lead to the filter becoming unstable [So and Paliwal, 2007], yielding

highly-incorrect spectral-envelopes. In comparison, errors in a single channel of

the Mel-filterbank features will not introduce errors into other channels, leading

to a more stable spectral-envelope representation.

5.5 Summary

The experiments conducted in this chapter have shown that it is indeed possible

to reconstruct intelligible audio speech signals from visual speech information. In

comparison to articulatory speech synthesis models, where information concerning

the location of the articulators is available, the information contained within a

video of a speaker is limited to that which can be seen of the mouth, with no

excitation information obtainable.

The investigations into spectral-smoothing show that speech reproduced from

heavily smoothed spectral-envelopes retains high intelligibility in certain configu-

rations, with intelligibility using only a few audio feature coefficients comparable
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to that of unprocessed speech. Furthermore, the effect of using the artificial-f0

methods for providing excitation information was explored, with the tendency for

the unvoiced and monotone methods to perform best.

The LPC audio feature representations have been shown to outperform Mel-

filterbank features for both the spectral smoothing experiments, and for the initial

regression visual-to-audio domain mapping models, for both objective scores and

subjective intelligibility results. However, one issue with using LPC coefficients

is that errors may lead to high instability, where as Mel-filterbanks channel am-

plitudes do not suffer from this problem. Additionally, despite yielding lower in-

telligibility scores, the Mel-filterbank features exhibited better correlations at the

lower-frequencies over LPC features, where the increase in intelligibility when using

LPC features is attributed to the improved correlations at the higher-frequencies.

When considering the mapping models, the Gaussian mixture model system

performs best when using LPC audio features, and specifically, when using AAM

visual features. For estimating the Mel-filterbank features, the deep neural net-

work system performs best, and specifically when using 2D-DCT visual features.

Overall, the highest correlations for the visual-to-audio configurations results from

using the DNN to estimate the Mel-filterbank audio features from AAM visual

features. If the overall spectral-envelope correlations can be improved, especially

in the higher-frequencies, then it is expected that greater intelligibility can be

achieved. Accordingly, work presented in the upcoming chapters explores exploit-

ing the power of deep neural network architectures, using Mel-filterbank audio

features and AAM visual features, to further improve the results achieved within

this chapter.



Chapter 6

Classification system

6.1 Introduction

In the previous chapter, the use of regression models was explored for perform-

ing visual-to-audio domain mapping. That is, input visual features were used

to estimate the real-valued and continuous LPC and Mel-filterbank audio feature

representations of the spectral-envelopes. A limitation with using regression mod-

els for the audio feature estimation is that non-plausible spectral-envelopes can

be generated. Whereas errors in the LPC coefficients can cause the filter to be-

come unstable, Mel-filterbank features are more robust to errors in the estimated

channel amplitudes, as an error in one channel will not effect the values of other

channels. Furthermore, the estimated spectral-envelopes exhibit a large degree of

smoothing when compared to the original, and, accordingly, the intelligibility of

reconstructed utterances is adversely affected.

The work presented in this chapter explores the idea of applying a clustering-

and-classification approach to the task of visual-to-audio domain mapping. The

belief here is that by clustering the spectral-envelope information, using vector

116
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quantisation techniques, to produce a codebook, and then estimating the codebook

entries, i.e. class labels, using a classification model with input visual features, the

problem of estimating non-plausible spectral-envelopes is mitigated. An overview

of this approach is shown in Figure 6.1, where deep neural networks are used as the

classification model. Furthermore, the quantised audio features, ensuring that sim-

ilar feature vectors are grouped together, will result in more realistic and reliable

spectral-envelopes estimations, with better spectral detail. Thus, the hypothesis

is that the intelligibility of the audio speech reconstructions will be greater than

the regression system.

c1

c2

cC

…
 

Codebook

XA Mini-batch 
k-means

ai

ci

XV yC

Group

Deep neural network

Figure 6.1: Overview of proposed system using vector quantisation techniques to
produce a codebook of spectral-envelope representations, indexed by a class label. A
classification DNN can then be trained using input visual feature vectors and class
labels from the associated quantised audio feature vectors.

In addition to the proposed clustering-and-classification framework, the idea

of incorporating greater temporal information is explored. The regression system

use only static features, i.e. a single visual feature vector is used to predict a

single audio feature vector. However, as speech production is a dynamic process,

due to, for example, effects of co-articulation and speed of articulator movements,



CHAPTER 6. CLASSIFICATION SYSTEM 118

there is likely a benefit to be had from exploiting longer-range temporal structure.

Accordingly, in addition to exploring quantisation of single audio feature vectors in

the codebook production stage, the quantisation of grouped audio feature vectors

is performed, with estimations from inputs of grouped visual feature vectors.

The remainder of this chapter is organised as follows. In Section 6.2, an overview

of codebook production using clustering methods from the area of vector quanti-

sation is given. The classification deep neural network architecture is described

in Section 6.3, for estimating the audio feature codebook entry from input visual

features. Incorporating longer-range temporal information at the feature-level is

described in Section 6.4, for both audio and visual features. Evaluations of the

clustering-and-classification methods, using feature-level temporal encoding, pro-

posed in this chapter are presented in Section 6.5. Lastly, a summary of this

work is provided in Section 6.6. Subjective intelligibility tests on the audio speech

reproductions are presented in Chapter 8.

6.2 Vector quantisation

To perform the clustering part of the proposed system, techniques from the area

of vector quantisation (VQ) are used. Vector quantisation has application in lossy

data compression, such as in video and audio codecs, and is used in numerous

areas of speech processing, including voice conversion [Abe et al., 1988] and speech

coding [Paliwal and Atal, 1993]. Code-excited linear prediction [Schroeder and

Atal, 1985], for example, is a speech coding algorithm that uses both fixed and

adaptive codebooks for parametrising excitation information, with LPC coefficients

(encoded as LSPs) used to represent the spectral-envelope. The idea behind VQ

techniques is that high-dimensional feature vectors can be compressed into a finite

set of lower dimension vectors, with a small quantisation error as a result. In
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the proposed system, clustering is used to produce a finite codebook of spectral-

envelopes, represented by Mel-filterbank channel amplitudes, which can then be

converted to spectral-envelopes for speech reconstruction. The aim in performing

this step is that class labels can be assigned based on the location of the codebook

entry, and then estimated using a classification model.

To produce a codebook, C, a clustering algorithm is applied to a set of N

training audio feature vectors, XA = {a1, . . . , aN}. The size of the codebook,

i.e. the number of codebook entries, K, where K = |C|, is chosen such that

K � |XA|. The set of cluster centres, C = {c1, . . . , cK}, is found using the

mini-batch k-means algorithm instead of the classic LBG algorithm [Linde et al.,

1980]. The mini-batch k-means variant is able, given the large number of training

examples, to reach convergence faster with comparable solutions to the standard

algorithm [Sculley, 2010].

To initialize the set of cluster centres, c ∈ C, with size K, randomly chosen

audio features are selected from the training set, XA. The optimisation problem

aims to minimise, over the set of training audio feature examples, the following

objective function,

J =
K∑
j=1

N∑
i=1

||ai − cj||2 (6.1)

where cj is the mean of the jth cluster centre, and ai is the ith audio feature

vector. The index of the cluster centre closest to ai can be obtained as follows,

j = arg min
j
||cj − ai||2. (6.2)

Gradient descent is employed to minimise the objective function given in Equa-

tion 6.1. Mini-batches of size b, where b < N , of randomly selected training
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examples are used to perform updates of the cluster centres for a given number

of iterations. The size of the gradient descent taken for each cluster centre is pro-

portional to the number of examples in the mini-batch that have been assigned to

that particular cluster. Training is concluded once the total number of processing

iterations has been reached. An overview of the clustering process described in

this section is given in Figure 6.2, where the codebook is created from the train-

ing vectors, XA, and can be used to output a class label for a given input audio

feature, ai.

c1

c2

cC

…
 

Codebook

Xa

Mini-batch 
k-means

ai ci

Figure 6.2: Overview of the mini-batch k-means clustering algorithm applied to a
set of audio training features, XA, to produce the codebook, C. A class label, ci, can
be output by finding the closest cluster centre to ai.

To evaluate suitable values of K, a test set of audio feature vectors are quan-

tised using the codebook, and then compared to the original un-quantised feature

vectors to determine the resultant quantisation error. Ultimately, it is desired

that audio speech reconstructed from the quantised audio features maintains a

level of intelligibility as close as possible to the original utterances. Training audio

feature codebooks are produced with sizes K = {16, 32, . . . , 2048, 4096} and the

mean squared error, defined in Equation 5.10, and standard deviation, between

the original and quantised audio features is recorded.

In Figure 6.3 it can be seen that as the number of cluster centres, K, is in-
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Figure 6.3: Mean squared error (with error bars showing a single standard error)
between original and quantised audio feature vectors with codebooks of increasing
numbers of cluster centres, K.

creased, there is a reduction in mean squared error. The error reduces quickly up

to K = 256 clusters, and then decreases slowly thereafter. The error will continue

reducing until it reaches zero when K = |XA|. Spectrograms of audio utterances

reconstructed from codebooks with sizes of K = {16, 128, 1024}, including the

original utterance, are shown in Figure 6.4. It is evident that as the size, K, of the

codebooks increases, greater spectral resolution is retained, with the spectrograms

of the original utterance and from audio reconstructed using K = 1024 clusters

being near identical. With too few clusters there is a distinct loss of spectral-

resolution in the higher frequencies, with considerable broadening of the formants

exhibited. Informal listening tests, confirming the MSE analysis, indicate that the

intelligibility of reconstructed audio utterances is near indeterminable from the

original utterances with codebook sizes of K ≥ 512.

For use within the classification framework, each of the N audio feature vectors
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Figure 6.4: Spectrograms of the utterance “place green with Y 8 again” spoken by a
female speaker, with the original audio and utterances reconstructed from quantised
audio features with codebooks of size K = {16, 128, 1024}.
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in the training set, XA, are quantised to give a set of N training class labels,

yc = {c1, . . . , cN}, derived from the index of the closest cluster centre through

application of Equation 6.2. Accordingly, input visual feature vectors, vi, can

be used to estimate the corresponding audio class label, ci, using classification

models. In the next section, deep neural networks are explored for performing this

classification.

6.3 Classification using DNNs

Given input visual feature vectors and a codebook of spectral-envelopes trained as

in the previous section, which can be used for assigning class labels to audio fea-

tures, a classification deep neural network model can be constructed. Deep neural

networks configured for classification have application in speech recognition sys-

tems where they can be used instead of GMMs for acoustic modelling, and are used

to produce posterior probabilities over hidden Markov model (HMM) states [Hin-

ton et al., 2012]. A general overview of deep neural networks for classification is

given in Section 4.3, and for regression in Section 5.3.2.

To construct a DNN for performing the visual-to-audio domain mapping, a

training set of N visual feature vectors, XV = {v1, . . . ,vN}, and corresponding

audio codebook entry labels, yc = {c1, . . . , cN}, are required. Weight parameters in

the network are uniformly initialised, and mini-batches of training visual features

are fed through the network. At the output softmax layer, the categorical cross-

entropy loss function (see Equation 4.8) is applied to produce a training error

between the estimated class probabilities and the correct class labels. This error

is then used to optimise the weights of the network using backpropagation of

errors in conjunction with the gradient descent algorithm. As with the regression

system, a random search can be performed over the set of model hyper-parameters
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to determine an optimal set. More details of the architecture used are given in

Appendix B.4.

To obtain an audio feature estimate, âi, a visual feature vector, vi, is fed through

the DNN to produce K class probabilities, with the top class, ĉi, returned using

Equation 4.7. The cluster centre indexed by ĉi can then be output from the audio

feature codebook, C, to give âi. Interpolation, as per Equation 3.11, can then be

applied to the Mel-filterbank feature to obtain a spectral-envelope representation,

X(f, i), as required by the STRAIGHT speech reconstruction model.

