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Abstract

In many parts of the world, growing crops on pdatltsoils often leads to elevated levels of
pollutants in plant tissues. Minimizing the transté these pollutants into edible plant tissues
while improving plant growth and productivity ismaajor area of research. In this study, we
investigated the efficiency of silicon-modified blar in reducing the uptake of As(lll) in
spinach $pinacia oleraceanwhile simultaneously increasing the plant biomddsmodified
biochars (UBC) and silicon-modified biochars (SiB&@gre prepared from bamboo at 300 and
600 °C and characterized by Scanning Electron Mawpy with Energy Dispersive X-ray (SEM
EDX), Fourier Transform Infrared Spectrometry (FJIX-ray Photoelectron Spectrometry
(XPS), and X-ray Diffraction analysis (XRD). Theobccumulation of As(lll) in the edible part
of spinach significantly decreased by 33.8 and 84 fbllowing the amendment of, respectively,
2 % and 5 % SIiBC in soil. Biochar amendment incedathe concentration of As(lll) in pore
water by 64.4 % as a result of increased soil phf6.83 + 0.4 to 8.01 + 0.1 and dissolved
organic carbon (DOC) from 7.02 + 3.7 to 22.58 + @ Kg*. However, the uptake of As(lll) into
spinach was prevented by silicon, which was pretely transported to the plant through the
same transport pathway as As(lll). Dry biomassdyial spinach also significantly increased by
67.7 % and strongly correlated’R 0.97) with CaGl extractable Si in the plant. The results
highlighted the effectiveness of SiBC in reducihg toxic effects of As in the environment and
overall dietary exposure to the pollutant. The sl@kease of Si from biochars (< 48.42 %)
compared to soil (87.39 %) also suggested that SI&Che efficient sources of Si fertilization
for annual crops which can significantly reduce itteasing demand for Si fertilizers and their

sustainable use in the environment.
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1. Introduction
Pollution from potentially toxic elements (PTEskklas arsenic (As), cadmium (Cd), lead (Pb),
chromium (Cr), and zinc (Zn) is one of the majoviesnmental challenges of the modern world
(Sun and Chen, 2018). Due to its toxic nature, é&stamination has received much attention
from environmental researchers who are keen tololeve sustainable As removal technologies
from environmental media (notably, soil and watér)the soil, arsenic is generally oxo-anionic,
existing mainly as arsenite (As(lll)) and arsen@e(V)). As(lll) is more toxic and resistant to
removal in the environment due to its lower mopiitbompared to As(V) (Wang et al., 2015).
Soil and most Fe-rich carbonaceous materials haee beported to easily adsorb the less toxic
As(V) compared to As(lll) although they lack theildp to retain it (Agrafioti et al., 2014).
Under anaerobic conditions, As(V) is easily cons@rto the less mobile As(lll) which often
increases its concentration in pore water (Pengl.et2016). Apart from human toxicity, As
concentrations greater than 3 md [Hartley et al., 2009) may cause widespread phyaity.
Meharg and Hartley (2002) noted that As phyto-tixi(particularly As(V)), in non-As resistant
plants causes considerable stress with symptongsngafrom inhibition of root growth to death.
Si application in soil has been reported to havsigaificant effect in decreasing total As
concentrations in plant tissue (Guo et al., 200fhoagh it may also cause significant increases

in As concentrations in pore water (Gang et al1,730

Silicon (Si) is a highly beneficial element knowmlay a key role in soil-plant interactions. Si
confers strong benefits to plant growth throughaitdity to increase plant tolerance to various
biotic and abiotic stressors such as drought, isalidisease and toxicity (Kaur et al., 2016). The

influence of Si on plant growth and developmentarrstressed conditions has been documented
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widely in literatures with increased vyield (2-3de) (Gottardi et al., 2012; Wang et al., 2016a)
and increased biomass production (Manivannan gR@l7). Various mechanisms have been
suggested to explain silicon’s influence on plada@ation such as the establsihement of a
barrier in plant cell walls (formed through Si(QHbolymerisation) as a mechanism for disease
tolerance or chemical resistance (Fawe et al., 1888 the regulation of antioxidant and nutrient
uptake mechanisms especially under salt stressitmored (Soundararajan et al., 2014).
According to the results of Debona et al. (2017)regulates stress from metal toxicity by
modulating the pH range of soil or changing mepacgation while Xiao et al. (2014) suggested
metal co-precipitation and the formation of inorigaerystals (facilitated by Si) in carbonaceous
materials like biochar as a mechanism to abatelrnteteity. Recently, Manivannan and Ahn
(2017) suggested the involvement of Si in regutptyenes that affect photosynthesis during
metal toxicity and the modulation of the expressmnhousekeeping genes during disease
infection. Genes involved in water uptake and tpantion and those involved in the

expression of defense response in plants are aldalated by Si (Manivannan and Ahn, 2017).

