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Abstract 

In this thesis, I investigate variation among the three remaining populations of the Cape Verde 

warbler Acrocephalus brevipennis, with the aim of defining conservation units and thus 

informing conservation. I used neutral molecular markers to assess genetic diversity and infer 

the evolutionary history and adaptive potential of the populations. I found a gradient of 

diversity from the largest population of Santiago to the smallest one of S. Nicolau, which has 

been isolated from the populations of Santiago and Fogo for longer than those have been 

isolated from each other. I measured differences in male song between the populations and 

whether individuals behaved differently when exposed to songs from the other populations, to 

determine if song might play a role in reproductive isolation. While there is high intra-

population variability in male song, birds do not react differently to songs of males from other 

populations. I then investigated which habitat traits determined the presence of the bird and 

whether this differed between the three islands. Evergreen dense vegetation cover predicted 

the wider areas occupied by the warbler. Structural vegetation traits did not differ between 

sites used on the islands, but plant species composition did. Finally, I assessed morphological 

differences between the three populations. I found that males on S. Nicolau have shorter tarsi 

and longer, narrower bills. These morphological differences match the pattern of neutral 

genetic divergence, suggesting that the role of drift in driving these differences has not been 

overridden by selection. Collectively, my results show small but significant divergence between 

the three populations, particularly between S. Nicolau and the two other populations. This 

divergence has implications for this bird’s conservation, as the differences observed warrant 

considering the populations as different management units. 
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1.1 Global conservation challenges 

 

"In the end we will conserve only what we love; we will love only what we understand; and we 

will understand only what we are taught." 

Baba Dioum, 1968 

 

Over the last few centuries, a large proportion of global biodiversity has been lost, with once 

common species becoming rare or extinct due to anthropogenic impacts (Baillie et al. 2004; 

Butchart et al. 2010; Ceballos et al. 2015). These impacts include, but are not limited to, 

habitat destruction, the introduction of exotic plant species, pathogens and predators, 

pollution and climate change (Butchart et al. 2010; Mooney & Cleland 2001; Sax & Gaines 

2008). Currently, these threats continue to cause extensive biodiversity declines (Baillie et al. 

2004; Butchart et al. 2010). Conservationists have fought hard to reverse this problem (Baillie 

et al. 2004), but for socio-economic reasons, the time and financial resources that can be 

allocated to conservation are scarce (Brooks et al. 2006; Myers et al. 2000). Consequently it is 

crucial to assess the key factors or issues related to the threats to biodiversity and identify 

conservation priorities in terms of where and how we handle them (Caughley 1994; Myers et 

al. 2000). Defining conservation priorities is not always straightforward (Fraser & Bernatchez 

2001; Moritz 1994a), but the first step is to gather enough information about vulnerable 

species and ecosystems for proper conservation assessments to be made (IUCN 1995). For 

species, this often involves clarifying the evolutionary or taxonomic status of populations and 

the relationship between them, characterising genetic and phenotypic diversity within 

populations, and understanding how habitat preferences may differ between them (Allendorf 

& Luikart 2007; Frankham et al. 2009; Groom et al. 2006; Primarck 2012).  

 

1.2 Population divergence 

The classification of living organisms into the Linnaean taxonomic ranking system is 

fundamental for the study of ecology, conservation and evolution (De Queiroz & Weins 2007; 

Tobias et al. 2010). It is a step towards cataloguing life on Earth and thus forms an important 

basis for applied decision making. When applied to conservation planning, the species concept 

is a fundamental measure of biodiversity richness for policy makers which allows the design 

and monitoring of targeted conservation actions (Baillie et al. 2004; Tobias et al. 2010). The 

biological species concept states that a species is a group of interbreeding individuals which 
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are reproductively isolated from other individuals (Dobzhansky 1937; Mayr 1942). However, 

defining species and related intra specific taxa can be complicated for several reasons (Hiers et 

al. 2016; Ryder 1986). One is that natural populations exist along a continuum of gradual 

temporal divergence, which can range from metapopulations to species complexes (Marske et 

al. 2013; Peccoud et al. 2009; Shaw & Mullen 2014). An additional problem is that, for 

allopatric populations, it is often not possible to test for reproductive isolation in the wild, and 

this makes the status of many geographically isolated populations uncertain (De Queiroz & 

Weins 2007; Edwards et al. 2005; Grant et al. 2000; Orr & Smith 1998). Therefore, other 

species concepts were created, particularly for well-studied taxa such as the vertebrates. One 

of the most popular is the phylogenetic species concept, which states that a species is the 

smallest possible group of individuals that share the same common ancestor (Cracraft 1983; 

Zink 2006). This implies that species are reciprocally monophyletic, i.e. all lineages within each 

group share more-recent common ancestors than lineages from distinct groups (Avise 2000). 

As this often involves examining genetic markers within and among populations, the problem 

of which loci to examine arises (Price 2008). Different genetic loci have different transmission 

modes and mutation rates and can exhibit differential recombination, incomplete lineage 

sorting and hybridisation, thus it becomes difficult to select which parts of the genome to use 

(Avise 2000; Avise 2004; Coyne & Orr 2004). Furthermore, basing species classification on 

genetic divergence alone may be unwise (Price 2008; Tobias et al. 2010).  Recently, the 

scientific community has come to consensus that one diagnostic trait is not enough to classify 

populations as species (Tobias et al. 2010), and that several traits should be used in 

conjunction, for example genetics, morphology and ecology (Helbig et al. 2002; Irwin et al. 

2001; Toews & Irwin 2008). However the use of multiple traits can sometimes complicate the 

problem, as there is often discordance between genes and other population traits, such as 

ecology or morphology (Phillimore et al. 2008; Walsh et al. 2017).  

 

Divergence in easily observable and measurable traits, such as morphological or behavioural 

traits, has long been used to categorise and classify populations into different subspecies or 

races (Brower 1994; Cramp & Perrins 1992; Mallet et al. 1998; Thomas 1926). Morphological 

traits can include colouration, size, shape and form (the relative positions of different body 

parts of animals and plant structures), and differences in these traits can be caused by 

different evolutionary history or local adaptation (Benkman & Miller 1996; Grant 1985; Odum 

1971). Such traits were once widely used to infer relationships between populations and 

species, but with advances in molecular techniques and information from genetic markers 

revealed that morphological and historical differences between populations are often 
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mismatched (reviewed in Zink 2004). This is because morphological differences can also be the 

product of phenotypic plasticity, i.e. the capacity of a genotype to produce different 

phenotypes in response to environmental variation (Forsman 2015; West-Eberhard 1989) or 

convergent evolution (Odum 1971) in which case mismatched patterns confuse the 

understanding of evolutionary history and delineation of conservation units (e.g. Phillimore et 

al. 2008; Walsh et al. 2017). 

 

Behavioural traits can also evidence marked differences between populations (Beecher 2016; 

Di-Poi et al. 2014; Kleindorfer et al. 2006; Mortega et al. 2014; Podos 2010). Culturally learned 

behavioural traits can be subjected to rapid change following colonisation of new habitats (Di-

Poi et al. 2014; Green et al. 2016; Magurran et al. 1992), and reinforce differences between 

isolated populations, particularly when such traits influence mate-choice (Chamberlain et al. 

2009; Price 2008). Bird song is an excellent example of a culturally inherited behavioural trait 

that strongly influences mate choice, at least in some species (Catchpole 1987; Searcy 1992; 

Slabbekoorn & Smith 2002; Thorpe 1958). Because it is, at least partially, culturally inherited, 

regional or population differences in song can arise rapidly (Baker et al. 2003; Nowicki et al. 

2001) and have been linked to reproductive isolation in several studies (Irwin et al. 2001; 

Mortega et al. 2014; Toews & Irwin 2008). Thus, the study of population differences in bird 

song can provide insight into completed or ongoing speciation (Price 2008). Using multiple 

lines of evidence and identifying when and why they concur or not seems thus to be a logical 

and integrated way to classify species. 

 

1.3 Conservation genetics 

Conservation genetics is the use of genetic techniques to assess and reduce the extinction risk 

of vulnerable populations (Allendorf & Luikart 2007; Frankham et al. 2009). Conservation 

genetics techniques can be useful for resolving taxonomic uncertainties and defining 

conservation management units (Frankham et al. 2009; Moritz 1994b; Palsbøll et al. 2007; 

Ryder 1986; Wallace et al. 2010), especially in the case of poorly studied species (Frankham et 

al. 2009). This is especially important when populations of a certain species have become 

isolated or diverged to the point where they represent unique units of genetic diversity (Moritz 

1994b). In an attempt to define and quantify conservation units, ecologists created two now 

widely used concepts: ‘evolutionarily significant units’ (ESU) and ‘conservation management 

units’ (MU), both defined by genetic criteria (Moritz 1994b; Ryder 1986). In its most used 

definition, ESUs should be “reciprocally monophyletic for mitochondrial DNA alleles and show 
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significant divergence of allele frequencies at nuclear loci” (Moritz 1994b). On the other hand, 

MUs are defined as “populations with significant divergence of allele frequencies at nuclear or 

mitochondrial loci, regardless of the phylogenetic distinctiveness of the alleles” (Moritz 

1994b). In practical terms, the difference between the two concepts is that ESUs represent 

populations separated by a different evolutionary history, whereas MUs apply to populations 

currently isolated by a lack of gene flow, regardless of their evolutionary history. Although 

such definitions are not necessarily equivalent to subspecies (Moritz 1994a), they provide a 

first quantitative basis for defining conservation priorities. 

 

From a conservation point of view, it is important to understand population viability and 

potential extinction risks, and conservation genetics is a powerful tool to achieve this 

(Frankham et al. 2009). Small populations generally suffer a higher risk of extinction because 

they are more vulnerable to effects of stochastic forces, environmental change and natural 

disasters (Frankham et al. 2009). Genetic diversity within a population represents its adaptive 

potential, i.e. its potential ability to cope with environmental changes (Frankham 2005; 

Frankham et al. 2009). High genetic diversity in a population will help make it more resistant to 

extinction threats that arise from selective and stochastic pressures (Frankham et al. 2009). 

Maintaining genetic diversity is therefore essential to the conservation of biodiversity.  

 

Genetic factors can also themselves drive population declines and increase extinction risk in 

the wild (Frankham et al. 2009; Saccheri et al. 1998; Spielman et al. 2004). For example, 

natural populations with reduced heterozygosity can experience reduced reproductive fitness 

and elevated extinction risk through loss of any heterozygote advantage (Hostetler et al. 2013; 

Pimm et al. 2006; Vilà et al. 2003), regardless of initial causes of population decline (Spielman 

et al. 2004). Other problems associated with low genetic diversity and small population size 

are inbreeding and inbreeding depression (Crnokrak & Roff 1999; Ralls et al. 1979; Saccheri et 

al. 1998). Inbreeding is the production of offspring from the mating or breeding of individuals 

or organisms that are closely related genetically (Allendorf & Luikart 2007; Frankham et al. 

2009), which can lead to expression of deleterious alleles and loss of heterozygote advantage 

(Frankham et al. 2009; Richardson et al. 2004). Inbreeding depression is reduced biological 

fitness in a given population as a result of inbreeding (Crnokrak & Roff 1999; Ralls et al. 1979; 

Saccheri et al. 1998) and has been shown to cause a loss of fitness in various populations of 

wild organisms (Agudo et al. 2012; Briskie & Mackintosh 2004; Saccheri et al. 1998).  
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Genetic markers based on neutral loci, i.e. those not subjected to selective forces, are useful to 

assess the impact of factors such as genetic drift or gene flow (e.g. Dutta et al. 2013; Hille et al. 

2003; Padilla et al. 2015). They are widely used to assess the phylogenetic and 

phylogeographic history of a species or clade (Avise 2000; Avise 2004; Dool et al. 2013; 

Emerson et al. 2001). However, different types of markers have different mutation rates and 

transmission pathways, revealing different aspects of a species’ evolutionary history (Avise 

2000; Avise 2004). Microsatellites have been widely used in population and conservation 

genetics (reviewed in Allendorf & Luikart 2007; Sunnucks 2000). They consist of tandem 

repeats of a short sequence motif of one to six nucleotides, repeated usually 5 to 100 times 

which can be analysed by different size migration through gel electrophoresis (Allendorf & 

Luikart 2007). They are usually highly polymorphic, due to a high mutation rate, typically 

around 10−3 or 10−4 per generation (Selkoe & Toonen 2006). Their high mutation rates make 

them very useful to infer population structure, demography and gene flow over recent 

evolutionary timescales, i.e. 10 thousand years ago (Kya) to 100 Kya (Dool et al. 2013; 

Ferchaud et al. 2015; Illera et al. 2007; Xenikoudakis et al. 2015) and to assess demographic 

bottlenecks (Garza & Williamson 2001; Luikart et al. 1998; Peery et al. 2012; Sunnucks 2000; 

Williamson-Natesan 2005). In addition to this, the genomic regions flanking microsatellites are 

generally highly conserved, and primer pairs developed for these regions in one species can 

often be used in closely related species (Allendorf & Luikart 2007; Hansson & Richardson 2005; 

Hogan et al. 2013; Phillips et al. 2013). 

 

In contrast to microsatellites, mitochondrial genes have slower mutation rates, and are 

commonly used to infer population history over longer time scales, i.e. dating from the Last 

Glacial Maximum circa 23 Kya to 1 Mya (Avise et al. 1987; Clark et al. 2009). They can also be 

used to help determine conservation units, more specifically evolutionarily significant units 

and management units (Frankham et al. 2012; Ryder 1986; Taberlet & Bouvet 1994). 

Mitochondrial DNA (mtDNA) is especially useful for phylogenetic reconstruction because it is 

clonal, i.e. maternally inherited, and thus haploid and non-recombining (Allendorf & Luikart 

2007; Avise 2004). Hence, it has been frequently used to study population structure and 

phylogenetic relationships (Galtier et al. 2009). It is relatively easy to amplify, its gene content 

is strongly conserved across animal species, it has no introns and only short intergenic regions 

and it is highly polymorphic with respect to nuclear loci, because of its elevated mutation rate 

(Avise 2004; Avise 2009; Galtier et al. 2009). Different parts of the mtDNA evolve at different 

rates, with highly variable regions such as the control region flanked by highly conserved ones 

(for which PCR primers can be designed) making these suitable markers with which to study 
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genetic variation within and across species (Avise et al. 1987; Galtier et al. 2009; Moritz et al. 

1987). However, more recently, the mtDNA’s properties of neutrality and clonality, and the 

clocklike nature of  its substitution rate have been questioned (Galtier et al. 2009). 

Additionally, “numts”, i.e. nuclear copies of mitochondrial genes, may be present (Bensasson 

et al. 2001; Sorenson & Quinn 1998; Zhang & Hewitt 1996). This a problem for studies aimed 

at neutral loci, because numts evolve at a different rate and under different constraints 

compared to real mitochondrial genes (Bensasson et al. 2001; Sorenson & Quinn 1998; Zhang 

& Hewitt 1996). Nevertheless, mitochondrial DNA is one of the most widely used genetic 

markers in species delimitation, as it evidences reciprocal monophyly much more quickly than 

nuclear genes (Galtier et al. 2009). However, the use of mtDNA alone to delimit species has 

been criticized, because mtDNA may not show the same patterns as other loci, and because 

some of the other loci in the same genome may not exhibit reciprocal monophyly when 

compared to mtDNA (Avise 2004; Edwards et al. 2005; Phillimore et al. 2008). Because 

different neutral markers have different properties, combining data from microsatellites and 

mitochondrial DNA provides a clearer picture of the degree of genetic divergence among 

populations, and their relative demographic and phylogenetic histories (Reynolds et al. 2015). 

 

The relative effects of neutral and adaptive forces in driving population divergence are often 

difficult to disentangle and quantify (Clegg et al. 2002b; Sutton et al. 2011; Westerdahl et al. 

2004). Stochastic forces can shape morphological traits in the absence of or despite 

deterministic effects of selection (Rocamora & Richardson 2003; Slatkin 1987; Spurgin et al. 

2014). Indeed, non-adaptive evolution is a significant evolutionary force (Allendorf & Luikart 

2007; Hartl & Clark 1997; Kimura & Ota 1974; Wright 1969). Evolutionary differences between 

isolated populations can be the result of neutral forces such as drift, bottlenecks and founder 

effects at the genetic level (Kolbe et al. 2012; Miller & Lambert 2004; Ramstad et al. 2013). 

Many studies found support for the overriding role of drift in shaping divergence between 

populations in both genetic and morphological traits (Gonzalez-Quevedo et al. 2015; Grueber 

et al. 2013; Miller & Lambert 2004; Spurgin et al. 2014). In some cases, a combination of 

neutral and adaptive forces seems to have shaped divergence of populations and a 

combination of morphological and genetic research has been crucial in disentangling their 

impacts under various systems and scenarios (Clegg et al. 2002a; Clegg et al. 2002b; Clegg & 

Phillimore 2010; Potvin & Clegg 2015). Mismatches between genetic and phenotypic patterns 

can indicate action of selective forces, especially when phenotypic patterns match specific 

environmental factors (Funk et al. 2008; Langerhans et al. 2003; McKinney et al. 2014). In 

some cases, for example in the Galapagos finches, population divergence has been shown to 
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reflect adaptations to local environments (Grant 1965, 1986; Schluter & Grant 1984). However, 

it is only possible to identify the action of selective forces with long term studies and/or 

examination of biologically relevant environmental factors (Bell 2010; Clegg et al. 2008; Grant 

1986). 

 

1.3 Habitat changes 

Assessing divergence among populations in realised ecological niches can be important to 

understand population extinction risk and conservation priorities (Scheele et al. 2017). One 

dimension of a species’ realised niche is their habitat, i.e. the range of physical and biotic 

parameters for a species’ survival (Groom et al. 2006; Lindenmayer & Burgman 2005; Primarck 

2012). Most commonly, the term habitat is used by ecologists to encompass landscape traits at 

the locations where a species is present, e.g. altitude, temperature range, precipitation and 

vegetation composition. Suitable habitat is often the first thing to be studied in a species, 

because many of its components are easily measurable and can be conserved by direct, 

straightforward actions. Importantly, habitat changes are one of the biggest and most 

immediate threats to biodiversity (Butchart et al. 2010; Pereira et al. 2010). Land use and 

climate changes are expected to have a large impact on biodiversity loss during the 21st 

century (Pereira et al. 2010). Large scale agricultural activities have been shown to have a 

negative effect on biodiversity (Donald et al. 2001; McLaughlin & Mineau 1995). This might be 

due to changes in habitat structure or other factors such as introduction of pesticides on the 

food chain (Mineau & Whiteside 2013). Actions aimed at minimizing land-use change could 

reduce extinction risks for many species (Pereira et al. 2010). However, while management 

plans can often be applied to protected areas (Dudley 2008), they are more difficult to apply in 

agricultural areas because of socio-economic conflicts (Giampietro 1997). Recently, policy 

makers and researchers have begun combining efforts and proposing frameworks to manage 

agricultural landscapes while protecting biodiversity (Scherr & McNeely 2008; Tanentzap et al. 

2015). 

 

In addition to agricultural intensification, introduced species i.e. animals, plants and 

microorganisms, are often a threat for endangered species (Butchart et al. 2010; Goodenough 

2010). Exotic organisms can compete with native ones, predate on them or introduce diseases 

(Mooney & Cleland 2001; Sax & Gaines 2008), modify the habitat structure which native 

species depend on or alter biotic interactions (Simberloff 2011; Totland et al. 2006; Trammell 

& Butler 1995; Wolfe & Klironomos 2005; Zedler & Kercher 2004). For example, Hawaiian 
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honeycreepers are rapidly collapsing due to a multitude of threats (malaria parasites, invasive 

weeds and non-avian competitors) with effects exacerbated by climate change (Fortini et al. 

2015; Paxton et al. 2016).  

 

1.4 Study system 

1.4.1 The Cape Verde islands 

The Cape Verde islands are an archipelago of ten islands and several small islets, ca. 500 km off 

the west coast of Africa (Figure 1.1). These islands have volcanic origin, and their ages are 

thought to range between ca. 20 Mya, for the eastern islands of Sal, Maio and Boavista, to less 

than 5 Mya, for the most western islands of Santo Antão, Fogo and Brava (Hazevoet 1995; Pim 

et al. 2008; Ramalho 2011; Torres et al. 2002). The archipelago is geographically divided in two 

main groups of islands: the Barlavento group, on the north, comprising Santo Antão, S. 

Vicente, S. Nicolau, Sal and Boavista; and the Sotavento, on the south, comprising Brava, Fogo, 

Santiago and Maio (Correia 1996). The archipelago is located in the Sahel zone (Duarte et al. 

2008), and is constantly affected by the northeastern trade winds blowing off the west coast of 

Africa (Hazevoet 1995). The climate is subtropical with two main seasons: the dry season from 

December to July, and the wet season from August to November (Correia 1996; Hazevoet 

1995). Because it is located slightly north of the Intertropical Convergence Zone (Philander et 

al. 1996), the rains brought by the southern monsoon might not always reach the archipelago, 

or may reach the southern islands but not the northern ones on a given year (Correia 1996; 

Hazevoet 1995; Sena-Martins & Moreno 1986). Droughts of up to 18 years have been recorded 

during the last century, and there is anecdotal evidence of desertification over the last 

centuries (Hazevoet 1995; Sena-Martins & Moreno 1986). During the major drought in the 

1940s, up to one quarter of the entire human population of the islands died of famine 

(Hazevoet 1995; Sena-Martins & Moreno 1986), but there are no records of how the wildlife 

was impacted. 

 

Ecologically, Cape Verde is part of the Mediterranean Basin biodiversity hotspot (CEPF 2010) 

and WWF has classified it in a unique ecoregion, the Cape Verde dry forests (Olson et al. 2001). 

Colonisation during the 15th century caused the introduction of many exotic plants and 

animals. Currently, up to 80% of its flora is non-native, with most native species threatened 

and confined to small inaccessible areas (Duarte et al. 2008; Gomes et al. 2003). Agriculture 

has been constant since colonisation, with the most abundant crops being coffee Coffea 

arabica, sugarcane Saccharum officinalis and maize Zea mays. The most accepted, but 
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unconfirmed, view is that the archipelago did not support closed canopy woodland before 

human settlement (Hazevoet 1995). Mountain tops were probably covered in “tortolho” 

Euphorbia tuckeyana, dragon tree Dracaena drago and marmulan Sideroxylon marmulano 

(Hazevoet 1995). They were subsequently afforested in the 1930s-40s, and then again 

between 1975-88 with large numbers of eucalypts Eucalyptus spp. and pine trees Pinus spp., 

while the lowlands were planted with mesquite trees Prosopis juliflora (Hazevoet 1995). 

Currently, 21% of the country’s area is agricultural land and 22% planted forest area, 

compared to only 2.6% of terrestrial area which is under protection (The World Bank 2014a, b, 

c). There are no permanent freshwater sources in Cape Verde, except for a few streams on 

Santo Antão and new dams that have been built during the last decade, mostly on Santiago. 

The main water sources are: 1) the rainy season (Correia 1996; Hazevoet 1995; Sena-Martins & 

Moreno 1986); 2) the north-eastern trade winds, which bring mist clouds as they encounter 

the mountains, thus making the north-eastern slopes wetter than the rest of the islands 

(Correia 1996; Hazevoet 1995; Sena-Martins & Moreno 1986); and 3) artificial irrigation and 

dams, which are widely used for agriculture (Hazevoet 1995). This unique combination of 

geographical, geological, climatic and floristic characteristics of the Cape Verde archipelago 

makes this a rare ecosystem among oceanic archipelagos. 
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Figure 1.1 Map of the Cape Verde islands (main) with position relative to West Africa (inset). 

Cape Verde warbler Acrocephalus brevipennis populations currently exist on Santiago, Fogo 

and S. Nicolau, previously existed on Brava until 1969, and were thought to exist on Santo 

Antão (Hazevoet 1995). Map produced using open source data on ArcMap 10.1 by Helena 

Batalha. 

 

1.4.2 The Cape Verde warbler 

The Cape Verde warbler Acrocephalus brevipennis is an endangered passerine endemic to 

Cape Verde (BirdLife International 2016), currently inhabiting Santiago, Fogo and S. Nicolau 

(Figures 1.1 and 1.2). It is most closely related to the greater swamp warbler Acrocephalus 

rufescens of sub-Saharan Africa (Fregin et al. 2009; Leisler et al. 1997). The warbler is thought 

to have inhabited natural scrub vegetation, such as the endemic tortolho Euphorbia 

tuckeyana, before the arrival of European colonisers 500 years ago (Hazevoet 1995). However, 

it was discovered about 150 years ago on the island of S. Nicolau inhabiting Arundo donax reed 

stands (Keulemans 1866).  In the late 19th century the warbler was known to exist on 

Santiago, S. Nicolau and Brava (Hazevoet 1993). During the 20th century the overall population 

decreased, possibly due to habitat loss caused by droughts (Hazevoet 1995). By 1995 the Cape 

Verde warbler was thought to be restricted to a population on Santiago and on the verge of 

extinction (BirdLife International 2016; Hazevoet 1995). At this time the bird was thought to be 

restricted to sugarcane Saccharum officinalis farmland, coastal plantations and the central 
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vegetated area of S. Jorge dos Órgãos, but absent from the rest of the island (Hazevoet 1995).  

The warbler was known to still be present on Brava during the early 20th century, where it was 

found in gardens in the main town but not in irrigated agricultural areas (Bourne 1955; 

Hazevoet 1995). The last known record from Brava dates from 1969 (Hazevoet 1995).  

Rumours of the warbler’s existence on Santo Antão have never been confirmed (Hazevoet 

1995). In 1998 the bird was rediscovered on S. Nicolau (Hazevoet et al. 1999), where recent 

estimates suggested just 8–10 breeding pairs remain (Donald et al. 2004; Hazevoet et al. 

1999). On S. Nicolau, the Cape Verde warbler seems to be restricted to abandoned reed 

patches in the central area of the island and in valleys with Mangifera indica mango trees 

(Donald et al. 2004; Hazevoet et al. 1999). In 2004, another warbler population, estimated at 

the time at ca. 500 breeding pairs, was found on Fogo (Hering & Fuchs 2009; Hering & Hering 

2005). This population was found in the extensive coffee plantations interspersed with maize 

and fruit trees on the northeastern slopes of the island (Hering & Fuchs 2009; Hering & Hering 

2005).  

 

Very little is currently known about many aspects of the Cape Verde warbler’s biology, 

including morphology, phenology, behaviour, song or genetics. The only genetic studies 

undertaken so far have used samples from Santiago birds to determine the Cape Verde 

warbler’s phylogenetic relationships with other members of the Acrocephalus genus (Fregin et 

al. 2009; Leisler et al. 1997). However the genetic diversity and divergence between these 

three populations have not yet been assessed. To date, there have been no recorded 

measurements of live birds (Garcia-del-Rey 2016) apart from a few measurements taken on S. 

Nicolau when the bird was discovered 150 years ago (Dohrn 1871; Keulemans 1866). Moult 

patterns are unknown. However, it seems clear that juveniles have a more rufous plumage 

than greyer adults (Cramp & Perrins 1992). The breeding biology of this species is poorly 

understood, with few anecdotal observations reporting a typical Acrocephalus nest shape 

where birds lay two to three eggs, but no records of breeding success (Cramp & Perrins 1992). 

The bird is thought to breed after the first rains, i.e. usually between August and November, 

but there are some records of breeding attempts in February (Cramp & Perrins 1992; Hazevoet 

1995). However, males are thought to be territorial throughout the year (Cramp & Perrins 

1992; Hazevoet 1995; Hazevoet et al. 1999) and there is anecdotal evidence that the pair 

bonding season takes place during the dry season, i.e. in April-May (A. Rendall, pers. comm.; 

Cramp & Perrins 1992). The Cape Verde warbler’s song is said to be similar to that of its sister 

species, the greater swamp warbler (Cramp & Perrins 1992; Hazevoet 1995), but to date no 

comparative study has been undertaken. Preliminary observations indicated that there is 
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considerable inter- and intra-individual variation in bird song within each island (Cramp & 

Perrins 1992; pers. obs.).  

 

a)  

b)  

c)  
Figure 1.2 Adult Cape Verde warblers Acrocephalus brevipennis on natural habitat. a) Cidade 

Velha, Santiago, 2013; b) Mosteiros, Fogo, 2016; c) Canto Fajã, S. Nicolau, 2016. 

© Andrew Power 

© Helena Batalha 

© Helena Batalha 
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Currently, the Cape Verde warbler’s global population is estimated at a maximum of 2,200–

3,000 individuals, and is thought to be decreasing (BirdLife International 2016), but lack of 

census information means that such estimates may be somewhat unreliable (BirdLife 

International 2016). The species has legal protection status in Cape Verde but to date no 

countrywide conservation strategy has been developed. There is a clear need for an in-depth 

and considered species assessment, in order that such a strategy can be formulated and 

implemented on sound evidence. Herein lies the scope of this thesis, to address this 

knowledge gap and provide information for the future conservation of the Cape Verde 

warbler. 

 

In this thesis, I investigate levels of divergence among the three remaining populations of the 

Cape Verde warbler to understand levels of variation within and among populations, define 

conservation units and thus inform conservation. To do this I focus on four different and 

complimentary aspects, i.e. genetics, song, habitat and morphology. In Chapter 2, I assess 

neutral genetic diversity within each population and divergence among populations using 

microsatellites and mitochondrial DNA. The data will also allow me to estimate when the three 

populations became isolated and started to diverge, and whether the populations have 

undergone recent bottlenecks. In Chapter 3, I characterize warbler song on each of the three 

islands. I then assess divergence in spectral characteristics of the song to understand this 

aspect of population divergence. In Chapter 4, I create maps of the predicted suitable area of 

distribution for the Cape Verde warbler on each island and I use habitat traits to assess if there 

are differences in habitat use/preference on the three islands and try to understand what key 

features predict habitat use by the warbler. In Chapter 5, I investigate body size and shape 

differences between the three populations of the Cape Verde warbler and try to understand if 

morphological differences match genetic patterns. Finally, in Chapter 6 I discuss my findings 

from Chapters 2 to 5 in a context of population divergence and conservation prioritisation and 

suggest possible directions for future research.  

 

Appendix I is a bilingual report I authored for the Cape Verdean government and the Natural 

Parks of Serra Malagueta, Fogo and Monte Gordo detailing the objectives and results of the 

first fieldwork season, with the aim of reinforcing good relationships between UK and Cape 

Verde stakeholders. 
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Pair of Cape Verde warblers Acrocephalus brevipennis feeding on sugarcane Saccharum 

officinalis, plus another warbler in the lower left corner, in Cidade Velha, Santiago. Photo taken 

on November 2013. 
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2.1 Abstract 

Genetic factors play an important role in the long-term persistence of populations and species, 

and conservation strategies should take such factors into account. We use neutral molecular 

markers to assess diversity and divergence between the three remaining island populations of 

a little-studied endemic passerine, the Cape Verde warbler, Acrocephalus brevipennis. 

Variation at both microsatellite loci and the cytochrome b gene reveal low diversity within the 

species overall, but considerable divergence among the populations on Santiago, Fogo and São 

Nicolau islands. The genetic markers show a gradient of genetic diversity with population size, 

with the smallest population of S. Nicolau being the least diverse, and the largest, Santiago, 

the most diverse. The more geographically isolated population on S. Nicolau is also more 

divergent from Santiago and Fogo than these two are from each other. The Cape Verde 

warbler diverged from its sister species, the greater swamp warbler Acrocephalus rufescens, 

within the last million years, and the three populations became isolated from one another 

165,000–199,000 years ago. There is also evidence of population bottlenecks, especially in the 

smallest and most isolated population of S. Nicolau. This population seems to have decreased 

during the last century, with potential for further decreases and even extinction. As the three 

populations are genetically distinct, with no evidence of gene flow between them, we argue 

they should be treated as separate management units for the successful conservation of this 

species. 
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2.2 Introduction 

Over the last few centuries many once common species have become threatened or extinct 

throughout the world, mainly due to anthropogenic impacts (Baillie et al. 2004; Butchart et al. 

2010). Many of these declines and extinctions have occurred on islands (Brooks et al. 2002; Sax 

& Gaines 2008; Steadman 1995). Island species tend to be more vulnerable to extinction 

threats than mainland species for many reasons (Frankham 1998; Sax & Gaines 2008), 

including smaller population and range sizes, increased vulnerability to stochastic events, 

evolutionary/prey naivety, lower levels of genetic diversity and decreased gene flow 

(Frankham 1998; Frankham et al. 2009; Frankham & Ralls 1998; Griffin et al. 2000; Sax & 

Gaines 2008; Sih et al. 2010). Islands and archipelagos are often the focus of conservation 

actions not only because they contain threatened species but also because they can be 

biodiversity hotspots due to their high levels of endemism (Emerson 2002; Kier et al. 2009; 

Myers et al. 2000). Genetic factors can contribute significantly to extinction risk in the wild 

(Frankham 2005; Frankham & Ralls 1998; Saccheri et al. 1998; Spielman et al. 2004). Higher 

levels of genetic variation within a population provide more potential to adapt, for example to 

environmental changes and novel predators and parasites, whereas small, genetically 

depauperate populations are disadvantaged in this regard, and can also suffer from inbreeding 

depression (Brook et al. 2002; Crnokrak & Roff 1999; Hedrick & Kalinowski 2000). Such factors 

can drive small populations into an extinction vortex (Gilpin & Soulé 1986). Consequently, 

where possible, management plans for threatened species should take genetic factors into 

account (Brook et al. 2002; Frankham 2005).  

 

Genetic data can be used to resolve taxonomic uncertainties, define management units and 

assess the extinction risk of a species, being therefore important in informing conservation and 

helping mitigate extinction (Frankham et al. 2009). This is especially important when 

populations have become isolated from one another, or fragmented (Fouquet et al. 2010; 

Garcia-del-Rey et al. 2013; Moritz 1994b). In an attempt to develop a framework for 

prioritizing conservation efforts, the terms ‘evolutionarily significant units’ (ESUs) and 

conservation ‘management units’ (MUs), mostly defined by genetic criteria, were coined 

(Moritz 1994a; Ryder 1986). Although there are many different definitions (see Fraser & 

Bernatchez 2001; Funk et al. 2012 for reviews), in a genetic framework ESUs should be 

reciprocally monophyletic for mitochondrial DNA and significantly divergent at nuclear loci 

(Avise 2004; Moritz 1994b), whereas the concept of MUs is applied to populations which are 

significantly divergent at nuclear or mitochondrial loci (Moritz 1994a; Ryder 1986). In other 
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terms, ESUs identify historically isolated populations, and MUs can be defined as populations 

which show incomplete phylogenetic divergence but currently lack gene flow (Moritz 1994b). 

Although such definitions are not necessarily equivalent to subspecies (Moritz 1994b), they 

provide a first quantitative basis for defining conservation priorities below the species level 

(Funk et al. 2012).  

 

Different types of genetic markers can have different mutation and recombination rates or 

transmission pathways, thus they can reveal different aspects of a species’ evolutionary history 

(Avise 2004). Microsatellites have fast mutation rates (Selkoe & Toonen 2006), and can be 

used to infer current population structure, demography and gene flow (e.g., Dool et al. 2013; 

Ferchaud et al. 2015; Illera et al. 2007; Xenikoudakis et al. 2015). Furthermore, because of 

their high levels of polymorphism they are also useful for assessing demographic bottlenecks 

(Garza & Williamson 2001; Sunnucks 2000; Williamson-Natesan 2005). In contrast, 

mitochondrial DNA has slower mutation rates, and is commonly used to infer population 

history dating to, and before, the Last Glacial Maximum (Avise et al. 1987) circa 23 Kya ago 

(Clark et al. 2009). Combining data from microsatellites and mitochondrial DNA can provide a 

clearer picture of diversity within, and divergence among, populations, and can help 

reconstruct their relative demographic and phylogenetic histories (Reynolds et al. 2015). 

Additionally, patterns of variation at neutral markers can provide information about 

colonisation, gene flow, phylogeny and historical relations between populations (e.g., Dool et 

al. 2013; Dutta et al. 2013; Ferchaud et al. 2015; Hille et al. 2003; Padilla et al. 2015). Finally, 

genetic markers can be used to assess whether a lack of diversity may be contributing to 

current declines in the population (Allendorf & Luikart 2007; Frankham et al. 2009) and to 

determine if augmentation (Weeks et al. 2011) may be required to alleviate current problems, 

or ensure maximal adaptive potential is retained in the species for the future.  

 

The Cape Verde warbler Acrocephalus brevipennis is an endangered passerine endemic to 

Cape Verde, a volcanic archipelago ca. 500 km off West Africa, between 14–18°N and 22–26°W 

in the Atlantic Ocean (Figure 2.1). It is most closely related to the greater swamp warbler 

Acrocephalus rufescens of sub-Saharan Africa (Fregin et al. 2009; Leisler et al. 1997). The Cape 

Verde warbler was discovered about 150 years ago on the island of São Nicolau (Keulemans 

1866), and in the late 19th century it was known to exist at least on Santiago, S. Nicolau and 

Brava (Hazevoet 1993). During the 20th century the population decreased, possibly due to 

habitat loss caused by droughts (Hazevoet 1995) and by 1995 the bird was thought to be 
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confined to Santiago (BirdLife International 2016; Hazevoet 1995). However, in 1998 the bird 

was rediscovered on S. Nicolau (Hazevoet et al. 1999), where the most recent published 

estimates suggested just 8–10 breeding pairs remain (Donald et al. 2004; Hazevoet et al. 

1999). In 2004, another population, estimated at ca. 500 breeding pairs, was found on Fogo 

(Hering & Fuchs 2009; Hering & Hering 2005). Fogo and Santiago, in the southern Sotavento 

group of islands, are separated by ca. 60 km, whereas S. Nicolau, in the northwestern 

Barlavento group, is separated from the former two islands by more than 160 km (Figure 2.1). 

Such oceanic barriers can prevent gene flow in Acrocephalus warblers (Cibois et al. 2008; 

Komdeur et al. 2004), especially between the Sotavento and Barlavento groups (Hazevoet 

1995; Hille et al. 2003), which could have important implications for this species’ conservation. 

Currently, the Cape Verde warbler’s global population is estimated at a maximum of 2,200–

3,000 individuals, and is thought to be decreasing (BirdLife International 2016), but lack of 

census information means that such estimates may be somewhat unreliable (BirdLife 

International 2016). The species has legal protection status in Cape Verde but to date no 

countrywide conservation strategy has been developed. An understanding of the genetic 

variation within, and divergence between, the three warbler populations is clearly important 

to the success of any future conservation programme (Frankham et al. 2009; McCartney-

Melstad & Shaffer 2015). 

 

Here I use neutral molecular markers (mtDNA and microsatellites) to study the three known 

remaining populations of the Cape Verde warbler. The aims were to clarify the degree of 

genetic divergence between the bird and its sister species, the greater swamp warbler, to 

assess genetic relationships between Cape Verde warbler populations, and to measure genetic 

diversity within each population so that this knowledge can be used to inform future 

conservation actions. 

 

2.3 Materials and methods 

2.3.1 Sample collection and DNA extraction 

Samples were collected from November 2013 to January 2014, and September to November 

2014, the main breeding season (Hazevoet 1995). I surveyed for warblers across all potential 

suitable habitat types and altitudes (the maximum altitude where a bird was sampled was 

1,384 m above sea level) on each of the three islands to ensure that coverage was as 

comprehensive as possible (Figure 2.1, Table S2.1). We also conducted extensive transect and 
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point counts in January 2014 on Brava (2 people x 4 days), where the bird was present until 

1969 (Hazevoet 1995), and in September 2014 on Santo Antão (2 people x 7 days), where the 

vegetated valleys were thought to provide suitable habitat (Hazevoet 1995). When detected, 

birds were attracted with conspecific song playback and caught with mist nets. Each caught 

bird was fitted with a unique combination of a numbered Cape Verde metal ring, and three 

UV-resistant plastic colour rings. We determined if the birds were adults or juveniles based on 

previously described criteria for this and other warbler species (Baker 1997; Cramp & Perrins 

1992; Komdeur 1991), and recorded each sampling location with a Garmin eTrex® H GPS. A 

small ca. 40 µl blood sample was collected from each bird by brachial venipuncture and stored 

at room temperature in 800 µl absolute ethanol. We aimed to sample a minimum of 25–30 

unrelated individuals per island, as this is sufficient for accurate estimation of genetic 

parameters in microsatellite analyses (Hale et al. 2012). In addition, we used seven other Cape 

Verde warbler samples from S. Jorge dos Órgãos (central Santiago), seven greater swamp 

warbler samples (one from Senegal and six from Nigeria) and three Seychelles warbler 

Acrocephalus sechellensis samples (details on additional samples, sampling sites, dates, and 

bird age determination in Supplementary Material and Table S2.1). DNA was extracted using a 

salt extraction protocol following Richardson et al. (2001). Individuals were molecularly sexed 

following Griffiths et al. (1998). 
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Figure 2.1 The Cape Verde archipelago with the locations where Cape Verde warblers were 

sampled in 2013 and 2014. Inset shows the archipelago in relation to West Africa. For details 

on sampling sites and dates, see main text and supplementary material. 

 

2.3.2 Molecular markers  

Cytochrome b 

We amplified and sequenced a 1,150 bp fragment of mtDNA comprising the last 13 

nucleotides of the ND5 gene, 1,128 nucleotides of the cytochrome b, and 9 nucleotides in 

between the two genes (hereafter “cytochrome b”, for simplicity). To avoid amplifying nuclear 

copies of the mitochondrial DNA (numts; Sorenson & Quinn 1998), we re-designed the primers 

ND5 and mt-F from Helbig et al. (2005). We used BLAST (Altschul et al. 1997) to map the 

primer sequence against the mitochondrial genome of the Eurasian reed warbler Acrocephalus 

scirpaceus, (accession number AM889139, Singh et al. 2008) in GenBank (Benson et al. 2013) 

and re-designed them to match that genome. We checked the redesigned primer pair (ND5-

Acro 5'-GGCCTAATCAAAGCCTAC-3' and mt-F-Acro 5'-GGCTTACAAGACCAATGTTT-3') for 

compatible annealing temperatures, hairpins, complementarity, primer-dimer formation and 

% GC content using Primer3 (Koressaar & Remm 2007; Untergasser et al. 2012). Polymerase 

chain reactions (PCRs) were performed in 15 μl total volume, consisting of 7.5 μl TopTaq 

Master Mix (Qiagen, West Sussex, UK), 0.6 μl (10 μM) each primer, 4.8 μl ddH2O and 1.5 μl 
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DNA. Thermal cycle conditions were 94°C for 3 min, followed by 40 cycles of 94°C for 30 s, 55°C 

for 45 s and 72°C for 1 min, with a final extension step at 72°C for 10 min and a cooling step at 

20°C for 5 min. PCR products were quantified in a 1.5% agarose gel and inspected for signs of 

non-specific annealing, i.e. ghost bands (Bensasson et al. 2001; Sorenson & Quinn 1998). 

Successfully amplified products were cleaned with 5 μl of Exo and FastAP (Life Technologies, 

UK) to 10 μl of PCR product, and sequenced in both directions (Eurofins, Germany). PCRs were 

repeated twice to confirm unique haplotypes and to resolve any ambiguous sites. 

 

Microsatellites  

Individuals were genotyped at 17 polymorphic microsatellite loci, using multiplex combinations 

adapted from Spurgin et al. (2014; Table S2), using primers designed for the Seychelles warbler 

(Richardson et al. 2000). Each PCR included 1 μl Qiagen PCR multiplex master mix, 1 μl primer 

mix and 1 μl pre-dried DNA. The PCR cycling conditions were 15 min at 95°C, followed by 30 

cycles of 30 s at 94°C, 1 min 30 s at 55 or 56°C and 1 min at 72°C, followed by a final extension 

step of 30 min at 60°C. PCR products were separated on an ABI 3730 DNA analyser (Applied 

Biosystems, UK), and allele sizes were assigned using GeneMapper 4.0 software (Applied 

Biosystems, UK). Genotypes were checked visually. PCRs were repeated twice to confirm 

unique alleles. In cases where two or more amplifications resulted in conflicting genotypes for 

the same individual we considered the individual as heterozygous. We calculated 

microsatellite error rate per locus according to Pompanon et al. (2005). One of the markers, 

Ase6, could not be reliably scored due to stutter, so it was excluded from further analyses. 

 

2.3.3 Data analyses 

Cytochrome b 

Unless stated otherwise, statistical analyses were performed in R v. 2.14.1 (R Core Team 2016). 

Sequences were visually inspected in FinchTV v. 1.4.0 (Geospiza Inc., Seattle, WA, USA) and 

manually aligned in BioEdit v. 7.0.9.0 (Hall 1999), against partial CDS sequences of a Cape 

Verde and a greater swamp warbler (from Senegal) previously published (Fregin et al. 2009) – 

accession numbers FJ883026 and FJ883037, respectively. The sequences were translated in 

MEGA v. 6 (Tamura et al. 2013), and checked for stop codons. We calculated the number of 

haplotypes and segregating sites, haplotype and nucleotide diversity, Tajima’s D (Tajima 1989) 

and Fu’s FS (Fu 1997) in DnaSP v. 5 (Librado & Rozas 2009), and pairwise FST values (Weir & 

Cockerham 1984; Wright 1951) in Arlequin v. 3.5 (Excoffier & Lischer 2010). Significance of FST 
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values was tested with 10,000 permutations. We calculated mean genetic distances within and 

among the three populations of Cape Verde warbler and the greater swamp warbler in DnaSP, 

using the pairwise distance model. A phylogenetic tree was constructed using the maximum 

likelihood method implemented in MEGA v. 6, based on the Tamura-Nei model of evolution 

(Tamura & Nei 1993) as selected by the Bayesian Information Criterion in the same software. 

We used 1,000 bootstrap replicates as a test of phylogeny, and a discrete Gamma distribution 

with four categories to model evolutionary rate differences among sites. However, haplotype 

networks are usually more appropriate to visualise relationships between haplotypes in 

intraspecific datasets than phylogenetic trees (Bandelt et al. 1999; Posada & Crandall 2001). 

Therefore, a median joining haplotype network was also built in Network v. 4.6.1.3 (Bandelt et 

al. 1999). 

 

Time to most recent common ancestor 

Time to most recent common ancestor (tMRCA) of the Cape Verde and greater swamp 

warblers was estimated using a Bayesian phylogenetic approach in BEAST v.2.3.0 (Bouckaert et 

al. 2014; Drummond et al. 2012). We estimated the best-fit model of nucleotide substitution in 

jModelTest v. 2.17 (Darriba et al. 2012; Guindon & Gascuel 2003), which tests for the best 

model of evolution using the Bayesian Information Criterion (BIC), Akaike Information Criterion 

(AIC) and decision theory (DT). AIC selected GTR+I whereas BIC and DT selected HKY+G. We 

therefore used the HKY model of substitution (Hasegawa et al. 1985) with a gamma site model 

comprising four rate categories (Yang 1994) and an estimated gamma shape parameter. 

Effective sample sizes (ESS) for all model parameters exceeded the recommended minimum 

200 when using the HKY model, so this model was considered appropriate. The dataset was 

composed of unique haplotypes of Cape Verde and greater swamp warblers, using the 

Seychelles warbler as an outgroup. Codons were partitioned into 3 (1 + 2 + 3, frame 2) to allow 

each nucleotide position within the codon to be modelled separately. Empirical substitution 

model state frequencies were used along with an estimated HKY kappa parameter. We used a 

substitution rate of 0.0105 per site per million years, which corresponds to a 2.1% divergence 

rate, generally applicable to passerine cytochrome b sequences (Weir & Schluter 2008). 

Molecular clock rate variation is highly unlikely in our dataset, which comprises a single gene 

across closely related species with resulting low sequence information content. We therefore 

employed a strict molecular clock. As neither fossil nor relevant biogeographical calibration 

points were available for this clade of passerines, we utilised published molecular phylogenies 

to provide loose bounds for the priors. We specified a uniform distribution between 1 and 12 
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Mya for the tMRCA of the Cape Verde, greater swamp and Seychelles warblers group, as 12 

Mya is the estimated divergence time of the small and large groups of Acrocephalus warblers; 

Cape Verde, greater swamp and Seychelles warblers are members of the latter group (Leisler & 

Schulze-Hagen 2011; Price 2008). We used a diffuse uniform prior bound between the present 

and 1 Mya to estimate tMRCA of Cape Verde and greater swamp warblers and the same for 

the tMRCA of the three Cape Verde warbler populations. This is because, even though a 

divergence time has never been proposed, previous phylogenetic analyses suggests that these 

two sister species are so similar, when compared to the dated splits in the Acrocephalus 

phylogeny, that they are not likely to have diverged more than 1 Mya (Fregin et al. 2009; 

Leisler et al. 1997; Leisler & Schulze-Hagen 2011). Finally, the birth rate and clock rate priors 

were both assigned diffuse gamma distributions (α = 0.001, β = 1000) (Drummond & Bouckaert 

2014). The Markov chain Monte Carlo (MCMC) simulations were run with a standard 10% 

burn-in. We did four runs, with a total of 100 million iterations, to check mixing and 

convergence, which was assessed with ESS. Runs were combined using LogCombiner (Rambaut 

& Drummond 2015) and the results were visualised using Tracer v.1.6 (Rambaut et al. 2015). 

 

Microsatellite analysis 

For each microsatellite locus and population we tested for deviations from Hardy–Weinberg 

equilibrium (HWE) and linkage disequilibrium (LD) using GENEPOP v. 4.0.10 (Raymond & 

Rousset 1995). We applied a Bonferroni sequential correction to control for type I errors (Rice 

1989). Null allele estimates were calculated in MICROCHECKER (van Oosterhout et al. 2004). 

Allelic richness and number of private alleles in each population were calculated after 

controlling for differences in sample size, using a rarefaction approach implemented in HP-

RARE (Kalinowski 2005). Inbreeding coefficients (FIS) were calculated with GENEPOP. We tested 

for population structure by calculating global and pairwise FST values across the three Cape 

Verde warbler populations. Global and pairwise FST estimates, observed (Ho) and expected 

(He) heterozygosity were calculated using Arlequin v. 3.5 (Excoffier & Lischer 2010). 

 

To determine the most likely number of genetic clusters (K), a Bayesian algorithm was 

implemented in STRUCTURE v. 2.3 (Pritchard et al. 2000). The goal was to detect overall 

population structure in the Cape Verde warbler, so we included information on population of 

origin in the analysis. We used a no-admixture ancestry model and independent allele 

frequencies. However, as a no-prior model may be better for revealing subtle similarities, or 
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possible gene flow between populations (Falush et al. 2007; Hubisz et al. 2009; Pritchard et al. 

2000), we also ran a model using admixture and correlated allele frequencies, disregarding 

prior information on sampling location. For both models, we undertook four runs of 500,000 

MCMC repetitions with a burn-in of 20,000 at each clustering level for K = 1–6. To assess 

structure within the Santiago population, we ran both analyses using only the Santiago birds. 

The number of clusters best fitting the data was determined using both log probabilities and 

the ad hoc ΔK test (Evanno et al. 2005), implemented in STRUCTURE HARVESTER (Earl & 

vonHoldt 2012). Graphical results were visualised using DISTRUCT version 1.1 (Rosenberg 

2004). 

