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Summary 

Objectives: This study aimed to examine changes to the microbiota composition and 

metabolic profiles of seven patients with recurrent Clostridium difficile infection 

(rCDI), following treatment with faecal microbiota transplant (FMT). 

Methods: 16S rDNA sequencing and 1H NMR were performed on faecal samples 

from the patients (pre-, post-FMT, and follow-up) and the associated donor samples. 

Sparse partial-least-square analysis was used to identify correlations between the 

two datasets. 

Results: The patients‟ microbiota post-FMT tended to shift towards the donor 

microbiota, specifically through proportional increases of Bacteroides, Blautia, and 

Ruminococcus, and proportional decreases of Enterococcus, Escherichia, and 

Klebsiella. However, although cured of infection, one patient, who suffers from 

chronic alcohol abuse, retained the compositional characteristics of the pre-FMT 

microbiota. Following FMT, increased levels of short-chain fatty acids, particularly 

butyrate and acetate, were observed in all patients. Sparse partial-least-square 

analysis confirmed a positive correlation between butyrate and Bacteroides, Blautia, 

and Ruminococcus, with a negative correlation between butyrate and Klebsiella and 

Enterococcus. 

Conclusions: Clear differences were observed in the microbiota composition and 

metabolic profiles between donors and rCDI patients, which were largely resolved in 

patients following FMT. Increased levels of butyrate appear to be a factor associated 

with resolution of rCDI. 

 

Keywords: Clostridium difficile; Faecal microbiota transplantation; Metataxonomics; 

Metabonomics; Alcohol abuse; Sparse partial-least-square analysis. 
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Introduction 

Although Clostridium difficile is present in the intestines of ~3-5% of healthy adults,1 

the occurrence of C. difficile infection (CDI) in healthy individuals is relatively 

uncommon due to the protective effect of the gut microbiota. The incidents and 

severity of CDI has risen significantly over the last decade, and it is now recognised 

as the main causative agent of healthcare-associated infectious diarrhoea in 

hospitals worldwide.2 The standard treatment for CDI is the administration of 

metronidazole for mild to moderate infections, and oral vancomycin or fidaxomicin for 

severe infections and relapses. The ability of C. difficile to form spores, coupled with 

the increase in antibiotic-resistant strains, can lead to persistence of infection, 

relapses, and the administration of more antibiotics, which further depletes the 

commensal bacteria. This creates an environment that is more favourable to C. 

difficile, thus setting up a cycle of relapse and re-infection. It is estimated that 20-

30% of patients who develop a first episode of CDI go on to have at least one 

relapse, and of these, a further 60% develop further episodes of relapses.3 This 

increases the need for further antibiotics, the risk of antibiotic-resistance in the gut 

commensal flora, and costs to the health service, with each episode of CDI 

estimated to cost approximately £7000 in 2010.4 

Faecal microbiota transplants (FMT) represents an effective alternative to antibiotics 

to treat recurrent CDI (rCDI), with a primary cure rate as high as 91%.5 The central 

tenet behind FMT is that the introduction of a healthy bacterial community into the 

intestines produces an environment that is less favourable to C. difficile by 

increasing colonisation resistance and reinstating a protective effect. The 
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advantages of this treatment are that it is quick, cost-effective, and could help to 

eradicate antibiotic resistant strains of C. difficile.  

It is known that a dysbiotic gut microbiota increases the risk of developing CDI, 

however whether there is a common element within this community composition that 

could help to determine if a patient is at greater risk of rCDI is as yet unknown. The 

reduction in diversity within the dysbiotic gut microbiota would also suggest a 

reduction in metabolic potential through the loss of gene diversity. The functional 

redundancy6 within the gut microbiota suggests, that metabolic function is more 

relevant than which species are present or absent. Whilst a number of studies have 

looked at the changes in microbiota composition due to FMT,7-10 we know little about 

the changes to the metabolic capacities of the altered microbiota. The aim of this 

study was to assess FMT-induced changes in both the microbial community 

structure and metabolite profiles of the gut microbiomes of seven patients with rCDI, 

as well as those of their associated FMT donors.  

 

Patients and methods 

Patients 

Patients were selected as candidates for the FMT procedure if they had at least two 

confirmed recurrences of CDI. C. difficile testing was based on a two stage algorithm 

in line with Public Health England recommendations.11 This involves screening 

faecal samples by glutamate dehydrogenase enzyme immunoassay (Techlab, USA), 

followed by C. difficile toxin testing by enzyme immunoassay (Techlab, USA). 

Glutamate dehydrogenase positive, toxin negative samples were further tested for 

the presence of toxigenic genes by PCR. FMT exclusion criteria included 

immunocompromised patients, those aged less than 16, and those with severe 
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comorbidities which would make the patient unfit for endoscopy. FMT was 

introduced into clinical care at Norfolk and Norwich University Hospital following 

approval by the New Therapies committee, and was performed in accordance with 

the Helsinki Declaration of 1975. Patients were consented for the study by a clinician 

following a detailed discussion of the procedure with the patient or their next of kin. 

All patient data is fully anonymised. 

 

Donor screening 

The faecal donors used for the cohort of patients who underwent FMT in this study 

were both healthy Caucasian males with a BMI between 24-27 kg/m2, aged 36 (D05) 

and 30 (D03) years of age, respectively. Potential donors were asked to complete a 

questionnaire adapted from van Nood et al12 regarding their medical history and 

lifestyle habits to identify risk factors for potentially transmittable diseases. Eligible 

candidates provided blood and stool samples for laboratory screening tests. Blood 

samples were screened for hepatitis A, B, C, and E antibodies, HIV 1 & 2, human T-

lymphotropic virus 1 & 2, Epstein-Barr virus, Cytomegalovirus, syphilis, Entamoeba 

histolytica, Strongyloides stercoralis, and Treponema pallidum. Stool samples were 

tested for the presence of C. difficile or its toxins, Helicobacter pylori antigen, 

Norovirus, methicillin-resistant Staphylococcus aureus, vancomycin-resistant 

enterococci, extended-spectrum β-lactamase-producing organisms, 

carbapenemase-producing Enterobacteriaceae, Escherichia coli O157, Salmonella 

spp., Shigella spp., and Campylobacter species. In addition, microscopy was used to 

investigate for ova, cysts, and parasites. Prior to the donation of stool samples for 

each FMT procedure, donors were asked to refrain from eating peanuts and 
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shellfish, and to complete a short screening questionnaire to confirm no changes to 

health or lifestyle since the last donor screening that may put the patient at risk. 

