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Abstract  

Introduction: The population is ageing but this accompanies increased susceptibility 

to infection and age-associated diseases, as well as reduced vaccination responses; 

potentially attributable to reduced immune function. Immunosenescence describes 

the deleterious effects of ageing on the immune system and is associated with a 

chronic, low-grade, inflammatory state; inflammaging. Habitants of Mediterranean 

regions maintain good health into old age; often attributed to Mediterranean (MED)-

diets. 

Hypothesis: Adoption of a MED-diet by elderly subjects, in Norfolk, may improve 

immune responses of these individuals; particularly in terms of dendritic cell (DC) 

function and antibody diversity.  

Experimental approach: Elderly subjects recruited onto the Nu-AGE study were 

randomised to the control or MED-diet groups, for one year. Blood samples were 

compared from pre- and post-intervention, and to blood samples from young subjects. 

Study compliance was assessed using high performance liquid chromatography-with 

tandem mass spectrometry (HPLC-MS/MS) analysis of urine samples. Immune cell 

subset numbers and concentrations of secreted proteins were determined by flow 

cytometry, after staining for surface markers and intracellular proteins. Age and 

dietary impact on antibody diversity was quantitated using a novel-polymerase chain 

reaction (PCR)-based technique developed by the Babraham Institute. 

Results: The MED-diet group had higher urinary hydroxytyrosol sulphate post-

intervention but self-reported diet diary analyses showed no difference in MED-diet 

scores. Reduced myeloid DC numbers were observed in blood samples from elderly 

subjects compared to young. The elevated secretion of the adipokine, resistin, after 

ex vivo stimulation of peripheral blood mononuclear cells (PBMCs) from elderly 

subjects, was significantly reduced after MED-diet intervention, but this change from 

baseline was not significantly different to the control group. Antibody diversity was 

reduced with age, dietary intervention may prevent further reductions in unique 

clonotypes. 

Conclusions: Further evidence of numerical and functional effects of ageing on DCs, 

are shown. The MED-diet showed potential to impact on the ageing immune cells 

investigated and could provide an economical approach to address problems 

associated with our ageing population.   
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Cpn  Chlamydophila pneumoniae 

CRP  C-reactive protein 

CRTU  Clinical research and Trials Unit 

CSR  Class switch recombination 

CT  Computed tomography 

CV  Coefficient of variance 

CVD  Cardiovascular disease 

CXCL  Cys-X-Cys motif (CXC) chemokine ligand   

DAMP  Damage associated molecular pattern 

DC  Dendritic cell 

7DD  7-day diet diary 

DHA  Docosahexanoic acid 

DMSO  Dimethyl sulphoxide 

DNA  Deoxyribonucleic acid 
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DRV  Dietary reference value 

DTH  Delayed-type hypersensitivity 

DXA  Dual energy x-ray absorbtiometry 

EBV  Epstein-barr herpes virus 

ELISA  Enzyme-linked immunosorbent assay 

EPA  Eicosapentanoic acid 

ER  Endoplasmic reticulum 

FA  Fatty acid 

FBS  Foetal bovine serum 

FFA  Free fatty acid 

FFM  Fat free mass 

FFQ  Food frequency diary 

-FITC  Fluorescein 

FM  Fat mass 

FMD  Flow mediated dilation 

FOS  Fructo-oloigosaccharide 

FR  Framework region 

FSH  Follicle stimulating hormone 

G-CSF  Granulocyte colony stimulating factor 

GERD  Gastroesophageal Reflux Disease 

GI  Gastrointestinal 

GM-CSF Granulocyte macrophage colony stimulating factor 

GOS  Galacto-oligosaccharide 

GP  General Practice 
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GWAS  Genome wide association study 

HB  Hepatitis B  

HDL  High density lipooprotein 

HI  Hemagglutination inhibition 

HPLC-MS High Performance Liquid Chromatography-Mass Spectrometry 

HSC  Haematopoietic stem cell 

HT  Hydroxytyrosol 

HTS  Hydroxytyrosol sulphate 

ICAM  Intercellular adhesion marker 

IECs  Intestinal epithelial cells 

IFN  Interferon 

Ig  Immunoglobulin  

IGF  Insulin-like growth factor 

IgH  Immunoglobulin heavy chain 

IGHV  Immunoglobulin heavy chain variable region 

IgL  Immunoglobulin light chain 

IL-6  Interleukin-6 

IMGT  International ImMunoGeneTics 

IP-10  IFN-γ-inducing protein 10 

IRAK  IL-1R-associated kinase 

IRF  Interferon regulatory factor 

IRP  Immune risk profile 

ITT  Intention-to-treat 

Kg  Kilogram  
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KIR  Killer cell Immunoglobulin-like receptor 

LDL  Low density lipoprotein 

LN  Lymph node 

LTA  Lipoteichoic acid 

LPS  Lipopolysaccharide 

mAb  Monoclonal antibody 

MAPK  Mitogen-activated protein kinase  

MCP-1  Monocyte chemoattractant protein-1 

M-CSF  Macrophage colony stimulating factor 

mDC  Myeloid dendritic cell 

MDP  Macrophage and dendritic cell precursor 

MDS  Mediterranean diet score 

MED diet Mediterranean diet 

MetS  Metabolic syndrome  

MFI  Mean fluorescence intensity 

2-MG  2-Mono-glycerides 

MHC  Major histocompatibility complex 

MI  Myocardial Infarction 

MLN  Mesenteric lymph node 

MLR  Mixed leucocyte reaction 

MNC  Mononuclear cell 

MoDC  Monocyte derived dendritic cell 

MRI  Magnetic resonance imaging 

mRNA  micro ribonucleic acid 
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MSC  Mesenchymal stem cells 

MUFA  Monounsaturated fatty acid 

MyD88  Myeloid differentiation factor 88 

NADPH Nicotinamide adenine dinucleotide phosphate 

NAFLD Non-alcoholic fatty liver disease 

NDNS  National diet and nutrition survey 

NET  Neutrophil extracellular trap 

NF-κB  Nuclear factor kappa-light-chain-enhancer of activated B cells 

NK cell  Natural killer cell 

NMES  Non-milk extrinsic sugars 

NND  New Nordic diet 

NNUH  Norfolk and Norwich University Hospital 

NO  Nitric oxide 

NSP  Non-starch polysaccharide 

OTC  Over the counter 

OVA  Ovalbumin 

P  Probability value 

PAMP  Pathogen associated molecular pattern 

PBDCs Peripheral blood dendritic cells 

PBMCs Peripheral blood mononuclear cells 

PBS  Phosphate buffered saline 

PCA  Principle component analysis 

PCR  Polymerase chain reaction 

pDC  Plasmacytoid dendritic cell 
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PE  Phycoerythrin 

PE-Cy5 Phycoerythrin-cyan dye 5 

PE-Cy7 Phycoerythrin-cyan dye 7 

PGE  Prostaglandin 

PHA  Phytohaemagglutinin  

PI 3-K/AkT Phosphatidylinositol 3-kinase/ protein kinase B 

PKC  Protein kinase C  

PLS-LDA Partial least squares-linear discriminant analysis 

PMA  Phorbol myristate acetate 

PMN  Polymorphonuclear 

PPARγ  Peroxisome proliferator-activated receptor gamma 

PPS  Pneumonia polysaccharide 

PRR  Pattern recognition receptor 

P38SAPK p38 stress-activated protein kinase  

PUFA  Polyunsaturated fatty acid 

R848  Resiquimod 

RA  Retinoic acid 

RBP4  Retinoic binding protein 4 

RDA  Recommended daily allowance 

RMR  Resting metabolic rate 

RNA  Ribonucleic acid 

RNI  Required nutrient intake 

RNS  Reactive nitrogen species 

ROS  Reactive oxygen species 
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rpm  Revolutions per minute  

RPMI  Roswell Park Memorial Institute buffer 

SCFA  Short chain fatty acid 

SEM  Standard error of the mean 

SFA  Saturated fatty acid 

SHM  Somatic hypermutation 

Sir2  Sirtuin protein 2 

SLE  Systemic lupus erythematosus 

ssRNA  Single stranded ribonucleic acid  

T1D  Type I diabetes mellitus 

T2D  Type II diabetes mellitus 

TCR  T cell receptor 

Th  T helper 

TLR  Toll like receptor 

TNF  Tumour necrosis factor  

Treg cell  T regulatory cell 

UEA  University of East Anglia 

UK  United Kingdom 

US  United States 

UTI  Urinary tract infection 

VDJ  Variable, diversity, joining regions 

VLDL  Very low density lipoprotein 

VZV  Varicella-Zoster herpes virus 

XOS  Xylooligosaccharide   
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Chapter 1 

Introduction & literature review 

1.1.1 Ageing  

Ageing is often defined very differently in studies of ageing (Mysliwska, 1999; Shodell 

and Siegal, 2001), with some including “elderly” participants as young as 50 years. 

The United Nation’s report of World Ageing (United Nations, 2015) classified older 

people as those aged 60 years or older, with some studies categorising those aged 

over 85 years as being the “oldest old” (Forsey et al., 2003; Wikby et al., 2002). It is 

important to recognise that ageing does not refer solely to chronological age 

(Kirkwood and Mathers, 2009) as biological ageing is a key contributing factor. 

Biological ageing is strongly influenced by genetic and environmental factors that can 

also influence the expected lifespan (Balcombe and Sinclair, 2001) as a result of 

accumulating cellular damage due to an imbalance between damage and repair 

mechanisms (Adams and White, 2004) and increased susceptibility to disease and 

mortality. Therefore, there is uncertainty when defining ageing, aged and elderly, 

especially since environmental factors play a role in the ageing process, with 

geographical location also affecting life expectancy and thus the definition of aged 

and elderly by country (Reques, 2008; Wilson et al., 2011; Wilson, 2014). Hereafter, 

this thesis will refer to the UN classification, 2015, of all elderly people as those aged 

60 years and older, unless otherwise stated.  

We have an ageing population which can be vastly attributed to improvements in 

public health and vaccination. Adverse consequences of which are apparent in the 

East of England, where a 13.2% increase in people aged 85 years and older were 

residing in care homes between 2001 and 2011 (Smith, 2014). Problems of the 

ageing population include increasing demands on social care, healthcare and the 

economy (Tinker, 2002); between 2014 and 2015 72% of UK social care requests 

were from those aged 65 years and over (Buttery, 2015), highlighting that while 

people may be living longer, they may not be doing so in good health.  

1.1.2 Impact of ageing on physiology and organ function 

Biological ageing impacts on numerous organ systems and has been associated with 

various diseases, including cancer and atherosclerosis (Adams and White, 2004). 

The musculoskeletal system becomes impaired with increased age as the body loses 

muscle and bone mass and bone mineral density (BMD) which are implicated in the 

risk of osteoporosis and increased fracture risk in the elderly (Hannan et al., 2000; 

Janssen et al., 2002; Jones et al., 1994; Svedbom et al., 2013). Cardiovascular 
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disease (CVD) risk factors, such as high systolic blood pressure, high levels of total 

and low density lipoprotein (LDL) cholesterol and low levels of high density lipoprotein 

(HDL) cholesterol, accumulate with increased age and elderly subjects demonstrate 

impaired endothelial function (Black et al., 2009; Gates et al., 2007; Thijssen et al., 

2006). Cognitive decline is a common feature of ageing and Alzheimer’s disease 

deaths increased 71% from 2000–2013 (Alzheimer's Association, 2016) with 

reductions in hippocampal volumes and poorer recall (Marquis et al., 2002) and an 

associated inflammatory state (elevated plasma levels of IL-1β, TNF-α and IL-6) (De 

Luigi et al., 2002; Licastro et al., 2000). With age the respiratory system experiences 

reduced respiratory muscle function (Janssens, 2005; Watsford et al., 2007). The 

menopause represents a key alteration of endocrine function in ageing women, 

resulting from reduced serum oestrogen and oestradiol and elevated follicle 

stimulating hormone (FSH) and has a conflicting association with CVD and 

osteoporosis risk (Cauley et al., 2001; Muka et al., 2016; WGWHII, 2002). While, low 

circulatory levels of insulin-like growth factor-1 (IGF-1) and gene mutations in the 

insulin/IGF-1 pathway have been observed in humans with exceptional longevity (>90 

years) (Deelen et al., 2013; Milman et al., 2014; van der Spoel et al., 2015). The 

volume and blood flow to the liver are reduced, with potential reductions in phase I 

metabolism, and an increased risk of non-alcoholic fatty liver disease (NAFLD) 

occurring with increased age (Schmucker, 2005; Tajiri and Shimizu, 2013) which may 

influence clearance of prescription medications from the liver (Klotz, 2009); intake of 

which is typically high in the elderly (Hubbard et al., 2015). Urinary tract infections 

(UTI), one of the most common infections in the elderly, often necessitate hospital 

admission and catheterisation, further increasing UTI risk (Foxman, 2003; Ginde et 

al., 2004; Juthani‐Mehta et al., 2009). Body composition and the gastrointestinal and 

immune systems will be discussed in more detail below, with discussion of the 

implications of increased age.  

Body composition  

Body composition is defined by the proportions of fat and lean tissue within the body, 

and the various measurable areas include lean body mass (LBM), the sum of body 

water, total body protein, carbohydrates, non-fat lipids and soft tissue minerals, free 

fat mass (FFM), which comprises skeletal and non-skeletal muscle, organs, 

connective tissue and bone, and fat mass (FM) which comprises triglycerides and 

makes up 80% of adipose tissue (Prado and Heymsfield, 2014). The body mass index 

(BMI) uses weight in kilograms (kg) and height in meters (m) and is classified as 

normal (18.50–24.99 kg/ m2), overweight (pre-obese) (25.00–29.99 kg/ m2) and 
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obese (≥30 kg/ m2) (WHO, 2016). Adipose tissue, a connective tissue formed by 

adipocytes, elastic and collagen derived fibres, fibroblasts and capillaries (Prado and 

Heymsfield, 2014), secretes numerous hormones and signalling molecules, with roles 

including modulation of appetite, insulin sensitivity, energy expenditure, inflammation 

and immunity (Makki et al., 2013). These secreted proteins are known collectively as 

adipokines and include adiponectin, leptin, resistin and visfatin, which are cytokines 

produced by adipose tissue (but not solely), in addition to cytokines such as TNF-α, 

IL-6, IL-1, MCP-1 and certain complement factors (Tilg and Moschen, 2006). Resistin 

has pro-inflammatory properties while adiponectin has anti-inflammatory properties, 

important in regulating the pathophysiology of atherosclerosis, while resistin appears 

to induce inflammatory diseases, which may be associated with insulin-resistance 

(Tilg and Moschen, 2006). The function of resistin in humans in not confirmed, 

however there are reported correlations with obesity and insulin resistance, and 

increasing resistin levels (Koerner et al., 2005). 

Body composition changes with increased age, assessment of the general UK 

population (45–69 years), showed 64% were overweight or obese, as determined by 

BMI, while FFM was positively associated with BMI and decreased with age 

(Franssen et al., 2014). In the obese state, low level systemic inflammation is 

observed (Makki et al., 2013), which is also observed with increased age (Bartlett et 

al., 2012; Franceschi et al., 2007). While, in an elderly cohort (≥75 years), the risk of 

mortality was significantly higher in those with lower BMIs (≤24.6 kg/m2) and fat mass 

over a 17-year follow-up period (Rolland et al., 2014).  

Gastrointestinal function  

The gastrointestinal (GI) tract is a tubular tract consisting of the oesophagus, 

stomach, small and large intestines, anus and rectum (Furness et al., 2015). Food 

enters the body through the mouth where digestion begins via mechanical breakdown 

and mastication which involves the mixture of food with salvia to aid swallowing and 

entry of food into the oesophagus, before reaching the stomach (DeSesso and 

Jacobson, 2001). In the stomach muscular contractions and enzyme secretions result 

in the formation of a semifluid mixture of solutes, suspended material and emulsion 

particles, called chyme, which enters the small intestine, where most digestion and 

absorption occurs (DeSesso and Jacobson, 2001). The GI tract is essential for the 

break down and digestion of food into simple molecules, such as free fatty acids 

(FAs), monosaccharides and amino acids, which are subsequently absorbed to 

provide energy, vitamins and minerals (Furness et al., 2015). Any resulting waste 
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matter passes through the large intestine and leaves the body by excretion via the 

rectum, while water and electrolytes are re-absorbed (DeSesso and Jacobson, 2001).  

Ageing is associated with pathophysiology of the GI tract, with significant increases 

in gastroesophageal reflux disease (GERD), assessed by a self-reported, frequency 

of symptoms, GERD Questionnaire in Japan (Okimoto et al., 2015). GERD is the 

most common chronic disease in Iranian individuals aged 52.1 ± 9 years (Ahmadi et 

al., 2016). Additionally, the swallowing disorder, dysphagia, reported in 11.4% of an 

elderly cohort (n=633), was positively correlated with age (Holland et al., 2011). 

These pathologies could result from reduced peristaltic pressure in the oesophagus 

(Rayner and Horowitz, 2013). Undernutrition is also common in the elderly, with loss 

of dentition and reduced salivary production contributing, which impact on mastication 

and chewing ability, while appetite and satiation are influenced by alterations in 

production of gut hormones (Dunn-Walters et al., 2004).   