6.4 Feature-level temporal encoding

Thus far, the methods detailed in this chapter, and those presented in the previous

chapter on regression, have focused on estimating a single-frame audio feature vec-

tor given a single-frame visual feature vector. Velocity and acceleration temporal

derivatives can be appended to static feature vectors to introduce some degree of

temporal information, however, the context window is typically only on the or-

der of a few frames in width, covering several tens of milliseconds of speech. It is

widely recorded in the literature that context plays a important role in speech pro-

cessing due to phenomena such as co-articulation. Incorporating longer windows

of speech information is motivated by psychoacoustic studies of the peripheral

human auditory system where it has been suggested that time spans of several

hundred milliseconds of speech are integrated, as opposed to the short duration

frames most commonly used in speech processing [Sharma et al., 2000]. Addi-

tionally, ASR systems have shown benefits from incorporating temporal windows

of speech up to 1000 ms in length [Chen et al., 2004], in addition to techniques

using shorter frames. In this section, the previous static systems are extended by

evaluating different methods of incorporating temporal information at the feature-
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level. To complement this, the work in Chapter 7 explores incorporating temporal

information at the model-level.

6.4.1 Feature-level vector windows

Instead of a static system whereby a single audio feature vector is estimated from

a single visual vector at each time instance, windows of feature vectors can be

grouped together, to produce audio and visual feature matrices, Ai and Vi, that

comprise windows of size SA and SV , for audio and visual, respectively. The

windows contain an odd number of feature vectors that are centred on a middle

vector defined as,

Ai = [ai−wA ; . . . ; ai; . . . ; ai+wA ] , (6.3)

Vi = [vi−wV ; . . . ; vi; . . . ; vi+wV ] , (6.4)

where wA = SA−1
2

and wV = SV −1
2

, and the semi-colon operator is used to indicate

concatenation of vectors. Larger window widths include greater levels of temporal

information. As was performed in Section 6.2 for static vectors, the mini-batch

k-means algorithm can be applied to the audio feature matrices to produce a

codebook where each entry now represents a sequence of SA static vectors. Ac-

cordingly, class labels can be assigned to the windowed feature vectors for use in

the classification model.

6.4.2 Audio quantisation analysis

One problem with estimating windows of audio feature vectors as opposed to

static feature vectors, is that the windowed features need to be manipulated, or
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processed, in some capacity so as to result in only a single feature vector for each

frame, i. This processing is necessary to produce the time-frequency spectral-

envelope surface as required by STRAIGHT. Accordingly, three methods for solv-

ing this problem are proposed, with intuition for the methods shown in Figure 6.5.

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 80

0

0

Shift-by-SA

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 80

0

0

Shift-by-one

Figure 6.5: Intuition for shift-by-SA (window size) and shift-by-one sliding window
techniques for incorporating feature-level temporal information.

1. Shift-by-one: the visual window is shifted forward by a single vector at each

time instance and the middle vector in the estimated audio feature matrix,

Ai, is selected as the output.

2. Shift-by-SA: the visual window is shifted forward by the size of the audio

window, SA, such that output audio matrices are non-overlapping.

3. Overlap-and-add: the visual window is shifted forward by a single vector at

each time instance and an audio matrix, Ai, is output. These matrices are

then time-aligned and overlap-and-add is applied to form the output vector

sequence. As the mean of overlapping windowed features is taken as the

output, an element of smoothing to the audio features is introduced.

To evaluate the performance of the three proposed techniques, an audio-only inves-

tigation is conducted between the original un-quantised audio feature vectors and

the quantised windowed audio feature vectors with the methods applied. Vary-

ing feature-level window sizes of SA = {3, 11, 19, 31} are evaluated, with codebook
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sizes of K = {16, 32, . . . , 2048, 4096}, to see how the error is affected by both code-

book size as well as the width of the windowed audio signal. For reference, a single

audio frame covers 20 ms of audio signal, with an interval of 10 ms overlap applied.

Therefore, for example, a windowed audio feature vector with size SA = 11 will

cover 120 ms of audio speech signal.

From Figure 6.6 it can be seen that method three, the overlap-and-add tech-

nique, gives the lowest mean squared error across all codebook sizes and audio

feature vector window sizes. Methods one and two both show similar trends, con-

verging to roughly the same values for each of the configurations. This suggests

that the smoothing effect for method three, by taking the mean of the overlap-

ping audio feature vectors, is having a beneficial effect with regards to lowering

the MSE, as opposed to the other methods which have no overlapping output au-

dio features. Furthermore, the method exhibits less erratic trajectories between

neighbouring frames leading to lower overall errors.

Additionally, the MSE scores for Method 3 converge to values close to those

exhibited in Figure 6.3, for the audio-only evaluations performed on the static

features. This suggests that using similar codebook sizes, K, for quantising the

higher-dimensionality windowed audio feature vectors is sufficient, and not having

an adverse effect on the reconstructed audio feature vectors.

6.4.3 Visual-to-audio evaluation

Visual-to-audio mapping experiments are conducted to evaluate the effect of esti-

mating the codebook class labels of the quantised windowed audio feature vectors

from a classification deep neural network given input windowed visual feature vec-

tors, with the application of method 3 to reconstruct the audio feature vectors for

each frame.
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Figure 6.6: Mean squared errors (and error bars showing a single standard error)for
the three sliding window techniques, for feature-level temporal encoding, between the
original audio feature vectors and their quantised versions.
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Numerous classification deep neural network systems are trained using a dif-

ferent codebook model size, K, visual sliding window size, SV , and audio sliding

window size, SA. The window sizes for both the audio and visual features are

selected from the set {3, 7, . . . , 31, 35}. For all combinations of SA and SV , the

visual-to-audio mapping models are evaluated with varying windowed audio fea-

ture codebook sizes of k = {512, 1024, 2048, 4096}. The MSEs that are reported in

Table 6.1 are for the model that yields the lowest error across the four codebook

sizes. That is, the output error is shown for only the single best-performing system

with codebook size K for each combination of SA and SV . The errors recorded

were for utterances from the female speaker.

Table 6.1: Static mean squared error of the estimated audio from a deep neural
network and the original audio with varying audio and visual sliding window sizes.

SA
SV

3 7 11 15 19 23 27 31 35

3 0.483 0.431 0.419 0.411 0.403 0.399 0.394 0.397 0.396

7 0.417 0.383 0.372 0.364 0.357 0.354 0.354 0.355 0.348

11 0.390 0.363 0.353 0.345 0.341 0.337 0.337 0.336 0.336

15 0.383 0.356 0.344 0.337 0.337 0.336 0.331 0.331 0.332

19 0.379 0.351 0.341 0.332 0.332 0.328 0.326 0.327 0.326

23 0.380 0.346 0.335 0.329 0.326 0.324 0.325 0.321 0.322

27 0.383 0.346 0.337 0.330 0.326 0.323 0.323 0.321 0.321

31 0.383 0.347 0.333 0.325 0.322 0.321 0.320 0.318 0.318

35 0.386 0.354 0.337 0.332 0.326 0.322 0.319 0.318 0.320

From Table 6.1, it can be seen that the general trend is for the mean squared

error to decrease as the window sizes for both the audio and visual features increase.

As the window size increases from 3 to 23 frames, the MSE decreases quickly,

after which it remains relatively constant. The lowest MSE is recorded for a visual

window size of SV = 31 and an audio window size of SA = 31. That is, using
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320 ms of visual information to estimate 320 ms of audio information; and for

reference, with a codebook size of K = 2048. This is in comparison to a static

system whereby 20 ms of audio is estimated from an equivalent length of visual

information.

In the next section, objective intelligibility evaluations are performed for a

selection of the best performing feature-level configurations for both a male and

female speaker.

6.5 Objective intelligibility evaluation

To evaluate the improvement in intelligibility of speech reconstructions using the

clustering-and-classification framework proposed in this chapter, visual-to-audio

reconstruction experiments are conducted with objective intelligibility evaluations

performed. In particular, the accuracy of audio feature estimations given the vari-

ous feature-level methods and window sizes is explored, with objective intelligibil-

ity measures applied to reconstructed utterances to establish configurations with

which to perform further subjective listening tests in Chapter 8. Furthermore,

a more detailed analysis of the reconstructed utterances is performed to gain a

better understanding of the behaviour of the method proposed in this chapter.

6.5.1 Objective experiments

To reconstruct time-domain audio utterances, the spectral-envelope information

is obtained from the audio features estimated by various system configurations

with audio and visual combinations of SA = {23, 27, 31, 35} and SV = {31, 35},

respectively. This set of audio and visual window sizes was found to give around the

lowest MSE values, as per Table 6.1. To obtain the excitation information, band-
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aperiodicity features estimates are obtained from the estimated audio features, âi,

and joint codebook, Cap, through application of Equation 4.12. Additionally, the

monotone artificial-f0 method (from Section 4.2) is used to provide a fundamental

frequency contour. The regression models used in these experiments are updated

to use AAM visual features, to remain in keeping with the proposed feature-level

models. Evaluations of the reconstructed audio utterances, for a male and female

speaker, are performed using STOI and PESQ.

Table 6.2: STOI intelligibility scores for female speaker with feature-level method.

SA

SV
23 27 31 35

23 — — 0.737 0.737

27 — — 0.737 0.737

31 0.737 0.737 0.740 0.739

35 0.739 0.740 0.739 0.738

Table 6.3: PESQ scores for female speaker with feature-level method.

SA

SV
23 27 31 35

23 — — 1.665 1.666

27 — — 1.656 1.656

31 1.653 1.652 1.668 1.671

35 1.660 1.664 1.666 1.665

Table 6.2 and Table 6.3, show scores for the female speaker of the STOI and

PESQ objective measures, respectively. There is little difference for both metrics

across the various system configurations as the scores are within a similar range.

As was observed in Table 6.1, the configurations that resulted in the lowest mean

squared error scores also resulted in among the highest STOI and PESQ scores. An

audio feature and visual feature window size of SA = SV = 31 gives the best STOI



CHAPTER 6. CLASSIFICATION SYSTEM 132

score of 0.740, and close to the best PESQ score of 1.671. For comparison, speech

reconstructed using the static-only method of audio feature estimation (where

SA = SV = 1) had a STOI of 0.507 and PESQ of 0.987, which is significantly lower

and indicates the importance of the wide temporal windows. Furthermore, the

results from the best configuration compare favourably to the regression system,

which achieves a STOI of 0.607 and a PESQ of 1.353.

Table 6.4: STOI intelligibility scores for male speaker with feature-level method.

SA

SV
23 27 31 35

23 — — 0.729 0.731

27 — — 0.727 0.727

31 0.725 0.731 0.727 0.728

35 0.735 0.732 0.733 0.734

Table 6.5: PESQ scores for male speaker with feature-level method.

SA

SV
23 27 31 35

23 — — 2.052 2.055

27 — — 2.031 2.025

31 2.017 2.022 2.023 2.025

35 2.027 2.030 2.038 2.038

Table 6.4 and Table 6.5, show scores for the male speaker of the STOI and PESQ

objective measures, respectively. A similar trend is seen for the male speaker as

occurs with the female speaker, where the range of scores within each measure are

similar. The window sizes for which STOI is maximised occur with SA = 35 and

SV = 23 with a score of 0.735, and for PESQ a score of 2.055 is achieved using

windows of SA = 23 and SV = 35. In comparison, using static-only estimation,

STOI and PESQ scores are significantly lower at 0.390 and 0.974, respectively.
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Interestingly, although the STOI scores between the male and female speaker are

within a similar range, the male speaker achieves higher PESQ scores with 2.055 for

the best configuration in comparison to the female with a score of 1.671. Again, the

results compare favourably to the regression system, which, for the male speaker,

resulted in a STOI of 0.604 and a PESQ of 1.700.

The improvement in objective intelligibility scores for both speakers using the

clustering-and-classification method indicates the superior audio feature estima-

tion performance of this method over the regression system, and demonstrates the

benefits of using longer-range temporal information. Next, an analysis of the re-

constructed utterances is conducted to elucidate further the increase in objective

performance.

6.5.2 Utterance analysis

To evaluate further the performance of the clustering-and-classification framework

with feature-level temporal encoding proposed in this chapter, an analysis of recon-

structed audio utterances is performed. Audio analysis performed on reconstructed

utterances in Chapter 5, achieved using wideband spectrograms and correlations of

frequency between original and estimated spectral-envelopes, demonstrated that

the regression visual-to-audio models were unable to reproduce higher-frequency

spectral detail, although the reproduction of the lower-frequencies was more faith-

ful. Accordingly, given the improvement in object intelligibility scores, the meth-

ods presented in this section will ideally show more accurate spectral detail as

the audio features are selected from a codebook as opposed to being estimated

directly.