 

Bottleneck tests 

We used three methods to assess evidence of population bottlenecks: the heterozygosity 

excess test (Cornuet & Luikart 1996) implemented in BOTTLENECK v. 1.2.02 (Piry et al. 1999); 

the mode shift test (Luikart et al. 1998), implemented in the same software; and the M-ratio 

test (Garza & Williamson 2001), as well as a modified version of this last test which accounts 

for monomorphic alleles (Excoffier et al. 2005), in Arlequin. Heterozygosity and mode-shift 

tests use excess heterozygosity and allele frequency data to detect recent bottlenecks, i.e. 

bottlenecks that have occurred within the past dozen generations (Luikart et al. 1998). M-ratio 

tests (Excoffier et al. 2005; Garza & Williamson 2001) are based on the reasoning that a 

bottlenecked population will lose some rare alleles, and this loss will not depend on allele size; 

therefore a bottlenecked population will show gaps in the allele size distribution. M-ratio tests 

can detect bottleneck signatures over longer periods than heterozygosity or shift mode tests, 

as M-ratios are likely to change more slowly than heterozygosity after a bottleneck (Garza & 

Williamson 2001; Peery et al. 2012; Williamson-Natesan 2005).  

 

The distances between these islands are unequal (see Figure 2.1), and dispersal patterns can 

be differently influenced by the direction of the prevailing winds (Correia 1996; Hazevoet 

1995; Hille et al. 2003). The islands have different geography, age, and habitat types available 

for the birds (Hazevoet 1995) and there are only three populations. It is therefore not possible 

to ascertain the effects of isolation by distance (Wright 1943), resistance (a metric which 

combines Euclidean distances and spatial heterogeneity) (McRae & Nürnberger 2006) or 

environment factors (Wang & Bradburd 2014) on the genetic structure of the Cape Verde 

warbler using these data.  
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2.4 Results 

Cytochrome b 

We observed 16 cytochrome b haplotypes in the Cape Verde warbler, five haplotypes in the 

greater swamp warbler and one haplotype in the Seychelles warbler (Table 2.1; Figures 2.2 and 

2.3). The Cape Verde warbler populations do not share haplotypes except for the most 

common one, shared between Santiago and Fogo (Figures 2.2 and 2.3). The sequences have 

been deposited in the National Center for Biotechnology Information (NCBI) GenBank 

database (accession nos. KX518324–KX518347). Where the same haplotype was found in two 

different populations, we submitted two identical sequences. Basic diversity indexes are given 

in Table 2.1. Pairwise genetic distances between haplotype sequences within and among Cape 

Verde warbler populations were very low in all cases, ranging between 0.1% and 0.5% (Table 

2.2). The Santiago population (the largest) showed the highest diversity within the Cape Verde 

warbler, in terms of number of haplotypes, number of segregating sites, haplotype and 

nucleotide diversity (Table 2.1, Figure 2.4). Nevertheless, haplotype and nucleotide diversity in 

the greater swamp warbler were much higher, despite the limited number of samples 

screened (Table 2.1). The population of S. Nicolau exhibits the lowest levels of diversity, while 

Fogo is intermediate (Table 2.1, Figure 2.4). Diversity levels for the Cape Verde warbler 

population overall are similar to those for the Santiago population (Table 2.1). The neutrality 

tests (Tajima's D and Fu’s FS), which reflect population expansion or contraction in the absence 

of selective forces, were not significant but showed tendencies for population expansion on 

Santiago, and contraction on Fogo and S. Nicolau (Table 2.1). 

 

Table 2.1 Genetic diversity and demography in the Cape Verde warbler (CVW) and greater 

swamp warbler (GSW) based on cytochrome b; N = number of individuals sequenced; S = 

segregating sites; h = number of haplotypes; Hd = haplotype diversity; Pi = nucleotide diversity; 

for Tajima’s D, all P > 0.05 and for Fu’s FS, all P > 0.02 (non-significant). 

Population N S h Hd ± SD Pi ± SD Tajima's D Fu's FS 

All CVW 145 17 16 0.887 ± 0.011 0.00182 ± 0.00009 -0.887 -4.335 

Santiago 72 13 12 0.841 ± 0.024 0.00134 ± 0.00011 -1.222 -4.356 

Fogo 43 4 3 0.642 ± 0.035 0.00172 ± 0.00008 2.601 4.450 

S. Nicolau 30 3 2 0.370 ± 0.084 0.00097 ± 0.00022 1.097 3.704 

GSW 7 8 5 0.905 ± 0.103 0.00315 ± 0.00063 0.569 -0.333 
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Table 2.2 Estimates of evolutionary divergence among haplotype pairs (pairwise genetic 

distances), between the Cape Verde warbler populations and greater swamp warbler (GSW), 

based on cytochrome b sequences: within (diagonal in underlined italic) and among population 

(below diagonal). 

Population Santiago Fogo S. Nicolau GSW 

Santiago 0.001 
  

 

Fogo 0.002 0.002 
 

 

S. Nicolau 0.002 0.002 0.001  

GSW 0.004 0.005 0.005 0.003 

 

 

 

Figure 2.2 Maximum likelihood phylogenetic analysis of the Cape Verde warbler (CVW, n = 

145) and greater swamp warbler (GSW, n = 7) species, based on cytochrome b; haplotypes 

names are coded by island (ST = Santiago, FG = Fogo, SN = S. Nicolau); asterisks mark 

haplotypes only found on Fogo or S. Nicolau; the Seychelles warbler haplotype (SW, n = 3) is 

used as an outgroup. 
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Figure 2.3 Median-joining haplotype network based on cytochrome b of the Cape Verde 

warbler (CVW, n = 145) and the greater swamp warbler (GSW, n = 7). Haplotypes found in the 

Cape Verde warbler populations are represented in dark grey for Santiago, light grey for Fogo 

and white for S. Nicolau; the central haplotype is the most common one (labelled CVW_ST_FG 

in Figure 2.2); haplotypes found in the greater swamp warbler, in medium grey, cluster 

separately. The size of the circles is proportional to the number of individuals that share that 

haplotype. Black dots represent intermediate (unsampled) haplotypes, with 1 bp between 

consecutive haplotypes. 

 

Figure 2.4 Gradient of decreasing genetic diversity with estimated population size: rarefied 

allelic richness (full circles, n = 131; error bars = SD) and number of haplotypes (empty circles, 

n = 145) for each of the Cape Verde warbler (CVW) populations, ordered by decreasing 

population size from Santiago to S. Nicolau. 
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The maximum likelihood phylogenetic tree and the haplotype network show that the greater 

swamp warbler haplotypes cluster in one distinct group (Figures 2.2 and 2.3). Among the Cape 

Verde warbler haplotypes, some nodes have low bootstrap support values because of the low 

information content of the sequences, as seen in their very low genetic distances (Table 2.2). 

Importantly, the S. Nicolau haplotypes seem to have derived from the most common 

haplotype (labelled CVW_ST_FG in Figure 2.2), which is found on Santiago and Fogo but not on 

S. Nicolau (Figures 2.2 and 2.3). Apart from this most common haplotype, there are no shared 

haplotypes between the three populations.  

 

Time to the most recent common ancestor 

The tMRCA estimate was sampled from an approximately log-normal distribution; hence 

geometric means are provided (Morrison 2008). The tMRCA for the Cape Verde and greater 

swamp warbler was estimated at about 292 Kya, with upper confidence limits well within the 

last million years (Table 2.3). The tMRCA of S. Nicolau and the two Sotavento populations was 

estimated at 199 Kya, and the tMRCA for Santiago and Fogo at 165 Kya, both with upper 95% 

confidence limits within the last 650 thousand years (Table 2.3). The lower 95% confidence 

limits for the tMRCA for all Cape Verde warbler populations, and for the Sotavento 

populations, was over 30 Kya ago, i.e., prior to the Last Glacial Maximum (Clark et al. 2009). 

 

Table 2.3 Estimates of the time to the most recent common ancestor (tMRCA; geometric mean 

shown) for the Seychelles warbler (SW), Cape Verde warbler (CVW) and greater swamp 

warbler (GSW), based on the cytochrome b; HPD = highest posterior density; Mya = million 

years; Kya = thousand years. 

Split tMRCA 95% HPD 

Seychelles warbler / Cape Verde warbler 

and greater swamp warbler 
3.23 Mya 1.00–9.63 Mya 

Cape Verde warbler / greater swamp 

warbler 
292 Kya 67–872 Kya 

S. Nicolau / Santiago and Fogo 199 Kya 40–615 Kya 

Santiago / Fogo 165 Kya 32–511 Kya 

 

Microsatellites 

Genetic diversity measurements are given in Table 2.4. The estimated error rate per locus was 

0.25%. Evidence for null alleles was found in microsatellite loci Ase11 and Ase22 with null 
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allele frequencies of 0.309 and 0.164, respectively, using the Oosterhout algorithm (van 

Oosterhout et al. 2004), so these were removed from subsequent analyses. Ase13 and Ase48 

were in strong linkage disequilibrium (P < 0.001) across all populations. There was no 

difference between results of summary statistics using either only Ase13 or only Ase48 

(Mantel test on FST matrices, P = 0.172; Wilcoxon tests on He and Ho, all P > 0.742), so Ase48 

was removed from further analyses. After removing these markers, we found no deviations 

from HWE or significant LD between loci. Heterozygosity, allelic richness and number of 

private alleles show a clear gradient, with highest values in Santiago, intermediate in Fogo and 

lowest in S. Nicolau, concurring with the mtDNA results (Table 2.4 and Figure 2.4). The 

inbreeding coefficient (Fis) is very close to random expectation for all the populations of the 

Cape Verde warbler, i.e. between -0.0030 and 0.0047 (Table 2.4). 

 

Table 2.4 Genetic diversity for the Cape Verde warbler (CVW) populations, based on 13 

microsatellite loci and using only unrelated birds (N); observed (Ho) and expected (He) 

heterozygosity, allelic richness, private alleles and inbreeding coefficient (FIS). 

Population N Ho ± SD He ± SD Allelic richness ± SD Private alleles ± SD FIS 

All CVW 131 0.483 ±0.181 0.543 ±0.207 5.536 ±3327 na 0.1100 

Santiago 66 0.567 ±0.196 0.565 ±0.195 4.598 ±2.446 1.290 ±1.271 -0.0030 

Fogo 38 0.507 ±0.241 0.509 ±0.228 3.574 ±1.651 0.362 ±0.596 0.0047 

S. Nicolau 27 0.355 ±0.120 0.355 ±0.126 2.151 ±0.685 0.183 ±0.376 0.0018 

 

 

Global FST was 0.33 for cytochrome b and 0.16 for microsatellites (both P < 0.001), showing 

pronounced overall differentiation among the populations. Pairwise FST values are shown in 

Table 2.5. Differentiation between the Santiago and Fogo populations was moderate to high, 

and high between those populations and that of S. Nicolau. The pattern of differentiation 

identified among populations was the same for mitochondrial and microsatellite markers.  

 

Table 2.5 Pairwise FST values for the Cape Verde warbler populations of Santiago, Fogo and S. 

Nicolau showing microsatellite pairwise FST above the solid line and Cytochrome b FST values 

below; all values are significant at P < 0.001. 

Population Santiago Fogo S. Nicolau 

Santiago  0.062 0.232 

Fogo 0.256  0.275 

S. Nicolau 0.349 0.450  
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The Evanno method supports two main genetic clusters (k = 2; highest ΔK = 342.51, Figures 

S2.1 and S2.2), one including the S. Nicolau population and one with the Sotavento 

populations (Santiago and Fogo, Figure S2.2). However, when k = 3 the plot shows clear 

separation between the three island populations (Figure 2.5). This indicates that even though 

the main differences are between S. Nicolau and the Sotavento populations, there are also 

marked differences between Santiago and Fogo. For the analyses using only the Santiago 

population, the best k = 1 (results not shown), showing no evidence of structure within the 

Santiago population. 

 

Figure 2.5 STRUCTURE plot showing k = 3 distinct genetic clusters in the Cape Verde warbler 

samples where Santiago, n = 66; Fogo, n = 38; and S. Nicolau, n = 27. Each bar represents an 

individual’s proportional probability of membership to each cluster, given in dark grey, light 

grey and white, respectively. 

 

Bottleneck tests 

All tests show a clear signal of a past population bottleneck in the S. Nicolau population (Table 

2.6). The M-ratio tests and modified M-ratio tests range between 0.15 and 0.30 (Table 2.6), 

well below the critical value of 0.68 (Garza & Williamson 2001), suggesting bottlenecks have 

occurred on all islands. However the shift mode and heterozygosity tests (using the strict 

stepwise mutation model) did not detect bottlenecks for the Santiago and Fogo populations 

(Table 2.6).  

 

Table 2.6 Wilcoxon test for heterozygosity excess P-values (IAM = infinite allele model; TPM = 

two phase model with either 70% or 90% of stepwise mutations and SMM = stepwise mutation 

model), mode shift test and Garza-Williamson’s M and modified M ratio indexes for bottleneck 

detection in the three Cape Verde warbler populations. 

  TPM  Shift 

mode test 

  

Population IAM (70%) (90%) SMM M index Modified M index 

Santiago 0.0006 0.0210 0.0327 0.1465 no 0.307 ±0.117 0.289 ±0.120 

Fogo 0.0002 0.0057 0.0061 0.0640 no 0.272 ±0.135 0.221 ±0.098 

S. Nicolau 0.0002 0.0005 0.0005 0.0024 yes 0.201 ±0.106 0.151 ±0.101 
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2.5 Discussion 

Overall we found low genetic diversity within, but considerable divergence among, the three 

remaining populations of Cape Verde warbler. There is a gradient of genetic diversity 

decreasing from Santiago through Fogo to S. Nicolau (Figure 2.4). The gradient of genetic 

diversity from the larger to the smaller island is consistent with expectations derived from 

population and island size theories (Frankham 1996; Frankham et al. 2009; MacArthur & 

Wilson 1967). Santiago possibly holds the largest population, estimated at ca. 500 pairs in the 

1980s, when the warbler was thought to be absent from the north part of the island (Hazevoet 

1995). As birds can now be found all across this island, if the density and territory size are 

relatively constant, the actual population size is likely to be considerably higher (pers. obs.). 

However, to our knowledge there is no information on density or territory sizes for this island, 

and no censuses that could provide a reliable basis for an accurate estimate have been carried 

out on Santiago; thus estimates must be taken with extreme caution (BirdLife International 

2016). Clearly, it would be advisable to undertake thorough population censuses on Santiago 

to better inform conservation. The population on Fogo is medium-sized, with ca. 500 pairs 

(Hering & Fuchs 2009) and birds limited to the well-vegetated north-eastern part of the island. 

On S. Nicolau there is a very small population (8-10 pairs; Donald et al. 2004; Hazevoet et al. 

1999, 12-13 pairs; this study) limited to the reed patches and mango tree valleys within a small 

(< 20 km2) central part of the island (pers. obs.). 

 

Genetic divergence is greatest between S. Nicolau and the two Sotavento populations of 

Santiago and Fogo (Table 2.5). Our results are similar to those of previous studies addressing 

genetic divergence in other Cape Verdean taxa including geckos (Arnold et al. 2008; 

Vasconcelos et al. 2012), skinks (Brehm et al. 2001; Brown et al. 2001) and kestrels (Hille et al. 

2003). There is usually a clear genetic differentiation between the populations on the 

Barlavento and Sotavento island groups (e.g., Brown et al. 2001; Hille et al. 2003), except 

where the focal species occupy micro-habitat niches and/or have very limited dispersal 

capacities. In such cases, they can be genetically divergent even among closely located islands 

(Arnold et al. 2008; Brehm et al. 2001; Vasconcelos et al. 2012); nevertheless the 

differentiation between Barlavento and Sotavento island groups is always present. 

 

The warbler population on Santiago is widespread, inhabits a diverse range of habitats, from 

sugarcane plantations to mountain forests, and is genetically the most diverse of the three 
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(Tables 2.1 and 2.5, Figures 2.3 and 2.4), but we did not find any population substructure. 

Considering that, based on area of occurrence of the warbler alone, it is potentially the largest 

population, and the fact that it is the most genetically diverse, we would argue that the 

Santiago population is currently of least conservation concern of the three populations. 

Although the Fogo population was only discovered in 2004 (Hering & Hering 2005), our results 

indicate that the island was colonised well before the Last Glacial Maximum (> 30 Kya) and has 

been isolated and diverging ever since. This population seems to be of medium conservation 

concern. Taken together, our results indicate that the split between the Santiago and Fogo 

populations was more recent than between those two and S. Nicolau. Current demographic 

trends in any of the three populations are unknown. 

 

When the Cape Verde warbler was discovered on S. Nicolau in the 1860s, it was said to be 

“numerous” (Keulemans 1866). However, by the 1920s it was considered extinct on the island, 

and was only rediscovered in the 1990s (Hazevoet 1995; Hazevoet et al. 1999). One specimen, 

collected in the 1970s and housed in the Zoological Centre in Lisbon, is testimony that a 

remnant population persisted between the 1920s and the 1990s (Hazevoet et al. 1999). Our 

results support the occurrence of a severe bottleneck in this population, in agreement with the 

anecdotal evidence (Donald et al. 2004; Hazevoet et al. 1999). This population has lower 

diversity, different microsatellite allele frequencies and private mitochondrial alleles when 

compared to Santiago and Fogo. Phylogenetically the S. Nicolau birds group with the other 

Cape Verde warbler populations rather than with the greater swamp warbler (Figure 2.2). 

Additionally, the tMRCA of S. Nicolau and the two Sotavento populations is 199 kya. 

Consequently, the current S. Nicolau population cannot have been derived from birds that 

arrived from Santiago or Fogo in the late 20th century. It is also highly unlikely that S. Nicolau 

was recolonised by greater swamp warblers dispersing directly from Africa after the original 

population was extinct. There is a strong indication that a bottleneck has occurred in this 

population, and based on our own sampling effort we estimate a maximum of 20–25 breeding 

pairs currently on the island. S. Nicolau is known to have suffered from severe droughts during 

the last century (Correia 1996; Hazevoet 1995; Sena-Martins & Moreno 1986) and this and 

other factors, such as predation and/or pathogens, may have reduced the warbler population. 

However, we cannot accurately estimate by how much it has decreased given that there is no 

reported estimate of its original size, and assessing possible habitat loss is beyond the scope of 

this paper. Thus, any links between bottlenecks and constraints on population size are only 
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speculative at this point. Clearly, the warbler population on S. Nicolau should be considered to 

be of high conservation concern. 

 

The estimated tMRCA between the three Cape Verde warbler populations (165–199 Kya) is not 

that much more recent than the tMRCA between the Cape Verde and greater swamp warblers 

(292 Kya; Table 2.3), suggesting that there was little gene flow between the Cape Verde 

warbler populations after the colonisation of the islands. However, divergence dates have an 

associated error (95% HPD; Table 2.3) and the use of different markers, substitution rates, 

calibration methods or molecular clocks can lead to variation in estimated tMRCA and 

divergence times (e.g. Cibois et al. 2011; Ho 2007; Yoshikawa et al. 2008). Consequently 

tMRCA must be treated with caution. For example, the molecular substitution rate we used 

was 2.1% sequence divergence per million years (Weir & Schluter 2008). However, there is 

evidence that no universal molecular clock rate exists for birds, and that substitution rates can 

be higher than 2.1% for recently diverged sister species or for intraspecific datasets (García-

Moreno 2004; Lovette 2004; Subramanian et al. 2009). Nevertheless, it is clear that the Cape 

Verde warbler diverged from its sister species within the last million years (geometric mean 

estimate = 292 Kya), as previously suggested (Fregin et al. 2009; Hazevoet 1995), and that the 

three Cape Verde warbler populations have been isolated from each other since before the 

Last Glacial Maximum (> 30 Kya) and perhaps much longer (199 Kya). That Santiago and Fogo 

share the same most common cytochrome b haplotype (Figures 2.2 and 2.3), and have a 

tMRCA estimate of 165 Kya suggest that the split between these two populations was more 

recent than the split between them and S. Nicolau (199 Kya), with which they share no 

cytochrome b haplotypes. 

 

Our results indicate that the populations have been through bottlenecks of variable intensity, 

with particularly strong evidence for the S. Nicolau population (Table 2.6). The M-ratio, which 

tests for occurrence of gaps in allele size range, can still show a bottleneck signal long after the 

signal is no longer detectable with heterozygosity or shift mode tests (Garza & Williamson 

2001; Peery et al. 2012; Williamson-Natesan 2005). It is tempting to infer that, even though all 

the warbler populations appear to have undergone bottlenecks, the one affecting S. Nicolau 

occurred more recently, or is still ongoing, while in Fogo and Santiago the populations have 

stopped decreasing, or are even increasing in size. Contrasting results from M-ratio and 

heterozygosity tests are commonly used to infer differences in the timing of bottlenecks (Garza 

& Williamson 2001; Peery et al. 2012; Williamson-Natesan 2005), but these tests can be 
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unequally affected if assumptions are violated (Peery et al. 2012), so results must be 

interpreted with caution. Therefore, even though our data show that the S. Nicolau population 

has been recently, or still is, bottlenecked, and that evidence for bottlenecks in the other two 

populations is not as strong, this does not exclude the possibility that the other populations 

are currently decreasing as well. 

 

Despite extensive surveys, we did not find warblers on either Brava or Santo Antão, consistent 

with results from previous work (H. Dinis & E. Ramos, pers. comm.). This means that the Brava 

population, last reported in 1969 (Hazevoet 1995), is very likely to be extinct. A possible 

explanation is that, as the second smallest island in the archipelago, it would not have had 

sufficient suitable habitat to support a population through the drought periods that the 

archipelago suffered in the 1970s and 1980s (Correia 1996; Hazevoet 1995). In the case of 

Santo Antão, a lack of historical information means we are unable to make any inferences 

about the possible presence of a population there in the past. 

 

The three populations of the Cape Verde warbler fall under the definition of MUs, but not 

under the definition of ESUs. There is no evidence of gene flow among them, they are 

genetically distinct, but there is sharing of one mitochondrial haplotype at least between Fogo 

and Santiago. The population of S. Nicolau is especially distinct, as it does not share 

mitochondrial haplotypes with either of the Sotavento populations, even though they are not 

reciprocally monophyletic. From a conservation genetics perspective, it may appear prudent to 

manage all three populations as separate units, such as suggested for similar situations in 

other taxa (Fouquet et al. 2010; Garcia-del-Rey et al. 2013; Reynolds et al. 2015). However, the 

decision to preserve each population’s genetic uniqueness in the face of future risks of 

inbreeding depression or a limited adaptive potential is not straightforward (Amos & Balmford 

2001; Coleman et al. 2013; Miller et al. 2009; Weeks et al. 2011; Weeks et al. 2016). 

Augmentation of the number of individuals on some islands, to help prevent inbreeding and 

maximise adaptive potential, may be beneficial to the populations’ chances of survival (Weeks 

et al. 2011; Weeks et al. 2016). However, such actions could potentially lead to outbreeding 

depression (Edmands 2007) and the relative potential costs and benefits must therefore be 

assessed carefully. In this work, we did not investigate potential direct threats to any of the 

three populations, such as pathogens, predation or habitat destruction; we discuss our findings 

solely from a conservation genetics perspective. 
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Conservation conclusions and recommendations 

Our genetic data suggest that each of the three remaining populations of the Cape Verde 

warbler should be treated as different MUs (Moritz 1994b; Ryder 1986), with different 

conservation priorities (high on S. Nicolau, medium on Fogo, low on Santiago). Special 

attention should be given to the more genetically divergent (and most genetically 

depauperate) population on S. Nicolau. Territory occupancy is currently being monitored at 

several locations on Santiago and Fogo (A. Rendall, J. Mascarenhas, A. Rodrigues, pers. comm.). 

Fewer conservation actions have been directed to S. Nicolau, where monitoring has been 

irregular over the last few years (L. Oliveira, pers. comm.). From previous surveys (Donald et al. 

2004; Hazevoet et al. 1999) and our own sampling effort, we estimate that S. Nicolau currently 

holds a maximum of 20–25 breeding pairs (minimum 12; pers. obs.) and therefore could be 

considered to be on the verge of extinction. At the moment, the relative roles of genetic versus 

ecological factors in constraining population sizes on any of the islands are not clear and 

further information on this topic is required to help inform conservation actions. It is 

important to undertake baseline studies on this species (e.g. population sizes estimates, 

breeding behaviour, productivity, diet, habitat and predation), preferably on all islands as 

ecological differences might exist between populations. Until such studies are undertaken, 

managers should incorporate in their plans actions that take this bird’s habitat into account. 

For example, in the Natural Park of Serra Malagueta, not all the invasive shrubs were removed 

in a recent restoration action because some warblers were nesting there (J. Mascarenhas, 

pers. comm.). Direct conservation actions and the use of augmentation in the population of S. 

Nicolau should be considered to help conserve this population. We hope that this genetic 

analysis will be of use to practitioners in refining action plans to maximise the conservation 

outcome for this endemic species.  
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S2.1 Details of sample collection and age determination 

Samples were collected in two field seasons. The first one took place from November 2013 to 

January 2014, immediately after the rainy season (Correia 1996); and the second one from 

September to November 2014, during the rainy season, when the birds are thought to breed 

(Hazevoet 1995). Sampling during or immediately after breeding season allows distinguishing fresh 

juveniles from worn adults caught in the same territory, and thus avoid using related individuals in 

microsatellite analyses. We determined if the birds were adults or juveniles based on previously 

described criteria plumage patterns (Cramp & Perrins 1992), feather moult patterns (i.e., juveniles 

had fresh plumage during the rainy season while adults had ragged plumage and/or were 

undergoing moult to some extent) and eye colour variation as previously described for other 

warblers (Komdeur 1991; Gargallo 1992). When age could not be determined, we assumed that 

there was a reasonable possibility that they were juveniles, and they were removed from the 

microsatellite analyses if they had been caught in the same territory as an adult. In addition to the 

samples collected in the field, we used five CVW blood samples collected in central Santiago by Dr. 

JC Illera in 2010, two samples collected by Dr. M Melo in 2014; one GSW DNA sample, collected by 

Dr. B Giessing in Senegal in 2007 and provided by Dr. M Haase, six GSW blood samples collected by 

TC Omotoriogun in Nigeria in 2013 and provided by the Natural History Museum of Oslo; and three 

SW samples collected in 2009 on Cousin island by the Seychelles Warbler Research group. 

 

Supplementary table S2.1 Details of the Cape Verde warbler blood samples collected. Altitude was 

measured in metres above sea level, with a Garmin eTrex® H GPS; geographical coordinates were 

recorded with the same device and are given in WGS 84 system; for age determination, see text. 

Sample # Island Altitude Latitude Longitude Date Time Ring number Age Sex 

1 Santiago 135 15.07297 -23.55918 24/11/2013 17:50 A000002 Juvenile Male 

2 Santiago 366 15.05090 -23.60833 25/11/2013 08:45 A000005 Adult Male 

3 Santiago 357 15.05092 -23.60945 25/11/2013 14:00 A000011 Adult Male 

4 Santiago 357 15.05092 -23.60945 25/11/2013 14:40 A000012 Juvenile Female 

5 Santiago 366 15.05090 -23.60833 26/11/2013 09:52 A000016 Adult Male 

6 Santiago 358 15.05065 -23.60403 26/11/2013 13:25 A000017 Adult Male 

7 Santiago 358 15.05065 -23.60403 26/11/2013 14:10 A000018 Adult Female 

8 Santiago 398 15.04720 -23.60558 26/11/2013 17:00 A000019 Adult Female 

9 Santiago 366 15.05090 -23.60833 27/11/2013 08:40 A000023 Adult Female 

10 Santiago 452 15.04264 -23.60569 27/11/2013 13:15 A000025 Adult Male 

11 Santiago 398 15.04720 -23.60558 27/11/2013 17:50 A000027 Adult Male 

12 Santiago 22 15.22911 -23.73972 29/11/2013 12:30 A000028 Adult Male 

13 Santiago 21 15.13217 -23.52942 30/11/2013 12:20 A000029 Adult Male 
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Sample # Island Altitude Latitude Longitude Date Time Ring number Age Sex 

14 Santiago 21 14.92108 -23.60074 02/12/2013 10:15 A000030 Juvenile Female 

15 Santiago 30 14.92407 -23.60145 02/12/2013 13:30 A000031 Juvenile Male 

16 Santiago 30 14.92407 -23.60145 02/12/2013 13:30 A000032 Juvenile Female 

17 Santiago 335 15.05243 -23.60762 03/12/2013 11:45 A000034 Juvenile Female 

18 Santiago 335 15.05243 -23.60762 03/12/2013 11:45 A000035 Adult Female 

19 Santiago 335 15.05243 -23.60762 03/12/2013 12:30 A000036 Adult Male 

20 Santiago 323 15.05224 -23.60744 03/12/2013 15:04 A000038 Adult Male 

21 Santiago 323 15.05224 -23.60744 03/12/2013 15:04 A000039 Adult Female 

22 Santiago 323 15.05224 -23.60744 03/12/2013 16:20 A000042 Undetermined Female 

23 Santiago 323 15.05224 -23.60744 03/12/2013 16:35 A000043 Undetermined Male 

24 Santiago 57 14.92825 -23.59861 04/12/2013 11:35 A000045 Adult Male 

25 Santiago 93 14.93402 -23.59910 04/12/2013 15:05 A000046 Juvenile Female 

26 Santiago 93 14.93402 -23.59910 04/12/2013 16:10 A000047 Adult Female 

27 Santiago 93 14.93402 -23.59910 04/12/2013 16:10 A000048 Adult Male 

28 Santiago 336 15.05072 -23.60354 05/12/2013 15:34 A000050 Adult Male 

29 Santiago 336 15.05072 -23.60354 05/12/2013 15:34 A000051 Adult Female 

30 Santiago 310 15.05299 -23.60622 07/12/2013 17:00 A000054 Adult Male 

31 Santiago 310 15.05299 -23.60622 07/12/2013 17:25 A000055 Adult Female 

32 Santiago 138 15.07367 -23.55428 08/12/2013 17:22 A000056 Adult Male 

33 Santiago 138 15.07367 -23.55428 08/12/2013 17:22 A000057 Juvenile Female 

34 Santiago 138 15.07367 -23.55428 08/12/2013 18:15 A000058 Juvenile Male 

35 Santiago 138 15.07367 -23.55428 08/12/2013 18:30 A000059 Adult Female 

36 Santiago 135 15.20632 -23.65713 09/12/2013 12:11 A000061 Adult Male 

37 Santiago 27 15.24336 -23.65592 09/12/2013 17:25 A000062 Adult Male 

38 Santiago 22 15.23974 -23.65415 10/12/2013 12:30 A000063 Adult Male 

39 Santiago 22 15.23974 -23.65415 10/12/2013 13:10 A000065 Adult Female 

40 Santiago 130 15.20888 -23.66544 10/12/2013 16:10 A000066 Adult Male 

41 Santiago 210 15.19793 -23.67876 11/12/2013 09:10 A000067 Adult Male 

42 Santiago 210 15.19793 -23.67876 11/12/2013 09:25 A000068 Adult Female 

43 Santiago 295 15.18919 -23.68171 11/12/2013 11:45 A000070 Adult Male 

44 Santiago 1017 15.18016 -23.67312 12/12/2013 13:22 A000073 Adult Male 

45 Santiago 1048 15.17854 -23.67320 12/12/2013 14:50 A000074 Adult Male 

46 Santiago 903 15.03443 -23.61415 14/12/2013 17:44 A000076 Adult Male 

47 Santiago 1042 15.17875 -23.67276 15/12/2013 15:30 A000077 Adult Male 

48 Santiago 1023 15.18078 -23.67272 16/12/2013 11:25 A000080 Adult Female 

49 Santiago 1019 15.18156 -23.67242 16/12/2013 12:42 A000081 Adult Male 

50 Santiago 1019 15.18156 -23.67242 16/12/2013 13:08 A000082 Adult Female 

51 Fogo 880 15.02021 -24.32742 19/12/2013 15:50 A000085 Adult Male 

52 Fogo 508 15.01898 -24.32777 20/12/2013 12:54 A000086 Adult Male 

53 Fogo 540 15.01835 -24.32909 21/12/2013 09:35 A000087 Adult Male 

54 Fogo 591 15.01718 -24.32908 21/12/2013 13:45 A000088 Adult Male 

55 Fogo 546 15.01866 -24.33018 22/12/2013 12:00 A000089 Adult Male 

56 Fogo 566 15.01795 -24.33060 22/12/2013 14:45 A000090 Adult Male 

57 Fogo 584 15.01762 -24.32099 22/12/2013 16:00 A000091 Adult Male 

58 Fogo 585 15.01753 -24.33090 22/12/2013 17:25 A000093 Adult Female 

59 Fogo 506 15.01967 -24.32881 23/12/2013 09:00 A000094 Adult Female 
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Sample # Island Altitude Latitude Longitude Date Time Ring number Age Sex 

60 Fogo 506 15.01967 -24.32881 23/12/2013 09:40 A000095 Adult Male 

61 Fogo 591 15.01687 -24.33145 23/12/2013 12:05 A000096 Undetermined Male 

62 Fogo 591 15.01687 -24.33145 23/12/2013 13:20 A000097 Adult Female 

63 Fogo 612 15.01670 -24.33208 23/12/2013 14:49 A000098 Undetermined Female 

64 Fogo 571 15.01650 -24.33195 23/12/2013 16:40 A000099 Adult Male 

65 Fogo 395 15.02312 -24.33072 26/12/2013 12:05 A000100 Adult Male 

66 Fogo 374 15.02299 -24.32901 27/12/2013 09:27 A000101 Undetermined Male 

67 Fogo 374 15.02299 -24.32901 27/12/2013 09:55 A000102 Juvenile Female 

68 Fogo 405 15.01989 -24.32419 27/12/2013 11:15 A000103 Undetermined Male 

69 Fogo 417 15.01998 -24.32549 27/12/2013 13:10 A000104 Adult Male 

70 Fogo 435 15.01931 -24.32527 27/12/2013 15:15 A000105 Juvenile Female 

71 Fogo 435 15.01931 -24.32527 27/12/2013 15:15 A000106 Undetermined Male 

72 Fogo 379 15.02381 -24.32953 28/12/2013 14:22 A000107 Adult Male 

73 Fogo 379 15.02381 -24.32953 28/12/2013 15:20 A000109 Undetermined Male 

74 Fogo 447 15.01964 -24.32666 29/12/2013 10:00 A000110 Adult Male 

75 Fogo 447 15.01964 -24.32666 29/12/2013 11:14 A000111 Juvenile Female 

76 Fogo 447 15.01964 -24.32666 29/12/2013 12:06 A000112 Adult Female 

77 Fogo 507 15.01776 -24.32670 29/12/2013 14:00 A000114 Adult Male 

78 Fogo 397 15.02026 -24.32497 30/12/2013 08:55 A000116 Adult Male 

79 Fogo 435 15.01558 -24.32261 30/12/2013 12:54 A000117 Adult Male 

80 Fogo 527 15.01495 -24.32501 31/12/2013 10:27 A000118 Adult Male 

81 S. Nicolau 600 16.63766 -24.35239 07/01/2014 09:30 A000119 Adult Male 

82 S. Nicolau 604 16.63783 -24.35187 07/01/2014 11:08 A000121 Adult Male 

83 S. Nicolau 604 16.63783 -24.35187 07/01/2014 11:17 A000122 Juvenile Female 

84 S. Nicolau 836 16.62915 -24.35030 07/01/2014 16:17 A000123 Adult Male 

85 S. Nicolau 654 16.63747 -24.35427 08/01/2014 10:10 A000125 Adult Male 

86 S. Nicolau 654 16.63747 -24.35427 08/01/2014 10:34 A000126 Juvenile Male 

87 S. Nicolau 668 16.63703 -24.35454 08/01/2014 11:35 A000127 Adult Male 

88 S. Nicolau 749 16.62563 -24.33110 09/01/2014 10:22 A000128 Adult Male 

89 S. Nicolau 758 16.62645 -24.33021 09/01/2014 12:40 A000129 Adult Male 

90 S. Nicolau 431 16.63271 -24.32205 11/01/2014 13:28 A000130 Adult Female 

91 S. Nicolau 431 16.63271 -24.32205 11/01/2014 13:19 A000131 Adult Male 

92 S. Nicolau 385 16.63174 -24.31114 14/01/2014 11:34 A000132 Adult Male 

93 S. Nicolau 689 16.63596 -24.35298 16/01/2014 11:54 A000136 Adult Male 

94 S. Nicolau 201 16.64912 -24.36306 17/01/2014 11:00 A000137 Adult Male 

95 S. Nicolau 496 16.64311 -24.34414 18/01/2014 14:01 A000138 Adult Female 

96 Santiago 21 14.92108 -23.60074 27/09/2014 16:13 A000139 Adult Male 

97 Santiago 48 14.92825 -23.59861 30/09/2014 11:37 A000140 Adult Male 

98 Santiago 126 15.07365 -23.55496 01/10/2014 14:34 A000141 Adult Male 

99 Fogo 561 15.01828 -24.33026 06/10/2014 14:10 A000142 Adult Male 

100 Fogo 567 15.02085 -24.33356 07/10/2014 10:17 A000143 Adult Male 

101 Fogo 702 15.01906 -24.33865 07/10/2014 15:05 A000144 Adult Male 

102 Fogo 702 15.01906 -24.33865 07/10/2014 15:32 A000145 Adult Female 

103 Fogo 701 15.02895 -24.36719 15/10/2014 12:10 A000146 Adult Male 

104 Fogo 1384 15.00458 -24.34227 16/10/2014 18:00 A000148 Adult Male 

105 Fogo 1382 15.00452 -24.34289 17/10/2014 10:14 A000149 Adult Female 
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Sample # Island Altitude Latitude Longitude Date Time Ring number Age Sex 

106 Fogo 1228 15.00688 -24.34044 17/10/2014 13:07 A000150 Adult Male 

107 Fogo 893 15.01075 -24.33301 18/10/2014 14:28 A000151 Adult Male 

108 Fogo 872 15.01162 -24.33335 18/10/2014 16:25 A000152 Adult Male 

109 Fogo 839 14.99125 -24.42907 20/10/2014 13:32 A000153 Adult Male 

110 Fogo 629 14.99513 -24.31612 24/10/2014 10:14 A000154 Adult Male 

111 Fogo 629 14.99513 -24.31612 24/10/2014 10:30 A000155 Adult Male 

112 Santiago 1039 15.17841 -23.67306 28/10/2014 18:08 A000156 Adult Male 

113 Santiago 1019 15.18383 -23.67085 29/10/2014 10:37 A000157 Adult Male 

114 Santiago 1003 15.17350 -23.67805 29/10/2014 15:55 A000158 Adult Male 

115 Santiago 1043 15.17887 -23.67228 02/11/2014 08:25 A000162 Adult Male 

116 Santiago 1043 15.17887 -23.67228 02/11/2014 08:35 A000163 Adult Female 

117 Santiago 1043 15.17887 -23.67228 02/11/2014 08:35 A000164 Adult Male 

118 Santiago 914 15.03448 -23.61511 07/11/2014 18:05 A000166 Adult Female 

119 Santiago 914 15.03448 -23.61511 07/11/2014 18:05 A000167 Adult Male 

120 Santiago 30 15.11510 -23.52425 09/11/2014 12:22 A000168 Adult Male 

121 Santiago 30 15.11510 -23.52425 09/11/2014 12:26 A000169 Adult Female 

122 Santiago 31 15.11547 -23.52417 09/11/2014 14:42 A000170 Adult Male 

123 Santiago 26 15.12741 -23.76162 12/11/2014 12:04 A000171 Adult Male 

124 S. Nicolau 593 16.63363 -24.34792 17/11/2014 11:15 A000172 Adult Female 

125 S. Nicolau 512 16.64391 -24.34425 18/11/2014 10:45 A000173 Adult Male 

126 S. Nicolau 494 16.65187 -24.34759 20/11/2014 10:55 A000174 Adult Male 

127 S. Nicolau 679 16.62189 -24.33221 21/11/2014 11:48 A000177 Juvenile Female 

128 S. Nicolau 680 16.63199 -24.34981 25/11/2014 09:29 A000178 Adult Male 

129 S. Nicolau 642 16.63123 -24.34816 25/11/2014 12:03 A000179 Adult Male 

130 S. Nicolau 654 16.63347 -24.35071 25/11/2014 13:41 A000180 Adult Male 

131 S. Nicolau 737 16.63307 -24.35244 25/11/2014 15:08 A000181 Adult Male 

132 S. Nicolau 605 16.63782 -24.35182 27/11/2014 13:06 A000182 Adult Female 

133 S. Nicolau 659 16.63647 -24.35346 29/11/2014 11:13 A000183 Undetermined Female 

134 S. Nicolau 659 16.63647 -24.35346 29/11/2014 11:15 A000184 Adult Male 

135 S. Nicolau 689 16.63586 -24.35412 29/11/2014 13:41 A000186 Adult Female 

136 S. Nicolau 670 16.63686 -24.35450 29/11/2014 16:32 A000187 Adult Female 

137 S. Nicolau 516 16.64503 -24.34369 30/11/2014 12:06 A000188 Adult Male 

138 S. Nicolau 516 16.64503 -24.34369 30/11/2014 13:13 A000189 Adult Female 
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Supplementary table S2.2 Primer and multiplex details for all microsatellite loci genotyped in the 

Cape Verde and greater swamp warblers; Ta = annealing temperature. 

Primer set Fluoro-label Allele size range (bp) Concentration Reference 

Multiplex 1 (Ta = 55ºC)     

Ase9 ATTO 550 121-144 0.100 μM Richardson et al. (2000) 

Ase10 FAM 84-120 0.100 μM Richardson et al. (2000) 

Ase37 FAM 227-234 0.200 μM Richardson et al. (2000) 

Ase42 ATTO 550 235-241 0.025 μM Richardson et al. (2000) 

Ase48 FAM 271-370 0.250 μM Richardson et al. (2000) 

Ase58 HEX 224-294 0.200 μM Richardson et al. (2000) 

Multiplex 2 (Ta = 55ºC) 

Ase6 FAM 117-173 0.050 μM Richardson et al. (2000) 

Ase13 HEX 120-160 0.001 μM Richardson et al. (2000) 

Ase18 ATTO 550 169-189 0.050 μM Richardson et al. (2000) 

Ase35 HEX 227-231 0.050 μM Richardson et al. (2000) 

Ase56 FAM 293-316 0.200 μM Richardson et al. (2000) 

Multiplex 3 (Ta = 56ºC)    

Ase3 HEX 79-96 0.040 μM Richardson et al. (2000) 

Ase7 FAM 100-109 0.025 μM Richardson et al. (2000) 

Ase11 HEX 109-125 0.025 μM Richardson et al. (2000) 

Ase22 FAM 170-179 0.025 μM (Richardson et al. 2000) 

Cuμ4-Gga5 HEX 235-239 0.050 μM (Martín-Gálvez et al. 2009) 

PmaTGA42 FAM 258-278 0.050 μM (Saladin et al. 2003) 

 
 

 

Supplementary figure S2.1 Graph generated by STRUCTURE HARVESTER (Earl & vonHoldt 2012), 

displaying the change in ∆K against number of clusters (K) calculated following the method of 

Evanno et al. (2005), highlighting that K = 2 is the most likely number of genetic clusters, followed 

closely by k = 3, across the three island populations of the Cape Verde warbler. 
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Supplementary figure S2.2 STRUCTURE plot (Pritchard et al. 2000) of genetic clustering across the 

three Cape Verde warbler populations for k = 2 (upper panel) and k = 3 (lower panel), using no-

admixture, independent allele frequencies and information on the population of origin (left) or no 

priors (right). Populations: 1 = Santiago, n= 66; 2 = Fogo, n= ; 38 = S. Nicolau, n = 27. 
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Chapter 3 

 

Diversity and divergence in song in the three populations of 

Cape Verde warbler Acrocephalus brevipennis 

 

 
 
Male Cape Verde warbler Acrocephalus brevipennis, photographed after responding to a 

playback test on Fogo, April 2016. 
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3.1 Abstract 

Divergence in traits involved in sexual selection can promote barriers to gene flow among 

populations and thus rapid divergence and, potentially, speciation. In oscine passerine birds, 

song is, at least partially, a culturally learned trait involved in sexual selection which may drive 

or reinforce divergence between populations. I tested whether divergence in song exists 

between the three populations of an endangered island passerine, the Cape Verde warbler 

Acrocephalus brevipennis, and investigated if song may play a role in reinforcing population 

isolation. I compared song traits from a sample of adult males from each of the three 

populations. I also created stereotyped songs and conducted playback tests to measure the 

behavioural responses of territory holders within each island population to songs of males 

from their own and other populations. I found that, while there is large intra-population and 

intra-individual variability in song, individuals do not discriminate between the songs of 

different populations, or even playback songs from different species.  In this species song 

appears to be complex and unpredictable: although males from all populations display 

different song repertoires they all react equally to a wide range of aural territorial challenges. 

This suggests that, in Cape Verde warblers, song is not a strong cue for individual or population 

differentiation. Using male behavioural response as a proxy for female preferences, no 

evidence was found that song would act to reinforce reproductive isolation between the three 

diverging populations of this species. However, male reaction to playbacks does not always 

reflect female perception, thus results should be interpreted with caution.  
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3.2 Introduction 

Archipelagos have proven excellent natural laboratories in which to study evolution and 

speciation (MacArthur & Wilson 1967; Warren et al. 2014). This is because islands are spatially 

isolated from each other and from the mainland, and dispersal between them can be limited 

(e.g. Cibois et al. 2008; Komdeur et al. 2004). Such spatial isolation provides an opportunity for 

evolutionary forces to act at a population scale (Allendorf & Luikart 2007; Frankham et al. 

2009; Price 2008). If isolation is extreme, populations may undergo rapid allopatric speciation 

(Allendorf & Luikart 2007; Frankham et al. 2009; Price 2008); that is, stochasticity over time 

reinforces divergence even when individuals from the different populations do come into 

secondary contact (e.g. Baker 1959; Cook 1906; Futuyma 2005; Grant & Grant 2009; Irwin et 

al. 2001). The specific drivers of divergence in allopatric populations that lead to speciation are 

difficult to assess, because they cannot be studied in the wild and must instead be inferred 

from genetic and phenotypic traits (Helbig et al. 2002; Lifjeld et al. 2016; Zink 2006). 

 

Reproductive isolation is often dependent on prezygotic mechanisms (Coyne & Orr 2004; Funk 

et al. 2006; Price 2008). Prezygotic isolating mechanisms are those that occur prior to 

fertilisation, and in animals they can be behavioural, ecological or mechanical (Orr & Smith 

1998; Price 2008; Schluter 2001). Divergence in traits involved in mate choice, such as 

ornamentation and behavioural displays in birds, can play a central role in speciation (Edwards 

et al. 2005; Price 2008). Importantly, song divergence has been implicated in reproductive 

isolation (Edwards et al. 2005; Grant & Grant 2002; Grant & Grant 2009; Irwin et al. 2001; 

Toews & Irwin 2008).   

 

In birds, sympatric speciation is rare (Edwards et al. 2005; Price 2008). For sympatric speciation 

to occur, two populations must diverge in one or more traits in order to avoid hybridisation. In 

birds, this often implies divergence in ecological or behavioural traits such as habitat 

preferences, time of breeding or song (reviewed in Price 2008). For example, in song sparrows 

Melospiza melodia, two sympatric subspecies differ both in song traits and habitat, as a 

possible results of assortative mating, and both males and females reply more strongly to 

songs of their own subspecies, suggesting that song acts to reinforce pre-mating reproductive 

barriers between these two subspecies (Patten et al. 2004). It is often assumed that the same 

traits will diverge in allopatric populations, simply because of drift, and that this results in 

reproductive isolation upon secondary contact (Edwards et al. 2005; Grant & Grant 2002). A 

classic example of song divergence in allopatric populations is that of the greenish warbler 
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Phylloscopus trochiloides (Irwin et al. 2001), where divergence in song and mitochondrial DNA 

in neighbouring populations results in reproductive isolation at the two ends of the species 

distribution, in the shape of a ring around the Tibetan plateau. However, genetic divergence 

does not always accompany behavioural or trait-based divergence (Perera et al. 2007; 

Phillimore et al. 2008). Secondary contact hybridisation can occur between populations that 

diverged in allopatry but later come into sympatry could occur (Price 2008; Slabbekoorn & 

Smith 2002). This is possible if phenotypic reproductive barriers are weak, sometimes even in 

spite of putatively useful ecological adaptations (Grant & Grant 1989; Grant & Grant 1992). 

Examples abound of contact zones among Acrocephalus and Hippolais warblers (e.g. Hansson 

et al. 2003; Hansson et al. 2012; Lemaire 1977; Secondi et al. 2003). When reproductive 

isolation between allopatric populations is complete there can be character divergence or 

convergence in sympatry (Haavie et al. 2004; Tobias & Seddon 2009), and this relationship can 

be asymmetric. In sympatric pied flycatchers, songs are more similar to those of collared 

flycatchers than in allopatric populations, while the opposite is true for collared flycatchers 

(Haavie et al. 2004). 

 

Bird song is involved in mate attraction, territory defence, mate stimulation (Catchpole 1983; 

Catchpole & Slater 2008) and even prenatal thermal acclimatisation (Mariette & Buchanan 

2016). Natural, sexual and cultural selection on bird song can lead to the evolution of 

differences between populations (reviewed in Podos et al. 2004; Price 1998). As a commonly 

sexually selected trait, it is thought to be used by females as a cue to assess male quality 

(Catchpole 2000; Hasselquist et al. 1996; Parker et al. 2006). Therefore, songs and repertoires 

can be differently selected; for example, in some bird species females are known to favour 

males with a larger repertoire (Byers & Kroodsma 2009; Catchpole 1980). Often female birds 

react more strongly to songs from males from their own population than from other 

populations, including neighbouring populations (Harris & Lemon 1976; Toews & Irwin 2008), 

or between their mates and strangers (Seddon & Tobias 2010) indicating that differences in 

song, even across small spatial scales, are quite common and may have selection-relevant 

consequences, e.g. differences in fitness (Baker 1983; de Boer et al. 2016; Mortega et al. 

2014). Cultural selection, on the other hand, is the differential copying of songs by individuals 

in one population based on their effectiveness as communication signs, but not on the fitness 

of the singing bird (Podos et al. 2004). Stochastic factors can also cause songs to diverge, as for 

example genetic drift which can potentially leading to reproductive isolation even before 

genetic divergence would suggest that isolation is complete (Irwin et al. 2001; Toews & Irwin 

2008). Additionally, cultural drift, i.e. changes in song driven by random variation in their 
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propagation across generations, has been hypothesised as a driver of song change during 

island colonisation (Podos et al. 2004). Song-mediated reproductive isolation mechanisms may 

play an important role in speciation in some bird species (Grant & Grant 2002; Irwin et al. 

2001).  