The small intestine is thought to be relatively unaffected by age, with minimal effects 

on structural integrity (Britton and McLaughlin, 2013), with duodenal biopsies from 

subjects aged 46–89 years showing no significant histological differences in brush 

border or enterocytes, nor were crypt area or depth, villus height, crypt: villus ratio or 

number of intraepithelial cells influenced by subject age (Lipski et al., 1992). Small 

intestinal absorption is also considered to be unaffected by age, since no correlation 

between age (19–91 years) and faecal fat excretion was observed after supervised 

intake of a high-fat meal by 114 healthy volunteers (Arora et al., 1989). While, urinary 

levels of xylose significantly decreased five hours post-consumption of 25 g ᴅ-xylose 

by older subjects (56–86 years), after prior fasting, which the authors attributed to 

decreased renal function (n=54) (Arora et al., 1989). However, constipation is often a 

problem for the elderly and is typically attributed to reduced mobility, dehydration, 

dietary intake and medication use (Leung, 2007). Heathy older individuals (74–85 

years) displayed slower colonic transit than the younger subjects (n=16), post 

ingestion of radiolabelled markers within a mixed liquid and solid meal, using a 

gamma camera to acquire anterior and posterior images (Madsen and Graff, 2004), 

however no effect of age on gastric emptying or small intestinal transit rate was 

observed. Similarly, small bowel video capsule endoscope investigations found no 

effect of age on small intestinal transit time (Fischer and Fadda, 2016).  

Immunological function 

The first line of defence against invasion of pathogens, toxins or allergens are the 

anatomical and physiological barriers which include the intact skin, mucociliary 
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clearance mechanisms, low stomach pH and the presence of lysozyme in secretions 

such as saliva and tears (Turvey and Broide, 2010). The immune system can be 

divided into the innate and adaptive immune responses. Innate and adaptive immune 

cells are collectively termed leukocytes or white blood cells and originate from 

haematopoietic stem cells (HSC) that are present within the bone marrow (BM) 

(Weiskopf et al., 2016). Leukocytes can be of lymphoid or myeloid origin, with 

macrophages, granulocytes, mast cells and dendritic cells (DCs) derived from the 

common myeloid progenitor, while T and B lymphocytes, and natural killer (NK) cells 

are derived from the common lymphoid progenitor (CLP) (Janeway Jr et al., 2012; 

Weiskopf et al., 2016). Sensors of the innate immune response are present in 

anatomically distinct locations of tissue and cellular origin, since location of detection 

informs the host of the severity of the threat (Iwasaki and Medzhitov, 2015). 

Pathogens entering the GI tract are recognised by epithelial cells in the epithelial 

barrier, beneath which DCs, macrophages and mast cells reside within the lamina 

propria to detect any cells that have crossed the epithelial barrier (Iwasaki and 

Medzhitov, 2015). The lymphatic system comprises the capillaries, collecting vessels, 

lymph nodes, trunks and duct (Swartz, 2001). This enables immune cells to migrate 

from peripheral blood through lymph nodes, into the lymphatics and back, allowing 

continual immune surveillance and relocation of DCs to the lymph nodes where large 

numbers of naïve lymphocytes can attempt to locate their target Ag (Girard et al., 

2012).  

Innate immune system 

The innate immune system is fast acting and the first line of defence against invading 

microorganisms, parasites, cancer cells and other non-self antigens (Ags); it is non-

specific and short-lived (Solana et al., 2012). Innate immune cells comprise the 

phagocytic cells (DCs, macrophages, monocytes and neutrophils) which detect, 

engulf and destroy invading pathogens or cancer cells (Janeway Jr et al., 2012), and 

natural killer (NK) cells which kill virus-infected and tumour cells (Garff‐Tavernier et 

al., 2010). These cells rely on a finite repertoire of receptors known as pattern 

recognition receptors (PRRs), to detect pathogen- and danger- associated molecular 

patterns known as PAMPs and DAMPs (Reddick and Alto, 2014). PAMPs are 

microbial structures such as bacterial and fungal cell wall components and viral 

nucleic acids (Iwasaki and Medzhitov, 2015) recognised as “non-self” by toll-like 

receptors (TLRs), while DAMPs are common metabolic consequences of infection 

and inflammation, often released during cell lysis and tissue damage (Turvey and 

Broide, 2010). Activation of these PRRs upon binding with PAMPs or DAMPs 
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activates intracellular signal transduction cascades which in turn induce expression 

and secretion of cytokines and chemokines, important for eliciting innate and adaptive 

immune responses (Reddick and Alto, 2014). Cytokines are small proteins secreted 

by cells in order to induce or impact on the interaction and communication between 

cells (Zhang and An, 2007). The term cytokine encompasses lymphokines (produced 

by lymphocytes), monokines (produced by monocytes), chemokines (cytokines which 

have chemotactic activities), adipokines (produced predominantly by adipocytes), 

growth factors, tumour necrosis factors (TNFs) and interleukins (produced by one 

leukocyte and act on another) (Duitman et al., 2011; Zhang and An, 2007). 

Antigen presentation 

Collaboration between the innate and adaptive immune systems is required for 

effective host defence via Ag-specific effector responses and this occurs via Ag 

presentation by antigen presenting cells (APCs): macrophages, B cells and DCs 

(Turvey and Broide, 2010). APCs respond, via PRRs, upon detection of PAMPs or 

DAMPs, as well as complement, coagulation factors, self-molecules or inflammatory 

cytokines (Clark et al., 2000; Guermonprez et al., 2002). Ag is taken up by APCs via 

the mechanisms phagocytosis, macropinocytosis or receptor-mediated endocytosis 

(Aderem and Underhill, 1999) and engulfed particles are subjected to progressive 

degradation within maturing phagosomes such that Ags are broken down to peptides, 

these phagosomes act as cytokine signalling platforms for PRRs to stimulate 

presentation of peptides via loading and transport of peptide-MHC class II molecule 

complexes to the cell surface, using phagosomal tubules (Mantegazza et al., 2014; 

Roche and Furuta, 2015). Accumulation of major histocompatibility complex class I 

(MHC I) or MHC  II molecules on the cell surface (Guermonprez et al., 2002) enables 

Ags to be loaded on the MHC molecules for presentation to T (or B) lymphocytes (T 

cells or B cells) with specificity for that Ag (Bonilla and Oettgen, 2010). MHC I 

molecules bind peptides generated from exogenous proteins (cross-presentation), 

whereas MHC II molecules bind peptides derived from endogenous membrane 

proteins (Blum et al., 2013). Expression of MHC II molecules is only found on APCs, 

while MHC I is more universally expressed (Neefjes et al., 2011). T cell activation is 

dependent on three signals: Ag-specific interaction of the T cell receptor (TCR) with 

the peptide-MHC class II complex (Roche and Furuta, 2015), involvement of co-

stimulatory molecules such as CD40 and CD80 which bind CD28 and CTLA-4 on T 

cells (Guermonprez et al., 2002) and secretion of cytokines (Kambayashi and Laufer, 

2014; Mantegazza et al., 2014). Ag presentation is a minor role for macrophages and 
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B cells (Delamarre et al., 2005; Janeway Jr et al., 2012; Roche and Furuta, 2015) but 

the major role of DCs.  

Adaptive immune system 

The adaptive immune system comprises the T and B cells which provide effector and 

memory responses specific to target Ags, to elicit targeted responses which can act 

quickly upon re-infection (Bonilla and Oettgen, 2010). B cell precursors develop in the 

BM (Hystad et al., 2007) while T cells develop as thymocytes within the thymus 

(Takahama, 2006). The specificity of lymphocyte responses against countless 

different pathogens is possible due to the generation of numerous different Ag binding 

regions on TCRs and immunoglobulins (Igs), or antibodies (secreted form of Ig), 

during early developmental stages (Cooper and Alder, 2006). The antigen receptor 

(AgR) loci contain hundreds of genes from the variable (V), diversity (D) and joining 

(J) groups assembled in numerous combinations to create a repertoire of unique 

sequences via the process of V(D)J recombination (Matheson and Corcoran, 2012). 

The variable regions of the Ag-binding sites are made up of hypervariable loops which 

comprise the complementary determining regions (CDR) 1, 2 and 3 (Wang et al., 

2007), the lengths of these regions, measured by nucleotide or amino acid number, 

determine the area for Ag binding (Robins et al., 2009; Rosner et al., 2001).  

Functional Igs, which have encountered Ag, also undergo the processes of somatic 

hypermutation (SHM) and class switch recombination (CSR) in the periphery as 

mechanisms of further increasing antibody specificity and binding affinity (Meffre and 

Wardemann, 2008). SHM introduces point mutations and nucleotide insertions and 

deletions (indels) into the variable region (Teng and Papavasiliou, 2007), while CSR 

alters the expression of IgM and IgD to IgG, IgE or IgA to improve the efficiency of 

the antibody response against the pathogen (Stavnezer and Schrader, 2014) by 

excising and replacing gene segments encoding the constant region (Cμ) within the 

IgH (Matthews et al., 2014). The constant regions of Ig heavy chains : IgA (α), IgD 

(δ), IgE (ϵ), IgG (γ) and IgM (μ), determine the different effector functions of the Ig 

and are responsible for initiating antibody dependent cell cytotoxicities (ADCC), 

binding to complement to recruit phagocytes and transporting antibodies to mucosal 

sites, tear ducts and mammary glands (Schroeder Jr and Cavacini, 2010; Wang et 

al., 2007).    

T cell effector functions are initiated after the binding of Ag-MHC I/II complexes with 

TCR and CD4/CD8 molecules (Bonilla and Oettgen, 2010). The type of T cell that 

naïve (Th0) T cells differentiate into is dependent on their required function, which is 
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stipulated by the expression of MHC I or II, the DC subset and the cytokine secretion 

profile (Bonilla and Oettgen, 2010). Clonal expansion of CD4+ T helper cells leads to 

the proliferation of specific T cell subsets. These effector cells, typically characterised 

by their differential expression of cytokines (Raphael et al., 2015), migrate to B cell 

areas or to inflamed tissues (Sallusto et al., 1999). Clonally expanded naïve CD8+ 

cytotoxic (killer) T cells elicit their effector functions via the production of cytotoxic 

molecules such as perforin and granzymes, and effector cytokines (IFN-γ and TNF-

α) to destroy specific pathogens (Sarkar et al., 2008). 

T and B memory cells provide a rapid response to specific Ags and are divided into 

subsets according to their required function (Sallusto et al., 2004). Protective memory 

B cells, the plasma cells, secrete specific antibodies in response to the Ag, while 

reactive memory B cells proliferate and differentiate into plasma cells upon secondary 

antigenic stimulation (Sallusto et al., 2004). Effector memory T cells migrate to 

inflamed tissues and provide immediate effector functions, while central memory T 

cells home to T cell areas of secondary lymphoid organs where they proliferate and 

differentiate into effector cells upon antigenic stimulation (Sallusto et al., 2004). 

Immunosenescence 

With age there is a progressive decline in the functionality of the immune system, 

termed immunosenescence (Ostan, 2008), and is frequently identified as a reduction 

in response to vaccinations and greater susceptibility to infection and age-associated 

disease, such as CVD, rheumatoid arthritis (RA), type II diabetes (T2D) and cancer 

(Salvioli et al., 2013). Many age-associated diseases are accompanied by 

dysregulated immune function and excessive inflammation; termed inflammaging 

(Vasto et al., 2007). “Inflammaging” is a modification of the cytokine network such 

that pro-inflammatory cytokines are secreted more readily by immune cells and are 

present at greater levels within plasma, at older ages (Ostan, 2008). Aged cells 

avoiding apoptosis undergo cellular senescence which may lead to inflammaging 

(Salvioli et al., 2013). Factors contributing to inflammaging include increases in fat 

tissue, chronic disorders, genetic background and continual exposure to 

environmental stressors such as ultraviolet light and pollution (Jacob et al., 2013; 

Ostan, 2008). Immunosenescence has been associated with the increased 

production of the pro-inflammatory cytokines IL-6, TNF-α and IL-1β (Salvioli et al., 

2013). Frailty, defined by the presence of deficits in health using at least 30–40 

variables (Searle et al., 2008), was associated with significant increases in basal IL-

6 and TNF-α in PBMCs from very old subjects (>85 years) (Collerton et al., 2012) and 

IL-6 in unstimulated serum (Qu et al., 2009). Cys-X-Cys chemokine ligand 10 
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(CXCL10) upregulation has been associated with frailty (Qu et al., 2009). CXCL10, 

also referred to as IFN-γ-inducing protein 10 (IP-10), is a pro-inflammatory mediator 

and it is produced by monocytes as well as other cells (Qu et al., 2009). Increased 

circulating CXCL10 has been suggested as a marker of normal ageing, specifically in 

women, since increases were observed, despite no elevation of C-reactive protein 

(CRP), in healthy individuals (39–75 years), with elevations typically seen at 57 years 

(Antonelli et al., 2006).  

While, healthy ageing and longevity are associated with a balance between 

inflammatory and anti-inflammatory responses (Franceschi et al., 2007) since 

centenarians had significantly increased plasma levels of the immunosuppressive 

transforming growth factor β (TGF-β) cytokine, compared to younger subjects (20–60 

years) (Carrieri et al., 2004). The maintained balance between pro- and anti-

inflammatory cytokine levels is suggested to contribute to the reduction or delayed 

onset of age-associated disease in centenarians (Franceschi et al., 2007). Observed 

genetic variations between elderly and centenarian subjects suggest that different 

alleles for genes encoding pro- or anti-inflammatory cytokines may influence the 

cytokine profiles in these individual groups; potentially influencing how successfully 

individuals age (Carrieri et al., 2004; De Martinis et al., 2006; Vasto et al., 2007).   

The burden of immunosenescence is becoming more apparent with a projected 2.9 

million increase in the number of people with ≥2 long term conditions by 2018, and 

70% of UK government spending on health and social care is for older people with 

long term health conditions (NICE, 2015). The impact of immunosenescence on 

physiological functions includes the high incidence of CVD and T2D in the elderly, 

which are associated with inflammation (Dragsbæk et al., 2016). This has therefore 

led to an increase in the investigation of immunological changes in the elderly. The 

next section will highlight immune cell specific changes observed with increasing age.   

1.1.3 Ageing of innate immune cells  

Monocytes/ macrophages 

Alterations in the proportions of monocyte subsets have been observed with 

increasing age, with significant increases in intermediate (Hearps et al., 2012) and 

non-classical monocytes (Hearps et al., 2012; Sadeghi et al., 1999; Seidler et al., 

2010). In addition, expression of MHC II, and the chemokine receptor, CX3CR1, were 

significantly lower on non-classical monocytes of older subjects compared to young, 

while, serum levels of MCP-1, which promotes the migration of classical monocytes 

from the BM, significantly increased with age (Seidler et al., 2010). While, the 
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differentiation of peripheral blood monocytes into DCs, in response to GM-CSF and 

IL-4, were comparable between cells from young and elderly subjects (Lung et al., 

2000). 

In terms of function, monocytes from elderly subjects stimulated in vitro with LPS 

displayed significantly greater production of TNF-α and MCP-1, and lower production 

of TGF-β (Pinke et al., 2013), in addition to significantly increased spontaneous 

production of IL-6, IL-1β and IL-1RA compared to monocytes from young subjects 

(Sadeghi et al., 1999). In contradiction to these findings LPS stimulated monocytes 

from healthy elderly subjects produced lower concentrations of G-CSF, GM-CSF, IL-

1β, IL-8 and MIP-1α compared to those from young subjects (Gon et al., 1996) and 

when cultured within PBMCs the cytokine secretion profile was comparable between 

age groups (Pinke et al., 2013). While, respiratory burst reaction, the process of 

producing highly reactive oxygen species to aid the killing of pathogens and tumour 

cells, was significantly reduced in monocytes from elderly subjects (65–75 years) 

compared to young subjects (25–35 years) (Alvarez and Santa María, 1996). 

Phagocytic ability of monocytes was not significantly different between young and 

elderly subjects (Gardner et al., 1981).  

Few studies have been performed to date using human macrophages as most studies 

utilise monocytes, the precursor of macrophages, which provide a limited view of 

tissue macrophages (Sebastián et al., 2005). Human monocyte-derived 

macrophages from elderly subjects stimulated with LPS showed significantly reduced 

secretion of IL-1β and greater concentrations of reactive oxygen species (ROS) and 

nitric oxide (NO) (Suchy et al., 2014). With monocytes, derived from elderly human 

PBMCs, co-cultured with Dengue virus exhibiting lower secretion of TNF-α, IL-6 and 

IL-1β in comparison to cells derived from young adults (Valero et al., 2014). While, 

the ability of monocyte-derived macrophages to produce cytokines, both 

spontaneously and upon stimulation were comparable between young and elderly 

subjects (Seidler et al., 2010). 

Neutrophils 

Numerically, neutrophils appear to remain unaffected by age (Solana et al., 2012), 

though the expression of CD15 on neutrophils from elderly subjects was significantly 

higher compared to cells from young controls, in addition to a significantly reduced 

frequency of neutrophils with more than two lobes (Verschoor et al., 2015). While, the 

functional impact of ageing on neutrophils is conflicting with observations of impaired 

phagocytosis of fluorescently labelled E. coli. with fewer neutrophils available and 
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less bacteria ingested within whole blood samples from elderly subjects (Butcher et 

al., 2001). With ADCC and intracellular killing by neutrophils, assessed by GM-CSF 

induced specific lysis and chromium release, significantly reduced in the cells from 

elderly (60–90 years) compared to young subjects (20–25 years) (Seres et al., 1993). 