Wideband spectrograms are shown in Figure 6.7 for an original utterance,

and utterances reconstructed using the regression and clustering-and-classification
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Figure 6.7: Wideband spectrograms of the original utterance “lay white with F 3
now” from the female speaker, and reproductions from the regression and feature-level
clustering-and-classification visual-to-audio domain mapping models.
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models. The regression system, using AAM features, exhibits roughly the same

trends as was found for the previous DNN regression system when using 2D-DCT

visual features. Although the lower-frequencies have been produced faithfully,

there is still little high-frequency spectral detail, with an apparent smoothing

noticeable in the general spectral-envelope structure across the utterance. The

spectrogram for the feature-level model shows that there is an apparent increase

in the higher-frequency spectral detail, with less smoothing found in comparison

to the regression system. For example, there is evidence of formants other than

the first, F1, around 1.6 and 2 seconds.
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Figure 6.8: Correlations of frequency bins between the original and estimated
spectral-envelope surfaces for the regression and feature-level models, respectively.

As the error measures give only a single output describing the difference between

the original and estimated audio feature vectors, the accuracy across frequency is

combined into one value. However, in attempt to further understand the ability

of the feature-level methods to produce utterances with higher intelligibility, it is

informative to analyse the accuracy of the estimates across frequency. Accordingly,

correlations between the original and reconstructed estimated spectral-envelope

surfaces are calculated over the set of test utterances. Figure 6.8 shows correlations

between the frequency bins of original and reconstructed spectral-envelopes from
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the regression and feature-level methods for the female speaker. It can be seen that

the regression system exhibits considerably lower correlations across all frequencies

in comparison to the feature-level system, which corresponds to the difference in

spectral detail observed in the spectrograms in Figure 6.7. For the feature-level

system, the correlations are more uniform over the range of frequencies, and are

generally very strong with all r values around 0.8 or higher. Interestingly, for

both methods, there is a similar trend in the frequency regions exhibiting greater

correlation, with visible peaks around 200 Hz, 1.1 kHz, and 2.6 kHz.

The spectrograms and correlation analysis clearly show the superior perfor-

mance of the clustering-and-classification approach to estimate more accurate

spectral-envelope surfaces. The results indicate that estimating codebook entries

using classification models, including using longer-range temporal information, is

preferable over estimating the audio feature coefficients directly using regression

methods.

6.6 Summary

The experiments conducted within this chapter have shown that the proposed

clustering-and-classification framework to perform the visual-to-audio domain map-

ping yields considerable improvements in objective intelligibility scores over the

regression system. Vector quantisation techniques are applied to produce a code-

book of windowed audio features from which class labels can be assigned based

on the location of entries within the codebook. The benefit of using the audio

codebook, as opposed to directly estimating the audio features using regression,

is that more accurate spectral-envelopes can be produced as a result. To estimate

the class labels from input visual features, deep neural networks configured for

classification are utilised.
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To improve further the results using the clustering-and-classification method,

investigations are conducted on incorporating longer-range temporal information

at the feature-level. Windowed audio features, covering various time periods, are

quantised and then assigned class labels which are subsequently estimated from

windows of input visual features. For both the male and female speakers, the

objective intelligibility measures were maximised when using audio and visual

window sizes covering around 300 ms of speech. For obtaining a single spectral-

envelope surface at each time instance, three methods are presented, with the

overlap-and-add method outperforming the other two. The smoothing introduced

using this method yields less erratic trajectories at the audio feature boundaries,

and serves to reduce the error between original and estimated audio utterances.

The best performing configuration for the female speaker, using SA = 31 and

SV = 31, is investigated further in Chapter 8 with subjective listening tests.

In the next chapter, incorporating temporal information is explored at the

model-level using two approaches. The idea being that the models will determine

the inherent temporal structure exhibited in the input audio and visual signals, as

opposed to directly encoding the information at the feature-level using windowed

feature vectors.



Chapter 7

Model-level features

7.1 Introduction

In the previous chapter, a clustering-and-classification framework was proposed for

performing the visual-to-audio domain mapping, resulting in significant improve-

ments over the regression system as described in Chapter 5. These improvements

were achieved as a consequence of incorporating longer-range temporal informa-

tion, which allows for phenomena such as co-articulation to be modelled, at the

feature-level.

As an alternative approach, the work in this chapter explores encoding temporal

information at the model-level, where the inherent temporal structure of the audio

and visual signals is modelled. As with the previous regression and clustering-and-

classification systems, the aim is to produce audio feature estimates from visual

speech information for generating spectral-envelope time-frequency surfaces for

input into the STRAIGHT speech production model. To investigate incorporating

temporal information at the model-level, two methods are considered: Viterbi

decoding and recurrent neural networks.

138
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In the first method, Viterbi decoding is applied to a temporal sequence of vectors

consisting of probabilities associated with Mel-filterbank feature codebook entries,

where, for each time instance, the probabilities are estimated using a deep neural

network from a single visual speech vector. The Viterbi dynamic programming

algorithm has application in hidden Markov models for discovering the most likely

sequence of hidden states (a path), and associated probability, given a sequence of

observed vectors. The technique, as applied to HMMs, has application in various

areas of speech processing, including ASR [Rabiner and Juang, 1993] and speech

synthesis [Hunt and Black, 1996]. In this work, the algorithm is used to output

the sequence of codebook entries for which the path has the highest cumulative

probability.

The second approach explores using recurrent neural networks (RNN) with

the long-short term memory (LSTM) architecture for estimating sequences of au-

dio codebook entries given corresponding sequences of input visual features. The

models have shown successful application in numerous areas of speech process-

ing, and associated fields of deep learning, including ASR [Graves et al., 2013b],

object recognition and labelling [Valentini-Botinhao et al., 2011], and TTS [Fan

et al., 2014]. The LSTM architecture offers numerous benefits over standard RNN

implementations, such as model stability and being able to model considerably

longer-range temporal dependencies in the data.

The remainder of this chapter is organised as follows. The application of the

Viterbi algorithm to sequences of estimated codebook entry probabilities using

first-order transitions is discussed in Section 7.2. In Section 7.3, recurrent neural

networks using the long short-term memory architecture are explored, in an at-

tempt to model longer-range temporal dependencies than can be achieved using

the Viterbi method. Both methods are evaluated objectively in Section 7.4, with

an audio analysis performed on reconstructed utterances. The best performing
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method and configuration from this section are evaluated further using subjec-

tive listening tests in Chapter 8. Lastly, the work presented in this chapter is

summarised in Section 7.5.

7.2 Viterbi decoding

In this section, the first of the two model-level approaches is presented, where

Viterbi decoding is explored for incorporating temporal information. The Viterbi

dynamic programming algorithm, proposed by Viterbi [1967], has application for

decoding convolution codes for cellular and other communication protocols, and in

hidden Markov models for determining the most likely sequence of hidden states

resulting in a sequence of observed outputs. In automatic speech recognition sce-

narios, HMMs are typically used to model words or sub-word units, where the

selected HMM is chosen based on it being the model most likely to have output a

sequence of observed audio feature vectors.

In this work, the Viterbi algorithm is applied to a sequence, with size T , of

codebook entry vectors, with size K. The codebook entries each have an associ-

ated probability as estimated by a neural network from an input visual feature.

These estimated probabilities can be obtained by using the static (SA = SV = 1)

clustering-and-classification model from the previous chapter, where the probabili-

ties of the codebook entries represent the emission probabilities in the Viterbi algo-

rithm, and take the form of posterior probabilities, P (v|cj). For use in the Viterbi

algorithm, these posterior probabilities need to be converted to class-conditional

probabilities, P (cj|v), which can be achieved using Baye’s theorem as follows,

P (cj|v) ∝ (v|cj)
P (cj)

, (7.1)
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where P (cj) is the class prior probability [Dahl et al., 2012]. The class priors can

be obtained from the training data by normalising the frequency counts of each

codebook entry label.

The sequence of codebook entries can be thought of as a K×T emission matrix,

B, described by:

B =



b1,1 b1,2 . . . b1,T−1 b1,T

b2,1 b2,2 . . . b2,T−1 b2,T

...
...

. . .
...

...

bK−1,1 bK−1,2 . . . bK−1,T−1 bK−1,T

bK,1 bK,2 . . . bK,T−1 bK,T


, (7.2)

where each column contains the K codebook entry probabilities estimated by a

deep neural network at each time instance t = {1, . . . , T}. By performing an

arg max operation over the columns in B, the top class estimated at each time

instance can be obtained. This would give the set of outcomes as described for the

static clustering-and-classification system in Section 6.3. In the static system, a

single input visual vector is mapped to a single class label, i.e. the class with high-

est probability, which is then used to output an audio feature from the codebook.

However, the static approach does not attempt to incorporate longer temporal

information, which was shown to be beneficial in the previous chapter.

The intention of using the Viterbi algorithm in this work is to determine the

most likely sequence of codebook entries which can be used to output a whole se-

quence of audio feature vectors, [a1, a2, . . . , aT ], to derive an entire time-frequency

spectral-envelope surface for use in STRAIGHT.

Given matrix B, from Equation 7.2, of K codebook entry probabilities esti-
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mated by a neural network for a sequence length T , the total possible number

of class label sequences is KT , which, for even small values of K and T , is a

tremendously large number. However, a great deal of the class probabilities will

be close to, or in fact, zero, suggesting that they are unlikely to be in the most

probable sequence. Accordingly, the Viterbi algorithm can be used to determine

the sequence of class labels, with the greatest overall probability, by ignoring all

class label sequences except the one that is most probable.

To introduce temporal information into the model, and as is required by the

Viterbi algorithm, a transition probability matrix, A, is produced. First-order

transition probabilities are generated by processing a set of training utterances.

Firstly, the audio features for each training utterance are quantised using a static

codebook, C, (see Equation 6.2), to give class label sequences for each utterance,

described by

{c1, c2, . . . , cT−1, cT}, (7.3)

where ct is the codebook entry at time t, and the number of frames and associated

class labels for the utterance equals T . Then, for all pairs of contiguous class

labels, ci and ci−1, the number of times that a particular class is preceded by

another class is recorded. This can be achieved by performing successive updates

to the transition matrix using

Ai,j ← Ai,j + 1, (7.4)

where the location at Ai,j is increased by one for every occurrence of class ci

preceding class cj. Once all first-order class occurrences have been recorded, they

are normalised to convert these frequency counts to probabilities. Accordingly,

given a codebook, C, with size K, a matrix of first-order transition probabilities
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is produced with K rows and K columns, described by

A =



a1,1 a1,2 . . . a1,K−1 a1,K

a2,1 a2,2 . . . a2,K−1 a2,K

...
...

. . .
...

...

aK−1,1 aK−1,2 . . . aK−1,K−1 aK−1,K

aK,1 aK,2 . . . aK,K−1 aK,K


. (7.5)

Furthermore, a set of initial class probabilities, defined as π, with size K, can be

obtained by normalising the frequency count of the first class, c1, of each training

utterance sequence.

Given the transition probability matrix, A, emission matrix, B, and initial

probabilities, π, the Viterbi algorithm can be applied to determine, and output, the

sequence of codebook entries with greatest cumulative probability. The algorithm

is defined as the following recurrence relation

αk,t = max
over j

(
αj,t−1aj,k

)
bk,t for 1 ≤ k ≤ K, 2 ≤ t ≤ T , (7.6)

where αj,t is the cumulative probability of codebook entry, j, after emitting the first

t observed vectors and having travelled through the sequence of t−1 preceding class

labels with the highest probability. The initial output of the recurrence relation,

αk,1, can be obtained from

αk,1 = πkbk,1, (7.7)

where πk is the initial probability of class k, and bk,1 is the associated emission

probability. Through successive applications of Equation 7.6, the final cumulative
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probability is obtained using

P (c1, . . . , cT ) = max
over j

(
αj,T

)
, (7.8)

where P (c1, . . . , cT ) is the cumulative probability of the best sequence of output

codebook entries.