 

There are several mechanisms by which differences between songs of different populations 

can arise. Bird song contains innate and learned components (Thorpe 1958), and juvenile 

oscine passerine birds learn to sing from parents and neighbours (Thorpe 1958; Waser & 

Marler 1977). Juveniles start to copy adult birds songs, but during the first year of life each 

individual’s song is not necessarily consistent, and this phase is called the plastic song 

(Nottebohm 1968, 1969). At this stage changes in the learned song can occur: some learned 

syllable types can be dropped, new syllables can be improvised and other unusual syllable 

types can be retained, making this the phase in which cultural mutations in bird song can occur 

(Nottebohm 1968, 1969). After this stage, the song can become rather stereotyped, i.e. 

uniform within each individual and between individuals, and mutations or improvisations no 

longer occur (Nottebohm 1969; Thorpe 1958; Waser & Marler 1977). Because it is culturally 

transmitted, bird song can evolve faster than morphology or genetics (Price 2008). It is thus 

conceivable that opportunities for selection based on song divergence should be 

commonplace and lead to a behavioural barrier to reproduction between individuals from two 

populations (Price 2008). 

 

If bird populations are reproductively isolated, both males and females are predicted to 

respond more strongly to the songs of their own population than to songs of other populations 

or species (Grant & Grant 2002; Mortega et al. 2014; Searcy et al. 1997). Song playback 

experiments are a useful tool to assess this (Grant & Grant 2002; Mortega et al. 2014). They 

are used to elicit responses, ideally in receptive female birds and usually in experimental aviary 

contexts (Baker 1983; Catchpole et al. 1984; Hoelzel 1986). There are problems with testing 

female responses to male song in the wild, as they may not be reproductively receptive at the 

given point of the experiment, or might be inhibited by the presence of a dominant male 

(Catchpole et al. 1984; Grant & Grant 2002). Thus, in typical field-test playbacks the responses 

of the focal territorial male to an intruder are often used as a proxy of likely female response 

(Grant & Grant 2002). However, this approach has limitations because males and females can 

react differently to playback tests (Seddon & Tobias 2010). For example, in playback tests 

conducted in antbirds, Hypocnemis peruviana males reacted aggressively to conspecific and 
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heterospecific songs in sympatric areas, but females were able to discriminate between 

conspecifics and heterospecifics and even between their mates and conspecific strangers 

(Seddon & Tobias 2010; Tobias & Seddon 2009). Thus caution must be used when inferring 

female preferences from males behavioural responses to playback tests. In additional factor to 

consider in playback tests is the function of the song elements used. For example, bird song is 

usually linked to mating and breeding, while bird calls are often used to signal alarm or other 

circumstances non related to mating (Marler & Slabbekoorn 2004; Slabbekoorn & Smith 2002).  

 

The Cape Verde warbler Acrocephalus brevipennis is a small warbler (14–20 g) which inhabits 

dense vegetation (Hazevoet 1995) and is endemic to the Cape Verde archipelago ca. 500 km 

off West Africa (Figure 3.1). This bird is a resident species on the islands of Santiago, Fogo and 

S. Nicolau (Cramp & Perrins 1992; Garcia-del-Rey 2016) and is currently classified as 

‘Endangered’ (BirdLife International 2016). The three populations of the warbler have been 

isolated from each other since at least 165 kya, and they are genetically divergent, particularly 

the small isolated population on S. Nicolau (Batalha et al. 2017). It is not currently known if 

these populations constitute different taxonomic entities or are reproductively isolated. The 

Cape Verde warbler’s song is said to be similar to that of its sister species (Cramp & Perrins 

1992), the greater swamp warbler Acrocephalus rufescens (GSW) of sub-Saharan Africa (Fregin 

et al. 2009; Leisler et al. 1997). However, no formal studies have ever tested this, possibly 

because of low sample sizes. Preliminary observations indicated that there is considerable 

inter- and intra-individual variation in bird song within each island (Cramp & Perrins 1992; 

pers. obs.). 

 

Here, I aim to assess divergence in song to understand the degree to which the three 

populations of Cape Verde warbler might be reproductively isolated. I aimed to 1) assess 

divergence in song traits between populations, and 2) use behavioural response differences to 

assess the reproductive relevance of any existing divergence. Given that there is no evidence 

of gene flow among the islands (Batalha et al. 2017), I predicted that there will be significant 

differences between islands, both in song traits and behavioural reaction to songs of birds 

from the other islands. However, if inter-individual variation in bird song is high and not 

correlated with isolation, I predict that the birds are likely to perceive songs from all 

populations as belonging to novel individuals and react similarly to all songs. 
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Figure 3.1 Map of the Cape Verde islands (main) with position relative to West Africa (inset). 

Cape Verde warblers exist on Santiago, Fogo and S. Nicolau. Locations where male songs were 

recorded and/or playback tests were conducted between 2014 and 2016 are shown in black 

circles (see Figures S3.3 and S3.4 for more detail). Map produced using a combination of open 

source and original data on ArcMap 10.1 by Helena Batalha. 

 

 

3.3 Materials & Methods 

3.3.1 Song characterisation 

The Cape Verde warbler is thought to breed after the first rains, i.e. usually between August 

and November (Hazevoet 1995). However, males are thought to be territorial throughout the 

year (Cramp & Perrins 1992; Hazevoet 1995; Hazevoet et al. 1999) and there is anecdotal 

evidence that pair-bonding takes place during the dry season, i.e. in April–May, and the 

warblers are heard singing year-round (A. Rendall, pers. comm.; Cramp & Perrins 1992). I 

recorded songs and calls from males from September 2014 to November 2014 (hereafter 

2014), and conducted playback tests from April to May 2016 (hereafter 2016). I surveyed for 

warblers extensively across different habitat types and altitudes (up to 1384 m) on each of the 

three islands to ensure the sampling was as comprehensive as possible. I did not conduct 

traditional transects or point counts to locate territories, for two reasons. First, because the 

Cape Verde warbler sings very irregularly throughout the day and can hold large territories 
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(pers. obs.), which might cause it to be silent or in some other part of its territory in the 

moment when a song is played back, thus not responding to it even though it is present in the 

area (Batalha 2014; Donald et al. 2004). Second, patches of vegetation that could potentially 

be occupied by the warbler appear rather irregularly throughout the Cape Verde islands (pers. 

obs.), and this can cause traditional censuses or regularly spaced point counts to fall outside 

potentially suitable habitat or in inaccessible locations (Batalha 2014). For these reasons, 

traditional census methods can miss many individuals (Batalha 2014; Donald et al. 2004), and 

were not used. Previous observations had shown that the Cape Verde warbler inhabits densely 

vegetated patches on all three islands (Donald et al. 2004; Hazevoet 1995; Hering & Fuchs 

2009). Initial surveys confirmed that the warbler was absent from more barren areas.  I then 

restricted my searches to areas with structured vegetation (of any kind), including areas where 

the bird had been previously detected (Batalha et al. 2017; Donald et al. 2004; Hazevoet 1995; 

Hazevoet et al. 1999; Hering & Fuchs 2009), and areas with dense vegetation but where the 

bird had not been recorded before. I conducted transects and used playbacks whenever I was 

crossing or close to patches of potentially suitable habitat. If male Cape Verde warbler 

responded in the vicinity, I would get closer and try to determine the territory used by the 

warbler. This was done in as many different areas of each island as possible when taking into 

account logistic and time constraints. This means that the sampling was not completely 

random, thus artificially increasing the probability of finding the birds. However, the 

alternative would be to risk not obtaining a large enough sample size within the restricted time 

frame available. 

 

After locating Cape Verde warblers, recordings were made with a Sennheiser ME66 

microphone coupled to a Sony IC Recorder ICD-PX333 (stereo, sample rate 44.1 kHz, resolution 

32-bit float). In 2014, recordings were made before or after, but not during, playback used to 

attract the birds. In 2016, recordings were made during the playback tests. In both years, the 

songs were all recorded in MP3 format, which compresses the sounds, but as the Cape Verde 

warblers sing within a frequency range of 1000 to 5000 Hz (Table S3.3) compression would not 

be a problem. To attract birds in 2014 I used playback through X-mini II Capsule speakers, 

model Xam 14, with an output of 2.5W, frequency response 100 Hz to 20 kHz, signal-to-noise 

ratio ≥80 db and distortion ≤1%. In 2016, I used Arespark AS200-BK speakers, with a total 

output of 7W, frequency response 68 Hz to 20 kHz, signal-to-noise ratio and distortion 

unknown. All songs were analysed with Audacity 2.0.5 and Raven Pro version 1.4 (Cornell Lab 

of Ornithology, USA).  
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To examine the repertoire of Cape Verde warblers, I first visually categorised each individual’s 

song spectrograms into song types, and within those unique variations. I defined song type as 

an assemblage of unique motifs/syllables/elements; a variation was defined as the inclusion, 

removal or reordering of motifs/syllables/elements within a song type (Figure 3.2).I assessed 

repertoire size for the Cape Verde warbler by classifying and counting the number of different 

song types and variations within a song type (Table S3.1). I used only songs recorded in 2014 

from colour-ringed males or males recorded in known locations, i.e. songs that could be 

attributed to known males. I visually inspected the maximum consecutive number of songs 

possible per individual male but this ranged from four to 32 (Supplementary table S3.1) and I 

caution against drawing inferences from such small sample sizes.  

 

a)   
 

b)  
Figure 3.2 Example of song types and variations within song types in the Cape Verde warbler; 

a) two song types of one Santiago bird: the elements composing each song type are different; 

b) two variations within a song type of one Fogo bird: all or most of the elements are the 

same, but the number of repetitions and/or order in which they are arranged changes; in other 

cases there can be inclusion or removal of elements. See full repertoire size in Table S3.1. 

Figures produced using original data on Raven Pro 1.4 by Helena Batalha. 

 

I used 2014 recordings to analyse spectrograms of songs of different males on each island. I 

visualised the spectrograms in Audacity, converted stereo tracks into mono, removed 

background noise when necessary (up to 15 dB) and exported the track as a wav file. If the 

recording had been made while to bird was replying to a playback, we only analysed 

spectrograms sung by the bird and discarded the recordings of playbacks. I calculated the song 

rate by counting the number of bird songs in each recording. The wav file was analysed with 
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Raven Pro version 1.4 (Bioacoustics Research Program 2011), where I selected only clear and 

distinguishable song spectrograms, with no overlapping songs or other strong background 

noise. I generated spectrograms keeping the pre-defined viewing settings (Bioacoustics 

Research Program 2011). I drew selection boxes around the song spectrograms, excluding the 

calls that preceded each song, and measured aggregated entropy (u), average entropy (u), first 

quartile (Q1) frequency (Hz), third quartile (Q3) frequency (Hz), centre frequency (Hz), 5% 

frequency (Hz), 95% frequency (Hz) and delta time (s). Entropy measures have been used as 

proxies of vocal complexity, especially in case where full measures of repertoire size are 

unattainable due to small sample size (e.g. Da Silva et al. 2000; Kershenbaum 2014), and have 

been successfully used in other animal vocalisation studies (Fernández-Vargas & Johnston 

2015). Average entropy measures the disorder of the energy within a subsection (a ‘slice’) of 

the sound in the selection box (Charif et al. 2010). Thus, more pure tones will have lower 

entropy values than higher amplitude sounds. Aggregated entropy measures the disorder of 

the energy within the entire selection box (Charif et al. 2010); that is, more monotonous or 

repetitive songs will have lower entropy values than more complex or polytonal songs. 

Entropy-based measurements (aggregated entropy and average entropy) take into account all 

the sounds inside the selection box and thus can be affected by background noise, so I only 

used spectrograms that had little or no background noise. Frequency measurements quantify 

the frequency below which a given portion of the total energy within the selection box lies. 

The frequency-based measurements I selected (first quartile frequency, third quartile 

frequency, centre frequency, 5% frequency and 95% frequency) are all robust to the size of 

selection boxes and low energy background noise (Charif et al. 2010). I confirmed this in two 

ways. First, I compared the measurements of different songs made up of the same elements. 

Second, I measured the same song several times with different selection boxes. Delta time is 

the difference, in seconds, between the left and right limits of the selection box, which is 

manually selected by the user. Songs are frequently, but not always, preceded by one or two 

calls. These were not included in the selection boxes because both the number of calls and the 

pause length between each call and the subsequent song varied greatly (e.g. from 0.15 to 0.70 

seconds; data not shown but see supplementary material 2), which could introduce undesired 

noise. 

 

3.3.2 Playback tests 

On a typical playback test, birds from a given population are exposed to songs from their own 

population, an allopatric population and a control population or species, and the strength of 
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their response to each song is quantified by measuring reactions in the field (e.g. Grant & 

Grant 2002; Mortega et al. 2014). To ensure the birds are reacting to the songs of one 

population and not one individual, and to avoid pseudo-replication, one different song per 

individual test is ideally used (reviewed in Kroodsma 1989; Kroodsma 1990). Due to logistic 

impediments or lack of spontaneous recordings to begin with, this is not always possible, but 

in that case experiments must control for pseudo-replication in the data analysis (Kroodsma 

1989; Kroodsma 1990).  

 

I tested for the differences in the birds’ reaction to playbacks from five different origins: each 

of the three warbler populations (Santiago, Fogo and S. Nicolau), the sister species GSW and a 

control species (the Seychelles warbler, SW, Acrocephalus sechellensis). I adapted the playback 

protocol used by Mortega et al. (2014). Tests were conducted from 21 April to 7 May 2016, 

during part of what is thought to be the pair-bonding period (A. Rendall, pers. comm.; Cramp 

& Perrins 1992). To create Cape Verde warbler playback songs, I used individual recordings 

made in 2014, from a minimum of 5 different males per island. These songs were sung during 

the breeding season either spontaneously or in response to playbacks of birds of their own 

population. The identity and/or location of the males providing the songs were known (Figure 

S3.3). There is apparently high variability in syllables, song types and song rate between and 

within individuals on each island (Table 3.1 and S3.1). Consequently I was unable to determine 

the most common song type on each island (see Bell et al. 2004) to build standardised 

population songs (as in Mortega et al. 2014). The use of only one song type repeated for the 

duration of the playback song would have been unnatural to the birds and would not 

represent a natural male intruder. To mimic natural variability in the playback experiment, I 

built each playback song by selecting segments of a recording from a given male, including 

from one to six consecutive songs, or songs and calls, with clear, uncluttered sound profiles 

which were free from overlap with other birds’ songs or strong ambient noises. I reduced the 

remaining ambient noise in Audacity by 5 to 15 dB, depending on the overall signal-to-noise 

ratio, converted all the segments between songs into silence, and pasted the segment, 

maintaining the original pause lengths. From each collage of segments of a given male I 

generated a 150-second loop, filtered the lower 500 Hz sounds with a 48 dB high-pass filter 

(this is the strongest filter, but it did not affect the quality of the songs), and amplified each 

constructed song to a peak of -1 dB of maximum amplification. I repeated the process, using 

songs from a single male for each collage, until I had at least ten different 150-second 

playbacks per island. For the other species used in the tests (see below) I applied the same 
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methodology but I used recordings downloaded from Xeno-Canto.org or supplied by the 

Seychelles Warbler Research Group. 

 

I ran preliminary trials to determine the optimal length of time between playing each song and 

which measurements could be reliably taken given the habitat structure and the birds’ 

behaviour. I also ran a preliminary test to check the birds’ reaction to songs of different 

warbler species. The goal was to select a control species (i.e. a species to whose song males 

did not react strongly) and a species that could be used to locate Cape Verde warbler 

territories (i.e. a species to whose song males reacted but which would not be used in the 

actual playback tests). I could not use the warbler’s own song to locate the territories, as 

exposing them to a species/population that would later be used in the actual test could bias 

the reactions (Grant & Grant 2002; Mortega et al. 2014). I chose species with songs similar to 

the Cape Verde warbler in note structure and/or frequency range, or phylogenetically close 

but geographically distant, which means they had not been heard by the warblers (Grant & 

Grant 2002; Mortega et al. 2014), not even from potential vagrants. I played songs of the 

Australian reed warbler (ARW, A. australis), clamorous reed warbler (CRW, A. stentoreus), 

Madagascar swamp warbler (MSW, A. newtoni), lesser swamp warbler (LSW, A. gracilirostris), 

Seychelles warbler (SW, A. sechellensis) and common bulbul (CB, Pycnonotus barbatus). The 

pair of warblers tested reacted to all of the songs to some degree, but they reacted less to the 

MSW, ARW and SW. Therefore, I decided to use the LSW’s song to locate territories, and the 

SW as a control in the playback tests. 

 

To determine which vegetation structures were used by male warblers within a territory, I 

played the LSW songs at a minimum of 3 different points and noted which structures an 

individual landed on. This also helped determine which bird was the dominant male, as 

dominant males tend to sing and approach the speaker more (pers. obs.). I only followed the 

dominant male, and any tests where the focal male was not clearly the dominant individual 

throughout the experiment were not included in further analyses. An Arespark S200 speaker 

was placed in one of the used vegetation structures, at a height that the birds had used or 

could potentially use. I selected an area with the best possible visibility and ensured there was 

vegetation used by the bird in a radius at least 5 m around the speaker and covering at least 

half of the circle within those 5 m. The speaker was connected to an mp3 player by an audio 

cable, which I operated from a location from where I could observe the birds’ movements 

(Figure 3.3). 
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I waited 15 minutes between the end of the playback used to locate the structures, and the 

beginning of the playback test. The speaker location was recorded with a Garmin eTrex® H GPS 

and a horizontal circular boundary line 5 m from the speaker was marked out. Neither territory 

mapping playback nor the marking of territorial features appeared to affect the behaviour of 

warblers (pers. obs.). I then played each of the five test songs in a previously defined 

randomised order. Because playback songs were individually identified, I never played songs 

from the same bird I were testing or one of their neighbours, eliminating effects due to host 

familiarity. No birds were tested twice and I did not test birds in neighbouring territories where 

the sound could be heard from one territory to the next. However, on S. Nicolau, where 

warblers are rare (Donald et al. 2004; Hazevoet et al. 1999) and the territories are 

concentrated in certain areas, I tested neighbour birds once, but left a three-day interval 

between the tests. For each test and group, a different song was played, within islands, to 

avoid pseudo-replication, except on a couple of occasions (Kroodsma 1990). In each test, I 

played each song for the full 150 seconds duration. During this period of time I recorded:  

a) latency to approach within 5 m of the speaker, in seconds, measured with a timer; 

b) time spent within 5 m of the speaker in seconds, measured with a timer; 

c) number of calls given by the responding bird; 

d) number of songs given by the responding bird; 

e) minimum distance to the speaker, in approximate metres (this distance was measured 

in absolute terms, rather than on a plan, because sometimes the birds would land 

exactly above the speaker, but a couple of metres high, to take vertical distance into 

account; the distance was estimated to the nearest metre). 

 

Because the vegetation used by the Cape Verde warbler is very dense, it was not possible to 

record other behaviours such as tail- or wing-flipping and overall number of flights. After each 

song I waited a minimum of 150 seconds and a maximum of 900 seconds before playing the 

next song. The goal was to ensure the bird had stopped being reactive and left the area before 

each of the following songs. I considered that the birds stopped reacting when they 1) moved 

away more than 10 m from the speaker or 2) were silent for more than 30 seconds after the 

initial 150 seconds. When one of the two conditions was met we resumed the test. If, after 

waiting 15 minutes, the bird was still singing/calling or within 10 m of the speaker, I would 

proceed with the following test, but did not measure latency to approach or time spent within 

5 m. 

 



Chapter 3: Cape Verde warbler song 
 

79 
 

 
Figure 3.3 Example of a typical playback test on a male Cape Verde warbler Acrocephalus 

brevipennis: the remotely operated speaker is placed in a plant and at a height that the 

individual would naturally use, most of the 5 m radius around it is covered in said vegetation, 

and there are three observers following the individual’s movements. The red circle shows a 

dominant male Cape Verde warbler flying above the speaker in response to a playback. Photo 

taken on S. Nicolau, May 2016. 

 

3.3.3 Statistical analysis 

Unless stated otherwise, statistical analyses were performed in R v. 2.14.1 (R Core Team 2016) 

and each island was tested separately. I first determined if spectrogram-based measurements 

could be reliably used to test for differences between populations. To do this, I assessed if the 

frequency, entropy and time measurements could be reliably used to discriminate between 

different song types. I selected spectrograms of 14 song types recorded in the 2016 playback 

tests: six from Santiago, four from Fogo and four from S. Nicolau (Figure S3.1). This was the 

minimum number of different song types per island for which I had at least nine spectrograms 

that I could measure (ranging from nine to 28 spectrograms per song type). I measured the 

traits described in section 3.3.1, which are robust to background noise within a spectrogram. 

However, they can be affected by the distance to microphone (e.g. at larger distances, higher-

frequency sounds are recorded with more energy than low-frequency sounds) or ambient 

noise, and it is not possible to control for this in the field. I could not control for distance to 

© Helena Batalha 
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microphone but we controlled for the effect of ambient noise by using only spectrograms clear 

from background sounds. Using absolute or logarithmic values to model frequencies does not 

qualitatively alter the results (Cardoso 2013); therefore, we used non-transformed variables in 

all tests. I ran a principal components analysis (PCA) with function princomp, package stats (R 

Core Team 2016) including all the measured variables. I tested for differences between song 

types on the first principal component (PC1) with an ANOVA with function aov, package stats. 

Additionally, I performed a linear discriminant analysis (LDA) to classify spectrogram types with 

functions vif, package car (Fox & Weisberg 2011) and lda, package MASS (Venables & Ripley 

2002). The LDA is a multivariate classification technique which tries to find functions that 

better explain differences between pre-defined groups. Therefore, it is useful to verify if each 

spectrogram can be accurately classified as belonging to a certain song type based on its 

measurements (e.g. Domínguez et al. 2016; Illera et al. 2014; Palmero et al. 2012). It is fairly 

robust to violation of normality assumptions, but it requires that there is low multicollinearity 

between the variables. The LDA was followed by a MANOVA to test for differences between 

groups, performed with function Wilks.test, package rrcov (Todorov & Filzmoser 2009). Wilks’ 

lambda is a test based on the MANOVA table which measures the amount of variance that is 

not attributable to the grouping factor, i.e. the within-group variance; in other words, the 

smaller its value, the more of the variance is explained by the grouping factor.  

 

Song differences between populations 

I selected different recordings per island, made while males were singing spontaneously during 

the breeding season of 2014, and I measured spectrograms as described above. Since the goal 

of this analysis was to test for differences between the three populations, spectrograms of 

songs from the three islands were pooled together. I ran a similar analysis to the one used to 

discriminate between song types, but since I measured more than one spectrogram per bird, 

birds within islands were included as random effects in the ANOVAs. I tested for differences 

between islands and between individuals. Similarly, for the LDA and MANOVA I first used the 

island where each spectrogram was recorded as the grouping factor, and then the bird that 

sang it. 

 

Differences in song response to playback 

I tested for differences in the birds’ vocal response to playback songs of different origins in 

2016 by performing a PCA to extract variance from song spectrogram traits. I then used linear 

mixed models with function lmer, package lmerTest (Kuznetsova et al. 2016), on PC1 to assess 
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if spectrograms would differ depending on the playback song origin that the birds were 

reacting to, following Mortega et al. (2014) and using the rationale behind reference studies 

(Catchpole 1977; Grant & Grant 2002). I defined spectrograms sung in response to songs from 

the birds’ own population to be the intercept to which the other spectrograms were 

compared, and used the population of origin of the song to which the birds were responding 

as a factor. This allowed comparing the responses to each different population/species with 

the response of individuals to songs from their own population. I included subjects within 

playback tests as nested random effects to control for repeated measures (each bird would 

sing several times in response to each test), and trial order. Recordings of songs sung in 

response to the playback of the LSW – used to assess the occupied habitat area – were also 

included in the model.  

 

 Differences in behavioural response to playback  

I examined if birds behaved differently when reacting to songs of different population origin. I 

assessed correlations between related behavioural measures with spearman.test, package 

Hmisc (Harrell et al. 2016). I then tested the effect of the five different song origins on: 1) 

latency to approach within 5 m, 2) minimum distance to speaker, and 3) number of songs 

given by the responding bird. The sample size was limited because of time constraints and 

population numbers: I had 12 data points per factor level of the independent variable per 

population. In other words, I tested 12 subjects for each of the five playback tests per island 

(Figure S3.4). To avoid over-parameterising the models date or time were not included. When 

included, date and time did not have a significant effect in the behavioural responses of the 

birds, except date on the number of songs on S. Nicolau (estimate = -0.475, SE = 0.219, Z-value 

= -2.168, p = 0.03). However, this effect was not consistent across islands or across behavioural 

tests on S. Nicolau. Latency to approach was analysed using Cox proportional hazard models 

fitted by maximum likelihood with function coxme, package coxme (Therneau 2015). Minimum 

distance to speaker and number of songs were modelled with a linear mixed model fitted by 

maximum likelihood. Again, subjects were included as random effects to control for repeated 

measures (because in all tests the same subject was measured five times, one per playback 

test). I included trial order and song rate in every model as fixed effects. The model including 

the variables of interest was compared with the simplest model, including just the 

independent variable and the random effect, using ANOVA and AIC (functions anova and AIC, 

package stats).  
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3.4 Results 

3.4.1 Song characterisation 

The Cape Verde warbler has a complex song and call repertoire and does not seem to combine 

syllables, elements or phrases in long continuous “song bouts”, separated by pauses of 

relatively constant length, as in many species (e.g. Mortega et al. 2014; Palmero et al. 2012). 

Instead, it utters, and often repeats, short combinations of different syllables, elements, or 

motifs with pauses of unpredictable length between them. Each individual can sing several 

song types, and no one song type can be classified as the commonest within a population (see 

supplementary material). Conversely, the type of elements and their combinations seem 

relatively consistent within a population, suggesting moderate differentiation (Table 3.1 and 

Figure 3.4). For example, on Santiago individuals seem to repeat a certain element or motif a 

random number of times, and then sing another motif, or a variation of the same one. In 

contrast, on Fogo most songs seem to consist of a long repetition of short and monotonous 

elements, which may be preceded or not by a different element and repeated or not, with 

marked difference in individual element use. On S. Nicolau, the birds seem either to repeat 

complex elements or to combine different polytonic elements with trills and whistles or more 

elements. 

 

Table 3.1  Number of song types, and maximum variations within song type, per individual bird 

in each population of the Cape Verde warbler. I show the average and standard error (SE) and 

the maximum and minimum number of maximum song types and variations found within that 

island. 

 
Song types per individual Variations within song type 

 
Island Average SE Maximum Minimum Average SE Maximum Minimum N 

Santiago 2.90 0.53 7 1 2.90 0.72 9 1 10 

Fogo 2.80 0.51 5 1 2.90 0.41 5 1 10 

S. Nicolau 2.67 0.37 4 1 3.22 0.46 6 2 9 

Average 2.79 0.27 5.33 1 3.00 0.31 6.67 1.33 29 

 
 

Individual male Cape Verde warblers can sing at different rates, with pauses between songs 

that can range from 4 to >30 seconds and song rates between 2.4 and 11.6 songs per minute 

(2014 recording; data not shown). Individuals either repeat the same song type, switch song 

types or alternate repetitions with switching (data not shown). The songs are often, but not 

always, preceded by calls, and sometimes individuals utter calls in between consecutive songs 

(see supplementary material). In general, the birds utter one or two calls before each song, 

and calls can be composed of one or two elements, in ascending or descending frequencies. 
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Frequencies range between a lowest frequency (5% frequency) of 1033.6 Hz and a highest 

frequency (95% frequency) of 4823.4 Hz (Table S3.7). Length of song (delta time) varies 

between 0.118 and 2.691 seconds (Table S3.7). The lengths of the pauses between songs and 

calls, or between songs, or between calls, are variable: the pause between a call and the 

following strophe can last from 0.15 to 0.70 seconds (data not shown). There are elements 

shared among individuals and certain elements are common to Santiago, Fogo and S. Nicolau 

(data not shown); however, the small sample size is too small to confirm I have sampled most 

of the repertoire on each island and assess which songs are unique to each island (Mortega et 

al. 2014). The different ways in which the warblers can combine and modulate song elements, 

combined with the limited sample size, make it extremely difficult to characterise and quantify 

a “typical” song.  

 

 

  a)  

b)  

c)  
Figure 1.4 Examples of song types in the Cape Verde warbler from each of the three island 

populations: a) Santiago, a) Fogo and c) S. Nicolau. On Santiago there are usually few 

repetitions of one syllable, on Fogo few repetitions of initial syllables followed by many 

repetitions of another syllable, and on S. Nicolau a large combination of different syllables, 

with few repetitions and often trills. Note that here I show only one song type per island, but 

each male sings several song types that may or may not be similar (Tables 3.1 and S3.1). 

Figures produced using original data on Raven Pro 1.4 by Helena Batalha. 
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The first principal component (PC1) of the PCAs on spectrogram song types explained more 

than 70% of the variance in each population: 86.12% on Santiago, 79.00% on Fogo and 71.63% 

on S. Nicolau (Table 3.2). PC1 was significantly different between spectrogram types in all 

populations (Table 3.2, Figure 3.5). The second principal components (PC2) explained just 

between 6.39% and 21.60% of the variance in spectrogram characteristics (Table 3.2). The 

main loadings in the first PC were the highest frequency values (95% and Q3 frequencies; see 

Methods for definitions and supplementary material). Some VIF values were above the cut-off 

value of 10, which indicates multicollinearity between independent variables, so I removed 

redundant variables from the LDA (aggregated entropy and Q1 and Q3 frequency). Wilks’ 

lambda was extremely low in all populations (Table 3.3), indicating that the within-group (i.e. 

within-song type) variance is negligible when compared to variance between groups (Figure 

3.5). The first discriminant functions explained more than 80% of the variance between 

spectrogram types in all populations, while the second discriminant function explained less 

than 15% (see supplementary material). The main loadings in the discriminant functions were 

the duration of the spectrogram (delta time) and entropy measurements (see supplementary 

material). Taken together, these results indicate that the largest part of the variance in 

individual spectrogram measurements is explained by changes in the highest frequencies at 

which the birds sing, and the largest part of the variance between song types is explained by 

how long the songs last and their entropy, i.e. if they are more monotonous or more complex 

in frequency use. They also indicate that energy-based spectrogram measurements can be 

used to discriminate song types reliably. In other words, if song types on different populations 

have different traits, measuring spectrograms will be sufficient to discriminate between 

populations. 

 

Table 3.2 Principal components analysis on different song types on each population of the 

Cape Verde warbler. From the PCA I report eigenvalues and percentage variance in 

spectrogram characteristics explained by the first two principal components (PC1 and PC2); 

from the ANOVA on PC1 I report the F statistic, the degrees of freedom and the p value. 

  
eigenvalues % variance ANOVA (PC1) 

Population n PC1 PC2 PC1 PC2 F-statistic df p-value 

Santiago 46 514400 38142.48 86.12 6.39 58.82 5 < 0.001 

Fogo 24 263858.4 45048.91 79 13.49 46.15 3 < 0.001 

S. Nicolau 32 230110.4 69398.97 71.63 21.6 50.75 3 < 0.001 
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Table 3.3 Discriminant analysis on different song types on each population of the Cape Verde 

warbler. I report Wilks’ lambda (MANOVA) on discriminant functions between song types on 

each population, the chi-square test value, the degrees of freedom and the p value. 

Population 
Wilks' 

Lambda 
Chi

2
-

Value 
DF p-value 

Santiago 0.00028 322.7 25 < 0.001 

Fogo 0.00018 159.38 15 < 0.001 

S. Nicolau 0.00117 178.83 15 < 0.001 

 

a)  

b)  

c)  

Figure 3.5 Principal components analysis (left) and discriminant analysis (right) on song types 

for each population of the Cape Verde warbler: a) Santiago, n = 46, b) Fogo, n = 24 and c) S. 

Nicolau, n = 32. Analyses were made with traits measured from spectrograms; within each 

plot, each colour codes for a different song type. See supplementary materials for more 

details. 
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Song differences between populations 

The first PC explained 76.59% of the variance in traits of spontaneous songs during the 

breeding season and the second PC explained 17.19%. Eigenvalues are 546884.30 for PC1 and 

122747.70 for PC2. The ANOVA of PC1 showed significant differences between both islands 

and individuals (Table 3.4). However, the plotted PCA scores clustered together whether they 

were grouped by population or by bird (Figure 3.6). All VIF values were below the cut-off value 

of 10, but I removed the same redundant variables as above to avoid unnecessary 

multicollinearity (Table S3.2). Wilks’ lambda was large for islands and small for individual birds 

(Table 3.4), indicating that within-island variance is large when compared to between-island 

variance, and that the opposite is true for individuals. Taken together, these results indicate 

that spectrogram traits are different between both birds and islands, but while the differences 

between birds are relatively large, the differences between islands are quite small. In other 

words, variance is larger between individuals than between islands. The first discriminant 

function explained 54.47% of variance between islands, and the second discriminant function 

explained 45.53%. In this case, since there are two discriminant functions and three islands, 

the first discriminant function separated Santiago from the other two islands, and the second 

separated Fogo from S. Nicolau (black, red and green circles in Figure 3.6, respectively). 

However, the plotted LDA scores of different groups all clustered together, especially between 

islands (Figure 3.6). 

 

Table 3.4 Principal components analysis and discriminant analysis on songs of each population 

of the Cape Verde warbler, n = 266. From the PCA I report ANOVA on the first principal 

component (PC1). From the discriminant analysis I report Wilks’ lambda (MANOVA) on 

discriminant functions between populations (first row) and individuals (second row). 

 

 
ANOVA (PC1) Wilks’ lambda (MANOVA) 

 
Df F-statistic p-value Wilks’ lambda Df Chi

2
 p-value 

Island 1 7.43 <0.001 0.67 10 104.80 <0.001 

Bird 14 16.95 <0.001 0.04 80 823.14 <0.001 
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Figure 3.6 Principal components analysis (upper row) and discriminant analysis (lower row) on 

songs of all populations of the Cape Verde warbler, n = 266. Individual spectrograms coloured 

by bird (left) and island (right): spectrograms of birds of Santiago in black, Fogo in red and S. 

Nicolau in green. 

 

Differences in song response to playback 

I conducted 36 playback tests, 12 on each island (Figure S3.4). The first PC explained 81.09% of 

the variance in spectrogram measurements for Santiago, 78.10% for Fogo and 77.82% for S. 

Nicolau. Eigenvalues for PC1 were 451992.30 for Santiago, 387514.00 for Fogo and 358074.70 

for S. Nicolau. Spectrograms clustered together within each island, not clustering separately 

according to which song the birds were responding to (Figure 3.7). I tested differences in songs 

in response to different populations of origin using just PC1 (Table 3.5). There are no 

differences in the spectrograms of the songs used to respond to playbacks from six different 

populations of origin, on either island (all p > 0.130; Table 3.5). However, trial order seems to 

have a significant negative effect on the island of Fogo (p = 0.003; Table 3.5). The PC1 on Fogo 

mostly reflects the highest frequencies in each song (negative loadings of 95% and Q3 

frequency measurements; see supplementary table S3.8), and trial order is ranked from one to 

six (i.e. from the initial LSW, used to detect the birds, to the last song used in the playback 

test).  
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Table 3.5 Linear mixed-effects model for song response to playback tests on Santiago, Fogo 

and S. Nicolau. Estimates represent differences in PC1 of the spectrogram traits of songs 

uttered in response to songs of each of the populations. Intercept represents the population of 

origin. Birds were included as random effects. Significant effects are shown in bold. 

  Intercept Santiago Fogo S. Nicolau GSW SW LSW Trial order 

Sa
n

ti
ag

o
 

Estimate -38.260 
 

101.850 19.110 49.790 115.420 264.120 41.050 

SE 186.900 
 

102.080 102.930 116.990 118.940 170.000 25.520 

df 40.120 
 

28.410 28.510 33.710 46.320 32.170 34.940 

t value -0.205 
 

0.998 0.186 0.426 0.970 1.554 1.609 

P value 0.839 
 

0.327 0.854 0.673 0.337 0.130 0.117 

Fo
go

 

Estimate 194.940 -157.240 
 

19.020 87.240 58.160 -163.400 -63.500 

SE 155.480 132.700 
 

136.090 135.050 133.300 173.080 21.370 

df 53.890 39.090 
 

41.580 41.220 44.790 56.090 211.450 

t value 1.254 -1.185 
 

0.140 0.646 0.436 -0.944 -2.972 

P value 0.215 0.243 
 

0.890 0.522 0.665 0.349 0.003 

S.
 N

ic
o

la
u

 

Estimate 36.524 -116.039 -134.646 
 

-237.654 -13.176 -67.535 5.417 

SE 198.225 163.466 143.944 
 

155.223 143.802 217.710 39.960 

df 42.630 32.290 30.690 
 

30.210 30.900 38.690 39.170 

t value 0.184 -0.710 -0.935 
 

-1.531 -0.092 -0.310 0.136 

P value 0.855 0.483 0.357 
 

0.136 0.928 0.758 0.893 

 
 
 
 

a)  
Figure 3.7 Principal components analysis of variance in song uttered in response to 

different populations of origin in the Cape Verde warbler. Songs coloured by origin of the 

song the birds were responding to; a) Santiago, n = 266, b) Fogo n = 1425 and c) S. Nicolau, 

n = 451.  
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 b)   

 

c)  
 

Figure 3.7 (Cont.)  

 

Differences in behavioural response to playback  

Latency to approach and time spent within 5 m were strongly negatively correlated, and 

number of calls and songs were strongly positively correlated (Spearman’s r2 = 0.95 and 0.75, 

respectively). Thus I retained only latency to approach, minimum distance to speaker and 

number of songs in the following analyses. ANOVAs and AIC selected the full model for latency 

to approach on Fogo and S. Nicolau and minimum distance to speaker on Fogo and the 

reduced model for all the other tests (Table S3.9). Since the main objective of these models 

was not to explain variance in behavioural measurements but to test for differences in warbler 

reactions to songs of different populations, I kept all the variables of interest in the models. 

Overall there were no significant differences between the behavioural responses of birds to 

songs of different populations/species (Tables 3.6 to 3.8). Trial order had a positive effect on 

the latency to approach for birds of Fogo and S. Nicolau (Table 3.6) and a negative effect on 

minimum distance to speaker for birds of Fogo (Table 3.7).  
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Table 3.6 Cox survival mixed model on latency to approach within 5 m for playback tests on 

Santiago, Fogo and S. Nicolau. Estimates represent differences from the latency to approach to 

songs of the population of origin (intercept, not shown); n= 12. Significant differences are 

shown in bold. See supplementary material for more details. 

  Santiago Fogo S. Nicolau GSW SW Trial order Song rate 
Sa

n
ti

ag
o

 
coef  

0.067 0.638 -1.048 -1.442 0.168 0.030 

exp(coef)  
1.069 1.893 0.351 0.237 1.183 1.030 

se(coef)  
0.534 0.583 0.601 0.751 0.152 0.093 

Z value  
0.130 1.090 -1.740 -1.920 1.110 0.320 

P value  
0.900 0.270 0.081 0.055 0.270 0.750 

Fo
go

 

coef 0.136 
 

-0.293 -0.370 -1.151 0.376 0.187 

exp(coef) 1.146 
 

0.746 0.691 0.316 1.457 1.205 

se(coef) 0.571 
 

0.582 0.604 0.665 0.122 0.108 

Z value 0.240 
 

-0.500 -0.610 -1.730 3.090 1.740 

P value 0.810 
 

0.610 0.540 0.084 0.002 0.082 

S.
 N

ic
o

la
u

 

coef -0.986 -0.704 
 

-0.974 -0.253 0.419 -0.042 

exp(coef) 0.373 0.495 
 

0.378 0.776 1.521 0.959 

se(coef) 0.561 0.529 
 

0.617 0.584 0.142 0.088 

Z value -1.760 -1.330 
 

-1.580 -0.430 2.960 -0.470 

P value 0.079 0.180 
 

0.110 0.660 0.003 0.640 

 
 

Table 3.7 Linear mixed model on minimum distance to speaker for playback tests on Santiago, 

Fogo and S. Nicolau. Estimates represent differences from the minimum distance to speaker 

with songs of the population of origin (intercept); n= 12. Significant differences are shown in 

bold. See supplementary material for more details. 

   
   

  S
an

ti
ag

o
  

  

Intercept 
(own 

population) 
Santiago Fogo S. Nicolau GSW SW Trial order Song rate 

Estimate 3.332 
 

1.446 0.100 3.646 2.821 0.695 -0.241 

Std. Error 3.171 
 

2.164 2.148 2.158 2.504 0.513 0.365 

df 54.310 
 

44.350 43.590 43.910 46.430 45.160 48.480 

t value 1.051 
 

0.668 0.046 1.690 1.127 1.356 -0.662 

P value 0.298 
 

0.508 0.963 0.098 0.266 0.182 0.511 

Fo
go

 

Estimate 10.271 -2.816 
 

0.054 0.197 -0.276 -1.399 -0.162 

Std. Error 3.281 2.106 
 

2.149 2.122 2.388 0.464 0.344 

df 56.970 46.230 
 

45.680 45.540 47.010 45.480 51.170 

t value 3.130 -1.337 
 

0.025 0.093 -0.116 -3.014 -0.470 

P value 0.003 0.188 
 

0.980 0.927 0.908 0.004 0.640 

S.
 N

ic
o

la
u

 

Estimate -0.642 3.854 4.538 
 

5.146 -1.278 -0.372 0.722 

Std. Error 4.451 3.010 3.043 
 

3.508 3.584 0.762 0.506 

df 46.990 36.920 37.250 
 

38.620 40.530 37.270 46.940 

t value -0.144 1.280 1.491 
 

1.467 -0.356 -0.488 1.426 

P value 0.886 0.208 0.144 
 

0.151 0.723 0.628 0.161 
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Table 3.8 Linear mixed model on number of songs for playback tests on Santiago, Fogo and S. 

Nicolau. Estimates represent differences from number of songs in response to songs of the 

population of origin (intercept); n= 12. See supplementary material for more details. 

   
   

 S
an

ti
ag

o
 

  
Intercept 

(own 
population) 

Santiago Fogo S. Nicolau GSW SW Trial order Song rate 

Estimate 2.944 
 

0.754 3.287 -0.441 0.592 0.234 -0.162 

Std. Error 1.693 
 

1.259 1.277 1.259 1.411 0.291 0.197 

df 58.680 
 

48.010 48.090 48.030 50.140 48.220 57.110 

t value 1.739 
 

0.599 2.574 -0.350 0.420 0.803 -0.822 

P value 0.087 
 

0.552 0.013 0.728 0.676 0.426 0.415 

Fo
go

 

Estimate 3.763 0.980 
 

1.494 -0.540 -2.391 0.278 0.350 

Std. Error 2.411 1.328 
 

1.334 1.317 1.555 0.300 0.224 

df 48.490 48.000 
 

48.060 48.010 48.560 48.000 49.930 

t value 1.561 0.738 
 

1.119 -0.410 -1.538 0.927 1.563 

P value 0.125 0.464 
 

0.269 0.683 0.131 0.358 0.124 

S.
 N

ic
o

la
u

 

Estimate 2.322 -1.394 -1.245 
 

-0.603 -1.336 0.401 0.195 

Std. Error 1.953 1.318 1.327 
 

1.395 1.485 0.312 0.204 

df 59.210 48.040 48.100 
 

48.200 49.470 48.000 54.240 

t value 1.189 -1.057 -0.939 
 

-0.432 -0.900 1.284 0.954 

P value 0.239 0.296 0.353 
 

0.668 0.373 0.205 0.344 

 

3.5 Discussion 

In this study, I found no evidence for song divergence between the three populations of the 

Cape Verde warbler. I also found no evidence that the males of any population respond 

differently, in song or behaviour, to songs of other populations of origin, or even of other 

Acrocephalus species. Collectively, my results suggest that song plays a very limited, or no role 

in driving divergence or reproductive isolation between populations in this species. However, 

male reaction to playbacks does not always correspond to female preferences (Seddon & 

Tobias 2010; Tobias & Seddon 2009), thus inferences about the role of song in reproductive 

isolation in the Cape Verde warbler are speculative at this point. 

 

Several processes can drive song divergence in different populations of oscine passerines over 

relatively short periods of evolutionary time. For example, cultural drift can lead to song 

diversification through the accumulation of copying errors (Nottebohm 1968, 1969).  This 

process can occur rapidly and lead to strong divergence in very short evolutionary timescales 

(Marler & Slabbekoorn 2004; Slabbekoorn & Smith 2002), e.g. 50 years (Baker et al. 2003). As 

the three Cape Verde warbler populations have been separated for 165–199 Kya, the 



Chapter 3: Cape Verde warbler song 
 

92 
 

stochastic accumulation of differences between populations was a plausible possibility, but my 

results do not support this hypothesis. Natural, sexual and cultural selection on bird song can 

also lead to the evolution of differences between populations (reviewed in Podos et al. 2004; 

Price 1998). However, I found no evidence for selection in song acting on any of the 

populations.  

 

3.5.1 Cape Verde warbler song 

The song of the Cape Verde warbler is composed of small motifs arranged in various 

combinations, interspersed with a variety of calls and pauses, as seen in other Acrocephalus 

warblers (Leisler & Schulze-Hagen 2011). Each male sings a variety of song types and 

respective variations, and while there are apparent population-specific trends, i.e. more 

complex arrangements on S. Nicolau, there are some motifs and arrangements in common 

between all the populations. Overall, Cape Verde warbler songs have a low frequency (ca. 

1000–5000 Hz, Table S3.7), lower than those of some congeneric Palearctic species, such as 

the marsh warbler A. palustris (Dowsett-Lemaire 1979). Low-frequency songs are favoured in 

densely vegetated habitats where they are transmitted better than higher-frequency songs 

(Derryberry 2009; Morton 1975; Slabbekoorn & Smith 2002). Cape Verde warblers live in 

densely vegetated habitat (Batalha et al. 2017; Garcia-del-Rey 2016), and habitat 

characteristics might favour low-frequency songs and calls in this species (Giuseppe & Saino 

2007). Furthermore, densely vegetated areas are limited in the Cape Verde archipelago, which 

has a year-round dry climate interrupted by a brief, unpredictable rainy season (Correia 1996; 

Hazevoet 1995; Sena-Martins & Moreno 1986). Thus, competition for space could increase the 

intensity of selection for low-frequency and varied song types, and aggressive signalling.  

 

There are apparent but ambiguous differences between the spontaneous songs of the three 

Cape Verde warbler populations (Table 3.3, Figure 3.4). Songs of the Santiago population seem 

more diverse, both within and between individuals, than those of Fogo and S. Nicolau (Table 

3.1). The song diversity pattern across populations partially matches the patterns of genetic 

diversity observed in this warbler: Santiago is the largest, most widespread and most 

genetically diverse population, while S. Nicolau is the least diverse, smallest and most 

geographically concentrated (Batalha et al. 2017). Song diversity in Santiago thus matches the 

relatively high genetic diversity in this population, while the reduced song diversity in S. 

Nicolau could be a result of cultural or genetic drift following a population bottleneck (Batalha 

et al. 2017). However, Fogo does not seem to fit in this pattern, because its song diversity 
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seems to be as low as the one of S. Nicolau (Table 3.1). This could be due to cultural drift in a 

dense and geographically localised population, where any copying errors could be easily 

transmitted to all individuals, or to selection for particular song types occurring in Fogo (Podos 

et al. 2004). 

 

Discrimination between different song types in the Cape Verde warbler was possible using 

energy-based measurements on spectrograms (Table 3.1). The measurements that had most 

variance were the highest frequencies of songs (95% frequencies). This could be because 

vegetation density at the locations where birds were recorded obstructed transmission of 

different frequencies or, alternatively, because there is variation in the extent to which birds 

include high-frequency elements in their songs. The measurements that most differed 

between song types were their duration and their entropy. Song duration differed between 

song types because of the number of syllables and repetitions included in each type. Entropy 

measurements, which have been successfully used to characterise animal sounds in recent 

studies (Fernández-Vargas & Johnston 2015; Schwabl et al. 2015), reflect the purity of the 

tones used by the animals, or the variation in frequencies used in each song. In other words, 

lower values of average entropy indicate purer tones and higher values are characteristic of 

tones that cover a larger bandwidth; lower values of aggregated entropy indicate more 

monotonic songs and higher values characterise songs with more variation in their inclusion of 

high- and low-frequency elements. Taken together, my results demonstrate that, in the Cape 

Verde warbler, different song types are characterised by different numbers of elements and 

their repetitions, and also by different degrees of inclusion of high and low frequency 

elements. 

 

My results contrast with two general trends in bird song. Bird song complexity increases with 

latitude (Kaluthota et al. 2016); thus species living close to the Equator should sing simpler 

songs. It has also been shown that island bird song tends to be less complex when compared 

to mainland species (Morinay et al. 2013). The fact that there is large intra- and inter-individual 

variability in the Cape Verde warbler’s song suggests it may not conform to either of these 

general patterns, but I did not examine variables related to song complexity. As most studies 

on avian song have been conducted in temperate zones, comparatively little is known about 

song in species that live in harsher, species-poor environments (Marler & Slabbekoorn 2004; 

Singh & Price 2015). It has been suggested that songs in Phylloscopus warblers have evolved to 

be complex in species-poor and relatively quiet environments (Singh & Price 2015), and the 
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same could have happened in the Cape Verde warbler, which inhabits a similar environment 

(pers. obs.). Other findings suggest that birds subjected to variable and unpredictable climates 

display more complex songs (Botero et al. 2009). A hypothesis recently proposed to explain 

this pattern is that such climates could drive evolution of signals of intelligence in birds, and 

this translates as the capacity to improvise songs (Botero et al. 2009; Catchpole 1996). Harsh 

climates such as on Cape Verde could have exerted strong selective pressures in the warblers.  

 

3.5.2 Responses to playback 

Cape Verde warbler males do not appear to discriminate between males of their own versus 

other conspecific populations, or even versus males of different species. This contrasts with 

the behaviour of species which respond more aggressively to conspecifics than heterospecifics 

(Grant & Grant 2002; Mortega et al. 2014). However, it is unclear if this is the result of real lack 

of discrimination by the Cape Verde warblers or if it is an artefact caused by large intra- and 

inter-individual song diversity. Small intra-population and/or large inter-individual differences 

in response to songs, associated with a small sample size, could explain the large effect sizes 

and the non-significance of variables observed in playback test models (Tables 3.5 to 3.8). 

There is large intra-individual variation in the way that Cape Verde warblers sing, which can 

confound the behavioural and song responses they give when confronted with “intruders” of 

different origins (Fisher 1954), and the same holds true for their behavioural responses 

(latency to approach, minimum distance and number of songs). In many instances, individual 

birds reacted very similarly to all five different songs that they were played, suggesting that 

response intensity is not linked to characteristics of the individual song that was used in 

playback trials, as in Peake et al. (2002), but to the those of the responding bird. It is also 

possible the warblers are not accustomed to having “intruders” and react to any novel bird 

that comes into their territory. For example, some birds react aggressively to potential 

predators or parasitic bird species, not just to potential competitors (e.g. Neudorf & Sealy 

1992).  