Associating biochar with materials and compoundintdrest to enhance its sorption capacity
for target contaminants has been done frequerttipagh biochar itself is a good sorbent. Such
associations often alter the physical or chemicaperties of biochar to produce novel and more
adaptable materials with well-defined charactarss{zama et al., 2017). Chemical modification

of biochar by acid-base and alkali treatments (Adheteal., 2016) or impregnation with minerals

(Rajapaksha et al., 2016) produces these modehdmiscModifying biochar is therefore seen as
a novel approach to inducing beneficial surfacectiomalities (Lehmann and Joseph, 2015) to
sorb or immobilize contaminants in both soil andevgRajapaksha et al., 2016). In the past, Fe

has been incorporated into biochar to produce ntegh®chars with better sorption capacities
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for As (Lin et al., 2017). Treating biochar with Ksn has also been reported to be beneficial in
converting (through oxidation) As(lll) to As(V) wth is more easily sorbed (Manning et al.,
2002). Similarly, nitrogen has been incorporatedbiwchar to produce biochar-based slow-
release nitrogen fertilizers with exceptional watgtention capacities (Wen et al., 2017). These
compounds and other nutrients are often retainebidghar and released slowly which benefits
plants growth or form complexes for the sequestnatof contaminants. The control of

contaminants in soil (through sorption or immolatinn) by modified biochar and subsequent
reductions in plant uptake makes biochar a potigntxcellent soil amendment. This adds to
biochar's key role to improve soil quality and glahealth physically, chemically and

biologically. A role often attributed to biochari®dox property, liming effects, and high

nutrient/water holding capacity (Cornelissen et2013).

Across the world, crops are often cultivated orssoontaminated by arsenic (As), which puts
millions of people (especially in Asia) at risk A6 exposure through consumption of tainted
produce (Zhou et al., 2018). Increasing populatimms the increasing need for safe and healthy
food supply means that urgent measures are needdichit the transfer of As into crops.
Adsorption, using carbonaceous materials like kaocis considered a reliable method to
minimize the toxic effects of As in the sdilPaz-Ferreiro et al., 2014). However, adsorption
processes on As using biochar have largely bedfeatiee especially when the biochar is not
modified. The fact that Si has been widely usedawnter As toxicity in some plants, including
rice (Seyfferth and Fendorf, 2012) and maize (Lated Tran, 2016) means that biochar can be
modified with Si to yield a product with dual bengf That is, reducing As uptake by crops and
improving crop growth. Biochars from Si bio-accuatoks, such as rice, maize, sugar cane and

bamboo have been produced, and widely used in heatgis remediation (Tubana et al., 2016).
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However, given the relatively low bioavailabilityf &i in these biochars from Si bio-
accumulators, its influence on heavy metal remasias minimal (Tripathi et al., 2016). The
synthesis of Si-modified biochars (containing iniemally elevated concentrations of Si) aimed
at remediating heavy metals in soll, is a novel ification approach that has received very little

attention.

The main objective of this study was to investigdwe effectiveness of Si-modified biochar in
reducing the uptake of As by spina@pinacia oleracegnand simultaneously increase biomass
yield in the plant. Specifically, the study (1) estigated the influence of silicon biochars on the
mobility of As in soil, (2) assessed the inhibitaffects of Si on As uptake by spinach in As
contaminated soil, and (3) examined the influenfc8iemodified biochars on the plant growth

(measured by biomass yield).

2. Materialsand M ethods

2.1. Quality control and data analysis
All reagents used were analytical grade. Stock wocking solutions of As(lll) and Si were
prepared in ultra-pure water (Milli-Q, 18.2Mcm, TOC 3 ppb) using NaAs@Gnd KSiOs °
2.5H,0, respectively. All experimental samples were preg in triplicate and experiments were
run at room temperature (25 £ 1.0 °C). In all ekpents, controls without biochar were
included. The graphical data from FTIR, XRD and X®R8s analysed using OriginPro 8.5
(OriginLab, USA) and Microsoft excel 2016.

2.2. Biocharsand soil preparation
Biochar was made from bambo8ambusoidegethrough dry pyrolysis at 300 or 600 °C.

Bamboo was chosen for two main reasons. Firstijpde has a higher lignocellulosic content
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compared to grasses and other agricultural wasta@ish produces desired biochars with higher
micro and macropores (Novak et al., 2014). Secoriaynboo is increasingly being used for
paper making and construction works especially anynparts of Asia (Schneider et al., 2011).
Wastes generated from these activities can be cmavéo biochar as added value. Prior to
pyrolysis, the biomass was milled and oven-dried0atC for 24 h. The milled biomass was then
pyrolysed in steel crucibles mounted in a Neytealffld Furnace (Vulcan 3-1750A) (Agrafioti
et al., 2014) under limited oxygen conditions. Tengpure was increased at the rate of 10 °C
min™ and maintained at 300 or 600 °C for 4 h to allowslow pyrolysis.

Modified biochars were made by pre-treating mille@mboo biomass with #8i0;-2.5HO0
solution containing 5 gL of Si in large beakers sonicated at room temperd5 + 1.0 °C) for

48 h. This was a slightly modified procedure froranktls et al. (2014). The supernatant was
decanted and the solid material rinsed with dedibvater and then oven-dried at 100 °C for 48
h. The Si-loaded dry biomass was then pyrolyse®0fi or 600 °C as described above.
Following pyrolysis, all biochars were allowed toot down to room temperature before being
ground and sieved to obtain a particle size offir®. The Si-modified biochars at 300 °C and
600 °C were coded “SiBC3 and SiBC6” respectivelge Tinmodified biochars prepared at the
same temperatures were coded “uBC3 and uBC6”. Vimshars were amended in soil at 2 %
or 5 %, they were coded as 2uBC3, 2uBC6, 5uBC3,C&HjRSiBC3, 2SiBC6, 5SiBC3 and
5SIBC6. For example, 2uBC3 codes for 2 % amendrokninmodified biochar, pyrolysed at

300 °C.