When applying Equation 7.6 to give the probability of the sequences, it is also

necessary to store the actual values of the path taken. Accordingly, the sequence

of codebook entries with the greatest cumulative probability can then be output.

A matrix, S, is defined for storing the most likely path at time t, and is updated

using

Sk,t = arg max
over j

(
αj,t−1aj,k

)
. (7.9)

One issue in implementing the Viterbi algorithm using multiplication operations

on a large number of probability values, all of which are less than or equal to one,

is that some of the values produced will be extremely low, and, accordingly, below

the range of floating point numbers. To solve this issue, one approach is to apply

the logarithmic transformation to the probabilities and perform addition instead

of multiplication. Thus, Equation 7.6 can be re-written as

αLj,t = γ max
over j

(
αLj,t−1 + aLj,k

)
+ (1− γ)bLk,t, (7.10)

where the superscript L indicates that the logarithmic transform has been applied.

The coefficient, γ, is incorporated into the equation to allow for assigning a greater

weight to either the transition or emission matrices. For example, with γ = 1 there

will be no contribution from the emission matrix, and with γ = 0 there will be no

contribution from the transition matrix. With γ = 0.5, both matrices have equal
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weight.

The application of the Viterbi algorithm for incorporating temporal information

at the model-level is investigated in Section 7.4. Evaluations are conducted to

determine the optimum weighting coefficient, γ, and then objective intelligibility

measures are applied. In the next chapter, recurrent neural networks are explored

for model-level temporal encoding.

7.3 Recurrent neural networks

In this section, the second approach for incorporating temporal information at

the model level is explored using recurrent neural networks (RNN) using the long

short-term memory (LSTM) architecture. Recurrent neural networks have shown

successful application for unsegmented handwriting recognition tasks [Graves and

Schmidhuber, 2009], end-to-end (predicting phonemes from input audio features)

training of speech recognition systems [Graves et al., 2013b], and for speech en-

hancement [Weninger et al., 2015]. The application of these neural network archi-

tectures is investigated for predicting output sequences of audio codebook entries

from input sequences of visual feature vectors, to produce the necessary time-

frequency spectral-envelope surface as required by STRAIGHT for audio speech

reconstructions.

Recurrent neural networks are an extension of standard neural networks and

are able to model dynamic processes by, in effect, introducing a feedback loop into

the standard architecture. A sequence of T input visual vectors, {v1, . . . ,vT},

is passed through hidden layer weight connections to produce a hidden vector

sequence, {h1, . . . ,hT}, and finally the output vector sequence, {y1, . . . , yT} which

comprises class labels pertaining to audio codebook entries. The hidden vector,
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ht, at each time instance can be obtained through application of

ht = σ (Wvhvt + Whhht−1) , (7.11)

where σ is the rectified linear unit activation function, Wvh are the input layer to

hidden layer weights, and Whh are the hidden to hidden layer weights. The bias

terms have been omitted for clarity. Element, yt, of the output sequence can be

obtained through application of

yt = Whyht, (7.12)

where Why are hidden layer to output layer weights. Figure 7.1 shows how the

output of the hidden layer is propagated through time to the hidden layers at the

subsequent time instances.

Input layer

Hidden layer

Output layer

Inputs

Timestep 1 2 3

v1 v2 v3

Figure 7.1: Outputs from recurrent neural networks are a function of the current
input vector and of the previous hidden layer outputs.
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7.3.1 Long short-term memory architecture

In the LSTM architecture, proposed by Hochreiter and Schmidhuber [1997], the

typical activation function units are replaced with “memory cells”, where a picto-

rial representation of a cell is shown in Figure 7.2. The benefit of using LSTM units

comes from the ability to store information, which means longer-range dependen-

cies present in the data can be exploited. This is in comparison to standard RNNs

which are only able to utilise short term information [Hochreiter and Schmidhuber,

1997]. Additionally, LSTM units are able to overcome the problems of vanishing

gradients typically exhibited by standard recurrent neural networks. This be-

haviour is beneficial for speech processing applications as it allows for modelling of

dynamically changing context present in a time-varying signal such as speech [Sak

et al., 2014].

ct

it ot

ft

vt ht

vt vt

vt
Figure 7.2: An LSTM cell showing the input gate, it; output gate, ot; and forget
gate, ft; which are used to control the centre storage cell, ct. Each input gate receives
an input vector, vt, hidden layer outputs from the previous time-step, ht−1, and the
storage cell value from the previous time-step, ct−1. The blue sigmoids indicate the
tanh function. The orange lines show “peephole” connections which allow the gates
to see what values are currently in the storage cell.
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The LSTM units make use of gates to control the flow of input and output

information from both the unit and the storage cell. There are three gates: input,

output, and forget. The forget gate, ft, makes decisions on what information

currently in the storage cell should be kept or forgotten, and is described by,

ft = σ(vtWvh + ht−1Whf + ct−1Wcf ), (7.13)

where vt is the input data and ht−1 is the output from the hidden layer of the

previous time-step. The ct−1 term is the information in the storage cell from the

previous time-step, and provide “peephole” connections to the three gates. The

subscript of the weight connections shows which data the connections are between,

for example, Wvh are the input to hidden layer weights. When the output of the

sigmoid activation, σ, is close to zero the information in the cell is forgotten,

whereas when the output is close to one the previous information is retained.

Having decided what data should be forgotten, the new input data is determined

and the storage cell is then subsequently updated. The input gate, it, calculation

is similar to that of the forget gate and is described by,

it = σ(vtWvh + ht−1Whi + ct−1Wci), (7.14)

where outputs close to zero mean an input value will be ignored, and those close

to one mean the inputs will be stored. The data in the storage cell, ct, can then

be updated by applying,

ct = ftct−1 + it tanh(vtWvc + ht−1Whc), (7.15)

where the forget gate outputs are used to remove information in the storage cell

from the previous time-step, and the input gate outputs are used to indicate which
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of the new values we should store in the cell.

Intuition behind the steps described thus far is as follows. The forget gate

controls what the storage cell currently “knows”, and if no new information is

presented then the contents of the cell are not going to be updated. However, given

some new information in the input data, the forget gate controls the removing of

the old information allowing for the new information to be stored in the cell.

Finally, the output gate, ot, is used to decide what information should be output

from the storage cell, ct. Values from the output gate are given by,

ot = σ(vtWvh + ht−1Who + ctWco), (7.16)

where the primary difference between the output gate equation, and those of the

input and forget gates, is that the output gate is only provided with the current

storage cell information, and the information from the previous time-step. To get

the output from the LSTM unit, ht, the following is calculated,

ht = ot · tanh(ct), (7.17)

where the final application of the tanh function ensures the outputs from the unit

are in the range of −1 to 1.

7.3.2 Bi-directional layers

In typical RNN architectures, only past information is used to decide upon the

current network output. However, it has been found that by also including fu-

ture information the performance can be further improved over uni-directional

models [Graves et al., 2013a]. Bi-directional recurrent layers can be formed by

using two hidden layers where one computes the forward hidden sequence,
−→
h , and
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the other computes the reverse hidden sequence,
←−
h . Element, yt, of the output

sequence can be then be obtained through application of

yt = W−→
h y

−→
h t + W←−

h y

←−
h t. (7.18)

7.3.3 Network architecture and training

To exploit the ability of deep neural network architectures to extract higher-level

representations of the input data, multiple bi-directional LSTM layers can be

stacked together. For implementation purposes, this means the addition of another

hidden layer for each forward hidden layer, with processing performed backwards

in time, such that the processing would begin at element T in the sequence, and

work backwards to element one.

Training of recurrent neural networks is performed using the backpropagation

through time technique, which is based on the standard backpropagation of errors

method used to train feed-forward neural networks. As with standard neural net-

works, optimisation techniques such as stochastic gradient descent and resilient

backpropagation can be used. Aside from issues of vanishing gradients, it is possi-

ble that computed gradients may “explode,” whereby the values become extreme

large. A simple solution to this issue is to clip the gradients at a pre-defined

threshold [Pascanu et al., 2013].

The deep bi-directional LSTM (DB-LSTM) architecture used in this work fol-

lows that of Graves et al. [2013a], where each of the bi-directional layers consists of

500 LSTM units (250 units for the forward layer, and 250 for the backward layer),

and three bi-directional layers are stacked together between the input and output

layers. A batch size of 512 examples is used, with a gradient clipping value of

one. Gaussian noise is added to the weight parameters as a form of regularisation,
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and training is completed once validation scores converge with no further increase

in classification accuracy observed. More details of the architecture are given in

Appendix B.5.

The application of DB-LSTMs for performing visual-to-audio domain mapping

is explored in the next section. First, experiments are conducted to determine

an optimal audio and visual sequence length, T , and then objective intelligibility

investigations are performed to see which of the two model-level methods perform

best.

7.4 Evaluation

In this section, the performance of the two model-level visual-to-audio mapping

methods, incorporating temporal information, is explored. First, an investiga-

tion is conducted for the DB-LSTM system to determine an optimum sequence

length, T , of input visual vectors and corresponding output codebook entry labels.

Then, experiments are conducted for the Viterbi decoding method by applying

different weightings to the emission and transition probabilities to determine an

optimal combination, by exploring different values of γ in Equation 7.10. The

mean squared error between the original and estimated Mel-filterbank features is

recorded for both of these experiments, with a subset of the configurations from

each method selected for further testing. Reconstructed utterances, using the

monotone artificial-f0 contour with the joint aperiodicity codebook estimates, are

evaluated objectively using the STOI and PESQ measures. The best performing

method is then investigated further with subjective listening tests, discussed in

Chapter 8. Finally, an analysis is presented to understand the characteristics of

reconstructed audio speech signals.
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7.4.1 LSTM sequence length

To find an optimum sequence length for estimating the audio codebook entry

labels from input visual feature vectors, varying sequence lengths are investigated

in the DB-LSTM models. Sequences of T = {3, 7, . . . , 31, 35} are explored to

see which length gives the minimum mean squared error between the estimated

and original Mel-filterbank audio features. The visual sequences are comprised of

contiguous AAM visual features, which are used to predict sequences of contiguous

codebook entry labels. During the training phase of the DB-LSTM, the network

will learn the temporal relationship between corresponding sequences of codebook

entry labels and visual feature vectors. To produce the final output audio feature

estimates, the third method discussed in Section 6.4.2 is applied to perform an

overlap-and-add of the audio features pertaining to the individual sequences.

Table 7.1: Mean squared error between audio feature estimates from the DB-LSTM
and the original Mel-filterbank features, for the female speaker, with varying sequences
lengths, T .

Sequence length, T MSE

1 0.938

3 0.728

7 0.560

11 0.481

15 0.442

19 0.418

23 0.404

27 0.399

31 0.390

35 0.381

Mean squared errors are reported in Table 7.1 for the various sequence lengths.

As the length of the sequences increases, the audio feature vector estimates im-
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prove, where the DB-LSTM model with a sequence length of T = 35 (covering

360 ms of audio and visual signal) gives the lowest error. A subset of these config-

urations, with sequence lengths of T = {23, 27, 31, 35} are further evaluated using

objective intelligibility measures to identify the best performing system.

7.4.2 Viterbi matrix weightings

In the standard application of the Viterbi algorithm, the transition and emission

probabilities are given equal weighting. However, the contribution of the probabil-

ities of each matrix can be weighted, so as to ascribe more importance to one over

the other. Variable γ, in Equation 7.10, performs this weighting function, where

γ = 0 means only the emission probabilities will be used, and γ = 1 means only the

transition probabilities will be used. With γ = 0.5 both the emission and transi-

tion probabilities are given equal weight. Accordingly, experiments are performed

comparing the MSE between original audio features and those reconstructed using

the Viterbi algorithm with different matrix weightings applied.

In Table 7.2 it can be seen that as the transition probabilities are given more

weight there is a slight decrease in MSE up to γ = 0.3, after which the error

increases quickly up to γ = 1.0. The lowest MSE is achieved when using γ = 0.3

with an error of 0.919. In comparison to Table 7.1, the MSEs for the Viterbi

method are all in the region of the error achieved for the DB-LSTM system when

using a sequence length T = 1, which is equivalent to a single frame system.

