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ABSTRACT 27 

Emission inventory (EI) and receptor model (RM) are two of the three source apportionment 28 

(SA) methods recommended by Ministry of Environment of China and used widely to provide 29 

independent views on emission source identifications. How to interpret the mixed results they 30 

provide, however, were less studied. In this study, a cross-validation study was conducted in one 31 

of China’s fast-developing and highly populated city cluster- the Pearl River Delta (PRD) region. 32 

By utilizing a highly resolved speciated regional EI and a region-wide gridded volatile organic 33 

compounds (VOCs) speciation measurement campaign, we elucidated underlying factors for 34 

discrepancies between EI and RM and proposed ways for their interpretations with the aim to 35 

achieve a scientifically plausible source identification. Results showed that numbers of species, 36 

temporal and spatial resolutions used for comparison, photochemical loss of reactive species, 37 

potential missing sources in EI and tracers used in RM were important factors contributed to the 38 

discrepancies. Ensuring the consensus of species used in EIs and RMs, utilizing a larger spatial 39 

coverage and longer time span, addressing the impacts of photochemical losses, and 40 

supplementing emissions from missing sources could help reconcile the discrepancies in VOC 41 

source characterizations acquired using both approaches. By leveraging the advantages and 42 

circumventing the disadvantages in both methods, the EI and RM could play synergistic roles to 43 

obtain robust SAs to improve air quality management practices.  44 

 45 

Key Words: Source characterization; VOCs; Emission inventory; Receptor models;  46 

Discrepancy 47 
48 
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 49 

1. Introduction  50 

Air pollution has emerged as a serious concern for many rapidly developing nations 51 

such as China. The premise of effective air pollution control is reliable source 52 

identification (Zhong et al., 2013). To guide the emission source characterization, 53 

Ministry of Environment of China issued the guideline for emission source 54 

apportionment and recommended three methods, i.e., emission inventory (EI), receptor 55 

model (RM) and numerical methods such as the Comprehensive Air-quality Model with 56 

extensions (CAMx) (MEP, 2012). These three methods track down the emission sources 57 

from different perspectives and subsequently, provide varied results on source 58 

identification. In particular, EI and RM are widely used due to the complexities and 59 

higher data demand of numerical methods. The question on how to interpret the mixed 60 

results EI and RM generate and leverage the advantages of both methods, therefore, 61 

emerges with practical importance to support the policy-making process for air pollution 62 

control.  63 

EI and RM quantify the emission sources from different angles.  Typically, EI follows 64 

the bottom-up methodology to estimate the primary emissions for a given averaging time 65 

and geographic area.  It involves estimation using statistics of activity level data (e.g., 66 

fuel consumption, product output, population of vehicles) and emission factors. For each 67 

source category, the bulk inventory (total emissions of a pollutant) for a given pollutant is 68 

typically based on the product of an emission factor and an activity factor. For some 69 

pollutants comprised by multiple species such as PM2.5 (particulate matter with dynamic 70 

diameter less than 2.5 µm) and volatile organic compounds (VOCs), speciated inventory 71 

will be developed combining the bulk inventory with speciated source profiles (The 72 
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percentage of different species in a source’s emission). The established bulk or speciated 73 

inventory can be further refined to different temporal and spatial resolutions using 74 

surrogate data such as the temporal profiles of traffic flow, industrial activities and the 75 

spatial location of enterprise, road network and population density. The overall 76 

uncertainty in the inventory depends on the precision, accuracy, and representativeness of 77 

activity level data, emission factor, source profiles as well as the temporal and spatial 78 

surrogates (NARSTO, 2005; Miller et al., 2006). 79 

RM, by contrast, generally follows the top-down based methodology. It statistically 80 

apportions the measured ambient air pollutant concentrations, for multiple time periods at 81 

one or multiple monitoring sites, to the emission sources according to some pre-82 

knowledge of their emission characteristics (primarily their chemical characteristics). The 83 

site- and time-specific ambient VOC species measurements are subject to sampling and 84 

analytical errors and to meteorological variability (Karagulian & Belis, 2012; Belis et al., 85 

2015).  Uncertainties in statistical inferences regarding source apportionment arise as a 86 

result of tracer elements that are common to multiple sources, lack of locally-87 

representative emission source profiles, adoption of different receptor models, effects of 88 

reaction loss on different species, and judgment regarding interpretation of results (Hopke, 89 

1991; Watson et al., 2001; Morino et al., 2011; Yuan et al., 2012; Ling & Guo, 2014; Ou 90 

et al., 2015a). 91 

Due to their different ways to track down emissions and sources of uncertainty, it is 92 

not surprising that they can produce mixed results for source apportionment (Leuchner & 93 