Contaminated soil from the outskirts of Beijing,i@dwas collected according to the guidelines
of ISO 10381-1 and 10381-2. About 50 kg of soil wallected from the top 20 cm in a 1 ha

block of crop land historically contaminated by &sd other heavy metals including, Cd and Pb.
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Soil was air-dried for one week and was thoroudiynogenized by hand and shovel. The

homogenized soil was then sieved to obtain a paize of 2 mm for subsequent experiments.

2.3. Analysis of physicochemical propertiesof soil and biochars

The pH of soil and biochar was measured using angkér (Mettler Toledo 320-S) after mixing
and shaking soil or biochar with distilled watesr 2 h in an end-to-end shaker, and at a ratio of
1:5 and 1:20, respectively. The cation exchangeaafp (CEC) of biochar and soil was
determined by summation of cations extracted byol it ammonium acetate at pH 7 (Gregory
et al., 2015) and analysed by the Inductively CedpPlasma Mass Spectrometry (ICP-MS,
7500a, Agilent Technologies, USA). This equipmeeatedts metals and several non-metals at
concentrations as low as one part in1(part per quadrillion, ppg) on non-interfered low-
background isotopes. Soil DOC was determined bkisba g of soil in 25 mL of 0.5 M 50O,

for 2 h (Liu, 2008). The slurry was centrifuged at 5000 rfon 5 min and the supernatant
removed using a syringe. DOC content in the supanhawas analysed using Inductively
Coupled Plasma Optical Emission Spectrometry (IES0OOptima 2000, PerkinElmer Co.,
USA). This instrument detects metals using the datachnique with a flame temperature
ranging from 6000 to 10000 K.

An elemental analyzer (Vario EL IIl) was used toasgre the elemental composition (total C, H,
and N) of the biochars while O content was caledldty subtracting total C, H and N (%) from
100 % (Yousaf et al., 2017). The surface area @thars was measured from isotherms at 77K
using a Surface Area and Porosity Analyzer (ASAI2(HD88). Biochar structure and relative

atomic percent of elements on the surface of bischas analysed using the Field Emission
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Scanning Electron Microscope with Energy Dispersks®ay Spectroscopy (FE SEM-EDX,
SUB8000). SEM micrographs and X-ray spectra werainbtl at a magnification of x15.0k over a
working distance of 16.4 mm and an acceleratiortagel of 15 kV (Hagemann et al., 2017).
Bond stretches in organic functional groups on sheace of biochars were analysed using
biochar samples prepared in pellets of fused KBrainfhermo Scientific Nicolet FT-IR
spectrometer (Nicolet 8700) and scans were madenatite 4000 — 400 crhregions (Zama et
al., 2017). The ESCALAB 250Xi X-ray PhotoelectropeStrometer (XPS) equipped with
monochromated Al Ko (1486.68 eV, 150W) at a spot size of 500 um uridgh-vacuum
conditions (<2x10 M bar) was used to assess the elemental compositid chemical bonds of
unmodified and modified biochars in the outermo8t rim (Goldstein et al., 1986). X-ray
diffractometer (XRD) (X'pert Pro, Netherlands) diit with a Ni filter and CuK radiation for

crystalline phase identification was used to recbedX-Ray diffraction pattern.
2.4. Analysisof biomassyield and bioaccumulation of Asin spinach

Pots were each filled with 1 kg of contaminated aoiended with 2 or 5 % uBC or SiBC and
incubated for 14 days before seed{@yegory et al., 2015). Pots without biochar amendme
were included as control treatments. Spingshir{acia oleracegnseeds were disinfected by
treating them in 30 % #D, solution for 10 min before seeding directly intotp (Szopiska,
2014). Five seeds were planted in each pot andlgladter germination, three were discarded
and two seedlings were allowed to continue growirge moisture content was maintained at 50
% throughout the experiment. Plants were growMfbdays in a greenhouse (25 = 2 °C; 70 %
relative humidity and 14 h light) and the aboveug biomass (edible portion of the vegetable)
harvested, rinsed in DI water and oven-dried atG®or 72 h. The weight of dry biomass from

each pot was taken to compare changes in biomeks ¥ihe dry biomass from each pot was

9
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crushed and acid-digested (0.2 g) in 10 mL of 1#ND; according to Hartley et al. (2009) and

Silva et al. (2015). The concentration of As in thgest was analysed using ICP-MS.

2.5. Analysis of Asmobility in soil

Experiments were conducted to determine the efi@ictdBC and SiBC on As mobility in soil.
Arsenic mobility in soil was determined by the ambwf As in pore water following the
addition of biochar. Prior to incubating soil anddhar, the As levels in soil were elevated by
treating the soil in As solution (40 mg¥) for 72 h mounted on an end-to-end shaker at 25 °C
until equilibrium (Romero-Freire et al., 2014). ThE was maintained at 4.5 + 0.1 using 0.1 M
NaOH or HNQ (Uchimiya, 2014) to enhance As sorption by thé. g&i equilibrium, the soil
was allowed to settle overnight. It was then desmdwand rinsed with DI water three times and
oven dried at 100 °C for 72 h. The dry soil wasmeshed and passed through sieve to obtain a
particle size of 2 mm. Biochar amendments (uBC, &ieC) were applied to the resulting As-
spiked soil at the rate of 2 % and 5 % (w/w). Cohtireatments were also set up without biochar
amendment. The amended soils were carefully honbggy shovel and all treatments were
soaked to 80 % soil water holding capacity and lated for 40 days without further
modification of pH. Soil pore water samplers warseirted in each pot at angle of 45° to collect
pore water every 10 days. The concentration of rAthe extracted pore water was measured
using ICP-MS.