 

The methods I used to locate Cape Verde warbler territories were chosen to maximise the 

number of data points obtained in the time I had available. After confirming that the warblers 

do not inhabit sparsely vegetated or barren areas, I based my surveys in a combination of 

previously recorded information, recent observations from local biologists and my own 

assessment of areas occupied by the warbler from previous fieldwork (Batalha et al. 2017). 

Within the broad category of “densely vegetated” areas occupied by the warbler, I aimed to 
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survey all possible habitat types (sugarcane plantations, mountain forests, reed stands, etc.) 

and all vegetated altitudes (from sea level to mountain tops) on all areas of each island. 

Because I actively targeted locations where I thought the warbler lived, the test points are not 

completely randomly distributed, and the probability of finding the birds is artificially high. 

However, because they were still spread across various habitats, altitudes and geographic 

areas, it is unlikely that this had an effect in the outcome of the tests. 

 

A possible explanation as to why Cape Verde warblers did not react differently to songs of the 

greater swamp warbler concern whether they are effectively reproductively isolated. Genetic 

divergence between the two sister species is limited, with an estimated date of divergence 

only within the last half-million years (Batalha et al. 2017). They have also been described as 

having similar colour, vocalisations and breeding behaviour (Hazevoet 1995). It is not 

inconceivable that the speciation process between these two taxa is still incomplete and the 

boundaries between the two are not yet consolidated by full reproductive isolation. Territorial 

responses of males to songs of males of other populations are often used to assess the degree 

of reproductive isolation between two populations, as a proxy of female reactions 

(Balakrishnan & Sorenson 2006; Grant & Grant 2002; Irwin et al. 2001). However, in playback 

tests conducted in antbirds, Hypocnemis peruviana females were able to discriminate between 

conspecifics and heterospecifics, even though males reacted aggressively to conspecific and 

heterospecific songs in sympatric areas (Seddon & Tobias 2010; Tobias & Seddon 2009). Thus a 

lack of discrimination by males, and even similarity between mating signals, does not 

necessarily imply a lack of discrimination by females. While the behavioural responses of the 

Cape Verde warbler males suggest more fluid reproductive boundaries, this would need to be 

confirmed with behavioural tests on females or percentage divergence on DNA using a large 

enough sample size. In the Hypocnemis antbirds tested divergence between species tested was 

6.8% in mitochondrial DNA (Seddon & Tobias 2010; Tobias et al. 2008). Currently, divergence 

between the greater swamp warbler and the three populations of the Cape Verde warbler is 

estimated to range from 0.4 - 0.5% for the cytochrome b gene (Batalha et al. 2017), but since 

only seven greater swamp warbler samples were used in this analysis results are not 

conclusive.  

 

Bird songs are often used for intrasexual competition and territoriality while bird calls are less 

strongly related to territoriality and reproduction (Catchpole 1983; Catchpole & Slater 2008). 

Standard playback tests use bird song only (Grant & Grant 2002; Mortega et al. 2014; Seddon 
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& Tobias 2010), thus clearly evaluating individual responses to playbacks in a context of sexual 

selection. Song in the Cape Verde warbler is currently very poorly studied (Cramp & Perrins 

1992; Donald et al. 2004; Hazevoet 1995) as are the relative roles of songs and calls in mating 

attraction and competition during the breeding season. Because of this, and because Cape 

Verde warblers naturally often intermix calls with songs, I chose to integrate calls in the 

playback recordings used in the tests. However, this might have had an influence in the 

outcome of the playback tests, i.e. responding males may have perceived the playbacks more 

as competition for space and food than for females (Seddon & Tobias 2010). 

 

In the song responses to playback tests on the Fogo population, the highest frequencies of the 

response songs increase as the trial order increases (Table 3.5). Low song frequencies have 

been linked to aggressiveness in birds (Benedict et al. 2012; Morton 1977), and it is possible 

that Fogo males react aggressively to the first intruders, uttering lower frequency songs, and 

gradually lose interest, consequently increasing the frequency of their response songs. 

Accordingly, there was a positive effect of trial order on latency to approach on Fogo and S. 

Nicolau. In other words, the more test songs are played, the longer it takes for the tested bird 

to come within five meters of the speaker. Again, this could happen simply because the birds 

start to lose interest in the “intruder”, although it is unclear why that happens in such small, 

localised populations and not on the widespread population of Santiago. Trial order had a 

negative effect on the minimum distance to speaker on Fogo, which means that the more 

songs are played back, the closer the tested bird approaches the speaker. This could be 

because the birds start by carefully attempting to assess the “intruders” and evaluating the 

potential risks of starting a fight, and as they lose fear and/or aggressiveness, they start 

approaching the “intruders”. However, as mentioned before, low sample size and high 

variability in responses mean that any inferences must be taken with caution. 

 

Species with large repertoires are less suitable for playback tests than those with short 

repertoires because they do not respond consistently to aural challenges (Boughey & 

Thompson 1976). The degree of variation in motif arrangement in Cape Verde warbler songs is 

reminiscent of birds such as the brown thrasher Toxostoma rufum, the marsh warbler, the 

spectacled warbler Sylvia conspicillata and the red-faced cisticola Cisticola erythrops, i.e. 

species with large repertoires and inter-individual variability in song (Benedict & Bowie 2009; 

Boughey & Thompson 1981; Dowsett-Lemaire 1979; Palmero et al. 2012). Playback 

experiments produce clearer results with species with a more stereotyped song such as the 
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stonechat Saxicola torquata, Darwin’s finches Geospiza spp., song sparrow Melospiza melodia 

and even other Acrocephalus warblers (Catchpole & Leisler 1986; Grant & Grant 2002; 

Mortega et al. 2014; Searcy et al. 1997). In addition to the intrinsic complexity of the warbler’s 

song, time constraints and the limited number of territories on S. Nicolau (Batalha et al. 2017) 

means that only 12 playback tests were conducted on each island. Therefore, all ecological 

inferences from the results of the playback tests must be interpreted with caution. 

 

Several hypotheses could explain intra- and inter- individual differences in song and response 

to playback. One of the factors I could not control for was the age of individual males because I 

did not know in which year they were born. It is possible that older males react more 

aggressively to intruders’ songs (whether intruders come from their own population or not) or 

are generally more aggressive (Hyman et al. 2004). If the warblers incorporate elements of 

their neighbours’ and other species’ vocalisations in their repertoire, as seen on the marsh 

warbler (Dowsett-Lemaire 1979), it is also possible that older males have a larger repertoire 

and thus appear to display more variation in song. However, there are no studies on the avian 

community composition on each of the islands and areas inhabited by the Cape Verde warbler 

to confirm or discard this hypothesis. Alternatively, it might be possible that conducting the 

playback tests outside key periods of the breeding cycle caused male response to be 

inconsistent. Another hypothesis is that the warblers might actually display behavioural 

syndromes/personalities (Dingemanse et al. 2010; Jacobs et al. 2014; Sih et al. 2004). Overall it 

seems that the song challenges elicited an inconsistent response from individuals from the 

three warbler populations, suggesting that either behavioural processes mask a potential song 

differentiation, or that song in this species is not, or only weakly, under selection.  

 

Conclusions 

This study demonstrates that the level of acoustic variability is high in the Cape Verde warbler, 

and reveals no divergence in song, or response to song, between the three populations of 

Cape Verde warbler. Therefore, I found no support for the hypothesis that song may play a 

role in driving or reinforcing divergence or reproductive isolation between populations in this 

species.  
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Supplementary table S3.1 Repertoire size per male for the three populations of the Cape 

Verde warbler. Number of songs, song types, and maximum variation within song types for 

each individual; each male is either coded by colour-ring combination or GPS code of the 

location where it was recorded (except for one bird on S. Nicolau); songs refer to number of 

consecutive songs assessed. 

Island Male Songs 
Song 
types 

Maximum 
variations 

Santiago 

WX_RB 15 7 2 

WX_WR 11 3 3 

BX_OR 7 2 3 

S01 12 3 3 

233 5 2 2 

230 4 4 1 

212 5 1 2 

195 12 3 1 

223 21 2 9 

215 14 2 3 

Fogo 

BB_BX 13 5 2 

BB_OX 11 1 4 

BB_RX 18 3 5 

BR_YX 32 5 3 

RO_BX 6 2 1 

RO_RX 7 1 4 

RY_OX 12 1 2 

RY_WX 9 2 2 

151 12 4 2 

AB111 15 4 4 

S. Nicolau 

RB_XW 18 3 5 

RR_XB 19 1 2 

RR_XO 21 3 6 

RR_XR 15 2 2 

RW_XR 12 4 3 

RW_XW 12 3 3 

RY_XO 10 3 3 

RY_XO 15 4 3 

unringed 5 1 2 
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a)  

b)  

c)  
Supplementary figure S3.1 Selected song types from the three populations used to test for 

differences between song types, here shown with the preceding call (not included in the 

analyses); a) Santiago, b) Fogo, c) S. Nicolau. 

 

Supplementary table S3.2 Variance inflation factors (VIF) for all the variables used in the 

MANOVAs and linear discriminant analyses (LDA) on characteristics of songs uttered by the 

Cape Verde warbler spontaneously during the breeding season (2014) and in response to 

playbacks (2016); the top section shows the initial VIF values, and the bottom section shows 

the VIF values for the variables retained in the LDA and MANOVA. 
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2014 all 9.20 2.30 5.01 8.11 5.94 3.67 6.80 1.15 

2016 

Santiago 9.22 2.23 7.14 9.66 7.95 6.23 10.13 1.85 

Fogo 14.59 9.01 8.93 9.88 5.58 7.54 17.07 8.12 

S. Nicolau 18.97 2.16 5.24 15.66 8.01 6.81 10.02 4.08 
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2014 all 
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2.57 2.04 2.03 1.14 

2016 

Santiago 
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Fogo 
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2.63 3.81 2.18 5.58 

S. Nicolau 
 

1.56 
  

5.13 1.73 2.55 3.72 
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Supplementary table S3.3 Summary statistics of spectrograms traits of songs of the Cape 

Verde warbler recorded during the breeding season of 2014 (October and November), and 

used in the discriminant analysis. 

  
Average 
entropy 

Center 
frequency 

5% 
frequency 

95% 
frequency 

Delta 
time 

All Min 1.734 1550 1206 1895 0.194 

 
Median 2.224 2067 1378 2584 1.040 

 
Mean 2.221 2115 1423 2825 1.147 

 
Max 3.063 3273 2067 4479 2.600 

Santiago Min 1.813 1723 1206 2240 0.194 

 
Median 2.212 2240 1550 2756 1.152 

 
Mean 2.191 2339 1553 2945 1.134 

 
Max 2.626 3273 1895 4307 2.379 

Fogo Min 1.734 1550 1206 2067 0.548 

 
Median 2.150 1895 1378 2412 1.020 

 
Mean 2.144 1978 1388 2570 1.052 

 
Max 2.572 2756 2067 3962 2.439 

S. Nicolau Min 1.911 1550 1206 1895 0.284 

 
Median 2.309 2067 1378 2756 1.011 

 
Mean 2.316 2116 1380 3006 1.251 

 
Max 3.063 2584 1895 4479 2.600 

 

Supplementary table S3.4 Linear discriminant analysis on song types of the Cape Verde 

warbler; percentage variance explained (proportion of trace) and coefficients of the linear 

discriminant functions between spectrogram types; absolute coefficient values > 0.5 are 

highlighted in bold. 

  LD1 LD2 LD3 LD4 LD5 

Santiago 

Percentage variance 0.815 0.133 0.045 0.008 0.001 

Average entropy 2.212 -0.682 5.453 5.082 -0.451 

Center frequency 0.002 -0.002 0.004 -0.006 -0.005 

5% frequency -0.003 -0.003 -0.009 0.006 -0.004 

95% frequency 0.000 -0.004 -0.001 0.000 0.003 

Delta time 47.811 -1.087 -5.039 -4.604 -2.552 

Fogo 

Percentage variance 0.878 0.111 0.011 
  

Average entropy 10.157 9.849 -7.961 
  

Center frequency -0.004 -0.002 -0.005 
  

5% frequency 0.006 0.004 0.001 
  

95% frequency 0.001 -0.008 0.000 
  

Delta time 48.357 -6.338 10.653 
  

S. Nicolau 

Percentage variance 0.880 0.087 0.034 
  

Average entropy 1.772 7.439 -0.141 
  

Center frequency 0.000 0.000 -0.001 
  

5% frequency -0.003 -0.006 -0.005 
  

95% frequency -0.003 -0.004 0.004 
  

Delta time -31.072 7.078 -2.569 
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Supplementary table S3.5 Principal components analysis of song types, on the three populations of the Cape Verde warbler; loadings for the principal components 

on the three populations; absolute values > 0.5 are highlighted in bold. 

 
  PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

Santiago Aggregated entropy 
     

-0.132 0.737 0.663 

 
Average entropy 

     
0.930 -0.140 0.340 

 
Q1 frequency -0.320 -0.451 -0.483 

 
0.679 

   

 
Q3 frequency -0.493 -0.385 0.662 0.413 

    

 
Center frequency -0.355 -0.392 

 
-0.683 -0.498 

   

 
5% frequency -0.210 

 
-0.567 0.591 -0.530 

   

 
95% frequency -0.696 0.700 

 
-0.113 0.105 

   

 
Delta time 

     
0.343 0.661 -0.667 

Fogo Aggregated entropy 
     

0.299 0.954 
 

 
Average entropy 

     
0.798 -0.232 -0.557 

 
Q1 frequency -0.159 -0.506 

  
0.847 

   

 
Q3 frequency -0.488 

 
-0.519 0.682 -0.155 

   

 
Center frequency -0.271 -0.548 -0.373 -0.606 -0.346 

   

 
5% frequency -0.127 -0.525 0.695 0.309 -0.359 

   

 
95% frequency -0.805 0.405 0.328 -0.266 

    

 
Delta time 

     
0.524 -0.190 0.830 

S. Nicolau Aggregated entropy 
     

-0.464 0.687 -0.560 

 
Average entropy 

     
0.811 

 
-0.580 

 
Q1 frequency -0.217 -0.565 -0.276 0.514 -0.542 

   

 
Q3 frequency -0.525 0.260 -0.444 -0.567 -0.372 

   

 
Center frequency -0.326 -0.196 -0.533 0.143 0.742 

   

 
5% frequency -0.163 -0.723 0.374 -0.546 0.111 

   

 
95% frequency -0.737 0.228 0.551 0.310 

    

 
Delta time 

     
0.356 0.723 0.592 
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Supplementary table S3.6 Principal component analysis of songs uttered by the Cape Verde warbler spontaneously during the breeding season of 2014, on 

Santiago, Fogo and S. Nicolau combined; coefficients of the linear discriminants between spectrograms grouped by island; absolute values > 0.5 are highlighted in 

bold. 

  PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 LD1 LD2 

Aggregated entropy 
      

0.744 0.667 
  

Average entropy 
     

0.125 0.658 -0.742 2.548 1.780 

Q1 frequency -0.201 -0.457 0.383 -0.221 0.745 
     

Q3 frequency -0.503 -0.218 -0.620 0.522 0.205 
     

Center frequency -0.343 -0.526 -0.184 -0.575 -0.491 
   

-0.003 0.001 

5% frequency -0.132 -0.376 0.592 0.575 -0.400 
   

-0.002 -0.001 

95% frequency -0.756 0.570 0.291 -0.129 
    

0.000 0.001 

Delta time 
     

0.991 -0.117 
 

0.346 0.671 
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Supplementary figure S3.2 Boxplots of the score of the first principal component of the 

spectrogram measurements of song types (spectrogram type) uttered by the Cape Verde 

warblers, on the three existing populations. 

 

Supplementary figure S3.3 Location of the Cape Verde warbler songs recorded in 2014 and 

used for the playback tests in 2016: on Santiago (upper panel), Fogo (lower left) and S. Nicolau 

(lower right). The map scales are 20 km for Santiago and 10 km for Fogo and S. Nicolau. 
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Supplementary figure S3.4 Location of the playback tests done on Cape Verde warblers in 

2016. On each islands, 12 tests were conducted: on Santiago (upper panel), Fogo (lower left) 

and S. Nicolau (lower right). The map scales are 20 km for Santiago and 10 km for the insets, 

Fogo and S. Nicolau. 

 

Supplementary table S3.7 Minimum and maximum frequency and length of Cape Verde 

warbler songs uttered in 2016, in response to playback songs of six different populations. See 

main text for details. 

 

Frequency (Hz) Length (seconds) 

 
Min 5% Response to Max 95% Response to Min Response to Max Response to 

Santiago 1033.6 LSW 4478.9 SN 0.211 ST 2.494 GSW 

Fogo 1033.6 FG, SN, LSW, SW 4478.9 ST 0.143 FG 2.347 LSW 

S. Nicolau 1033.6 ST 4823.4 SN 0.118 FG 2.691 SN 

 

 



Chapter 3: Supplementary material 
 

110 
 

 

 

Supplementary figure S3.5 Boxplots of the score of the first principal component of the 

spectrogram measurements of songs uttered by the Cape Verde warblers, on the three 

existing populations, in response to songs of six different populations of origin; ST = Santiago, 

FG = Fogo, SN = S. Nicolau, GSW = greater swamp warbler, SW = Seychelles warbler, LSW = 

lesser swamp warbler. 

 

Table S3.8 Principal component analysis of songs uttered in response to songs of different 

populations of origin on the three populations of the Cape Verde warbler; loadings for each of 

the three populations; absolute values > 0.5 are highlighted in bold. 

 
 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

Santiago Aggregated entropy 
      

0.433 0.901 

 
Average entropy 

     
0.100 0.896 -0.432 

 
Q1 frequency -0.226 0.576 -0.181 0.501 0.577 

   

 
Q3 frequency -0.512 0.160 0.442 -0.638 0.331 

   

 
Center frequency -0.338 0.464 0.328 0.248 -0.708 

   

 
5% frequency -0.130 0.344 -0.771 -0.465 -0.233 

   

 
95% frequency -0.745 -0.556 -0.264 0.255 

    

 
Delta time 

     
-0.995 

  
Fogo Aggregated entropy 

      
-0.713 -0.696 

 
Average entropy 

     
0.157 -0.680 0.717 

 
Q1 frequency -0.231 0.565 -0.202 -0.294 0.708 

   

 
Q3 frequency -0.524 

 
0.500 0.658 0.200 

   

 
Center frequency -0.364 0.463 0.374 -0.441 -0.565 

   

 
5% frequency -0.136 0.423 -0.662 0.474 -0.374 

   

 
95% frequency -0.722 -0.534 -0.362 -0.249 

    

 
Delta time 

     
0.983 0.174 

 
S. Nicolau Aggregated entropy 

      
-0.324 -0.946 

 
Average entropy 

     
0.157 -0.935 0.318 

 
Q1 frequency -0.276 0.578 0.208 -0.381 0.634 

   

 
Q3 frequency -0.544 

 
-0.715 0.364 0.244 

   

 
Center frequency -0.366 0.424 -0.177 -0.379 -0.716 

   

 
5% frequency -0.172 0.432 0.439 0.751 -0.162 

   

 
95% frequency -0.682 -0.546 0.470 -0.122 

    

 
Delta time 

     
0.988 0.145 
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a)  

b)  

c)  

Figure S3.6 Boxplots of a) latency to approach, in seconds; b) minimum distance to speaker, in 

centimetres; and c) number of songs of the Cape Verde warblers, on the three existing 

populations, in response to songs of the five different populations of origin; ST = Santiago, FG = 

Fogo, SN = S. Nicolau, GSW = greater swamp warbler, SW = Seychelles warbler. 

 

Supplementary table S3.9 Model selection table for the latency to approach within 5m, 

modelled with cox mixed models; minimum distance to speaker and number of songs, 

modelled with linear mixed models. Significant differences between full and reduced models, 

and corresponding delta AIC > 4 and best model in bold.  

  

model selection AIC AIC df 

  

Delta AIC Chisq p Reduced Full Reduced Full 

Latency to 
approach  

Santiago 2.012 1.454 0.483 222.397 224.409 13.651 15.655 

Fogo 9.489 10.991 0.004 252.475 242.986 12.344 14.982 

S. Nicolau 7.62 9.309 0.01 269.195 261.576 12.237 14.819 

Minimum 
distance 

Santiago 1.99 2.014 0.365 363.43 365.42 7 9 

Fogo 4.61 8.605 0.014 382.68 378.07 7 9 

S. Nicolau 1.85 2.155 0.34 341.18 343.03 7 9 

Number of 
songs 

Santiago 2.86 1.142 0.565 326.91 329.77 7 9 

Fogo 0.65 3.343 0.188 358.52 359.17 7 9 

S. Nicolau 1.41 2.591 0.274 346.02 347.43 7 9 

 



 

Chapter 4 

 

Habitat preferences in the Cape Verde warbler Acrocephalus brevipennis 

and implications for conservation 

 

 

 

 
 
Main habitat of the Cape Verde warbler Acrocephalus brevipennis on S. Nicolau: invasive reed 

Arundo donax stands, most of which are at risk of being cut down for agriculture. Photo taken 

in September 2014. 

 
 
 
 
 
 

 

© Helena Batalha 
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4.1 Abstract 

Understanding habitat preferences of endangered species is important for conservation, as it 

provides a geographical framework for management actions to be applied. Here, I assessed 

habitat preferences of the endangered Cape Verde warbler Acrocephalus brevipennis on the 

three islands where it exists. At a landscape scale, satellite images were used to create maps of 

the areas of habitat that were used within each island to assess if key predictors could be 

identified. The presence of green vegetation cover that lasted throughout the dry season, 

assessed from the NDVI calculated from satellite images, was the best predictor of warbler 

presence at this large scale. At a local scale, habitat plots were directly sampled to assess key 

differences between sites used or not by the warbler during the breeding season on the three 

different islands. Neither coarse nor fine structural habitat features predict warbler presence 

within areas of apparently suitable habitat. However, certain plant species predicted warbler 

presence, and these key plant species differed between plots used by the warbler on the three 

islands. Importantly, landscape and local scale analyses together indicate that the small 

population on the island of S. Nicolau does not appear to be using the entire putatively 

suitable habitat, but the reason for this is unknown. These results provide important 

information regarding key habitat requirements that appear to determine or limit the Cape 

Verde warbler’s distribution. I therefore provide a basis for identifying and surveying areas 

suitable for warblers across the islands, and information on which to base practical habitat 

conservation measures to help protect and expand the remaining warbler populations.  
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4.2 Introduction 

Habitat protection is critical to the conservation of endangered species (Committee on 

Scientific Issues in the Endangered Species Act et al. 1995; Dudley 2008; Lausche & Burhenne-

Guilmin 2011). Protection and management of areas of relevant habitat are often identified as 

priorities for the conservation of threatened animals (Boyd et al. 2008; Donald et al. 2013; 

Dudley 2008). Assessing which factors determine habitat selection by endangered species is 

therefore crucial for effective and directed conservation (Manly et al. 1993). For rare or cryptic 

species, the full extent of occupied areas is often unknown and information on habitat 

preferences is sometimes limited to occasional records (Buchanan et al. 2011; Howland et al. 

2016; Rebelo & Jones 2010; e.g. Svensson et al. 2010; Zeng et al. 2015; Zhao et al. 2017). This 

makes efficient conservation actions difficult to determine, but a combination of field data and 

modelling can be used to effectively predict the full extent of areas and habitats occupied. 

Information on habitat may inform conservation opportunities, for example when a strong 

association of a species with a certain habitat feature is revealed (Eglington et al. 2008; 

Howland et al. 2016; VanderWerf et al. 2016). Thus it is important that the full extent of the 

area occupied by such species and their habitat preferences are assessed before conservation 

plans can be put into action. 

 

Ecological processes that determine habitat properties have been shown to change with 

spatial scale (Turner 1989). The factors that influence species distribution can drive habitat 

preferences similarly at large landscape and fine local scales (Brambilla et al. 2009; Holbrook et 

al. 2017; Illera et al. 2010). However, in many cases different factors play a role at different 

spatial scales (Border et al. 2017; Howland et al. 2016; Wiens et al. 1987). For example, for 

many birds, topographic features or vegetation cover can be important at landscape scales 

(Border et al. 2017; Irvin et al. 2013), but at local scales other features such as predation risk or 

presence of specific plants can be determinants (Border et al. 2017; Chalfoun & Martin 2007). 

It is also important to understand if different environmental factors are playing different roles 

in habitat selection across regions, but such studies are surprisingly rare (Fielding & Haworth 

1995; Morris et al. 2001; Rodríguez & Andrén 1999; Whittingham et al. 2003). In one of the 

few studies undertaken to date, differences in nesting habitat of birds of prey between island 

and mainland regions in Scotland have been speculated to be linked to habitat availability 

(Fielding & Haworth 1995). However, when applied to other areas, there was a lack of 

generality in the predictive success of regional models (Fielding & Haworth 1995). This implies 

that caution must be exercised when applying predictions of species distribution models 

(SDMs) to different regions. However, they remain very useful conservation tools, used 
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commonly in predicting occupancy, and gross scale habitat association studies that are often 

built to inform further specific study (Elith et al. 2006; Elith & Leathwick 2009). Similarly, it is 

important to consider whether a species is a habitat specialist or generalist. Generalist species 

successfully use a wide variety of environmental conditions and resources, whereas specialist 

species can only exploit a narrow range of conditions (Townsend et al. 2003). Thus, a generalist 

might be able to easily adapt to spatially or temporally heterogeneous habitats, while a 

specialist might be at risk of extinction if there are great changes in environmental conditions 

(Townsend et al. 2003).  Understanding if a species is able to explore a wide variety of 

environmental conditions, particularly across different regions, or is constrained by very 

specialised habitat needs is crucial for its successful conservation (Devictor et al. 2008). 

 

Determining the extent of the areas occupied by species via field surveys can be challenging, 

especially if the species are rare or cryptic (Buckland et al. 2000; Rebelo & Jones 2010; Vine et 

al. 2009), or if the potentially suitable areas are inaccessible (Bibby et al. 1992; Hill et al. 2005). 

To overcome this problem, SDMs are often employed (Bradie & Leung 2016; Elith et al. 2006; 

Elith & Leathwick 2009). SDMs aim to predict species distributions in geographical space based 

on their known distribution and inferred likely environmental drivers of habitat preferences 

(Bradie & Leung 2016; Elith & Leathwick 2009). The extent to which SDMs will reflect the 

actual species distribution depends on many factors (Elith et al. 2006; Elith & Leathwick 2009; 

Rebelo & Jones 2010). These factors include the type of environmental features used, the 

quality and resolution of the data, the extent of species distribution records, and the 

complexity of the relationships between the species and its environment, including 

competitor, parasite and predator interactions (e.g. Elith & Leathwick 2009; Godsoe et al. 

2016; Guisan et al. 2013). If SDMs are accurate, they can undoubtedly be a useful tool in 

assessing population distribution and especially in situations with few data or difficult terrain 

(Guisan et al. 2013). 

 

The Cape Verde warbler Acrocephalus brevipennis is a passerine endemic to the Cape Verde 

islands (Figure 4.1), currently classified as endangered (BirdLife International 2017). Currently, 

it is only present on Santiago, Fogo and S. Nicolau (Batalha et al. 2017). The three islands are 

geographically different from each other (Correia 1996; Hazevoet 1995; Sena-Martins & 

Moreno 1986). Since the colonisation by Europeans, ca. 500 years ago, the archipelago lost 

most of its natural flora, possibly as a result of anthropogenic effects and droughts (Hazevoet 

1995). The current flora is dominated by introduced exotic plant species, particularly 

agricultural crops and planted forests (Arechavaleta et al. 2005; Hazevoet 1995). The warbler 
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seems to inhabit somewhat different habitats on the three islands (BirdLife International 2016; 

Garcia-del-Rey 2016; Hazevoet 1995). Currently, on S. Nicolau, it is restricted to abandoned 

reed Arundo donax patches on the central area of the island and valleys with Mangifera indica 

mango trees (Batalha et al. 2017; Donald et al. 2004; Hazevoet et al. 1999). On Santiago, it was 

observed on sugarcane Saccharum officinalis and other coastal plantations and on central 

vegetated areas in the 1980s (Hazevoet 1995), and is currently present in a variety of densely 

vegetated areas (Batalha et al. 2017). On Fogo, the bird was discovered in 2004 on coffee 

Coffea arabica plantations interspersed with maize and fruit trees (Hering & Fuchs 2009; 

Hering & Hering 2005). Overall, it seems to inhabit densely vegetated and somewhat irrigated 

or wet areas (Cramp & Perrins 1992; Garcia-del-Rey 2016; Hazevoet 1995). The fact that it has 

been reported using different habitats on different islands (Donald et al. 2004; Hazevoet 1995; 

Hazevoet et al. 1999; Hering & Hering 2005) suggest its habitat preferences are related to 

structural features which are provided by different types of available vegetation on each island 

are. 

 

 

Figure 4.1 Map of the Cape Verde islands (main) with position relative to West Africa (inset). 

Cape Verde warbler populations currently exist on Santiago, Fogo and S. Nicolau. Map 

produced using open source data on ArcMap 10.1 by Helena Batalha. 
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Here, I used vegetation and habitat data, remotely sensed and collected in the field, to assess 

drivers of distribution and divergence in the three populations of the Cape Verde warbler. The 

aims were to: 1) assess if the species distribution at a landscape scale is determined by 

evergreen dense vegetation cover and produce predictive distribution maps; 2) investigate 

associations between habitat use and vegetation structure at a local scale; and 3) determine 

potential differences in habitat use between islands.  

 

4.3 Materials & Methods 

4.3.1 Landscape scale:  predicting area of occurrence of the Cape Verde warbler 

I built a SDM to assess if the continuous presence of dense green vegetation cover over both 

the wet and dry season could be used to predict areas of occurrence of the warbler on the 

three islands.  Spatial data were analysed with ArcMap 10.1 (ESRI 2011) and MaxEnt (Phillips et 

al. 2006; Phillips et al. 2004). To my knowledge, vegetation type surveys in Cape Verde are 

limited to the terrestrial protected areas (Vasconcelos et al. 2012) which make up 2.6% of the 

total country area (The World Bank 2014), and there is no complete land coverage survey at a 

national level. However, it is possible to assess vegetation cover from satellite images. The 

normalised difference vegetation index (NDVI) is a reflectance based index commonly used to 

indicate the amount of dense, green vegetation in an area, and is a widely used layer in 

geographic information system based distribution studies (Carlson et al. 1990; Pettorelli et al. 

2005). It is based on the difference in the quantity of light absorbed and reflected by live 

vegetation in the visible and near-infrared regions, and it ranges between -1 and 1 (Carlson et 

al. 1990). The more green leaves there are in an area, the higher the NDVI value will be. 

Oceans and clouds will produce NDVI values <0; barren areas will show low NDVI values, 

typically -0.1 to 0.2 (Carlson & Ripley 1997). Sparse vegetation such as that found in savannas 

or grasslands will result in medium NDVI values (0.2 to 0.4); and densely vegetated areas such 

as tropical forests, will yield the highest NDVI values, close to 1 (Carlson & Ripley 1997). Since 

NDVI is calculated from satellite images, cloud cover can be an issue as it can artificially 

decrease its value (Pettorelli et al. 2005). Therefore, when calculating it, it is best to use images 

free from cloud cover (Pettorelli et al. 2005). 

 

To calculate NDVI values, composite images were downloaded from the dataset L8 OLI/TIRS, 

accessible at https://earthexplorer.usgs.gov/. For Fogo I used images of path 201, row 50 and 

for Santiago and S. Nicolau I used images from path 210, row 49. Of all the datasets available, 

L8 OLI/TIRS was the only one with images at a sufficient spatial resolution for my analysis 

(30x30m). NASA’s Landsat 8 satellite collects images of Earth each 16 days, and since oceanic 

https://earthexplorer.usgs.gov/
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islands are often covered in clouds, I used only one image per season (the one with the least 

cloud coverage taken on the same date for both sets of islands). I used a satellite image 

representative of the dry season (April to June) and one representative of the wet season 

(September to November) in the Cape Verde archipelago (Correia 1996; Hazevoet 1995). For 

Fogo I used images LC82100502013245LGN00 (wet season, 02/09/2013) and 

LC82100502014136LGN00 (dry season, 16/05/2014); for ST and SN we used 

LC82100492013245LGN00 (wet season, 02/09/2013) and LC82100492014136LGN00 (dry 

season, 16/05/2014). I downloaded files in the GeoTIFF format, including all the spectral bands 

and geographic referencing. I then used ArcMap 10.1 to calculate NDVI values from bands 1 to 

6, and saved the data in ASCII format to use in MaxEnt version 3.3.3k (Phillips et al., 2006, 

Phillips and Dudík, 2008). 

 

To predict potential suitable habitat for the Cape Verde warbler on the three islands, I used 

MaxEnt, a software that uses presence data only (no absence data) and environmental layers 

to predict potential distribution maps for given species (Phillips et al. 2004). MaxEnt has been 

increasingly used to predict species distributions (Bariotakis et al. 2016; Border et al. 2017; 

Illera et al. 2010; Zhao et al. 2017), as it requires presence only data and performs well relative 

to other SDM methods, even with small sample sizes (Elith et al. 2006; Elith et al. 2011). It 

provides a continuous logistic output of the habitat suitability for the intended species given 

the selected environmental variables. I used the two NDVI values (wet season and dry season) 

and warbler presence data on Santiago, Fogo and S. Nicolau (from observations collected 

during the wet season of 2013) in MaxEnt to predict the area occupied by the warbler. I used 

presence data (GPS points) collected in 2013 by surveying sites where the warbler was known 

to be present from the literature (Donald et al. 2004; Hazevoet 1995; Hazevoet et al. 1999; 

Hering & Fuchs 2009) plus sites identified by my team in 2013 and where it had not previously 

been reported (Batalha et al. 2017). I used a total of 57 presences for Santiago, 42 for Fogo and 

22 for S. Nicolau. I modelled the three datasets separately to account for potential differences 

in the relationships between warbler presence and vegetation cover across islands. To 

evaluate model fit and predictive ability, MaxEnt calculates a metric called “the area under the 

receiving operator characteristic curve”, AUC. This metric is an indication of the ratio of the 

model’s sensitivity (true positive rate, i.e. proportion of positive data points that are correctly 

considered as positive, with respect to all positive data points) to the model’s specificity (1 - 

true negative rate, which is equivalent to the false positive rate, i.e. the proportion of negative 

data points that are mistakenly considered as positive, with respect to all negative data 

points). The rationale behind this is to get a measure of the ratio of true versus (potentially) 
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false presences. Therefore, the higher the AUC, the better the predictive ability of the model 

should be. Generally, an AUC value > 0.70 is considered to indicate a good discriminant ability 

of the model (Lobo et al. 2008; Pearce & Ferrier 2000), but this can only be verified with 

presence-absence data. It is important to note that MaxEnt does not deal with real absences, 

so the randomly selected points for which there was no real record are simply background 

points and species absence from those points might be real or just result from a lack of records 

(Lobo et al. 2008; Phillips et al. 2006). I assessed model fit by examining the AUC of each model 

and determined the influence of both predictor variables, i.e. NDVI value for wet and dry 

season, in the species' distributions by assessing their respective permutation importance 

(Maslo et al. 2016).  

 

 

4.3.2 Local scale:  habitat use by the Cape Verde warbler 

Habitat sampling took place between September and November 2014 on Santiago, Fogo and S. 

Nicolau. I did not use sample habitat along a grid or transect because patches of vegetation 

that could potentially be occupied by the warbler appear rather irregularly throughout the 

Cape Verde islands (pers. obs.), and this can cause traditional censuses or regularly spaced 

point counts to fall outside potentially suitable habitat or in inaccessible locations (Batalha 

2014). For these reasons, sampling along a grid or transect can cause observers to miss many 

suitable habitat points or individuals and thus strongly reduce the data points collected within 

my time and logistical constraints. This means that the sampling was not completely random, 

thus artificially increasing the probability of finding the birds. However, the alternative would 

be to risk not obtaining a large enough sample size. The Cape Verde warbler inhabits densely 

vegetated patches on all three islands (Donald et al. 2004; Hazevoet 1995; Hering & Fuchs 

2009). Initial surveys confirmed that the warbler was absent from more barren areas.  I then 

restricted habitat sampling to areas with structured vegetation (of any kind), including areas 

where the bird had been previously detected (Batalha et al. 2017; Donald et al. 2004; Hazevoet 

1995; Hazevoet et al. 1999; Hering & Fuchs 2009), and areas with dense vegetation but where 

the bird had not been recorded before. Within those areas I sampled 10x10 m random habitat 

plots throughout accessible locations. I aimed to sample plots in all kinds of dense vegetation, 

e.g. coffee or sugarcane plantations, mountain or coastal forests, patches of abandoned reed, 

etc. This was done in as many different areas of each island as possible when taking into 

account logistic and time constraints. I aimed to sample a minimum of ten locations where the 

bird was present (positive locations) and five locations where the bird was absent (negative 

locations) per island in the available time. 
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At each location, I sampled a minimum of three 10x10 m plots (four plots at three locations) 

roughly 50 m away from each other, following Showler et al. (2002). I aimed to sample 

locations at least 200m away from each other, across the entire densely vegetated areas of the 

islands, but due to the narrow distribution range of the bird, difficult accessibility of habitat in 

some areas of the islands and very small population on S. Nicolau this was not always possible. 

The minimum distance between two independent sampling locations was 87 m for Santiago, 

106 m for Fogo and 88 m for S. Nicolau. Before sampling geographically close locations, careful 

consideration was taken to ensure that 1) if birds were present, they held two independent 

territories or 2) the general habitat type (e.g. sugarcane plantation, forest, reed patches) 

differed between locations. The three islands where the Cape Verde warbler is present display 

a multitude of micro-habitats, created by different combinations of elevation, rainfall and 

vegetation type (Hazevoet 1995). The landscape can change dramatically over distances of less 

than 200 m (pers. obs.). In each plot, several structural vegetation traits and topographical 

features including elevation and slope were measured (see Table 4.1). Green vegetation needs 

abundant water, and in Cape Verde there are three main water sources: 1) the rainy season 

(Correia 1996; Hazevoet 1995; Sena-Martins & Moreno 1986); 2) the north-eastern trade 

winds, which bring mist clouds as they encounter the mountains, thus making the north-

eastern slopes wetter than the rest of the islands (Correia 1996; Hazevoet 1995; Sena-Martins 

& Moreno 1986); and 3) by artificial irrigation and dams, which are widely used for agriculture 

(Hazevoet 1995). There are no permanent natural water sources on Cape Verde apart from a 

few streams on Santo Antão. For all these reasons, distance to water bodies was not included 

in the analyses as it unlikely to represent a real association with available water or soil 

moisture.  

 

To determine the exact area to sample, I would select a random point, record it in a Garmin 

eTrex® H GPS and wait for 10 minutes (5 minutes of silence and 5 minutes of male song 

playback) to check if warblers would come within approximately a 14 m radius of where the 

GPS was; I would then mark a 10x10 m square encompassing the GPS and the point where the 

bird had landed. Playbacks were used because they increase detection rate (VanderWerf et al. 

2016), and even though they are more likely to attract adult males for this study the age and 

sex of the birds observed did not matter. If birds were present, they would usually come within 

a 10 m radius; only on one occasion did a bird come less than 14m away but not less than 10 

m. On a few occasions birds appeared after the initial 10 minutes period, i.e. while the 

vegetation sampling was being underway. In these cases I considered birds to be absent from 

the plot. The plots were positioned at least 50 m from each other, in different directions 
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mainly determined by terrain accessibility and presence of vegetation. Habitat features 

measured within each plot (Tables 4.1 and 4.2) were selected based on literature (Braun-

Blanquet 1932; Lee & Marsden 2008) and my own assessment of warbler territory features, as 

recommended by Bibby et al. (1992) and Wildi (2013). All percentage cover measurements 

were approximated to the nearest superior value within six categories based on the Braun-

Blanquet scale (Braun-Blanquet 1932; Wikum & Shanholtzer 1978): 0%, 5%, 25%, 50%, 75% or 

100%. 

 

Table 4.1 Cape Verde warbler habitat variables measured within each 10x10 m presence or 

absence sampling plot during the breeding season of 2014, with corresponding unit, 

estimation method and description. 

Variable Unit Estimation Description 

Elevation metres GPS Altitude above sea level 

Slope degrees visual Terrain inclination 

Maximum vegetation (type) 
cover 

percentage visual Maximum percentage of ground area, in a 
horizontal plane, covered by a certain vegetation 
type (see Table 4.2) 

Maximum bare ground 
cover 

percentage visual Maximum percentage of ground area, in a 
horizontal plane, not immediately covered with 
any plant species (e.g. clear ground under mango 
and coffee trees) 

Maximum shade cover percentage visual Maximum percentage of ground area, in a 
horizontal plane, that could be shaded because 
of being covered by tree canopy, reed or shrub 
coverage 

Maximum vegetation (type) 
height 

metres visual Maximum height of each vegetation category, to 
the nearest metre 

Average maximum 
vegetation height 

metres visual Average of maximum vegetation height at five 
different points within the plot, regardless of 
vegetation type 

Average diameter centimetres tape measure Average diameter of 20 stems, branches and tree 
trunks representative of the most abundant 
plant species within each plot, measured at 
breast height (1.2 to 1.5 m) 
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Table 4.2 Definitions for vegetation categories measured within each 10x10 m sampling plot in 

this study of Cape Verde warbler habitat, with examples. 

Vegetation 
category   Examples Definition 

Tree Mango (Mangifera indica); coffee 
(Coffea arabica); mesquite (Prosopis 

juliflora) 

Perennial plant with an elongated stem, or trunk, 
supporting branches and leaves in most species, having a 
reticulate structure but often at some distance from the 
ground 

Reed Reed (Arundo donax); sugar cane 
(Saccharum officinallis); maize (Zea 

mays) 

Tall grass with slender often prominently jointed stems, 
having a vertical structure 

Woody shrub Spanish flag (Lantana camara); 
bushmint (Hyptis pectinata); 

Mauritius hemp (Furcrarea foetida); 
Acacia sprouts 

Small to medium-sized woody plant, with multiple stems 
and usually shorter than a tree, having a reticulate 
structure that can start at ground level; because this 
classification was meant to reflect habitat structure and 
not species taxonomy, I included in this category sprouts 
of future trees and cactus-like plants 

Herbaceous 
shrub 

Morning glories (Ipomoea spp.); 
beans (Phaseolus vulgaris); other 
climbing plants (e.g. Momordica 

charantia) 

Plants smaller than woody shrubs, with no persistent 
woody stem above ground, but providing a more 
structural layer of cover than herbs and grasses; this 
vegetation category was measured because in some 
places a large portion of the plot was covered in said 
plants, which meant that the warbler had plenty of place 
to hide  

 

As there can be several layers of vegetation in one place, cover percentages can add up to 

more than 100%; shade cover is the only variable that represents the total foliage cover within 

a plot. Cape Verde has few native plant species, approximately 80 of which are endemic 

(Gomes et al. 2003), but many introduced species (Arechavaleta et al. 2005; Duarte et al. 2008; 

Hazevoet 1995). Plant species identification was done based on the latest biodiversity checklist 

published for Cape Verde (Arechavaleta et al. 2005), the official management plans for the 

Natural Parks of Serra Malagueta (Mason et al.), Monte Gordo (S. Nicolau) and Fogo, and with 

help of the local biologists. Within each plot I also visually estimated the maximum vegetation 

height at five different points and measured the diameter at breast height (ca. 1.30 to 1.50m) 

of 20 stems/trunks of the most representative vegetation species.  

 

To test whether specific local scale features, within the larger densely vegetated areas, predict 

the presence of the warbler, I used logistic generalized linear mixed models with warbler 

presence as a response variable and location within island as a random effect. To avoid 

overparameterising the models I defined three subsets of variables to be tested in order 

 

1. Coarse features representative of the general habitat structuring of each plot, 

including topography features (elevation, slope) and general composite vegetation 

structure features (average maximum vegetation height, bare ground cover and shade 

cover). 
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2. Fine features that contributed to the composite features previously examined (i.e. 

maximum height and percentage cover of each of the vegetation types) and average 

diameter of stems and branches at breast height. 

3. Individual plant species cover; analyses were restricted to the 14 most common plant 

species found in at least ten plots, and with minimum average cover of 25% of the 

plot. 

 

I tested for spatial autocorrelation between sampling plots with the function lm.morantest 

from package spdep (Bivand et al. 2013; Bivand & Piras 2015), and there was autocorrelation 

on all islands (all Moran’s I ≥ 2.632, all p values ≤ 0.004). Therefore, I included location as a 

random effect in the final models. Percentage cover variables from each plot were modelled as 

continuous data (Border et al. 2017; Eglington et al. 2008; Smart et al. 2006). No 

multicollinearity within each subset was detected after testing with the function vif in package 

car (Fox & Weisberg 2011): all VIF between 1.152 and 1.477 for coarse features; 1.493 and 

2.471 for fine features; 1.16 to 1.80 for plant species. For each subset I fitted all possible 

combinations of variables and used a model selection approach (Burnham & Anderson 2007) 

comparing each model’s Akaike Information Criterion (AIC) as implemented in function dredge 

of package MuMIn (Bartoń 2009). Models that differ by ΔAIC < 2 are treated as equivalent 

(Burnham & Anderson 2007). To estimate the relative importance of the explanatory variables, 

I calculated model-averaged coefficients with the function model.avg of package MuMIn. I also 

compared the fit of the best model (with the lowest AIC) to the fit of the null model (intercept 

and random effects only) with AIC and another measure of goodness of fit, the pseudo-R2 

(Nakagawa & Schielzeth 2013). The pseudo-R2 quantifies the variance explained by the fixed 

effects (marginal R2) and fixed and random effects (conditional R2). A good predictive model 

would not have a large difference between the two pseudo-R2, reflecting that fact that the 

random effects do not account for much of the variance relatively to the fixed effects. I 

calculated the pseudo-R2 with the function r.squaredGLMM (Johnson 2014; Nakagawa & 

Schielzeth 2013) of package MuMIn. 

 

Finally, I verified if MaxEnt habitat suitability at a landscape scale predicted warbler presence 

at a local scale. In other words, if within densely vegetated areas, warblers were present in 

sites with higher dense evergreen vegetation values and absent from sites with lower values. I 

overlaid the results of the habitat sampling points of 2014 to the MaxEnt output maps (Figures 

4.2 to 4.4) and extracted the habitat suitability value for each point. As previously, location 
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was included as a random effect in the final model. I used a binomial logistic mixed model with 

NDVI as a predictor and island as a factor, using function glmer, package lmertest, adapting the 

method used by  Border et al. (2017). 

 

To test whether the warbler uses different habitats across the islands, I performed a principal 

components analysis (PCA) for each subset of variables (coarse, fine and plants) using prcomp 

of package stats (R Core Team 2016).  I used only plots where the warbler was present. For 

plant species I ran an additional PCA using presence and absence data. The purpose of this was 

to compare plant species composition in plots used by the warbler (where it was present) and 

plant species composition of the available habitat overall (plots where the warbler was present 

and plot from where it was absent). I also tested for significant differences between groups 

(islands) using the presence-absence data and the presence only data with a MANOVA with 

function Wilks.test, package rrcov (Todorov & Filzmoser 2009). For easier visualisation of plot 

clusters, I included one confidence interval ellipse per island on the PCA plots, created with the 

function autoplot of package ggplot2 (Wickham 2009). The ellipses show the 0.95 confidence 

interval assuming a normal distribution (Fox & Weisberg 2011). 

 

4.4 Results 

4.4.1 Landscape scale:  predicting area of occurrence of the Cape Verde warbler 

MaxEnt models based on remotely sensed data predicted the larger areas of distribution of the 

Cape Verde warbler. The habitat suitability maps produced with MaxEnt (Figures 4.2 to 4.4), 

which broadly describe the greenness and density of the vegetation on the Cape Verde islands, 

had the following AUCs: Santiago = 0.866, Fogo = 0.988 and S. Nicolau = 0.980.  The NDVI of 

the dry season contributed more to predicting habitat suitability (Table 4.3), suggesting that 

areas with year round dense green vegetation best predicted warbler presence. However, on 

S. Nicolau, the importance of NDVI was lower than on other islands (Table 4.3).  
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Figure 4.2 Predicted area of occurrence of the Cape Verde warbler for the island of Santiago, 

based on the proxy for vegetation cover, NDVI, of the wet season (September 2013) and dry 

season (May 2014); most areas with higher suitability values are either forested mountain tops 

of artificially irrigated plantations in dry riverbeds; habitat sampling plots (November 2014);  

area of the Natural Park of Serra Malagueta overlaid. 
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Figure 4.3 Predicted area of occurrence of the Cape Verde warbler for the island of Fogo, 

based on the proxy for vegetation cover, NDVI, of the wet season (September 2013) and dry 

season (May 2014); most areas with higher suitability values are either the forested area or 

the coffee plantations on the north-east slope of the island; habitat sampling plots (October 

2014); area of the Natural Park of Fogo overlaid. 

 



Chapter 4: Cape Verde warbler habitat 
 

127 
 

 

 
Figure 4.4 Predicted area of occurrence of the Cape Verde warbler for the island of S. Nicolau, 

based on the proxy for vegetation cover, NDVI, of the wet season (September 2013) and dry 

season (May 2014); most areas with higher suitability values are either the forested area or 

the central valley which retains moisture brought by the north-eastern trade winds; habitat 

sampling plots (September and November 2014); area of the Natural Park of Monte Gordo 

overlaid. 
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Table 4.3 Habitat suitability model for the Cape Verde warbler on the islands of Santiago, Fogo 

and S. Nicolau; this table shows the percent contribution and permutation importance of the 

variables used in the MaxEnt models (NDVI of dry and wet season) on each island. 

 

Island Variable Percent 
contribution 

Permutation 
importance 

Santiago Dry season NDVI 94.5 95.2 

 Wet season NDVI 5.5 4.8 

Fogo Dry season NDVI 88.9 97.8 

 Wet season NDVI 11.1 2.2 

S. Nicolau Dry season NDVI 62.6 73.4 

 Wet season NDVI 37.4 26.6 

 
 

4.4.2 Local scale: habitat selection by the Cape Verde warbler 

I sampled a total of 192 habitat plots, in 63 independent locations across the three islands: 88 

plots on Santiago, 52 on Fogo and 52 on S. Nicolau. The warbler was present in 102 plots and 

absent from 90. I identified 69 different plants (60 of them were identified to the species level, 

eight to the genus level and one to the family level). The 14 most common plants, i.e. the ones 

occupying an average of more than 25% of the plot area in at least 10 plots, are shown in Table 

4.4. No plant species native to Cape Verde were among the most common in the sampling 

plots (Table 4.4). 

 

Table 4.4 Plants species included in the analysis of Cape Verde warbler habitat, with number of 

plots where they were found and average percentage cover if present; Mimosacea refers to 

unidentified trees of this family. 