Rappenglück, 2010; Morino et al., 2011; Wang et al., 2014). For example, quite a few of 94 

studies compared VOCs emission source identification results between the emission 95 
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inventory and receptor models, and found significant inconsistencies in source 96 

contributions, especially for solvent use, Liquefied Petroleum Gas (LPG) uses, and 97 

biogenic sources (e.g., Fujita et al., 1995; Scheff et al., 1996; Watson et al., 2001; 98 

Morino et al., 2011; Wang et al., 2014). In China, Zheng et al. (2009a) compared the 99 

source apportionment by EI with receptor modelling by Liu et al. (2008). General 100 

consistency was gained on the high contributions from gasoline vehicles, coating and 101 

solvents, but large discrepancies were observed in the contribution of LPG, and some 102 

specific areas featured by high local emission loadings. Despite of the observed 103 

discrepancies, the question of how to interpret the mixed and sometimes conflicting 104 

answers for source identification remains less studied. Reasons responsible for the 105 

discrepancies scattered in different studies and they were proposed and studied in a 106 

somewhat biased way with the underlying assumption that one of the methods is more 107 

reliable and the discrepancies are mainly attributed by the limitation or flaw of the other. 108 

For studies focused on EI, representativeness of sampling time and sites, photochemical 109 

loss and the tracers used in RM were questioned (Zheng et al., 2009a). As for studies 110 

based on RM, they argued that EI may fall short of the data quality of activity level data, 111 

emission factor and potentially missing sources that lead to under- or over-estimations 112 

(Wang et al., 2014). The variations between EI and RM results call for a more systematic 113 

study with an objective view on the limitations and uncertainties of both methods in order 114 

to leverage their advantages to support robust air pollution control policy formulation.  115 

By cross-validating SAs of EI and RM, it is possible to elucidate factors contributing 116 

to the discrepancies, to figure out ways for better interpretation, and finally to have a 117 

scientifically more plausible source apportionment. In this study, the SA cross-validation 118 
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was demonstrated in the Pearl River Delta (PRD) region of China. The region is chosen 119 

for case study since it has a routinely updated regional-scale highly resolved EI for VOC 120 

species and a speciated ambient VOC measurement dataset generated from a region-wide 121 

gridded sampling campaign. The EI in the PRD provides hourly emission information for 122 

every 3×3km2 grid. The RM is based upon VOCs measurement simultaneously 123 

conducted at 84 stations across the PRD, which overcomes limited spatial representation 124 

by a small number of monitoring sites that most of previous RM works were based upon 125 

(Louie et al., 2013). The high-resolution speciated EI and gridded VOC measurement 126 

campaign for the exactly same area provided us a good opportunity to systematically 127 

examine the underlying factors responsible for the discrepancies between two methods 128 

and to further explore ways to negate their impacts for more scientifically plausible 129 

determinations of SAs. 130 

2. Data and Methods 131 

2.1 Study region 132 

As mentioned above, the PRD was selected as the study region due to the availability 133 

of highly resolved speciated VOC EIs and an extensive VOC ambient measurement 134 

campaign (the location of the study area is shown in Fig. S-1 in the Supporting 135 

Information (SI)). As one of the fastest developing regions in China, the PRD suffers 136 

from air pollution problems characterized by haze and serious photochemical smog 137 

episodes due to its dense population and intense economical activities (Zheng et al., 138 

2009ab; Louie et al., 2013). Additionally, a variety of VOC emission sources in this 139 

region, e.g., vehicle exhaust, industrial and household solvent use, combustion, fuel 140 

evaporation, marine vessels, biomass burning, and biogenic emissions (Lau et al., 2010; 141 
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Ou et al., 2016), leads to further complexity in the source characterization. Hot and 142 

humid weather favors photochemical reactions over the PRD, and the atmospheric 143 

chemistry also plays an important role in shaping the VOC loadings and compositions in 144 

the atmosphere therein. Such complex emission and atmospheric chemistry 145 

characteristics in conjunction with the available high-resolution EIs and gridded ambient 146 

VOC measurements make the PRD an ideal place to conduct an SA cross-validation 147 

study to elucidate the possible factors causing the inconsistencies between the EI and RM.   148 

2.2 Emission inventory 149 

High-resolution VOC bulk EIs (i.e., aggregated emissions of VOC species) in the 150 

PRD region from 2008 and 2009 were adopted in this study (Zheng et al., 2009b). These 151 

bulk EIs from 2008 and 2009 were employed because a gridded ambient VOC 152 

measurement campaign (see details in Section 2.3) was conducted over those two years. 153 

These bulk EIs include anthropogenic emissions from 7 categories in addition to over 40 154 

sub-categories and biogenic emissions estimated by the Model of Emissions of Gases and 155 