 

Faecal suspension preparation 

Donor faeces were collected in a sterile container on the day of the procedure, and 

transferred to a sterilised class II safety cabinet (Walker Ltd, UK). A maximum of 80 

g of donor stool was homogenised with sterile saline (0.9%), to a ratio of 5 ml saline 

per gram of stool, in a strainer bag (BA6141/STR; Seward Limited, UK) using a 

Stomacher® 400 Circulator (Seward Limited, UK) set to 230 RPM for a duration of 1 

minute. The filtered faecal preparation was drawn up into labelled sterile 60 ml 

syringes using nasojejunal tubing connected to the Luer lock. The syringes were 

secured with sterile Luer lock caps and transported immediately to the hospital. 

Aliquots of the donor faecal sample were immediately stored at -20 ˚C until analysis. 

 

Faecal suspension infusion 

Patients were prescribed oral vancomycin 500 mg four times daily for 4 days, with 

the last dose received the night before the procedure. Also, on the day before the 

FMT procedure, a bowel lavage is performed using 4 litres of macrogol solution 

(Klean-Prep, Norgine). Patients were taken to the endoscopy unit for insertion of 

nasojejunal tube the night before the procedure. Our FMT protocol was adapted from 

that of van Nood et al.12 On the day of FMT infusion, the patient‟s headrest was 

elevated to 45 degrees, patency of the nasojejunal tube was checked by flushing 

with water, and 420 ml of faecal suspension was delivered slowly by the patient‟s 

bedside in the isolation room via a nasojejunal tube using the prefilled syringes. This 

was performed at a rate of ~20 ml per minute with a break of 5-10 minutes applied 
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halfway through the procedure. Post-infusion instructions were to monitor 

observations, and record bowel motions. Patients could take on fluids one hour after 

the procedure, and were observed overnight before discharge the next day at the 

earliest. Although there are no agreed durations of follow-up post-FMT,13 van Nood 

et al12 used two endpoints to measure cure, namely no relapse after 5 weeks, and no 

relapse after 10 weeks. Resolution was defined as type 4 or less on the Bristol stool 

chart or stool normal for the patient e.g. in case of percutaneous endoscopic 

gastrostomy feeding. We followed patients up by telephone or in person if they were 

re-admitted into the hospital for an unrelated illness. Post-FMT samples were 

collected after a minimum of 10 days post-FMT, and postal kits were provided to 

patients who were willing to donate a „follow-up‟ sample up to 2 weeks later. 

 

Sample analysis 

Faecal microbiota analysis 

Faecal samples were collected from recipients within 9 days prior to FMT, however 

the pre-FMT sample for patient R13 was not collected within this timeframe, and a 

previously frozen sample obtained whilst the patient was suffering from the same 

episode of CDI was used. Further samples were collected for all recipients following 

the procedure („post-FMT‟ range: 11-141 days; „follow-up‟ range: 4-14 days after 

post-FMT sample), and stored at -20 ˚C until analysis. The DNA was extracted using 

the FastDNA SPIN Kit for Soil (MP Biomedicals, UK) with a bead-beating step.14 

DNA yield was quantified using the Qubit fluorometer prior to the samples being sent 

to the Earlham Institute (UK), where the V4 hypervariable region of the 16S rRNA 

genes were amplified using the 515F and 806R primers with built-in degeneracy.15 

The amplicons were sequenced using paired-end Illumina sequencing (2 x 250 bp) 
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on the MiSeq platform (Illumina, USA). Sequencing data, for the 21 samples that had 

an appropriate level of sequencing depth, were analysed using the Quantitative 

Insights Into Microbial Ecology (QIIME) 1.9 software and RDP classifier 16S rRNA 

gene sequence database.16, 17 The trimmed reads were filtered for chimeric 

sequences using ChimeraSlayer, bacterial taxonomy assignment with a confidence 

value threshold of 50% was performed with the RDP classifier (version 2.10), and 

trimmed reads clustered into operational taxonomic units at 97% identity level. Alpha 

diversity and rarefaction plots were computed using the Chao1 index. Weighted and 

unweighted UniFrac distances were used to generate beta diversity principal 

coordinates analysis plots, which were visualised using the Emperor tool. 

 

Faecal metabolite analysis 

A known mass (~ 100 mg) of thawed faecal samples were added to sterile tubes. 

The faecal waters were generated by adding the phosphate buffer (prepared in D2O) 

to 8.3% w/v. Homogenised faecal waters were centrifuged at 16,200 x g at room 

temperature for 5 min. The supernatants were filter sterilised (0.2 μm) and placed in 

a 5 mm NMR tube. The 1H NMR spectra were recorded at 600 MHz on a Bruker 

Avance spectrometer (Bruker BioSpin GmbH, Germany) running Topspin 2.0 

software and fitted with a cryoprobe and a 60-slot autosampler. Each 1H NMR 

spectrum was acquired with 1280 scans, a spectral width of 12,300 Hz, and an 

acquisition time of 2.67 seconds. The “noesypr1d” pre-saturation sequence was 

used to suppress the residual water signal with a low-power selective irradiation at 

the water frequency during the recycle delay and a mixing time of 10 ms. Spectra 

were transformed with a 0.3 Hz line broadening, and were manually phased, 
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baseline corrected, and referenced by setting the TSP methyl signal to 0 ppm. The 

metabolites were quantified using the software Chenomx® NMR Suite 7.0TM. 

 

Statistical analysis 

Data for groups were expressed as mean ± standard deviation, with the exception of 

the microbiome relative abundance data, which is expressed as median ± standard 

deviation. Statistical comparisons of the alpha diversity measurements were 

performed using one-way analysis of variance followed by Tukey‟s Multiple 

Comparison post-test with an alpha value of 0.05. Multivariate statistical analysis 

(principal component analysis) of the 1H NMR data was carried out using the PLS 

Toolbox v5.5 (Eigenvector Research Inc.,Wenatchee, WA) running within Matlab 

v7.6 (The MathWorks Inc., Natick, MA). Autoscaling was applied to the variates. 

1H NMR and sequencing datasets (the former comprising 100 metabolites and the 

latter the relative abundance of 271 bacterial taxa, for the same 21 samples) were 

also analysed jointly. Firstly, the two blocks of data were analysed by canonical 

correlation analysis (CCA), using the sPLS variant to cope with mathematical issues 

arising from the data being high-dimensional.18 This analysis defines latent variables, 

or canonical axes, for each of the NMR and sequencing blocks of data; the data is 

then summarised by the position of the samples (scores) on these axes. The sample 

scores on corresponding pairs of canonical axes reflected the overall strength of the 

relationship between the two blocks of data. The original variables (NMR and 

sequencing) were then simultaneously displayed on „correlation circle plots‟, in which 

the correlation between each variable and each canonical axis is projected.19 This 

revealed possible correlations which were further explored by calculating the 

Pearson correlation coefficient between each bacterial taxa and each of the 
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metabolites measured by 1H NMR. CCA was carried out using the R (v3.3.3) 

package mixOmics v6.1.2, and correlation coefficient maps produced in Matlab v9.1 

(The MathWorks Inc., Natick, MA). Prior to CCA and calculation of the correlation 

coefficient, the sequencing data were subjected to the centered log-ratio 

transformation to avoid spurious results.20-22 

 

 

Results 

Patient demographics 

Seven patients with rCDI were given FMT at the Norfolk and Norwich University 

Hospital. Metagenomic and metabonomic analyses were performed on stool 

samples collected before and after the FMT procedure, along with the associated 

donor stool samples. Patient demographics are shown in Table 1. 