Additionally, defective neutrophil extracellular trap (NET) formation by neutrophils 

from elderly subjects (mean age 69 years) was observed after TNF-α priming and 

stimulation with IL-8 or LPS, compared to neutrophils from young subjects (mean age 

25 years) (Hazeldine et al., 2014). Also, neutrophils from elderly subjects have 

demonstrated significantly increased levels of respiratory burst and spontaneous 

ROS generation when compared to cells from young subjects (Butcher et al., 2001; 

Kovalenko et al., 2014; Ogawa et al., 2008), however this has not been replicated in 

all investigations (Sauce et al., 2016; Tortorella et al., 1993). With significantly 

reduced oxidative burst, determined by reduction in ROS generation, and 

phagocytosis after incubation with E. coli, by neutrophils from elderly subjects (70–91 

years), which were predominantly CD16bright/CD62Ldim, compared to young subjects 

(23–35 years) (Sauce et al., 2016). Neutrophils from nonagenarians displayed similar 

ROS generation to cells from young subjects but lower than that observed in the 60–

89 year group (Kovalenko et al., 2014). GM-CSF priming of neutrophils from elderly 

subjects was impaired, with no production of the superoxide anion compared to cells 

from young subjects, this finding was attributed to activation of a different signalling 

pathway (Seres et al., 1993). The short lifespan of neutrophils has been extended 

with GM-CSF in vitro in cells from young subjects, however, the same finding was not 

observed in neutrophils from elderly subjects (Fortin et al., 2006; Larbi et al., 2005).  

 Natural Killer (NK) cells 

Total NK cell numbers increase with advanced age (Almeida-Oliveira et al., 2011; 

Campos et al., 2014; Garff‐Tavernier et al., 2010) which may be due to increases 

observed in the mature cytotoxic effector subsets, CD56-CD16+ and CD56dim cells, 

(Almeida-Oliveira et al., 2011; Borrego et al., 1999; Di Lorenzo et al., 1999; Lutz et 

al., 2011) and reductions in CD56bright NK cells from elderly subjects (Lutz et al., 2011). 

Similarly, a progressive increase in the ratio of CD56dim: CD56bright cells was observed 

in NK cells with increasing subject age (20–83 years) (Hayhoe et al., 2010). A gender 

differentiation was also observed, such that elderly women (≥70 years) had 

significantly higher CD56bright: CD56dim NK cells than elderly men (Al-Attar et al., 

2016). Additionally, CD57 expression is a suggested marker of replicative 

senescence (Lutz et al., 2011), expression of which increased with age (Sansoni et 

al., 1993). 
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The cytotoxic ability of NK cells was unaffected between children (≤18 years), adults 

(19–59 years) and elderly (≥60 years) subjects (Almeida-Oliveira et al., 2011) 

including centenarians (Sansoni et al., 1993). While, significantly greater expression 

of killer cell Ig-like receptors (KIRs) was observed on CD56bright NK cells from the 

elderly, compared to young adults (Almeida-Oliveira et al., 2011). Since KIR 

expression can be induced by cytokine activation (Romagnani et al., 2007), this 

suggests a potential effect of inflammaging. While no differences in intracellular levels 

of perforin and granzyme were observed between resting NK cells from elderly (61–

91 years) and young (20–30 years) subjects (Hazeldine et al., 2012). Significantly 

reduced perforin secretion into the immunological synapse and reduced binding of 

secreted perforin to the plasma membrane of the target cell, by NK cells from the 

elderly cohort was observed; which correlated with reduced target cell death in 

cytotoxicity assays (Hazeldine et al., 2012). Implying that while NK cells continue to 

produce sufficient quantities of cytotoxic proteins with increased age, their ability to 

secrete them and the subsequent binding of these proteins appears to be impaired 

with age. Additionally, proliferation rates of NK cells from elderly subjects were 

significantly reduced, from 4.3% to 2.5% per day compared to cells from young 

subjects (Zhang et al., 2007); suggesting that ageing may impair NK cell production 

from the BM.  

Spontaneous production of IL-8 by unstimulated NK cells increased significantly with 

increasing age of the donor, but IL-2 induced secretion of IL-8 by NK cells was 

significantly higher in NK cells from young (21–36 years) compared to old donors (91–

107 years) (Mariani et al., 2001). Similarly, while purified NK cells from nonagenarians 

retained the ability to secrete MIP-1α, RANTES and IL-8, in response to IL-12 and IL-

2 stimulation, the levels were significantly lower in NK cells from young subjects 

(mean age 30 years) (Mariani et al., 2002a). IL-15-stimulated PBMCs in vitro induced 

significantly greater secretion of IFN-γ in subjects >60 years old, compared to 

younger subjects (Hayhoe et al., 2010). While, stimulation of NK cells with cytokines, 

leukaemia cells or IL-12 and anti-NKp46 mAb, resulted in the significantly elevated 

secretion of MIP-1β by CD56dim NK cells from elderly females (≥70 years), in addition 

to spontaneous secretion, compared to cells from elderly males (Al-Attar et al., 2016).  

Dendritic cells (DCs) 

DCs can be divided into plasmacytoid and myeloid DC subsets (pDC and mDC, 

respectively), pDCs are a small subset of DCs that express low levels of MHC II and 

costimulatory molecules, and only express TLRs 7 and 9 but secrete large quantities 

of type I IFN upon recognition of foreign nucleic acids (Merad et al., 2013). While 
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mDCs, also referred to as conventional DCs (cDCs), sense tissue injuries and 

phagocytose and capture Ags for presentation to T cells, and are able to migrate to 

lymphoid organs to prime naïve T cell responses (Merad et al., 2013). With age, a 

number of studies have found reductions in the number of plasmacytoid DCs (pDCs), 

while the numbers of myeloid DCs (mDCs) remains comparable between young and 

elderly individuals (Jing et al., 2009; Pérez-Cabezas et al., 2007; Shodell and Siegal, 

2002). This finding is inconsistent since there have been observations of no changes 

in numbers of mDCs and pDCs with age (Agrawal et al., 2007) and also a reduction 

in just mDCs (Della Bella et al., 2007). Upon comparison of frail (had chronic illness 

and lived in an assisted living facility) and healthy elderly subjects it was observed 

that the frail elderly also had a reduction in peripheral blood mDC numbers (Jing et 

al., 2009). The definition of age, however, is rather inconsistent with 50–65 years 

regarded as middle aged by some (Mysliwska, 1999; Shodell and Siegal, 2002) but 

was the oldest age group studied by Pérez-Cabezas et al. (2007). Additionally, 

methodological approaches varied for enumerating DCs such as using either PBMCs 

or whole blood samples, the antibodies used to distinguish DC subsets, and the use 

of either count beads of haemocytometer based counting to determine absolute 

leukocyte counts. This has resulted in an inconclusive overall representation of the 

effect of age on DC subset proportions. 

Induction of T cell responses by DCs involves a number of steps including 

upregulation of micropinocytosis and phagocytosis, upregulation of MHC II synthesis, 

subsequent binding of Ag with MHC II, expression of co-stimulatory markers on the 

DC surface and secretion of cytokines (Vega-Ramos et al., 2014; You et al., 2013b). 

With age expression of markers of maturation including CD40, CD86, MHC Class II 

(Wong et al., 2010), CD86, CD80 and CD54 (Agrawal et al., 2007; Lung et al., 2000) 

were not changed in response to bacterial stimulation with LPS or influenza virus 

(Saurwein-Teissl, 1998). Other groups however, observed a reduction in HLA-DR 

expression (a marker of MHC II) in DCs from elderly compared to young subjects 

(Pietschmann, 2000). Mature monocyte-derived dendritic cells (MoDCs) from elderly 

subjects displayed reduced expression of the activation marker CD25, as well as 

intercellular adhesion marker-1 (ICAM-1) after LPS stimulation (Ciaramella et al., 

2011). However, impaired ability to secrete both type I and type III IFN was observed 

in pDCs from aged subjects (Jing et al., 2009) upon stimulation with CpG 

oligodeoxynucleotides (CpG ODN) and influenza virus, compared to pDCs from 

young subjects, in addition to significantly reduced CD4 and CD8 T cell proliferation 

(Sridharan et al., 2011). However, TNF-α and IFN-γ secretion by HLA-DR+ low density 
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cells from elderly subjects (determined to be DCs) were unresponsive to LPS 

stimulation compared to cells form young subjects, while unstimulated samples 

showed significantly elevated IFN-γ compared to cells from young subjects (You et 

al., 2013b). Investigation of TLR function in mDCs, using multiple TLR ligands, 

showed that with age production of TNF-α, IL-6 and IL-12/23 (IL-12 p40 subunit) was 

reduced, while in pDCs TNF-α and IFN-γ production was reduced; which were stable 

over time (Panda et al., 2010). These results were consistent whether the whole 

PBMC fraction was stimulated or DCs were enriched and then stimulated (Panda et 

al., 2010). With age DCs appear to be less functional since there are observed 

reductions in secretion of cytokines and chemokines, which are required to aid T cell 

priming and are part of DC maturation (Vega-Ramos et al., 2014) and the subsequent 

initiation of T cell proliferation and cytotoxicity (Bonilla and Oettgen, 2010). The 

reduced response of DCs, from elderly donors, to TLR ligands (Panda et al., 2010), 

suggests that TLRs may be impaired with increased age, reducing DC cytokine 

secretion. However, increased expression of IL-6 and TNF-α in supernatants after 

LPS or single-stranded RNA (ssRNA) stimulation of MoDCs from elderly subjects, 

along with impaired phagocytic capacity were observed with age (Agrawal et al., 

2007), which the authors attribute to their observed significant impairment in PI3-

K/AkT pathway in MoDCs derived from elderly subjects. However, these findings 

were not consistent across all time points and there were no differences in basal 

levels (Agrawal et al., 2007). 

A key finding that DC functionality is impaired with age was observed after the 

adoptive transfer of MHC-II labelled CD4+ T cells, isolated from young (2–4 months) 

or aged mice (20–24 months), into recipient young or aged mice, since aged recipient 

mice (source of DCs) had significantly reduced CD4+ proliferation after specific-Ag 

exposure, regardless of the age of the donor mouse (source of T cells) (Pereira et al., 

2011). While the transfer of old CD4+ T cells into young mice still reduced 

proliferation, the effect was 3-fold greater than that for old mice, suggesting that the 

recipient age (age of donor DCs) is influential in the ability of DCs to present Ag to T 

cells (Pereira et al., 2011). Similarly in human derived cells, co-culture of a CD8+ T 

cell line (from a young donor) with HLA-typed influenza-infected MoDCs from elderly 

subjects (≥65 years) significantly reduced T cell proliferation, IFN-γ production and 

release of granzyme granules compared to culture with DCs from young subjects 

(20–40 years) (Liu et al., 2012). These findings were in addition to reduced production 

of TNF-α by DCs from elderly subjects, a factor which could have impaired the 

induction of an effective T cell response (Liu et al., 2012). Additionally, in vitro mixed 
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leucocyte reactions (MLR) showed co-culture of DC-enriched low density cells (non-

adherent cells, after overnight culture of PBMCs) from elderly subjects (65–75 years) 

with T cells from young subjects (20–30 years) resulted in reduced T proliferation, 

similarly co-culture of DCs from young subjects with T cells from elderly subjects, 

significantly reduced proliferation (You et al., 2013b), highlighting that both cell types 

are affected by age of the host, and influence T cell proliferation. Recently, MoDCs, 

derived from monocytes of healthy subjects (29–78 years), infected in vitro with 

human cytomegalovirus (CMV) and co-cultured with autologous CD4+ T cells resulted 

in production of IFN-γ, expression of CD107a and ability of T cells to prevent viral 

spread; these effector functions were consistent across all ages (Jackson et al., 

2017).  

1.1.4 Ageing of primary and secondary lymphoid organs 

The BM and thymus are key primary lymphoid organs, the BM is responsible for the 

generation of HSCs and CLPs, and is the primary site of B cell development, while 

the thymus is the primary site of T cell development (Chinn et al., 2012). However, 

both organs are highly susceptible to ageing which can influence lymphocyte 

production in aged subjects (Chinn et al., 2012). Failure of HSCs, within BM, to 

maintain lymphopoiesis has been observed with ageing (Chinn et al., 2012). High 

ROS activity within BM with age significantly exhausted HSCs, though HSC function 

could be restored upon antioxidant treatment (Jang and Sharkis, 2007). Additionally, 

mesenchymal stem cells (MSCs) differentiate into either osteoblasts or adipocytes 

within the BM, but upregulation of peroxisome proliferator-activated receptor-γ2 

(PPAR-γ2) demonstrated increased adipogenesis-associated gene expression 

(Shockley et al., 2009). Increased adipogenesis in the BM has been observed with 

increased age, at the expense of osteoblast production (Tuljapurkar et al., 2011). The 

thymus begins to decline in size and output during young adulthood, this continues 

throughout adult life and is termed thymic involution; a key determinant of age-related 

loss of T cell production (Chinn et al., 2012). This is seen in humans as a reduction 

in naïve CD8+ T cells and accumulation of oligoclonal memory CD8+ T cells 

(Czesnikiewicz-Guzik et al., 2008; Khan et al., 2002). Thymic involution has been 

implicated to shift from stimulatory to suppressive cytokines within the tissue and 

steady state mRNA expression of stem cell factor (SCF), IL-6 and M-CSF were 

significantly elevated in thymus tissue from aged humans (obtained after thymectomy 

for myasthenia gravis or during the course of corrective heart surgery) while IL-2, IL-

9, IL-10, IL-13 and IL-14 were not expressed in thymus samples from aged subjects, 

but were expressed in thymus samples from young subjects (Sempowski et al., 2000). 
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Additionally, while the absolute size of the thymus remains constant, an expansion of 

the perivascular space within the thymus was observed with age, such that thymic 

epithelial space (medulla and cortex) shrunk to less than 10% by 70 years of age 

(Gruver et al., 2007; Steinmann et al., 1985). Both of which have been associated 

with increased adiposity within the thymus (Chinn et al., 2012), with the possibility 

that reducing the accumulation of adipocytes could revert thymic involution (Yang et 

al., 2009). 

Secondary lymphoid organs such as the lymph nodes (LNs) and spleen provide 

specific areas termed T and B cell zones which are essential for lymphocyte survival 

and interaction with APCs (Becklund et al., 2016). LN tissue from human donors 

undergoing pelvic or cervical vascular reconstruction or lymphadenectomy showed a 

significant age-related loss of CD8+ and CD45RA+ T cells when comparing tissue 

samples from elderly (67–88 years) and young (1–20 years) subjects (Lazuardi et al., 

2005). Additionally, clonally expanded T cells in LNs from young subjects were 

accompanied by elevated B220+ cells, which was not observed in samples from 

elderly subjects; implying an impairment in the T:B cell interaction with increased age 

(Lazuardi et al., 2005). Limited access for naïve CD4+ T cells to secondary lymphoid 

organs was observed in aged mice with reduced homing of naïve T cells to peripheral 

LNs and impaired segregation of lymphocytes into T cell and B cell zones (Becklund 

et al., 2016). Similarly, LNs in aged mice (18–21 months) displayed less defined 

structural localisation of B cells within follicular regions than that in young mice (7–12 

weeks) accompanied by a relative decrease in the T cell population but a relative 

increase in the B cell population (Turner and Mabbott, 2017).  Additionally, reduction 

of CD4 and CD8 T cells were observed in lymphoid organs in aged mice (22–26 

months) compared to young mice (2–6 months) (Martinet et al., 2014). While, there 

have been no age-associated observations of impaired or enhanced migration of the 

innate immune cells into or out of the secondary lymphoid organs (Nikolich‐Žugich 

and Davies, 2016).  

1.1.5 Ageing of adaptive immune cells 

During the 2014/2015 influenza season, predominantly older adults were infected, 

despite an influenza vaccination uptake of 72.7% by those aged over 65 years (Public 

Health England, 2015a), suggesting that T and B cell proliferation and effector 

functions could be effected by increasing age. 
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Humoral  

With increased age B cell production, antibody generation and diversification 

mechanisms, and effector functions are all potential targets for deterioration (Frasca 

et al., 2011). As a vast diversity of the B cell repertoire is crucial for protection against 

infection, this is an area of interest for investigation.  

Effect of ageing on B cell production and cellular repertoire 

Alterations in B cell subset composition in the BM and the periphery may be due to 

increased B cell longevity and reduced production of naïve B cells in the BM 

(Tabibian‐Keissar et al., 2016). This is evident in mouse models where B cell 

production is reduced in aged mice, with changes to the proportions of naïve to Ag-

activated B cells, such that activated (e.g. marginal zone B cells) are dominant within 

the B cell pool (Johnson et al., 2002) in addition to a reduced rate of entry of B cells 

into the mature B cell population (Kline et al., 1999). While, in humans investigation 

of circulating B cells within peripheral blood samples from young (17–29 years), 

elderly (70–83 years) and centenarian (100–106 years) subjects, showed significantly 

reduced numbers of CD19+ cells in the old compared to young subjects (Paganelli et 

al., 1992). More recently, while trends for reductions in total and naïve peripheral B 

cell populations and increased memory B cell populations were observed with 

increased age of the donor, the average rates of change with age were not statistically 

significant (Lin et al., 2016). Proliferation and disappearance rates of total peripheral 

blood B cells, from blood drawn one hour post deuterated glucose consumption, were 

not significantly different between young (<35 years) and elderly (>65 years) subjects 

(Macallan et al., 2005). However, proliferation of memory B cells (CD27+) was 

significantly higher (almost five times) than naïve B cells (CD27-) derived from the 

elderly, in addition to greater CD27+ proportions in peripheral blood from elderly than 

young subjects (Macallan et al., 2005). Complemented by the finding that peripheral 

B cell populations from elderly subjects (75–102 years) had fewer IgD+CD27- (naïve 

B cells) but significantly greater numbers of IgD-CD27- cells (IgG+ memory cells), 

compared to young subjects (20–55 years) (Colonna-Romano et al., 2009). The IgD-

CD27- subset of B cells lacked expression of ATP-binding-cassette-B1 transporter 

(ABCB1), which is observed in classical (CD27+) memory B cells (Colonna-Romano 

et al., 2009). While, increases in monoclonal B cells in peripheral blood of elderly 

subjects (65–98 years) were seen, with 19 out of 500 subjects demonstrating 

increased presence of clones of CD5- and CD5+ B cells by flow cytometric analysis, 

which were confirmed by PCR analysis of IgH rearrangements (Ghia et al., 2004). 