 
Plant species Plant type Number of plots Average percentage 

cover in plot 

Prosopis juliflora Forestry tree 18 69.72 

Saccharum officinalis Agricultural crop 36 66.94 

Jacaranda mimosifolia Forestry tree 10 53.00 

Mangifera indica Fruit tree 34 51.47 

Coffea arabica Agricultural crop 33 48.33 

Eucalyptus spp. Forestry tree 31 48.23 

Arundo donax Exotic 50 47.10 

Lantana camara Exotic 100 43.20 

Musa spp. Agricultural crop 25 38.80 

Zea mays Agricultural crop 48 34.79 

Grevillea robusta Forestry tree 17 29.12 

Mimosaceae Forestry tree 34 26.03 

Pinus spp. Forestry tree 10 26.00 

Hyptis pectinata Exotic 39 25.51 
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Coarse features 

The best model (lowest AIC) for warbler presence with coarse features as explanatory 

variables retained only bare ground cover and average maximum vegetation height (Table 4.5). 

Model averaging indicates that average maximum vegetation height and bare ground cover 

are the variables that have the largest importance (0.67 and 0.66 respectively) in the subset of 

best models, with both present in five of the eight best models (Tables 4.5 and S4.1). The ΔAIC 

between the null and the best models is 1.7, and the conditional pseudo-R2, is much larger 

than the marginal pseudo-R2, (Table 4.6). This indicates that the random effect, ‘location’, has 

a disproportionate effect in explaining warbler presence when compared to the other 

variables tested. Additionally, the differences in AIC and pseudo-R2 between the best model 

and the null model are small (ΔAIC < 2). This indicates that the coarse variables included in this 

analysis have little power to predict warbler presence within densely vegetated areas. 

 

Table 4.5 Logistic linear mixed models for Cape Verde warbler presence with habitat features 

(coarse and fine features and plants) as predictors and location as a random effect. For the 

best model (lowest AIC), the table shows the estimate and standard error (SE), Z value test of 

significance and P value for each variable. For the models retained by the averaging procedure 

(ΔAIC ≤ 2 when compared to the best model) the table shows the coefficients, relative 

importance in the subset of models and number of models in which each variable was present. 

Significant values in bold. 

 
 

  
Best model Model averaging 

 

  Estimate SE Z P value Coefficients Importance 
N 

models 

C
o

ar
se

 f
e

at
u

re
s 

Intercept 0.587 0.708 0.829 0.407 0.585 

 

8 

Bare ground cover -0.020 0.011 -1.838 0.066 0.0971 0.67 5 

Average maximum 
vegetation height 

0.155 0.087 1.780 0.075 -0.0128 0.67 5 

Elevation 

    

-0.0001 0.11 1 

Shade cover 

    

-0.0323 0.22 2 

Slope 

    

-0.0008 0.09 1 

Fi
n

e 
fe

at
u

re
s 

Intercept -2.817 1.349 -2.087 0.037 -1.946 

 

22 

Average diameter -0.043 0.042 -1.015 0.310 -0.001 0.04 1 

Maximum reed 
height 

0.346 0.202 1.708 0.088 0.355 0.91 20 

Maximum woody 
shrub height 

-0.631 0.391 -1.615 0.106 -0.183 0.33 7 

Maximum tree 
height 

0.076 0.073 1.043 0.297 0.013 0.19 5 

Reed cover 0.025 0.013 1.858 0.063 0.012 0.53 11 

Tree cover 0.029 0.014 2.003 0.045 0.018 0.78 17 

Woody shrub cover 0.027 0.013 2.063 0.039 0.014 0.65 14 

Herbaceous shrub 
cover 

    

-0.008 0.38 8 
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Table 4.5 (Cont.) 

P
la

n
ts

 
Intercept -1.855 0.657 -2.822 0.005 -1.868 

 

24 

Arundo donax 0.057 0.019 3.025 0.002 0.058 1 24 

Coffea arabica 0.08 0.026 3.043 0.002 0.083 1 24 

Eucalyptus spp. 0.043 0.021 2.038 0.042 0.042 1 24 

Jacaranda 
mimosifolia 

0.06 0.038 1.596 0.111 0.051 0.82 19 

Saccharum 
officinalis 

0.027 0.011 2.463 0.014 0.028 1 24 

Zea mays 

    
-0.008 0.33 8 

Hyptis pectinata 

   
0.007 0.31 8 

Grevillea robusta 

   
0.008 0.27 7 

Mangifera indica 

   
0.003 0.19 5 

Unidentified mimosaceae 

  
-0.003 0.11 3 

Pinus spp. 

    
-0.008 0.1 3 

Musa spp. 

    
0 0.03 1 

 
 
 
Table 4.6 Pseudo-R2, AIC values and differences between the best and null models (ΔNull) for 

Cape Verde warbler presence with coarse features, fine features and plants as predictors. For 

the null model, pseudo-R2 marginal is 0.00, pseudo-R2 conditional is 0.67 and AIC is 228.8 for 

all variable subsets. 

 Coarse Fine Plants 

 
Best model ΔNull Best model ΔNull Best model ΔNull 

pseudo-R
2
 marginal 0.047 

 
0.118 

 
0.319 

 
pseudo-R

2
 conditional 0.696 0.027 0.736 0.067 0.777 0.107 

AIC 227.1 1.7 226.9 1.9 205.4 23.4 

 
 

Fine features 

The best model (lowest AIC) for warbler presence with fine features as explanatory variables 

retained tree and woody shrub cover as significant variables (Table 4.5). Model averaging 

shows that maximum reed height and tree cover are the variables that have the largest 

importance (0.91 and 0.78 respectively) in the subset of best models, and both are present in 

20 and 17 of the 22 best models (Tables 4.5 and S4.2). Woody shrub cover and reed cover are 

next, with an importance of 0.65 and 0.53 respectively, and are present in 14 and 11 of the 22 

best models. This is consistent with the significant variables retained in the best model, 

suggesting that these are the variables that best explain warbler presence at a local scale. The 

conditional pseudo-R2 is much larger than the marginal pseudo-R2 for the best model, and the 

differences in AIC and marginal pseudo-R2 between the best model and the null model are 

small (ΔAIC < 2), even if slightly larger than for the model with the coarse features (Table 4.6). 

  
Best model Model averaging 

 

  Estimate SE Z P value Coefficients Importance 
N 

models 
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This suggests that none of the fine variables has great power in predicting warbler presence 

within densely vegetated areas, but there might be a tendency for the warbler to associate 

with certain structural features.  

 

Plants 

The best model (lowest AIC) for warbler presence with plants as explanatory variables retained 

percentage cover of reed, coffee, eucalypt Eucalyptus spp. and sugarcane (Table 4.5). Model 

averaging shows that reed, coffee, eucalypt and sugarcane are the plants that have the largest 

importance (all = 1) in the subset of best models, and all are present in the 24 best models 

(Tables 4.5 and S4.3). These are the same significant variables retained in the best model, 

suggesting that these are the variables that best explain warbler presence at a local scale. The 

conditional pseudo-R2 is much larger than the marginal pseudo-R2 for the best model but, 

unlike with the coarse and fine features models, the differences in AIC and marginal pseudo-R2 

between the best model and the null model are large (Table 4.6). The ΔAIC is 23.4, and the 

difference in variance explained by the best model and the null model is 0.319 (Table 4.6). This 

suggests that the model with these plant percentage cover explains warbler presence at a local 

scale significantly better than the null model. 

 

At a local scale, warbler presence was not significantly more likely at points with higher habitat 

suitability in the MaxEnt output for any island (Table 4.7).  

 

Table 4.7 Logistic generalized linear model for Cape Verde warbler presence on each island 

with NDVI based MaxEnt habitat suitability as predictor and location as a random effect. The 

table shows the estimate and standard error (SE), the z value test of significance and P value 

for each island.  

 

 Estimate SE Z P value 

Intercept -0.551 0.766 -0.720 0.472 

Santiago 1.581 1.437 1.100 0.271 

Fogo 3.277 1.751 1.871 0.061 

S. Nicolau -0.219 1.716 -0.127 0.899 

 
 

 

Differences across islands 

For coarse and fine habitat features, neither of the PCAs suggested any clustering per island 

(Figure 4.5). In fact, the data points for all three islands overlapped largely in both PCAs (Figure 

4.5). For the coarse and fine features the two first axes of the PCA combined explained 60.2% 
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and 58.1% of the variance respectively (Tables S4.4 and S4.5). None of the PCA axes for either 

of the coarse or fine features explained more than 38.8% of the variance (Tables S4.4 and 

S4.5). Wilks’ lambda was large for both habitat feature subsets, when using only presence data 

(Wilks' Lambda = 0.570, Chi2-Value = 54.474, DF = 10, p-value < 0.001 for coarse features; 

Wilks' Lambda = 0.506, Chi2-Value = 64.762, DF = 18, p-value < 0.001 for fine features). 

 

For percentage coverage by plants, the first two axes of the PCA using only plots where the 

warbler was present explained only 29.6% of the variance, and none of the axes explained 

more than 17.7% of the variance (Tables S4.6 and S4.7). When plotted, this PCA shows a large 

reduction in variance on the S. Nicolau cluster of points when compared to the other two 

islands (Figure 4.5). Wilks’ lambda for the plant PCA using only plots where the warbler was 

present was small (Wilks' Lambda = 0.093, Chi2-Value = 219.7, DF = 28, p-value < 0.001), 

indicating that between population variation in plants used is large when compared to within 

population variation. By contrast, in the plant PCA including both the plots where the warbler 

was present and absent did not show any reduction in the variance explained for S. Nicolau 

when compared to the other two islands (Figure 4.6). For the plant PCA using presence and 

absence data, Wilks’ lambda was relatively large (Wilks' Lambda = 0.309, Chi2-Value = 214.23, 

DF = 28, p-value < 0.001), suggesting the between population variation is masked by within 

population variation. Reed, coffee, eucalypt and sugarcane coverage in plots where the 

warbler was present and absent show different trends on the three islands (Figure 4.7). 

 

a)  

Figure 4.5 Principal components analysis of a) coarse habitat features, b) fine habitat features 

and c) plants using plots where the Cape Verde warbler was present (n = 102), clustered by 

population. Ellipses show 95% confidence intervals. 

 



Chapter 4: Cape Verde warbler habitat 
 

133 
 

b)   
 

c)  
Figure 4.6 (Cont.) 

  

 

 
Figure 4.7 Principal components analysis of plant species composition using plots where the 

warbler was present and absent, for comparison (right; n = 192), clustered by population 

Ellipses show 95% confidence intervals. 
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Figure 4.8 Barplots of number of plots with each percentage cover category of each species of 

plants that was significant in the models predicting warbler presence. Islands: 1 = Santiago; 2= 

Fogo; 3 = S. Nicolau. Within each island, plots where the Cape Verde warbler was present and 

absent are coded 1 and 0, respectively. 

 

4.5 Discussion 

Our study is the first to assess and compare the Cape Verde warbler habitat across the three 

islands where it exists. Overall, I found that the Cape Verde warbler can be generally found in 

evergreen, densely vegetated areas on Santiago, Fogo and S. Nicolau, but not in areas where 

the vegetation is not dense or green year round. However, neither the presence of dense 

green vegetation nor structural habitat characteristics predicted warbler presence at a local 

scale. There were no structural habitat differences in sites where the warbler was found 

between islands. However, there were differences in plant species composition in sites used by 

the warbler between S. Nicolau and the other two islands. Overall, this suggests that the 

warblers select their territories within densely vegetated areas based on something other than 

vegetation structure (e.g. prey abundance, nesting sites, absence of predators). It also suggests 

that the warblers of S. Nicolau use a more specialised habitat than the warblers on Santiago or 

Fogo. This could be related to a process or trait intrinsic to that population (e.g. they can be 

suffering from inbreeding depression). 
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MaxEnt models based on remotely sensed data predicted the larger areas of suitable habitat 

for the warbler on all three islands. The NDVI values (used as a proxy for the density of green 

leaves) in the dry season contributed to the output maps more than the NDVI during the wet 

(breeding) season. This suggests that the warblers might set up territories in areas where there 

is dense, green vegetation year round, even during the dry season. The Cape Verde warbler 

breeds after the first rains, during September to November (Cramp & Perrins 1992; Hazevoet 

1995) and, at a first glance, it would seem plausible that the presence of green vegetation 

during the wet season would be important in determining their breeding habitat selection. 

However, this is not the case, as green vegetation during the dry season was more important 

in predicting areas of suitable habitat for the warbler, even though predictions were based on 

records of the warbler during the wet season (Table 4.3). To my knowledge the phenology of 

this bird has never been studied in detail (Cramp & Perrins 1992; Garcia-del-Rey 2016; 

Hazevoet 1995). However it is plausible that these birds hold the same territories during the 

whole year, as for example the Seychelles warbler Acrocephalus sechellensis (Komdeur 1992). 

Warblers are heard singing, probably in pair-bonding behaviour, in April and May during the 

dry season (A. Rendall, pers. comm.) and song playback tests performed during the dry season 

elicited territorial defence behaviour by the same colour-ringed birds identified in the location 

in the previous wet season (pers. obs.). It seems likely that the birds establish their territories 

during the dry season, when areas with green vegetation are most constrained, so that they 

can hold a territory during the whole year. The dense, evergreen vegetation might provide 

shelter from predators, abundant food supply and support structures for birds to build their 

nest on. Cape Verde, in the Sahel zone, has an arid, semi-tropical climate with a short rainy 

season (Correia 1996; Hazevoet 1995; Sena-Martins & Moreno 1986). The islands are located 

slightly north of the Intertropical Convergence Zone, which means that the rainy season might 

not occur every year (Correia 1996; Philander et al. 1996), and droughts of up to 18 years have 

been recorded (Hazevoet 1995). Distance to the nearest water source was not used as a 

variable in the analyses because, in Cape Verde, there are no permanent water courses except 

on the island of Santo Antão (Hazevoet 1995) and the main sources of irrigation are the rains, 

ocean mists and anthropogenic irrigation (see Methods). Thus, distance to the nearest dry 

riverbed is unlikely to represent an association of sampled sites with water features. Aspect is 

often included in environmental models but in many cases it was impossible to determine due 

to terrain irregularity. However, I do not exclude the possibility that water availability is 

important for the warbler. For example, water retention by the soil can be important not just 

for vegetation but also for insect and arthropod abundance. 
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At a local scale, none of the coarse structural habitat features that I tested predicted the 

presence of the warbler. The best model of predictor variables was not better at explaining 

warbler presence than the null model. Neither elevation nor slope had any significant effect in 

predicting warbler presence. Contrary to previous observations (Hazevoet 1995; Hering & 

Fuchs 2009), I noted that the warbler can be found on all elevations, from sea level to the top 

of mountains, as high as 1384 m on Fogo (data not shown). It can also be found on all types of 

terrain topography, from flat areas such as sugarcane plantations to very steep, inaccessible 

ravines covered in invasive species (pers. obs.). As long as there is vegetation cover, elevation 

and slope do not seem to be important for this bird. In the best model testing for the impact of 

fine vegetation features, tree and woody shrub cover were the only significant variables, while 

reed cover and maximum reed height were close to significant. However, the “reed” variables 

include various species i.e. reeds, sugar canes and maize, because all three plants have the 

same vertical structure, different from trees and shrubs. Model averaging indicated that these 

four variables (tree, woody shrub and reed cover and maximum reed height) had most 

importance in determining the presence of the warbler (Table 4.5). However, the null model 

was also included in the top model set. This can indicate that none of the structural variables 

that I measured are key variables involved in habitat selection by the warbler at local scales, or 

that the models have little power because of the limited number of independent data points 

per island. However, it is worth nothing that the model including plant species cover showed 

different results than the models including structural variables (see below), suggesting the 

results of all models are not consequences of little power of the models. The association of the 

warbler with structural habitat features might be mediated by another factor that I have not 

measured. For example, food or nesting site availability might be important for the warbler at 

a local scale, but the limited knowledge on the bird’s feeding and nesting habits made it 

impossible to collect these data in a consistent way. None of the coarse or fine scale structural 

habitat features models differed significantly between islands for sites where the warbler was 

present, suggesting the warbler does not select structurally different sites on any island. 

Furthermore, habitat suitability did not predict warbler presence for any island, suggesting 

that other factors might play a role in Cape Verde warbler habitat selection at finer scales. 

 

Unlike other local scale features, some plant species seem to predict warbler presence. The 

best model set indicated that reed, coffee, sugarcane and eucalypt are all significantly 

associated with warbler presence. Importantly the best model explained warbler presence 

considerably better than the null model. On S. Nicolau, the warbler seems to prefer plots with 

reed, on Fogo plots with coffee, and on Santiago plots with eucalyptus and sugarcane (Figure 
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4.7). Apart from Eucalyptus spp., which is present in mountain forests where the warbler had 

not been described previously, all the species were known from the existing anecdotal 

literature (Donald et al. 2004; Hazevoet 1995; Hazevoet et al. 1999; Hering & Fuchs 2009). For 

example, on Santiago the bird had been described in “plantations”, a term which in Cape 

Verde often includes sugarcane (Hazevoet 1995). On Fogo, it had been clearly associated with 

coffee plantations (Hering & Fuchs 2009; Hering & Hering 2005). On S. Nicolau it had only been 

found on reed stands, apart from occasional territories on dry river valleys holding both mango 

trees and patches of reed (Donald et al. 2004; Hazevoet et al. 1999). A degree of association 

between the warbler and certain plant species is therefore apparent, but the reason for this is 

unknown. These associations could be unrelated to a specific dependence of the warbler on 

certain plant species, but could reflect other factors, such as insect availability, suitability for 

nest structures, water availability (retention by the soil or irrigation of the fields, or moist 

brought by the clouds into the mountain forests), or other niche dimension or associated 

factor that was not directly measured in this generalist warbler.  

 

None of the most abundant 14 plant species sampled in the plots (Table 4.4) are native to 

Cape Verde (Arechavaleta et al. 2005; Gomes et al. 2003). I found either plants used for 

agriculture, such as coffee, mango trees or sugarcane; trees used for forestry such as 

eucalypts, jacaranda Jacaranda mimosifolia and other trees of the Mimosaceae family; or 

exotic invasives such as Spanish-flag Lantana camara, reed, mesquite Prosopis juliflora and 

bushmint Hyptis pectinata. This indicates that most of the densely vegetated areas in Cape 

Verde are not covered in natural vegetation but are either agricultural or abandoned 

agriculture terrain. This makes it difficult to implement conservation actions since these areas 

are normally privately owned, rather than being located within protected areas. Plantations 

can be protected as long as there are incentives for agriculture. Conversely, the invasive plants 

are often subject to eradication programmes especially in the Natural Parks of Serra 

Malagueta, Monte Gordo and Fogo. The native scrub plant tortolho Euphorbia tuckeyana, 

previously hypothesised as the original Cape Verde warbler habitat (Hazevoet 1993; Hazevoet 

1995), was present in only eight sampled plots, three with and five without the bird (data not 

shown). Taken together, these results suggest that while protecting native plant species has an 

intrinsic value for the preservation of the Cape Verdean biodiversity, it is unlikely to benefit the 

warbler, and removal of exotic vegetation used by the warbler can actually be harmful for this 

species. 
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Year-round dense green vegetation does not explain the habitat occupancy pattern of the 

Cape Verde warbler on S. Nicolau as it does on the other two islands (Table 4.3). In fact, on S. 

Nicolau, the importance of dry season NDVI for the habitat suitability maps was lower than on 

other islands (Table 4.3), which suggests that on this island evergreen dense vegetation cover 

predicts habitat suitability for the warbler less well than on other islands. On S. Nicolau the 

warbler was never found in the mountain forests, the lower sugar cane plantations or the 

Prosopis plantations (Figure 4.4), despite these sites being surveyed three times (in 2013 and 

2014 during the breeding season, and in 2016 during the dry season, data not shown). 

Additionally, there are some differences in plant composition between islands when the sites 

where the warbler was present are compared (Figure 4.5). Importantly, it seems that the birds 

on S. Nicolau use a narrower range of plant species than the birds on Santiago and Fogo, but I 

did not find associations with specific structural traits. Overall, it seems that on Santiago and 

Fogo the warbler prefers agricultural or forested areas, while on S. Nicolau it is absent from 

such places and mostly confined to reed patches on mountain slopes. These results are in 

accordance with previous observations (Donald et al. 2004; Hazevoet 1993; Hazevoet 1995; 

Hazevoet et al. 1999; Hering & Fuchs 2009; Hering & Hering 2005). It appears that, on S. 

Nicolau, the warbler might not be using the entire suitable habitat available, indicating a non-

saturated population. The reason for this is unclear. One possibility is that this population may 

be limited due to the detrimental effects of inbreeding depression (Brook et al. 2002; Crnokrak 

& Roff 1999; Hedrick & Kalinowski 2000). Genetic diversity in the S. Nicolau population is 

significantly lower than that of the other two populations (Batalha et al. 2017). Together with 

the limited number of territories found on the island (Batalha et al. 2017) and the fact that 

they do not seem to use all available habitat this could indicate the warblers on this island are 

on an extinction vortex (Frankham 2005; Frankham et al. 2009; Palomares et al. 2012), such as 

the Hawaiian crow Corvus hawaiiensis (Fagan & Holmes 2006). Alternatively, the warbler might 

not be using all available habitat because of the structural arrangement of vegetation on the 

different islands. For example, the coffee plantations on Fogo are kept in a continuous canopy 

layer, where the warblers hop from branch to branch; on S. Nicolau, farmers plant coffee 

interspersed with other crops and leave a large amount of open space in between them, which 

might make the warbler avoid it altogether (pers. obs.). In fact, the only coffee plantation 

where the warbler was present on S. Nicolau was a very small back yard where the coffee 

trees formed a closed canopy (Figure 4.8; pers. obs.). Other potential causes could be linked to 

stronger pathogen, predator or competitor prevalence in certain areas/habitats within that 

island (Padilla et al. 2017; Ruffino et al. 2015), but this needs further investigation.  For 

example, climatic and anthropogenic factors affected haemosporidian parasite prevalence 
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across habitats in an oceanic island (Padilla et al. 2017). It is currently unknown if the areas not 

used by the warbler on S. Nicolau, i.e. the mountain forest and the agricultural plantations, are 

more susceptible to diseases or predators or harbour more competitors than the abandoned 

reed stands and the valleys with mango trees.  

 

 
Figure 4.9 Left: open space coffee Coffea arabica trees on S. Nicolau; right: Cape Verde 

warbler on a closed canopy coffee plantation on S. Nicolau, much like the ones present on 

Fogo. Photos taken in April 2016. 

 

Implications for conservation 

At a landscape level, the Cape Verde warbler inhabits areas which are covered in dense, 

evergreen vegetation. Green vegetation is obviously dependent on water availability, and 

prolonged droughts could potentially reduce the area available for the warbler on all the 

islands. The mountains in Cape Verde retain mist brought by the North-eastern trade winds, 

and for this reason areas on the North-eastern side of the islands can retain adequate levels of 

vegetation. Irrigation of agricultural fields and the recent building of dams also contribute to 

provide water in other areas of the islands. Therefore, to some extent, part of the warbler’s 

habitat, which could otherwise be threatened by climatic events such as droughts, could be 

naturally preserved by the mountains or by promoting suitable agricultural practices. Some 

plant species seemed to be favoured by the warbler, i.e. sugarcane plantations on Santiago, 

coffee plantations on Fogo, mountain forests on the previous two islands and reed stands on S. 

Nicolau. Thus different management practices may be needed on the three islands. Sugarcane 

and coffee plantations are agricultural crops, and ensuring that small scale farming remains on 

Santiago and Fogo should be sufficient to preserve a large part of the warbler’s habitat. Much 

of the remaining habitat on these two islands is forested, either drier Prosopis plantations at 

low level or mixed forests on mountains. However, on Fogo, I was unable to search for 

warblers throughout the inaccessible part of the forest of Monte Velha. It is important to verify 

if the warbler is present in the rest of the forested area of Fogo, or confined to the areas close 

© Helena Batalha 
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to the coffee plantations. However, on S. Nicolau, the situation is different. The area with most 

warblers is in the large valley on the central part of the island, where the warbler is mainly 

found in large dense stands of reed, often on private agricultural land. I found some territories 

in the main dry river valleys where the habitat is mostly composed of mango trees and/or 

reeds and sugarcane. I did not find any evidence of presence of the Cape Verde warbler in 

many apparently suitable locations e.g. in the mountain forest of Monte Gordo, on the 

agricultural land on the main central valley or on the reed stands on the dry, southwestern 

part of Monte Gordo in either 2013, 2014 or 2016. The reason that the warbler is not present 

in many apparently suitable sites remains a mystery. Nevertheless, the fact that most of the 

territories on S. Nicolau are in reed stands suggests a different management strategy is 

required for this island. Reed is an invasive plant and the authorities encourage land owners to 

remove it, despite the fact that the warblers use it. The authorities currently have no legal way 

to ensure protection of warbler territories. The low genetic diversity of population of S. 

Nicolau (Batalha et al. 2017), combined with the well-intentioned but detrimental removal of 

the reeds which it uses to breed in, could have pushed this population to the verge of 

extinction. Finally, most of the territories found on Fogo and S. Nicolau in 2014 were outside 

the limits of the Natural Parks. This means that the authorities have limited power to assess 

and manage other threats to the Cape Verde warbler, such as diseases, predation, nest 

destruction or hunting. While this might not be important on Santiago, where suitable habitat 

is much more wide spread than on the other two islands, it is a problem on Fogo and S. 

Nicolau. I encourage the authorities on the latter two islands to find alternative ways to 

protect this bird’s habitat, at the risk of these small, but genetically unique local warbler 

populations becoming extinct. 

 

Conclusion 

The Cape Verde warbler can be found on evergreen densely vegetated areas on all three 

islands where it exists. Evergreen vegetation, i.e. vegetation that stays green all year round, 

can comprise several plant species, from exotic shrubs to forest trees and irrigated agricultural 

plantations. However, the warbler seems to be associated with different species on the 

different islands. On Santiago, it can often be found on sugarcane plantations; on Fogo, most 

territories known to date are located in coffee plantations; on S. Nicolau, it is almost 

exclusively associated with large stands of exotic reed. The extent of evergreen vegetation 

areas differ between islands. On Santiago, it covers most of the island; on Fogo it is confined to 

the northeastern part of the island; on S. Nicolau it is limited to the central part of the island. 

However, on S. Nicolau, the warbler does not use the entire available potentially suitable 
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habitat, being confined to the main valley on the central part of the island. Apart from 

evergreen dense vegetation and specific plant species, no structural habitat factors predicted 

the presence of the warbler on any of the three islands. This study is the first to assess in detail 

the habitat used by the warbler on all three islands and provides important information that 

can be used by practitioners to help define conservation measures tailored for each island. I 

suggest that associations of this bird with agricultural land and exotic plants are taken into 

account when planning for long-term conservation. 
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Supplementary figure S4.1 Barplots of percentage cover variables measured on the habitat 

sampling plots. Islands: 1 = Santiago; 2= Fogo; 3 = S. Nicolau. Within each island, plots where 

the Cape Verde warbler was 0 = absent and 1 = present. 
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Supplementary figure S4.2 Boxplots of elevation, slope, diameter and height variables 

measured on the habitat sampling plots. Islands: 1 = Santiago; 2= Fogo; 3 = S. Nicolau. Within 

each island, plots where the Cape Verde warbler was 0 = absent and 1 = present. 
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Supplementary figure S4.3 Barplots of percentage cover of each species, genus or family of 

plants measured within the habitat sampling plots. Islands: 1 = Santiago; 2= Fogo; 3 = S. 

Nicolau. Within each island, plots where the Cape Verde warbler was 0 = absent and 1 = 

present. 
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Supplementary figure S4.3 (Cont.) 
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Supplementary table S4.1 Coefficients of logistic generalized linear mixed models (with ΔAIC ≤ 2 when compared to the best-fit model; n = 8) for Cape Verde 

warbler presence with coarse features, with degrees of freedom (df), log likelihood, AICc, delta AICc and model weight. All models include location as a random 

effect. 

Intercept 
Average 

maximum 
vegetation height 

Bare ground cover Elevation Shade cover Slope df logLik AICc delta weight 

0.587 0.155 -0.020 
   

4 -109.559 227.3 0.00 0.153 

-0.275 0.112 
    

3 -111.367 228.9 1.53 0.071 

0.190 
     

2 -112.400 228.9 1.53 0.071 

0.941 
 

-0.014 
   

3 -111.368 228.9 1.53 0.071 

0.821 0.141 -0.019 
 

-0.105 
 

5 -109.312 228.9 1.61 0.068 

0.667 
   

-0.193 
 

3 -111.412 229.0 1.62 0.068 

1.068 0.162 -0.022 -0.001 
  

5 -109.323 229.0 1.64 0.068 

0.746 0.152 -0.020 
  

-0.008 5 -109.462 229.2 1.91 0.059 
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Supplementary table S4.2 Coefficients of logistic generalized linear mixed models (with ΔAIC ≤ 2 when compared to the best-fit model; n = 22) for Cape Verde 

warbler presence with fine features with degrees of freedom (df), log likelihood, AICc, delta AICc and model weight. All models include location as a random effect. 

Intercept Average 
diameter 

Herbaceous 
shrub cover 

Maximum 
reed 

height 

Maximum 
tree 

height 

Maximum 
woody shrub 

height 
Reed 
cover 

Tree 
cover 

Woody 
shrub 
cover df logLik AICc delta weight 

-2.893 
  

0.347 
 

-0.580 0.024 0.030 0.029 7 -105.321 225.3 0.00 0.081 

-3.119 
  

0.334 
  

0.020 0.028 0.019 6 -106.599 225.7 0.40 0.067 

-2.848 
 

-0.022 0.382 
  

0.020 0.027 0.018 7 -105.627 225.9 0.61 0.060 

-2.674 
 

-0.020 0.388 
 

-0.541 0.023 0.030 0.028 8 -104.576 225.9 0.69 0.058 

-0.184 
 

-0.024 0.369 
     

4 -108.908 226.0 0.78 0.055 

-0.978 
 

-0.023 0.467 
   

0.012 
 

5 -107.900 226.1 0.87 0.053 

-2.365 
    

-0.612 0.033 0.028 0.029 6 -106.846 226.1 0.90 0.052 

-1.221 
  

0.418 
   

0.013 
 

4 -109.090 226.4 1.14 0.046 

-1.076 
  

0.386 0.076 
    

4 -109.093 226.4 1.15 0.046 

-1.776 
 

-0.023 0.517 
   

0.017 0.013 6 -107.015 226.5 1.23 0.044 

-0.409 
  

0.315 
     

3 -110.183 226.5 1.24 0.044 

-2.041 
  

0.471 
   

0.017 0.013 5 -108.109 226.5 1.29 0.043 

-0.775 
 

-0.021 0.421 0.065 
    

5 -108.153 226.6 1.38 0.041 

-2.594 
     

0.029 0.025 0.018 5 -108.158 226.6 1.39 0.041 

-3.073 
  

0.360 0.054 -0.572 0.024 0.026 0.029 8 -105.003 226.8 1.54 0.038 

-2.675 -0.030 
 

0.334 
 

-0.621 0.025 0.034 0.028 8 -105.037 226.9 1.61 0.036 

-1.427 
 

-0.023 0.366 
  

0.013 0.017 
 

6 -107.236 226.9 1.68 0.035 

-1.683 
  

0.314 
  

0.013 0.018 
 

5 -108.345 227.0 1.76 0.034 

-3.312 
  

0.347 0.054 
 

0.020 0.023 0.019 7 -106.241 227.1 1.84 0.032 

-1.268 
  

0.414 
 

-0.474 
 

0.015 0.018 6 -107.321 227.1 1.85 0.032 

-1.642 
  

0.413 0.092 
   

0.011 5 -108.415 227.2 1.90 0.031 

-1.470 
 

-0.021 0.539 
 

-0.422 
 

0.018 0.019 7 -106.309 227.2 1.98 0.030 
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Supplementary table S4.3 Coefficients of logistic generalized linear mixed models (with ΔAIC ≤ 2 when compared to the best-fit model; n = 22) for Cape Verde 

warbler presence with plant species with degrees of freedom (df), log likelihood, AICc, delta AICc and model weight. All models include location as a random 

effect. 
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-1.855 0.057 0.080 0.043 
  

0.060 
   

0.027 
  

7.0 -95.720 206.0 0.00 0.077 

-1.602 0.056 0.084 0.040 
  

0.057 
   

0.026 
 

-0.023 8.0 -94.824 206.4 0.39 0.064 

-1.994 0.057 0.082 0.038 
 

0.024 0.062 
   

0.029 
  

8.0 -94.876 206.5 0.49 0.060 

-1.999 0.059 0.083 0.042 0.031 
 

0.060 
   

0.028 
  

8.0 -94.947 206.7 0.63 0.056 

-2.143 0.060 0.085 0.046 
  

0.063 0.014 
  

0.030 
  

8.0 -95.107 207.0 0.95 0.048 

-1.714 0.056 0.079 0.046 
      

0.026 
  

6.0 -97.353 207.2 1.11 0.044 

-1.743 0.059 0.087 0.040 0.030 
 

0.057 
   

0.027 
 

-0.023 9.0 -94.102 207.2 1.15 0.044 

-1.751 0.057 0.086 0.036 
 

0.022 0.059 
   

0.027 
 

-0.021 9.0 -94.129 207.2 1.20 0.042 

-1.448 0.056 0.083 0.043 
      

0.025 
 

-0.025 7.0 -96.321 207.3 1.20 0.042 

-2.318 0.060 0.087 0.042 
 

0.026 0.065 0.015 
  

0.032 
  

9.0 -94.137 207.3 1.21 0.042 

-1.757 0.056 0.078 0.044 
  

0.075 
   

0.027 -0.027 
 

8.0 -95.269 207.3 1.28 0.041 

-2.139 0.060 0.085 0.039 0.029 0.024 0.062 
   

0.030 
  

9.0 -94.170 207.3 1.28 0.041 

-1.785 0.055 0.078 0.049 
  

0.058 
  

-0.080 0.027 
  

8.0 -95.271 207.3 1.28 0.041 

-2.330 0.063 0.089 0.047 0.033 
 

0.063 0.015 
  

0.032 
  

9.0 -94.233 207.5 1.41 0.038 

-1.486 0.056 0.082 0.041 
  

0.073 
   

0.025 -0.029 -0.024 9.0 -94.280 207.5 1.50 0.036 

-1.853 0.059 0.081 0.046 0.032 
     

0.027 
  

7.0 -96.530 207.7 1.62 0.034 

-1.534 0.055 0.082 0.046 
  

0.054 
 

-0.083 
 

0.026 
 

-0.023 9.0 -94.354 207.7 1.65 0.034 

-1.872 0.059 0.088 0.043 
  

0.060 0.012 
  

0.028 
 

-0.021 9.0 -94.382 207.8 1.71 0.033 

-1.843 0.057 0.081 0.042 
 

0.023 
    

0.027 
  

7.0 -96.612 207.8 1.78 0.032 
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Supplementary table S4.3 (Cont.) 
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-2.508 0.064 0.091 0.043 0.031 0.026 0.065 0.017 
  

0.033 
  

10.0 -93.329 207.9 1.83 0.031 

-1.585 0.058 0.086 0.042 0.031 
     

0.026 
 

-0.025 8.0 -95.553 207.9 1.85 0.031 

-1.783 0.055 0.081 0.042 
  

0.060 
 

-0.010 
 

0.027 
  

8.0 -95.570 207.9 1.88 0.030 

-1.899 0.056 0.081 0.039 
 

0.023 0.075 
   

0.028 -0.024 
 

9.0 -94.497 208.0 1.94 0.029 

-1.922 0.056 0.081 0.043 
 

0.023 0.060 
  

-0.069 0.028 
  

9.0 -94.526 208.0 1.99 0.029 

 

Supplementary table S4.4 PCA on coarse habitat features, with standard deviation, proportion of variance, cumulative proportion of variance and loadings of each 

variable on each principal component, using only plots where warblers were present (n = 102). 

  PC1 PC2 PC3 PC4 PC5 

Standard deviation 1.262 1.191 0.967 0.877 0.532 

Proportion of Variance 0.318 0.284 0.187 0.154 0.057 

Cumulative Proportion 0.318 0.602 0.789 0.943 1.000 

Elevation -0.495 0.442 -0.406 -0.368 0.508 

Slope -0.071 0.615 -0.189 0.728 -0.227 

Bare.groud.cover -0.333 -0.592 -0.189 0.555 0.441 

Shade.cover 0.361 -0.199 -0.872 -0.099 -0.244 

Average.maximum.vegetation.height -0.713 -0.192 -0.052 -0.126 -0.660 
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Supplementary table S4.5 PCA on fine habitat features, with standard deviation, proportion of variance, cumulative proportion of variance and loadings of each 

variable on each principal component, using only plots where warblers were present (n = 102). 

  PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 

Standard deviation 1.868 1.318 1.173 0.850 0.741 0.605 0.548 0.524 0.432 

Proportion of Variance 0.388 0.193 0.153 0.080 0.061 0.041 0.033 0.030 0.021 

Cumulative Proportion 0.388 0.581 0.733 0.814 0.875 0.915 0.949 0.979 1.000 

Tree.cover 0.445 -0.117 0.255 -0.050 0.306 -0.286 -0.213 0.225 0.670 

Reed.cover -0.399 -0.217 -0.350 0.274 0.105 0.112 0.280 -0.373 0.595 

Woody.shrub.cover -0.091 0.617 0.149 0.152 -0.653 -0.125 -0.014 0.037 0.351 

Herbaceous.shrub.cover -0.240 -0.315 0.570 0.069 -0.145 0.570 0.127 0.370 0.118 

Maximum.tree.height 0.436 -0.048 0.078 0.442 -0.041 -0.171 0.740 0.079 -0.142 

Maximum.reed.height -0.416 -0.156 -0.210 0.386 0.023 -0.437 -0.158 0.619 -0.097 

Maximum.herbaceous.shrub.height -0.259 -0.322 0.545 -0.018 -0.132 -0.539 -0.020 -0.458 -0.115 

Maximum.woody.shrub.height -0.150 0.482 0.328 0.482 0.576 0.122 -0.147 -0.159 -0.109 

Average.diameter 0.350 -0.311 -0.098 0.563 -0.312 0.197 -0.515 -0.219 -0.072 
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Supplementary table S4.6 PCA on plant species with standard deviation, proportion of variance, cumulative proportion of variance and loadings of each variable, 

using plots where warblers were present and absent (n = 192). 

  PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 

Standard deviation 1.527 1.269 1.160 1.131 1.087 1.070 1.003 0.962 0.876 0.855 0.743 0.675 0.645 0.502 

Proportion of Variance 0.167 0.115 0.096 0.091 0.084 0.082 0.072 0.066 0.055 0.052 0.039 0.033 0.030 0.018 

Cumulative Proportion 0.167 0.282 0.378 0.469 0.553 0.635 0.707 0.773 0.828 0.880 0.920 0.952 0.982 1.000 

Arundo.donax -0.003 0.497 -0.083 0.486 0.098 0.073 0.236 0.114 0.074 0.234 0.368 0.123 0.390 -0.252 

Coffea.arabica 0.203 0.135 0.524 -0.285 -0.065 -0.014 -0.252 0.164 -0.478 0.368 -0.005 -0.014 0.077 -0.346 

Eucalyptus.spp. -0.455 -0.087 0.003 -0.284 -0.165 -0.132 -0.051 -0.099 0.091 0.002 0.729 -0.117 -0.220 -0.215 

Grevillea.robusta -0.268 -0.088 0.025 -0.280 0.321 0.390 -0.106 -0.129 0.485 0.492 -0.208 -0.017 0.171 -0.089 

Hyptis.pectinata -0.226 0.157 -0.281 -0.397 0.159 0.383 0.074 0.023 -0.385 -0.465 -0.041 0.126 0.322 -0.154 

Jacaranda.mimosifolia -0.335 -0.297 0.386 0.280 0.196 0.018 -0.026 0.069 -0.044 -0.147 -0.024 0.695 -0.108 -0.093 

Lantana.camara -0.426 0.359 -0.109 0.163 -0.124 0.045 0.061 0.210 -0.056 0.043 -0.419 -0.174 -0.528 -0.311 

Mangifera.indica 0.128 -0.211 -0.315 0.229 -0.171 0.125 -0.716 0.244 0.152 -0.137 0.026 0.001 0.106 -0.341 

Musa.spp. 0.185 -0.048 0.312 -0.206 -0.273 0.178 0.352 0.524 0.457 -0.287 0.002 -0.034 0.048 -0.156 

Pinus.spp. -0.261 0.093 -0.109 -0.183 -0.525 -0.478 -0.008 -0.076 0.117 0.104 -0.283 0.298 0.417 -0.008 

Prosopis.juliflora 0.129 -0.154 -0.182 -0.143 0.549 -0.585 0.155 0.130 0.082 -0.063 -0.091 -0.060 0.017 -0.446 

Saccharum.officinalis 0.200 -0.414 -0.161 0.111 -0.310 0.231 0.399 -0.406 -0.140 0.148 -0.067 0.049 -0.053 -0.475 

Zea.mays 0.130 0.367 0.345 0.027 0.032 -0.035 -0.190 -0.603 0.281 -0.412 -0.084 -0.047 -0.017 -0.261 

Unidentified.mimosaceae -0.378 -0.304 0.302 0.314 0.013 -0.051 0.043 0.001 -0.133 -0.141 -0.108 -0.585 0.423 -0.018 
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Supplementary table S4.7 PCA on plant species with standard deviation, proportion of variance, cumulative proportion of variance and loadings of each variable, 

using only plots where warblers were present (n = 102). 

  PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 

Standard deviation 1.555 1.313 1.246 1.239 1.064 1.038 1.012 0.930 0.821 0.803 0.702 0.633 0.564 0.374 

Proportion of Variance 0.173 0.123 0.111 0.110 0.081 0.077 0.073 0.062 0.048 0.046 0.035 0.029 0.023 0.010 

Cumulative Proportion 0.173 0.296 0.407 0.517 0.597 0.674 0.747 0.809 0.857 0.903 0.939 0.967 0.990 1.000 

Arundo.donax 0.028 -0.407 -0.235 0.483 0.082 0.003 0.220 0.053 0.297 0.087 0.432 0.299 0.041 -0.337 

Coffea.arabica 0.311 -0.096 0.521 -0.171 -0.054 0.000 -0.143 -0.026 0.358 -0.442 -0.110 0.111 -0.172 -0.439 

Eucalyptus.spp. -0.459 -0.062 0.110 -0.323 -0.145 0.116 0.005 -0.131 0.044 0.072 0.522 -0.497 -0.111 -0.281 

Grevillea.robusta -0.288 0.050 0.155 -0.183 0.469 -0.390 0.020 -0.029 0.352 0.507 -0.240 0.133 -0.131 -0.100 

Hyptis.pectinata -0.279 -0.227 -0.064 -0.367 0.260 -0.270 0.155 0.099 -0.458 -0.421 0.098 0.375 0.109 -0.093 

Jacaranda.mimosifolia -0.359 0.279 0.350 0.333 -0.009 0.051 -0.162 0.018 -0.037 -0.042 -0.053 0.063 0.691 -0.207 

Lantana.camara -0.323 -0.396 -0.112 0.272 -0.169 -0.054 -0.076 0.306 -0.135 -0.067 -0.547 -0.304 -0.208 -0.254 

Mangifera.indica 0.073 0.122 -0.317 0.005 -0.193 -0.360 -0.735 -0.148 -0.144 0.101 0.137 0.160 -0.082 -0.261 

Musa.spp. 0.238 -0.073 0.370 -0.098 -0.208 -0.097 -0.005 0.663 -0.269 0.416 0.216 0.073 0.011 -0.027 

Pinus.spp. -0.233 -0.193 -0.063 -0.327 -0.505 0.380 0.004 -0.135 0.135 0.237 -0.211 0.505 0.080 0.019 

Prosopis.juliflora 0.057 0.090 -0.131 -0.079 0.520 0.679 -0.261 0.169 -0.180 0.105 -0.039 0.058 -0.107 -0.279 

Saccharum.officinalis 0.134 0.520 -0.265 -0.084 -0.194 -0.081 0.500 0.020 -0.109 0.064 -0.151 0.001 -0.023 -0.548 

Zea.mays 0.214 -0.290 0.310 0.139 0.050 0.004 0.120 -0.604 -0.496 0.298 -0.093 -0.037 -0.013 -0.166 

Unidentified.mimosaceae -0.339 0.334 0.271 0.362 -0.087 0.071 0.043 -0.027 -0.162 -0.092 0.131 0.326 -0.617 0.118 
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Morphological variation in the Cape Verde warbler Acrocephalus 

brevipennis 

 

 
 

Colour-ringed Cape Verde warbler Acrocephalus brevipennis photographed in a reed Arundo 

donax stand in Canto Fajã, S. Nicolau, September 2016. 
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5.1 Abstract 

Oceanic islands are excellent systems to study speciation because the isolated populations 

they contain will diverge over time in the absence of gene flow. Morphological divergence can 

be caused by neutral forces or be linked to selection by environmental factors. Quantifying 

morphological divergence can help disentangle the role of environmental forces in driving 

population divergence. Here I use morphological traits to quantify the degree of divergence 

between the three extant populations of the endangered Cape Verde warbler Acrocephalus 

brevipennis. Results show some morphological divergence between the smallest and most 

isolated population of S. Nicolau and the more closely related populations of Santiago and 

Fogo, when controlling for sexual dimorphism. This divergence is not related to overall body 

size, but specifically to tarsus length and bill length and shape. Birds from S. Nicolau have 

shorter tarsi and longer, more pointed bills than those from Santiago and Fogo. These 

morphological differences most likely reflect the evolutionary history and colonisation patterns 

of the Cape Verde warbler, because the population on S. Nicolau was isolated from the other 

two populations earlier than Fogo was isolated from Santiago. The S. Nicolau population has 

also been through a recent bottleneck. However, this analysis cannot exclude the possibility 

that these morphological differences could be driven by rapid adaptation to different 

environments across the islands, or by a combination of drift and adaptation. Regardless of the 

forces driving this morphological variation, my findings are consistent with what would be 

expected in the initial stages of allopatric speciation. 
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5.2 Introduction 

Oceanic islands provide excellent model systems to study population divergence and 

speciation (MacArthur & Wilson 1967; Whittaker 1998; Wright 1931). They constitute discrete 

geographical entities between which gene flow is often limited or non-existent (Cibois et al. 

2011; Warren et al. 2014; Whittaker 1998) and are therefore a suitable setting for studying 

how different environmental conditions drive divergence in isolated populations (Grant 1986; 

Warren et al. 2014; Whittaker 1998). Different environmental conditions might be present on 

each island, or within different habitats on single islands, promoting ecological divergence of 

populations over relatively small areas (Grant 1986; McKinnon et al. 2004; Schluter 2000; 

Schluter 2001). Furthermore, islands are simplified ecosystems when compared to mainland 

areas (MacArthur & Wilson 1967; Traveset et al. 2016; Warren et al. 2014; Whittaker 1998). 

This can make the study of speciation in such systems more straightforward when compared 

with mainland systems (Grant 1986; McKinnon et al. 2004; Schluter 2000; Schluter 2001). 

Selective forces can be strong on islands, because populations must survive in new ecological 

niches and environmental conditions (Grant 1985; Grant 1986). Conversely, colonisers often 

undergo an ecological release, also called “enemy” release, whereby during island colonisation 

they are released from the predators, parasites and/or competitors they faced on the 

mainland (Bolnick et al. 2010; Ghazoul 2002; Keane & Crawley 2002; Sih et al. 2010). This 

allows for changes in their ecological niche and morphology that would otherwise be 

constrained by their “enemies”. All the above reasons explain why island systems have been 

central to understanding many facets of evolution and ecology (Grant 1998; Warren et al. 

2014). 

 

Speciation is a gradual, time-dependent process which is concluded when there is complete 

reproductive isolation between two populations (Dobzhansky 1937; Mayr 1942). This develops 

over three stages: two populations become geographically isolated, one or both of the 

populations diverge from how they were initially, and there is secondary contact but no 

interbreeding between the two now diverged populations (De Queiroz & Weins 2007; Orr & 

Smith 1998; Schluter 2001). When secondary contact does not occur in nature e.g. island 

populations, it is not possible to verify if reproductive isolation is complete (De Queiroz & 

Weins 2007; Orr & Smith 1998; Schluter 2001). It is therefore necessary to compare population 

traits such as genetics, morphology, habitat or behaviour and use them as a proxy to 

determine whether they are full species, e.g. by comparing them with known pairs of sister 

species (Avise & Wollenberg 1997; Helbig et al. 2002; Mayr 1942). Most natural populations 



Chapter 5: Cape Verde warbler morphology 
 
 

160 
 

are at a point in a time-dependent continuum of speciation, from homogeneous populations 

through to distinct species (Peccoud et al. 2009; Shaw & Mullen 2014; Supple et al. 2013). 

Extremes on this continuum are easily identified, but populations in the “grey area” of 

speciation are less easy to classify, and their status as discrete entities is often ambiguous 

(Coyne & Orr 2004; Orr & Smith 1998; Roux et al. 2016). When trying to understand what 

processes created the variation observed in a group of populations, it is useful to quantify the 

degree of divergence between them and determine at what point in the speciation continuum 

the taxa are. This also has implications for how we categorise and catalogue biodiversity and, 

in turn, how to effectively prioritise limited resources for the conservation of biodiversity 

(Moritz 1994; Ryder 1986). 

 

Variation between populations or species can be genetic, ecological, behavioural and 

phenotypic, or a combination of these (Coyne & Orr 2004; Milá et al. 2007; Price 2008). 

Morphology, a term commonly used to refer to the size and shape of individuals, can vary for 

different populations of the same species, without necessarily correlating to subspecies (Grant 

1965, 1979; Price 2008). Morphological traits can be easily measured and compared across 

populations to assess divergence (Ratciliffe & Grant 1983; Schluter & Grant 1984a) and have 

been one of the most commonly used set of traits in assessing and identifying species, or other 

units below the species level (Langerhans et al. 2003; Perera et al. 2007; Ratciliffe & Grant 

1983; Vasconcelos et al. 2012). Morphological data often form a preliminary basis for further 

genetic study, or are used in conjunction with genetic studies to determine intraspecific taxon 

classification (Arnold et al. 2008; Foote et al. 2009; Gruber et al. 2013; Nicholls & Austin 2005).  

 

The relative effects of neutral and adaptive forces in driving population divergence are often 

difficult to disentangle and quantify (Clegg et al. 2002b; Sutton et al. 2011; Westerdahl et al. 

2004). Stochastic forces can shape morphological traits in the absence of or despite 

deterministic effects of selection (Rocamora & Richardson 2003; Slatkin 1987; Spurgin et al. 

2014). Indeed, non-adaptive evolution is a significant evolutionary force (Allendorf & Luikart 

2007; Hartl & Clark 1997; Kimura & Ota 1974; Wright 1969). Evolutionary differences between 

island populations can be the result of different colonisation histories (Emerson 2002; Hille et 

al. 2003; Illera et al. 2014) or other neutral forces such as drift, bottlenecks and founder effects 

at the genetic level (Kolbe et al. 2012; Miller & Lambert 2004; Ramstad et al. 2013). Many 

studies found support for the overriding role of drift in shaping divergence between 

populations in both genetic and morphological traits (Gonzalez-Quevedo et al. 2015; Grueber 
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et al. 2013; Miller & Lambert 2004; Spurgin et al. 2014). In some cases discordance between 

morphological and genetic divergence may be caused by phenotypic plasticity in response to 

environmental differences, as opposed to selection (Gruber et al. 2013). In some cases, a 

combination of neutral and adaptive forces seems to have shaped divergence of populations 

and a combination of morphological and genetic research has been crucial in disentangling 

their impacts under various systems and scenarios (Clegg et al. 2002a; Clegg et al. 2002b; Clegg 

& Phillimore 2010; Potvin & Clegg 2015). Mismatches between genetic and phenotypic 

patterns can indicate action of selective forces, especially when phenotypic patterns match 

specific environmental factors (Funk et al. 2008; Langerhans et al. 2003; McKinney et al. 2014). 