 

16S rRNA gene sequencing analysis 

Faecal microbiota composition 

The sequencing data generated 1,627,111 high-quality reads, with an average of 

77,481 ± 10,888 reads per sample, which clustered into 9,818 operational taxonomic 

units at 97% identity. Diversity analyses were rarefied to 63,159 sequences per 

sample to match the lowest number of sequences obtained for a sample, and 

therefore avoid bias. The metataxonomic data (Supplemental figures 1 & 2) indicated 

that although the microbiota of many of the patients resembled more closely that of 

the donor microbiota following FMT (Figures 1A & 2A), the microbiota alteration in 

patient R44 did not follow this trend (Figures 1B & 2B). It transpired that this patient 

suffers from chronic alcohol abuse, and this may have greatly affected the ability of 
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the donor microbiota to successfully colonise this recipient‟s gastrointestinal tract. 

The results in Table 2 indicate that following FMT, there was a general trend towards 

an increase in members of the Bacteroidetes (pre-FMT 1.1%, post-FMT 6.5%, 

follow-up 12.4%), an initial decrease of Firmicutes (pre-FMT 57.8%, post-FMT 

50.3%, follow-up 61.5%), and limited change in the relative proportions of 

Proteobacteria (pre-FMT 13.9%, post-FMT 16.3%, follow-up 3.6%). Comparison of 

the metataxonomic data at the genus level suggests an increase in the relative 

proportions of Bacteroides (pre-FMT 0.4%, post-FMT 4.6%, follow-up 9.6%), Blautia 

(pre-FMT 0.2%, post-FMT 3%, follow-up 7.3%), and members of Ruminococcus of 

the Lachnospiraceae family (pre-FMT 1.6%, post-FMT 4.9%, follow-up 11.1%). In 

contrast, the relative proportions of Enterococcus (pre-FMT 11.3%, post-FMT 1.1%, 

follow-up 0.4%), and Escherichia (pre-FMT 5.1%, post-FMT 3.5%, follow-up 1.1%) 

decreased after treatment. However, although cured of CDI, it is interesting to note 

that these data were skewed by the inclusion of the post-FMT sample obtained from 

patient R44. Omission of patient R44 samples significantly impacted on the median 

relative proportions of Proteobacteria (post-FMT 1.5% vs 16.3%), and Klebsiella 

(post-FMT 0.2% vs 0.02%). 

 

Faecal microbiota diversity analyses 

Alpha diversity analysis using the Chao1 index (Figure 3), and one-way ANOVA with 

Tukey‟s multiple comparisons test, indicated a significant reduction in bacterial 

diversity in the pre-FMT samples, compared to the donor samples (P = 0.0091). 

Although bacterial diversity was observed to increase following the FMT procedure, 

this was not statistically significantly different to the diversity within the pre-FMT 

samples. However, neither the post-FMT nor the follow-up samples were 
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significantly different from the donor samples, indicating an increase in bacterial 

diversity following FMT. Weighted beta diversity analysis indicated a clear separation 

between samples obtained from donors, which clustered to the right of the principle 

coordinates analysis plot, and those from recipients prior to FMT, which were located 

on the left side of the plot (Figure 4). In addition, it indicates that the faecal 

microbiota of R42, R05, and R23 were modified by the FMT procedure to closely 

resemble that of the healthy donors. 

 

Faecal metabolite profile 

A total of 22 samples obtained from 2 donors (n = 5) and 7 patients (pre-FMT n = 7, 

post-FMT n = 7, and follow-up samples n = 3) were prepared, 1H NMR spectra 

recorded, and signals carefully characterised using information from 2-dimensional 

NMR experiments, such as HSQC, HMBC, and COSY, the literature data,23-25 and 

the human metabolome database. A specialised Chenomx software® was used to 

quantify 100 different metabolites in an absolute manner (Table 3). 

Donor profiles were characterised by relatively high levels of butyrate, propionate, 

acetate, succinate, glucose, and ethanol (30, 13, 108, 22, 8, and 6 mmol/kg, 

respectively), and lower levels of a diverse range of other metabolites. The presence 

of many compounds was sample-dependant but amino acids, their associated 

products (methylsuccinate, 2-piperidinone, β-alanine, and 5-aminovalerate), phenolic 

compounds (3-(3-hydroxyphenylpropionate), phenylpropionate, and phenylacetate), 

amines (methyl-, dimethyl- and trimethyl-amines, putrescine, cadaverine, and 

tyramine), nucleobases (adenine and uracil), sugars (glucose, arabinose, fucose, 

and ribose), and nicotinate derivates (nicotinate, NAD+, and nicotinamide ribotide) 

were detected in the 1H NMR profiles of the donor samples (Supplemental figure 3). 
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As with the donor‟s profiles, the patient profiles displayed great intra- and inter-

individual variability in the levels of many metabolites. Metabolic profiles of pre-FMT 

patient profiles contained, on average, more uncharacterised signals including those 

of analgesics (6.80, 6.85, and 6.93 ppm), higher levels of amines (dimethylamine, 

cadaverine, putrescine and tyramine), amino acids, branched chain fatty acids 

(BCFAs) (isobutyrate, isocaproate, isovalerate and 2-methylbutyrate), phenol, 

benzoate, and p-cresol, and lower levels of butyrate, alcohols (ethanol and 

methanol), osmolytes (choline), and bile acids (deoxycholate, lithocholate, and 

cholate). 