Similarly, B cell monoclonality was observed in 5% of elderly subjects (>60 years) 
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compared to 2.1% in adults (40–60 years) (Rawstron et al., 2002). The presence of 

CD5- B cells is implicated with B cell monoclonality and may be a marker of lymphoid 

senescence (Ghia et al., 2004). 

Plasma cells are not frequently investigated, due to their low circulatory levels, but in 

addition to memory B cells were reduced with age, but the decrease in plasma cells 

was more pronounced (Caraux et al., 2010). Replacement of haematopoietic BM with 

adipocytes (adipogenesis) has been observed (Rosen et al., 2009; Tuljapurkar et al., 

2011) with increases from 40% to 68% observed between young and elderly subjects, 

respectively (Justesen et al., 2001). Additionally, age-associated functional 

impairments were observed in follicular DC and T cell compartments (Della Bella et 

al., 2007; Jing et al., 2009; Rosenberg et al., 2013; Silveira-Nunes et al., 2017; 

Sridharan et al., 2011). Adipogenesis is a normal physiological process, with MSCs 

acting as precursors to adipocytes, however, this process increases with age, in 

addition to diabetes mellitus and osteoporosis (Rosen et al., 2009), and the reduction 

in BM reduces the migratory niches of plasma cell, which support their survival 

(Caraux et al., 2010). 

Serum levels of IgG and IgA increased with advanced age, while IgM was unaffected 

(Paganelli et al., 1992). Similarly, analysis of serum Ig concentrations in subjects from 

20 to 106 years revealed significant positive correlations between age and IgG and 

IgA concentrations, while IgM and IgD were significantly, negatively correlated with 

age; the subclasses IgG1 and IgG3 were significantly positively correlated with age 

(ListÌ et al., 2006). 

Effect of ageing on the functional response of B cells 

The response of elderly subjects to vaccinations is often suboptimal (Public Health 

England, 2015b). While similar concentrations of pneumonia polysaccharide (PPS)-

specific IgG and ability to opsonise S. pneumoniae were observed in young (23–32 

years) and elderly (65–84 years) subjects post-23-valent pneumococcal vaccination, 

a significant proportion of elderly subjects (20.4%) mounted a 2-fold increase in 

specific-IgG in < 2 of the 7 serotypes; not observed in the young age group (Rubins 

et al., 1998). Additionallly, significant age-associated decreases in influenza-specific 

serum hemagglutination inhibition (HI) were observed after vaccination in young and 

elderly subjects during the 2008–2009 and 2009–2020 influenza seasons (Frasca et 

al., 2010), showing that fewer specific antibodies were produced against the vaccine 

in the elderly subjects since inhibition of this assay requires influenza-specific 

antibodies. Furthermore, serum IgM response to pneumococcal vaccination was 



43 
 

significantly reduced in elderly subjects (65–89 years) compared to young (18–49 

years) 7 and 28 days post immunisation, in addition to a slower increase in serum 

IgA, peaking at 28 days, compared to 7 days in young subjects (Ademokun et al., 

2011). Intrinsic alterations to the B cell, which impact on vaccination responses, 

include the significant down-regulation of AID mRNA expression in peripheral B cells 

with increased age (Frasca et al., 2008) which was observed 7 and 28 days after 

influenza vaccination (Frasca et al., 2010). Since AID is required for effective 

induction of SHM and CSR these findings imply that the genetic arrangement of the 

Ig may also be effected. As the information to date from ageing subjects does not 

solely represent differences in total number of B cells or B cell subsets, it is clear that 

the impact of age on the B cell repertoire is complex and not simply a shift in the 

proportions of naïve to memory cells, and that there may be other contributory factors 

impairing B cell functionality with increasing age.   

Cell mediated  

The proliferation of numerous cytotoxic effector T cells and the generation of central 

and effector memory T cells are crucial for an effective cell mediated adaptive immune 

response to destroy pathogens and respond quickly upon re-encounter (Janeway Jr 

et al., 2012). Thus, the potential impact of the ageing process on these functions is of 

interest and importance.    

Effect of ageing on T cell production and cellular repertoire 

The first results of the Swedish longitudinal OCTO immune study in the very old (86–

92 years), showed an association between mortality and high percentages of CD8+ 

cells, and low percentages of CD4+ and CD19+ cells, in addition to impaired T cell 

proliferation in response to Concanavalin A (ConA) (Ferguson et al., 1995). 

Subsequent time points of this study further substantiate these findings, with the 

additional association with CMV seropositivity (Olsson et al., 2001; Wikby et al., 

1998). An extension to the study, with a new sample (Swedish NONA sample) of very 

old subjects (mean age 90.3 years), also confirmed these results and demonstrated 

that the predominant CD8+ T cell phenotypes were CD27-, CD28-, CD56+, CD57+ and 

CD45RA+ (Wikby et al., 2002); typical of cytotoxic T cells. These findings have 

collectively been termed the immune risk profile (IRP) and has also been investigated 

in a younger cohort of elderly subjects (66 years), the HEXA cohort, with 14.6% of 

subjects displaying a CD4/CD8 ratio less than one, in addition to significant reductions 

in CD19+ B cells, and significantly greater prevalence of CMV seropositivity (Strindhall 

et al., 2013). Additionally, the proportion of terminally differentiated effector memory 

cells (CD45RA+CCR7-perforin+) was significantly higher in this subgroup (Strindhall 
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et al., 2013). These findings have been replicated by numerous research groups and 

the reduction in numbers of naïve T cells in favour of Ag-experienced T cells is 

mutually agreed (Kang et al., 2004; Kovaiou and Grubeck-Loebenstein, 2006; 

Ouyang et al., 2003; Saavedra et al., 2017; Saule et al., 2006). Thymic involution 

partially explains this, since fewer new T cells are produced, however the combined 

observations of increased CMV seropositively suggests that CMV may induce the 

generation of terminally differentiated effector memory CD8+ T cells. The role of prior 

CMV infection has been investigated in young (<60 years) compared to elderly 

subjects (>60 years), with reduced CD28- CD4 T cells and increased CD56 and HLA-

DR expression not influenced by subject age but by CMV seropositivity (Looney et 

al., 1999). However, the classification of the two age groups in this study was 

inappropriate, as thymic atrophy can occur from 50 years (Goronzy and Weyand, 

2005), so a more appropriate differentiation of the age groups would have defined 

younger subjects as < 50 years. While, CMV seropositivity has also been associated 

with greater oligoclonality of the CD8 T cell repertoire in healthy elderly subjects (60–

95 years), compared to young controls (20–55 years); after assessing epitope-

specific CD8 T cell frequencies using the two HLA-peptide tetramers (A2-NLV and 

B7-TPR) and HLA-typing blood samples for MHC I alleles (Khan et al., 2002).  

Effect of ageing on the functional response of T cells 

Significantly reduced proportions of memory CD4 and CD8 T cells were observed in 

elderly (65–85 years) compared to young (20–30 years) subjects, in response to 

whole virus (respiratory syncytial virus; RSV) and an RSV Ag (Cherukuri et al., 2013). 

In addition to reduced numbers of CD107a+ CD8+ T cells, a degranulating, cytotoxic 

T cell subset, in PBMC samples from the elderly (Cherukuri et al., 2013). This 

suggests that the impaired immune response, seen by increased infection with RSV, 

could be as a result of fewer T cells, as opposed to impaired functional T cell 

responses. Additionally, human PBMCs, derived from HLA-typed (HLA-A2+) elderly 

subjects (>70 years) after vaccination against tick-borne encephalitis virus (TBEv), 

demonstrated significantly reduced expansion of naïve CD8+ T cells specific for the 

model Ag upon in vitro stimulation with HLA-A2-specific peptide (ELA; model Ag) and 

pro-inflammatory cytokines; compared to younger subjects (20–50 years) (Briceño et 

al., 2016). This finding was a suggested consequence of reduced size of the naïve T 

cell pool and was associated with efficacy of vaccine response; subjects with more 

CD8+ ELA+ cells had higher binding and neutralising antibody titres for TBE and 

greater cellular response (IFN-γ secretion) (Briceño et al., 2016).  
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Significant increases in secretion of IL-8 by T cells was observed in response to anti-

CD3 mAb activation in elderly (91–107 years) subjects, compared to young (21–30 

years) (Mariani et al., 2001). Additionally, production of RANTES (CCR5) and MIP-

1α by T cells from elderly subjects was significantly increased compared to cells from 

young subjects in response to anti-CD3 mAb stimulation (Mariani et al., 2002b). CD8 

T cells, from elderly subjects, stimulated with PMA-ionomycin produced increased IL-

2, IL-4 and IFN-γ in the absence of CMV infection, while CMV seropositivity inhibited 

the increases in IL-2 and IL-4, but IFN-γ production was further increased in middle-

aged (35–60 years) and elderly subjects (>65 years) seropositive for CMV (Almanzar 

et al., 2005); associated with a reduction in CD25+CD8+ T cells. TNF-α producing 

CD4+ T cells increased with age, while TNF-α and IL-4 producing CD8+ T cells and 

IL-10 production by all lymphocytes decreased with increasing age (Silveira-Nunes 

et al., 2017). CMV-specific CD8 T cells demonstrated increased secretion of IFN-γ 

and significantly elevated levels of lysis in response to incubation with Ag-specific 

peptides (Khan et al., 2002).  

PBMCs, isolated from older subjects (≥60 years), post influenza vaccination, 

challenged in vitro with A/H3N2-influenza produced significantly more granzyme B in 

response to influenza virus compared to pre-vaccination (Shahid et al., 2010). 

However, low granzyme B levels prior to infection strongly correlated with individuals 

developing a fever and a lack of seroconversion to the infection (T-dependent 

antibody response) (Shahid et al., 2010), linking poor cell mediated cytolytic effects 

to severity of influenza illness. Additionally, older subjects (≥55 years) demonstrated 

reduced Ag-specific T cell proliferation in response to hepatitis B (HB) vaccination, 

assessed by thymidine incorporation, and a lack of IFN-γ secretion upon HB Ag 

stimulation, compared to young (≤35 years) subjects (Rosenberg et al., 2013). 

Expression of the lymph node homing marker, CD62L, significantly increased with 

greater response to the vaccination in naïve and central memory T cells derived from 

young subjects, while expression was consistent in cells from the elderly (Rosenberg 

et al., 2013); suggesting that age may influence availability of this ligand and thus 

homing of naïve or central memory T cells to secondary lymphoid organs, impairing 

recall responses to HB Ag. In addition, the reactivation of Varicella-Zoster virus (VZV) 

to induce Herpes zoster (shingles) infection was associated with lower counts of VZV-

specific IFN-γ with increasing age; which was significant between the 60–69 and 70–

79 year groups (Shirane et al., 2017).  

A diverse TCR repertoire is required to enable the immune system to respond to new 

infections, however the diversity of TCR repertoire has been observed to decline with 
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increased age (Britanova et al., 2014; Goronzy and Weyand, 2005). Comparison of 

CD8+ T cells isolated from young and aged mice showed similar effects of reduced 

reactivity to viral epitopes to young thymectomised mice, implicating thymic atrophy 

in this process (Yager et al., 2008); as the TCR develops during thymocyte 

development in the thymus. 

1.1.6 Leukocyte trafficking between the gut and the bloodstream 

The luminal content of the GI tract is separated from the bloodstream via the intestinal 

barrier including physical (epithelial cells), chemical (antimicrobial peptides; AMPs) 

and immunological (secretory IgA) components (Turner, 2009; Yu et al., 2012). 

Development and maintenance of the intestinal barrier is influenced by interaction 

between the gut microbiota and the immune system (Caricilli et al., 2014). The 

intestinal barrier comprises the mucus layer, intestinal epithelial cells (IECs) and 

intercellular tight junction proteins which physically separate the microbiota and 

luminal content from the lamina propria (Yu et al., 2012). Encounter of bacterial 

products (e.g. LPS or flagellin) can induce epithelial cell neutrophils to secrete AMPs, 

which are a broad-spectrum class of peptides effective against Gram-negative and 

Gram-positive bacteria, fungi, yeasts and viruses (Yu et al., 2012). The exposure of 

the GI tract to dietary Ags on a daily basis requires the immune system to distinguish 

between these beneficial Ags and potentially harmful, pathogenic organisms; oral 

tolerance (Forchielli and Allan Walker, 2005). Microfold (M) cells and intestinal DCs, 

residing within the lamina propria, constantly sample luminal contents to detect and 

capture harmful pathogens (Cahenzli et al., 2013; Chieppa et al., 2006). Frequency 

of extension of dendrites into the intestinal lumen depends on bacterial content within 

the lumen and TLR recognition of PAMPs on IECs and DCs (Chieppa et al., 2006). 

After pathogen destruction, DCs can present pathogenic peptides to B or T cells to 

induce an adaptive immune response; including sIgA production by plasma cells 

translocated to the lamina propria and cytokine secretion by differentiated T helper 

cells (Yu et al., 2012). 

Induction of oral tolerance is vital in generating systemic non-response to ingested 

Ags, and involves both Ag-nonspecific and Ag-specific modes of response. The Ag-

nonspecific mode involves the generation of immunosuppressive conditions within 

the local (gut) environment, and processing of dietary Ags by the gut associated 

lymphoid tissue (GALT) system, making the host immunologically unresponsive to 

them (Tsuji and Kosaka, 2008). While the Ag-specific mode requires the homing 

marker, chemokine receptor-7 (CCR7), to enable tolerogenic DCs to migrate to the 
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mesenteric LNs (Worbs et al., 2006) where they interact with and contribute to the 

functional maturation of Ag-specific regulatory T (Treg) cells (Tsuji and Kosaka, 2008).   

Naïve T cells are confined to lymphoid organs, however, once activated by DCs, they 

are able to enter peripheral tissues due to altered expression of homing markers (Hart 

et al., 2010). DCs migrate to lymph nodes via lymphatic vessels after encounter with 

foreign Ags, to maximise chances of presenting Ag to naïve T cells (Randolph et al., 

2005). Different origins of DC may determine their functional roles within the intestinal 

immune system, since DCs which migrate from the gut to mesenteric lymph nodes 

undertake typical DC functions by initiating adaptive immune responses, while blood 

DCs which have been habituated to home to the gut, maintain tolerance to dietary 

and self-Ags (Hart et al., 2010) or act as a first line of defence against invading 

pathogens (Schulz et al., 2009). Retinoic acid (RA), a metabolite of vitamin A, was 

shown to be important in the homing of both DCs and IgA-secreting B cells to the gut 

(Bernardo et al., 2013; Mora and von Andrian, 2009). Dietary components 

metabolised by members of the gut microbiota have the potential to impact on 

immune cell responses, which will be discussed further in the sections below.  

1.1.7 Microbiota and its effect on the immune system 

Commensal microorganisms residing within the GI tract make up the microbiota which 

differs vastly between anatomical regions, however much less is known about the 

composition of the small intestinal microbiota composition due to the difficulty in 

sampling this area (Flint et al., 2012). The colon is the most populated area of the GI 

tract with in excess of 1 x 1014 bacteria, archaea, viruses and eukaryotic microbes 

(Wang et al., 2017), with recent observations of 97.6% from bacteria, 2.2% from 

archaea, 0.2% from viruses and <0.01% from eukaryokes (Zhernakova et al., 2016). 

At least 1000 different species of bacteria are known, which are thought to be 

dominated by the phyla Firmicutes and Bacteroidetes (Johnson et al., 2016). Other 

phyla, up to ten different members, including Actinobacteria, Proteobacteria, 

Verrucomicrobia and Fusobacteria are also present and thought to have important 

functional effects (Harakeh et al., 2016; Marchesi et al., 2016; Plé et al., 2015; Wang 

et al., 2017). While, Actinobacteria abundance was greater than Bacteroidetes in a 

cohort of healthy Dutch participants (Zhernakova et al., 2016). Very few studies to 

date have investigated the viral component (virome) or the contribution of eukaryotes 

(protozoa and fungi) to the microbiota composition (Marchesi et al., 2016), though 

nucleic acids of viruses from 1200 different virotypes have been reported in faecal 

samples (Breitbart et al., 2003; Columpsi et al., 2016; Reyes et al., 2010). While it is 

known that the gut microbiota is vital for maintenance of host health and functioning, 
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the keystone species of the microbiota, those that have a disproportionately large 

influence on the community composition and function relative to abundance, are yet 

to be confirmed (Marchesi et al., 2016) but Helicobacter pylori, Akkermansia municula 

and Lactobacillus johnsonii are potential keystone species (Karkman et al., 2017). 