2.6. Analysisof therate of S release from biochar

Batch desorption experiments were carried out terdene the rate at which silicon is released

by the biochars (modified and unmodified) into #mvironment. A control treatment comprising

10
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soil without biochar was also included to compaier&8ease rate from soil. The batch
experiment was made with 0.05 g of uBC and SiBCasued into 50 mL of 0.01 M CacCl
(extractant) and mounted on an end to end shakérridm, 25.0 + 1.0 °C) for 36 days. Samples
were withdrawn every 4 days, and centrifuged a05@®n for 5 min and the Si concentration in
the supernatant was measured using the siliconbdelyum blue colorimetry method (Chinese
national industry standards, SL 91.2-1994) as é@xpthin Xiao et al. (2014). The quantity of
dissolved silicon was also calculated using equnafio The corresponding pH of the sample
solutions was measured to determine the influefiggHoon the quantity of silicon released by
the biochars.

_c XV

Q= €y

m

Where Q is quantity of silicon released from biactrag g%), ¢ is concentration of silicon in
solution (mg L%, V is volume of solution used (mL) and m is theaqtity of biochar added
(mg).

3. Resultsand Discussion

3.1. Silicon-induced structural and chemical changes on the surface of

biochars

As expected, the percentage of total C increas#uingreasing pyrolysis temperatuiieaple 1)
because of increased carbonization and dehydréRafiq et al.,, 2016) although the carbon
content in silicon biochar (SIBC3 and SiBC6) sigrahtly decreased compared to unmodified
biochar (UBC3 and uBCG6)Table 1). This decrease was probably due to the increas®i of
through impregnation or encapsulation of biochanr(ad et al., 2017) by amorphous Si during

modification which decreased carbonization andftmmation of Si-C bonds (Guo and Chen,

11



246

247

248

249

250

251

252

2014). Si encapsulation in silicon biochar (SiBCaynhave also affected aromaticity which
resulted in no change on the O:C atomic ratibable 1) while, as expected, unmodified
biochars (uBC) became less hydrophilic with inciegpyrolysis temperature indicated by the
significant decrease in O:C atomic ratibable 1). Biochar modification also resulted in an
increase of polar groups on SiBC biochars comptredBC biochars as indicated by a decrease
in (O+N):C atomic ratio in uBC biochars and a cepanding slight increase in the (O+N):C

atomic ratio in SiBC biochars with increasing pysi$ temperaturel@ble 1).
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Table 1 Physicochemical properties of silicon modifiedgS) and unmodified (uUBC) biochars at 300 and 600 °C

BC C(%) N(®%) H (%) O (%) N:.C H:.C O:C (O+N):C *S SSA  CEC Ash pH

(mgg™) (M’ g™ (cmolckg™) (%)

uBC3 65.3 0.53  4.56 29.7 1490.84 0.34 1.86 2.12 14.2 9.13+2.02.75+0.06.70 +0.3
uBC6 84.3 0.60 1.93 13.2 164€.27 0.12 0.83 3.54 16.9 11.52+14.00+0.(10.2+0.1
SBC3 54.7 036 3.84 411 17D.84 0.56 257 16.4 10.3 16.8 +1.518.5+0.( 8.84 +0.5
SBC6 56.1 0.32 1.87 41.7 209.40 0.56 2.61 18.5 8.63 21.3+0.426.3+0.09.83+0.0

*Si, 0.01 M CaC{ extractable Si, SSA, specific surface area, Cla@oe exchange capacity, mean + standard devi&te8)

254
255
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Scanning Electron Microscop{SEM) was used to observe changes in the morphology of
biochars due to pyrolysis temperature and Si meatifon. As seen ofig. 1la, EDX analysis
detected small amounts of Si (3.26 %) on unmodifigochar (UBC6) compared to larger
amounts (9.48 %) on silicon modified biochars (S#B@ig. 1b) indicating that additional Si
was successfully loaded on the biochars during ficadion. Detail EDX analysis of the SiBC
biochars in two locations showed that the concéntraof Si was higher inside pores than other
points on the biochar surfacEig. 1c). This implies that pore filling (where the biochaores
served as active sorptive sites for Si) contribigedstantially to the sorption of the element on
biochar during modification. EDX analysis also raleel increased carbonization in biochars
with increase in pyrolysis temperature. Total C W&s8 and 67.3 % for uBC6 and SiBC6
respectively compared to 62.0 and 49.8 % for uBa8 SiBC3 respectivelyHg. Sla and b).
Inorganic mineral elements such as Na, Mg and Rlwbiten participate in exchange and
precipitation reactions with contaminant ions walso present in small quantities on the surface
of the biochars. The formation of a porous netwaitkin biochars was clearly visible for SiBC
biochar at 300 °CHig. Slc) but these pores collapsed at higher pyrolysigptFatures (600 °C)
(Fig. Sld) possibly due to biochars becoming more aromatic drittle-like. Silicon
modification did not influence the pore structuré lmochars but may have significantly
influenced the BET surface area of biochars whietreased from 14.2 and 16.8 g1 in uBC3
and uBC6 biochars respectively to 10.3 and 8.63gh in SiBC3 and SIBC6 biochars,
respectively Table 1). Clogging of pores by silicon and K occlusion nimeyresponsible for this

decrease in surface area when biochar was modhitldsilicon (Li et al., 2014).
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Fig. 1 SEM-EDX analysis of biochars indicating changesorphology and elemental content.
(a) the composition of elements in unmodified biochEBC6), ) the composition of elements
in silicon modified biochar (SiBC6) indicating ir@sed Si concentration after modificatiaz), (

detail EDX analysis of two locations on biocham@n pores and exposed surface) showing

differences in Si compositio
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3.2. Silicon-induced changesin bond stretches on biochar