The transition matrix produced for an audio codebook of size 1024 has over 1

million values (1024×1024). This matrix is populated from approximately 240,000

codebook entry pairs (300 frames per utterance and for 800 training utterances),

which causes the matrix to be extremely sparse and likely to be dominated by a

small number of codebook entry pairs. For the transition matrix to be accurate, a
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Table 7.2: Mean squared error of original and estimated audio features from the
female speaker using the Viterbi method with different weightings, γ, for the transition
matrix, A, and emission matrix, B.

Gamma, γ MSE

0.0 (Emission only) 0.927

0.1 0.923

0.2 0.922

0.3 0.919

0.4 0.928

0.5 (Equal weight) 0.941

0.6 0.966

0.7 1.024

0.8 1.166

0.9 1.590

1.0 (Transition only) 3.114

considerable amount more data are required to generate it, and the amount of data

used is simply not adequate to give good accuracy in the estimated audio features.

Accordingly, poor MSE scores between the original and estimated Mel-filterbank

features are observed.

The application of Viterbi decoding to the estimated probabilities of the code-

book entry labels using first-order transitions, in an attempt to incorporate longer-

range temporal information, does not show any real benefit. Additionally, us-

ing the class priors from the training data in Equation 7.1 resulted in lower

errors than when using uniform probabilities for P (cj), in effect meaning that

P (v|cj) = P (cj|v). Objective evaluations are conducted on the configurations

with weighting values of γ = {0.1, 0.2, 0.3}.
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7.4.3 Objective experiments

Objective intelligibility scores, using STOI and PESQ, of reconstructed audio ut-

terances are now evaluated for both methods proposed in this chapter. In Sec-

tion 7.2, the Viterbi algorithm is used to produce a sequence of codebook entry

labels using estimated probabilities from a neural network and first-order class

label transitions. The optimum weighting, γ, for the probability matrices which

resulted in the lowest MSE, was found to be in the range of 0.1–0.3, with the

best performance at γ = 0.3. The three configurations of the Viterbi method that

gave the lowest error are evaluated in this section for the female speaker. For the

DB-LSTM system, presented in Section 7.3, it was found that the MSE decreased

as the sequence length increased, i.e. as longer-range temporal information was

incorporated into the model. Four sequence lengths of T = {23, 27, 31, 35} for

input visual features and output codebook entry labels are evaluated here using

objective measures for the male and female speakers.

Table 7.3: STOI and PESQ results for utterances reconstructed using the Viterbi
method with three values of γ for the female speaker.

γ STOI PESQ

0.1 0.456 0.923

0.2 0.464 0.923

0.3 0.470 0.925

Table 7.3 shows the STOI and PESQ scores for utterances reconstructed for the

female speaker using the Viterbi decoding method. Confirming the MSE results,

the best performing system was found when using a weighting of γ = 0.3. That

is, the transition probabilities have a contribution of 0.3, and the emission proba-

bilities have a contribution of 0.7. However, both the STOI and PESQ scores are

low, indicating that the method leads to reconstructed utterances with poor intel-

ligibility. In comparison, the best performing clustering-and-classification method,
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using feature-level temporal encoding, from the previous chapter (see Section 6.5),

achieved a STOI of 0.740, and PESQ of 1.668, for the female speaker.

Table 7.3 shows the STOI scores for reconstructed utterances from the DB-

LSTM for the male and female speakers using sequence lengths of T = {23, 27, 31, 35}.

It can be seen that the best scores are obtained when using a sequence length of

T = 35, with 0.704 for the female speaker and 0.694 for the male. Confirming the

MSE analysis from Table 7.1, the performance of the DB-LSTM improves when

using longer sequence lengths. Furthermore, the female exhibits slightly higher

predicted intelligibility over the male speaker.

Table 7.4: STOI intelligibility scores for utterances reconstructed from the DB-
LSTM method for the female and male speakers.

T Female Male

23 0.688 0.680

27 0.693 0.687

31 0.701 0.687

35 0.704 0.694

Table 7.5 shows PESQ scores for utterances reconstructed using the DB-LSTM

estimations for both the female and male speakers with various sequence lengths.

As with the STOI results, the highest PESQ scores are achieved with a sequence

length of T = 35, with a score of 1.550 for the female speaker and 1.830 for the

male. In comparison to the STOI results, it is found that the male exhibits higher

PESQ scores over the female.

From these objective intelligibility experiments it is evident that the DB-LSTM

performs considerably better than the Viterbi decoding method. For the female

speaker, the best performing Viterbi method achieved a STOI of 0.470 and PESQ

of 0.925, where both scores are much lower than those obtained for the DB-LSTM

method, with 0.704 and 1.550 for STOI and PESQ, respectively. In comparison to
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Table 7.5: PESQ scores for utterances reconstructed using the DB-LSTM method
for the female and male speakers.

T Female Male

23 1.517 1.759

27 1.527 1.823

31 1.542 1.822

35 1.550 1.830

the best performing method from the previous chapter, the STOI and PESQ results

are slightly lower for both speakers, suggesting that encoding temporal information

at the model-level is less favourable than at the feature-level. However, despite

this, the results still show the benefits of incorporating longer-range temporal

information (above 300 ms) when producing audio estimates from visual speech.

For both the male and female speakers, the highest objective intelligibility re-

sults were obtained when using a sequence length of T = 35. However, as the

errors are similar, a sequence length of T = 31 is chosen for the DB-LSTM to

remain in keeping with the window sizes chosen for the feature-level configuration

discussed in Section 6.4. This system is investigated further in Chapter 8, where

subjective intelligibility experiments are conducted on reconstructed utterances

from the female speaker.

7.4.4 Utterance analysis

To evaluate further the performance of the proposed Viterbi decoding and DB-

LSTM methods, an audio analysis is performed on reconstructed utterances from

both methods.

Wideband spectrograms are shown in Figure 7.3 for an original utterance and of

reconstructed utterances using audio estimates from the two model-level methods.
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Figure 7.3: Wideband spectrograms of the original utterance “lay red in Q 5 please”
and reproductions from the Viterbi method (γ = 0.3) and DB-LSTM (T = 31) visual-
to-audio domain mapping models for the female speaker.
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The spectrogram for the DB-LSTM appears relatively faithful to the original with

noticeable high-frequency spectral detail, where the formants F2 and F3 can be

seen in addition to the first formant, especially between 0.5–1 s. However, smooth-

ing of the spectral-envelope can be observed. The spectrogram of the utterance

reconstructed from the Viterbi decoding method shows a number of artefacts in

comparison to the original, where there are blocks of spectral-envelope regions with

obvious beginning and end points that do not occur in the original signal. From in-

formal listening tests, these artefacts are especially apparent where erratic changes

between these regions of the spectral-envelope adversely affect the reconstructed

audio signals.
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Figure 7.4: Correlations of frequency bins between original and estimated spectral-
envelope surfaces for the Viterbi and DB-LSTM models, respectively.

Figure 7.4 shows correlations over frequency between original and estimated

spectral-envelope surfaces for the test utterances of the female speaker for both

model-level methods. It is readily apparent that the DB-LSTM exhibits consider-

ably higher and more uniform correlations across all frequencies over the Viterbi

method. The frequency correlations for the DB-LSTM system are close to those

shown in Figure 6.8 for the feature-level clustering-and-classification approach,

where the slightly lower correlations are expected based on the lower STOI and
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PESQ scores observed. In comparison, the frequency correlations for the Viterbi

method are far lower and more variable, ranging from 0.4–0.6, which confirms the

objective intelligibly results and the observations of the spectrogram suggesting

that the method yields poor audio feature estimates.

7.5 Summary

In this chapter, two methods are explored for incorporating temporal information

at the model-level. In the first method, Viterbi decoding is applied to codebook

entry probabilities estimated from visual features using a DNN. First-order tran-

sitions are determined from the training data and used in the algorithm, with

the output being the sequence of codebook entry labels that has the highest cu-

mulative probability. Furthermore, weighting can be applied to the emission and

transition probabilities to ascribe more importance to one over the other, and

vice-versa. The second method uses a recurrent neural network with the long

short-term memory architecture to estimate sequences of codebook entry labels

from corresponding sequences of input visual features. Stacking of multiple bi-

directional layers is performed to give a deeper neural network architecture. To

obtain an output spectral-envelope time-frequency surface, the overlap-and-add

method (see Section 6.4.2) is applied to the Mel-filterbank features pertaining to

the sequences estimated by the DB-LSTM.

Experiments are first conducted to determine an optimum sequence length, T ,

for the DB-LSTM, and an optimum weighting, γ, for the Viterbi method. Objec-

tive intelligibility evaluations show that, while the scores are not as high as when

using the feature-level clustering-and-classification methods detailed in Chapter 6,

incorporating temporal information at the model-level yields good results for the

DB-LSTM when using a sequence length of T = 35. To remain in keeping with the
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configurations selected for the best performing feature-level method, which used

audio and visual windows of SA = SV = 31, the DB-LSTM configuration is chosen

such that T = 31. In comparison, although the Viterbi decoding method exhibits

a reduction in MSE as the weight of the transition probabilities is increased, up to

γ = 0.3, the method still performs poorly, resulting in very low STOI and PESQ

scores.

In the next chapter, intelligibility results from subjective listening tests of utter-

ances reconstructed using the best-performing regression, feature-level, and model-

level methods are evaluated. Additionally, experiments are presented on a larger-

vocabulary dataset to determine the performance of the best system when applied

to more continuous and less constrained speech.



Chapter 8

Evaluation

8.1 Introduction

This chapter is concerned with the subjective evaluation of speech intelligibility for

utterances reconstructed using audio estimates from the regression, feature-level,

and model-level approaches. Subjective intelligibility tests are conducted for the

female speaker from the GRID dataset using the best configurations from each

of the three approaches, using audio-only and audiovisual media. Investigations

are then conducted for speech reconstructions of utterances from a dataset with a

larger-vocabulary and less-constrained speech.

Results from the subjective listening tests for the regression system were pre-

sented in Chapter 5, showing that word-level accuracies, the number of correctly

identified words within an utterance, were significantly higher than chance accu-

racy at 19 %. However, the intelligibility of the best performing system, using

a GMM to estimate LPC coefficients from AAM features, was similar to that

of the visual-only utterances (where untrained listeners are asked to perform lip-

reading) at around 50 %. Two issues identified with the regression approach are

162
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that non-plausible spectral-envelopes are generated from the estimated real-valued

and continuous audio features, and that the audio estimates are produced from

only a single visual vector, with no temporal information. Accordingly, to incorpo-

rate temporal information, a clustering and classification framework with feature-

level temporal encoding is presented in Chapter 6, and with temporal encodings at

the model-level in Chapter 7. Both proposed systems result in considerably lower

mean squared error between the original and estimated Mel-filterbank features,

and much improved scores for the STOI and PESQ objective measures. This sug-

gests that the intelligibility of the reconstructed audio utterances is far higher than

the original regression system. In this chapter, the feature-level and model-level

systems, in addition to the regression system, are evaluated using subjective listen-

ing tests with human listeners to determine the intelligibility of speech utterances

reconstructed using audio estimates from the three approaches.

The GRID corpus was chosen as the main dataset for this work as the highly-

constrained grammar and small vocabulary size makes the transcription task easier

for listeners and allows for usable intelligibility scores to be obtained. Developing

the methods for a larger dataset would have been problematic as it would likely be

the case that word-level accuracies would be so low that it would be very difficult

to discern between the relative performance of different systems. The results of

the work presented in this thesis thus far have shown promise for being able to

reconstruct intelligible audio speech from visual information. Accordingly, the best

performing method identified from the subjective listening tests in the next section

is applied to reconstruct utterances for a male speaker from a dataset with a larger-

vocabulary and less-constrained speech. Objective evaluations are conducted, in

addition to an audio analysis, to see how well the proposed methods perform on

this bigger dataset.

The remainder of this chapter is organised as follows. In Section 8.2, subjective
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listening test results for the feature-level and model-level approaches, including the

regression system as a baseline, are presented for the female speaker from GRID,

with additional analyses of reconstructed utterances. Experiments on a larger-

vocabulary dataset are investigated in Section 8.3, to see how the best performing

model performs on larger, less-constrained audiovisual speech corpora. Lastly, the

results in this chapter are summarised in Section 8.3.