Inter-individual variability in microbiota composition is high, but it is thought that there 

remains a highly conserved common bacterial core of approximately 57 species 

which are common to >90% of individuals; of which Bacteroidetes and Firmicutes 

have the highest abundance (Qin et al., 2010). Recently, (Jeffery et al., 2016) 

determined Bacteroides, Alistipes, Parabacteroides, Faecalibacterium and 

Ruminoccocus to be the core microbiota. This conserved core encodes gene 

products unique to bacterial genomes which exhibit specific functions within the gut 

such as transport and degradation of complex plant-derived carbohydrates to 

produce short chain FAs (SCFAs), amino acids and vitamins (Kolmeder et al., 2012; 

Qin et al., 2010). With Ruminococcus bromii shown to efficiently ferment resistant 

starch (RS) which the authors suggest as a keystone species required to yield 

products from RS for use by other bacteria (Ze et al., 2012). 

The human intestinal microbiota forms soon after birth (Palmer et al., 2007), with 

delivery mode impacting on the neonate’s dominant bacterial communities 

(Dominguez-Bello et al., 2010). An absence of organisms in the Bacteroidetes phylum 

(Azad et al., 2013; Jakobsson et al., 2014) and lower abundance of Escherichia-

Shigella communities have been observed in infants born by caesarean delivery 

(Azad et al., 2013). However, more recently it has been suggested that initial 

colonisation may occur in utero via microbial transfer from the placenta and amniotic 

fluid (Collado et al., 2016) though this research is in its infancy, factors such as 

maternal diet, antibiotic use and maternal stress may all impact on amniotic or 

placental microbiome compositions and thus initial colonisation of the infant 

(Greenhalgh et al., 2016). The intestinal microbiota establishes in parallel with the 

immune system, typically both the microbiota and the adaptive immune response 

become fully established within the first decade of life (Adlerberth and Wold, 2009; 

Palmer et al., 2007). The importance of the intestinal microbiota in health has been 

demonstrated using sterile, germ-free animal models which have shown nutritional 

deficiencies, increased permeability of the intestinal barrier and functionally immature 

immune systems (Al-Asmakh and Zadjali, 2015; Crabbe et al., 1970; Hapfelmeier et 

al., 2010; Tlaskalova-Hogenova et al., 2011; Yamamoto et al., 2012). Nutrition in early 

infant life is an important factor in developing the microbiota and immune system, with 

observations that breast milk consumption aids the establishment of Bifidobacterium 
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species which aid modulation of the immune system (Liu et al., 2016); lysozyme in 

breast milk is suggested to inhibit the growth of human-non-resident Bifidobacterium 

species (Minami et al., 2016). While, the divergent dietary patterns between children 

from rural Africa (Burkino Faso) and Europe revealed strikingly different faecal 

microbiota profiles, associated with the differing daily fibre intakes of 14.2 g and 8.4 

g, by Burkino Faso and European children, respectively (De Filippo et al., 2010). The 

Burkino Faso children were colonised with species including Xylanibacter, Prevotella, 

Butyrivibrio and Treponema which can utilise cellulose and xylose present in plant 

fibres for energy provision via SCFA generation (De Filippo et al., 2010). Similarly, 

the phylogenetic diversity of the microbiota of Hazda hunter-gatherers (8–70 years) 

from Tanzania was notably distinct from Italians (20–40 years) with Prevotella, 

Eubacteria, Butyricoccus, Sporobacter, Succinivibrio and Treponema most 

represented at the genus level, while Bifidobacterium, Bacteroides, Ruminoccocus 

and Faecalibacterium were depleted in the Hazda microbiota (Schnorr et al., 2014). 

Actinobacteria were abundant in the Italian gut microbiota but almost completely 

absent from the Hazda microbiota (Schnorr et al., 2014). These examples 

demonstrate the dramatic differences in microbial ecology as a result of differing 

environments and dietary consumption between Western and indigenous populations 

(Karkman et al., 2017). Recently, it has been shown that inclusion of microbiota 

accessible carbohydrates within dietary fibre can recover diversity but that low fibre 

diets over many generations may irreversibly remove taxa (predominantly 

Bacteroidales) from the microbiota in humanised mice after switching from a high to 

low fibre diet before returning to a high fibre diet (Sonnenburg et al., 2016). 

Striking changes to the microbiota composition occur in the elderly (O'Toole and 

Brigidi, 2013), with observations of reduced Bacteroides, Clostridia and Lactobacillus 

and increases in Fusobacteria, Streptococci and Stapylococci genus, while the total 

number of bacteria remained constant (Woodmansey et al., 2004). The ELDERMET 

study showed that faecal microbiota profiles in elderly subjects (>65 years) were 

Bacteroidetes dominant, while younger adults (28–44 years) were Firmicutes 

dominant (Claesson et al., 2012). In addition, assignment of the core microbiota to 

phylum, genus and Clostridium cluster highlighted substantial differences between 

the two age groups, with Clostridium cluster IV predominant in the elderly, while 

cluster XIVa predominated in young samples (Claesson et al., 2012). More recent 

data from the ELDERMET study shows that microbiota diversity of long stay 

residential care subjects clearly differentiated from elderly subjects residing within the 

community, with the major genera for the residential care group corresponding to 
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anaerotruncus, Desulfovibrio  and Coprobacillus (Jeffery et al., 2016). Frailty was also 

significantly negatively associated with abundance of Faecalibacterium prausnitzii 

and positively associated with Coprobacillus and Eggerthella in the Twins UK cohort 

(42–86 years), a number of which correlated with the ELDERMET subjects (64–102 

years) (Jackson et al., 2016). Batch culture and 16S amplicon sequencing of faecal 

samples from elderly subjects residing within the community (69–81 years) or in 

residential care units (82–93 years), defined as healthy and frail respectively, showed 

strikingly different microbiota compositions at baseline with predominance of 

Firmicutes (68%) and Bacteroidetes (22.5%) in healthy elderly, but Euryarcheaota in 

the frail elderly with only 22% and 11% abundance of Firmicutes and Bacteroidetes 

(Ntemiri et al., 2017). The frail elderly also demonstrated reductions in the 

Bacteroidaceae, Bifidobacteriaceae and an increases in the Methanobacteriaceae 

and Enterobacteriaceae families compared to healthy elderly subjects (Ntemiri et al., 

2017). 

The microbiota composition changes with increased age and further with frailty, with 

changes (dysbiosis) associated with pathologies including reduced diversity 

correlating with disease duration and autoantibody levels in RA (Chen et al., 2016) 

and altered harvest and storage of energy from food and lower Akkermansia 

muciniphila abundance in obesity (Bäckhed et al., 2004; Dao et al., 2016; Turnbaugh 

et al., 2006). Recently, faecal sample analysis using paired-end metagenomics 

shotgun sequencing predicted that use of antibiotics was associated with significant 

decreases in Bifidobacterium species from the Actinobacteria phylum, in addition to 

features of a Western-style diet associated with lower species diversity (Zhernakova 

et al., 2016).  Since the microbiota is known to be influenced by dietary intake and 

has subsequent effects on the immune system, dietary intervention is a key target for 

influencing immune function.  

1.1.8 Diet 

Diets are defined as the foods chosen and consumed by individuals in order to meet 

the body’s energy requirements for growth, movement, maintenance of body 

temperature and survival (Pocock et al., 2013). This energy is provided by the 

consumption of the macronutrients, carbohydrates, proteins and fats, present in the 

foods we eat (Pocock et al., 2013). Different foods have different energy and nutrient 

densities, with nutrient density of foods an important classification of foods, 

particularly in relation to promoting fruit and vegetable intakes (Di Noia, 2014; 

Drewnowski, 2005). Energy requirements are dependent on basal metabolic rate 

(BMR) and physical activity level (DoH, 1991) and since nutrients are continually 
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utilised during metabolism (molecular, cellular, tissue, organs or whole body) daily 

intakes are required to replace these losses (Lanham-New et al., 2011). Foods also 

contain micronutrients, vitamins and minerals which are essential in the diet, in 

addition to essential amino acids and essential FAs, which the body cannot produce 

(Pocock et al., 2013). The composition of diets varies depending on numerous factors 

including geographical location, food availability, socio-economic status, food beliefs 

and cultural beliefs (Geissler and Powers, 2010).  

Carbohydrates 

Carbohydrates are an important source of energy in the diet, providing 4 kcal/ g, and 

include simple sugars termed monosaccharides (glucose and fructose), 

oligosaccharides (lactose and sucrose) and the more complex polysaccharides 

(starch, glycogen and cellulose) (Geissler and Powers, 2010). Monosaccharides 

consist of a straight chain of between three and eight carbon atoms, all but one of 

which carries a hydroxyl group (CH2OH), the remaining carbon forms a carbonyl 

group (C=O), to provide the reducing properties of monosaccharides (Coultate, 

2009). Monosaccharides are sweet tasting components occurring in foods and are 

typically found in honey, fruits and vegetables; this sweetness is lost in longer chain 

carbohydrates, oligosaccharides and polysaccharides (Geissler and Powers, 2010). 

Prebiotic carbohydrates are defined as “non-digestible food ingredients which 

beneficially affect the host by selectively stimulating the growth or activity of one or a 

limited number of bacteria in the colon, and thus improve host health” (Gibson and 

Roberfroid, 1995). Examples of prebiotics include inulin-derived fructans (fructo-

oligosaccharides (FOS), inulin and oligofructose), galacto-oligosaccharides (GOS) 

and lactulose (Rastall and Gibson, 2015). Polysaccharides contain large numbers of 

monosaccharides linked together by α- or β-linkages and chains can be branched or 

linear (Geissler and Powers, 2010). Polysaccharides are derived from plants and their 

purpose is to provide an energy reserve, within seeds and tubers, in addition to 

providing structure to the plant, while they are essential for the moderation of nutrient 

absorption in the small intestine and the healthy functioning of the large intestine in 

humans, in addition to providing an energy source (Coultate, 2009). Plant 

polysaccharides, such as non-starch polysaccharide (NSP), makeup insoluble dietary 

fibre which is non-digestible by the human GI tract, however upon reaching the large 

intestine can be fermented by the resident host microbiota into SCFAs (Marchesi et 

al., 2016). A mutualistic relationship is present between insoluble dietary fibre and 

prebiotics, and carbohydrate fermenting bacteria since the human host requires 

bacterial species including those from the Bacteroidetes and Actinobacteria phyla to 
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break down starch, inulin and oligosaccharides, and Clostridium Group XIVa of the 

Firmicutes phylum to produce SCFAs (Dethlefsen et al., 2006). However, reduction 

in species diversity within the microbiota has been observed in  elderly subjects (≥ 65 

years) with the lowest fibre intakes (Claesson et al., 2012), and diets rich in saturated 

fat and sugar were associated with low diversity profile (Jeffery et al., 2016), typical 

of elderly subjects in long-term residential care (Claesson et al., 2012). Additionally, 

downregulated expression of genes associated with methanogenesis and 

metabolism of glycans and lipids was observed in healthy adults (19–25 years) 

consuming low fibre diets (10 g/ per day) (Tap et al., 2015). Additionally, a small scale 

study compared gut microbiota composition between elderly women (68–76 years) 

residing inland compared to the island area of South Korea, who had greater intakes 

of dietary fibre (and lower intakes of animal lipids) than island dwellers and distinct 

bacterial communities including greater abundance of Butyricimonas which produce 

butyric acid (Shin et al., 2016). 

Protein 

Proteins within the diet provide energy (4 kcal/ g) but consumption is also required for 

the provision of amino acids, vital for the synthesis of numerous essential proteins 

within the body such as enzymes, Igs, membrane transport proteins, and structural 

collagens, in addition to carrying vitamins, oxygen and carbon dioxide around the 

body (Coultate, 2009; Geissler and Powers, 2010). Proteins are composed of amino 

acids linked together by peptide linkages, with a typical structure of H2N-C(R)H-

COOH, within which the R represents the side chain which varies depending on the 

protein structure (Geissler and Powers, 2010). The amino acids isoleucine, leucine, 

lysine, methionine, phenylalanine, threonine, tryptophan and valine are considered 

essential amino acids since the human body cannot synthesise the amine group 

(Geissler and Powers, 2010).  

The small intestine is the main site of amino acid catabolism and 30–50% of these 

amino acids do not enter hepatic portal circulation (Lanham-New et al., 2011). The 

remaining amino acids enter the liver, which is the only organ that contains the 

enzymatic capacity to catabolise all of the amino acids (Lanham-New et al., 2011). 

Consumption of protein-rich meals, containing bovine serum albumin, showed that 

albumin was present in jejunal and ileal fluids four hours after consumption, with 

increased free and peptide amino acids present in both luminal content and plasma 

(Adibi and Mercer, 1973). Evidence suggests that dietary peptides, which survive 

luminal digestion and brush-border membrane hydrolysis, can be detected in the 

peripheral blood and urine (Picariello et al., 2013). Indigestible protein matter which 
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reaches the large intestine is fermented by the resident microbiota to produce 

phenols, ammonia, nitrates and branched chain FAs, in addition to SCFAs and gases, 

primarily in the distal colon (Blaut and Clavel, 2007). Sulphate reducing bacteria are 

responsible for the degradation of the amino acids cysteine and methionine into 

hydrogen sulphide and are predominantly from the Desulfovibrio genus (Gibson et 

al., 1988) while fermentation of the aromatic amino acids tyrosine and tryptophan 

produces phenols and indoles (Blaut and Clavel, 2007).  

Fat 

Dietary fat is a crucial energy source since it provides the most energy per gram, 9 

kcal/ g, when compared to protein and carbohydrate (Wang et al., 2013). Lipids can 

be categorised as FAs, glycerolipids, glycerophospholipids, sphingolipids, sterol 

lipids, prenol lipids, saccharolipids and polyketides (Ratnayake and Galli, 2009). 

Dietary fat also provides the fat soluble vitamins A, D, E and K, and the essential FAs 

(linoleic acid (LA) and α-linolenic acid (ALNA)) (Simopoulos, 2002; Wang et al., 2013). 

FAs consist of a carboxylic acid (COOH) attached to an aliphatic chain, which is 

typically straight and can be saturated, or contain double bonds, making the chain 

unsaturated (Ratnayake and Galli, 2009). FAs with one double bond in the chain are 

monounsaturated FAs (MUFAs) while more than one double bond denotes a 

polyunsaturated FA (PUFA) (Ratnayake and Galli, 2009). Chain length can vary from 

short 4-carbon FAs in dairy fat to much larger 30-carbon marine derived FAs 

(Ratnayake and Galli, 2009). FAs and glycerol make-up glycerolipids, a key example 

being triglycerides (TGs), the main constituent of dietary fats and oils, which consist 

of an ester of three FAs and a glycerol (Wang et al., 2013).  

Fat digestion begins in the stomach where gastric lipase aids the breakdown of TGs 

to diacylglycerol and free FAs (FFAs), emulsification within the stomach aids 

pancreatic lipase action and the rate of hydrolysis in intestinal digestion (Kindel et al., 

2010). Pancreatic lipase cleaves the TG to yield 2-mono-glycerides (2-MG) and FFA, 

while pancreatic cholesterol esters are hydrolysed completely into FFAs and free 

cholesterol. The FFA and 2-MG, with phospholipids form mixed micelles which 

enables the lipids to be absorbed at the microvillus membrane of the small intestine 

into enterocytes (Ramı́rez et al., 2001). These absorbed lipids are re-esterified to TGs 

and phospholipids, and along with cholesterol and apolipoproteins are packaged into 

chylomicrons (CM) for secretion to the lymph, then the general blood stream via the 

thoracic duct (D'Aquila et al., 2016). CM remnants are formed inside tissues by 

cleavage of TGs by lipoprotein lipase, the CM remnants are taken up by the liver 

(Ramı́rez et al., 2001). TGs can also be packaged in cytoplasmic lipid droplets (CLDs) 
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for storage by enterocytes, which typically occurs when dietary TG levels are high, 

accumulation can result in fat malabsorption and steatorrhea (D'Aquila et al., 2016). 

HDL transports excess cholesterol from peripheral tissues to the liver, via the 

lymphatic vessels, for excretion in the bile and faeces (Hellerstein and Turner, 2014; 

Lim et al., 2013). In contrast LDL transports cholesterol for uptake by cells in order to 

obtain α-tocopherol (Kayden and Traber, 1993). Chain length is an important factor 

in digestion and absorption of FAs, since unsaturated and medium chain FAs are 

absorbed more efficiently than long chain SFAs (Ramı́rez et al., 2001), while longer 

chain FAs are emptied from the stomach more slowly (Hunt and Knox, 1968; Mu and 

Porsgaard, 2005). FAs are stored in the adipose tissue, with approximately 99% 

comprising TG, 0.3% cholesterol and less than 0.1% phospholipids in healthy humans 

(Hodson et al., 2008). Since FAs can be released from the adipose tissue into the 

venous blood flow the concentration of non-esterified FAs in the blood is a suggested 

useful marker of the FA acid composition of adipose tissue, while plasma TG levels 

are more indicative of dietary intake of the preceding days (Hodson et al., 2008). 