Aerosols from Nature (MEGAN) (Guenther, 2006). With source-specific temporal and 156 

spatial allocation surrogates (CUHK, 2015), these bulk EIs have a spatial resolution of 157 

3×3 km2 and an hourly temporal resolution. On the basis of the bulk EIs, the speciated 158 

VOC EIs with approximately 300 VOC species were developed using local VOC source 159 

profiles (Zheng et al., 2009a; Ou et al., 2015b; HKPU& SCUT, 2016); meanwhile, only 160 

30 VOC species were used in previous RMs. The reliabilities of the bulk and speciated 161 

EIs have been demonstrated in previous studies (Zheng et al., 2009ab; Ou et al., 2015b), 162 

and they are widely used in air quality modeling endeavors (Liu et al., 2008; Ou et al., 163 

2016).  164 
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2.3 VOC grid study and receptor modeling 165 

A gridded VOC sampling campaign (hereafter as “VOC grid study”) with eight 166 

sampling events was conducted at 5 am and 10 am on four days (29 October 2008 and 1 167 

March, 26 September and 5 December 2009). The PRD was equally divided into 100 168 

grids with the grid size of 20×20 km2, and both VOC and oxygenated VOC (OVOC) 169 

samples were simultaneously collected at 84 on-land grids. A total of 672 samples were 170 

collected and analyzed using gas chromatography (GC) with a multi-detector system and 171 

high-pressure liquid chromatography (HPLC) with a photodiode array detector for VOCs 172 

and OVOCs, respectively. Details of the sampling and analysis methods utilized in the 173 

VOC grid study can be found in Louie et al. (2013). 174 

Because the SA for this VOC speciated dataset has been reported previously (Yuan et 175 

al., 2013), only a brief description is given here. The SA was performed using a positive 176 

matrix factorization (PMF) model (version 3.0). The uncertainties were determined 177 

following the protocol of Polissar et al. (1998). Twenty base runs and 100 bootstrap runs 178 

were performed to select the best solution and estimate the stability and uncertainty of the 179 

SA. Nine factors were identified, after which they were mapped onto the emission 180 

sources according to the abundances of various tracers, i.e., combustion, diesel exhaust, 181 

gasoline exhaust, gasoline evaporation, liquefied petroleum gas (LPG)-related sources, 182 

mixed solvents, industrial emissions, biogenic emissions and secondary and aged air 183 

masses. Details about the PMF modeling procedure can be found in Yuan et al. (2013).  184 

2.4 Methods for comparison 185 

To enable a comparison, the results obtained from both the EI and the PMF 186 

approaches were unified in terms of their source classification, sampling time, and 187 
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temporal and spatial resolutions. Regarding the source classification, the bottom-up EI 188 

method incorporates a much more detailed source classification system, while the RM 189 

technique provides a general delineation of multiple sources based on the similarities 190 

among source profiles. Therefore, the deliberately classified sources in the EIs were 191 

grouped to match the 8 RM-based source categories, including combustion, gasoline 192 

exhaust, diesel exhaust, industrial processes, mixed solvents, LPG-related sources, 193 

gasoline evaporation and secondary and aged air masses. While secondary and aged air 194 

mass sources were classified within the RM, no primary emission source in the EIs was 195 

assigned to this category. The source mapping between the EI and RM and the unified 196 

source classification (see Table S-1) are detailed in the SI.  197 

Hourly VOC emissions of the 8 sampling periods, i.e., 5 am and 10 am on 29 October 198 

2008 and on 1 March, 26 September and 5 December 2009, were extracted from the EIs 199 

of 2008 and 2009 for comparison. To unify the spatial scale, the spatial surrogates used in 200 

the 3×3 km2 EI were used to develop the 20×20 km2 spatial factors for the emission 201 

allocation. The source characterization results acquired using the EIs and the PMF 202 

therefore had the same sampling time and spatial resolution and were ready for 203 

comparison in terms of source contribution percentages at both different temporal 204 

variations (i.e., hourly and annual) and different spatial scales (i.e., 20×20 km2, 40×40 205 

km2, and 200×200 km2).   206 

 207 

3. Results and Discussion 208 

3.1 Comparison of SAs using the EI and RM 209 

Fig. 1 a-d show the source contribution percentages derived from the bulk EI and RM. 210 
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For the bulk EI with an aggregated emission of approximately 300 VOC species, mixed 211 

solvent usage was the dominant contributor (42%), followed by industrial processes 212 

(15%), biogenic emissions (15%), and gasoline exhaust (14%). In comparison, gasoline 213 

exhaust accounted for the largest fraction of VOCs (19%) in the RM, though it was only 214 

marginally higher than the contributions from mixed solvent (16%), industrial processes 215 