In some instances, population divergence has been shown to reflect adaptations to local 

environments (Grant 1965, 1986; Schluter & Grant 1984a). Rapid evolution has been linked to 

selection, as in the classic case of the adaptive radiation of the Galapagos finches (Bowman 

1961; Grant 1985; Grant & Grant 1993; Grant 1986; Grant 2008). Long term studies on the 

Galapagos finches have shown how natural selection driven by food resources acted on these 

population to drive morphological divergence, specifically bill shape and size (Grant et al. 

1985; Grant & Grant 2004; Grant 2008). However, it is only possible to identify the action of 

selective forces with long term studies and/or examination of biologically relevant 

environmental factors (Bell 2010; Clegg et al. 2008; Grant 2008). 

 

The Cape Verde warbler Acrocephalus brevipennis is an endangered passerine endemic to 

Cape Verde, a volcanic archipelago ca. 500 km off West Africa, between 14–18°N and 22–26°W 

in the Atlantic Ocean (Figure 5.1). It currently exists on three islands, Santiago, Fogo and S. 

Nicolau (Batalha et al. 2017). Fogo and Santiago, in the southern Sotavento group of islands, 

are separated by ca. 60 km, whereas S. Nicolau, in the northwestern Barlavento group, is 

separated from the former two islands by more than 160 km (Figure 5.1). Such oceanic barriers 

can prevent gene flow, especially between the Sotavento and Barlavento groups (Hazevoet 

1995; Hille et al. 2003), which are differently affected by the northeastern trade winds (Correia 

1996; Philander et al. 1996). Previous research indicates recent genetic divergence between 

the populations (Batalha et al. 2017), but whether morphological differences exist is unknown. 

No documented measurements of live birds exist apart from a few measurements taken on S. 

Nicolau when the bird was discovered 150 years ago (Dohrn 1871; Keulemans 1866); however, 

the sample size is too small to make any meaningful comparisons. 
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Here I investigate morphological differences between the three extant populations of the Cape 

Verde warbler, while assessing and controlling for sexual dimorphism. If neutral factors are the 

overriding force shaping morphological divergence, I expect any differences to align with the 

neutral genetic divergence patterns previously documented (Batalha et al. 2017). If adaptive 

forces are predominant, morphological and genetic divergence will exhibit discordant patterns 

(Clegg et al. 2002b). I also used this opportunity to record moult patterns of adult birds. 

 

5.3 Methods 

5.3.1 Data collection 

Birds were sampled across Santiago, Fogo and S. Nicolau from November 2013 to January 

2014, and from September to November 2014 during the main breeding season (Hazevoet 

1995). I surveyed for warblers across all potential suitable habitat, i.e. densely vegetated areas 

(Cramp & Perrins 1992; Hazevoet 1995) and all altitudes on each island (Figure 5.1). On 

Santiago, dense vegetation can be found over the whole island including coastal plantations 

and mountain forests; on Fogo, vegetated areas are confined to the wetter, northeastern part 

of the island and a few sites on the northwestern side; on S. Nicolau, vegetated areas are 

located in the mountain valleys of the central area of the island (Figure 5.1). After confirming it 

was absent from more barren areas, I restricted my searches to areas with all kinds of 

vegetation, including areas where the bird had been previously detected, by me or previous 

observers (Batalha et al. 2017; Donald et al. 2004; Hazevoet 1995; Hazevoet et al. 1999; Hering 

& Fuchs 2009), and areas with dense vegetation but where the bird had not been recorded 

before. This means that the sampling was not completely random, thus artificially increasing 

the precision of finding the birds; however, the alternative would be to risk not obtaining a 

large enough sample size. 



Chapter 5: Cape Verde warbler morphology 
 
 

163 
 

 

Figure 5.1 Map of the Cape Verde islands (main) with position relative to West Africa (inset), 

with all the locations where Cape Verde warblers were sampled in 2013 and 2014, on Santiago, 

Fogo and S. Nicolau. Map produced using open source data on ArcMap 10.1 by Helena Batalha. 

 

Individuals were located by their song bursts while conducting transects in densely vegetated 

areas. The birds were then lured into mist nets with playback songs downloaded from Xeno-

Canto.org (recordings numbers XC156923 to XC156925) or recorded by me in the field. Each 

caught bird was fitted with a unique combination of a numbered Cape Verde metal ring, and 

three UV-resistant plastic colour rings, and each sampling location was recorded with a Garmin 

eTrex® H GPS. All individuals were measured twice by the same person (H.R.B.) using a digital 

calliper (±0.01 mm), ruler (±1 mm) or digital scale (±0.01 g). Measurements were taken 

according to Svensson (1992), unless stated otherwise. The following measurements were 

taken: wing length (maximum length of the flattened and straightened wing); minimum right 

tarsus length (bent method, from the intertarsal joint to the other end of the bone (Redfern & 

Clark 2001)); head + bill  (head length from posterior end of skull to tip of bill (Redfern & Clark 

2001)); bill length (from bill tip to the anterior edge of nostril); bill depth (on a 90° angle 

relative to the bill’s horizontal plane at gape); bill width (at gape);  tail length (from the base of 

the two central tail feathers to their tips, only taken when individuals were not moulting); and 

weight. Moult patterns were assessed using British Trust for Ornithology codes (Ginn & 

Melville 1983; Redfern & Clark 2001). The age of all birds was estimated in the hand: warbler 

plumage colour is more rufous in juveniles and more grey in adults (Cramp & Perrins 1992) 
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and, as in other Acrocephalus, iris colour is grey in juveniles and brown in adults (Baker 1997; 

Cramp & Perrins 1992; Komdeur 1991). Tongue spots were not used to help determine bird 

age (Leisler & Schulze-Hagen 2011; Svensson 1992) because they were present in juveniles and 

adults. When neither plumage or iris colour could be reliably used to age the bird, it was 

classified as age unknown and excluded from the analyses, which included only adult birds. 

Blood samples (about 40 µl) were collected by brachial venipuncture, preserved in 800 µl of 

absolute ethanol in a screw-cap microfuge tube, and stored at room temperature. Birds were 

released in the same place where they were caught. Individual sex was confirmed molecularly 

as sexes are said to be monomorphic in the Cape Verde warbler (Cramp & Perrins 1992). DNA 

was extracted using a salt extraction protocol following Richardson et al. (2001), and 

individuals were sexed following Griffiths et al. (1998). I used P2 and P3 primers to amplify 

CHD genes (males, ZZ; females ZW). Polymerase chain reactions (PCRs) were performed in 10 

μl total volume, consisting of 5 μl TopTaq Master Mix (Qiagen, West Sussex, UK), 1 μl (5 μM) 

each primer, 0.4 μl CoralLoad buffer, 2.6 μl ddH2O and 1 μl DNA (ca. 25ng/µl). Thermal cycle 

conditions were 94°C for 3 min, followed by 40 cycles of 94°C for 30 s, 52°C for 45 s and 72°C 

for 45 s, with a final extension step at 72°C for 10 min and a cooling step at 20°C for 1 min. PCR 

products were visualised in 1.5% agarose gel, single bands being scored as males and double 

bands as females. 

 

5.3.2 Statistical analyses 

All statistical analyses were done in R (R Core Team 2016). I first assessed sexual dimorphism in 

adult birds. Only birds for which all the measurements had been taken (except tail and weight) 

were included in the analyses. Normality and homogeneity of variance of the data were 

assessed using Shapiro Wilks test with function shapiro.test, package stats (R Core Team 2016) 

and Levene tests with function leveneTest, package car (Fox & Weisberg 2011). For males, 

wing length, bill depth and bill width were not normally distributed (W = 0.951, 0.967 and 

0.966, p = 0.004, 0.038 and 0.034, respectively). For females, bill width was not normally 

distributed (W = 0.891, p = 0.006). All other variables were normally distributed (all p > 0.054). 

Variances were not equal for tail (Levene’s test 6.469, p = 0.0160). I then tested for differences 

between males and females in each trait with Kruskal-Wallis, Mann-Whitney or t-tests 

(functions kruskal.test, wilcox.test and t.test, package stats). Because many birds were 

moulting tail feathers, especially after November, tail measurements were only recorded for 

35 adult birds. For this reason, tail length was not included in the multivariate analyses. I also 

tested for multicollinearity between morphological variables for the two sexes and for adult 
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males only with the function vif, package car, and there was no multicollinearity in either 

dataset (all VIF between 1.401 - 2.826 for all birds and between 1.097 and 2.882 for adult 

males). Regardless, I tested for correlations between all the variables with function corr.test, 

package psych (Revelle 2014). In the dataset with all adult birds, head + bill was strongly and 

significantly correlated to bill to nostril and weight (Spearman’s rho = 0.67 and 0.52 

respectively, p < 0.001), and wing was strongly and significantly correlated to tail (Spearman’s 

rho = 0.81, p < 0.001). For adult males, head + bill and bill to nostril, as well as wing and tail 

were strongly and significantly correlated (Spearman’s rho = 0.69 and 0.76 respectively, p < 

0.001). 

 

Because of the correlation between morphological traits, and because several traits should be 

used to represent of bird size and shape (Freeman & Jackson 1990), it is useful to extract the 

principal components of variance and use these to test for differences between sexes or 

populations (James 1982). I performed a principal components analysis (PCA) to visualise 

differences between males and females (hereafter sex PCA), including all sampled individuals 

for which we had all measurements. Tail was not included in the analyses. The first component 

explained most of the variance and, when plotted, clearly discriminated between sexes (Table 

5.3 and Figure 5.2). Therefore I tested for differences between sexes with an ANOVA with the 

first component (function aov, package stats). 

 

I performed a second PCA to determine the occurrence of population structure based on the 

morphological traits (except tail length) across the three populations (hereafter island PCA). 

Because there were significant differences between males and females, and because most of 

the individuals measured were males, I only used adult males in this analysis. For this PCA, only 

the second component discriminated between the three islands (Table 5.4 and Figure 5.3). I 

tested for morphological differences between populations with an ANOVA using the first and 

the second components, followed by a post-hoc Tukey test for the ANOVA on the island PCA 

components (functions aov and TukeyHSD, package stats).  

 

To test whether bill shape was different between islands, I created a bill shape index: Bill shape 

= Bill length to nostril / (bill depth * bill width). This index was created based on commonly 

used formulas for calculating bill shape indexes. In general, these indexes divide bill length by 

bill depth to obtain a measure of pointedness (Batalha et al. 2013; Jones 1993; Sutherland et 
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al. 2004). Because I had also measured bill width, this index divides bill length by the product 

of bill depth and bill width. Higher values of this index indicate longer and narrower bills, and 

lower values indicate shorter and thicker bills. As it is not a univariate morphological trait but 

rather an index, the bill shape index was not included in the island PCA but examined 

separately. I tested for differences in bill shape between populations with an ANOVA on the 

bill shape index, followed by a post-hoc Tukey test. 

 

5.4 Results 

5.4.1 Morphological data 

I recorded morphometric data of 138 birds, of which 113 were adults, 16 were juveniles and 

nine were of undetermined age. Molecular sexing revealed that 95 of these birds were males 

and 43 were females. For all the analyses, only birds for which I had all the measurements 

(except tail) were used. Averages and standard error of each morphological trait per sex and 

per island are given on Table 5.1.  

 

Table 5.1 Morphological measurements of adult Cape Verde warblers per sex (in italic) and per 

island (separated for each sex). For each trait, average and standard error (SE) are given in 

millimetres. Note that I could not measure tail in all the examined birds, hence the sample size 

is smaller than for other traits. Traits were measured on live, wild living animals, from 

November 2013 to January 2014 and from September to November 2014. For more details see 

main text and Table S4.1. 

  
Wing Tarsus Head + bill Bill to nostril 

 
N Average SE Average SE Average SE Average SE 

Males 78 65.25 0.17 27.00 0.11 39.47 0.09 11.59 0.06 

Santiago 33 65.32 0.28 27.29 0.16 39.23 0.13 11.47 0.10 

Fogo 27 65.44 0.32 27.25 0.17 39.45 0.13 11.39 0.07 

S. Nicolau 18 64.83 0.28 26.11 0.18 39.93 0.16 12.12 0.09 

Females 29 62.66 0.26 25.65 0.15 38.21 0.13 11.19 0.09 

Santiago 17 62.85 0.37 25.82 0.18 38.02 0.15 11.21 0.11 

Fogo 6 61.83 0.60 26.06 0.12 38.12 0.25 10.90 0.25 

S. Nicolau 6 62.92 0.24 24.76 0.25 38.83 0.29 11.43 0.13 

 

  
Bill depth Bill width Tail Weight 

 
N Average SE Average SE Average SE N tail Average SE 

Males 78 3.61 0.01 5.40 0.02 63.21 5.29 28 17.87 0.12 

Santiago 33 3.60 0.02 5.39 0.04 63.20 3.16 10 17.64 0.20 

Fogo 27 3.64 0.03 5.44 0.03 64.60 3.16 10 17.86 0.17 

S. Nicolau 18 3.61 0.03 5.38 0.04 61.50 2.83 8 18.28 0.29 

Females 29 3.53 0.03 5.28 0.03 60.14 2.65 7 16.63 0.20 

Santiago 17 3.56 0.04 5.31 0.03 60.67 1.73 3 16.64 0.26 

Fogo 6 3.53 0.08 5.30 0.07 60.50 1.41 2 16.45 0.33 

S. Nicolau 6 3.43 0.04 5.19 0.08 59.00 1.41 2 16.78 0.56 
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5.4.2 Sexual dimorphism 

In all analyses, I used 107 birds for which I had measured all morphological traits except tail, in 

a total of 78 males and 29 females. Univariate tests showed differences between males and 

females for all morphological traits, with males being larger than females (Table 5.2). 

 

Table 5.2 Sexual dimorphism in the Cape Verde warbler; non-normal variables were tested 

with a Mann-Whitney test, normal variables with a t-test, and variables with unequal variances 

with a Kruskal-Wallis test. All the variables differ significantly between males and females.  

 
N Males N Females test used test value df p value 

Wing 78 29 Mann-Whitney 228.50 NA <0.001 

Tarsus 78 29 t-test -7.37 63.02 <0.001 

Head + bill 78 29 t-test -8.14 54.46 <0.001 

Bill length 78 29 t-test -3.73 55.98 <0.001 

Bill depth 78 29 Mann-Whitney 773.50 NA 0.012 

Bill width 78 29 Mann-Whitney 652.00 NA <0.001 

Tail 28 7 Kruskal-Wallis 8.64 1.00 0.003 

Weight 78 29 t-test -5.30 51.67 <0.001 

 

Multivariate analysis confirmed the morphological differences between sexes. Individuals for 

which not all of the traits had been measured (e.g. they escaped while being measured) were 

not included in the sex PCA. The first and second components explained 45% and 15% of the 

variance, respectively (Table 5.3). The first principal component, related to overall size, 

appeared to explain variation between males and females, while the second component 

explained variation within each sex (Figure 5.2). Two traits, tarsus and bill length, contribute 

disproportionately to the second component, suggesting that these are the features that 

explain most variance within each sex (Table 5.3). Taken together, this indicates that males are 

larger than females overall and that no morphological traits contribute disproportionately to 

sexual dimorphism in this species (Table 5.3, Figure 5.2). 
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Table 5.3 Principal component analyses of sexual dimorphism in the Cape Verde warbler, using 

only adult birds; standard deviation, proportion of variance, cumulative proportion of variance 

of first and second principal components and loadings of each traits on each component are 

shown (n = 107). 

    PC1 PC2 

 
Standard deviation 1.77 1.04 

  Proportion of Variance 0.45 0.15 

  Cumulative Proportion 0.49 0.60 

Loadings Wing -0.36 -0.20 

  Tarsus -0.35 -0.59 

  Head + bill -0.47 0.31 

  Bill length -0.35 0.69 

  Bill depth -0.33 -0.15 

  Bill width -0.35 -0.07 

  Weight -0.42 -0.08 

 

 

 

Figure 5.2 Principal components analysis of sexual dimorphism in the Cape Verde warbler; 

groups correspond to males (blue, n = 78) and females (pink, n = 42). Ellipses show 95% 

confidence intervals.  

 

5.4.3 Differences between populations 

For the island PCA, I used the 78 adult males for which all morphological traits were measured 

(Santiago, n = 33, Fogo, n = 27 and S. Nicolau, n = 18). The first and second components 

explained 33% and 18% of the variance, respectively (Table 5.4). In this case, the first 

component seemed to explain variance within each population and the second principal 

component seemed to explain variance between the S. Nicolau population and the two 

Sotavento populations, i.e. Santiago and Fogo (Figure 5.3). For the first component, head + bill, 

bill length and weight were the traits with highest loadings (Table 5.4). For the second 
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component, tarsus and bill length were the traits with the highest loadings (Table 5.4). As the 

second component seems to explain variance between populations better than the first 

component (Figure 5.3), I inferred that tarsus and bill length are the traits that differ more 

between populations, particularly between S. Nicolau and the southern islands of Santiago and 

Fogo. 

 

Table 5.4 Principal component analyses of island differences in the Cape Verde warbler; 

standard deviation, proportion of variance, cumulative proportion of variance of first and 

second principal components and loadings of each traits on each component are shown (n = 

78). 

    PC1 PC2 

 
Standard deviation 1.53 1.13 

  Proportion of Variance 0.33 0.18 

  Cumulative Proportion 0.33 0.52 

Loadings Wing 0.11 -0.29 

  Tarsus 0.18 -0.68 

  Head + bill 0.58 0.20 

  Bill length 0.45 0.55 

  Bill depth 0.32 -0.22 

  Bill width 0.35 -0.15 

  Weight 0.45 -0.19 

 

 

 

Figure 5.3 Principal components analysis of morphometric differences in the adult male Cape 

Verde warblers; groups correspond to the populations of Santiago (red, n = 33), Fogo (green, n 

= 27) and S. Nicolau (blue, n = 18). Ellipses show 95% confidence intervals.  
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There was no difference between islands for island PC1 (F = 3.121, p = 0.050), but there was 

for island PC2 (F = 26.140, p < 0.001). This indicates that the second component, rather than 

the first, explains morphological variance between islands. Post-hoc Tukey tests revealed that 

PC1 shows only significant differences between the populations of Santiago and S. Nicolau 

(Table 5.5). For PC2 there were significant differences between S. Nicolau and the other two 

populations, i.e. Santiago and Fogo, but not between Santiago and Fogo (Table 5.5). 

Accordingly, ANOVAs on the morphological traits that most contributed to PC2 showed the 

same results. Bill length (F = 13.8, p < 0.001), tarsus length (F = 11.76, p < 0.001) and bill shape, 

which was not included in the PCA (F = 12.79, p < 0.001), differed significantly between islands. 

Post-hoc Tukey tests supported the results for PC2 by revealing that bill length, tarsus length 

and bill shape are significantly different between S. Nicolau and the two Sotavento populations 

(Table 5.5). 

 

Table 5.5 Post-hoc tests of morphological differences between adult males of the three 

populations of Cape Verde warbler. The table shows the results of Tukey tests following 

ANOVAs on the first and second components of the principal component analysis with all 

morphological traits measured (PC1 and PC2) and ANOVAs on the bill and tarsus length 

measurements and on the bill shape index (Santiago, n = 33, Fogo, n = 27 and S. Nicolau, n = 

18). The table shows the coefficient differences, lower and upper 95% confidence intervals, 

and adjusted p-value. Significant differences highlighted in bold. 

  Coef. difference lower upper adjusted p-value 

PC1 Santiago-Fogo -0.364 -1.287 0.560 0.616 

 
Santiago-S. Nicolau -1.089 -2.132 -0.047 0.039 

 
S. Nicolau-Fogo 0.726 -0.357 1.809 0.251 

PC2 Santiago-Fogo 0.171 -0.375 0.718 0.735 

 
Santiago-S. Nicolau -1.626 -2.243 -1.008 <0.001 

 
S. Nicolau-Fogo 1.797 1.156 2.438 <0.001 

Bill length Santiago-Fogo -0.059 -0.373 0.256 0.896 

 
Santiago-S. Nicolau 0.689 0.335 1.042 <0.001 

 
S. Nicolau-Fogo 0.747 0.377 1.118 <0.001 

Tarsus length Santiago-Fogo 0.010 -0.517 0.537 0.999 

 
Santiago-S. Nicolau -1.100 -1.692 -0.507 <0.001 

 
S. Nicolau-Fogo -1.110 -1.727 -0.492 <0.001 

Bill shape Santiago-Fogo 0.018 -0.002 0.039 0.094 

 
Santiago-S. Nicolau -0.033 -0.056 -0.010 0.003 

 
S. Nicolau-Fogo 0.051 0.027 0.076 <0.001 
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Moult stages 

I recorded moult stages during the breeding season, from September to January (Table S1). For 

adult birds, I recorded moult stages for two individuals in September, 17 in October, 32 in 

November, 49 in December and 13 in January (Table S1, Figure 5.4). Because moult stage was 

only recorded for two adult individuals in September, I only report results for the period 

between October and January (Figure 5.4).  

 

Figure 5.4 Moult stages in the Cape Verde warbler, throughout the course of the breeding 

season, from 0 (not moulting) to 4 (moult ending). Each bar shows the relative percentages of 

birds undergoing each moult stage for a given month: October (n = 17), November (n = 32), 

December (n = 49) and January (n = 13). Data were collected in 2013 and 2014. Moult stages 

are as follows: 0 = not moulting, 1 = moult starting, 2 = body moult, 3 = flight feather moult, 4 

= moult ending. 

 

5.5 Discussion 

I found no significant overall body size divergence between the Cape Verde warbler 

populations of Santiago and Fogo (Table 5.4, Figure 5.3). However, there is significant 

divergence in tarsus length, bill length and bill shape between S. Nicolau and the other two 

populations (Table 5.4, Figure 5.3). This pattern matches that of the neutral genetic variation 

observed for this bird, which revealed a divergence between the three populations but 

especially large divergence between S. Nicolau and the other two populations, and is 

consistent with the colonisation and evolutionary history of the three populations (Batalha et 

al. 2017). The population of S. Nicolau became isolated from the two Sotavento populations 

circa 199,000 years ago, while Santiago and Fogo became isolated about 165,000 years ago, 

and there is little to no gene flow between them (Batalha et al. 2017). This pattern is also 
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consistent with the hypothesis that the Cape Verde warbler previously occupied the more 

eastern islands in a stepping stone type colonisation, where divergence would have been 

initiated (Cibois et al. 2011; Spurgin et al. 2014). 

 

Genetic drift is a strong evolutionary force acting on populations that have undergone 

bottlenecks (Hartl & Clark 1997), and it is the null hypothesis against which selection can be 

tested, i.e. it can only be discarded when selection is observed (Orr 1998). Several studies 

aimed at discerning the relative roles of neutral and adaptive forces in driving morphological 

divergence found no support for the action of selective forces when such divergence matched 

neutral genetic diversity patterns (Miller & Lambert 2004; Spurgin et al. 2014). These results 

are consistent with expectations derived from drift, because the pattern of morphological 

divergence seen in the Cape Verde warbler matches that of neutral genetic divergence. This 

means that, even if selection is occurring, it is being overridden by neutral forces in these traits 

(Gonzalez-Quevedo et al. 2015; Grueber et al. 2013; Miller & Lambert 2004; Spurgin et al. 

2014). The results are more consistent with the occurrence of a bottleneck on the population 

of S. Nicolau, as previously inferred from genetic data (Batalha et al. 2017), which could have 

led to drift in morphological traits. For example, reductions in tarsus length have been seen 

following introduction of five New Zealand blackbird populations, followed by bottleneck 

effects (Blackburn et al. 2013). However, an interaction of drift and selection in shaping 

morphological divergence across islands cannot be completely ruled out (James 1982). 

Interactions between neutral and adaptive evolutionary forces are difficult to disentangle and 

usually need long-term studies (Aleixandre et al. 2013; Grueber et al. 2013; van Oosterhout et 

al. 2006). Alternatively, morphological differences between individuals of S. Nicolau and those 

of the other two populations can simply reflect phenotypic plasticity (Larsson & Forslund 1991; 

Przybylo et al. 2000).  

 

Our results are in accordance with biogeographical patterns previously reported for other 

Cape Verde species. Divergence between populations of the Barlavento and Sotavento groups 

of islands has been reported for another bird, the Common kestrel Falco tinnunculus (Bourne 

1955; Hille et al. 2003). This bird is divided in two subspecies in Cape Verde, Falco tinnunculus 

neglectus inhabiting the northern Barlavento group of islands, and Falco tinnunculus alexandri 

found on the southern Sotavento island group (Bourne 1955; Hille et al. 2003). One possible 

explanation for this biogeographical pattern is that distance between island groups and wind 

patterns can prevent dispersal more strongly between the Barlavento and Sotavento groups of 
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islands than between islands of the same group (Correia 1996; Hille et al. 2003). Morphological 

descriptions for other taxa in Cape Verde are scarce, but the same pattern of morphological 

divergence between northern and southern island groups can be seen in several reptile species 

(Arnold et al. 2008; Miralles et al. 2011; Vasconcelos et al. 2012).  

Size differences in bird tarsi and bills may reflect a different use of habitat structures or food 

resources (Grant 1965; Miles & Ricklefs 1984; Ricklefs & Cox 1977). Tarsus length is a heritable 

trait and therefore can be subjected to selection (Alatalo & Lundberg 1986). Bird species which 

feed in a hanging position, use unstable perches or climb tree trunks seem to have shorter 

tarsi (Grant 1965). Hence, from a habitat use perspective, differences in tarsus size between 

the birds of S. Nicolau, where males have longer tarsi, and the other two islands might be 

related to the fact that these birds seem to use different plant species on S. Nicolau, i.e. mostly 

reed patches (Chapter 4).  Variation in the shape and size of bird bills is correlated with the 

food resources used (Bowman 1961; Grant 1985; Grant 1965; Schluter & Grant 1984a). In the 

Galapagos finches, variation in bill size and shape among populations on different Galapagos 

islands is related to the size of the food resources used by the finches (Grant 1985; Grant et al. 

1985; Grant 1986; Schluter & Grant 1984b). A correlation between bill length and average size 

of prey eaten can be seen in several other insular birds species (Baldwin 1953; Grant 1965). 

The differences in bill shape between the warblers of S. Nicolau and those of Santiago and 

Fogo might be an adaptation to different food resources, or might simply be the result of drift. 

However, at this point I can only speculate about possible causes for these differences, and 

research directed specifically to the diet and foraging behaviour of these birds is needed to 

verify these hypotheses. 

 

Selective forces acting in the wild are often strong and variable in space and time (Bell 2008; 

Endler 1986). In animal populations, evolutionary responses to selective forces can fluctuate 

over short time scales (Bell 2010; Hill et al. 1991). Fluctuating selection and pressures created 

by environmental instability have been proposed to explain rapid evolution of morphological 

traits (Benkman & Miller 1996; Millet et al. 2015; Thompson 1998). Rapid ecological evolution, 

i.e. that which occurs in timespans of less than a century, has been described for other birds 

species that show adaptive radiations in archipelagos (Clegg et al. 2008; Grant 1985; 

Thompson 1998). Rapid changes in bill shape and size in Geospiza finches and Zosterops white-

eyes have been linked to climatic events and proposed to occur because of the changes in food 

resources induced by those climatic events (Clegg et al. 2008; Grant 1985; Thompson 1998). 

While fluctuating selection has been confirmed as a mechanism driving morphological 
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changes, this has been documented with long term studies and/or links to environmental 

changes (Bell 2010; Clegg et al. 2008; Grant 2008). The time scale of this study, one calendar 

year, is not enough to make inferences or speculations about a possible role of fluctuating 

selection and rapid evolution in driving divergence between the populations of Cape Verde 

warbler. Further studies could confirm or discard this hypothesis. 

 

Conclusion 

Our results indicate that there is sexual dimorphism with respect to body size in the Cape 

Verde warbler (Tables 5.2 and 5.3, Figure 5.2), even though, as in many passerines there is a 

large overlap between the sexes. This pattern is seen in most Acrocephalus warbler species 

(Cramp & Perrins 1992; Svensson 1992). I also report the first records of morphological 

measurements of live Cape Verde warblers for around 100 years (Cramp & Perrins 1992; 

Dohrn 1871; Garcia-del-Rey 2016; Keulemans 1866) and the first records of moult patterns 

(Garcia-del-Rey 2016). Data were collected during the breeding seasons of 2013 and 2014, and 

juveniles as well as adults were measured. I also observed some nests with chicks or eggs 

during the same period. This confirms that the main breeding season of the Cape Verde 

warbler falls during the months following the start of the rain season in Cape Verde (usually 

late August – early September), on all islands (Bourne 1955; Correia 1996; Garcia-del-Rey 

2016; Hazevoet 1995). The results indicate that adult Cape Verde warblers undergo a post-

breeding moult which lasts at least from October to January (Figure 5.4). This is consistent with 

the pattern observed in most resident songbirds (Leisler & Schulze-Hagen 2011).  
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Supplementary figure S5.1 Boxplots of morphological measures taken on the Cape Verde 

warbler during the breeding seasons of 2013 and 2014, including only adult birds (F = females 

and M = males) from Santiago, Fogo and S. Nicolau. 
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a) b)  

Supplementary figure S5.2 Sexual dimorphism in the Cape Verde warbler Acrocephalus 

brevipennis: boxplots of principal component scores of PC1 (a) and PC2 (b); groups correspond 

to adult males, n = 78 and adult females, n = 29. 

 

a) b)  

c) d)  

e)  

Supplementary figure S5.3 Island differences in adult males Cape Verde warblers Acrocephalus 
brevipennis: principal component scores of PC1 (a), PC2 (b); measurements of bill size to nostril 
(c) and tarsus size (d); bill shape index scores (e). Boxplots of Santiago, n = 33, Fogo, n = 27 and 
S. Nicolau, n = 18. 

e) 
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Sunset over Fogo island, seen from Serra Malagueta, Santiago. Photo taken in November 2014 
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6.1 General discussion 

In this thesis I assess genetic and phenotypic divergence between the three remaining 

populations of the endangered Cape Verde warbler, and consider the conservation 

implications of the results. Divergent, isolated populations can require different management 

strategies (Linnell et al. 2008; Sylven 2003) because intrinsic and extrinsic factors can influence 

viability in a different way for each population. In fragmented populations factors such as 

population numbers, genetic diversity, habitat use, local behavioural or morphological 

adaptations, levels of predation or parasite prevalence all interact to determine each 

population’s viability (Dalton et al. 2013; Howland et al. 2016; Michaux et al. 2004; Stangel et 

al. 1992). Therefore, the first step in an effective species conservation plan is to understand 

potential different requirements of different populations. In this final chapter, I discuss my 

findings collectively and outline ideas for future research. 

 

6.1.1 Population divergence 

Genetic factors can contribute significantly to extinction risk in the wild (Frankham 2005; 

Frankham & Ralls 1998; Saccheri et al. 1998; Spielman et al. 2004), particularly when 

populations are isolated or arranged in a meta-population structure (Saccheri et al. 1998). 

Neutral markers can be used rapidly and efficiently to assess population genetic diversity, 

divergence and past and ongoing bottlenecks (Frankham 1998; Padilla et al. 2015; Ramstad et 

al. 2013; Spurgin et al. 2014; Wright et al. 2014). In Chapter 2, I used mitochondrial DNA and 

microsatellite markers to show that the three populations of the Cape Verde warbler exhibit a 

gradient of diversity, with the population of the largest island, Santiago, having the most 

diversity and the smallest population of S. Nicolau having the least diversity. Divergence 

between populations based on microsatellites and mitochondrial DNA was medium to large 

(microsatellite FST 0.06 Santiago – Fogo to FST 0.28 Fogo – S. Nicolau; cytochrome b FST 0.26 

Santiago – Fogo to FST 0.45 Fogo – S. Nicolau). This and the recent divergence times (less than 

half a million years ago) collectively suggest relatively recent isolation between the three 

populations, with little to no gene flow, which is consistent with the initial phases of allopatric 

speciation (Coyne & Orr 2004; Orr & Smith 1998; Price 2008).  

 

Culturally inherited behavioural traits can evolve rapidly due to stochastic or selective forces, 

and this rapid evolution can reinforce neutral genetic divergence among populations (Grant & 

Grant 1996; Kenyon et al. 2016; MacDougall-Shackleton & MacDougall-Shackleton 2001; Price 

2008). In other words, if drift is driving divergence between vertebrate populations, culturally 
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inherited traits can augment and advance the divergence process. In Chapter 3, I determined 

song divergence between the Cape Verde warbler populations, and assessed whether this 

divergence could play a role in reproductive isolation, thereby reinforcing population 

divergence. I found no significant differences in the spectral traits of song between the three 

populations, i.e. there was no difference in the frequencies, entropy and duration of song 

between the three populations. However, there was some indication that the structural 

elements of the songs were arranged differently between the three populations, especially 

when comparing S. Nicolau with the other two populations. There was also no difference in 

the behavioural or song reaction of the birds of each population to songs of different origins. 

Overall, I found no evidence that the individuals from any population of the Cape Verde 

warbler discriminate between birds from different populations based on song. This result 

contrasts with those observed in a number of other species, where individuals discriminate 

against songs of males of different origins (Grant & Grant 2002; Irwin et al. 2001; Mortega et 

al. 2014).  

 

In Chapter 4, I explored habitat requirements of the Cape Verde warbler in the three islands 

where it exists and assessed if there were differences between them. For animals, structural 

vegetation traits are an important feature in determining habitat preferences (Odum 1971; 

Wildi 2013). Dense green vegetation cover that persisted year-round predicted the wider areas 

occupied by the warbler on all three islands. However, no topographic or structural vegetation 

traits predicted fine scale presence of the warbler on any of the islands. Interestingly, plant 

species composition differed between sites occupied and unoccupied by the warbler, and also 

differed between the three islands. Generally speaking, on Santiago and Fogo, the warbler 

uses plantations and forests, whereas on S. Nicolau it is mostly restricted to dense reed Arundo 

donax beds and mango Mangifera indica trees, but is absent from plantations and forests. The 

reasons for this difference are unknown at the moment.  

 

Morphological differences have been historically used to define subspecies, and comparing 

morphological and neutral genetic divergence can help disentangle the relative roles of neutral 

and evolutionary forces in driving population divergence (Clegg et al. 2002; Clegg & Phillimore 

2010; Potvin & Clegg 2015). Thus, any assessment of population divergence would not be 

complete without examining morphological differences. In Chapter 5, I examined differences 

in morphological traits between the three populations of the Cape Verde warbler. The results 
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indicate that birds of S. Nicolau have longer, narrower bills and shorter tarsi than the birds of 

Santiago and Fogo, which do not differ between each other. 

 

S. Nicolau 

While I did not find evidence of song divergence between the three populations, it is clear that 

neutral genetic markers, habitat preferences and morphological traits differ between them. In 

all measured traits, the small isolated population of S. Nicolau sets apart from Santiago and 

Fogo, which confirms its uniqueness. It is the least genetically diverse population, and it does 

not share mitochondrial DNA alleles with Santiago or Fogo. The results of Chapter 2 also 

indicate that S. Nicolau became isolated from the other two populations earlier (199,000 year 

ago) than they were isolated from each other (165,000). Finally, there is strong evidence of a 

recent or current bottleneck in this population, and the population size is very small. Estimates 

of effective population size using standard methods (Spurgin et al. 2014) were not possible (for 

any of the populations), and information about the past size of the populations is not available, 

which makes determining the exact strength of this bottleneck difficult. However, there is 

anecdotal evidence that the whole archipelago has suffered from droughts and changes in land 

management during the last century (Hazevoet 1995), which might have caused habitat loss 

and therefore a decrease in population size and consequently loss of genetic diversity. There is 

no statistical evidence for song divergence in this population, except for the fact that songs 

sung by S. Nicolau birds are slightly longer and seem to include different elements, e.g. more 

trills, that those of birds of the other two populations. The habitat used by S. Nicolau warblers, 

while structurally similar, is composed of different plant species than warbler habitat on the 

other islands. Furthermore, unlike the warblers of Santiago and Fogo, those of S. Nicolau are 

not using all potentially suitable habitat on this island. Finally, they have shorter tarsi and 

longer, narrower bills than the birds of the other two islands. Collectively, my results indicate 

that the warblers of S. Nicolau differ more from those of Santiago and Fogo than those of 

these two islands between themselves.  

 

6.1.2 Conservation implications 

Conservationists often focus on preserving “irreplaceable” populations, i.e. those with unique 

characteristics (Brooks et al. 2006). The observed significant diverge of allele frequencies at 

mitochondrial DNA and microsatellites between the three populations of the warbler are 

sufficient to consider each one of them as a different management unit, sensu Moritz (1994), 
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because they diverge significantly at mitochondrial DNA. Currently, they should not be 

considered different evolutionarily significant units because they are not reciprocally 

monophyletic for mitochondrial DNA alleles (Moritz 1994). This recommendation is reinforced 

by the fact that the warblers differ in habitat use and morphology on the three islands. 

Notably, habitat is a key element to be taken into account in conservation plans. This is not 

only because changes to habitat can have a direct and immediate effect on a population 

(Butchart et al. 2010; Pereira et al. 2010), but also because the geographical location of critical 

habitat determines who owns them, and consequently influences how they can be managed. 

Therefore, I suggest that habitat-directed conservation measures should be specifically 

tailored for each island, taking into account the different plant species composition and 

geographic distribution of suitable areas for the warbler. 

 

Collectively, the results of this thesis show that the small isolated population of S. Nicolau is 

different from the populations of Santiago and Fogo in terms of neutral genetic diversity, 

habitat use and morphological traits. This population is very small, i.e. 12-25 breeding pairs 

(Batalha et al. 2017), and most territories were found outside the protected area of the 

Natural Park of Monte Gordo. Taken together, this implies that the conservation of this 

population should be prioritised, but that this can be difficult to achieve. Genetic rescue by 

translocation of individuals from Santiago or Fogo could be an option (Weeks et al. 2011), but 

practitioners could risk losing the unique genetic diversity found in this population, or creating 

outbreeding problems (Frankham 2015; Frankham et al. 2011). Therefore, all potential 

benefits and problems derived from using this approach should be carefully considered. 

Finally, at the moment it is unknown if the population bottleneck on S. Nicolau is simply due to 

founder effects or if it is the result of environmental pressures such as the droughts that 

devastated the archipelago during the last century (Hazevoet 1995; Sena-Martins & Moreno 

1986). It would be important to explore possible causes of the bottleneck, for example using 

climatic data, and even model future scenarios to understand if this population can be facing 

potential additional bottlenecks. 

 

6.1.3 General conclusions and further work 

The research presented in this thesis provides insight into population divergence in the Cape 

Verde warbler and bears important implications for its conservation. No functional markers 

have been assessed in this thesis, but a study of toll-like receptor immune gene diversity is 

underway with collaborators. The study of immune gene diversity, perhaps linked to 
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differences in pathogen prevalence on the three populations, could provide additional insight 

into selective forces or conservation threats impacting the warbler (Gonzalez-Quevedo et al. 

2015; Radwan et al. 2010; Spurgin & Richardson 2010). Regarding estimates of divergence 

time, the results have high 95% HPD intervals because there is very little divergence in 

mitochondrial sequences used. In other words, while the geometric averages of divergence 

time are 165-199 kya, it is possible that the three populations diverged from each other 

sometime between 52-615 kya. A possible solution for this would be to sequence more 

mitochondrial genes, but for the purpose of this study, i.e. defining conservation management 

units, the use of the cytochrome b was sufficient. 

 

Bird song, as cue for mate recognition, can indicate reproductive isolation (Mason et al. 2017; 

Slabbekoorn & Smith 2002). The CVW songs do not differ between islands and birds do not 

respond differently to songs of different populations of origin, suggesting that song does not 

play a role in reproductive isolation in this species. However, small sample size coupled with 

high inter-individual variability in the CVW could have obscured the results of playback tests. 

Furthermore, in structurally complex and individually varied songs like in the CVW, differences 

in song structure can only be reliably assessed by examining a sufficiently large number of 

songs per individual and population (Mortega et al. 2014). Because the Cape Verde warbler 

sings very irregularly and infrequently, it was not possible to obtain such a sample size within 

the limitations of the fieldwork period. Further expeditions could be undertaken to record 

more songs and continue this part of the study. 

 

Apart from reed on S. Nicolau, the warbler uses mostly vegetation used for agriculture and 

forests, i.e. exotic species generally located on privately owned land. Therefore, any 

management strategy should take this into account and aim to promote a harmonious 

coexistence between the warbler and humans. Removal of exotic plants, e.g. Spanish flag 

Lantana camara, has been advocated in the past to preserve and restore native flora in Cape 

Verde. However, this could have negative impacts in the warbler, particularly on S. Nicolau. It 

would be advisable to carefully assess the benefits for native flora and potential disadvantages 

for the warbler before any removal action takes place. Alternatively, when such assessments 

are costly in terms on time and money, it seems plausible to find a compromise solution like 

the one implemented on Serra Malagueta Natural Park in 2014: biologists removed Spanish 

flag shrubs only from the areas where no warbler nests had been found (J. Mascarenhas, pers. 

comm.). 
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Habitat analysis results suggest that the warbler is not using the entire available suitable 

habitat on S. Nicolau, i.e. that warbler habitat has not reached carrying capacity (Odum 1971). 

This could simply be a recent consequence of the bottleneck this population has been through 

(Batalha et al. 2017). Alternatively, it could be linked to potential inbreeding depression or 

external biotic forces such as pathogens, predators or competitors (Frankham et al. 2009; 

Odum 1971). Predators, especially mammalians, have been linked to declines of endemic 

island birds, e.g. in New Zealand, Hawaii or some Atlantic islands (Hilton & Cuthbert 2010; 

McLennan et al. 1996; Wilson et al. 1998).  However, they have a stronger impact on birds with 

slow rates of growth, long generation time or that nest in holes (O'Donnell 1996; Owens & 

Bennett 2000). Thus, it is advisable that inbreeding depression and external threats are 

assessed to better understand their potential impact on this population, as well as to inform 

efficient conservation measures. 

 

Morphological differences between populations have been linked to the action of selection 

environments (Grant 1965, 1986; Schluter & Grant 1984), these studies relied on the collection 

of long term data or because environmental causes of selection were observed as they 

occurred. To determine if, in addition to drift and bottleneck effects, selection has a role in 

shaping differences in tarsus and bill size in the S. Nicolau warblers, regular data collection 

should be undertaken. This could be part of an integrated monitoring plan, involving for 

example bird ringing and measuring, blood sampling, nest and territory checks, habitat 

surveys, assessment of predators and pathogens and observations of feeding behaviour.  

 

Finally, a consistent issue during this work is the sparsity of data on territory size, diet, 

predation, life cycle, breeding biology and reproductive success on the Cape Verde warbler 

(BirdLife International 2016; Garcia-del-Rey 2016). Successful conservation plans need to take 

such species requirements into account (Groom et al. 2006; Lindenmayer & Burgman 2005). In 

this thesis, I have taken a first step by examining habitat preferences of the warbler on the 

three islands, but this work needs to be further developed and incorporate other potentially 

important factors, such as predators, pathogens and competitors. I emphasize the need for 

this research to be undertaken outside the Natural Park areas, especially on S. Nicolau, as most 

of the few existing territories are located outside this area. 

 

Final conclusion 

In conclusion, this thesis provided a practical example of how examining data from multiple 

traits is important to understand population divergence and implications in its conservation, 
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because each trait can evolve in different ways and be subjected to different evolutionary 

forces and environmental pressures. The findings presented here indicate that the three 

populations of Cape Verde warbler differ in genetic, habitat and morphological traits and 

should be considered different conservation management units. Nevertheless, further 

research directed to the specific needs of each population is needed to ensure the drafting of a 

successful conservation plan for this species, and especially for the small and unique 

population of S. Nicolau. 
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1. Introdução | Introduction 

 

A felosa de Cabo Verde (Acrocephalus brevipennis) é uma ave endémica deste arquipélago,  

classificada com o estatuto de conservação “em perigo” pela IUCN (BirdLife International 

2013). Até recentemente, pensava-se que esta espécie se encontrava circunscrita à ilha de 

Santiago. Em 1998 e 2004 novas populações foram descobertas em S. Nicolau e Fogo, 

respectivamente (Hazevoet et al. 1999; Hering & Hering 2005). A população global desta 

espécie está estimada pela IUCN em apenas 1000-1500 aves (BirdLife International 2013). As 

relações filogenéticas entre elas ainda não foram estudadas. Diferenças entre as populações, 

nomeadamente genéticas, ecológicas ou comportamentais, podem prejudicar o sucesso de 

medidas de conservação (Phillimore et al. 2008). Para a preservação a longo prazo desta 

espécie, as diferenças entre as populações devem ser tidas em conta nos planos de 

conservação. Para avaliar estas diferenças, recolhemos amostras de sangue e medidas 

morfométricas e fisiológicas de 95 indivíduos pertencentes às três diferentes populações, 

entre Novembro de 2013 e Janeiro de 2014. Simultaneamente, identificámos cada ave 

individualmente com anilhas de metal e cor e recolhemos dados de canto das aves e habitat 

onde as aves foram encontradas. Estes dados serão agora analisados com recurso a técnicas 

moleculares e estatísticas para avaliar se existem diferenças entre as populações. Neste 

relatório apresentamos os dados recolhidos durante esta época de campo, avaliamos até que 

ponto os objectivos definidos foram alcançados e propomos direcções futuras para dar 

seguimento ao trabalho iniciado. 

 

The Cape Verde warbler Acrocephalus brevipennis is an endemic bird of this archipelago classified as 

"endangered" (BirdLife International 2013). Until recently, it was thought that this species was 

confined to the island of Santiago. In 1998 and 2004 new populations were discovered on S. Nicolau 

and Fogo, respectively (Hazevoet et al. 1999; Hering & Hering 2005). Population sizes are estimated 

to be between just 1000 and 1500 mature individuals (BirdLife International 2013).  Additionally, 

phylogenetic relationships between populations have not yet been assessed. Genetic, ecological or 

behavioral differences between populations can impair the success of conservation measures 

(Phillimore et al. 2008). For the long-term conservation of this species, this should be taken into 

account in conservation plans. To evaluate these differences, we collected blood samples and 

morphometric and physiological measurements of 95 individuals belonging to the three different 

populations, between November 2013 and January 2014. Simultaneously, we identified each bird 

individually with metal and colour-rings and collected data on bird song and the habitat where they 

were found. These data will be now analysed with molecular and statistical techniques to assess the 

extent of the differences between populations. In this report, we present the data collected during 

this field season. We evaluate if the planned goals have been reached and then propose new 

activities to follow up the work initiated.  
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2. Objectivos | Aims 
 

Tendo em conta o objectivo principal dste projecto, para a primeira época de campo 

(Novembro 2013 a Janeiro 2014) foram definidos os seguintes objectivos específicos: 

 

To achieve the main aims of this project, we defined as specific goals of the first field 

season (November 2013 to January 2014) the following: 

 

1) Construir colaborações com entidades nacionais no sentido de iniciar e desenvolver o 

projecto 

 Build collaborations with local stakeholders to initiate and develop the project 

 

2) Iniciar o treino de técnicos locais para dar continuidade à monitorização da espécie 

 Start training local technicians to ensure that the species monitoring will 

continue 

 

3) Obter amostras de sangue de um mínimo de 30 aves por ilha 

 Obtain blood samples of a minimum of 30 birds per island 

 

4) Recolher dados de morfologia, de muda, época de reprodução e parasitas 

 Record data on biometrics, moult, breeding stage and parasites 

 

5) Gravar o canto de um mínimo de 10 machos por ilha 

 Record songs of a minimum of 10 male birds per island 

 

6) Fazer um primeiro reconhecimento das características do habitat da espécie 

 Make a first assessment of habitat features 

 

7) Testar um método adequado para fazer censos dos números da população 

 Test an adequate method to census population numbers 
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3. Actividades e resultados do projecto | Project activities and 
outcomes 

 

3.1. Colaboração com entidades nacionais | Collaboration with national 

stakeholders 

 

O trabalho de campo para o estudo e conservação da felosa de Cabo Verde Acrocephalus 

brevipennis teve lugar no final da época reprodutora, com início a 17 de Novembro de 2013 e 

final dia 28 de Janeiro de 2014. Desde a chegada a Cabo Verde, a equipa de campo contactou 

sempre todas as entidades nacionais no sentido de pedir a sua autorização para realizar os 

trabalhos e manter estas entidades informadas do desenvolvimento dos mesmos. Vários 

técnicos e directores do INIDA (Instituto Nacional de Investigação e Desenvolvimento Agrário), 

Parque Natural da Serra Malagueta, Parque Natural do Fogo e Parque Natural de Monte Gordo 

acompanharam a equipa em algumas saídas de campo, em função da conjugação da sua 

disponibilidade com a localização e datas dos trabalhos. Colaborámos também com a ONG 

Biosfera I no sentido de incorporar a nossa metodologia de trabalho no esquema nacional de 

anilhagem de aves que a mesma está a desenvolver em conjunto com a DGA (Direcção Geral 

do Ambiente). Além disso, graças ao financiamento do African Bird Club, foi possível recrutar 

uma excelente bióloga Cabo Verdeana (Jaelsa Moreira) que trabalhou como assistente de 

campo neste projecto durante 2 meses. Todas as pessoas envolvidas mostraram um grande 

interesse em aprender, acompanhar e ajudar a realização do trabalho, o que se reflectiu num 

excelente resultado final. 

 

The fieldwork for the study and conservation of the Cape Verde Warbler Acrocephalus brevipennis 

took place at the end of the breeding season, starting on November 17th, 2013 and ending January 

28th, 2014. After arriving in Cape Verde, we contacted all national authorities for permission to 

undertake the work and kept them informed of progress throughout the fieldwork. Where possible 

we took local stakeholders to the field with us to follow the work. Several technicians and directors 

from the National Institute for Agrarian Research and Development (INIDA) and Natural Parks of 

Serra Malagueta, Fogo and Monte Gordo accompanied the team on field trips, whenever possible. 

We also collaborated with the NGO Biosfera I to incorporate our methodology in the national bird 

ringing scheme that is being developed jointly with the General Direction for the Environment (DGA). 