Using patient R42 as an example of metabolic changes, it was found that butyrate, 

propionate, and acetate levels increased from 1.6, 2.8, and 46.6 mmol/kg, to 18.3, 

26.2, and 110.6 mmol/kg, respectively. Conversely, putrescine, cadaverine, 

tyramine, 1-methylnicotinamide, and some unidentified NMR metabolite signals 

disappeared. A decrease of 3-hydroxybutyrate (from 9.6 mmol/kg to 0.8 mmol/kg) 

was also observed. Glucose levels increased from 0.3 mmol/kg to 12.2 mmol/kg, 

which is within the range observed from samples of the donor associated with patient 

R42. In contrast, there was little improvement in the levels of butyrate, propionate, 

and acetate in the samples from patient R44 (0, 0.8, 14.3 mmol/kg vs 0.2, 3.9, 23.3 

mmol/kg), and although there was a decrease in putrescine levels, the amount of 

cadaverine and tyramine were largely unchanged. Interestingly, increased levels of 

lactate, 1,2-propanediol, glycerol, and glucose were observed in this patient following 

FMT (data not shown). The levels of butyrate (Figure 5) were relatively low in the 

pre-FMT patient samples (5.39 mmol/kg ± 7.46), compared to the donor samples 

(30.25 mmol/kg ± 5.07), and the concentration of butyrate increased in most patients 

following the FMT procedure (average 7.67 mmol/kg ± 6.66). For those patients that 
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provided a further post-FMT sample (follow-up sample; between 23 and 36 days 

after treatment), a higher concentration of faecal butyrate (17.67 mmol/kg ± 11.72) 

was detected compared to pre-FMT levels (Figure 5). The levels of butyrate, acetate, 

and fucose increased post-FMT converging towards those of the donors 

(Supplemental figure 4). Despite this improvement, the levels of butyrate, acetate, 

ethanol, methanol, galactose, arabinose, deoxycholate, lithocholate, and isovalerate 

remained significantly different compared to the donor samples, even after the FMT 

procedure (Table 3). Only the levels of galactose and arabinose significantly differed 

from the donors in the follow-up samples (Table 3). Principal component analysis 

indicated that a positive score on the second principal component (PC) may 

potentially correlate with a healthier metabolic profile, as the scores of all five of the 

donor samples were found in this half of the score plot (Supplemental figure 5). 

Interestingly, some of the patients‟ metabolic profiles (R44, R42, and R23) shifted 

towards the profiles of the donors to varying degrees after the FMT procedure. 

 

Correlation analysis 

The scores obtained by canonical correlation (samples coordinates on the latent 

variables defined for each of the two blocks of data, (Supplemental figure 6)) show 

that there is strong evidence of a relationship between 1H NMR and 16S rRNA gene 

sequencing datasets (r > 0.9 for scores 1 to 10). Furthermore, they highlight the fact 

there are characteristics that are specific to donors and to recipients, as shown on 

the first canonical axis, both in terms of NMR measurements and bacterial taxa. The 

correlation circle plots (which show the correlation between the original variables in 

either the NMR or the 16S rRNA gene sequencing dataset, and their canonical axes) 

indicate which of the original variables contribute most of that, being situated towards 
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the outside edge of the circle corresponding to correlation = 1 on the first canonical 

axis (Supplemental figure 7). Two clusters of variables can be seen on the first axis, 

one with large negative, and the other with large positive coordinates. These two 

sets of variables are expected to be negatively correlated. Moreover, it is expected 

that variables within a cluster will be positively correlated.19 Further examination of 

the map of Pearson correlations between these two clusters of variables confirms 

the high correlations between a number of metabolites and bacterial taxa (Figure 6). 

For instance, butyrate was found to positively correlate to the presence of 

Bacteroides, Blautia, and Ruminococcus, whilst Klebsiella and Enterococcus were 

negatively correlated with butyrate. 

 

 

Discussion 

In this study, we performed gut microbiota community composition and metabonomic 

analyses on the faecal samples of seven patients who underwent FMT to combat r-

CDI. The symptoms associated with CDI were resolved for six of the seven patients, 

and no recurrences of CDI have been reported in the 22 - 27 months following the 

single administrations of FMT. It has been observed that CDI sufferers generally 

have a dysbiotic microbiota, with a larger proportion of Proteobacteria than is 

generally seen in a healthy microbiota.7, 26 Our results based on the 16S rRNA gene 

analysis confirm the higher levels of Proteobacteria in rCDI patient samples before 

FMT. Post treatment there was a general increase in the relative proportions of 

Firmicutes and Bacteroidetes, with a decrease in members of the Proteobacteria as 

has been previously described.7, 26 At a higher resolution, the relative proportions of 

Bacteroides, Blautia, and Ruminococcus from the Lachnospiraceae family increased, 
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whilst Enterococcus and the Proteobacteria Escherichia and Klebsiella decreased, 

which supports the findings of previous studies.8-10, 26, 27 Interestingly these changes 

were not observed in patient R44, whose post-FMT sample, collected 11 days after 

the procedure, continued to resemble a dysbiotic community, and on the contrary, 

the levels of Klebsiella (Proteobacteria) increased from 5.8% to 84.6% 

(Supplemental figure 2) of the total bacterial population. Despite what appears to be 

an adverse effect on the gut microbiota composition, rCDI was resolved, and it is 

possible that the patient microbiota had changed after FMT but over the eleven days 

before a post-FMT sample was collected, a resumption of alcohol abuse had 

reversed this effect. It is known that chronic alcohol use can lead to a dysbiotic 

microbiota, with a predomination of Gammaproteobacteria including Klebsiella 

species, as was observed with patient R44.28-30 Therefore, the long-term success of 

FMT procedures may be influenced by lifestyle, and it could be interesting to explore 

if chronic alcohol abuse increases the susceptibility of individuals to CDI. 

As with some other gastrointestinal diseases, a reduction in the diversity of the 

colonic microbiota is commonly seen in CDI patients.31, 32 Alpha diversity 

measurements (Figure 3) indicated that the donor‟s gut microbiota contained a 

higher species richness than the patients before FMT (P = 0.0091). The 

administration of FMT increased the diversity of patients‟ gut microbiota, and this 

remained stable over time, although this diversity did not reach the levels observed 

in the healthy donors. This is potentially due to the natural decline in bacterial 

diversity that has been reported in the gut microbiota as we age (mean age: FMT 

recipients 71.3 ± 15.9 years; donors 33.0 ± 4.2 years).33, 34 Beta diversity analysis 

(Figure 4), which gives an indication of the similarities or differences between 

samples, shows a clear separation of the donor‟s and pre-FMT patient samples, 
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indicating substantial differences between the microbiota profiles of the two groups. 

As this separation was determined by principal coordinate 1, it suggests that the 

microbiota composition of the two groups represented the greatest variability. After 

treatment, the profiles shift towards the associated donor samples. 