(15%) and LPG-related sources (15%). Gasoline evaporation (9%), combustion (8%), 216 

diesel exhaust (8%), and secondary and aged air masses (7%) also accounted for notable 217 

contributions. Biogenic emissions only contributed 3% on average.  218 

A good agreement was found between the gasoline exhaust contributions in the EI 219 

and RM. The bulk EI generally provided much higher estimates of the mixed solvent and 220 

biogenic emission contributions and lower value for LPG-related sources. The 221 

contributions from mixed solvents and biogenic emissions in EI were 3 and 5-6 times 222 

those in RM, respectively. On contrast, the LPG-related source contribution estimated via 223 

the RM was 7 times the contribution in EI. 224 

The diurnal variations of gasoline exhaust, combustion, diesel exhaust, gasoline 225 

evaporation and biogenic emission sources exhibited consistencies between EI and RM 226 

with higher contributions at 10 am than at 5 am (Fig. 1 a, c and Fig. S-2 in the SI). 227 

However, the RM results were also associated with significant seasonal variations (Fig. 228 

1c) due to the large impacts of meteorological conditions and non-local transport 229 

mechanisms. Located along the southern coast of China, the PRD receives greater non-230 

local contributions during the winter and spring with polluted continental air masses 231 

brought by the northeasterly monsoon; meanwhile, lower contributions are introduced 232 

during the summer and autumn with clean oceanic air masses brought by the 233 



11 
 

southwesterly monsoon (Zheng et al, 2009b). In contrast, the EI reflected only local 234 

emissions within the PRD with slight seasonal variations. This constitutes an inherent 235 

cause of the discrepancies discussed below in Section 3.2. 236 

 237 

3.2   Factors contributing to the insistencies between the EI and RM 238 

To investigate the possible reasons leading to the notable discrepancies between the 239 

RM and EI approaches, we perform a SA cross-validation in this section to identify the 240 

major factors that impact the source characterization results by EI and RM and explore 241 

possible ways to reconcile those discrepancies.  242 

3.2.1 Number of VOC species 243 

The bulk EIs utilized in this study contained approximately 300 VOC species, while 244 

only 30 VOC species were consistently detectable by the instrument for the RM. The 245 

number of VOC species detectable within the ambient air is commonly much less than 246 

the number of VOC species detectable from emission sources because of their lower 247 

concentrations and the chemical loss of some reactive species. To eliminate the impacts 248 

of differences in the number of species, we constructed a speciated EI that contained the 249 

same species as those in the RM. Fig. 1 e-f show the source contribution percentages 250 

derived from the speciated EI. The largest source in the speciated EI was industrial 251 

processes (23%), followed by gasoline exhaust (21%), mixed solvents (20%), and 252 

biogenic emissions (17%). The predominant contribution from mixed solvents in the bulk 253 

EI was significantly weakened relative to that in the speciated EI. The contributions from 254 

industrial processes, gasoline exhaust and mixed solvents to VOCs in the speciated EI 255 

were comparable to those in the RM. 256 

The differences in the contribution patterns in the bulk EI and speciated EI can be 257 
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attributed to the proportions of the 30 RM species within the total VOC mass from a 258 

particular source. As shown in Fig. 2, the 30 RM species only accounted for 29% of the 259 

mixed solvent emissions, while they explained 85%, 76% and 74% of the emissions from 260 

combustion, gasoline exhaust and industrial processes, respectively. As a result, the 261 

contribution of mixed solvents dropped significantly in the speciated EI, thereby 262 

becoming more similar to those in the RM. Larger differences (i.e., reaching an order of 263 

magnitude) between the mixed solvent contributions from the bulk EI and RM were also 264 

reported in previous studies (Wang et al., 2014; Watson et al., 2001). These differences 265 

might be significantly reduced if an EI with the same species as a RM was used for 266 

comparison. This finding highlights the importance of species consensus when comparing 267 

SAs determined via EIs and RMs. Therefore, for the remainder of this study, comparisons 268 

were conducted between the speciated EI and the RM based upon the same 30 VOC 269 

species. 270 

3.2.2 Temporal and spatial resolutions 271 

After reconciling the number of species that used for comparison, different scales of 272 

temporal and spatial resolutions also explained part of the discrepancies between the two 273 

methods.   274 

Starting with the finest temporal and spatial resolution, i.e., instant sample for the 275 

20×20 km2 grid, we illustrated the SA results by EI and RM in two sampling periods (2nd: 276 

10am, 1 March 2009; 6th: 10am, 26 September 2009) for the selected cells to represent 277 

urban (Grid 74), industrial (Grid 66), suburban (Grid 54), upwind rural (Grid 99) and 278 

downwind rural (Grid 14) areas in PRD in Fig. 3.  Noteworthy is that, the two sampling 279 

periods were of the same local time but different seasons (March for spring, and 280 
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September for late summer in PRD). 281 