The predominant FA composition of the diet can influence serum lipids and 

lipoproteins since six week consumption of diets rich in SFAs (lauric acid and palmitic 

acid) resulted in significantly higher serum total, LDL and HDL cholesterol (Temme et 

al., 1996) and total LDL and HDL cholesterol, while a MUFA-rich diet increased HDL 

cholesterol, reduced total and LDL cholesterol and significantly improved (2.1%) 

insulin sensitivity compared the SFA-rich diets (Vessby et al., 2001). The dietary 

intake of the essential FAs, LA (18:2 n-6) and ALNA (18:3 n-3), determines the 

omega-6: omega-3 (n-6: n-3) ratio, and since humans lack the omega-3 desaturase 

converting enzyme, the balance of this ratio is important since they are converted to 

anti- and pro-inflammatory eicosanoids, respectively (Simopoulos, 2002) (Figure 1.1). 

LA and ALNA are present in oils, meat, fish and eggs, rich sources of ALNA are 

walnuts, flaxseed and rapeseed or soyabean oil (Gebauer et al., 2006; Simopoulos, 

2006; Sioen et al., 2017; Williams and Burdge, 2006). Consumption of the longer 

chain n-3 FAs, EPA and DHA, from oily fish and fish oil, is also important however, 

especially since supplementation with ALNA rich capsules (providing 1.1% of energy 

or 9.5 g/day) did not result in increased DHA within plasma phospholipids compared 

to control or low-LA groups; while EPA significantly increased (Childs et al., 2014; 

Goyens et al., 2006). In addition, supplementation with stearidonic acid (SDA, 18:4 

n-3), an n-3 intermediate of ALNA, resulted in ~40–60%  
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Figure 1.1 n-3 and n-6 desaturation and elongation pathways. Linoleic acid (LA) 
and α-linolenic acid (ALNA) are converted via desaturation enzymes (D6D and D5D) 
and elongase before the production of pro-inflammatory (n-6) or anti-inflammatory (n-
3) eicosanoids and lipid mediators; via EPA and DHA production for n-3 products. 
From (Brigandi et al., 2015) with minor modifications. 

  



56 
 

increases in eicosatetrenoic acid (ETA), EPA and docosapentanoic acid (DPA) in 

plasma and PBMCs, compared to ALNA supplementation (Kuhnt et al., 2016). These 

studies suggest the consumption of ALNA rich foods alone may not be sufficient to 

meet the body’s requirements. 

TGs or FAs reaching the colon, typically PUFAs, have been shown to be metabolised 

by the intestinal microbiota to produce conjugated linoleic acid (CLA) isomers 

(Gorissen et al., 2010). CLAs are eighteen carbon FAs of which there are different 

geometric isomers dependant on the location and position of the conjugated double 

bonds (Burdge et al., 2005).  

Phytochemicals  

Phytochemicals, are compounds present in plants which have no nutritional value but 

have demonstrated health benefits, and include phenolic compounds, flavonoids, 

glucosinolates, isothiocyanates and carotenoids (Craig, 1997; Holst and Williamson, 

2008). Polyphenols, are typically found in red wine, fruits, vegetables, cereals, tea 

and cocoa (Bravo, 1998; Del Rio et al., 2010) and may have potential for immune 

modulation. Polyphenols undergo metabolic conversion mostly in the large intestine 

by action of the commensal microbiota (Del Rio et al., 2010). Anthocyanins, a class 

of flavonoids, are metabolised to protocatechuic acid and isothiocyanate 

sulforaphane which can impair the production of the pro-inflammatory cytokines IL-6, 

IL-8, IL-12 and IL-23 by LPS-stimulated DCs (Del Cornò et al., 2014; Geisel et al., 

2014). These metabolites are thought to interact with the nuclear factor kappa light 

chain enhaner of activated B cells (NF-κB) signalling pathway since neither DC 

maturation nor T cell activation were affected by sulforaphane (Geisel et al., 2014), 

however as this study was carried out using mice the results may not extrapolate to 

humans.  

1.1.9 Changing dietary patterns over time  

Current UK dietary recommendations provide dietary reference values (DRVs) for 

macronutrients and indicate the population average intakes of total fat (≤35%), 

saturated FAs (≤11%), trans FAs (≤2%) (Bates et al., 2014) and the recently updated 

free sugars (≤5%) and non-starch polysaccharides (NSP; at least 30g/ day) (SACN, 

2015). Increased PUFA intake (0.45g/ day) by healthy adults is advised in the UK 

(SACN, 2004), supported by observations of reduced risk or incidence of stroke, 

coronary heart disease or myocardial infarction (MI) in healthy and at risk adults (Burr 

et al., 1989; Daviglus et al., 1997; Gillum et al., 2000; Gillum et al., 1996; He et al., 

2002). Adequate vitamin and mineral intakes are advised via age and sex specific 
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recommendations (Bates et al., 2014) including lower reference nutrient intakes 

(LRNIs), estimated average requirements (EARs), reference nutrient intakes (RNIs) 

and safe intakes (DoH, 1991).  

Dietary intakes have changed dramatically with evolution, the introduction of 

agriculture and industrialisation resulting in the Westernised diet of the 21st century 

(Cordain et al., 2005; Geissler and Powers, 2010; Ströhle and Hahn, 2011). Modelling 

of n-3 and n-6 essential FA consumption from 1909 to 1999, using current and 20th 

century typical nutrient composition data, estimated that most current foods contain 

more LA and less EPA and DHA compared to 20th century foods with a 1163-fold 

increase in soybean oil consumption by 1999 (Blasbalg et al., 2011). Data from the 

National Health and Nutrition Examination Survey (NHANES) of 1988–1994 showed 

that American adults (≥20 years) derived ~27% of daily energy from energy dense, 

nutrient poor foods (desserts, sweeteners, salty snacks, visible fat), which was 

characterised by high BMI and inversely associated with HDL cholesterol and intakes 

of micronutrients meeting the RDA (Kant, 2000; Kant and Graubard, 2005). However, 

Western dietary consumption still resembles this, with the inclusion of greater 

quantities of refined sugars, saturated and trans fats, and processed meats (Geissler 

and Powers, 2010). The most recent UK National Diet and Nutrition Survey (NDNS) 

of 2008–2012, found that the UK population were consuming saturated fat and non-

milk extrinsic sugars (free sugars) at levels greater than dietary recommendations, 

while fruit, vegetables, NSP and oily fish consumption were below recommendations 

(Bates et al., 2014). These dietary patterns are associated with increased incidence 

of T2D, heart diseases and some cancers (Tilman and Clark, 2014).  

Studies of energy expenditure in the healthy elderly (>65 years) have shown 

decreases of 0.69 and 0.43 MJ/ day/ decade for males (average 75 kg) and females 

(average 65 kg), respectively (Elia et al., 2000), which was attributed to reductions in 

physical activity, BMR and thermogenesis (Elia et al., 2000; Goran and Poehlman, 

1992). While, hospitalised elderly subjects had inadequate energy intakes, only 41% 

(n=134) met estimated resting energy requirements; associated with poor appetite, 

required feeding assistance and diagnosis of infection or cancer (Mudge et al., 2011). 

Additionally, elderly women consuming inadequate protein intakes had significant 

losses in lean tissue, immune response, muscle function (Castaneda et al., 1995) and 

increased risk of osteoporotic fractures (Rizzoli et al., 2001). Evidence from the 

PROT-AGE study suggests that older adults (>65 years) have higher protein 

requirements than younger adults, from which the authors suggest an average intake 

of at least 1.0–1.2 g protein/ kg body weight (Bauer et al., 2013). Therefore the elderly 
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may require specific nutritional recommendations, additionally, when considering the 

increase of age-associated diseases, the public may also need to accept some of the 

responsibility for preventative action by adapting their lifestyle choices accordingly; 

including physical activity, not smoking and dietary intakes (Shlisky et al., 2017). 

1.1.10 Influence of diet on the ageing process 

Caloric restriction is the reduction in dietary intake to a point which does not prevent 

the intake of essential nutrients or cause malnutrition (Sohal and Forster, 2014) and 

has been shown in numerous experimental models to be beneficial for lifespan and 

slowing the rate of age-associated pathologies (Colman et al., 2009; Sohal et al., 

1994; Weindruch and Walford, 1982). Resveratrol has been suggested to act similarly 

to caloric restriction to extend lifespan (Baur and Sinclair, 2006). Sirtuin proteins, a 

family of NAD+ dependant deacetylases named after the Saccharomyces cerevisiae 

silent information regulator 2 (sir2) protein, are thought to be activated during caloric 

restriction and potentially with resveratrol intake, and have been associated with 

extended lifespan in yeast, worms and flies (Baur and Sinclair, 2006). Studies 

investigating the effect of caloric restriction on human ageing are lacking, as long term 

interventions are unethical, although some short term studies have shown reductions 

in resting metabolic rate (RMR) (Ravussin et al., 2015) and oxidative damage of DNA 

and RNA in white blood cells (Hofer et al., 2008). Additionally, the Okinawan’s 

traditional diet demonstrates caloric restriction (Willcox et al., 2007) and has been 

associated with improved cardiovascular profiles and longevity (4–5% compared to 

Japan, the highest life expectancy among industrialised countries) (Gavrilova and 

Gavrilov, 2012; Sho, 2001).  

1.1.11 Dietary impact on immune cells in adults and the elderly 

Immune cells require energy for cellular proliferation and effector functions and 

therefore must acquire metabolic substrates from their extracellular environment (Fox 

et al., 2005). In order to control cellular proliferation, growth factors are required to 

stimulate cells, in addition to nutrient abundance (Vander Heiden et al., 2009). 

Metabolite production by the microbiota, including bile acids, lipids, amino acids, 

vitamins and SCFAs, is a potential way that dietary intake can influence the immune 

system (Brestoff and Artis, 2013; Clements and Carding, 2017). 

Naïve and memory T cells have lower requirements for energy and produce ATP by 

breaking down glucose, FAs and amino acids, predominantly via oxidative 

phosphorylation, while proliferating T cells require much more ATP and NADH 

molecules to sustain their energy requirements and undergo aerobic glycolysis (Fox 
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et al., 2005). Inappropriate nutrient intake by T cells can, however, inhibit T cell 

activation and proliferation, and if prolonged can result in apoptosis (Angela et al., 

2016). Furthermore, T cells cannot take up the amino acid cystine, but human blood 

MoDCs promoted the secretion of thioredoxin, which reduced extracellular cystine to 

cysteine, upon co-culture with T cells, with increased secretion of cysteine by DCs 

observed (Angelini et al., 2002), this is of significance since cysteine serves as a 

substrate for glutathione, which regulates T cell proliferation after Ag-receptor 

engagement (Edinger and Thompson, 2002). With similar observations of elevated 

secretion of cysteine in the culture supernatant and lymphocyte intracellular 

glutathione levels in MLRs between macrophages and T cells, after LPS or TNF-α 

stimulation (Gmünder et al., 1990).  

Recent evidence shows that DC and macrophage function are also determined by 

metabolic reprogramming in response to nutrient alterations, as well as cytokines and 

danger signals, in which immune cells switch between glycolysis, FA synthesis, 

oxidative phosphorylation, FA oxidation and the Krebs cycle, dependent of the cell 

type and required function (O’Neill and Pearce, 2016). In the early stages of DC 

activation, via TLR agonists, increased glucose consumption and lactic acid 

production occur producing ATP by oxidative phosphorylation, whereas LPS 

activation induced rapid commitment of BM derived MoDCs to glycolysis, observed 

by increased extracellular lactate concentrations and glucose consumption and an 

abundance of  glycolysis metabolic intermediates (Everts et al., 2014). This 

represents a response to inducible nitric oxide synthase (iNOS), blocking 

mitochondrial electron transport. While, the uptake of extracellular FAs acids by 

activated CD4+ T cells from 6–24 hours after TCR stimulation was paralleled with 

proliferation commencement, while cells treated with a FA inhibitor (TOFA) 

demonstrated substantial inhibition of proliferation (Angela et al., 2016). Additionally, 

reductions in citrate concentration and accumulation of FAs were observed alongside 

expanded endoplasmic reticulum (ER) and golgi apparatus, suggesting a role for FAs, 

since they act as ligands for transcription factors such as PPARγ, and thus may 

expand the cellular organelle networks to meet protein synthesis requirements to 

induce T cell activation  (Everts et al., 2014). While, SCFAs may influence innate 

immune cell function via activation of the FA receptor GPR43 (Brestoff and Artis, 

2013; Poulin et al., 2010). 

There is developing interest in the influence of nutrition and the immune system, 

termed immunonutrition. Since, the present evidence suggests that differing 

metabolites have different effects on immune cell function this may represent a way 



60 
 

of targeting aspects of immunosenescence, via nutritional intake. It should be noted, 

however, that not all effects of nutrients on the immune system are beneficial.  

Effect of carbohydrates on immune function in the elderly 

The consumption of a prebiotic GOS mixture (B-GOS; Bi2muno) by a group of elderly 

subjects (64–79 years) significantly increased IL-10 and decreased IL-6, IL-1β and 

TNF-α production by PBMCs, in addition to monocyte and neutrophil phagocytic and 

NK cell effector activity, compared to placebo (maltodextrin) (Vulevic et al., 2008). 

Similarly, more recently, PBMCs from elderly subjects (65–80 years), produced 

significantly decreased IL-1β, increased IL-10 and IL-8, elevated numbers of 

Bifidobacterium, which was metabolically linked to elevated lactic acid levels, and 

significantly increased NK cell activity, compared to placebo (Vulevic et al., 2015). 

The beneficial effects of prebiotics (GOS and bifidogenic growth stimulator) and heat-

treated fermented milk products, administered via enteral feeding to elderly subjects, 

demonstrated a seroprotective rate (proportion achieving antibody titres ≥40) of 5% 

against the A/H1N1-like strain six and eight weeks post-influenza vaccination in the 

intervention group (Nagafuchi et al., 2015). Whereas the initial increase in 

seroprotective rate in the control group at week six was not maintained at week eight, 

observed in parallel to significantly higher counts of Bifidobacterium in the intervention 

compared to the control group (Nagafuchi et al., 2015). Significant increases in 

seroprotective rates against the A/H1N1-like and A/H3N2-like influenza strains were 

observed after six weeks and maintained after ten weeks (64%) of prebiotic-enteral 

feeding compared to control (10%) (Akatsu et al., 2016). While, an inulin-type β2-1 

fructan consumed by older individuals (45–63 years) improved only antibody 

responses against the H3N2-like strain of influenza virus (after vaccination with the 

2008/2009 vaccine; A/H1H1, A/H3N2 and B-like strains) (Lomax et al., 2015). The 

combination of probiotics with prebiotics, synbiotics, has recently been trialled in both 

young and elderly subjects, however no improvement to the age associated 

impairment to influenza vaccination response was observed (Przemska-Kosicka et 

al., 2016). The authors indicate that the grouping of the elderly participants was 

actually uneven since there were more individuals with elevated presence of 

immunosenescence markers compared to the placebo group, implying that this may 

have affected the observed results. Consumption of the probiotic drink Actimel® by 

subjects aged ≥70 years resulted in significantly increased antibody titres against only 

the B-like strain three weeks post vaccination, after vaccination with three influenza 

strains (A/H1N1, A/H3N2 and B-like), compared to placebo, with effects still apparent 

after nine weeks (Boge et al., 2009). Additionally, the increased intake of fruit and 
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vegetables in an elderly population resulted in improved response to pneumonia 

vaccination due to significant elevations in antibody reactive to pneumococcal 

capsular polysaccharide (Gibson et al., 2012).  

Effect of protein on immune function in the elderly 

The greater protein requirements of the elderly was demonstrated by the provision of 

protein intake 50% below the RDA (0.92 g per kg body weight) to elderly females for 

nine weeks, which resulted in reduced delayed-type hypersensitivity (DTH) response, 

while those meeting their RDA had an almost 50% increase in DTH response to Ags 

applied to the skin (Castaneda et al., 1995). The RDA used within this study was 

much greater than the UK RNI of 0.75 g protein per kg weight per day, which is 

recommended for all adults (BNF, 2015), providing no age limit, highlighting a lack of 

specific guidelines for the elderly. More recently, small scale studies have determined 

the protein requirements of elderly subjects and suggested a higher RDA of 0.8 g 

(>65 years) and 0.85 g per kg per day (80–87 years) but acknowledge that much 

more evidence is required (Rafii et al., 2015; Tang et al., 2014).     

The limited data investigating the effect of protein intake of elderly subjects reveals 

that increasing the intake of red meat of elderly women when carrying out resistance 

training significantly reduced levels of serum IL-6 (Daly et al., 2014); with a further 

confirmatory study currently underway. In addition, amino acid supplementation of 

endurance athletes or adults undertaking intensive exercise was associated with 

decreased IL-1β, IFN-γ and CRP, and increased IL-10 (Kraemer et al., 2014), 

neutrophil numbers and total lymphocytes, compared to the placebo group (Murakami 

et al., 2009). This data is of interest since, like an ageing population, endurance 

athletes can have compromised immune function and increased susceptibility to 

infection.   