XPS analysis revealed significant differences irbea speciation between unmodified (uBC)
and modified (SiBC) biochars with the occurrenceraire oxidized carbon species (e.g. C-O
and C-OH) and C-F bonds in the modified bioch&ig).(2). The occurrence of a Si2p peak in
modified biochar (SIBC3)Kig. 2b) which was absent in unmodified biochars (uUBG3y.(2a)
was also an indication that Si was successfullprparated in the biochar. Deconvulated Si2p
scans in unmodified biochars (UBC3) showed no péaks 2c). However, up to three peaks at
101.9 eV, 102.9 eV and 103.4 eV corresponding t&iE3, Al-Si and Si-O bond stretches
(Meng et al., 2015) were revealed in modified bac(SiBC3) after Si2p scarFig 2d). A
detailed assessment of deconvulated Cls scanealsaled a major peak at 284.8 eV on uBC6
corresponding to C-H, C-C, or C=C bond stretchag.(2€). This peak shifted to 284.5 eV in
SiBC6 following silicon modification but still coesponded to C-H, C-C, and C=C bond
stretchesKig. 2f) (Swain, 2006). The peak at 286.1 eV on uBC6 spwading to C-O and C-
NR; (Dementjev et al., 2000) also shifted to 286.6i@\BIBC6 corresponding to C-N, C-O and
C-OH (Meng et al., 2015). Biochar modification imegd unexpected fluoride bond stretches on

SiBC6 such as C-F and G-&t 288.7 and 293.1 eV respectivedaliin et al., 2011).
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Fig. 2 XPS analysis indicating differences in carbon giem of silicon modified biochars (SiBC3

and SiBC6) and unmodified biochars (uBC3 and uB@6and b) survey scans for uBC3 and

SiBC3, (c and d) Si2p scans for uBC3 and SiBCan@f) C1ls scans uBC6 and SiBC6.
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3.3. Silicon-induced changesin organic functional groupson biochar

The bonding behavior of organic functional groupstle surface of uBC and SiBC biochars
was determined by FTIR analysiiq. 3a). The spectra revealed three major peaks repragent
alkanes, carboxylates, nitrates, silicates andgdteties occurring especially on uBC3 and SiBC3
(Fig. 3a). The majority of aliphatic C-H bonds occurringinig between 2700 and 2900 ¢nin
lower temperature biochars (300 °C) disappearddgher temperatures biochars (600 °C). This
may be the result of increased dehydration at higkeolysis temperatures which also affected
biochar carbonization with the occurrence of pestk&400 to 1600 cthcorresponding to C=C
and C-C groups (Ramola et al., 2014). Biochar nicattibn had little effects on changes in
dehydration but affected carbonization where feaeno C=C and C-C groups occurred on
modified biochars Kig. 3a). Instead, the occurrence of many peaks at 100®90 cm'
corresponding to C-O, Si® and PQ* on modified biochars was consistent with increased
accumulation of silicates and phosphates. The foomaf C-Si bonds evidenced by peaks at
978-980 crit which were attributed to SiC+4Hbond stretching (Swain, 2006) in modified
biochars may have also contributed to the disajppearof C-H and C=C/C-C groups. Hydroxyl
(O-H) groups, which are common on biochars, haenlveported to occur mainly between 3000
and 3500 cit (Trigo et al., 2016). However in this study, anHOgroup occurred only in
unmodified biochar at 600 °C and was completelyeabs the modified biochars. This may be

due to the feedstock material used and the posgitiibt modification affected its occurrence.
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Fig. 3 (a) FTIR analysis of bond stretching in unmodifieadsiar (uBC) and silicon

modified biochars (SIBC) at 300 and 600 °K), XRD analysis of the various crystalline

faces on unmodified biochars (UBC) and silicon rfiedibiochars (SiBC) produced at

300 and 600 °C.
3.4. Silicon-induced changesin mineral phases on biochar

The occurrence of various mineral phases were evideghe XRD spectra of unmodified (UBC)
and modified (SiBC) biochars made at 300 and 60QFi@. 3b). Biochar modification by Si

affected crystalization considerably. Comparedrtmadified biochar which may have contained

19



377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

more amorphous Si phases, crytalline Si phases mere abundant on modified biochars with
predominantly distinct and greater intensity peagsuring at 8 = 26.6° and 39.4°, which were
attributed to quartz (Si§) and calcite (CaCg), respectively (Nartey and Zhao, 2014). These
peaks emphasized the presence of Si in the modifiechars compared to the unmodified
biochars. Furthermore, Si in the bamboo feedstoal have acumulated particularly at higher
pyrolysis temperatures. Xiao et al. (2014) repottetincrease in pyrolysis temperature led to
Si accumulation and a morphology change from anmrpho crystalline. Traces of K (possibly
from the KO3Si treatment) were observed with a peakéat 20.8° consistent with KCI (Treacy
and Higgins, 2007)Hig. 3b). Following As sorption, Quartz and Calcite peesison the
biochars but one new peak was observedat 31° representing Gonardite [(Na, Ca, Kpi,
Al)50:0: 3H0] (Fig. 3b) (Treacy and Higgins, 2007/pyrolysis temperature may have had only a
slight effect on crystallinity implying that bioch&i-modification effected most of the changes
in crystal forms.