Metabonomic analysis was performed using 1H NMR to observe any differences 

between the metabolic profiles of those suffering CDI and the donors, and whether 

FMT restored these metabolic functions. One hundred metabolites were identified 

and quantified in 22 faecal samples. Principal component analysis suggested that 

the metabolome of some of the patients shifted towards the profiles of the donors to 

varying degrees after FMT (Supplemental figure 5). Coupled with the alleviation of 

symptoms, this change in metabolite profile may reflect a shift towards a healthier 

metabolic state. It is difficult to discern which metabolites, if any, may be associated 

with this improvement, but an increase in the short-chain fatty acids acetate and 

butyrate were observed in most patients. Butyrate has been linked with multiple 

health benefits for the host, such as providing an energy source for colonocytes, 

inhibition of growth and virulence gene expression of pathogens,35, 36 inflammation 

suppression,37, 38 and the direct inhibition of C. difficile growth in vivo.39 In addition, a 

recent study by Fuentes et al40 observed that long-term remission of ulcerative colitis 

following FMT was associated with a restoration of the capacity of the gut microbiota 

to produce butyrate. Acetate offers host mucosal protection and healing 41, 42 by 

modulating host defence 43 and inflammatory responses.44 Using sparse partial-

least-square (sPLS) canonical correlation analysis, it was possible to separate donor 

and patient samples based on microbiota composition and metabolite profile 

(Supplemental figure 6). Furthermore, calculating the Pearson correlation coefficient 

enabled correlations between bacterial taxa and metabolites to be mapped (Figure 
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6). This identified a range of metabolites, including butyrate, which were positively 

correlated with the taxa (Bacteroides, Blautia, and Ruminococcus) that proportionally 

increased following FMT, and negatively correlated with Klebsiella (except for a 

largely neutral correlation to succinate), and Enterococcus, which exhibited 

proportional decreases. Many of the rCDI patients had relatively high levels of 

branched chain fatty acids (BCFAs), phenolic compounds, amino acids, and certain 

amines, compared to the donor samples. In general, the levels of some of these 

metabolites were found to decrease following the FMT procedure, and this may have 

also contributed to the improved health of the patients. Although the majority of FMT 

recipients showed an increase in short-chain fatty acids after treatment, this was not 

observed in patient R44, who suffered from alcoholism. The increased levels of 

lactate and glycerol could be an effect of alcohol abuse following ethanol 

metabolism.45 It has been shown that Klebsiella can metabolise glycerol under 

anaerobic conditions to produce propanediols, which can then be used as an energy 

source for these bacteria.46 As such, the chronic consumption of alcohol could lead 

to a dysregulation of hepatic processes, which may provide increased levels of these 

metabolites that would give bacteria, such as Klebsiella species, a competitive 

advantage over more beneficial bacteria. 

It has previously been shown that chronic alcohol abusers often have increased 

proportions of Gammaproteobacteria in their gut microbiota,29 which is consistent 

with the observations made here. However, further work is required to identify if 

elevated levels of faecal lactate, glycerol, and propanediols are potential biomarkers 

of this disorder. 
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The results of this study confirm the value of FMT as a viable alternative to the use 

of costly antibiotics for the treatment of rCDI. Although the modulation of the 

microbiota composition is considered to play a pivotal role in FMT, the resulting 

metabolic alteration of the gut microbiota should also be considered as an important 

factor in the resolution of rCDI. A larger study is in progress focusing on the 

microbial-based metabolites to identify biomarkers for identification of individuals 

susceptible to CDI based on both microbiota composition and their metabolic 

profiles. 

 

 

Conclusions 

Faecal microbiota transplantation has been shown to be a robust and cost-effective 

method to combat recurrent-Clostridium difficile infection (rCDI), however to increase 

the effectiveness of this treatment it is necessary to elucidate the mechanisms by 

which this works, and factors that may reduce its efficacy. Our results indicate that 

the resolution of rCDI was accompanied by an alteration to the microbiota 

composition towards that of the donor profile to varying degrees, with increased 

diversity that was maintained beyond seven weeks after the FMT procedure. We 

also demonstrated that the shift in bacterial composition also correlated with altered 

functional metabolism of the recipient microbiota, where the metabolic profile again 

shifted towards that of the donor. Correlation analysis enabled the identification of 

strong relationships between bacterial taxa and metabolites, including positive 

correlations between butyrate and taxa that proportionally increased after FMT. 

Finally, lifestyle factors, such as chronic alcohol consumption, could potentially 
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increase a person‟s susceptibility to CDI, and should be considered prior to FMT 

administration. 
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Figure legends 

 

 

Figure 1. Post-FMT profiles resembled the associated donor profile, but this 

was not observed in all recipients. Proportions of bacterial phyla in pre- and post-

FMT samples, as well as the associated donor samples. Bacterial DNA was 

extracted from faecal samples, and the 16S rRNA genes were sequenced using 

paired-end sequencing on an Illumina MiSeq platform. Bioinformatic analysis was 

performed using QIIME 1.9.0 and RDP classifier. 
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Figure 2. Proportions of bacterial genera in faeces of pre- and post-FMT 

patients and the corresponding donors. Bacterial DNA was extracted from faecal 

samples, and the 16S rRNA genes were sequenced using paired-end sequencing on 

an Illumina MiSeq platform. Bioinformatic analysis was performed using QIIME 1.9.0 

and RDP classifier. The key refers to bacterial genera present at >0.5% of the 

population. 
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Figure 3. FMT treatment increased bacterial diversity. Alpha diversity rarefaction 

measures of faecal bacteria before (n = 7) and after FMT treatment (n = 6), follow-up 

samples (n = 3), and associated donor samples (n = 5) were calculated using QIIME 

1.9.0. Data for the post-FMT sample for patient R48 was omitted due to poor 

sequencing depth. Mean ± SD, analysed using one-way ANOVA with Tukey‟s 

multiple comparisons test, and an alpha value of 0.05; ** P = 0.0091.  
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Figure 4. Beta diversity analysis shows a separation of faecal microbiota 

based on health status (pre-FMT vs donor). Weighted beta diversity analysis of 

faecal microbiota samples from patients (pre-FMT (n = 7), post-FMT (n = 6), and 

follow-up samples (n = 3)) and donors (n = 5). Beta diversity analysis was performed 

using the UniFrac metric using QIIME 1.9.0, and visualised as a 3D principal 

coordinates analysis plot using Emperor. Data for the post-FMT sample for patient 

R48 was omitted due to poor sequencing depth. The anonymised identifiers indicate 

which samples belong to each patient, and which donor samples were used for each 

patient. 
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 Figure 5. Butyrate levels for the 2 donors (5 samples) and 7 patients (17 

samples consisting of 7 pre-FMT, 7 post-FMT and 3 follow-up samples). 