As shown in Fig. 3, SA by EI was generally stable during these two seasons, and its 282 

source contributions generally coincided with the local emission characteristics. 283 

Industrial processes, mixed solvents and gasoline exhaust dominated in urban and 284 

suburban grids. Industrial processes contributed the most significantly in the industrial 285 

grid, while biogenic emissions overwhelmed in the two rural grids. By contrast, SA by 286 

RM was much sampling event-specific, and the resolved contributions deviated 287 

significantly to their EI counterparts. For example, industrial processes contributed to 288 

40% of VOCs in the urban grid in the 2nd event and 14% in the 6th event, both differed 289 

much from 30% and 23% in the EI. In two rural grids, RM resolved much lower biogenic 290 

contributions. The upwind rural grid was associated with higher contribution of 291 

secondary & aged air mass from long-range transport. Its source contribution patterns 292 

also varied as the prevailing wind changed from weak north-easterly in the 2nd event to 293 

moderate easterly in the 6th event. The downwind rural gird was dominated by high 294 

contributions of mixed solvents and remained stable despite the shift of prevailing winds. 295 

Significant mixed solvents may come from nearby upwind emissions, as Grids 24 and 25 296 

to the north and northeast of the downwind rural grid were characterized by high 297 

emissions of mixed solvents.  298 

The above selected cells showed how the SA results from EI and RM might be 299 

different from cell to cell and period to period, if we summarized their discrepancies for 300 

all the 84 grids over the 8 sampling periods, we found that the discrepancies were quite 301 

large.  As shown in Fig. 4a, 57% of the results between two methods varied more than 3 302 

times, i.e., the EI result was more than 3 times of RM or the other way around (RM result 303 
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was more than 3 times of EI). 24% of the estimations even had differences greater than 304 

15-fold, and almost all source categories contributed to these extreme values. Therefore, 305 

such disagreements were independent of source categories. 306 

If comparisons were made in larger temporal and spatial resolutions, e.g., combined 307 

the 8 sampling periods as annual average or combined every 4 grids to a bigger grid of 308 

40×40 km2, the discrepancies between the two methods seemed to be smoothed in some 309 

degrees. As Fig. 4b illustrated, the percentage for those with variations more than 3 times 310 

decreased to 46% when comparison was made for annual average in 20×20 km2 311 

resolution. Similarly, when the grid size was increased to 40×40 km2, the percentage 312 

dropped to 46% (Fig. 4c).  If both spatial and temporal enhancements were adopted, only 313 

38% of the results remained in the range of more than 3 times, i.e., 62% of the results fell 314 

in the range between 1/3 and 3 (Fig. 4d). If the grid size further increased to cover the 315 

entire PRD region and samples in all eight events averaged, 78% of the percentage ratios 316 

(7 out of 9 sources) fell in the range between 1/3 and 3 (Fig. 4e). Only biogenic emission 317 

and LPG-related sources still had percentage ratios greater than 3, implying other factors 318 

may contribute larger to discrepancies for the two categories. We shall address them in 319 

later sections. 320 

The reasons why the EI and RM results can be reconciled by spatial and temporal 321 

averaging enhancements might due to the fact that RM results were sampling event-322 

specific. As discussed in Fig. 3, the source contributions of EI were generally more stable 323 

while the results by RM tended to fluctuate from different sampling times and were 324 

subject to meteorological conditions and the upwind sources. For example, under 325 

different wind patterns, hotspots of toluene concentration were at different grids (as 326 
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shown in Fig. S3-a&b of SI) and sometimes could be 40-60 kilometers away from the in-327 

situ emission hot spots (Fig. S3c&b of SI). As inter-grid transport can be reflected by RM 328 

but cannot by EI, averaging in a larger area over a longer period of time is a possible way 329 

to ease this inherent discrepancy. Hence, in order to make a scientifically sound cross-330 

validation between EI and RM, sampling should be conducted over a large area during a 331 

long period of time, preferentially a year, to minimize the impact by meteorology and 332 

inter-grid transport. 333 

3.2.3 Chemical loss 334 

Even after reconciling the spatiotemporal resolution as discussed above, substantial 335 

disagreements still existed for biogenic emissions and LPG-related sources. Though 336 

similar diurnal variations were presented by EI and RM, the biogenic emission 337 

contribution resolved by the EI was 5.7 times that by RM. Intriguingly, the biogenic 338 

emission estimates from the EI and RM had a high correlation (r=0.77), suggesting that 339 

both estimates were robust in terms of their temporal variations. The significant 340 

difference in the absolute mass contributions is therefore believed to be largely due to the 341 

high reactivity of isoprene, the tracer used to identify biogenic emissions in an RM. An 342 