8.2 GRID subjective evaluations

In this section, the results of subjective intelligibility tests are presented for the

utterances reconstructed for the female speaker from GRID using the three main

visual-to-audio mapping methods. Mean squared error and objective tests have

been used to identify configurations that perform well for the approaches pre-

sented in Chapter 6 and Chapter 7. These best performing configurations are

now analysed subjectively through human listening tests to determine word-level

accuracies. Three systems are evaluated:

1. REG: the baseline regression system from Chapter 5, where a DNN with

a linear output layer is used to estimate single frames of real-valued Mel-

filterbank audio features from single frames of input AAM visual feature

vectors (2D-DCT visual features were used in the original system),

2. FLE: the clustering and classification system using feature-level windows

with size SA = SV = 31 for incorporating longer-range temporal information,

as presented in Chapter 6,

3. MLE: a recurrent neural network system using the long short-term memory

architecture from Chapter 7, with a sequence length of T = 31 for incorpo-

rating temporal information at the model-level.
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The window sizes, SA and SV , and sequence length, T , were all selected to be

31 vectors in length for consistency, and resulted in configurations that give close

to the best objective performance across all systems. To investigate the usefulness

of adding the original visual stream, two further configurations are explored to

measure the intelligibility of the feature-level and model-level systems with the

listeners also able to watch the video in addition to hearing the reconstructed

audio speech. These audiovisual test configurations are referred to as FLE+V and

MLE+V for the feature-level and model-level systems, respectively. Audiovisual

evaluations for the regression system were presented previously in Chapter 5, and,

as such, are not performed again here. Finally, a further test (VIS) is included

to measure the intelligibility when subjects were presented with just the original

video stream, where listeners are required to perform lip-reading.

The listening tests were performed with twenty listeners, who were located in a

quiet room and used headphones to listen to the reconstructed utterances. Speech

from the female speaker from the GRID dataset was used, with 750 sentences for

training and the remaining 250 sentences used for testing. The monotone method

provided artificial-f0 contours, and with aperiodicity information estimated using

the joint-feature clustering approach. The listening tests were conducted using the

web-based interface, as discussed in Section 5.2 and shown in Figure 5.6. Each

listener was presented with four utterances from each of the six test configurations

(REG, FLE, MLE, FLE+V, MLE+V, and VIS), hearing 24 utterances in total,

and was allowed to listen to each utterance as many times as they desired. The

question order was randomised and the sentences selected such that each listener

would only hear one occurrence of an utterance. The listeners used the drop-down

boxes to select their choices for each word, and intelligibility is calculated on a

per-word basis. For all of the listeners, the four repetitions for each configuration

were grouped to give one accuracy score per configuration.
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8.2.1 Listening test results

Table 8.1 shows the intelligibility (word-level accuracy) scores averaged across

all twenty subjects for the six test configurations. The results show that the

proposed clustering-and-classification approaches (FLE and MLE), incorporating

longer-range temporal information, produce speech of substantially higher intel-

ligibility than the baseline regression method (REG). As was found with both

the MSE analysis and objective tests, the subjective tests show that the feature-

level estimation produces more intelligible speech than the model-level estimation:

77.1 % in comparison to 74.4 %. Including the original video signal in the tests

(FLE+V and MLE+V) results in a further increase in intelligibility of around 7 %

in both cases. The intelligibility of the visual-only signal (lip-reading) was sub-

stantially lower at 47.5 %, although better than the audio-only regression system

(REG). Additionally, all of the evaluated systems achieve intelligibilities higher

than chance, which is 19 % for the GRID grammar (see Equation 5.12).

Table 8.1: Word accuracy scores (and standard error) from subjective listening tests
showing the intelligibility of each configuration.

Configuration Name Accuracy (%)

Regression REG 30.4 (2.9)

Feature-level FLE 77.1 (2.6)

Model-level MLE 74.4 (1.9)

Feature-level with video FLE+V 84.2 (1.8)

Model-level with video MLE+V 80.8 (1.7)

Video-only VIS 47.5 (3.3)

The highest overall intelligibility of 84 % was achieved for utterances recon-

structed using the FLE+V configuration, where the reconstructed utterances were

combined with the original video signal. That is, the feature-level clustering and

classification method was used for estimating the spectral-envelope parameter,
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aperiodicity information was obtained from the joint-feature estimation method,

the monotone artificial-f0 method was used to provide the fundamental frequency

contour, and STRAIGHT was used for reconstructing the audio speech.

8.2.2 Analysis of confusions

To further understand the ability of the models to yield intelligible speech recon-

structions, a more in depth analysis is conducted on the accuracies achieved for

each category of the GRID grammar. From Table A.1 it can be seen that there

are a greater numbers of choices for the letters (25) and digits (10), compared to

the other categories which each have four choices (command, colour, preposition

and adverb). To investigate the effect of this further, Table 8.2 shows word-level

accuracy for each grammar category for each of the six configurations tested.

Table 8.2: Per-word accuracy scores for each of the six different system configura-
tions.

REG FLE MLE FLE+V MLE+V VIS

Command 22.5 92.5 91.2 98.8 93.8 52.5

Colour 50.0 96.2 98.8 96.2 98.8 66.2

Preposition 26.2 72.5 58.8 77.5 76.2 42.5

Letter 8.8 16.2 21.2 36.2 27.5 8.8

Digit 27.5 88.8 85.0 96.2 90.0 43.8

Adverb 47.5 96.2 91.2 100.0 98.8 71.2

The table reveals significant variation in word-level accuracy between the cat-

egories. Considering the best performing feature-level method (FLE), word accu-

racy for command, colour and adverb categories is over 90 %, while for prepositions

it is lower at 73 %. Digit accuracy is also high at nearly 36 %, while letter accu-

racy is considerably lower although still higher than that of chance. A similar

trend is observed for the MLE system, and overall higher accuracies are found
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for the audiovisual media systems. Interestingly, the adverb and colour categories

for the visual-only utterances (VIS) show intelligibility scores of approximately

70 %, which appears to be very high given that the listeners were all untrained

lip-readers. Whilst this does suggest that the GRID dataset is somewhat easy and

not a very realistic example, it is important to remember that the dataset was

chosen as the task of reconstructing audio from visual speech is difficult.
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Figure 8.1: Scatter plot of average word duration and word accuracy, broken down
into GRID grammar categories.

The number of choices within each category has an effect on word accuracy,

yet it also speculated that word duration plays a significant factor. Accordingly,

Figure 8.1 shows a scatter plot of the mean duration of each word in the GRID

grammar (averaged over all occurrences of that word) against the mean word

accuracy for that word in the subjective listening tests. Considering first the word

accuracy of the preposition category, which is lower than that of the command,

colour and adverb categories, these words have durations less than 200 ms which

is considerably shorter than the command, colour and adverb words, which are,
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in general, longer and have higher accuracy. The letters category, which show the

lowest accuracy, are all of a short duration of roughly 200 ms. In fact, words with

a duration over 300 ms are all recognised with greater than 60 % accuracy.
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Figure 8.2: Scatter plot of average word duration and average correlation between
the original and estimated spectral-envelopes for each word, broken down into GRID
grammar categories.

To further understand the observations between average word duration and

accuracy, the average spectral-envelope correlations between the original and esti-

mated surfaces for each word of the tests utterances are plotted against word dura-

tion in Figure 8.2. This investigation is performed to explore whether there exists

a relationship between word duration and how precisely the spectral-envelope for

the words have been estimated. The correlations show a similar trend to the ac-

curacies observed in Figure 8.1, where it can be seen that words with a duration

over 300 ms all have correlations greater than 0.65, and consists of words from

the adverb and digit categories. The majority of words with a duration between

200–300 ms show correlations greater than 0.6, and those below 200 ms show cor-

relations less than 0.6. Interestingly, the letters show stronger correlations than
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would be expected given the accuracies with which they are recorded.
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Figure 8.3: Scatter plot of word accuracy and average correlation between the
original and estimated spectral-envelopes for each word, broken down into GRID
grammar categories.

To further explore this, the average word correlations are shown against accu-

racy in Figure 8.3. In this figure it can be seen that the majority of the letters

show accuracies lower than 40 %, yet the correlations range from 0.15–0.9, indi-

cating that there are a considerable number of confusions for the letters category.

The words in the adverb, digit, command, and colour categories are identified with

greater than 60 % accuracy, showing correlations of higher than 0.6. The results

from this experiment suggest that whilst the average spectral-envelope correlation

for some words may be high, the correlation alone does not necessarily provide a

strong indication as to whether or not the word may be intelligible. However, it

appears that stronger correlations are suggestive of better intelligibility for words

from categories with fewer choices, and for those with longer durations.
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Figure 8.4: Wideband spectrograms of the sentence “lay white with F 3 now” spoken
by the female speaker, for the original utterance, and reconstructed utterances using
the regression, feature-level, and model-level systems.
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8.2.3 Spectrogram analysis

To illustrate the audio information extracted from the visual speech features,

Figure 8.4 shows wideband spectrograms of the sentence “lay white with F 3

now” taken from the female speaker, for the original signal and for those re-

constructed using the regression, feature-level and model-level methods (REG,

FLE, and MLE). For the three reconstructed utterances, the overall energy and

voice activity of the speech signals closely matches that of the original. Further-

more, confirming the objective and subjective test results, the feature-level and

model-level spectrograms appear more similar to those of the original and show

a significantly better representation of the formant structure than the regression

method. However, one clear artefact of the reconstructed speech is the widening

of formant bandwidths compared to the original speech.

8.3 Larger dataset

In the previous section, the best performing visual-to-audio system for the GRID

corpus was the feature-level method (FLE), achieving an audio-only intelligibility

of 77 %, and an audiovisual accuracy of 84 %. In this section, the application of

the feature-level method is explored for the larger-vocabulary and less-constrained

RM-3000 dataset. This investigation is conducted to determine how well the visual-

to-audio approaches, and methods for synthesising excitation, generalise to bigger

audiovisual speech datasets for the reconstruction of intelligible audio speech.

The RM-3000 audiovisual dataset collected by Howell [2015], contains 3000

sentences selected from the Resource Management corpus spoken by a native En-

glish speaker, and with a vocabulary size of around 1000 words. Pre-extracted

AAM features are provided and used as the visual input to estimate windows of
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Mel-filterbank audio features, as has been described previously in Chapter 6 for

the clustering and classification system with feature-level temporal encoding. In

total, there is 260 minutes of data, with 2250 utterances used for training, and

the remaining 750 used for testing. Further details about the dataset are provided

in Appendix A.2. For reference, utterances are reconstructed using the mono-

tone artificial-f0 method with a mean value of f0i = 185, and with aperiodicity

information estimated using the joint-feature clustering approach.

Table 8.3: Mean squared error between the original and estimated Mel-filterbank
amplitudes with varying audio and visual window sizes.

SA

SV
7 15 23 31

7 0.694 0.639 0.625 0.619

15 0.586 0.545 0.539 0.530

23 0.697 0.662 0.624 0.609

31 0.678 0.639 0.622 0.613

Various audio and visual window sizes, SA = SV = {7, 15, 23, 31}, are explored

to find an optimum combination of the two that gives the lowest MSE between

the original and estimated Mel-filterbank features. Table 8.3 shows the MSEs for

the various audio and visual window sizes. It can be seen that, for each of the

audio window sizes, there is a reduction in MSE as the size of the visual window

increases from 7 to 31. However, the same reduction in error is not observed as the

size of the audio windows increases. Interestingly, the audio window size that gives

the lowest error for all visual windows is SA = 15, with the lowest overall MSE

achieved when using a visual window of SV = 31. This configuration is further

explored using objective measures of speech intelligibility.

Utterances are reconstructed using the feature-level method of Mel-filterbank

estimation with window sizes of SA = 15 and SV = 31 for the audio and visual

features, respectively. Objective intelligibility measures applied to the set of re-
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Figure 8.5: Correlations of frequency bins between the original and estimated
spectral-envelope surfaces for the feature-level system applied to the RM-3000 dataset,
and for comparison: the FLE and REG systems for GRID.

constructed test utterances show scores of 0.612 for STOI, and 1.693 for PESQ.