Patients were matched to a sample of either donor 5 (d5-s3, -s5, -s6 or –s7) or donor 

3 (d3-s2). High levels of butyrate characterised the donors (between 24 and 37 

mmol/kg) while the pre-FMT levels were disparate ranging from low (0) to high (21 

mmol/kg). The butyrate levels for most patients were found to have increased in the 

post-FMT and/or follow-up samples. The levels for patient R44 remained low 

(increasing from 0 at pre-FMT to 0.2 mmol/kg post-FMT). The P values are the 

results of Mann-Whitney t-tests between two groups of samples. 
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Figure 6. Correlation map for selected metabolites and bacterial taxa. 

Metabolites and bacterial taxa were chosen based on having 0.5< | correlations | <1 

on the first axis of the sPLS canonical correlation analysis. 

 

 

Tables 
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Table 1. Patient demographics.  

Patient 

code 

Gender Age 

(yrs) 

LoS post 

FMT 

(days) 

Bowel lavage 

administered? 

Donor 

sample 

Pre-FMT 

sample 

(days) 

Post-FMT 

sample 

(days) 

Documented 

Resolution of 

symptoms post-FMT 

Symptoms 

at 5 weeks 

Symptoms 

at 10 weeks 

Co-morbidities 

R48 Female 66 1 No D05-S3 9 141 1 day No No UC, HBP, 

diverticular 

disease 

R42 Female 63 1 Yes D05-S5 9 48 1 day No No NIDDM, liver 

cirrhosis, 

pancreatic 

insufficiency 

R44 Female 42 1 No D05-S6 8 11 1 day No No Alcohol abuse 

R05 Male 79 63 No D05-S6 1 30 No response due to 

concomitant 

carbapenem for HAP. 

n/a n/a Cancer, CKD4, 

NIDDM 

R23 Female 80 3 No D05-S7 2 23 2 days No No CKD4, renal 

dialysis, R.A, 

hypothyroidism  

R43 Male >90 43 

 

No D05-S7 2 21 8 days Relapse of 

symptoms 

Deceased CKD2, CCF 

R13 Male 78 6 No D03-S2 45 88 6 days No No Dementia, AKI  

AKI – acute kidney injury; CCF – congestive cardiac failure; CKD2 and CKD4 – chronic kidney disease stage 2 and 4; HAP – 

hospital-acquired pneumonia; HBP – high blood pressure; LoS – length of stay; NIDDM – noninsulin-dependent diabetes mellitus; 

R.A – rheumatoid arthritis; UC – ulcerative colitis. 
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Table 2. Median (± SD) relative abundance of bacterial taxa in which the largest 

proportional changes were observed across the different groups. 

 Including Patient R44 Excluding Patient R44 

Bacterial phyla 
Donor 

(%) 

Pre-FMT 

(%) 

Post-FMT 

(%) 

Follow-up 

FMT (%) 

Pre-FMT 

(%) 

Post-FMT 

(%) 

Follow-up 

FMT (%) 

Bacteroidetes 
15 

(±11) 
1.1 (±4) 6.5 (±18) 12.4 (±15.6) 1.5 (±4.2) 7.1 (±18.5) 12.4 (±15.6) 

Firmicutes 
78.5 

(±10.4) 

57.8 

(±17.4) 

50.3 

(±24.3) 
61.5 (±9) 

54.9 

(±18.6) 
51 (±14.6)  61.5 (±9) 

Proteobacteria 
1.1 

(±1.4) 
13.9 (±26) 

16.3 

(±36.6) 
3.6 (±9.4) 8.4 (±28.7) 1.5 (±18.4) 3.6 (±9.4) 

Bacterial genera        

Bacteroides 
14.7 

(±10.9) 
0.4 (±4.1) 4.6 (±17.3) 9.6 (±15.2) 0.7 (±4.4) 5.4 (±18) 9.6 (±15.2) 

Blautia 
23.14 

(±7.6) 
0.2 (±1.6) 3 (±10.2) 7.3 (±9.5) 0.3 (±1.7) 3.1 (±10.4) 7.3 (±9.5) 

Ruminococcus 
10.4 

(±7.5) 
1.6 (±4.3) 4.9 (±4.9) 11.1 (±6.4) 1.8 (±4.5) 5.8 (±4.8) 11.1 (±6.4) 

Enterococcus 
0.01 

(±0.1) 
11.3 (±12) 1.1 (±9.5) 0.4 (±4.1) 9.1 (±5.9) 0.2 (±10.5) 0.4 (±4.1) 

Escherichia 
0.1 

(±0.3) 
5.1 (±16.4) 3.5 (±12.9) 1.1 (±8.5) 6 (±17.3) 0.7 (±14.4) 1.1 (±8.5) 

Klebsiella 
0.01 

(±0) 
4.4 (±16) 0.2 (±34.4) 0.3 (±0.3) 3 (±17.7) 0.02 (±0.7) 0.3 (±0.3) 
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Table 3. Mean values (± SD) of 100 metabolites (mmol/kg) identified in faecal  

samples obtained from donors and patients.  

 

 mmol/kg 

Metabolite 

Index 

(ppm) Donors 

(n = 5) 

Pre-FMT 

(n = 7) 

Post-FMT 

(n = 7) 

Follow-up 

FMT 

(n = 3) 

Butyrate 0.89 30.25 (± 5.07) 5.39 (7.46) ** 7.67 (± 6.66) ** 17.67 (± 11.72) 

Acetate 1.90 108.44 (± 21.43) 49.94 (± 45.14) * 48.81 (± 33.81) * 126.04 (± 27.76) 

Propionate 1.05 13.20 (± 5.03) 12.46 (± 12.36) 10.57 (± 9.43) 26.92 (± 9.26) 

Valerate 0.87 1.58 (± 1.69) 0.78 (± 1.69) 0.87 (± 0.88) 1.93 (± 3.07) 

Isobutyrate 1.05 0.20 (± 0.34) 1.60 (± 2.14) 1.62 (± 2.05) 2.96 (± 2.47) 

Isocaproate 0.87 0 (± 0) 1.04 (± 2.09) 0.71 (± 1.43) 0.22 (± 0.39) 

Isovalerate 0.90 0.32 (± 0.44) 1.59 (± 1.97) 1.68 (± 1.45) * 2.84 (± 2.55) 

2-Methylbutyrate 0.85 0.10 (± 0.17) 0.77 (± 1.20) 0.63 (± 0.65) 1.16 (± 1.11) 

Lactate 1.33 1.98 (± 1.92) 1.23 (± 1.56) 7.73 (± 12.67) 16.08 (± 27.29) 

Lactaldehyde 1.37 0 (± 0) 0.08 (± 0.22) 0.15 (± 0.36) 0.56 (± 0.96) 

Formate 8.46 0.43 (± 0.62) 0.32 (± 0.60) 0.07 (± 0.04) 0.41 (± 0.53) 