Moreover, thanks to funding from the African Bird Club, we hired a Cape Verdean biologist (Jaelsa 

Moreira) who did an excellent work as a field assistant on this project for two months. All involved 

stakeholders showed great interest in learning and helping to carry out the work, which contributed 

to the succes of this fieldwork. 
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3.2. Treino de técnicos locais | Training of local technicians 

 

É fundamental, para o sucesso de qualquer projecto de conservação in situ a longo prazo, que 

os parceiros locais estejam envolvidos no mesmo desde o início. Assim, um dos objectivos 

deste projecto de doutoramento é formar uma rede de colaboradores em Cabo Verde que 

possam dar continuidade ao projecto, e desenvolver as competências técnicas dos biológos 

que fazem o seguimento ecológico das felosas de Cabo Verde. Neste sentido, procurámos dar 

formação inicial em técnicas de monitorização de aves que envolvem anilhagem a vários 

técnicos do INIDA, Parque Natural da Serra Malagueta, Parque Natural do Fogo e Parque 

Natural de Monte Gordo. Os técnicos tiveram alguma formação inicial em montagem e 

desmontagem de redes verticais, extracção de aves das redes, manuseamento e anilhagem 

das aves, recolha de parâmetros biométricos e significado biológico dos mesmos (por exemplo, 

muda, pelada de incubação, etc). Além destes técnicos, também a assistente de campo cabo 

verdeana Jaelsa Moreira teve oportunidade de desenvolver bastante as suas competências 

técnicas em todas as fases do processo de anilhagem, bem como no seguimento ecológico da 

felosa de Cabo Verde no campo.  

 

A key aspect of the success of long-term in situ conservation projects is the involvement of local 

partners from the start. Hence, one of the main aims of this project is to build a network of 

collaborators in Cape Verde who can continue the project, and to increase the technical skills of the 

local biologists monitoring the birds. To do so, the team included local technicians in our field trips, 

so that they would appreciate the avian monitoring techniques used. We gave basic training in bird 

ringing to technicians of INIDA and Natural Parks of Serra Malagueta, Fogo and Monte Gordo. The 

technicians had initial training in setting up and closing mist-nets, extracting birds from nets, 

handling and ringing, collecting biometric parameters and about the biological significance of these 

measurements (ie, moult, brood patch, etc.). In particular, the Cape Verdean field assistant Jaelsa 

Moreira developed her technical skills in all aspects of bird ringing, as well as in monitoring the Cape 

Verde warbler. 

 

3.3. Amostras de sangue | Blood samples 

 

Definiu-se como objectivo conseguir um mínimo de 30 amostras de sangue por população, 

porque é o número mínimo recomendado para estudos que pretendam ilustrar variabilidade 

genética e diferenças entre populações. Um número de amostras inferior poderá deturpar os 

resultados. A equipa capturou, anilhou e recolheu amostras de sangue e dados biométricos de 

um total de 95 felosas de Cabo Verde (Table I). Destas, 50 foram capturadas em Santiago, 30 

em Fogo e 15 em S. Nicolau, em 62 locais diferentes (Figure 1). Para identificar as aves 

amostradas, cada uma recebeu uma anilha de metal numerada e uma combinação única de 

três anilhas de cor resistentes a radiação UV (Redfern & Clark 2001; ver Table I e Anexo I). As 
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amostras de sangue foram recolhidas por punctura da veia braquial. Adicionalmente foram 

anilhadas e medidas outras aves que caiam acidentalmente na rede e cujo tarso suportava 

anilhas do mesmo tamanho. Infelizmente uma ave morreu durante a fase de amostragem de 

sangue devido a um acidente, na ilha do Fogo (ver tabela XI no Anexo II: captura #68). Estavam 

presentes os quatros membros da equipa de trabalho, bem como o Dr. Alexandre Nesvsky e o 

técnico Herculano Dinis, do Parque Natural do Fogo, e o habitante de Monte Barro Nené, e 

foram feitos todos os possíveis para salvar a ave. Todas as outras aves foram libertadas ilesas 

imediatamente após o processamento. Mortes durante a anilhagem são muito raras (Sheldon 

et al. 2008; Spotswood et al. 2012), mas infelizmente podem acontecer até mesmo aos 

anilhadores mais experientes.  

 

We aimed to collect 30 blood samples per population, the minimum recommended number of 

samples for genetic studies assessing variability and differences between populations. A smaller 

number of samples may distort results. Our team captured, ringed and collected blood samples and 

biometric data from 95 Cape Verde warblers (Table I), 50 on Santiago, 30 on Fogo and 15 on S. 

Nicolau, in a total of 62 different locations (Figure 1). To identify the sampled birds, each received a 

numbered metal ring and a unique combination of three colour rings resistant to UV radiation 

(Redfern & Clark 2001; see Table I and Appendix I). Blood samples were collected from the the 

brachial vein. In addition, we measured and ringed other birds that were accidentally caught and 

whose tarsus could fit rings of the same size.  Unfortunately one bird died during the sampling 

process due to an accident, but all other birds were released unharmed immediately after ringing. 

Such deaths are very rare during bird ringing (Sheldon et al. 2008; Spotswood et al. 2012) but, 

regrettably, can happen even to the most experienced ringers.  
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Table I – Número de felosas de Cabo Verde Acrocephalus brevipennis amostradas por ilha, após a época de 

reprodução de 2013, ordenadas por idade e sexo; F = fêmea, M = macho, N = total / Number of Cape Verde 

warblers Acrocephalus brevipennis sampled per island, after the breeding season of 2013, by age and sex; F = 

female; M = male, N = total. 

 

 

Idade / Age 

 
Sexo / Sex 

Desconhecida 
Unknown 

Juvenil 
Juvenile 

Adulto 
Adult N 

Santiago                                       
18/11/2013 - 14/12/2013 2 9 39 50 

Centro / Centre 1 5 22 28 

F 0 3 9 12 

M 1 2 13 16 

Norte / North 0 0 15 15 

F 0 0 4 4 

M 0 0 11 11 

Sul / South 1 4 2 7 

F 0 3 1 4 

M 1 1 1 3 

Fogo                                               
19/12/2013 - 31/12/2013 6 3 21 30 

F 1 3 4 8 

M 5 0 17 22 

S. Nicolau                                      
04/01/2014 - 19/01/2014 0 2 13 15 

F 0 1 2 3 

M 0 1 11 12 

Total por idade / by age 8 14 73 95 

 

 

 
Figure 1 – Vista geral da distribuição dos locais onde foram recolhidas amostras de sangue de felosa de Cabo 

Verde Acrocephalus brevipennis, após a época de reprodução de 2013 / Overview of the sites where Cape Verde 

warblers Acrocephalus brevipennis were sampled, after the breeding season of 2013. 
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Em Santiago, sendo uma ilha extensa, existe a possibilidade de haver estrutura populacional 

(i.e., ligeiras diferenças genéticas entre as aves de populações em zonas geográficas distantes). 

Assim, procurou-se fazer exploração e amostragem de tantos locais quanto possível. Como 

resultado as aves foram capturadas em três áreas principais: Norte, Centro e Sul (Figure 2 a 

Figure 5). No Fogo, optou-se por realizar a amostragem junto à localidade de Pai António 

(Figure 6)), já que esta zona apresenta grande densidade de aves que vivem nas plantações de 

café e o resto da ilha não apresenta habitat adequado à sobrevivência desta espécie. Em S. 

Nicolau, procurou-se fazer a amostragem em vários pontos espalhados pela reduzida área que 

esta espécie ocupa presentemente (Figure 7), tentando amostrar zonas separadas por 

barreiras geográficas que possam limitar o fluxo genético. Na Brava, cinco locais com potencial 

habitat adequado foram exaustivamente pesquisados entre 23 a 27 de Janeiro de 2014 (Figure 

8). Infelizmente, não foram encontradas felosas de Cabo Verde lá, confirmando assim 

observações prévias feitas pelo técnico Herculano Dinis (Parque Natural do Fogo) e o 

naturalista Cornelis Hazevoet (Sociedade Cabo Verdiana de Zoologia). Devido a limitações de 

tempo, não foram efectuadas buscas em Santo Antão, onde, apesar de não existirem registos 

desta espécie, parece haver habitat adequado.  

 

On Santiago, a large island, there may be population structure (i.e., small genetic differences 

between populations of birds in distant geographical areas). So we tried to explore and sample as 

many locations as possible. As a result the birds were captured in three main areas: North, Centre 

and South (Figure 2 to Figure 5). On Fogo, we chose to sample the birds around Pai António (Figure 

6), as this area has a high density of birds and the rest of the island does not have suitable habitat for 

this species. On S. Nicolau, we sampled various locations within the small area that this species 

presently occupies (Figure 7), trying to include areas separated by geographical barriers that may 

limit gene flow. On Brava we thoroughly searched five sites with potential suitable habitat from 23rd 

to 27th January 2014 (Figure 8). Unfortunately, no warblers were found, confirming previous fingings 

by the technician Herculano Dinis (Fogo Natural Park) and the naturalist Cornelis Hazevoet (Cape 

Verde Zoological Society). Due to time constraints, no searches were conducted on Santo Antão 

where, although there are no records of this species, there appears to be suitable habitat. 
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Figure 2 – Vista geral da distribuição dos locais onde foram recolhidas amostras de sangue de felosa de Cabo 

Verde Acrocephalus brevipennis na Ilha de Santiago / Overview of the sites where Cape Verde warblers were 

sampled on Santiago. 

 

 

 
Figure 3 - Locais onde foram recolhidas amostras de sangue de felosa de Cabo Verde Acrocephalus brevipennis 

na zona Norte da Ilha de Santiago / Sites where Cape Verde warblers were sampled in the North area of 

Santiago. 
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Figure 4 - Locais onde foram recolhidas amostras de sangue de felosa de Cabo Verde Acrocephalus brevipennis 

na zona Centro da Ilha de Santiago / Sites where Cape Verde warblers were sampled in the Centre area of 

Santiago. 

 

 

 
Figure 5 - Locais onde foram recolhidas amostras de sangue de felosa de Cabo Verde Acrocephalus brevipennis 

na zona Sul da Ilha de Santiago / Sites where Cape Verde warblers were sampled in the South area of 

Santiago. 
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Figure 6 - Vista da distribuição dos locais onde foram recolhidas amostras de sangue de felosa de Cabo Verde 

Acrocephalus brevipennis na Ilha do Fogo / Overview of the sites where Cape Verde warblers were sampled on 

Fogo. 

 

 

 
Figure 7 - Vista da distribuição dos locais onde foram recolhidas amostras de sangue de felosa de Cabo Verde 

Acrocephalus brevipennis na Ilha de S. Nicolau / Overview of the sites where Cape Verde warblers were 

sampled on S. Nicolau. 
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Figure 8 - Locais onde foi procurada a felosa de Cabo Verde Acrocephalus brevipennis na Ilha Brava / Sites where 
we searched for the Cape Verde warbler on Brava. 

 

 

3.4. Dados morfológicos e fisiológicos | Morphological and physiological data 

 

Foi possível recolher bastantes dados biométricos das felosas de Cabo Verde amostradas 

(Tables II a V). Além das medidas biométricas, os dados morfológicos incluem o estado físico 

da ave (massa muscular, gordura). Os dados da muda das penas (estado e progressão) 

permitiram perceber que nesta espécie os adultos fazem uma muda total das penas após a 

reprodução. Os dados da reprodução (pelada de incubação) indicam que as aves estavam a 

terminar, ou tinham já terminado, a sua época de reprodução na altura do ano em que foram 

amostradas. Foram ainda recolhidos dados de infestação por parasitas, avaliando a quantidade 

de ectoparasitas nas penas de vôo e recolhendo amostras de fezes quando possível. No total 

foram recolhidas 34 amostras de fezes, 16 em aves de Santiago, 14 no Fogo e quatro em S. 

Nicolau. Estes dados serão conjugados com dados genéticos de modo a avaliar a capacidade 

do sistema imunitário destas aves. Os métodos de recolha destas medidas estão descritos no 

Anexo I e os dados recolhidos para cada ave capturada estão disponíveis nas tabelas XI e XII do 

Anexo II.  

 

Standard biometric measurements were taken from every bird caught (summaries on Tables II to V) 

including measures to capture the physical condition of the bird (muscle, fat). The data on moult 

(state and progression) showed that in this species the adults make a complete moult after the 

breeding season. Brood patch data indicate that birds had finished breeding at the time of the year 
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in which they were sampled. Parasite data were also collected, by counting the number of mites on 

flight feathers and collecting faecal samples when possible. We collected 34 faecal samples, 16 on 

Santiago, 14 on Fogo and four on S. Nicolau. Parasite data will be combined with genetic data to 

assess the health of the birds’ immune system. The methods used to collect these measures are 

described in Appendix I and data collected for each bird captured are available in tables XI and XII in 

Appendix II.  

 

Table II – Sumário dos dados morfológicos de felosa de Cabo Verde Acrocephalus brevipennis, recolhidos em 

cada ilha e agrupado por sexo; em cada coluna apresentam-se os valores médios, e entre parêntesis o desvio 

padrão; F = fêmea; M = macho; N = total / Summary of Cape Verde warbler biometrics, collected on each 

island and grouped by bird sex; on each cell, the average is followed by the standard deviation, between 

brackets; F = female; M = male; N = total. 

 

 

Média por sexo e por ilha / Average by sex and island 
(Desvio padrão / Standard deviation) 

 

Medida / 
Measurement Comprimen

to da asa / 
Wing length 

Comprimen
to do tarso / 

Tarsus 
length 

Comprime
nto de 

cabeça e 
bico / 

Head plus 
bill length 

Comprime
nto do 

bico (até 
narina) / 

Bill length 
(to nostril) 

Profundid
ade do 

bico / Bill 
depth 

Largura 
do bico / 
Bill width 

Peso / 
Weight N  

Santiago                                       64.0 (2.0) 26.7 (1.2) 38.5 (1.2) 11.2 (0.8) 3.5 (0.3) 5.3 (0.5) 17.2 (1.4) 50 

F 62.6 (1.5) 25.7 (0.8) 37.8 (0.9) 11.0 (0.6) 3.5 (0.2) 5.1 (0.6) 16.2 (1.3) 20 

M 65.0 (1.6) 27.4 (1.0) 39.0 (1.1) 11.4 (0.9) 3.5 (0.3) 5.3 (0.4) 17.9 (1.0) 30 

Fogo                                                64.6 (2.1) 26.7 (0.9) 39.2 (0.9) 11.3 (0.5) 3.6 (0.2) 5.3 (0.2) 17.4 (2.1) 30 

F 62.4 (1.3) 26.1 (0.9) 38.3 (0.8) 10.8 (0.6) 3.6 (0.2) 5.2 (0.2) 16.6 (1.2) 8 

M 65.4 (1.70) 27 (0.9) 39.5 (0.6) 11.5 (0.4) 3.7 (0.1) 5.4 (0.2) 17.8 (2.2) 22 

S. Nicolau                                      64.4 (1.3) 26.0 (0.9) 39.8 (0.9) 12 (0.7) 3.6 (0.1) 5.3 (0.2) 18.1 (1.6) 15 

F 63 (0.0) 24.5 (0.4) 38.7 (1.0) 11.1 (1.0) 3.4 (0.1) 5.2 (0.1) 16.5 (0.9) 3 

M 64.8 (1.2) 26.4 (0.6) 40.1 (0.6) 12.2 (0.4) 3.6 (0.1) 5.4 (0.2) 18.6 (1.4) 12 

Média geral / 
Population 
average 64.3 (1.9) 26.6 (1.1) 38.9 (1.2) 11.4 (0.7) 3.6 (0.2) 5.3 (0.4) 17.4 (1.7) 95 

 

 
Table III – Sumário das classificações de gordura (colunas) e músculo (linhas) de felosa de Cabo Verde 

Acrocephalus brevipennis; gordura: 0 = ausente; 1 = muito pouca;  2 = pouca; músculo: 2 = normal; 3 = bem 

constituído; para descrição compreensiva das classificações ver Anexo I / Summary of Cape Verde warbler fat 

(columns) and muscle (rows) scores; fat scores: 0 = absent; 1 = very little; 2= little; muscle: 2 = normal; 3 = 

well developed; for full description of scores see Appendix I. 

 

 

Gordura / Fat score 

 Músculo / Muscle score 0 1 2 Total  

Santiago                                        30 12 5 47 

2 16 4 2 22 

3 14 8 3 25 

Fogo                                                22 5 3 30 

2 17 2 2 21 

3 5 3 1 9 

S. Nicolau                                       10 5 0 15 

2 6 4 0 10 

3 4 1 0 5 

Total 62 22 8 92 
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Table IV - Sumário das classificações de muda e pelada de incubação (colunas), por sexo (linhas) de felosa de 

Cabo Verde Acrocephalus brevipennis. Muda: O = inactiva; S = a iniciar; B = muda das penas corporais; M = 

muda das penas de voo; E = terminada. Pelada de incubação: 0 = ausente; 2 = em desenvolvimento; 3 = estádio 

máximo; 4 = a regredir; 5 = a fechar; para descrição compreensiva das classificações ver Anexo I. F = fêmea; 

M = macho; N = total.  / Summary of Cape Verde warbler moult and brood patch (columns) scores, by sex 

(rows); Moult: O = inactive; S = starting; B = body feathers moulting; M = main moult; E = ending. Brood 

patch: 0 = absent; 2 = developing; 3 = full brood patch; 4 = regressing; 5 = closing; for full description of 

scores see Appendix I. F = female; M = male; N = total. 

 

 

Muda / Moult 

 

 

O S B M E 

 Pelada de incubação / 
Brood patch 0 2 3 4 0 4 0 0 4 5 0 N 

Santiago 
18/11/2013 - 14/12/2013                     20 1 2 3 3 1 0 14 0 3 0 47 

F 2 1 2 3 0 1 0 6 0 2 0 17 

M 18 0 0 0 3 0 0 8 0 1 0 30 

Fogo        
19/12/2013 - 31/12/2013                                        1 0 0 1 0 0 1 15 1 10 0 29 

F 1 0 0 1 0 0 0 3 1 2 0 8 

M 0 0 0 0 0 0 1 12 0 8 0 21 

S. Nicolau     
04/01/2014 - 19/01/2014                                  1 0 0 0 1 0 0 11 0 0 2 15 

F 0 0 0 0 0 0 0 2 0 0 1 3 

M 1 0 0 0 1 0 0 9 0 0 1 12 

Total 22 1 2 4 4 1 1 40 1 13 2 91 

 

 
Table V - Sumário das classificações da contagem de parasitas das penas na felosa de Cabo Verde 

Acrocephalus brevipennis; A = 0; B = 1; C = 2-5; D = 6-10; E = 11-20; F = 21-100; G = >100; para descrição 

compreensiva das classificações ver Anexo I / Summary of Cape Verde warbler feather mite score; A = 0; B = 

1; C = 2-5; D = 6-10; E = 11-20; F = 21-100; G = >100; for full description of scores see Appendix I. 

 

Parasitas das 
penas / 

Feather mites A B C D E F G Total  

Santiago                                       7 1 1 4 3 23 1 40 

Fogo                                               0 0 0 2 5 23 0 30 

S. Nicolau                                      4 0 1 0 3 7 0 15 

Total 11 1 2 6 11 53 1 85 
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3.5. Canto | Song 

 

Foram registados um total de 123 ficheiros de som da felosa de Cabo Verde, nas três ilhas. 

Destes, 87 foram registados em Santiago, 17 em Fogo e 19 em S. Nicolau. Esses arquivos 

correspondem a um mínimo de 55 machos individuais (40 de Santiago, 11 de Fogo e 4 de S. 

Nicolau). Os machos de Santiago pareceram reagir a um canto gravado em Assomada, 

Santiago, em 2005, por Antero Lindholm (disponível em http://www.xeno-canto.org/), sendo 

atraídos para as redes por ele. Os machos de Fogo também reagiram a este canto, mas 

pareceram reagir mais fortemente a uma das primeiras gravações de boa qualidade registadas 

no Fogo. Da mesma forma, os machos de S. Nicolau pareceram reagir mais fortemente a uma 

gravação feita nessa ilha que às gravações feitas em Fogo ou Santiago. Note-se, no entanto, 

que estas reacções não foram avaliadas quantitativamente, e que estas avaliações são 

subjectivas. 

 

We recorded a total of 123 sound files at 56 different locations across the islands; 87 in Santiago, 17 

in Fogo and 19 in S. Nicolau. These files correspond to at least 55 Cape Verde warbler males (40 from 

Santiago, 11 from Fogo and 4 from S. Nicolau). Santiago males reacted to a song recorded in 

Assomada, Santiago, in 2005, by Antero Lindholm (available at http://www.xeno-canto.org/), being 

attracted to the nets when we played it. The males of Fogo also reacted to this Santiago song, but 

appeared to react more strongly to one of the first recordings of good quality made on Fogo. 

Likewise, S. Nicolau males appeared to react more strongly to a recording made on this island that to 

the recordings made in Fogo or Santiago.  However, it must be noted that these reactions were not 

quanitatively assessed and therefore they are just subjective observations.  

 

3.6. Dados de habitat | Habitat data 

 

Nesta primeira época de campo, foi dada prioridade à recolha de amostras de sangue das aves. 

Foram recolhidos alguns dados de habitat mas não de forma sistemática. A composição do 

habitat da felosa de Cabo Verde parece ser muito diferente, tanto entre as ilhas como dentro 

de cada ilha, tanto em espécies de plantas como em variáveis abióticas como altitude, 

temperaturas médias, nebulosidade. Foi feita uma avaliação preliminar destas características, 

que servirá como base para a concepção de um modelo adequado para a próxima época de 

campo. Nesta avaliação preliminar simplificada foram registados apenas: (1) a presença ou 

ausência de árvores, água e agricultura, (2) o tipo de terreno (vale ou encosta), (3) a 

percentagem de área coberta de vegetação rasteira e percentagem de área coberta de sombra 

e (4) uma descrição sumária do tipo de vegetação encontrada. Todos os registos e estimativas 

foram feitos, muito grosseiramente, apenas na área que as felosas foram observadas a utilizar. 
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Não foi possível estimar o tamanho do território utilizado pelas aves, mas quaisquer re-

avistamentos ou recapturas de aves anilhadas com anilhas de cor foram registadas.  

 

During this field season we prioritized collecting blood samples from birds so although some habitat 

data was collected, this was not done systematically. The composition of the Cape Verde warbler 

habitat seems to be very different between and within the islands, both in terms of plant species and 

in abiotic variables such as altitude, average temperatures, or cloudiness. We did a preliminary 

evaluation of these features, which will serve as the basis for designing an appropriate protocol for 

the next field season. We noted (1) the presence or absence of trees, water and agriculture, (2) the 

type of terrain (valley bottom or slope), (3) the percentage of area covered with undergrowth and 

percentage of shaded area and (4) a summary of the type of vegetation found. All estimates were 

made only in the area that the birds were seen using. It was not possible to estimate any territory 

sizes but all re-sightings and recaptures of colour-ringed birds were recorded.  

 

3.7. Métodos de censo | Censusing methods 

 

Durante esta primeira época de campo, foram registadas com Global Positioning System (GPS), 

modelo Garmin eTrex® H, todas as aves detectadas por observação ou som (com ou sem 

recurso a playback) no decorrer das saídas de campo, todos os ninhos identificados e todos os 

locais explorados em que as aves não foram observadas (os chamados pontos negativos). A 

maior parte dos ninhos encontrados foram identificados por Gilson Semedo (INIDA, Santiago) 

ou pelos colaboradores de Pai António (Fogo). Ao longo da época de campo, foi sendo avaliada 

de forma informal a eficiência do uso de transectos e pontos de escuta, com ou sem uso de 

playbacks, na detecção da felosa de Cabo Verde (Bibby et al. 1992; Showler et al. 2002). Na 

ilha do Fogo não foram realizados censos de teste fora da área nordeste, que tem vegetação 

densa e plantações de café. Fora desta área não existe habitat adequado para esta espécie, e 

portanto não foram registados pontos negativos para esta ilha. 

 

During this first field season we used Global Positioning System (GPS) Garmin eTrex® H to record the 

location of all birds detected by sight or sound, all nests identified and all the explored sites where 

birds were not observed (negative points). Most nests were identified by Gilson Semedo (INIDA, 

Santiago) or by inhabitants of Pai António (Fogo). Throughout the field season we assessed in an 

informal way the efficiency of transects and point counts, with or without the use of playback, to 

detect the Cape Verde warbler (Bibby et al. 1992; Showler et al. 2002). On Fogo, no trial censuses 

were conducted outside the northeastern areas, with dense vegetation and coffee plantations. 

Outisde this area there is no suitable habitat and no Cape Verde warblers, hence no negative points 

were recorded on this island. 
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4. Conclusões | Conclusions  
 

Concluímos que esta primeira época de campo teve excelentes resultados, tendo sido 

atingidos todos os principais objectivos propostos.  

 

The first field season of this project had excellent results and all key objectives were achieved.  
 

 

1. Foram iniciadas colaborações sólidas com todas as entidades nacionais envolvidas na 

conservação da felosa de Cabo Verde (DGA, INIDA e Parques Naturais da Serra 

Malagueta, Fogo e Monte Gordo); 

- We initiated close collaborations with all national authorities involved in the conservation of 

the Cape Verde warbler (DGA, INIDA and Natural Parks of Serra Malagueta, Fogo and Monte 

Gordo); 

 

2. Foi dada formação inicial em anilhagem de aves a técnicos de todas estas entidades; 

-  Initial training in bird ringing was given to technicians from all these authorities; 

 

3. Obteve-se o número mínimo de 30 amostras de sangue de felosa de Cabo Verde nas 

ilhas de Santiago e Fogo, e 15 amostras em S. Nicolau; 

- We obtained the minimum number of 30 blood samples from the Cape Verde Warbler on the 

islands of Santiago and Fogo, and 15 samples on S. Nicolau; 

 

4. Foram recolhidos parâmetros adicionais morfológicos e fisiológicos de todas as aves 

amostradas; 

- Additional morphological and physiological parameters were recorded for all birds sampled; 
 

5. Foram gravados cantos de um mínimo de 10 machos em Santiago e Fogo, e 4 em S. 

Nicolau; 

- We recorded songs of a minimum of 10 males on Santiago and Fogo, and 4 on S. Nicolau; 

 

6. Foram recolhidos dados de base sobre as características do habitat utilizado pela 

espécie em todas as ilhas; 

- We collected baseline data on habitat features on all islands; 

 

7. Foram testados vários métodos de censos de aves e várias adaptações dos mesmos ao 

caso da felosa de Cabo Verde. 

- We tested various methods of bird censuses and adaptations of these methods to the case of 

the Cape Verde warbler. 
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5. Discussão | Discussion 
 

5.1. Colaboração com entidades nacionais | Collaboration with national 

stakeholders 

 

Considera-se que o objectivo de iniciar colaborações com entidades nacionais envolvidas na 

conservação da felosa de Cabo Verde foi atingido. Tivemos oportunidade de trabalhar com 

todas as entidades que monitorizam esta espécie, em todas as ilhas onde a mesma ocorre. A 

troca de informações entre a equipa técnica e os parceiros Cabo Verdeanos foi excelente, 

facilitando a aprendizagem de ambas as partes e contribuindo efectivamente para a recolha de 

dados de qualidade no campo. 

 

The aim of initiating collaborations with national organizations involved in the conservation of the 
Cape Verde Warbler was achieved. We had the opportunity to work with all the stakeholders that 
monitor this species on all the islands where it occurs. The exchange of information between the 
technical team and Cape Verde partners was excellent, facilitating learning for both parties and 
effectively contributing to the collection of quality data in the field. 

 

5.2. Treino de técnicos locais | Training of local technicians 

 

Considera-se que o objectivo de dar formação aos técnicos locais para continuar a 

monitorização da espécie foi atingido. Os técnicos que tiveram formação em anilhagem podem 

futuramente seguir as aves marcadas com anilhas de cor e assim estudar o território que as 

mesmas utilizam. Porém, algumas saídas de campo não são suficientes para dotar os técnicos 

de uma formação sólida que lhes permita efectuar este tipo de trabalho de forma 

independente no futuro. 

 

The aim of training local technicians in ringing methods to continue monitoring the species in the 

future was achieved. The technicians trained can now follow the birds marked with colour rings and 

study their territory use. However, the limited amount of field trips and ringing training given so far 

was not enough to provide sufficient training to enable them to carry out ringing work 

independently in the future. 
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5.3. Amostras de sangue | Blood samples 

 

O objectivo de recolher um mínimo de 30 amostras de sangue em cada ilha foi atingido em 

Fogo (30), ultrapassado em Santiago (50) e não atingido em S. Nicolau (15). Idealmente, para 

se obterem resultados válidos, as 30 amostras mínimas devem pertencer a indivíduos não 

relacionados, para não haver sobre-representação dos mesmos alelos. Na prática, isso significa 

que em cada território os juvenis só contam como amostras independentes se os adultos não 

tiverem sido amostrados. Ou seja, se recolhermos amostras de um adulto e um juvenil do 

mesmo território, na realidade só temos uma amostra válida para esse território. Na ilha do 

Fogo, foram amostrados 3 juvenis de territórios onde já tinham sido amostrados adultos. 

Embora todos os dados sejam úteis, isto significa que só temos 27 amostras válidas da 

população do Fogo, número ligeiramente abaixo do recomendado. Do mesmo modo, como a 

população de felosa de Cabo Verde na ilha de S. Nicolau é reduzida e difícil de amostrar, não 

foi possível conseguir as 30 amostras no tempo disponível. Por outro lado, em ilhas extensas 

como Santiago, em que pode existir estrutura populacional entre várias localidades da ilha, é 

recomendável obter um mínimo de 30 amostras de cada área estudada (Norte, Centro e Sul). 

Apesar de não ser dada prioridade, neste momento, à caracterização da estrutura 

populacional intra-insular, aproveitou-se o facto de termos que recolher amostras em várias 

localidades para recolher o máximo possível, tendo em vista a possibilidade de estudar 

diferenças entre as populações de Santiago numa segunda fase deste projecto. 

 

The collection of 30 blood samples was achieved on Fogo (30) and surpassed in Santiago (50) but 

only 15 were collected in S. Nicolau. To obtain valid results, the 30 samples should belong to 

unrelated individuals, to avoid over-representation of similar alleles. In practical terms, this means 

that in each territory juveniles only count as independent samples if adults have not been sampled 

there. During this season, three juveniles were sampled from territories where adults had already 

been sampled on Fogo. Thus we have only 27 valid samples of the Fogo population. Similarly, as the 

population of Cape Verde warbler of the island of S. Nicolau is very small and difficult to sample, we 

could not get the 30 samples in the time available. Furthermore, on large islands like Santiago, 

where population structure may exist, it is recommended to obtain a minimum of 30 samples from 

each study area (North, Centre and South). On Santiago, we took advantage of the fact that we had 

to collect samples at various locations to collect as many as possible, foreseeing the possibility of 

studying differences among populations within this island in a second phase of this project. 

 

5.4. Dados morfológicos e fisiológicos | Morphological and physiological data 

 

Em geral, as medidas biométricas das aves amostradas parecem corresponder ao que se 

esperava com base em medições anteriormente descritas na literatura (Dohrn 1871), ou 

recolhidos em espécimes de museu (N. Collar, pers. comm.). Outras medidas fisiológicas (por 
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exemplo, muda, pelada de incubação) também corresponderam ao que seria de esperar tendo 

em conta que esta é uma espécie residente que se reproduz durante a época das chuvas 

(Bourne de 1955; Hazevoet 1995). Até agora, os machos com pelada de incubação só foram 

encontrados na população de Fogo, mas não está claro se isto é devido a diferenças entre 

populações ou simplesmente a diferenças no momento da recolha de dados. Além disso, 

verificámos com surpresa que a maioria das aves amostradas em áreas agrícolas tiveram 

contagens altas de ácaros de penas. Por outro lado, aves amostradas em áreas de montanha, 

em altitudes elevadas e com menos contacto com humanos, estavam em geral livre de 

parasitas. No entanto, o número de aves amostradas em zonas de montanha foi muito 

pequeno para permitir fazer comparações válidas. 

 

In general, biometrics of the sampled birds seem to correspond to what was expected based on 

measurements available in literature (Dohrn 1871) or collected from museum specimens (N. Collar, 

pers. comm.). Other physical scores (i.e., moult, brood patch) also corresponded to what we would 

expect considering that this species is a resident bird breeding during the rain season (Bourne 1955; 

Hazevoet 1995).  Until now males with a brood patch were only found in the population of Fogo, but 

it is unclear whether this is due to differences between populations or simply to differences in timing 

of data collection. Additionally, we noticed with surprise that the majority of birds sampled in 

agricultural areas had a high count of feather mites. On the other hand, birds sampled in mountain 

areas, at high altitudes and with less contact with humans, were generally free of parasites. 

However, the number of birds sampled in mountain areas was too small to allow making valid 

comparisons. 

 

5.5. Canto | Song 

 

O objectivo de gravar o canto de um mínimo de 10 machos em cada ilha foi atingido em 

Santiago e Fogo, mas não atingido em S. Nicolau. Nesta última ilha, foi bastante difícil 

conseguir gravar o canto dos machos porque (1) as aves são difíceis de encontrar e (2) 

vocalizam pouco. A reacção das aves em S. Nicolau foi muito fraca: por vezes, algumas nem 

sequer vocalizavam em resposta à gravação, apesar de estarem presentes no território 

(confirmado por observação ou captura). Não é claro se isso se deve: (1) ao facto da 

amostragem em S. Nicolau ter sido feita após o final da época de reprodução; (2) a diferenças 

de comportamento nas aves desta população; (3) ou a uma combinação dos dois factores. 

 

We recorded 10 males on Santiago and Fogo, but not on S. Nicolau. On the latter island it was quite 

difficult to record male songs because (1) the birds were hard to find and (2) they vocalized little. The 

reaction of the birds on S. Nicolau was very weak: it happened that the birds did not react to the 

playback, despite being present in the territory (as confirmed by observations or captures). It is 

unclear whether this is due to: (1) the fact that the sampling on S. Nicolau was done after the end of 
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the breeding season; (2) differences in the behaviour of birds of this population; (3) a combination of 

two factors.  

 

5.6. Dados de habitat | Habitat data 

 

Nesta primeira época de campo, o objectivo de recolher dados de habitat de forma 

sistematizada não foi atingido. Não foi possível estimar o tamanho do território utilizado pelas 

aves, para iniciar uma estimativa de uso de espaço / habitat. Testámos o protocolo utilizado 

para recolher dados de habitat da felosa das Seychelles (Seychelles Warbler Project 2014) mas 

concluímos não é adequado para a felosa de Cabo Verde, por duas razões. Primeiro, porque 

esta espécie habita zonas de vegetação arbustiva muito densa e espinhosa, de muito difícil 

acesso, onde um seguimento continuado da ave pelo território fica muitas vezes 

impossibilitado. Segundo, porque ao contrário da felosa das Seychelles, esta espécie habita 

locais bastante diversos em termos de composição da vegetação, não só entre as ilhas mas 

também dentro de cada ilha. Neste sentido, estamos a desenvolver um protocolo que seja 

possível de executar no campo e tenha em conta não só toda a diversidade de habitats que a 

felosa de Cabo Verde usa, procurando avaliar quais as características comuns a todos esses 

tipos de habitat, mas também que seja rápido e fácil de usar. Um protocolo deste tipo será 

muito importante para recolher dados que permitam prever a potencial distribuição da 

espécie. 

 

In this first field season, we were unable to collect habitat data in a systematic way. It was not 
possible to estimate territory size used by the birds to initiate an assessment of space use. We tested 
the protocol used for the Seychelles warbler (Seychelles Warbler Project 2014) but concluded it is 
not appropriate for the Cape Verde warbler, for two reasons. First, because this species inhabits 
areas of dense shrubby and thorny vegetation, very difficult to access, where a continuous 
monitoring of the bird through the territory is often impossible. Second, because unlike the 
Seychelles warbler, this species inhabits very different places in terms of vegetation composition, not 
only between the islands but also within each island. Therefore we are developing a protocol that 
will take into account not only the diversity of habitats that the Cape Verde warbler uses, trying to 
assess common features, while being efficient use. Such a protocol is important to collect data for 
predicting the potential distribution of the species. 

 

5.7. Métodos de censo | Censusing methods 

 

Apesar de não terem sido realizados censos formais, a nossa equipa tem agora informações 

suficientes para realizar censos completos das ilhas, tendo encontrado métodos de censos 

robustos adaptados à detectabilidade das aves nas diferentes populações. As felosas de Cabo 

Verde são detectadas mais facilmente pelo som do que por observação, já que usam um 

habitat com vegetação arbustiva densa. Estas aves não são fáceis de observar e passam 
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bastante despercebidas, por vezes mesmo após longos períodos de escuta. São muito mais 

conspícuas em Santiago e Fogo do que em S. Nicolau. Por exemplo, nas duas primeiras ilhas 

reagiram fortemente às gravações, e cantavam ou faziam sons de alarme espontanea e 

frequentemente, ao passo que em S. Nicolau eram bastante silenciosas e nem sempre 

reagiram às gravações. Não é claro se esta diferença se deve a diferenças na época de 

reprodução, diferenças na densidade populacional ou a diferenças comportamentais 

intrínsecas entre as populações. 

É possível que os números reais dos individuos indicados no passado tenham sido 

subestimados (em Santiago e S. Nicolau) e sobre-estimados (no Fogo). Em Santiago e S. 

Nicolau encontramos mais aves do que o esperado com base na literatura publicada (Donald et 

al. 2004; N. Wilkinson, pers. comm.; Hazevoet 1995; Hazevoet et al. 1999), por diferentes 

razões: (1) em Santiago, porque procurámos as aves em lugares previamente não explorados 

(CJ Hazevoet, pers. comm.) e, (2) em S. Nicolau, porque fizemos uma exploração muito 

minuciosa recorrendo ao uso intensivo de playbacks. Pelo contrário, é possível que a 

população em Fogo tenha sido anteriormente sobre-estimada. Após anilhar as aves, 

observámos que elas parecem usar uma área maior do que anteriormente sugerido (Hering & 

Fuchs 2009; Hering & Hering 2005). É possível que nos estudos anteriores a mesma ave tenha 

sido observada em vários locais diferentes e erradamente registada como várias aves, levando 

a uma estimativa exagerada do número de indíviduos. Isto realça a importância de marcar as 

aves com anilhas coloridas para obter estimativas correctas do número de indivíduos e 

tamanho do seu território. 

Foi possível compreender que as metodologias para fazer censos terão de ser 

adaptadas a esta espécie, e mais especificamente às diferentes populações, pelo menos se os 

censos forem realizados após a época de reprodução. Desaconselhamos o uso de métodos de 

registo de observações visuais ao longo dum transecto, principalmente em S. Nicolau. Um 

censo completo deverá incluir identificação de sons (canto dos machos, chamamentos de 

fêmeas ou juvenis, e alarmes), e uso de gravações para obter respostas dos machos. 

Recomenda-se que os censos sejam feitos por observadores experientes que estejam 

familiarizados com a espécie. Adicionalmente, observámos que o comportamento das aves e 

as respostas às gravações variam bastante entre as ilhas. Em Santiago e Fogo, os machos são 

vocalmente bastante activos e reagem rapidamente às gravações, enquanto que em S. Nicolau 

são muito silenciosos e pouco reactivos. 

 

Although no formal censuses had been carried out, we have now sufficient information to design a 

program to undertake a complete census, using robust methods adapted to the detectability of birds 

in different populations. The Cape Verde warblers are more easily detected by sound than by sight, 
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because they use dense shrubby vegetation. These birds are not easy to observe, sometimes even 

after long searching periods. They are much more conspicuous on Santiago and Fogo than on S. 

Nicolau. For example, on the first two islands they reacted strongly to playbacks, and sang or made 

alarm sounds often and spontaneously, whereas on S. Nicolau they were quite silent and not always 

responded to playbacks. It is unclear whether this is due to differences in the timing of the breeding 

season, different population densities or intrinsic behavioural differences between populations. 

It is possible that the actual numbers of individuals have been underestimated in the past (on 

Santiago and São Nicolau) and over-estimated (on Fogo). On Santiago and São Nicolau we sampled 

more birds than expected based on the published literature (Donald et al. 2004; N. Wilkinson, pers. 

comm.; Hazevoet 1995; Hazevoet et al. 1999), for different reasons. On Santiago, because we looked 

for the birds in places previously unexplored (CJ Hazevoet, pers. comm.), and on São Nicolau because 

we did a thorough exploration with intensive use of playbacks. By contrast, it is possible that the 

population on Fogo has been previously over-estimated. After colour-ringing the birds, we noticed 

that individuals seem to use larger areas than previously suggested (Hering & Fuchs 2009; Hering & 

Hering 2005). It is possible that in previous studies, the same bird has been observed in several 

different locations and erroneously recorded as several different birds. This highlights the 

importance of colour-ringing the birds for correct estimates of the number of individuals and 

territory sizes. 

We concluded that the methodologies for conducting censuses need to be adapted to the 

species, and more specifically to different populations, at least if the census is conducted after the 

breeding season. We discourage using methods that rely on visual observations along transects, 

especially on S. Nicolau. A complete census should include identification of sounds (male song, 

females and juveniles calls, and alarm sounds), and use playbacks to trigger male replies. We 

recommend that censuses are made by experienced observers who are familiar with the species and 

its sounds. Additionally, we noticed that the birds' behavior and responses to playbacks seem to vary 

greatly between islands. On Santiago and Fogo, males are vocally very active and react quickly to 

playbacks, whereas in S. Nicolau they are very quiet and not very reactive. 
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6. Direcções futuras | Future directions 

 

Dado que a primeira época de campo deste projecto teve resultados bastante positivos, 

recomendamos a continuação e desenvolvimento do mesmo nos próximos anos. É importante 

recolher mais dados sobre o canto, características do habitat e tamanho das populações de 

felosa de Cabo Verde, pois isso fornece informação essencial para conhecer a espécie e 

implementar futuras medidas de conservação de sucesso. Propomos realizar mais épocas de 

campo mantendo a colaboração já iniciada entre a Universidade de East Anglia e as entidades 

Cabo Verdeanas. 

 
As the first field season was successful we strongly recommend the continuation and development 

of this project in the next years. It is important to collect more data on song, habitat features and 

population sizes, as this will inform future conservation measures and determine their success. We 

aim to conduct more field seasons in the future and maintain the collaboration initiated between the 

University of East Anglia and the Cape Verdean stakeholders. 

 

6.1. Colaboração com entidades nacionais | Collaboration with national 

stakeholders 

 

É do interesse do projecto e de todos os parceiros que as colaborações iniciadas se 

mantenham no futuro. Estas colaborações irão facilitar a transmissão de experiências e 

conhecimentos entre a Universidade de East Anglia e as entidades locais. Isto permite, por um 

lado, aumentar a qualidade dos dados recolhidos pela equipa no âmbito deste projecto e, por 

outro lado, que os técnicos locais acompanhem o processo em primeira mão, contribuindo 

activamente para o desenvolvimento e implementação dos protocolos. Nesse sentido, 

sugerimos que seja mantido o contacto com todas as entidades envolvidas na monitorização 

da felosa de Cabo Verde.   

 

For the success of this project, it is crucial that all initiated collaborations are maintained in the 

future. These collaborations will facilitate experience and knowledge exchange between the 

University of East Anglia and local stakeholders. This allows to increase the quality of data collected 

by the team and, moreover, for local technicians to monitor the process, actively contributing to the 

development and implementation of protocols. Accordingly, we suggest that contact with all entities 

involved in monitoring the Cape Verde warbler is maintained. 

 

6.2. Treino de técnicos locais | Training of local technicians 

 

Aconselhamos que os técnicos locais devem continuar a sua formação em metodologias de 

monitorização de fauna que envolvam marcação e recaptura. Os técnicos demonstraram, na 
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primeira época de campo, grande interesse, capacidade de aprendizagem e sólidos 

conhecimentos de base sobre a ecologia das aves, pelo que é aconselhável que continuem a 

desenvolver as suas competências técnicas. Isto permitirá que sejam capazes de realizar 

trabalhos de marcação e seguimento de aves com anilhas de forma independente no futuro. 

Neste sentido, propomos continuar a trabalhar conjuntamente com todos os interessados, 

continuando assim a partilhar conhecimentos práticos e teóricos sobre o uso da anilhagem na 

monitorização de aves selvagens. 

 

We recommend that local technicians should continue their training in capture-mark-recapture 

wildlife monitoring techniques. During the first field season, the technicians we worked with showed 

enthusiasm and ability and had solid basic knowledge about the ecology of birds. If they continue to 

develop their technical skills, this will ultimately allow them to mark and monitor ringed birds 

independently in the future. Therefore, we propose to continue working together with all 

stakeholders, continuing to share practical and theoretical knowledge on the use of ringing in the 

monitoring of wild birds. 

 

6.3. Amostras de sangue | Blood samples 

 

Tendo em conta que o número mínimo de amostras aconselhado não foi conseguido em S. 

Nicolau, recomendamos regressar a S. Nicolau para amostrar mais aves. O número efectivo de 

amostras ficou ligeiramente abaixo do recomendado na ilha do Fogo, e não foi possível obter 

amostras de indivíduos residentes na montanha (Monte Velha), pelo que recomendamos 

regressar a esta ilha e tentar amostrar aves nessa área. Similarmente, se forem detectados 

indícios de estrutura populacional entre as zonas Norte, Centro e Sul de Santiago nas análises 

genéticas, é aconselhavel recolher mais amostras em cada uma destas zonas para validar os 

resultados. Em todo o caso, e uma vez que o objectivo deste projecto é monitorizar a espécie a 

longo prazo, recomenda-se que vão sendo recolhidas mais amostras em cada ilha, sobretudo 

de populações ainda não amostradas, para seguir a evolução da diversidade genética das 

populações ao longo do tempo. Adicionalmente, consideramos desejável continuar a anilhar e 

medir aves de outras espécies que caiam acidentalmente nas redes, uma vez que isto 

possibilita a recolha de bastantes dados de várias espécies com um acréscimo mínimo de custo 

e esforço para o nosso projecto. Concordamos em seguir as recomendações da DGA e INIDA 

de respeitar o período de reprodução da espécie, recolhendo amostras apenas antes ou depois 

desta época, para não perturbar as aves. 

 

As we could not collect the recommended minimum number of sample in S. Nicolau, we recommend 

returning there to sample more birds. The actual number of samples was also slightly lower than 

recommended on Fogo, and it was not possible to obtain samples from individuals living in the 
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mountain (Monte Velha), so we also recommend returning to this island and try to sample birds in 

this area. Similarly, if we find evidence of population structure within Santiago, it is advisable to 

collect more samples in each of the surveyed areas to validate the results. In any case, since the goal 

of this project is to monitor the long-term genetic diversity of this warbler, it is recommended that 

more samples are collected on each island, from sites not yet sampled. Additionally, we propose to 

continue ringing and measuring other species that are caught on the nets by accident, since this 

allows data collection from several species with a minimum increase in cost and effort to our project. 

We agree to follow the recommendations of DGA and INIDA regarding disturbance avoidance during 

the breeding period of the species by sampling just before or after this time. 

 

6.4. Dados morfológicos e fisiológicos | Morphological and physiological data 

 

É necessário clarificar se existem diferenças entre as populações em termos de época de 

reprodução e progressão da muda. É importante, portanto, regressar às várias ilhas e anilhar e 

medir as aves em alturas desfasadas do ano anterior. É igualmente necessário clarificar se as 

aves de zonas agrícolas e de montanha têm diferentes graus ou tipos de parasitas, de modo a 

(1) poder avaliar o risco a que estão expostas, que pode influenciar a necessidade de medidas 

de conservação diferentes, e (2) compreender se as aves nestas zonas estão adaptadas a estas 

forças selectivas. Assim, propomos regressar a Cabo Verde no final de Outubro / ínicio de 

Novembro, iniciando a amostragem em S. Nicolau ou no Fogo, prosseguindo por fim para 

Santiago, terminando a amostragem no final de Dezembro, insistindo na amostragem de aves 

de zonas de montanha (Monte Velha, Monte Tchota, Serra Malagueta).  

 

It is important to clarify whether there are differences between the populations in the timing of 

breeding season and moult. It is important, therefore, to return to Cape Verde and ring and measure 

the birds at different times from the previous year. It is also necessary to clarify whether the birds in 

agricultural and mountain areas have different levels or types of parasite infestation, in order to (1) 

assess the risk that they are exposed to, which may influence the need for different conservation 

measures, and (2) understand whether the birds in these areas are adapted to these selective forces. 

Thus, we propose to return to Cape Verde in late October/early November, starting sampling on S. 

Nicolau or Fogo and ending sampling on Santiago in late December, focusing on sampling mountain 

birds (Monte Velha, Monte Tchota, Serra Malagueta). 

 

6.5. Canto | Song 

 

Para proceder à análise das diferenças entre os cantos dos machos das diferentes ilhas é 

necessário gravar mais cantos em S. Nicolau. Propomos regressar a esta ilha no final da época 

de reprodução, quando os machos ainda estão a defender activamente o território, e gravar 

cantos de pelo menos mais seis machos. Além disso, é necessário testar a reacção das aves de 

cada ilha aos cantos dos machos de outras ilhas com um método standardizado. Para tal, para 

cada ilha será criado um canto tipo, composto de partes de cantos de vários machos, e serão 
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avaliadas as reacções dos machos a este canto tipo com um teste comportamental. Tudo isto 

deve ser feito no máximo no final da época de reprodução, caso contrário corre-se o risco de 

os machos já não estarem a defender o território e o teste não funcionar.  

 

To understand the differences between male songs from different islands it is necessary to record 

more songs on S. Nicolau. We propose to return to this island at the end of the breeding season, 

when males are still actively defending the territory, and record songs of at least six more males. 

Moreover, it is necessary to test the reaction of the birds from each island to the songs of males of 

other islands with a standardized method. To do this, we will create a “type” song for each island, 

composed of parts of several male songs from that island, and assess the reactions of other males to 

this type song with a behavioural test. All this must be done at the latest at the end of the breeding 

season, otherwise there is a risk that males are no longer defending the territory and the test does 

not work. 

 

6.6. Dados de habitat | Habitat data 

 

De modo a poder delinear medidas de conservação adequadas a esta espécie, é necessário 

recolher de forma sistematizada dados do habitat utilizados pela mesma. Assim, propomos 

fazer uma segunda época de campo em que este seja um dos objectivos principais. O 

protocolo deverá ser fácil e rápido de usar. Devem ser registados dados sobre factores bióticos 

e abióticos, bem como espécies de plantas presentes e tamanho do território, se possível. O 

tamanho do território só poderá ser estimado com confiança observando e registando 

movimentos de aves marcadas com anilhas coloridas. Caso contrário, será quase impossível 

distinguir as aves de territórios vizinhos. Neste sentido, recomendamos efectuar marcação de 

mais aves com anilhas coloridas, seguir os seus movimentos, marcando os pontos com GPS, e 

caracterizar o habitat das áreas utilizadas pelas mesmas. No entanto, aconselha-se que o 

seguimento das aves marcadas na época de campo passada seja já iniciado pelos técnicos 

locais, que assim conseguirão já os primeiros dados de uso do espaço por esta espécie. Estes 

dados são muito importantes para poder definir áreas com prioridade de conservação, e para 

construir modelos que possam ser usados para prever outras potenciais zonas de distribuição 

da espécie. 