3.5. Silicon retention and release from biochar

Both unmodified (uBC) and silicon-modified (SiBC)obhars demonstrated extraordinary
capacities to retain and slowly release Si comptreil (used as controllFig. 4). For 36 days,

only 41.10, 34.27, 48.42 and 45.27 % of Si wasasdd from biochars (uBC3, uBC6, SiBC3 and
SiBC6 respectively), compared to 87.39 % from ¢Big. S2). The slow release of Si from

biochars over a long period of time was an indaratihat silicon biochar could be an efficient
source of Si fertilization especially for annuabgs. The release of Si from biochars was
aparently dependent on the amount of silicon abiElan the biochars. More Si was released
from SiBC biochars (SIBC3 and SiBC6) with a daidye higher than uBC biochars (uBC3 and

uBC6) and soil Fig. 5). This was possibly due to the original amountslistolved Si on the
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biochars Table 1). Silicon release by uBC3 and uBC6 followed adineurve which largely
leveled out after day 4 and day 12, respectiviely.(4). This implies that after day 4 and day 12,
insignificant amounts of Si were released by thenadified biochars compared to silicon
modified biochars (SIBC3 and SiBC6) with Si releastes following a nonlinear curvei. 4).
Large amounts of Si were released by SiBC3 and Gi&hin the first 8 days followed by
small increments from day 12 to day 36 althoughffereént behavior was observed for SiBC3
from day 24 which corresponded to a drop in solupdl. The control treatment (soil without
biochar) contained a relatively small amount of(-Si0.11 mg &) which was rapidly released
and the concentration of dissolved Si remainedelgirgnchanged throughout the 36 days. Xiao
et al. (2014) studied the release of Si on biocisarg rice straw and observed that the process of
silicon release on biochar may be controlled bycail speciation in biochar (amorhous or
crystalline), silicon content on biochar and theeiaction of silicon with carbon. The study also
observed that biochar pyrolysis temperature (windluences biochar pH), affects the realease
of Si on biochar. This is in line with our obseieat where higher temperature biochars (uUBC6
and SiBC6) released slightly more Si compared wwelotemperature biochars (uUBC3 and
SIBC3) Fig. 4). Overall, Si was slowly released from biocharmpared to soil, over the 36

days period which served as a steady source @irtdiZation for the spinach plant.
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Fig. 4 The rate of Si release (CaGdxtractable) from unmodified and silicon modified

biochars (uUBC3, uBC6, SIBC3 and SiBC6) compareddib (control) over a period of 36

3.6. Effectsof silicon biochar on biomassyield in spinach plant

The application of silicon biochar significantly reanced plant growthF{g. 5). Unmodified
biochars applied at the rate of 2 % and 5 % (LBC3, 2uBC6, 5uBC3 and 5uBC6), increased
dry mass vyield in spinach by 1.2, 2.3, 1.9 and d.#spectively, compared to 1.05 g in the
control treatment which was made without biocHaig(5). However, this was only a slight
increase compared to modified biochars (i.e. 2SIBEIBC6, 5SiBC3, and 5SiBC6) which
significantly increased dry mass yield by 2.9, 2%, and 3.3 g respectively compared to 1.05 g

in the control treatmentF{g. 5). This significant increase in dry mass productionSiBC
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corresponded to a percentage increase of 63.6, B0.% and 67.7 %, respectively compared to
10.5, 43.3, 53.9, and 25.3 %, respectively, for uBiGchars Fig. S3). The results clearly
indicated that the modification of biochar withigdn resulted in a significant increase in the
growth of spinach. Other factors may have contatuto this inreased growth such as the
preexisting N, P and K in the soil. However, th8uence of Si biochar was clearly observed
when modified and unmodified biochars were used soil under the same experimental
conditions. There was a strong positive correla(i@h= 0.97) between the amount of CaCl
extractable Si in the spinach and the amount ofbélyynass producedr(g. $4) which indicated
that higher doses of Si benefited plant growth.sEheesults were consistent with many studies
relating to the influnce of Si on plant growth. Fexample, Wang and Galletta (1998) reported
the influence of Si on the growth of strawberriexl aobserved that plants treated with Si
developed shorter petioles but significantly morg ihatter even at very low Si concentration
(4.25 mM) in dosing solution. Recently, Costa et(2016) also observed that Si concentrations
of 0.28 and 0.55 g pdt (pots contained 1100 g of tropstrato(r) substrgtelded the highest
stem dry weight of 1.32 and 1.38 g respectivelypassion fruit, compared to 0.81 g of dry
weight in the control treatment. Liang et al., (BD&lso observed that the effects of Si on plant
growth are often complemented by other factors @glpH adjustment and the acquisition of
macro/micro nutrients contained in silicate fezslis. In our study, the addition of SiBC raised
the soil pH from 6.83 £ 0.4 in unmodified soil t@& £ 0.1 in SIBC + soilTable 2) which may
have also influence biomass production. Biocharadesalso influenced biomass yield
considerably. At 2 % SIiBC application, spinach bé@s ranged from 2.26 to 2.88 g and at 5 %
SIiBC application the spinach biomass ranged fra2d 3. 4.05 gFKig. 5) indicating that biochar