1,2-propanediol 1.13 0.22 (± 0.15) 0.13 (± 0.08) 1.14 (± 2.68) 0.77 (± 1.29) 

Ethanol 1.17 5.86 (± 2.95) 1.07 (± 0.79) ** 1.92 (± 1.53) * 5.55 (± 8.45) 

Methanol 3.35 1.41 (± 0.36) 0.50 (± 0.97) * 0.25 (± 0.24) ** 0.55 (± 0.81) 

Ethylene glycol 3.70 1.87 (± 0.78) 1.27 (± 0.73) 0.98 (± 0.47) 1.10 (± 0.19) 

Glycerol 3.55 1.07 (± 1.10) 1.70 (± 1.77) 1.64 (± 2.64) 0.85 (± 0.49) 

Indole-3-lactate 7.50 0.01 (± 0.02) 0.01 (± 0.02) 0 (± 0) 0.03 (± 0.05) 

Indoleacetate 7.62 0 (± 0) 0.01 (± 0.01) 0 (± 0.01) 0.07 (± 0.12) 

Methylamine 2.59 0.57 (± 0.57) 0.16 (± 0.20) 0.17 (± 0.14) 0.33 (± 0.27) 

Dimethylamine 2.71 0.03 (± 0.03) 0.19 (± 0.17) 0.08 (± 0.14) 0.13 (± 0.11) 

Trimethylamine 2.89 0.24 (± 0.10) 0.29 (± 0.34) 0.24 (± 0.30) 0.35 (± 0.19) 

Putrescine 3.04 0.15 (± 0.12) 2.39 (± 2.67) 1.06 (± 1.19) 2.29 (± 2.05) 

Cadaverine 3.00 0.38 (± 0.52) 0.80 (± 1.33) 1.02 (± 0.74) 1.93 (± 1.00) 

Tyramine 7.21 0.10 (± 0.20) 0.27 (± 0.34) 0.30 (± 0.70) 0.10 (± 0.17) 

4-Hydroxyphenylacetate 6.85 0.05 (± 0.08) 0.21 (± 0.31) 0.53 (± 0.99) 1.94 (± 2.83) 

3-hydroxyphenylpropionate 6.74 0.17 (± 0.20) 0 (± 0.01) 0.01 (± 0.03) 0 (± 0) 

3-Hydroxyphenyl derivate 6.70 0.18 (± 0.18) 0 (± 0.01) 0.01 (± 0.02) 0.03 (± 0.06) 

3-Phenylpropionate 7.26 0.19 (± 0.17) 0.11 (± 0.15) 0.20 (± 0.24) 0.11 (± 0.10) 

Phenylacetate 7.29 0.08 (± 0.08) 0.79 (± 0.81) 0.62 (± 0.85) 1.00 (± 0.78) 

Phenylacetylglycine 7.35 0 (± 0) 0.04 (± 0.08) 0.03 (± 0.04) 0.02 (± 0.04) 

4-Aminohippurate 7.66 0 (± 0) 0.01 (± 0.01) 0.01 (± 0.02) 0.07 (± 0.12) 

p-Cresol 7.14 0 (± 0) 0.06 (± 0.08) 0.06 (± 0.09) 0.10 (± 0.18) 

Phenol 6.98 0 (± 0) 0.03 (± 0.05) 0.03 (± 0.05) 0 (± 0) 
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Benzoate 7.47 0 (± 0) 0.02 (± 0.05) 0 (± 0) 0.08 (± 0.14) 

2-Hydroxyisovalerate 0.82 0.02 (± 0.02) 0.19 (± 0.11) * 0.14 (± 0.13) 0.17 (± 0.17) 

3-Methyl-2-oxovalerate 1.09 1.14 (± 1.10) 2.81 (± 3.76) 1.45 (± 1.67) 3.55 (± 2.83) 

ɣ-aminobutyobetaine 3.12 1.76 (± 1.72) 2.69 (± 2.21) 2.82 (± 5.46) 4.02 (± 2.48) 

β-Alanine 2.55 0.45 (± 0.25) 0.28 (± 0.26) 0.41 (± 0.45) 1.07 (± 0.88) 

2-Aminoadipate 2.26 0 (± 0) 0 (± 0) 0.74 (± 1.65) 0 (± 0) 

2-Oxoisocaproate 0.92 0 (± 0) 0.07 (± 0.13) 0.01 (± 0.02) 0.02 (± 0.04) 

3-Aminoisobutanoate 1.18 0 (± 0) 0.65 (± 1.20) 1.89 (± 4.83) 0 (± 0) 

Methylsuccinate 1.09 0.24 (± 0.23) 0.08 (± 0.13) 0.06 (± 0.11) 0.22 (± 0.29) 

2-Piperidinone 3.28 0.17 (± 0.15) 0.01 (± 0.03) 0.15 (± 0.22) 0.26 (± 0.31) 

5-Aminopentanoate 2.22 2.45 (± 1.93) 5.71 (± 10.64) 1.51 (± 0.97) 1.19 (± 0.78) 

Acetaminophen 7.24 0 (± 0.01) 0.12 (± 0.15) 0.08 (± 0.09) 0.22 (± 0.39) 

Analgesic at 6.80 ppm 6.81 0 (± 0) 0.58 (± 1.53) 2.06 (± 5.42) 0 (± 0) 

Analgesic at 6.85 ppm 6.85 0 (± 0) 0.14 (± 0.37) 0.21 (± 0.57) 0 (± 0) 

Analgesic at 6.93 ppm 6.93 0 (± 0) 0.34 (± 0.91) 0.04 (± 0.06) 0.01 (± 0.02) 

Arabinose 4.51 0.62 (± 0.09) 0.24 (± 0.59) * 0.14 (± 0.18) ** 0.04 (± 0.06) * 

Fucose 4.54 0.23 (± 0.15) 0.01 (± 0.04) * 0.22 (± 0.23) 0.31 (± 0.32) 

Galactose 4.57 0.73 (± 0.19) 0.15 (± 0.16) ** 0.22 (± 0.18) ** 0.24 (± 0.17) * 

Glucose 4.64 8.12 (± 5.15) 3.95 (± 3.30) 10.97 (± 17.91) 5.70 (± 3.27) 

Ribose 4.92 0.70 (± 1.13) 0.59 (± 0.45) 0.55 (± 0.34) 1.64 (± 0.54) 

Alanine 1.47 3.58 (± 2.39) 5.21 (± 3.60) 5.32 (± 3.72) 7.25 (± 4.76) 

Asparagine 2.94 0.57 (± 0.16) 0.24 (± 0.25) 0.18 (± 0.26) 0.37 (± 0.64) 