These values are lower than those obtained for the feature-level approach for the

male speaker from the GRID dataset, at 0.735 and 2.055 for STOI and PESQ,

respectively. Additionally, the scores are similar to those obtained for the regres-

sion system for the male speaker where a STOI of 0.604 and PESQ of 1.700 was

recorded. Informal listening tests suggest that, whilst there is a noticeable speech-

like quality to the utterances, and broad spectral detail seems to be evident, the

intelligibility of the utterances is low. Accordingly, subjective listening tests were

not performed as it is likely that little usable information would be obtained from

the experiments.

To further explore the lower intelligibility of the utterances, Figure 8.5 shows the

correlation across frequency for all test utterances between the original spectral-

envelopes and those reconstructed from the estimate Mel-filterbank features. For

comparison, the correlations of the FLE and REG approaches for GRID, from Fig-
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ure 6.8, are also shown. It can be seen that the correlations for RM-3000 are lower

than those exhibited for the feature-level method as applied to the GRID dataset,

yet the correlations are slightly higher than those shown for the regression system.

There are prominent peaks at 250 Hz and 1 kHz, and the correlation then decreases

beyond 1.4 kHz. Interestingly, there does not seem to be a peak in the 2.5–3 kHz

region as is observed in the correlation analysis for the regression and feature-level

methods, suggesting that the utterances lack sufficient high-frequency detail. Fur-

thermore, this observation, and the uniformly lower correlations across frequency,

provides evidence as to why the RM-3000 utterances are not as intelligible as those

from the GRID corpus.
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Figure 8.6: Wideband spectrograms of the utterance “delete longitude data for the
Jarvis’s track” showing original and reconstructed utterances.

The reduction in overall and high-frequency spectral-detail can be seen in the
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spectrograms for an original and reconstructed utterance shown in Figure 8.6.

The effect is similar to that which can be seen in Figure 8.4 for utterances recon-

structed using the regression approach on the GRID dataset. In the reconstructed

utterance, there is little evidence of formant structure other than the first for-

mant, F1, where the higher-frequencies appear to lack considerable detail. Some

formant structure is noticeable around 2.5 s and 3.4 s, although it is apparent that

the formant bandwidths are somewhat broader than those shown for the original

utterance.

Whilst the intelligibility for RM-3000 is lower than that observed for GRID,

the correlation analysis indicates that the visual-to-audio mapping still shows a

benefit for speech processing applications on larger datasets where audio features

are estimated from visual speech.

8.4 Summary

The subjective intelligibility experiments presented for the female speaker from the

GRID dataset in this chapter, show that intelligible audio speech signals can be re-

constructed from visual speech information using the feature-level and model-level

approaches to visual-to-audio mapping. Specifically, the proposed feature-level

clustering-and-classification method using deep neural networks achieves an intel-

ligibility of 77 %, which is significantly better than the baseline regression method

presented in Chapter 5 which had an intelligibility of 30 %. Additionally, the

model-level DB-LSTM method achieved accuracies of 74 %. Incorporating longer-

range temporal information was found to be important in producing intelligible

speech reconstructions, with the best performance achieved using audio and vi-

sual window widths of around 300 ms in duration. Supplementing the audio signal

with the video information in the subjective intelligibility tests gave further im-
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provement, increasing the intelligibility by around 7 % This difference between

the audio-only and audiovisual media suggests that there is still more information

that can be extracted from the visual features. Furthermore, it was discovered

that words with a longer duration tended to be recognised with greater accuracy

than those with a shorter duration.

The experiments conducted on the larger RM-3000 dataset showed lower objec-

tive intelligibility scores than those obtained for the GRID dataset. Reconstructed

utterances yielded STOI scores of 0.612 and scores of 1.693 for PESQ. Informal

listening tests indicate the reconstructed utterances have a speech-like character-

istic, and some words could possibly be identified if the listener was especially

familiar with the dataset. As with GRID, the broad spectral detail appears to

be estimated sufficiently well, as can be seen in the spectrograms of Figure 8.6,

however the more fine spectral detail is lacking in the RM-3000 utterances. One

benefit of the GRID grammar is that there are numerous different examples of

words in the training data, whereas this is not the case for the larger RM-3000

corpus. The larger vocabulary size means an increased visual feature input-space,

and more varied co-articulation effects as the grammar is considerably less con-

strained and more continuous, making the task more difficult. However, despite

not yielding intelligible utterances, the spectral-envelope estimates produced for

RM-3000 using the visual-to-audio mappings could still be usable within a multi-

modal speech enhancement or speaker separation system, as discussed in more

detail in Section 9.2 on future work.

Despite lower intelligibility for RM-3000, it should be reinforced that the work

presented in this thesis was developed for the GRID dataset, and, accordingly,

further improvements could be made to increase the intelligibility of utterances

from larger-vocabulary and less-constrained datasets given a more concentrated

effort.
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In the next chapter, conclusions are drawn for the work presented in this thesis

on whether or not it is possible to reconstruct intelligible audio speech from visual

speech information. Additionally, the limitations of this work are summarised with

ideas for future work proposed on how these problems could be overcome.



Chapter 9

Conclusions

9.1 Summary and conclusions

The aim of this thesis has been to explore the visual-to-audio domain mapping

problem for producing accurate spectral-envelope estimates, and to develop meth-

ods for generating suitable fundamental frequency and aperiodicity information,

given input visual speech. The methods presented in this work were developed

using speech from a male and female speaker from the GRID audiovisual corpus,

within a speaker dependent configuration. Objective and subjective intelligibility

evaluations of reconstructed utterances were performed to determine the perfor-

mance of the various methods and configurations explored. To reconstruct audio

speech, the STRAIGHT speech production model was chosen based on its suc-

cessful application in speech synthesis and speech modification tasks. The model

requires three parameters for speech reconstruction: a fundamental frequency con-

tour, an aperiodicity surface, and a spectral-envelope surface.

To produce estimates of the spectral-envelope surface, visual-to-audio domain

mapping models were developed. The mapping relies on the correlation that exists
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between audio and visual speech, and, equivalently, between feature representa-

tions of the two modalities. Ultimately, Mel-filterbank audio features were selected

for representing spectral-envelope, and AAM-based features were chosen for repre-

senting the visual articulators. Three broad methods were explored for performing

the mapping: regression, clustering-and-classification with feature-level temporal

encoding, and model-based methods of incorporating longer-range temporal infor-

mation.

The first approach uses a regression system to produce estimates of real-valued,

continuous audio feature vectors from single frames of visual input. Two map-

ping models are explored, GMMs and DNNs, with combinations of LPC and Mel-

filterbank audio features and 2D-DCT and AAM visual features. The best system,

using a GMM with LPC and AAM features, achieves audio-only subjective intel-

ligibility scores of 40 %, which is a significant improvement over the intelligibility

that would be achieved by chance alone, at 19 %. Furthermore, the final subjec-

tive intelligibility tests show a word-level accuracy of 30 % for the regression model

using a DNN with Mel-filterbank and AAM features. These results provide initial

evidence for the hypothesis that intelligible audio speech reconstructions can be

generated from visual speech. However, that being said, the visual-only intelligi-

bility was measured to be around 48 %, indicating that the audio reconstructions

offered no benefit over the visual-modality alone. The next stage was to explore

better methods of audio feature estimation.

The second approach uses a clustering-and-classification framework by reformu-

lating the audio feature estimation problem as one of using classification models to

estimate codebook entries of clustered audio features, with temporal information

incorporated at the feature-level. Grouping windows of audio and visual feature

vectors allowed for long-range temporal information to be incorporated, where a

DNN is used to estimate windows of codebook entry labels from windows of AAM
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visual features. Audio codebooks are produced from Mel-filterbank feature vectors

using the mini-batch k-means algorithm, which allows for labels to be assigned to

audio vectors for use in a classification model. The audio-only intelligibility for the

best performing configuration, where window sizes of SA = SV = 31 are used, cov-

ering approximately 300 ms of audio and visual signal, is 77 %. The increase in per-

formance over the regression approach is attributed to two main reasons. Firstly,

that clustering of audio-features allows for more accurate spectral-envelope repre-

sentations to be reconstructed, and secondly, that encoding longer-range temporal

information, through clustering of grouped audio features on the order of 300 ms

in length, allows for effects of co-articulation to be modelled.

In the third approach, temporal encoding is further investigated where longer-

range dependencies in the data are modelled directly. Two methods are explored:

using recurrent neural networks with the long-short term memory architecture, and

using Viterbi decoding. The later method was found to perform poorly, with low

objective intelligibility scores observed. The best performing model-level system,

using the DB-LSTM with a sequence length of T = 31, achieves an audio-only in-

telligibility of 74 %. Confirming the results obtained for the feature-level approach,

the results achieved for the DB-LSTM further indicates the importance of using

audio and visual signal lengths of 300 ms for the visual-to-audio domain mapping

models. This system showed considerably improved intelligibility over the regres-

sion approach, although the performance was slightly lower than the feature-level

method.

For all three approaches, a further increase in intelligibility is observed by com-

bining the reconstructed audio with the original video stream, with an average

increase in word-level accuracy of 6–7 % for audiovisual media over audio-only.

The highest intelligibility achieved was using utterances reconstructed from the

feature-level approach combined with the original video, where a word-level accu-
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racy of 84 % was observed. That is to say, for the female speaker chosen from the

GRID audiovisual corpus, the average listener would correctly identify approxi-

mately 17 out of 20 words from utterances reconstructed using audio estimates

from the best performing system. Accordingly, the main conclusion of this work

is that intelligible audio speech can be reconstructed using information extracted

solely from visual speech, for the given speaker from the GRID dataset.

To provide the excitation information as required by STRAIGHT, a number of

approaches were explored for producing fundamental frequency contours and ape-

riodicity estimates. Three methods were presented for generating artificial-f0 con-

tours: unvoiced, monotone, and time-varying, where subjective tests established

that the monotone method resulted in utterances with higher intelligibility over

the other two methods. For aperiodicity estimation, two methods were proposed,

where the approach using a joint clustering of spectral-envelope and aperiodicity

information was found to give better estimates of the surface.

Lastly, experiments were conducted on a male speaker from the RM-3000

dataset using the best performing feature-level clustering-and-classification method

recorded for the female speaker from the GRID corpus. Here, the aim was to deter-

mine whether the feature-level approach was able to yield intelligible audio speech

reconstructions for a dataset with a larger-vocabulary and less-constrained speech.

The lowest MSE recorded between the original and estimated Mel-filterbank fea-

tures was obtained using an audio window of SA = 15, covering 160 ms of audio

signal, and a visual window of SV = 31. Although the audio window is shorter

than that used for GRID, it is again found that longer window widths, in com-

parison to using only a single frame, are important for visual-to-audio mapping.

Objective intelligibility scores for reconstructed utterances of 0.612 and 1.693 were

observed for STOI and PESQ respectively, whereas utterances reconstructed using

the same method for the male speaker of the GRID corpus gave a STOI of 0.735



CHAPTER 9. CONCLUSIONS 183

and PESQ of 2.055. These lower scores confirm informal listening tests which

suggest that, whilst the signal exhibits broad speech-like characteristics, there is

too much spectral-smoothing for words to be adequately identified. Furthermore,

the spectral-envelope correlations between the original and estimated surfaces (see

Figure 8.6) provide further evidence for the lower intelligibility of reconstructed

utterances. Despite this, it is believed that given the promise shown by the work

conducted on the GRID corpus, intelligible audio speech reconstructions could still

be achieved for large-vocabulary datasets with less constrained grammars. Possible

ideas to accomplish this are offered in the next section.

9.2 Future work

In this thesis, various approaches have been presented for using visual speech to

produce the necessary parameters of a speech production model to give intelligible

audio speech reconstructions. In this section, the potential limitations of the work

are discussed, with suggestions for future work on generating better fundamental

frequency contours, applying the techniques to speech enhancement and speaker

separation systems, and improving intelligibility for larger datasets.

Methods were developed for producing artificial fundamental frequency con-

tours as one of parameters required by STRAIGHT. The experiments conducted

in the regression chapter (see Table 5.5) showed subjective intelligibility results for

utterances reconstructed using spectral-envelope surfaces from two systems with

original ground-truth f0 contours and artificial excitation. For both systems, the

intelligibility of utterances reconstructed using the original f0, with correct voicing

decisions, was around 10 % higher than when using unvoiced excitation for audio-

only media. A similar increase in intelligibility of 9 % was observed for audiovisual

media. Although fundamental frequency cannot be obtained directly from visual
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speech, these results show the importance of using the correct f0 contour, where

speech intelligibility could be further improved by reconstructing utterances using

more realistic contours and more accurate voicing decisions.