dose had a considerable influence on plant growssiply because of the availability of a larger
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amount of Si which correlated positively with biogsayield (Fig. S4). The entrapment of this Si

on biochar and its subsequent slow release asraesoliSi fertilizer was highly benefitial to the

efficient growth of the plant. Similar observatiowere made by Hagemann et al. (2017) who

noted the formation of an organic coating on thé#ase of biochars, which functions in nutrient

retention and subsequent slow release into the Bimithar pyrolysis temperature appeared not

to have any significant influence on spinach bicsnpsoduction. There was no significant

correlation between pyrolysis temperature and spimcly biomass.
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Fig. 5 The influence of unmodified biochar (uUBC) andcsih modified biochars (SiBC)

on biomass production in spinad®pfnacia oleracegn

3.7. Effectsof sllicon biochar on the mobility of Asin soil

The effects of biochar addition on As mobility ioilsvas studied over a period of 40 daksy(

6). Within the first 10 days of biochar incubatighere was a rapid increase in As concentration
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in pore water but this trend slowed down after d@ywith no significant changes until day 40
for all the biocharsKig. 6) suggesting that a new equilibrium had been athinithin the first

10 days of incubation. At 2 % and 5 % SiBC amendm&s concentration in pore water ranged
from 16.5 to 21.04 pg T and from 11.83 to 22.94 pg Lrespectively, indicating that biochar
dose had no significant influence on As mobilityswil. Unmodified biochar mobilized more As
in pore water ranging from 15.2 to 28.35 g In 2 % uBC and 17.99 to 25.15 pg‘lin 5 %
uBC compared to modified biochar where minimal Si##onds may have formed. However,
both biochars (modified and unmodified) mobilize@dre As in pore water compared to the
control (no biochar amendment) which ranged fron®4@o 16.3 mg [*. For example, 2SiBC3,
5SIBC3, 2uBC3, and 5uBC3 increased pore water Asamtration by 64.4, 128, 193 and 257 %
respectively compared to the control. Increase sncéncentration in pore water following the
addition of biochar, as observed in this studycaasistent with previous reports. For example,
Beesley et al. (2013) reported a 365 % increadetaf As in pore water when biochar derived
from orchard prune residues (produced at 500 °Q) admled to As contaminated soil. Zheng et
al. (2012) also reported a 290 % increase in p@emAs concentration in the presence of fine
bran-char (produced at 500 °C). Both studies citexdpresence of phosphorus in biochar as
being partly responsible for the significant in@ean As concentration. The reports suggested
that phosphorus displaced sorbed As and enharscesritentration is pore water. Zheng et al.
(2012) also proposed that increase in pH (fromt@.8.2) following the addition of biochar was
another reason for the significant increase in éscentration in pore water. Increasing pH on
the surface of biochar disfavors the sorption ofvAsch is predominantly oxo anionic. This
therefore promotes its mobility into pore water i@et al., 2014). The level of phosphorus in the

biochars used in the current study (uBC and SiB€jewow and it is therefore unlikely that

25



507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

phosphate was a major influence upon As conceotrsin pore water. However, the addition of
biochars was observed to increase pore water mth(8.83 in control soil to 7.73 in uBC and
8.01 in SiBC amended soils)4ble 2). This increase in pH is suggested to be the ygieng
reason responsible for the significant increas&drconcentration in pore water as supported by
the positive correlation (R= 0.83) between As concentration in soil and pbil(Fig. S5). The
concentration of DOC in soil may have also influeth@s release to pore water. Biochar, and in
particular silicon modified biochars, amendmentstol increased the concentration of DOC
(Table 2) which corresponded to the increase in As mobilitypore water. The influence of
DOC on As mobility in soil has been reported pregly. For example, Hartley et al. (2009)
reported the competition between DOC and As foptsam sites on iron-oxide surfaces which
results in DOC being preferentially sorbed and dasgnounts of As released in pore water.
However Liu et al. (2016) reported that increasesail water holding capacity due to the

addition of biochar may result to an increase indi®aching.
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Fig. 6 Changes in As concentration (mobility) in soilwgain after 40 days following
the addition of unmodified biochars (uBC) and siticanodified biochars (SiBC) at the
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Table 2 Physicochemical properties of unamended soil afld amended with silicon modified (SiBC) and unnfied (uBC)

biochars.