inherent assumption of an RM is that all samples in a source profile are constant during 343 

the analysis, and the high reactivity of isoprene certainly violates this assumption (Harley 344 

and Cass, 1995). Since the reactivity of isoprene is one to two orders higher than those of 345 

other species in an RM (Harley and Cass, 1995), it was removed at a faster rate in the 346 

atmosphere, thereby distorting the ambient VOC profiles for interpretation using the RM 347 

and resulting in much lower biogenic contributions. 348 

The discrepancy between the SAs acquired using the EI and RM correlated well with 349 
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the source reactivity. By combining the reactivity (kOH) of different VOC species with 350 

their proportions in a source, the source reactivity can be estimated (details are provided 351 

in the “Estimation of source reactivity” material of the SI). As shown in Fig. 5, biogenic 352 

emissions (point 9) in the upper-right corner constituted the most reactive source, and it 353 

was associated with the largest difference between the EI and RM. As the source 354 

reactivity decreased, the relative differences of source contributions by EI and RM 355 

declined as well, with the exception of LPG-related sources and secondary and aged air 356 

masses. Secondary sources exhibited the lowest reactivity, as it is composed of long-lived 357 

species. Since a secondary source cannot correspond to any source in an EI, its associated 358 

discrepancy was expected to be high. If LPG-related sources and secondary and aged air 359 

masses were removed, the source reactivity showed a positive relationship with the 360 

relative differences of two methods (r2=0.59). Therefore, chemical loss constituted the 361 

single most important factor in the disagreement between EI and RM. Accordingly, some 362 

adjustment methods have been developed to account for the chemical losses of VOC 363 

species in the atmosphere to reconcile the SAs acquired using EIs and RMs (Na and Kim, 364 

2007; Yuan et al., 2012).  365 

 366 

3.2.4 Potential missing sources in the EI and tracers used in the RM 367 

The above factors failed to explain the significant discrepancy in the contribution of 368 

LPG-related sources. Its source contribution estimated using the RM was 15 times that by 369 

EI. The disagreement in the LPG-related source contributions from EI and RM has been 370 

reported elsewhere in China (Zhang et al., 2009; Zhao et al., 2012), Japan (Morino et al., 371 

2011) and North America (Blake and Rowland, 1995; Fujita et al., 1995), suggesting that 372 
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this discrepancy is globally pervasive. Two reasons might be blamed for it. 373 

One is the usage of propane and i/n-butane in the RM as unique tracers of LPG 374 

sources. Propane and i/n-butane are ubiquitous in the atmosphere and generally make up 375 

large portions of the measured VOCs. For a long time, these species were treated as 376 

tracers of LPG sources due to their higher percentages in the source profiles (percentage 377 

of a species in a source’s emission). Propane and i/n-butane each comprises 40%, 4% and 378 

9% of the VOC emitted from LPG exhaust (Ou et al., 2015b; HKPU&SCUT, 2016), 379 

much higher than their percentages in other sources. With the measurements of high 380 

concentrations of propane and i/n-butane in ambient samples and the underlying 381 

assumption that propane and i/n-butane came dominantly from LPG sources, LPG was 382 

constantly apportioned with high source contribution by RM. However, if the emission 383 

intensity was considered, industrial processes, which dominated the emissions in PRD, 384 

would contributed 47%, 29% and 54% of the total propane and i/n-butane emissions in 385 

the PRD according to the EI (as shown in Fig. S-4 in SI). Regardless of whether these 386 

percentages were accurate or not, we need to be cautious on treating propane and i/n-387 

butane as the tracers of LPG. More efforts are needed to measure the local source profiles, 388 

especially the presence of propane and i/n-butane, in a wide variety of industrial 389 

processes. 390 

Another possibility is underestimation of LPG emissions in the current EI. A previous 391 

study suspected that usage of LPG might result in significant leakage (Blake & Rowland, 392 

1995), with leakage rate of 1-5% depending on the boundary conditions. Evaporative 393 

emissions from LPG usage and gasoline evaporation during vehicle movement and 394 

parking were absent in the current EI. A recent study in China highlighted that vehicular 395 
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evaporative emissions (predominantly from gasoline) constituted a missing yet significant 396 

part of VOC emissions in EI, and estimated that one vehicle in China emitted 1.6 kg of 397 

VOC emissions per year (Liu et al., 2015). If these two potentially missing sources were 398 

taken into account in EI, the source contributions by EI would change as those shown in 399 

Fig.6. It was noted that the large discrepancy in LPG-related sources was reconciled by 400 

inclusion of vehicular evaporative emissions and 2% LPG leakage rate. This highlighted 401 

that the need to review and improve emission estimations from evaporative sources in EI. 402 