In experiments conducted by Shao and Milner [2004], an HMM is used to es-

timate f0 values from MFCC vectors, where the optimum system shows a root

mean squared (RMS) error of 3.1 Hz between the estimated and original funda-

mental frequency values. Accordingly, this technique could be explored for the

work presented in this thesis by producing f0 estimates from Mel-filterbank fea-

tures estimated using a visual-to-audio mapping model. Furthermore, given the

successful application of the DB-LSTM for sequential data in this work and others,

this neural network architecture could also be compared with the HMM approach.

As for the voicing decision, further experiments could be conducted on the voicing

classification model presented in Chapter 4 to try and improve the accuracy. Voic-

ing label estimates from a model with increased accuracy could then be combined

with the f0 contours and aperiodicity estimates to yield more faithful excitation

information.

In Chapter 2, a number of systems using audio estimates from visual speech

were reviewed for use in speech enhancement and speaker separation scenarios.

The basic idea behind these systems was that degraded speech signals, either

due to background noise or interfering speakers, could be cleaned by using the

audio estimates within filtering and masking approaches. The majority of these

systems use GMMs to jointly model the audio and visual features, with application

of MMSE to produce audio estimates from input visual speech. This work has

presented two broad approaches using deep neural network architectures that yield

considerably improved audio estimates. Accordingly, it is believed that audiovisual

speech enhancement and speaker separation systems applying these techniques to

audio estimation would show increased performance.
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Despite not yielding intelligible audio speech reconstructions on the larger RM-

3000 dataset, where the utterances were less-constrained and taken from a larger

vocabulary, the characteristics of the speech signal were similar to those exhib-

ited for the female and male speakers from GRID for early developments of the

regression system from Chapter 5. From informal listening tests it was found that

the reconstructed signals were speech-like, and that upon listening to the original

utterance and then its reconstructed counterpart, there was a noticeable similarity

between the two. Furthermore, the recent improvement in state-of-the-art lip-

reading systems, where word-level accuracies of 76 % are reported for RM-3000,

suggest that intelligible audio speech could be reconstructed for larger datasets,

and indicates a word-level accuracy to strive for.

To improve intelligibility for larger datasets, it would be beneficial to first design

an audiovisual dataset with increasing vocabulary size—perhaps in increments of

fifty words—and to collect a large amount of data for a single speaker. Experiments

can then be conducted starting with the smallest vocabulary and increasing the

size once the intelligibility has been maximised for that number of words. In this

way, the methods developed showing good performance for a larger vocabulary

would continue to work for smaller vocabularies. Furthermore, using increments

in vocabulary size may perhaps suggest an upper-bound to the intelligibility that

can be achieved.

9.3 Applications

In Chapter 1, two applications were proposed for utilising intelligible audio speech

reconstructions from visual speech. The first was for surveillance scenarios where

only video footage of a target is available, and the second was for development of

a device for aiding laryngectomy patients with speech production. Applying this
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work to these two applications is now discussed.

For surveillance scenarios, the visual-to-audio system could be incorporated

into a software application for reconstructing audio speech from a video recording

of a target speaker. It would not be required for the system to produce speech

reconstructions in real-time as the emphasis would be more on obtaining accurate

and reliable transcriptions, and so more effort could be spent on allowing for

configurable parameters that would give the best chance of increasing intelligibility.

Assuming that there is no training data available for the target, a number of pre-

trained visual-to-audio models could be provided, where a user can select the

model that gives the best performance. Furthermore, the fundamental frequency

contours could be generated where the mean f0 values could be chosen based on

prior knowledge of the target’s gender. Given training data, speaker adaptation

techniques could be applied to produce speech reconstructions that better match

that of the target speaker. As with silent speech interfaces, discussed next, this

system would also benefit from visual-to-audio models that perform better on

bigger datasets.

For laryngectomy patients, a device is envisaged that allows for real-time speech

reconstructions for aiding conversational speech capabilities. Numerous medical

devices are available for people with their larynx removed, including electrolarynx

devices (artificial voice-box) and Permanent Magnet Articulography (PMA) sys-

tems, where each have their advantages and disadvantages. For example, although

an electrolarynx allows for conversational speech, the quality is highly robotic and

unnatural. To use PMA, an invasive procedure is required to place magnets in the

tongue and lips of a patient to allow the device to be used normally.

A device using methods from this work would allow for hands-free speech com-

munication with no operation required, at the expense of having a smaller vocab-
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ulary, and is imagined as follows. A small form-factor video camera is located

where a microphone is usually situated on a standard headset, and is focused on

the mouth of the speaker. Visual features are extracted in real-time and passed

to the visual-to-audio domain mapping models to produce spectral-envelope es-

timates which are subsequently used to reconstruct audio speech using a speech

production model. This audio signal is then output using a speaker located about

the person. Experiments could, therefore, be conducted on applying the visual-to-

audio mapping techniques to function within a real-time scenario, and to determine

an optimal vocabulary with which to allow for normal conversational speech.



Appendix A

Datasets

A.1 GRID

The GRID audiovisual speech corpus collected by Cooke et al. [2006] contains low-

and high-definition video and audio recordings of thirty-four speakers, of which 18

are male and 16 are female. The individual speakers can be seen in Figure A.1. For

each speaker there are recordings of one thousand utterances each with a length of

three seconds, giving 50 minutes of data in total. The ages of the speakers range

from 18 to 49, with all but two of the speakers having British accents. Sentences

take the form:

<command> <colour> <preposition> <letter> <digit> <adverb>,

and follow the grammar as displayed in Table A.1.

The video has a frame rate of twenty-five frames per second, giving seventy-five

frames per three-second video. The high-resolution frame size is 720× 576 pixels,

and the low-resolution frame size is 360 × 288. Both sets of video contains full

red-green-blue (RGB) colour information. Accompanying the dataset are word
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1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

22 23 24 25 26

27 28 29 30 31

32 33 34

Figure A.1: Stills from videos of each of the thirty-four speakers in the GRID
audiovisual corpus. Speakers three and four are used for the experiments in this
thesis.
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time-alignment files for each utterance that describe the start and end points for

each word, including periods of silence. Separately recorded audio, sampled at

50 kHz, accompanies the video stream. Furthermore, two sets of imaged-based

2D-DCT visual features are provided. One set contains features extracted from

a region of interest that is stationary throughout the video, and the other from

a region of interest located about a tracked point localised to the mouth of the

speaker.

command colour preposition letter digit adverb

bin blue at A-Z 1-9 again

lay green by minus W zero now

place red in please

set white with soon

Table A.1: GRID sentence grammar with available word choices for each of the six
categories.

For the experiments conducted in this thesis, speakers three (male) and four

(female) were used. From experiments presented in Cooke et al. [2006], the two

speakers selected were found to have low word error rates in an automatic speech

recognition task. Informal listening tests also suggested that their speech was

highly intelligible in comparison to other speakers in the dataset.

A.2 RM-3000

The RM-3000 audiovisual corpus was collected by Howell [2015] for performing

confusion modelling for lip-reading, where it was found that other large-vocabulary

audiovisual datasets contained too few data. The corpus contains 3000 utterances

spoken by a native English male speaker, with sentences from the Resource Man-

agement (RM) corpus [Price et al., 1988]. The vocabulary contains 1000 words,
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and lends itself well for continuous audiovisual speech processing applications. The

sentence length ranges from 2–12 s, with an average of 5 s.

The video information was captured at 60 frames per second with a resolution of

1920× 1080 pixels. The camera was placed in front of the speaker to record a full-

frontal pose. A clip-on microphone was used to record the audio with a sampling

frequency of 48 kHz. Pre-extracted AAM features (see Section 3.5) of the inner-

and outer-lip are provided, having been extracted from the video re-sampled to a

resolution of 640× 360 pixels. The AAM visual feature vector dimensionality was

chosen to retain 95 % of the shape variation, and 90 % of the appearance variation.

Furthermore, phoneme transcriptions are provided. The training set is comprised

of 2250 sentences, with the remaining 750 sentences used for testing.
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Neural network architectures

B.1 Introduction

To allow for interested readers of this thesis to repeat the experiments presented,

this appendix details the various neural network architectures used, and includes

information on any pertinent pre- and post-processing performed. As with any use

of neural networks, a certain amount of trial and error is required to get the algo-

rithms to function well. Accordingly, it would be possible to improve performance

by trying alternative values and configurations from the ones described below.

The Python programming language was used for all software implementations.

Data was processed using both the NumPy1 and SciPy2 libraries, which contain

myriad functions for manipulating data. To construct and train the neural net-

works, the Lasagne3 and theanets4 libraries were used. Both of these libraries

provide abstractions for the fantastic Theano5 library — one of the dominant

1www.numpy.org
2www.scipy.org
3github.com/Lasagne/Lasagne
4github.com/lmjohns3/theanets
5deeplearning.net/software/theano/
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toolkits used for producing CUDA code from mathematical expressions, allowing

equations to be performed on GPUs.

B.2 Excitation models

B.2.1 Single-layer neural network

Library theanets

Data preprocessing z-score normalisation is applied to visual features

Learning rate 0.0001

Regularisation Dropout applied to hidden layers with probability p(0.5)

Batch size 256

Input layer Dimensionality is dependent on how many frames of vi-

sual features are concatenated

Hidden layers Three layers with 1024 units each, using ReLU activa-

tions

Output layer Softmax function

Loss function Categorical cross-entropy

Optimisation function RMSProp

B.2.2 Convolutional neural network

Library Lasagne
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Data preprocessing Images converted to grayscale, and values rescaled to be

between 0 and 1

Learning rate 0.001 initially, with annealing performed at 1% per

epoch

Regularisation Dropout is applied to the single dense layer with prob-

ability p(0.5)

Batch size 64

Input layer Dimensionality is based on size of input images, 64× 64

pixels for the mouth images

Hidden layers Convolutional layer with 100 filters of size 5× 5

Max-pooling layer with window of size 2× 2

Convolutional layer with 100 filters of size 5× 5

Max-pooling layer with window of size 2× 2

Convolutional layer with 100 filters of size 3× 3

Max-pooling layer with window of size 2× 2

Fully-connected layer with 512 units

Output layer Softmax function, 3 classes

Loss function Categorical cross-entropy

Optimisation function RMSProp

B.3 Regression system DNN

Library theanets
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Data preprocessing z-score normalisation is applied to visual and audio fea-

tures

Learning rate 0.001

Regularisation None

Batch size 500

Input layer Dimensionality is dependent on how many frames of vi-

sual features are concatenated

Hidden layers Three layers with 1024 units each, using ReLU activa-

tions

Output layer Linear, number of outputs depends on the size of the

audio feature codebook

Loss function Categorical cross-entropy

Optimisation function rprop

B.4 Classification system DNN

Library theanets

Data preprocessing z-score normalisation is applied to visual features, fol-

lowed by application of LDA using codebook entry lo-

cation for class labels

Learning rate 0.0001

Regularisation Dropout applied to hidden layers with probability p(0.5)
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Batch size 256

Input layer Dimensionality is dependent on how many frames of vi-

sual features are concatenated

Hidden layers Three layers with 1024 units each, using ReLU activa-

tions

Output layer Softmax function, number of outputs depends on the

size of the audio feature codebook

Loss function Categorical cross-entropy

Optimisation function RMSProp

B.5 Model-level features DB-LSTM

Library theanets

Data preprocessing z-score normalisation is applied to visual features, fol-

lowed by application of LDA using codebook entry lo-

cation for class labels

Learning rate 0.0001

Regularisation Gaussian noise (with zero mean) is added to inputs with

a weight of 0.6, any gradients above 1 are clipped

Batch size 512

Input layer Same dimensionality as a single visual feature vector
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Hidden layers Three bi-directional layers with 500 units in total, where

each layer is combined of a forward recurrent layer with

250 units, and a backwards recurrent layer with 250

units

Output layer Softmax function, number of outputs depends on the

size of the audio feature codebook

Loss function Categorical cross-entropy

Optimisation function RMSProp
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