Effect of FAs on immune function in the elderly 

Evidence from prospective studies demonstrated a reduction in risk of pneumonia in 

elderly men reporting the greatest intakes of ALNA, LA, EPA and DHA (1.53 g ALNA, 

15.75 g LA/ day and ≥5 servings fish/ week) (Merchant et al., 2005). Opposing results 

were seen in elderly women (increased risk of developing pneumonia) (Alperovich et 

al., 2007), implying a potential gender specific effect of PUFAs. However these data 

should be considered with caution since they depend on self-reported food frequency 

questionnaires (FFQs), which are associated with reporter bias (Brunner et al., 2001; 

Cade et al., 2002).  
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Administration of PUFA (in the form of oil containing capsules) to elderly women 

increased lipid peroxidation and impaired secretion of IL-2 and T cell proliferation at 

high doses (1680 mg EPA and 720 mg DHA/ day) (Meydani et al., 1991), while very 

low doses (30 mg EPA and 150 mg DHA/ day) of fish oil significantly reduced mitogen 

(ConA, PHA or OKT3) induced lymphocyte proliferation, by 34–45% (Bechoua et al., 

2003). Further implication of detrimental effects of PUFAs in the elderly were 

demonstrated by the dose-dependent reduction in neutrophil respiratory burst with 

increased EPA dosage (1.35, 2.7 or 4.05 g EPA /day), only observed in older 

subjects, in addition to incorporation of EPA into plasma and PBMC phospholipids 

more readily than in the younger subjects suggesting that the elderly handle PUFAs 

differently than young subjects (Rees et al., 2006). Significant reductions in ConA 

induced lymphocyte proliferation were also observed after  fish oil capsule 

consumption (720 mg EPA and 280 mg DHA/ day) compared to supplementation with 

placebo, ALNA, γ-linolenic acid (GLA), arachidonic acid (ARA) and DHA containing 

capsules by older adults (Thies et al., 2001). Though this study included subjects from 

55 years, so is not representative of the elderly. While, consumption of blackcurrant 

seed oil, rich in GLA and α-linoleic acid (ALA), by elderly subjects resulted in greater 

DTH skin response to tetanus toxoid in addition to a significant decrease in the pro-

inflammatory serum prostaglandin E2 (PGE2), (Wu et al., 1999) which has been 

shown to regulated by CLAs in cultured macrophages (Stachowska et al., 2009). 

However, EPA demonstrated no effect on cytokine secretion at any dose trialled 

(1.35, 2.7 or 4.05 g EPA /day) (Rees et al., 2006), with similar observations with 4 g 

encapsulated oil/day (Thies et al., 2001). Lower doses of 0.18g EPA and 0.28 g DHA 

or 1.11 g EPA and 1.72 g DHA per day, achieved by combined consumption of spread 

and fish oil capsules by healthy adults (25–72 years) showed no impact on cytokine 

secretion by PBMCs, neutrophil or monocyte phagocytosis, oxidative burst or ConA 

induced lymphocyte proliferation, compared to the ALNA only placebo groups, after 

six months of supplementation (Kew et al., 2003). This suggests that these lower 

dosages are insufficient to effect immune function. 

However, the dosages used within some of these studies (Meydani et al., 1991; Rees 

et al., 2006; Thies et al., 2001) equate to intakes of fish which would be difficult to 

achieve, since current fish intakes by the UK elderly are 85 g per week (Bates et al., 

2012), below the current recommendations of two portions (~280 g for adults) of fish 

per week, which should provide 0.45g/ day EPA and DHA (SACN, 2004; 

Weichselbaum et al., 2013). Consumption of large quantities of fish, four portions per 

week for eight weeks, by healthy older Australians (mean 69.6 years) had no effect 
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on serum levels of IL-1β or IL-6, though the participants were in good health with no 

risk factors for CVD (Grieger et al., 2014), implying that in order to see PUFA-

mediated effects a baseline inflammatory state may be required. This also suggests 

that the PUFA dose provided by capsules may not be reflective of the concentration 

available to the target tissue after oily fish or other n-3 PUFA rich foods. This was 

addressed by Mantzioris et al. (2000) who aimed to increase intakes of n-3 PUFA by 

providing subjects (n=15) with products naturally high in n-3 PUFA or which had been 

fortified to contain high amounts, making the intervention more biologically relevant. 

The intervention resulted in significantly increased incorporation of total n-3 PUFA 

within mononuclear cell (MNC) and plasma phospholipids after four weeks (3-fold in 

EPA and 1.5-fold increase in DHA), in addition to inverse associations with synthesis 

of thromboxane B2 (TXB2), PGE2 and IL-1β by LPS-stimulated, aspirin pre-treated 

whole blood (Mantzioris et al., 2000).  

A key study utilising soybean oils containing varying FA compositions highlighted the 

beneficial effects of oils rich in MUFA (18.9% MUFA, 2.82% PUFA, 5.76% SFA) and 

low in SFA (6.19% MUFA, 14.6% PUFA, 4.91% SFA) which increased PHA induced 

lymphocyte proliferation in cells from older adults (>50 years), with elevated 

cholesterol (Han et al., 2012). While, low ALNA and LA oil consumption (18.3% 

LA:ALNA) significantly reduced lymphocyte proliferation (Han et al., 2012); however 

the study had a very small study population of only 18 subjects. Further to this study 

consumption of extra virgin olive oil by overweight or obese subjects (≥ 65 years) for 

three months significantly increased anti-CD3/CD28-stimulated T cell proliferation in 

whole blood compared to cells from the placebo group (10% corn oil, 90% soybean 

oil, plus butter to use as spread), a total of 44 subjects completed the study (Rozati 

et al., 2015). Another very small study (n=10) demonstrated that consumption of 5L / 

week of an almond (3%) and olive oil (0.6%) based drink (51.7% MUFA, 38.3% PUFA 

and 9.9% SFA) by athletes resulted in significantly increased plasma IL-6 and TNF-

α, from baseline, post exercise in the young subjects (19-26 years) but not in the older 

subjects (44-47.2 years) (Capó et al., 2016); though this group was not representative 

of an elderly population. 

Currently, most studies have investigated the effects of PUFAs on immune 

responses, while some (small scale) evidence suggests that increased MUFA intakes 

may be a more suitable for the elderly, since reduced lymphocyte proliferation, 

frequently observed with high PUFA intakes may increase susceptibility to infections. 

This, however, requires much more research to be able to make such 

recommendations. Immune cells derived from the elderly appear to respond to FAs 
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differently to healthy adults, and thus the elderly should be considered separately 

when making dietary recommendations, rather than providing guidance for the 

general adult population.  

Effect of phytochemicals on immune function in the elderly 

There has been limited investigation to date into the effect of polyphenols on the 

immune response of elderly subjects, however a number of reviews have postulated 

the potential for beneficial effects (Magrone and Jirillo, 2011; Magrone et al., 2008). 

Resveratrol is a suggested key compound for longevity and controlling inflammation 

supported by evidence of increased serum adiponectin and reduced thrombogenic 

plasminogen in resveratrol supplemented coronary artery disease (CAD) patients 

(mean age of 59± 10 years) (Tomé-Carneiro et al., 2013). In vitro observations show 

administration of olive oil polyphenols (caffeic acid and oleuopein glycoside) to LPS-

stimulated human whole blood cultures (subjects 18–25 years) resulted in 

significantly reduced IL-1β levels compared to stimulated control cultures; responses 

were correlated inversely with dose (Miles et al., 2005). In addition consumption of 

cocoa polyphenols (40g/ day) with 500 ml skimmed milk, by subjects at high CVD risk 

(≥55 years), significantly reduced surface expression of the adhesion molecules 

CD36 and CD40 on monocytes ex vivo, compared to monocytes from the control 

group (skimmed milk) (Monagas et al., 2009). A small scale (n=23) pilot study has 

recently shown that daily consumption of 12 green olives, containing oleuropein and 

hydroxytyrosol, significantly reduced serum IL-6 levels after 30 days of consumption 

by healthy adults (18–65 years) (Accardi et al., 2016).  

1.1.12 Traditional diets in studies of longevity and age-associated 

disease 

Conflicting evidence exists for all food groups (carbohydrates, protein, FAs and 

phytochemicals) on the ageing immune system with both beneficial and detrimental 

effects observed. It is noteworthy that the studies discussed so far have investigated 

dietary components in isolation, or as encapsulated supplements. This ignores the 

real life response after consumption of whole foods which needs to be considered 

along with any interactions occurring between different components of the diet. Whole 

diet studies can provide the most representative and realistic outcomes from which 

more robust conclusions can be drawn. There has been some interest in traditional 

diets such as the Mediterranean, Okinawan and Nordic diets, with regard to longevity 

and perceived health outcomes, predominantly cardiovascular.   
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Mediterranean diets  

Mediterranean diets differ in composition dependent on their originating country within 

the Mediterranean Basin, since these countries have different religious and cultural 

beliefs influencing their dietary choice (Simopoulos, 2001). The traditional 

Mediterranean (MED) diet refers to dietary patterns of people habitant to olive-

growing regions within the Mediterranean Basin during the 1950s and 1960s 

(Trichopoulou and Lagiou, 1997). Which was first described by Ancel Keys 

(Trichopoulou and Lagiou, 1997) following the Seven countries study (former 

Yugoslavia, Finland, Italy, The Netherlands, Greece, USA and Japan) with 

observations that risk of all cause and CHD death were correlated with SFA intake 

(Keys, 1970). With the follow-up studies showing associations of SFA intake and 

consuming olive oil with every meal in the 15-, 20- and 25-year CHD mortality rates 

(Keys et al., 1984; Keys et al., 1986; Menotti et al., 1989; Menotti et al., 1993). The 

MED diet consists of fruits, vegetables and wholegrain cereals with every main meal, 

olives, olive oil, nuts, seeds and dairy products every day, while potatoes, meat, (oily) 

fish or seafood, eggs, and sweet products are consumed less frequently (Figure 1.) 

(Bach-Faig et al., 2011).  

The MED diet has since been investigated in prospective cohort studies and 

increasing adherence was associated with reduced mortality in CHD patients after 

3.78, 6.7 and 10 years of follow-up (Knoops et al., 2004; Trichopoulou et al., 2007; 

Trichopoulou A, 2005). With 1.3–1.5 times increased risk of MI, coronary bypass, 

angioplasty and CVD with every one point reduction in MED diet score, in a Turkish 

population (Hoşcan et al., 2015). Similarly a longitudinal study from six European 

cities (Helsinki, Stockholm, Augsburg, Rome, Barcelona and Athens), consisting of 

MI survivors (mean age 62 years), showed reductions (3.1% and 1.9%) in mean CRP 

and plasma IL-6 for every increased point of adherence (Panagiotakos et al., 2009). 

Increased MED diet adherence, by participants from the twin heart study, significantly 

associated with greater heart rate variability, a measure of cardiac autonomic 

function, which were independent of genes, shared environmental factors and 

cardiovascular risk factors (Dai et al., 2010). While evaluation of dietary consumption 

of Spanish institutionalised subjects (65–95 years) demonstrated that consumption of 

diets with higher composite scores, indicative of MED diet compliance, only reduced 

mortality risk in those <80 years (Lasheras et al., 2000). 
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Figure 1.2 The Mediterranean diet pyramid. The composition of the Mediterranean 
diet as recommended by the Fundación Dieta Mediterránea, from (Bach-Faig et al., 
2011) with no modifications. 

  



67 
 

Additionally, a number of intervention trials have been conducted (PREDIMED, Medi-

RIVAGE, GISSI-Prevenzione) or are underway (CORDIOPREV) (Delgado-Lista et 

al., 2016). From which greater adherence (every 10%) to the MED diet, post MI, 

significantly reduced the risk of mortality (15%) or coronary events (72%) (Barzi et al., 

2003; de Lorgeril et al., 1994), with subjects >60 years demonstrating the greatest 

benefit (Barzi et al., 2003). While consumption of either a MED diet or low fat diet 

significantly reduced total and LDL cholesterol, the authors acknowledged that 

participants were not fully compliant and the MED diet group did not reach the 

required fibre or MUFA intakes (Vincent-Baudry et al., 2005). Additionally, MED diet 

intervention in subjects at high cardiovascular risk or meeting ≥3 diagnostic criteria 

for metabolic syndrome (MetS) significantly reduced BMI, waist circumference 

(Esposito et al., 2004; Ruiz-Canela et al., 2015), blood pressure, and levels of 

glucose, insulin, total and LDL cholesterol, with more than half of subjects no longer 

classified as having MetS after two years (Esposito et al., 2004). Most recently, the 

comparison of MED diets enriched with nuts or olive oil, with consumption of a low fat 

diet, in a subgroup from the PREDIMED study, increased cholesterol efflux capacity 

compared to baseline and the olive oil enriched diet significantly increased the ability 

of HDL to esterify cholesterol, compared to the low fat diet (Hernáez et al., 2017). In 

addition, both vegetarian and MED diets significantly reduced weight, fat mass and 

BMI of subjects after a three month crossover study, with significantly reduced insulin 

levels, total and LDL cholesterol after the vegetarian diet, while the MED diet 

significantly reduced triglycerides (Pagliai et al., 2017; Sofi et al., 2016).    

However, all of these studies were carried out in the Mediterranean countries of 

Spain, Italy or France (Marseille), so it is of crucial importance to determine whether 

the MED diet can demonstrate the observed health effects in regions other than the 

Mediterranean Basin. This has been investigated by (Kouris-Blazos et al., 1999) 

where elderly Australian subjects (≥70 years), showing greater adherence to the MED 

diet, were associated with greater survival, regardless of whether they were from 

Anglo-Celtic or Greek decent. Which is comparable to a trial conducted in India where 

CAD patients randomised to the MED diet took significantly fewer cardiac medications 

after two years, in addition to having significantly reduced risk of non-fatal MI and 

sudden cardiac death (Singh et al., 2002). With the additional observation that short 

term consumption (nine weeks) of olive oil by healthy subjects (22–44 years) in 

Northern, Central and Southern regions of Europe resulted in significantly decreased 

systolic blood pressure in the non-Mediterranean subjects but not in Mediterranean 

subjects (Bondia-Pons et al., 2007). 
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While several of these studies have targeted an elderly population, in various disease 

states, the effect on immune response has not been extensively investigated, but an 

anti-inflammatory effect of the diet is alluded to. To date some promising findings 

have been obtained but only from small scale and short term studies. Twenty free-

living elderly subjects (mean 67 years), showed significantly increased expression of 

MCP-1, postprandially, after three weeks of SFA-rich dietary intake, while the CHO-

PUFA-rich diet induced significantly increased expression of TNF-α, compared to 

MED diet, in cDNA extracted from PBMCs; the increase in MCP-1 was confirmed in 

plasma samples, in addition to increased IL-6 after consumption of all diets (Camargo 

et al., 2012). In the ZINCAGE study greater adherence to the MED diet by male 

elderly Greek subjects was significantly associated with reduced plasma IL-8, with an 

association made between olive oil consumption and reduced plasma IL-6, IL-8, 

MCP-1 and TNF-α levels, while red meat consumption was positively associated with 

these cytokines and chemokines (Dedoussis et al., 2008). Additionally, increased 

adherence to the MED diet (supplemented with olive oil or nuts) for three months 

significantly reduced monocyte expression of the cell adhesion molecules, CD49d 

and CD40, from older subjects (55–80 years), compared to a low fat diet, along with 

significant reductions in plasma IL-6, in both MED diets, and CRP after the olive oil 

rich MED diet (Mena et al., 2009). A cross-sectional investigation showed that 

subjects (51–75 years) consuming a diet of higher quality, assessed by diet quality 

and healthy eating indexes, which resembled the MED diet with the exception of olive 

oil and specific changes to meat and fish consumption, displayed a significant trend 

toward fewer T helper cells and more cytotoxic T cells (Boynton et al., 2007). 

Additionally, a cross-sectional study showed that elderly subjects, but only non-

Hispanic White individuals, with greater adherence to the MED diet (1 point increase) 

had longer leukocyte telomeres lengths (48 bp increase), while in the whole cohort 

greater telomere lengths were associated with vegetable intakes above the 

population median intake (Gu et al., 2015). This is of interest since telomeres provide 

protection of genetic material located at the chromosomal ends, shortening length of 

telomeres is considered a marker of ageing (Gu et al., 2015).  

Okinawan diets 

The Okinawan diet is traditionally consumed in China, South East Asia and Japan, 

with the highest proportion of energy intake from sweet potatoes, rich in polyphenols 

(Gavrilova and Gavrilov, 2012), in addition to large quantities of seaweed, and leafy 

vegetables, and soy as the principle source of protein (Sho, 2001; Willcox et al., 

2007). Dietary assessment of elderly (≥70 years) and centenarian subjects in 
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Okinawa, by two day food record, showed that female centenarians had low energy 

and vitamin A intakes, and females had inadequate energy, protein, calcium and 

vitamin B12 intakes, while males had intakes close to the Japanese RDAs (only 

available for up 80 years) (Chan et al., 1997). In vitro administration of Okinawan food 

samples, after chloroform extraction, to human (HL-60) promyelocytic or murine 

(RAW 264.7) macrophage cell lines induced greater suppression of free radical (O2
- 

and NO) generation (≥70%) compared to foods common to Japan (Murakami et al., 

2005). Administration of samples from the Gramineae (wild rice and lemongrass) and 

Zingiberaceae (ginger and turmeric) food groups induced the highest frequency of 

suppression (Murakami et al., 2005). However, immune parameters have not been 

investigated in human studies to date. 

Nordic diets 

The new Nordic diet (NND) recommendations (Åkesson et al., 2013), are similar to 

the MED diet but the increase in fruit and vegetables emphasises berries, cabbage 

and root vegetables which are typically grown in Nordic countries, to not only improve 

health but to be ecologically sustainable (Mithril et al., 2012; Mithril et al., 2013). 