 

To define successful conservation measures for this species, it is necessary to collect habitat data in a 

systematic way. We propose to do this as a main goal of a second field season. We should have a 

protocol easy and quick to use. We should record data on biotic and abiotic factors, plant species 

present and territory size, if possible. Territory size can only be estimated reliably observing and 

recording movements of colour-ringed birds. Otherwise, it will be almost impossible to distinguish 

birds from neighbouring territories. Hence, we recommend colour ringing more birds, following their 

movements, recording observation points with GPS and characterize the habitat of the areas they 

use. We also recommend that local technicians start recording observations of previously colour-

ringed birds, and get the first data on spatial use of this species. These data are very important to 
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define areas of conservation priority, and to build models that can be used to predict other potential 

areas of distribution of the species. 

 

 

6.7. Métodos de censo | Censusing methods 

 

Consideramos importante realizar censos de aves para obter uma estimativa mais correcta do 

número de indivíduos por ilha. Com base nas observações efectuadas em conjunto com vários 

técnicos cabo verdianos, recomendamos que sejam realizados pontos de escuta com duração 

de 10 minutos, em vez de transectos. Isto minimiza a probabilidade de não detectar aves que 

estejam presentes no território, já que estas parecem usar uma área grande, pelo menos após 

a época de reprodução, movimentando-se bastante e nem sempre emitindo sons. Sugerimos 

fazer este trabalho em conjunto com os técnicos locais de modo a melhorar e homogeneizar a 

metodologia. A altura mais indicada será na época de reprodução, uma vez que os machos 

deverão estar a vocalizar bastante para defender os territórios e estes deverão manter-se 

razoavelmente estáveis. Propomos que no caso específico de S. Nicolau, tratando-se de uma 

população reduzida e ainda pouco conhecida, sejam efectuados vários pontos de escuta 

dentro de cada território, com recurso a gravações, com uma duração mínima de 15 minutos, 

e de preferência repetidos várias vezes por ano, mesmo no caso de não haver resposta das 

aves nas primeiras vezes. Uma metodologia deste género foi utilizada pela equipa e pela 

técnica do Parque Natural de Monte Gordo, Maria Auxiliadora do Nascimento, em S. Nicolau e 

revelou-se a única forma de encontrar as aves mais elusivas.  

 

It is important to conduct bird censuses to obtain a more accurate estimate of the number of 

individuals per island. Based on the observations made we recommend the use of point counts 

lasting 10 minutes instead of transects. This minimizes the probability of not detecting birds that are 

present in the territory, as they seem to use a large area, at least after the breeding season, moving 

a lot and not always vocalizing. We recommend doing this work together with local technicians to 

improve and standardize the methodology. This should be done during breeding season, since males 

should be quite actively defending territories and these are expected to remain fairly stable. In the 

specific case of S. Nicolau, with a reduced and still understudied population, multiple point counts 

should be conducted within each territory, using playbacks, with a minimum duration of 15 minutes, 

and preferably repeated several times per year, even if there is no response of the birds on the first 

try. An approach of this kind was used by our team and the biologist Maria Auxiliadora do 

Nascimento, on the Natural Park of Monte Gordo on S. Nicolau, and proved the only way to find 

many cryptic birds. 
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Anexo | Appendix 
 

Anexo I – Interpretação da informação constante na base de dados de 

campo da felosa de Cabo Verde Acrocephalus brevipennis 
 

Antes de recolher dados de qualquer ave, é necessário identificá-la para se saber exactamente 

a que indivíduo pertencem os dados recolhidos. As anilhas de metal permitem identificar as 

aves com precisão atraves do uso de um número único para cada indivíduo, num suporte de 

metal duradouro e resistente; esta identificação é especialmente útil quando as aves são 

recapturadas. As anilhas de cor permitem identificar as aves em liberdade, sem necessitar de 

capturas, e seguir os movimentos das mesmas dentro dos seus territórios. O diâmetro interno 

das anilhas usadas para identificar a felosa de Cabo Verde Acrocephalus brevipennis é de 2,3 

mm, adequado ao tamanho do tarso destes e de grande parte dos outros Passeriformes. Tanto 

as anilhas de metal como as de cor foram sempre colocadas no tarso das aves. As anilhas de 

metal utilizadas foram especialmente criadas para Cabo Verde, com a inscrição M. Amb. C. 

Verde (Ministério do Ambiente de Cabo Verde). O esquema de anilhagem está integrado na 

plataforma European Colour-ring Birding, que divulga e recolhe informação sobre observações 

de aves com anilhas coloridas. Esta plataforma pode ser acedida através do site 

http://www.cr-birding.org/. 

Para cada ave capturada, a fórmula da asa foi avaliada por meio da identificação da 

pena primária mais longa e da emarginação observada nas penas primárias (dados não 

disponibilizados). A época de reprodução foi avaliada pelo registo da presença e estado de 

uma pelada de incubação. A muda das penas foi avaliada registando o estado de muda de cada 

ave de acordo com o sistema da British Trust for Ornithology (BTO) e registando o número de 

novas penas primárias e secundárias. A idade das aves (juvenil ou adulto) foi determinada pela 

observação do desgaste e estado de muda das penas e pela cor dos olhos, de acordo com o 

sistema da mesma organização. A cor dos olhos das aves foi registada com fotografias e 

categorizada entre cinzento, castanho ou vermelho. O sexo foi determinado pela observação 

do comportamento das aves, do seu tamanho, presença da pelada de incubação ou tamanho 

da protuberância cloacal (a ser comparado com os resultados da sexagem molecular). A 

presença de parasitas (ácaros) nas penas foi registada usando uma escala de A a G, e foram 

recolhidas fezes quando possível. Não foram registados quaisquer dados comportamentais, 

excepto a resposta dos machos capturados às gravações e se as aves manuseadas tentavam 

morder (dados não disponibilizados).  

 

Captura #  

Número do registo de captura da ave. 

 

Ilha 

Ilha em que a ave foi capturada. ST = Santiago; FG = Fogo; SN = S. Nicolau. 

 

Anilhas de cor 

Código de anilhas de cor usado para identificar a ave. Os códigos de anilhas de cor lêem-se da 

direita para a esquerda e de cima para baixo. Assim, numa ave com o código RX_BY, RX refere-

se à pata direita da ave e BY à pata esquerda da ave, ambas lidas de cima para baixo. Esta ave 
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terá as seguintes anilhas: uma anilha vermelha (R) no topo do tarso direito, uma anilha de 

metal (X) na parte de baixo do tarso direito, uma anilha azul (B) no topo do tarso esquerdo e 

uma anilha amarela (Y) na parte de baixo do tarso esquerdo (Figura 9). 

 

 
 

Figure 9 – Diagrama ilustrando as posições das anilhas coloridas e da anilha de metal nas patas de uma felosa 

de Cabo Verde Acrocephalus brevipennis: exemplo de ave anilhada em Santiago. 
 

Repare-se que, na Figura 9, a ave está posicionada de um modo em que parece que a anilha 

amarela é a anilha de cima da pata equerda da ave. Na realidade, e observando com atenção, 

a anilha amarela esta junto ao pé da ave. Logo, se a ave estiver na sua posição natural poderá 

confirmar-se que a anilha amarela está em baixo, junto ao pé, e não em cima, após o joelho, 

como poderá parecer à primeira vista. Estes pormenores são muito importantes para a 

identificação correcta do código de cores usado pela ave, já que um leitura errada deste 

código implica uma identificação incorrecta e consequentemente registos de campo errados. 

Por exemplo, a ave RX_BY referida no exemplo, capturada junto ao tanque de S. Jorge no dia 

27 de Novembro de 2013, poderá ser confundida com a ave RX_YB, capturada tambem em S. 

Jorge mas mais abaixo, no vale com a plantação de mandioca, no dia 3 de Dezembro de 2013. 

É, por isso, essencial ter um cuidado extremo no registo do código de cores observado, e evitar 

registar códigos de cores em que possam haver dúvidas, ou pelo menos fazer sempre uma 

nota sobre isso. Segundo as convenções usadas geralmente na Europa, os códigos estão 

escritos com as iniciais de cada cor em inglês (ver tabela VI). 

 

 

 

 

 

 

Vermelho: 
pata direita da 
ave, em cima 
(após o 
joelho) 

Metal: pata 
direita da ave, 
em baixo (junto 
ao pé) 

Azul: pata 
esquerda da 
ave, em CIMA 
(após o joelho) 

Amarelo: pata 
esquerda da 
ave, em 
BAIXO (junto 
ao pé) 
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Table VI – Cores usadas na identificação das felosas de Cabo Verde Acrocephalus brevipennis na época de 

campo 2013/2014, abreviaturas usadas no código, e possíveis posições na pata das aves. 

 

Cor Abreviatura Pata 

Dark blue B esquerda ou direita 

White W esquerda ou direita 

Orange O esquerda ou direita 

Red R esquerda ou direita 

Yellow Y esquerda ou direita 

Anilha de metal Cabo Verde 

(Ministério do Ambiente) 

X Santiago: direita em baixo 

Fogo: esquerda em baixo 

S. Nicolau: esquerda em cima 

 

 

Anilha de metal 

Número completo da anilha de metal usada para identificar a ave. 

 

Zona 

Zona da ilha onde a ave foi capturada; refere-se apenas às localizações dentro da ilha de 

Santiago. 

 

Local 

Código do ponto de GPS do local onde a ave foi capturada. 

 

Data 

Data da captura. 

 

Hora 

Hora a que a ave caiu na rede. 

 

Idade 

Idade estimada da ave, em relação ao ano civil em que a mesma foi capturada, segundo o 

sistema EURING (tabela VII). Os valores desta escala não indicam os anos de vida da ave mas o 

grau de certeza em relação ao ano de nascimento da ave. Por exemplo, se temos a certeza que 

uma ave nasceu no corrente ano civil, o código da idade será 3 (i.e., juvenis de Santiago e Fogo 

nascidos e capturados em 2013). Se temos a certeza que não nasceu neste ano, mas não 

sabemos ao certo em que ano foi, a idade será 4 (i.e., adultos de Santiago e Fogo capturados 

em 2013). Se temos a certeza que a ave nasceu no ano civil passado, o código sera 5 (i.e., 

juvenis de S. Nicolau, nascidos na época de reprodução de 2013 e capturados em 2014). Se 

sabemos com certeza que não nasceu neste ano, nem no ano passado, mas não sabemos dizer 

há quantos anos nasceu, o código será 6 (i.e., adultos de S. Nicolau capturados em 2014). Se a 

ave já está no estado de desenvolvimento de adulto mas é impossível determinar com 

precisão em que ano nasceu, o código será 2. Na prática, os valores 3 e 5 indicam que a ave é 

juvenil, os valores 4 e 6 indicam que a ave é adulta, e o valor 2 indica que a idade é 
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deconhecida. Para avaliar a idade das aves há que ter em conta vários critérios, como a cor da 

íris, o estado da muda, a presença de plumagem juvenil, o desenvolvimento do bico, a 

presença de pontos na língua, a presença de pelada de incubação, a cor das penas, entre 

outros critérios. 

 
Table VII – Códigos usados para registar a idade das aves em relação ao ano de captura. Tabela adaptada de 

Bairlein (1994). 

 

0 Idade desconhecida, i.e., não registada. 

1 Pullus: cria ainda no ninho, incapaz de voar independenmente e que se consegue apanhar 
com a mão. 

2 Ave totalmente desenvolvida e capaz de voar, mas de idade desconhecida. 

3 Primeiro ano: ave totalmente desenvolvida nascida na época de reprodução do corrente 
ano civil. 

4 Após o primeiro ano: ave totalmente desenvolvida nascida antes da época de reprodução 
do corrente ano civil; ano de nascimento desconhecido. 

5 Segundo ano: ave nascida no ano civil anterior ao corrente. 

6 Após o segundo ano: ave totalmente desenvolvida nascida antes do ano civil anterior ao 
corrente; ano de nascimento desconhecido. 

7 Terceiro ano: ave nascida dois anos antes do ano civil corrente. 

8 Após o terceiro ano: ave totalmente desenvolvida nascida dois ou mais anos antes do ano 
corrente; ano de nascimento desconhecido. 

9 Quarto ano: ave nascida três anos antes do ano civil corrente.  

A Após o quarto ano de vida, mas ano exacto de nascimento desconhecido. 

 

 

Cor da íris 

Cor da íris dos olhos das aves como avaliada pelo anilhador. Esta avaliação poderá ser 

subjectiva, mas fornece mais um critério para avaliar a idade das aves. Nas aves do género 

Acrocephalus e outras felosas, verifica-se frequentemente que os juvenis tem os olhos mais 

acinzentados/esverdeados, e que esta cor muda gradualmente para castanho e avermelhado à 

medida que as aves se desenvolvem (Jenni & Winkler 2011; Kennerley & Pearson 2010). 

Apesar de não ser um indicador preciso da idade das aves, pode ser usado como critério 

complementar para estimar a idade das mesmas. Assim, provavelmente uma ave com olhos 

esverdeados será juvenil, com olhos castanhos estará já num estado de desenvolvimento de 

adulto e com olhos avermelhados possivelmente terá mais de um ano de idade (Figura 10). 

 

 
Figure 10 - Alteração da cor da íris das aves conforme a idade: os juvenis tem a íris acinzentada (esquerda), 

mudando para castanha (centro) e avermelhada (direita) à medida que se tornam adultos.  
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Sexo 

Sexo da ave determinado por métodos de sexagem molecular – amplificação de um fragmento 

nos cromossomas sexuais ZW com o uso dos primers P2 e P8, segundo Griffiths et al. (1998). 

 

Gordura 

Acumulação de gordura no abdómen da ave (Figura 11), segundo a escala mais usada na 

Europa (Kaiser 1993). A acumulação de gordura indica principalmente se a ave está a acumular 

reservas para migração (Gauthreaux 1981), mas também é um bom indicador da condição 

física da ave. 

 

0 - Ausência de 

gordura 

 

 

1 - Indícios de 

gordura 

 

 

2 - Região inter-

clavicular com 

alguma gordura. 

Visível na região 

abdominal sob a 

forma de tira 

  

 

 

3 - Depressão 

interclavicular 

totalmente 

coberta. 

Abdómen quase 

coberto de 

gordura. 

 
 

 

4 - Região 

abdominal 

totalmente 

coberta 

 

 

5 - Gordura da 

região 

interclavicular 

convexa. 

Gordura 

abdominal cobre 

parte do musculo 

peitoral. 
 

 

6 - Gordura 

visível na zona 

lateral do 

musculo peitoral, 

que une a 

gordura 

interclavicular e 

a abdominal. 

Musculatura 

parcialmente 

coberta 
 

 

7 - Somente uma 

pequena parte 

do musculo 

peitoral está 

visível 

 

 

8 - Corpo 

totalmente 

coberto de 

gordura. 

Musculatura não 

é visível 

 

Figure 11 – Escala usada para indicar a acumulação de gordura no abdómen dos Passeriformes. Adaptado de 

Kaiser (1993). 
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Músculo 

Estado de desenvolvimento do músculo peitoral da ave, segundo a escala mais usada na 

Europa (tabela VIII, Figura 12). O desenvolvimento dos músculos da ave é um bom indicador 

do estado de saúde geral da mesma (quanto menos desenvolvido, mais magra, mal nutrida e 

pouco resistente estará a ave). Para avaliar o desenvolvimento do músculo, o investigador 

deve soprar fortemente no abdómen da ave, para que as penas se afastem naturalmente 

(Figura 13). 

 
Table VIII – Descrição da condição dos músculos peitorais da ave para cada valor da escala de avaliação 

segundo Bairlein (1994). 

 

0 Esterno sobressaído; músculos deprimidos.  

1 Esterno fácil de distinguir mas não sobressaído; músculos 
nem deprimidos nem desenvolvidos. 

2 Esterno ainda discernível; músculos ligeiramente 
desenvolvidos (arredondados). 

3 Esterno praticamente impossível de distinguir devido a 
músculos bem desenvolvidos e arredondados.  

 

 

 
Figure 12 – Esquema do desenvolvimento do músculo peitoral nos Passeriformes com respectiva escala de 

classificação (acima) e ilustração das diferenças entre as classificações (abaixo). Adaptado de Barlein (1994). 
 

 

 
Figure 13 – Investigador soprando no abdómen de uma felosa de Cabo Verde Acrocephalus brevipennis para 

avaliar o desenvolvimento do músculo peitoral. Foto de Jaelsa Moreira. 
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Pelada de incubação 

A pelada de incubação é uma área de pele sem penas no abdómen de uma ave que está a 

incubar os ovos, apresentando além disso um aumento dos vasos sanguíneos locais para 

facilitar a transferência de calor do corpo do progenitor para os ovos. Após a incubação, a 

pelada regride e o abdómen da ave volta a ficar coberto por penas. O estado de 

desenvolvimento ou regressão da pelada é um indicador bastante fiável da fase da época de 

reprodução em que a ave se encontra. Isto é, se a ave está a perder as penas, está a iniciar a 

fase de deposição dos ovos; se tem uma pelada bem evidente, está a incubar; se a pelada está 

a ficar recoberta por penas, a incubação dos ovos terminou ou está a terminar. Para observar a 

pelada de de incubação, o invetigador sopra nas penas do abdómen da ave, tal como para 

avaliar o músculo (Figura 13). Para este trabalho utilizámos uma escala de 0 a 5 (Figura 14). É 

necessário ter cuidado para não confundir uma verdadeira pelada de incubação com a 

ausência de penas na zona ventral observada em aves juvenis, que ainda não adquiriram a 

plumagem completa, ou em adultos em muda (Figura 15). 
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Figure 14 - Estádios de desenvolvimento e regressão da pelada de incubação em Passeriformes. Retirado do 

site da Associação Portuguesa de Anilhadores de Aves (APAA). 
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Figure 15 – Exemplos de identificações erradas de pelada de incubação. Retirado do site da Associação 

Portuguesa de Anilhadores de Aves (APAA). 
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Asa 

Comprimento da asa em milímetros, medido desde a dobra da asa até a ponta da rémige 

primária mais longa (Figura 16). Para este projecto, o comprimento é medido usando o 

método “maximum wing chord” descrito por Svensson (1992). Segundo este método, a dobra 

da asa é encostada à extremidade zero da régua, as penas achatadas contra a régua e 

endireitadas ao longo da mesma. São feitas duas medições para detectar e corrigir eventuais 

erros. 

 
Figure 16 – Medição do comprimento da asa com o método “maximum wing chord”; imagem retirada de 

Redfern & Clark (2001). 

 

Tarso direito 

Comprimento do osso metatarso direito, medido desde a extremidade proximal até à distal, na 

zona da dobra com o pé. Para este projecto, mede-se apenas o comprimento do osso, 

aproximado à décima de milímetro, segundo o método descrito por Svensson (1992). O 

paquímetro encosta na extremidade do osso, com a pata dobrada, e na outra extremidade 

com o pé também dobrado, sem encostar na tíbia ou no pé da ave (Figura 17). Esta medição 

também é feita duas vezes. 

 

 
Figure 17 - Medição do comprimento do tarso com o método “minimum tarsus length”; imagem retirada de 

Redfern & Clark (2001). 
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Cabeça e bico 

Comprimento total da cabeça e bico, medidos desde a extremidade posterior da cabeça até à 

ponta do bico, em linha recta (Figura 18). Esta medida também é tirada com o paquímetro, 

aproximando à décima de milímetro. Esta medição também é feita duas vezes. 

 

 

 
Figure 18 - Medição do comprimento total da cabeça e bico; imagem retirada de Redfern & Clark (2001). 

  

Bico 

Comprimento do bico, em milímetros, desde a ponta até à extremidade anterior da narina 

(Figura 19). Medido com o paquímetro até à décima de milímetro. Esta medição também é 

feita duas vezes. 

 

 
Figure 19 – Investigador medindo o comprimento do bico (até à narina) de uma felosa de Cabo Verde 

Acrocephalus brevipennis. Foto de Jaelsa Moreira. 

 

Profundidade do bico 

Profundidade do bico, em milímetros, encostando o paquímetro no local onde as penas 

terminam na mandíbula superior e medindo num ângulo de 90° em relação ao plano 

horizontal do bico. Medido com o paquímetro até à décima de milímetro. Esta medição 

também é feita duas vezes. 
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Largura do bico 

Largura máxima do bico, em milímetros, medida no mesmo ponto de referência que a 

profundidade (neste caso, onde terminam as penas; Figura 20). Medido com o paquímetro até 

à décima de milímetro. Esta medição também é feita duas vezes. 

 

 
Figure 20 – Investigador medindo a largura do bico de uma felosa de Cabo Verde Acrocephalus brevipennis. 

Foto de Jaelsa Moreira. 

 

Muda 

o estado de progressão da muda da ave capturada. Para este projecto, a muda foi registada 

segundo a escala mais usada na Europa. Esta escala é diferente para aves no seu primeiro ano 

de vida (juvenis) ou para adultos (ver tabela IX). 

 
Table IX – Códigos usados para classificar o estádio da muda das penas das aves, em aves juvenis (coluna da 

esquerda) e adultas (direita). 

 

Juveniles Adults 

J 

Ave completamente em plumagem 

juvenil. Aplica-se a todos os Passeriformes 

juvenis antes da muda pós-juvenil.  

O 
Plumagem velha, sem muda nas penas do corpo 

ou de vôo.  

P Muda pós-juvenil das penas do corpo. B 

Adulto com muda das penas corporais, mas sem 

estar na fase de muda principal das penas de vôo 

(asas e cauda).  

O 

Juvenis que tenham completado uma 

muda parcial das penas do corpo, mas 

ainda possuam penas de vôo (coberturas, 

asa ou cauda) velhas.  

M 
Muda principal: penas das asas ou cauda em 

muda activa.  

M Juvenis com muda activa de penas de vôo. S 
A iniciar a muda das penas do corpo – penas das 

asas e cauda velhas.  

A 
Juvenis com muda das penas das asas 

(primárias ou secundárias) interrompida. 
E 

A terminar a muda das penas do corpo – penas 

das asas e cauda novas. 

T 
Mudando apenas as penas terciárias ou 

da cauda, em muda pós-juvenil parcial. 
N Plumagem nova após terminar a muda. 
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Primárias novas 

Rémiges primárias novas, numeradas ascendentemente (começando da pena mais exterior e 

progredindo em direcção ao corpo da ave). Note-se que na maioria das espécies, incluindo a 

felosa de Cabo Verde, as primárias começam a mudar descendentemente, ou seja, da mais 

interior progredindo até ao extremo exterior da asa. Assim, uma ave com as penas 8 a 10 

novas (Figura 21 esquerda) estará num estado de muda menos avançado que uma ave com as 

penas 3 a 10 novas (Figura 21 direita). 

 

 

 
 

 
Figure 21 – Asa de ave com as rémiges primárias 10 e 9 novas, e as restantes velhas (esquerda); asa de ave com 

as rémiges primárias 10 a 3 novas, e as restantes velhas (direita); a alula (pena número 1, mais exterior) não 

esta visível nestas imagens; as setas azuis indicam a direcção da numeração das penas, e as setas vermelhas 

indicam a direcção da progressão da muda; imagem adaptada de  Redfern & Clark (2001). 

 

Secundárias novas 

Rémiges secundárias novas, numeradas ascendentemente (começando da pena mais exterior 

e progredindo em direcção ao corpo da ave). Note-se que, ao contrário das penas primárias, 

na felosa de Cabo Verde, as secundárias começam a mudar ascendentemente, ou seja, da mais 

exterior progredindo até as terciárias, junto do corpo. Assim, uma ave com as penas 1 a 4 

novas estará num estado de muda mais avançado que uma ave com as penas 1 a 2 novas. Na 

felosa de Cabo Verde, as secundárias comecam a mudar depois das primárias já estarem a 

mudar (Figura 22). 

 

 
Figure 22 – Asa de felosa de Cabo Verde Acrocephalus brevipennis a mudar as penas primárias, secundárias e 

coberturas. Observe-se a diferença de cor entre as penas velhas (mais desgastadas e claras) e novas (mais 

frescas e escuras). Esta ave tem as penas primárias 1 a 5 velhas, 6 a 10 novas ou em crescimento, a secundária 

1 a crescer e as restantes velhas. 
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Parasitas das penas 

Quantidade de ectoparasitas das penas das asas, estimada numa escala de A a G (tabela X, 

Figura 23). 

 
Table X – Escala para os ectoparasitas das penas das asas. 

 

Número de ectoparasitas Classificação 

0 A 

1 B 

2-5 C 

6-10 D 

11-20 E 

21-100 F 

100+ G 

 

 

 
Figure 23 – Exemplo de asa mostrando infestação de parasitas das penas observada na maior parte das felosas 

de Cabo Verde Acrocephalus brevipennis amostradas: valor F na escala. 

 

Peso 

Peso da ave, em gramas. Medido numa balança até à décima da grama. 
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Anexo II – Dados biométricos e outros recolhidos em cada felosa de Cabo Verde Acrocephalus brevipennis capturada 

 
Table XI – Dados de felosas de Cabo Verde Acrocephalus brevipennis capturadas: anilhas, local (com coordenadas prontas a inserir no Google Earth), data e hora, idade, sexo, gordura, 

músculo e pelada de incubação; na = dados não registados. 

Captura # 
Anilhas de 
cor 

Anilha de 
metal 

Ilha Zona Local 
Coordenadas Google 
Earth 

Data Hora Idade Cor da íris Sexo Gordura Músculo 
Pelada de 
incubação 

1 RX_RR A000002 ST Centro AB017 15.07297°,-23.55918° 24/11/2013 17:50 3 na macho 1 2 ausente 

2 RX_RB A000005 ST Centro AB012 15.0509°,-23.60833° 25/11/2013 08:45 4 vermelho macho 0 3 ausente 

3 RX_RW A000011 ST Centro AB013 15.05092°,-23.60945° 25/11/2013 14:00 4 vermelho macho 0 3 ausente 

4 RX_RY A000012 ST Centro AB013 15.05092°,-23.60945° 25/11/2013 14:40 3 cinzento  fêmea 2 3 ausente 

5 RX_BR A000016 ST Centro AB012 15.0509°,-23.60833° 26/11/2013 09:52 4 vermelho macho 0 3 ausente 

6 RX_RO A000017 ST Centro AB005B 15.05065°,-23.60403° 26/11/2013 13:25 4 vermelho macho 1 3 ausente 

7 RX_BB A000018 ST Centro AB005B 15.05065°,-23.60403° 26/11/2013 14:10 4 vermelho fêmea 0 2 na 

8 RX_BW A000019 ST Centro AB009 15.0472°,-23.60558° 26/11/2013 17:00 4 vermelho fêmea na na na 

9 RX_BY A000023 ST Centro AB012 15.0509°,-23.60833° 27/11/2013 08:40 4 vermelho fêmea 0 3 na 

10 RX_BO A000025 ST Centro AB022 15.04264°,-23.60569° 27/11/2013 13:15 4 vermelho macho 1 3 ausente 

11 RX_WR A000027 ST Centro AB009 15.0472°,-23.60558° 27/11/2013 17:50 4 na macho 2 3 ausente 

12 RX_WB A000028 ST Norte AB031 15.22911°,-23.73972° 29/11/2013 12:30 4 vermelho macho 2 2 ausente 

13 RX_WW A000029 ST Centro AB033 15.13217°,-23.52942° 30/11/2013 12:20 4 vermelho macho 0 2 ausente 

14 RX_WY A000030 ST Sul AB035 14.92108°,-23.60074° 02/12/2013 10:15 3 castanho fêmea 0 2 ausente 

15 RX_WO A000031 ST Sul AB036 14.92407°,-23.60145° 02/12/2013 13:30 3 castanho macho 0 2 ausente 

16 RX_YR A000032 ST Sul AB036 14.92407°,-23.60145° 02/12/2013 13:30 3 castanho fêmea 0 2 ausente 

17 RX_YB A000034 ST Centro AB010B 15.05243°,-23.60762° 03/12/2013 11:45 3 verde fêmea 0 2 ausente 

18 RX_YW A000035 ST Centro AB010B 15.05243°,-23.60762° 03/12/2013 11:45 4 vermelho fêmea 1 2 4 

19 RX_YY A000036 ST Centro AB010B 15.05243°,-23.60762° 03/12/2013 12:30 4 vermelho macho 0 3 ausente 

20 RX_YO A000038 ST Centro AB010  15.05224°,-23.60744° 03/12/2013 15:04 4 castanho macho 1 3 ausente 

21 RX_OR A000039 ST Centro AB010  15.05224°,-23.60744° 03/12/2013 15:04 4 photo fêmea na na 3 

22 RX_OB A000042 ST Centro AB010  15.05224°,-23.60744° 03/12/2013 16:20 4 castanho fêmea 1 3 2 
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Captura # 
Anilhas de 
cor 

Anilha de 
metal 

Ilha Zona Local 
Coordenadas Google 
Earth 

Data Hora Idade Cor da íris Sexo Gordura Músculo 
Pelada de 
incubação 

23 RX_OW A000043 ST Centro AB010  15.05224°,-23.60744° 03/12/2013 16:35 2 castanho macho 2 3 ausente 

24 RX_OY A000045 ST Sul AB003 14.92825°,-23.59861° 04/12/2013 11:35 2 castanho macho 0 2 ausente 

25 RX_OO A000046 ST Sul AB039 14.93402°,-23.5991° 04/12/2013 15:05 3 cinzento/verde fêmea 2 2 ausente 

26 BX_RR A000047 ST Sul AB039 14.93402°,-23.5991° 04/12/2013 16:10 4 castanho fêmea 0 2 ausente 

27 BX_RB A000048 ST Sul AB039 14.93402°,-23.5991° 04/12/2013 16:10 4 castanho macho 0 2 ausente 

28 BX_RW A000050 ST Centro AB001 15.050722°,-23.603543° 05/12/2013 15:34 4 castanho macho 1 3 ausente 

29 BX_RY A000051 ST Centro AB001 15.050722°,-23.603543° 05/12/2013 15:34 4 castanho fêmea 1 2 ausente 

30 BX_RO A000054 ST Centro AB040 15.05299°,-23.60622° 07/12/2013 17:00 4 vermelho macho 0 3 ausente 

31 BX_BR A000055 ST Centro AB040 15.05299°,-23.60622° 07/12/2013 17:25 4 vermelho fêmea 1 2 5 

32 BX_BB A000056 ST Centro AB041 15.07367°,-23.55428° 08/12/2013 17:22 4 castanho macho 0 2 5 

33 BX_BW A000057 ST Centro AB041 15.07367°,-23.55428° 08/12/2013 17:22 3 verde fêmea 0 2 ausente 

34 BX_BY A000058 ST Centro AB041 15.07367°,-23.55428° 08/12/2013 18:15 3 verde macho 0 2 ausente 

35 BX_BO A000059 ST Centro AB041 15.07367°,-23.55428° 08/12/2013 18:30 4 castanho fêmea 0 2 5 

36 BX_WR A000061 ST Norte AB042 15.20632°,-23.65713° 09/12/2013 12:11 4 castanho macho 1 3 ausente 

37 BX_WB A000062 ST Norte AB043 15.24336°,-23.65592° 09/12/2013 17:25 4 castanho macho 0 3 ausente 

38 BX_WW A000063 ST Norte AB044 15.23974°,-23.65415° 10/12/2013 12:30 4 vermelho macho 0 2 ausente 

39 BX_WY A000065 ST Norte AB044 15.23974°,-23.65415° 10/12/2013 13:10 4 vermelho fêmea 0 3 4 

40 BX_WO A000066 ST Norte AB045 15.20888°,-23.66544° 10/12/2013 16:10 4 castanho macho 1 3 ausente 

41 BX_YR A000067 ST Norte AB046 15.19793°,-23.67876° 11/12/2013 09:10 4 castanho macho 0 3 ausente 

42 BX_YB A000068 ST Norte AB046 15.19793°,-23.67876° 11/12/2013 09:25 4 castanho fêmea 0 2 4 

43 BX_YW A000070 ST Norte AB047 15.18919°,-23.68171° 11/12/2013 11:45 4 vermelho macho 0 3 ausente 

44 BX_YY A000073 ST Norte AB049 15.18016°,-23.67312° 12/12/2013 13:22 4 castanho macho 0 3 ausente 

45 BX_YO A000074 ST Norte AB029B 15.17854°,-23.6732° 12/12/2013 14:50 4 castanho macho 0 3 ausente 

46 BX_OR A000076 ST Centro AB050 15.03443°,-23.61415° 14/12/2013 17:44 4 castanho macho 1 3 ausente 

47 BX_OB A000077 ST Norte AB029  15.17875°,-23.67276° 15/12/2013 15:30 4 castanho macho 0 3 ausente 

48 BX_OW A000080 ST Norte AB052 15.18078°,-23.67272° 16/12/2013 11:25 4 castanho fêmea na na 3 

49 BX_OY A000081 ST Norte AB053 15.18156°,-23.67242° 16/12/2013 12:42 4 vermelho macho 0 3 ausente 
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Captura # 
Anilhas de 
cor 

Anilha de 
metal 

Ilha Zona Local 
Coordenadas Google 
Earth 

Data Hora Idade Cor da íris Sexo Gordura Músculo 
Pelada de 
incubação 

50 BX_OO A000082 ST Norte AB053 15.18156°,-23.67242° 16/12/2013 13:08 4 castanho fêmea 0 2 4 

51 RR_RX A000085 FG na AB054 15.02021°,-24.32742° 19/12/2013 15:50 4 castanho macho 1 3 ausente 

52 RR_BX A000086 FG na AB055 15.01898°,-24.32777° 20/12/2013 12:54 4 castanho macho 0 2 ausente 

53 RR_WX A000087 FG na AB056 15.01835°,-24.32909° 21/12/2013 09:35 4 castanho macho 0 2 ausente 

54 RR_YX A000088 FG na AB058 15.01718°,-24.32908° 21/12/2013 13:45 4 castanho macho 0 3 ausente 

55 RR_OX A000089 FG na AB060 15.01866°,-24.33018° 22/12/2013 12:00 4 vermelho macho 1 2 ausente 

56 RB_RX A000090 FG na AB061 15.01795°,-24.3306° 22/12/2013 14:45 4 castanho macho 0 3 ausente 

57 RB_BX A000091 FG na AB062 15.01762°,-24.32099° 22/12/2013 16:00 4 castanho macho 2 2 5 

58 RB_WX A000093 FG na AB063 15.01753°,-24.3309° 22/12/2013 17:25 4 castanho fêmea 2 2 5 

59 RB_YX A000094 FG na AB064 15.01967°,-24.32881° 23/12/2013 09:00 4 castanho fêmea 0 2 5 

60 RB_OX A000095 FG na AB064 15.01967°,-24.32881° 23/12/2013 09:40 4 castanho macho 0 2 5 

61 RW_RX A000096 FG na AB065 15.01687°,-24.33145° 23/12/2013 12:05 2 castanho macho 0 3 na 

62 RW_BX A000097 FG na AB065 15.01687°,-24.33145° 23/12/2013 13:20 4 castanho fêmea 0 3 4 

63 RW_WX A000098 FG na AB066 15.0167°,-24.33208° 23/12/2013 14:49 2 castanho fêmea 0 2 ausente 

64 RW_YX A000099 FG na AB067 15.0165°,-24.33195° 23/12/2013 16:40 4 castanho macho 0 2 5 

65 RW_OX A000100 FG na AB073 15.023123°,-24.330723° 26/12/2013 12:05 4 castanho macho 0 2 5 

66 RY_RX A000101 FG na AB074 15.02299°,-24.32901° 27/12/2013 09:27 2 castanho macho 1 2 ausente 

67 RY_BX A000102 FG na AB074 15.02299°,-24.32901° 27/12/2013 09:55 3 verde/castanho fêmea 0 2 ausente 

68 removidas A000103 FG na AB075 15.01989°,-24.32419° 27/12/2013 11:15 2 castanho macho 2 3 5 

69 RY_WX A000104 FG na AB076 15.01998°,-24.32549° 27/12/2013 13:10 4 vermelho macho 1 3 5 

70 RY_YX A000105 FG na AB077 15.01931°,-24.32527° 27/12/2013 15:15 3 verde/castanho fêmea 0 2 ausente 

71 RY_OX A000106 FG na AB077 15.01931°,-24.32527° 27/12/2013 15:15 2 castanho macho 0 2 ausente 

72 RO_RX A000107 FG na AB078 15.02381°,-24.32953° 28/12/2013 14:22 4 vermelho macho 0 2 5 

73 RO_BX A000109 FG na AB078 15.02381°,-24.32953° 28/12/2013 15:20 2 castanho macho 1 3 ausente 

74 RO_WX A000110 FG na AB080 15.01964°,-24.32666° 29/12/2013 10:00 4 castanho macho 0 2 ausente 

75 RO_YX A000111 FG na AB080 15.01964°,-24.32666° 29/12/2013 11:14 3 cinzento/verde fêmea 0 2 ausente 

76 RO_OX A000112 FG na AB080 15.01964°,-24.32666° 29/12/2013 12:06 4 castanho fêmea 0 2 4 
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Captura # 
Anilhas de 
cor 

Anilha de 
metal 

Ilha Zona Local 
Coordenadas Google 
Earth 

Data Hora Idade Cor da íris Sexo Gordura Músculo 
Pelada de 
incubação 

77 BR_RX A000114 FG na AB081 15.01776°,-24.3267° 29/12/2013 14:00 4 castanho macho 0 3 ausente 

78 BR_BX A000116 FG na AB076B 15.02026°,-24.32497° 30/12/2013 08:55 4 castanho macho 0 2 ausente 

79 BR_WX A000117 FG na AB082 15.01558°,-24.32261° 30/12/2013 12:54 4 vermelho macho 0 2 ausente 

80 BR_YX A000118 FG na AB084 15.01495°,-24.32501° 31/12/2013 10:27 4 castanho macho 0 2 5 

81 RR_XR A000119 SN na AB088 16.63766°,-24.35239° 07/01/2014 09:30 6 vermelho macho 0 3 ausente 

82 RR_XB A000121 SN na AB089 16.63783°,-24.35187° 07/01/2014 11:08 6 vermelho macho 1 2 ausente 

83 BB_XB A000122 SN na AB089 16.63783°,-24.35187° 07/01/2014 11:17 5 verde fêmea 0 2 ausente 

84 RR_XY A000123 SN na AB087B 16.62915°,-24.3503° 07/01/2014 16:17 6 castanho macho 1 2 ausente 

85 RR_XO A000125 SN na AB090 16.63747°,-24.35427° 08/01/2014 10:10 6 castanho macho 0 2 ausente 

86 RB_XR A000126 SN na AB090 16.63747°,-24.35427° 08/01/2014 10:34 5 verde macho 0 2 ausente 

87 RB_XB A000127 SN na AB091 16.63703°,-24.35454° 08/01/2014 11:35 6 vermelho macho 0 2 ausente 

88 RB_XW A000128 SN na AB092 16.62563°,-24.3311° 09/01/2014 10:22 6 vermelho macho 0 3 ausente 

89 RB_XY A000129 SN na AB093 16.62645°,-24.33021° 09/01/2014 12:40 6 vermelho macho 1 2 ausente 

90 RB_XO A000130 SN na AB095B 16.63271°,-24.32205° 11/01/2014 13:28 6 castanho fêmea 0 3 ausente 

91 RW_XR A000131 SN na AB095B 16.63271°,-24.32205° 11/01/2014 13:19 6 castanho/verde macho 0 3 ausente 

92 RW_XB A000132 SN na AB097 16.63174°,-24.31114° 14/01/2014 11:34 6 castanho macho 0 2 ausente 

93 RW_XW A000136 SN na AB100 16.63596°,-24.35298° 16/01/2014 11:54 6 vermelho macho 0 2 ausente 

94 RW_XY A000137 SN na AB086B 16.64976°,-24.36057° 17/01/2014 11:00 6 vermelho macho 1 3 ausente 

95 RW_XO A000138 SN na AB101 16.64311°,-24.34414° 18/01/2014 14:01 6 vermelho fêmea 1 2 ausente 
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Table XII - Dados de felosas de Cabo Verde Acrocephalus brevipennis capturadas: anilhas, médias das biometrias, muda, parasitas e peso; na = dados não registados. 

Captura # 
Anilhas 
de cor 

Anilha de 
metal 

Asa Tarso 
Cabeça e 
bico 

Bico até 
narina 

Profundidade 
do bico 

Largura do 
bico 

Código da 
muda 

Primárias 
novas 

Secundárias 
novas 

Parasitas 
das penas 

Peso 

1 RX_RR A000002 66.0 na na na na na O na na na 17.2 

2 RX_RB A000005 64.0 25.5 37.3 9.4 2.4 4.3 O na na na 16.2 

3 RX_RW A000011 60.5 25.3 36.6 8.2 2.5 3.8 O na na na 16.5 

4 RX_RY A000012 61.5 25.6 35.5 9.4 3.2 5.2 P na na na 14.9 

5 RX_BR A000016 65.0 28.9 39.0 11.8 3.7 5.4 M na na na 18.2 

6 RX_RO A000017 67.0 28.2 39.0 11.2 3.7 5.5 O na na na 18.3 

7 RX_BB A000018 63.0 25.5 37.3 11.5 3.4 5.0 O na na na 14.8 

8 RX_BW A000019 67.0 26.9 38.5 12.4 3.9 5.7 O na na na 17 

9 RX_BY A000023 62.0 26.7 37.7 11.2 3.7 5.6 O na na na 16 

10 RX_BO A000025 66.0 27.2 39.4 11.3 3.7 5.4 O na na na 18.4 

11 RX_WR A000027 62.0 27.6 38.4 11.3 3.6 5.1 O na na A 17.5 

12 RX_WB A000028 67.0 28.5 40.7 12.1 3.5 5.3 O na na F 18.4 

13 RX_WW A000029 63.0 27.6 39.3 11.7 3.6 5.6 M na na F 18.9 

14 RX_WY A000030 60.0 24.8 38.9 11.2 3.6 4.8 M na na F 14 

15 RX_WO A000031 66.0 27.2 41.0 12.4 3.7 5.9 M na na F 19.2 

16 RX_YR A000032 61.0 24.2 37.9 10.9 3.5 5.2 M na na F 15.2 

17 RX_YB A000034 63.0 25.9 37.1 10.5 3.2 5.2 O na na C 14 

18 RX_YW A000035 63.0 25.9 37.5 11.1 3.6 5.3 O na na A 16.6 

19 RX_YY A000036 65.5 28.4 40.6 12.1 3.7 5.6 O na na D 19.1 

20 RX_YO A000038 65.0 27.5 39.7 12.2 3.5 5.4 O na na F 18 

21 RX_OR A000039 61.0 25.6 38.4 11.4 3.4 5.2 O na na F 17.3 

22 RX_OB A000042 62.0 26.2 38.5 11.3 3.8 5.3 O na na E 17.9 

23 RX_OW A000043 66.0 27.8 41.1 11.4 3.7 5.5 O na na E 19.9 

24 RX_OY A000045 65.0 25.4 37.5 11.7 3.6 5.3 M na na F 16.4 

25 RX_OO A000046 62.0 24.5 37.4 10.4 3.8 5.4 O na na A 16.3 
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26 BX_RR A000047 62.5 24.9 38.7 11.5 3.8 5.4 M na na F 15.7 

27 BX_RB A000048 66.0 28.2 39.4 11.4 3.9 5.7 M na na F 16.9 

28 BX_RW A000050 64.0 27.5 38.4 11.4 3.7 5.3 M na na F 18.3 

29 BX_RY A000051 65.0 26.6 37.7 11.1 3.5 2.8 M na na F 17.2 

30 BX_RO A000054 65.0 27.3 38.0 11.4 3.4 5.6 O na na F 17.6 

31 BX_BR A000055 61.0 26.1 38.3 11.2 3.6 5.3 M na na F 17.1 

32 BX_BB A000056 65.0 28.3 40.1 11.7 3.6 5.6 M na na G 19.3 

33 BX_BW A000057 62.5 25.9 36.2 9.9 3.4 5.2 P na na E 14.6 

34 BX_BY A000058 66.0 28.1 36.9 11.0 3.4 5.8 O na na D 18.8 

35 BX_BO A000059 64.0 25.0 37.6 11.7 3.7 5.4 M na na F 17.6 

36 BX_WR A000061 65.0 28.0 39.2 10.8 3.7 5.5 S na na F 16.3 

37 BX_WB A000062 67.0 25.5 39.4 11.8 3.7 5.2 M na na F 19 

38 BX_WW A000063 63.0 26.6 40.3 13.0 3.6 5.7 O na na F 16.9 

39 BX_WY A000065 63.0 26.8 39.6 11.1 3.6 5.3 O na na F 16.1 

40 BX_WO A000066 65.0 26.7 38.8 11.7 3.8 5.4 S  na na F 17.5 

41 BX_YR A000067 63.0 27.3 39.6 11.9 3.8 5.5 S na na F 18.1 

42 BX_YB A000068 63.0 25.5 38.4 11.2 3.6 5.3 S na na F 17 

43 BX_YW A000070 64.5 27.1 39.1 11.5 3.4 5.2 M na na F na 

44 BX_YY A000073 67.0 27.8 38.4 11.3 3.5 5.1 O na na B 18.2 

45 BX_YO A000074 67.0 27.0 38.1 10.6 3.5 4.9 O na na A 18.4 

46 BX_OR A000076 63.0 27.0 38.7 10.9 3.6 5.8 O na na A 16.8 

47 BX_OB A000077 65.0 28.5 39.5 11.2 3.6 5.6 O na na D 17.9 

48 BX_OW A000080 62.0 25.0 37.3 10.9 3.4 5.3 O na na D 16.6 

49 BX_OY A000081 67.0 27.9 39.7 11.7 3.7 5.4 O na na A 18.3 

50 BX_OO A000082 63.0 26.2 37.3 10.6 3.6 5.3 O na na A 18.7 

51 RR_RX A000085 64.0 27.1 39.1 11.7 3.7 5.4 M na na F 17.6 

52 RR_BX A000086 66.0 26.9 40.4 12.3 3.9 5.3 M na na F 17.9 
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53 RR_WX A000087 64.0 27.3 39.8 11.3 3.9 5.2 M na na F 18.6 

54 RR_YX A000088 65.0 26.8 38.1 11.5 3.7 5.3 M na na F 17.3 

55 RR_OX A000089 67.5 27.6 40.6 12.0 3.7 5.6 M 8 a 10 0 F 8.5 

56 RB_RX A000090 65.0 27.9 39.6 11.2 3.8 5.6 M 9, 10 0 E 18.1 

57 RB_BX A000091 67.0 27.7 39.8 11.5 3.7 5.5 M 7 a 10 1 (na asa direita) F 18.8 

58 RB_WX A000093 64.0 26.1 38.8 11.4 3.7 5.3 M 8 a 10 0 F 16.6 

59 RB_YX A000094 61.0 25.8 38.4 11.9 3.7 5.4 M 8 a 10 0 F 17 

60 RB_OX A000095 64.0 28.4 39.2 11.1 3.8 5.4 M 7 a 10 0 F 18.3 

61 RW_RX A000096 65.0 27.4 39.5 11.2 3.8 5.4 O 0 0 E 17.9 

62 RW_BX A000097 61.0 26.3 38.8 10.6 3.2 5.3 O 0 0 D 17.1 

63 RW_WX A000098 63.0 24.9 39.7 11.4 3.7 5.5 M 5 a 10 0 D 18.2 

64 RW_YX A000099 64.0 27.3 39.6 11.2 3.6 5.4 M 7 a 10 0 F 18.5 

65 RW_OX A000100 64.0 25.5 39.5 11.5 3.7 5.5 M 7 a 10 0 F 19 

66 RY_RX A000101 66.5 25.7 39.5 11.7 3.7 5.3 M 6 a 10 1 F 18.5 

67 RY_BX A000102 63.0 25.4 37.1 10.1 3.7 5.1 M 4 a 10 1 e 2 F 15.3 

68 removed A000103 65.0 26.2 38.9 11.7 3.5 5.0 M 7 0 F 17.6 

69 RY_WX A000104 64.0 26.3 38.8 11.1 3.6 5.6 M 6 a 10 S1 caida F 16.8 

70 RY_YX A000105 61.0 27.5 38.4 10.7 3.6 4.8 M 7 a 10 0 F 17.7 

71 RY_OX A000106 63.0 26.3 39.1 11.5 3.5 5.4 M 8 a 10 0 F 18.7 

72 RO_RX A000107 70.0 27.6 41.1 11.5 3.9 5.8 M 6 a 10 1 F 19.7 

73 RO_BX A000109 67.0 25.8 39.9 10.8 3.5 5.6 M 6 a 10 1 F 18.9 

74 RO_WX A000110 67.0 25.8 39.0 11.2 3.8 5.3 M 7 a 10 0 F 16.8 

75 RO_YX A000111 64.0 27.3 38.2 10.6 3.7 5.3 O 0 0 E 15.6 

76 RO_OX A000112 62.0 25.7 37.4 10.3 3.5 5.0 M 8 a 10 0 E 14.9 

77 BR_RX A000114 65.0 27.0 39.6 11.5 3.8 5.4 B 0 0 F 19 

78 BR_BX A000116 66.0 28.6 39.1 11.2 3.5 5.3 M 8 a 10 0 E 19.1 

79 BR_WX A000117 67.0 27.7 39.9 11.9 3.7 5.5 M 8 a 10 0 F 18.6 
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Peso 

80 BR_YX A000118 63.5 26.5 39.6 12.0 3.4 5.4 M 6 a 10 0 F 16.8 

81 RR_XR A000119 65.0 26.6 40.8 11.9 3.7 5.7 M 0 0 C 20.8 

82 RR_XB A000121 65.0 25.7 40.8 12.6 3.8 5.5 M 8 a 10 0 F 20.1 

83 BB_XB A000122 63.0 24.9 37.7 10.0 3.4 5.1 P 0 0 A 17.3 

84 RR_XY A000123 65.5 26.0 39.6 11.7 3.8 5.2 M 7 a 10 0 A 18.4 

85 RR_XO A000125 66.0 26.1 39.6 11.8 3.8 5.6 M 6 a 10 0 F 19.5 

86 RB_XR A000126 63.0 26.2 39.3 12.2 3.6 5.4 P 0 0 A na 

87 RB_XB A000127 65.0 27.1 39.9 12.5 3.5 5.5 S 0 0 F 18.2 

88 RB_XW A000128 64.0 26.9 40.2 12.4 3.5 5.5 M 5 a 10 1 a 3 A 18.6 

89 RB_XY A000129 64.0 26.7 40.4 12.5 3.6 5.1 O 0 0 E na 

90 RB_XO A000130 63.0 24.2 39.7 11.6 3.4 5.2 E todas todas F 15.6 

91 RW_XR A000131 67.0 25.2 39.2 11.9 3.5 5.4 E todas todas E 15.8 

92 RW_XB A000132 64.0 26.9 40.9 12.4 3.7 5.2 M 5 a 10 1 e 2 E 17.1 

93 RW_XW A000136 63.0 26.5 40.8 12.7 3.7 5.6 M 3 a 10 1 e 2 F 18.8 

94 RW_XY A000137 66.0 27.1 40.3 12.5 3.6 5.0 M todas todas F 18.6 

95 RW_XO A000138 63.0 24.5 38.9 11.7 3.6 5.3 M 5 a 10 1 e 2 F 16.6 
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