Nevertheless, cross-validation on SAs between EI and RM revealed the necessity to 403 

improve both methods. 404 

 405 

3.3 Implications for reconciling the inconsistencies between the EI and RM 406 

The characterization of VOC sources is challenging due to the complexity in emission 407 

sources and species. The EI and RM represent two widely used VOC SA techniques that 408 

approach VOC from different perspectives, i.e., EIs focus on emission sources (bottom-409 

up) while RMs emphasize pollutant levels in the environment (top-down); therefore, it is 410 

natural that these two methods may generate intrinsically different SA results. Given their 411 

inherent limitations, the SAs determined using either the EI or the RM could deviate from 412 

the ‘real’ source contributions, implying that control strategies based on either the EI or 413 

RM separately can be easily biased. This study identified the factors contributing to these 414 

discrepancies and provided ways to address these factors. The work shown here could 415 

help negate their impacts to obtain a more plausible SA, thereby generating a more robust 416 

control strategy.  417 

The first implication of this study was that a consensus of species in cross-validating 418 
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the results from the EI and RM is a prerequisite for reducing their discrepancies. The 419 

species included within RM generally present with high concentrations in the ambient air 420 

and low instrumental detection limits, while species in EIs are detectable in source profile 421 

measurements. As emission sources have high loadings of various species, higher 422 

quantities of species are more often detected and thus included in speciated EIs than in 423 

RMs. Inconsistencies in such species generally lead to lower estimations of some source 424 

contributions such as mixed solvent in RMs. These discrepancies can be even larger if the 425 

SA by an RM is simply compared with the EI of a total pollutant amount (e.g., bulk 426 

VOCs). It is therefore improper to use RM results based on a limited number of species to 427 

infer the control measures for a bulk amount of pollutants. 428 

This study also highlighted the importance of reconciling the EI and RM SA results in 429 

a larger spatial coverage and longer time span. As pollutants in the air may originate from 430 

both local and non-local (i.e., areas outside the EI coverage) sources, an enhanced spatial 431 

coverage could downgrade the impact of non-local sources, thereby improving the 432 

consistency between the SAs from EIs and RMs. Meanwhile, longer time spans could 433 

improve the SAs determined by both methods. In an EI, temporal allocation surrogates 434 

are often used to allocate the total annual emission into months, days and hours; however, 435 

this can introduce additional uncertainties into these surrogates and therefore impact the 436 

emission estimates at any specific time. The influences of such uncertainties can be 437 

reduced if SAs are constructed with a longer time span, e.g., seasonally or annually. In 438 

RM, a longer time span would cover a wider range of synoptic conditions and thereby 439 

increase the temporal variability in the source contributions. In particular, a sampling 440 

interval spanning at least one year is suggested in areas dominated by a monsoonal 441 
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climate to avoid any biases in SAs produced from limited directions of prevailing winds. 442 

Third, addressing the impacts of chemical losses by employing receptor models for 443 

SAs could help reconcile the discrepancies between EIs and RMs. Chemical losses might 444 

be the single most important factor in SA discrepancies with regard to reactive pollutants, 445 

e.g., VOCs. Reactive species decay rapidly in the atmosphere and can drop to low or even 446 

undetectable levels if the receptors are far from their emission sources. Therefore, RMs 447 

most likely underestimate the contributions of sources with high abundances of reactive 448 

species and accordingly overestimate the contributions of sources with low reactivity. The 449 

significant decay of a reactive species could therefore distort the conclusions and 450 

implications for emission controls, reactive-based controls or health-based controls 451 

derived from an RM. For example, many studies have used maximum incremental 452 

reactivity (MIR)-weighted factor loadings from RM to indicate the ozone forming 453 

potentials (OFPs) of different VOC sources (Carter, 2008; Ou et al., 2015b). However, 454 

such OFPs only account for the post-receptor ozone production capacity; meanwhile, 455 

they neglect ozone that was produced by the decay of VOCs prior to reaching the receptor. 456 

As a result, the OFPs for sources with high abundances of reactive species are 457 

underestimated, and the degree of underestimation depends on the reactivity of the 458 

species and the proximity of the receptor to its source. Indeed, although they are used 459 

widely, MIR-weighted VOC factors in RM are scientifically inaccurate when estimating 460 

source-specific OFPs, as they generate misleading scientific conclusions and control-461 

oriented implications. Hence, the impacts of chemical losses must be quantitatively 462 

addressed before they are used for cross-validation and policy formulation. 463 

There are several types of RMs, in which PMF and the Chemical Mass Balance 464 
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(CMB) are the two most popular ones. In this study, only PMF is used for comparison 465 

with EI. This is due to the higher requirement of input data in CMB, such as the actual 466 

number of emissions sources and their source profiles, which requires a comprehensive 467 

pre-knowledge of all the significant sources and their speciated characteristics (Na and 468 