DOC CEC *S Mn As Cd Pb
Soil pH 1 1 1 1 1 1 1
(kg (cmolkg" (mgkg") (mgkg"  (mgkgh)  (mgkg")  (mgkg)

Unamended soll 6.83+0.4 7.02 +3.7 10.23+2.7342.7 90.0+x24 1650+28 558+14 144+04

Soil + 2uBC 7.73+0.1 1850+1.7 1405+19 36 67.8+1l4 155+34 70012 121+3.0

Soil + 2SiBC 8.01+0.1 2258+3.7 2584+4.6 2834 99.4+3.1 13.8+21 3.05+04 119+1.38

DOC, dissolve organic carbon, CEC, cation exchaagacity, *Si, 0.01 M Caglextractable Si, mean * standard deviation (n=3)
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3.8. Theinhibition of Asaccumulation in spinach plant by Silicon biochar

Both silicon modified (SiBC) and unmodified (uBCipbhars were effective in minimizing the
bioaccumulation of As in spinach. The addition BQudecreased As concentration in the edible
tissues of spinach from 12.6 pugkin the control treatment to 10.6, 12.3, 10.9 ahd Jig kg*

in 2uBC3, 2uBC6, 5uBC3, and 5uBC6 respectivelysTdurresponded to a percentage decrease
in As concentration of 16.5, 3.0, 13.1 and 12.9 égpectively with respect to the control
treatment ig. 7a). Compared to uBC, the SIBC was more effectiveeucing As uptake by
spinach. For example, the addition of 2SIiBC3, 2EBG6SIBC3, and 5SiBC6 resulted in a
significant decrease in As concentration in thenaes of spinach by, respectively, 9.86, 8.37,
7.88 and 8.31 pg kjcompared to 12.6 pg Kgin the control treatment. This also corresponded
to a percentage decrease of As uptake by 22.0, 33.8 and 31.1 %, respectivellyig. 7a).
Biochar pyrolysis temperature correlated weaklyhwhs uptake indicating that pyrolysis
temperature did not influence the uptake of Ashim plant. Unmodified biochar dosage did not
also have a significant influence in As uptake. ldwer, silicon modified biochar dosage had a
significant influence on As uptake with 5 % SiBCdamn decreasing uptake by 57.0 %
compared to 25.3 % for 2 % SiBC additidaid. 7a). In all cases of biochar amendment, As
concentration in pore water was well below the eatigat could potentially cause phyto-toxicity
(3 to 10 mg LY (Hartley et al., 2009). Increased Si concentration the biochars after
modification contributed substantially to the inlidn of As uptake by the plant and its mobility
in pore water. Similar results have been reportegrevious studies dealing with Si and As
interaction especially on rice plant in paddy sollkey attribute Si inhibition of As uptake in
plants to the competition between3i#O, and HAsOs; which share the same transport pathway

in plants (Lee et al., 2014). The Lisl and LisZgilacid transporters in plants (uncharged at pH
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< 8) are primarily the same transport systems bsgearsenite (As(lll)) (pKa of 9.2) and Silicon

(Ma et al., 2008).
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Fig. 7 (a) Percentage decrease in As uptake by spirtagimécia oleracegnfollowing
the addition of unmodified biochars (UBC) and sifianodified biochars (SiBC) at 2 %
and 5 %(b) Relationship between the concentration of silicogpinach plant and the

percentage decrease in As uptake by the planwwmitpthe addition of uBC and SiBC
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In the presence of Si, the transport of As(lll) spinach is therefore suppressed as Si is
preferentially taken up through the root cells t#nps and transferred towards the xylem. This
may explain why Si concentration significantly ieased from 0.09 pugtin spinach grown on
non-amended soils to 1.63 and 8.74 {15y spinach grown on the soils amended with uBC and
SiBC respectively (data not shown). There wasa@nstpositive correlation (R= 0.96) between
the concentration of Si in spinach and the degfedsqlll) uptake by the plantHig. 7b).
Arsenite uptake inhibition was higher when morewgis deposited in the plants by SiBC
biochars and lower when less Si was deposited iy biBchars. Results also suggested that Si
biochar had very little influence on the sorptidnAs in soil as opposed to its influence on the
sorption of phosphorus in aqueous solution whichk ve@ortedly very high (Wang et al., 2016b).
However, Si biochar controls As in soil by prevagtits uptake by plants. This process helps to

limit As phytotoxicity and eventual transfer inteetfood chain.

4. Conclusions

Vegetables and other crops like rice and maizegaosvn all over the world especially by
subsistence farmers. These crops are often growsois contaminated by toxic elements like
arsenic (As), cadmium (Cd), lead (Pb), chromium),(Gnd zinc (Zn) with the risk of
contaminant transfer into the food chain. Due ®tthxic nature of As, the need to produce safe
and healthy crops on soils contaminated by As isng®rtant as the need to increase crop yield
for the growing human population. A novel silicoldhar composite was synthesized with the
aim of decreasing As uptake in spina8pifiacia oleraceanwhile at the same time increasing
the crop yield. Up to 37.7 % reduction in As uptakas achieved by the Si modified biochar

compared to 13.1 % reduction rate in unmodifiecth&r. In addition, Si biochar increased dry
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biomass yield in spinach by 67.7 % compared to 2.3 unmodified biochar. These results
suggested that silicon-modified biochar can befative means of reducing the toxic effects of
As in crops grown on contaminated soils and algaisicantly increase crop production. The
slow release of Si from biochars (< 48.42 %) coragdo soil (87.39 %) means that the use of
silicon modified biochar can significantly redude tglobal demand for Si chemical fertilizers
and their sustainable use in the environment. @ilicmodified biochars are therefore very
essential in sustainable soil-plant managementaneéficial in the long term in climate change

mitigation through carbon sequestration.
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Highlights
Biochars (unmodified and silicon modified) were made from bamboo at 300 and 600 °C
Silicon biochar was effective in decreasing As bioaccumulation in spinach by 37.7 %
Silicon prevented As uptake by spinach although pore water Asincreased by 64.4 %
Dry biomass in spinach increased by 67.7% correlating positively with the plant S

Si biochars mitigate As accumulation in crops and release Si slowly for crop growth