Aspartate 2.80 1.66 (± 1.23) 0.87 (± 0.59) 1.00 (± 0.34) 2.00 (± 1.07) 

Glutamate 2.33 3.24 (± 2.90) 3.76 (± 4.81) 2.86 (± 2.57) 3.94 (± 2.76) 

Glutamine 2.46 2.37 (± 1.82) 0.59 (± 0.41) 0.73 (± 0.48) 1.24 (± 0.49) 

Glycine 3.54 2.21 (± 0.94) 5.79 (± 6.49) 2.92 (± 2.47) 2.74 (± 1.46) 

Histidine 7.05 0.37 (± 0.21) 0.62 (± 0.79) 0.62 (± 0.53) 0.57 (± 0.24) 

Isoleucine 1.00 1.00 (± 0.60) 1.47 (± 0.96) 1.31 (± 0.73) 1.91 (± 1.21) 

Methionine 2.63 0.47 (± 0.43) 0.57 (± 0.32) 0.80 (± 0.44) 1.25 (± 0.37) 

Valine 1.03 1.97 (± 1.15) 3.82 (± 2.39) 2.57 (± 2.04) 3.11 (± 1.67) 

Leucine 0.94 1.44 (± 0.90) 2.56 (± 1.44) 2.53 (± 1.22) 3.68 (± 1.32) 

Lysine 3.01 1.55 (± 0.10) 1.08 (± 0.11) 1.98 (± 0.13) 2.01 (± 0.06) 

Serine 3.84 0.89 (± 0.34) 1.27 (± 0.69) 1.24 (± 0.86) 2.60 (± 1.02) 

Threonine 4.25 1.07 (± 0.50) 0.58 (± 0.43) 1.15 (± 0.59) 2.16 (± 1.37) 

Phenylalanine 7.32 0.67 (± 0.35) 1.57 (± 1.05) 1.18 (± 0.61) 1.63 (± 0.41) 

Proline 4.12 0.48 (± 0.50) 1.55 (± 2.11) 0.90 (± 0.65) 0.96 (± 0.38) 

Pyroglutamate 2.50 0.10 (± 0.23) 0.12 (± 0.33) 0.07 (± 0.18) 0 (± 0) 

Tryptophan 7.73 0.18 (± 0.11) 0.39 (± 0.50) 0.30 (± 0.17) 0.38 (± 0.18) 

Tyrosine 7.18 0.85 (± 0.44) 1.01 (± 0.97) 1.04 (± 0.65) 1.65 (± 0.64) 

4-Aminobutyrate 2.27 0 (± 0) 0 (± 0) 0.42 (± 1.10) 0.94 (± 1.63) 
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Carnitine 3.22 0.02 (± 0.05) 0.38 (± 0.79) 0.05 (± 0.06) 0.02 (± 0.02) 

Taurine 3.25 0.95 (± 0.80) 1.06 (± 1.21) 0.38 (± 0.54) 0.35 (± 0.07) 

Choline 3.18 0.08 (± 0.07) 0.14 (± 0.18) 0.15 (± 0.15) 0.11 (± 0.08) 

Betaine 3.25 0 (± 0) 0 (± 0) 0.04 (± 0.11) 0 (± 0) 

Citrate 2.53 0.03 (± 0.05) 0.30 (± 0.42) 0.09 (± 0.10) 4.55 (± 7.33) 

Fumarate 6.51 0.05 (± 0.02) 0.05 (± 0.08) 0.03 (± 0.03) 0.05 (± 0.02) 

Succinate 2.39 21.85 (± 14.91) 8.80 (± 11.57) 9.79 (± 14.44) 9.23 (± 13.79) 

Pyruvate 1.46 0.63 (± 1.41) 1.17 (± 0.88) 0.23 (± 0.30) 0.49 (± 0.51) 

Creatine 3.02 0.23 (± 0.16) 1.02 (± 0.86) 0.13 (± 0.17) 0.24 (± 0.14) 

Creatinine 3.03 0.13 (± 0.15) 0.15 (± 0.22) 0.03 (± 0.05) 0.01 (± 0.02) 

3-Hydroxybutyrate 1.19 0.09 (± 0.12) 1.42 (± 3.67) 0.08 (± 0.22) 0 (± 0) 

Acylcarnitine 3.18 0.33 (± 0.26) 0.06 (± 0.10) 0.05 (± 0.05) 0.07 (± 0.06) 

Deoxycholate 0,71 0.35 (± 0.19) 0.10 (± 0.09) * 0.07 (± 0.13) * 0.10 (± 0.07) 

Lithocholate 0.66 0.84 (± 0.31) 0.29 (± 0.37) * 0.31 (± 0.35) * 0.37 (± 0.34) 

Cholate 0.71 0.52 (± 0.40) 0.14 (± 0.14) 0.37 (± 0.40) 0.24 (± 0.28) 

Adenine 8.10 0.07 (± 0.10) 0.08 (± 0.17) 0.03 (± 0.04) 0.02 (± 0.02) 

adenosine phosphate 8.60 0.03 (± 0.02) 0 (± 0.01) 0 (± 0) 0.01 (± 0.01) 

Hypoxanthine 8.18 0.17 (± 0.16) 0.09 (± 0.08) 0.18 (± 0.13) 0.27 (± 0.20) 

Inosine 6.09 0.02 (± 0.02) 0.01 (± 0.02) 0.01 (± 0.03) 0 (± 0.01) 

Uracil 5.79 0.23 (± 0.28) 0.29 (± 0.14) 0.29 (± 0.18) 0.71 (± 0.43) 

Uridine 5.89 0.03 (± 0.02) 0.01 (± 0.02) 0.03 (± 0.06) 0.04 (± 0.02) 

Xanthine 7.92 0.15 (± 0.09) 0.06 (± 0.06) 0.19 (± 0.29) 0.87 (± 1.41) 

Nicotinate 8.60 0.12 (± 0.12) 0.03 (± 0.03) 0.03 (± 0.03) 0.09 (± 0.01) 

NAD+ 9.32 <0.01 (± 0.01) 0 (± 0) 0 (± 0) 0 (± 0) 

Nicotinamide ribotide 9.58 0.05 (± 0.07) 0 (± 0) 0 (± 0) 0 (± 0) 

1-Methylnicotinamide 9.27 0 (± 0) 0.11 (± 0.29) 0 (± 0) 0 (± 0) 

Trigonelline 9.11 0 (± 0) 0.02 (± 0.05) 0 (± 0) 0.01 (± 0.01) 

The index in ppm indicates the chemical shifts of the most characteristic group of 

proton(s) for each metabolite. Mann-Whitney t-tests between two groups of samples 

(donors vs each of the other groups) * P < 0.05, ** P < 0.01 

 