Kim, 2007; Lau et al., 2011; Teixeira et al., 2015). Previous studies showed that different 469 

RMs have general consistencies in the major emission sources. Specific variations in 470 

certain sources vary from sites and the VOC species in calculation.  For example, Song et 471 

al. (2008) found the contribution of gasoline-related sources using CMB was higher than 472 

PMF for 31 VOC species (not including polycyclic aromatic hydrocarbons (PAHs)) in 473 

Beijing. On contrast, Teixeira et al. (2015) reported that PMF attributed a slightly greater 474 

amount of PAHs to the gasoline and diesel sources in Brazil. Differences in the 475 

theoretical approaches of RMs, the site-specific atmospheric chemistry and reactivity of 476 

VOC species might contribute to the variations of model performances. Though the 477 

variations between different RMs were much less than the discrepancies between PMF 478 

and EI in this study, cross-validation between different RMs and emission inventories is 479 

recommended to better understand the source characteristics of a region. 480 

Last but not least, speciated EIs of reactive species are associated with significant 481 

uncertainties. Studies have shown that uncertainties in bulk VOC emission estimates 482 

sometimes reach or exceed 100% (Wei et al., 2008; Zheng et al., 2009b), and these 483 

estimates may be even higher for reactive species (Simpson et al., 1995). These 484 

uncertainties could be enhanced when a speciated EI is inferred by multiplying bulk 485 

emissions with speciated source profiles that are either measured or borrowed from an 486 

established source profile database such as SPECIATE from the U.S. Environmental 487 
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Protection Agency (EPA). Considering significant uncertainties in the SA of a reactive 488 

species using both EI and RM, cross-validation and reconciliation can shed light on 489 

directions for further improvement in both methods. For example, the large discrepancies 490 

in LPG-related sources indicate one or both of the methods call for critical review.  491 

Vehicular evaporation emissions and LPG leakage might be underestimated or missing in 492 

the current EI, while the tracers of propane and i/n-butane in RMs need to be reviewed to 493 

address the issue of overlapped tracers. In this regard, the EI and RM both play as 494 

synergistic roles in improving the confidence of SA results by both methods.  495 

4. Summary and Conclusions 496 

Source identification and apportionment are fundamental for the formulation of air 497 

pollution control measures. The two most widely used source characterization approaches 498 

are the bottom-up-based EI and the top-down-based RM; however, these two techniques 499 

often provide inconsistent SA results due to their inherent differences and limitations.  In 500 

this study, we utilized the high-resolution, speciated VOC emission inventory and the 501 

region-wide VOC gridded measurement campaign for the PRD as a case study to perform 502 

a detailed examination of the factors leading to SA discrepancies and to explore possible 503 

ways to reconcile those discrepancies. The consensus of species included in the analysis, 504 

the temporal and spatial resolutions of the data for comparison, chemical losses of 505 

reactive species, potential missing sources in EIs and some tracers used in RMs were 506 

identified as the important factors responsible for the SA discrepancies between EIs and 507 

RMs. Therefore, ensuring a consensus of the species used in the EI and RM, employing a 508 

larger spatial coverage and longer time span, addressing the impacts of chemical losses 509 

by using receptor models, supplementing emissions from missing sources and selecting 510 
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proper source tracers will help to reconcile the discrepancies among VOC source 511 

characterizations generated using EIs and RMs.   512 

This study also highlighted the fact that high-resolution, speciated EIs and large-scale 513 

gridded monitoring campaigns are essential for a plausible source comparison between an 514 

EI and an RM. By leveraging the advantages and circumventing the disadvantages in 515 

both methods, EIs and RMs could play as synergistic roles in producing reliable source 516 

characterizations, especially those for reactive species such as VOCs. The work shown in 517 

this study could be used to more accurately characterize the sources of PM2.5 emissions. 518 

The approach outlined herein could thus be promulgated to other regions in China and 519 

other developing countries with intense and complex emissions sources to more 520 

accurately characterize source impacts on the ambient pollution and ultimately to 521 

improve the efficacies of pollution control strategies. 522 
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SUPPORTING INFORMATION AVAILABLE 535 

Four figures, one table and additional information are available for the following: (1) the 536 

locations of the PRD region and the VOCs grid sampling campaign; (2) the source 537 

categories in the EI and their grouping relative to the RM sources; (3) the diurnal 538 

variations in the RM and EI region-wide estimates; (4) the spatial distribution of ambient 539 

toluene under different wind patterns and the spatial locations of its major sources- 540 

industrial solvent and industrial processes; (5) the proportions of propane and i/n-butane 541 

in the source profiles and the total emission budget; and (6) the estimation of the source 542 

reactivity.  543 
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