Elevated IL-1 receptor antagonist (IL-1Ra) was observed in plasma from MetS 

subjects consuming the control diet compared to those consuming the healthy NND 

diet, across six centres (Uusitupa et al., 2013); IL-1Ra correlated significantly with 

SFAs and TG (Lankinen et al., 2016). Significant differences were also observed in 

plasma levels of the lipid metabolites, plasmalogens (increased) and ceramides 

(decreased) in subjects with MetS after 12 weeks of NND intake, however, these 

differences were not sustained and returned to baseline levels by the end of the study 

(Lankinen et al., 2016). A longitudinal study following Swedish women showed  

increased NND adherence significantly reduced risk of all-cause mortality, with 

wholegrains and apples/pears significantly inversely associated (Roswall et al., 

2015). However, dietary data was self-reported using FFQ at just one time point, 

which introduces bias and is not representative of overall dietary intake (Cade et al., 

2002). Though similarly, follow-up of a cohort of elderly subjects showed that greater 

adherence to the NND improved physical performance in women (Perala et al., 2016). 

While six months intervention with the NND in MetS subjects (18–65 years) had no 

influence on the faecal Prevotella: Bacteroides ratio, when compared to the average 

Danish diet (Roager et al., 2014). Consumption of an Okinawan-based Nordic diet, 

including wholegrain, vegetables (including root vegetables), legumes, fruits 

(including berries), poultry, oily fish and nuts but limiting sugar, white four, red and 

processed meat and dairy products, caused significant reductions in weight, BMI, 
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waist circumference and insulin resistance in type II diabetic Scandinavian subjects 

after a 12 week pilot study (n=30) (Darwiche et al., 2016).  

1.1.13 Concluding statement 

Numbers of neutrophils (Solana et al., 2012) and cytotoxic ability of NK cells remain 

relatively unchanged with increased age (Almeida-Oliveira et al., 2011; Sansoni et 

al., 1993). Changes in numbers of monocyte subsets and their surface expression 

and cytokine secretion profiles have been observed (Hearps et al., 2012; Pinke et al., 

2013; Sadeghi et al., 1999; Seidler et al., 2010) and conflicting observations suggest 

defects in neutrophil NET formation, respiratory burst and bacterial killing (Butcher et 

al., 2001; Hazeldine and Lord, 2013; Sauce et al., 2016; Tortorella et al., 1993). Of 

note the current literature is conflicting with regard to the age-associated changes 

occurring in the DC population (Agrawal et al., 2007; Della Bella et al., 2007; Jing et 

al., 2009; Panda et al., 2010; Sridharan et al., 2011; Stout-Delgado et al., 2008), but 

there appears to be a functional impairment which needs further clarification as the 

observed defects also demonstrate an influence on CD4+ T cell activation (Liu et al., 

2012; You et al., 2013a). An established understanding exists for the influence of 

ageing on cell-mediated immune functions, with extensive evidence demonstrating 

the involvement of thymic involution and the subsequent impact on the remaining T 

cell populations (Briceño et al., 2016; Ferguson et al., 1995; Kang et al., 2004; 

Saavedra et al., 2017; Wikby et al., 2005). However, the humoral immune response 

is less clearly understood with conflicting observations of B cell numbers and 

proliferation rates observed (Colonna-Romano et al., 2009; Lin et al., 2016; Macallan 

et al., 2005; Paganelli et al., 1992) while functional responses to vaccinations are 

consistently reduced  in the elderly (Ademokun et al., 2011; Frasca et al., 2010; 

Rubins et al., 1998). The observation that mRNA expression of activation-induced 

deaminase (AID) protein, which is required for CSR and SHM,  is downregulated with 

age suggests that Igs may be affected by ageing (Frasca et al., 2010; Frasca et al., 

2008).    

The relatively few whole diet studies that have assessed expression of adhesion 

markers or cytokine secretion by immune cells have been short in duration (typically 

three months) and have predominantly been conducted in Mediterranean regions 

such as Spain or Italy (Camargo et al., 2012; Dedoussis et al., 2008; Mena et al., 

2009). A limited number of studies have investigated the Okinawan diet and NND but 

currently there is no human evidence of immune modulation. Therefore, since there 

appears to be potential for the MED diet to improve immune parameters, due to the 

current evidence of reduced cardiovascular risk factors, and reduced expression of 
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inflammatory mediators, predominantly in an elderly population, there is a timely need 

to investigate this diet for a longer duration (i.e. one year) in a healthy elderly 

population residing in non-Mediterranean regions. 

 Hypothesis 
Dietary intervention with a MED diet for one year may increase numbers of DC 

subsets and increase their ability to secrete cytokines in response to antigenic 

stimulation in cells from elderly subjects. Additionally, the MED diet may increase the 

diversity of the Ig repertoire, which is observed to be oligoclonal in the elderly, during 

early B cell precursor development in the BM. 

 Aims  
To demonstrate the age-associated changes observed in DC numbers and function, 

and Ig repertoire. To determine whether one-year intervention with the MED diet in 

elderly subjects (65–79 years) can influence the observed age-associated changes 

in DCs and the variable region of the Ig heavy chain.  

 Objectives 
To utilise blood samples from elderly subjects on the Nu-AGE dietary intervention 

study, at baseline, to determine absolute numbers of peripheral mDCs and pDCs and 

their cytokine secreting ability, in comparison to blood samples collected from young, 

control subjects, on the Im-AGE study and to subjects’ own post-intervention 

samples. Additionally, to determine whether IgH variable region gene usage and 

CDR3 length are affected by MED diet intervention, in collaboration with the 

Babraham Institute.  
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Chapter 2 

Materials and methods 

2.1 General materials  

Laboratory reagent supplier names have been listed within the text, with product 

details. The water used within experiments was ultrapure and of 18.2 MΩ cm-1 

resistance derived from a Milli-Q® Ultrapure water system (Millipore), unless 

otherwise stated. 

2.1.1 Solutions and buffers used 

All prepared solutions and buffers used and referred to within this thesis are detailed 

in Table 2.1. 

2.1.2 Dilution of antibodies 

All antibodies used throughout this thesis are referred to within the text and the 

clones, conjugated fluorochromes, dilutions used and suppliers, of which, are 

detailed in Table 2.2. 

2.2 Methodology 

2.2.1 Recruitment of young subjects 

The Im-AGE project obtained ethical approval by NRES Committee South West-

Cornwall, Plymouth and Exeter (15/SW/0038) before the study commenced 

(Appendix I). Young subjects (18–40 years) were recruited at the Norfolk and Norwich 

University Hospital phlebotomy department (Appendix II). A total of 45 participants 

were recruited for immune analysis at the Institute of Food Research. Eligible 

participants were apparently healthy and free from current or recent (three months) 

chronic disease, gave informed consent (Appendix III). Volunteers would not be 

eligible if they had had recent changes to medications, had type I diabetes (T1D), 

were using steroids or immunomodulatory medication, or taking antibiotics currently 

or within the previous two months. Additionally, anyone already participating in 

another study, a regular blood donor or any individual unable to give informed consent 

would not be eligible to take part. These criteria were the same as for the Nu-AGE 

participants except for the changed age category and with the additional exclusion of 

pregnant and breast feeding women, Table 2.1.  
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Buffer Reagent/ supplement 

added 

Proportion (conc.) Supplier 

details 

Flow cytometry 

buffer: 

Phosphate buffered 

saline (PBS) solution 

99.85% Sigma Aldrich 

 Heat-inactivated foetal 

bovine serum (FBS) 

(Endotoxin certified 

<0.6 EU/ml) 

0.5% Biosera  

 10% Formalin 1% Sigma Aldrich 

Freeze medium: Heat-inactivated FBS 

(Endotoxin certified 

<0.6 EU/ml) 

90% Biosera 

 Dimethyl sulphoxide 

(DMSO) 

10% Sigma Aldrich 

Thaw medium: Roswell Park Memorial 

Institute (RPMI) 1640 

media 

90% Sigma Aldrich 

 

 Heat-inactivated FBS 

(Endotoxin certified 

<0.6 EU/ml) 

10% Biosera 

1x Red blood cell 

lysis solution: 

10x Red blood cell 

lysis solution 

10%  Miltenyi-

Biotec 

 Double distilled water 90% - 

Tissue culture 

medium: 

RPMI 1640 90% Sigma Aldrich 

 

 Heat-inactivated FBS 

(Endotoxin certified 

<0.6 EU/ml) 

10% Biosera 

 L-glutamine 2mM Lonza 
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 Penicillin/ 

streptomycin 

100 U/ 0.1 mg/ml Lonza 

MACs buffer: PBS 99.1% Sigma Aldrich 

 

 Ethylenediaminetetra-

acetic acid (EDTA) 

0.4% (0.5M)  Lonza 

 Heat-inactivated FBS 

(Endotoxin certified 

<0.6 EU/ml) 

0.5% Biosera 

Table 2.1 Composition of solutions and buffers used within this thesis and 
source of reagents. 
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Antibody  Dilution  Supplier 

Anti-BDCA mAbs (CD1c, clone: AD5-8E7; 

CD303, clone: AC144; CD141, clone: AD5-

14H12; CD14-Pe-Cy5 and CD19-PE-Cy5) 

1:6 Miltenyi-

Biotec 

Isotype control mAbs (mouse IgG2a-PE, mouse 

IgG1-FITC, mouse IgG1-APC, mouse IgG2a-

PE-Cy5 and mouse IgG1-PECy5) 

1:6 Miltenyi-

Biotec 

CD1c-PE (Clone: AD5-8E7) 1:12.5 Miltenyi-

Biotec 

CD303-PE (Clone: AC144) 1:12.5 Miltenyi-

Biotec 

CD304-PE (Clone:AD5-17F6) 1:12.5 Miltenyi-

Biotec 

CD14-FITC (Clone:TÜK4) 1:40 Biolegend 

CD19-FITC (Clone:LT19) 1:20 Biolegend 

CD3-FITC (Clone: UCHT1) 1:5.5 Becton 

Dickinson 

(BD) 

CD16-FITC (Clone: 368) 1:5.5 Becton 

Dickinson 

(BD) 

HLA-DR-Alexa Fluor 700 (Clone: L243) 1:25 Biolegend 

PE rat IgG2a, isotype control (Clone: 543.10) 1:12.5 Miltenyi-

Biotec 

PE mouse IgG1, isotype control (Clone: IS5-

21F5) 

1:12.5 Miltenyi-

Biotec 

FITC mouse IgG1, isotype control (Clone: IS5-

21F5) 

1:12.5 Miltenyi-

Biotec 
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Alexa Fluor 700 Mouse IgG2a, isotype control 

(Clone: MOPC-173) 

1:50 Biolegend 

IL-8-PE-Cy7 (Clone: E8N1) 1:50 Biolegend 

IL-1β-Alexa Fluor 647 (Clone: JK1B-1) 1:50 Biolegend 

IL-6-Pacifc Blue (Clone: MQ213A5) 1:25 Biolegend 

PE-C7 mouse IgG1, isotype control (Clone: 

RTK2071) 

1:200 Biolegend 

Alexa Fluor 647 Mouse IgG1, isotype control 

(Clone: MOPC-21) 

1:50 Biolegend 

Pacific Blue Rat IgG1, isotype control 

(RTK2071) 

1:500 Biolegend 

CD19-VioBlue (Clone: LT19) 1:10 Miltenyi-

Biotec 

Table 2.2 Details of all monoclonal antibodies (mAbs) used within this thesis. 
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2.2.2 Recruitment of elderly subjects 

The Nu-AGE project obtained ethical approval by NHS NRES Committee East of 

England - Norfolk, (REC reference 12/EE/0109) before the study commenced 

(Appendix IV). Elderly subjects (65–79 years) were recruited (Appendix V) and a sub 

group of the total participants gave additional consent for analysis of immune function 

at the Institute of Food Research (IFR) (Appendix VI). A total of 120 participants were 

recruited for this analysis by the study team at the Clinical Research and Trials Unit 

(CRTU) at the University of East Anglia (UEA). Sixty subjects were enrolled into each 

arm of the intervention. Eligible participants were apparently healthy and free from 

current or recent (three months) chronic disease and aged 65–79 years. Volunteers 

would not be eligible if they had had recent changes to medications, had type I 

diabetes, were using steroids or taking antibiotics currently or within the previous two 

months. Additionally, anyone already participating in another study or any individual 

unable to give informed consent would not be eligible to take part. For full list of 

exclusion criteria, Table 2.2.    

The Im-AGE and Nu-AGE studies were conducted in full compliance with the 

principles of the declaration of Helsinki (2013 version) and following good clinical 

practice (GCP). There were no conflicts of interest in relation to these studies.  

2.2.3 Subject demographics 

For the Nu-AGE study pre-baseline data was collected in the form of a self-reported 

seven-day food diary (7DD) (Appendix VII), a general questionnaire to provide socio-

economic information, followed by anthropometric measurements at baseline at the 

CRTU. This data collection was repeated one year post-intervention. In order to 

improve accuracy of the diet diaries, photographs of common portion sizes and 

servings such as mugs, glasses and spoons were provided, additionally a member of 

the study team attended a home visit which allowed more accurately assessment of 

portion sizes and typically consumed brands of foods or foods which may not be 

clearly identified in the diet diary. For the Im-AGE study a lifestyle questionnaire 

(Appendix VIII) was completed by the participants.  

2.2.4 Dual x-ray bone densitometer (DXA) scans 

Bone mineral density (BMD) and bone composition were determined using whole 

body DXA scans (DXA Discovery Wi dual-energy X-ray absorbtiometer; Hologic Inc.), 

at pre- and post-intervention study visits, by a trained member of the study team 

according to a standard protocol. BMD was measured at the lumbar spine and 

proximal femur.  
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Inclusion criteria Exclusion criteria 

Male or female aged 18–40 years old Current manifestation of disease (such as 

aggressive cancer) 

Free from chronic disease for the past two 

years 

Unstable organ failure or organ failure 

requiring a specific diet 

Free and independent living History of severe heart disease, chronic 

kidney disease, liver cirrhosis, respiratory 

problems 

Willing to provide a one-off blood sample Diabetes Mellitus type I 

 Chronic use of corticosteroids or any 

other immunomodulatory medication 

 Antibiotic use within the previous two 

months 

 Change in habitual medications within the 

previous three months (e.g. statins, 

thyroxin) 

 Participation in any intervention study, or 

sampling donation of blood that may 

increase volume taken over 500 mL in a 

four month period. 

 Regular blood donor 

 Malnutrition (diagnosed as a BMI lower 

than 18.5 kg/m2) 

 Loss of more than 10% body weight within 

six months 

 Pregnant and breastfeeding women 

 Unable to provide informed consent 

Table 2.3 Inclusion and exclusion criteria applied to recruiting participants onto 
the Im-AGE study. 
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Inclusion criteria Exclusion criteria 

Male or female aged 65–79 years old Current manifestation of disease (such as 

aggressive cancer) 

Free from chronic disease for the past two 

years 

Unstable organ failure or organ failure 

requiring a specific diet 

Free and independent living History of severe heart disease, chronic 

kidney disease, liver cirrhosis, respiratory 

problems 

Willing to participate for one year Diabetes Mellitus type I 

 Chronic use of corticosteroids 

 Antibiotic use within the previous two 

months 

 Change in habitual medications within the 

previous three months (e.g. statins, 

thyroxin) 

 Participation in another dietary 

intervention study, or sampling donation 

of blood that may increase volume taken 

over 500 mL in a four month period 

 Malnutrition (diagnosed as a BMI lower 

than 18.5 kg/m2) 

 Loss of more than 10% body weight within 

six months 

 Presence of frailty according to the criteria 

of (Fried et al., 2001) 

 Unable to provide informed consent 

Table 2.4 Inclusion and exclusion criteria applied to recruiting participants onto 
the Nu-AGE study. 
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2.2.5 Blood sample collection 

For both studies 23 ml blood was taken, after informed consent had been given, by a 

trained research nurse or phlebotomist by venepuncture; 3 ml with sodium heparin 

and 20 ml with EDTA (BD; Bunzyl Healthcare). Blood samples were analysed within 

four hours of collection. In addition to this PhD work, further blood samples (total 

volume 100 ml) were collected from all Nu-AGE volunteers at pre- and post-

intervention visits, these samples included 58mL processed for plasma samples, 

using EDTA tubes (minimum plasma yield of 26mL). The plasma collected was used 

for analysis of lipid profiles (total cholesterol, LDL cholesterol, HDL cholesterol and 

triglycerides). 

2.2.6 Isolation of peripheral blood mononuclear cells (PBMCs) 

Blood collected via venepuncture into EDTA-vacutainers was used to isolate PBMCs 

by overlaying the blood on a Ficoll-Hypaque solution (Sigma Aldrich, density 1.077 g/ 

mL) using leucosep tubes (Greiner Bio-one). PBMCs were counted using a 

haemocytometer and trypan blue stain to assess viability. Approximately 2 x 106 

PBMCs were frozen in heat-inactivated FBS (Biosera) containing 10% dimethyl 

sulfoxide (DMSO) (Sigma-Aldrich) in aliquots of 1.8 ml at -80ºC; aliquots were 

cryopreserved using Nalgene Cryo Freezing containers (Nalgene Nunc International, 

Rochester, New York ) to ensure a freezing rate of -1ºC/ minute. After at least 48 

hours the aliquots were removed from the freezing containers and placed into long 

term storage containers within the -80ºC freezer.  

2.2.7 Thawing of PBMCs  

Previously frozen PBMCs were thawed in a 37 ºC water bath and washed in an 

excess of thaw media (90% RPMI 1640 (Sigma Aldrich) and 10% heat-inactivated 

FBS (Biosera)) to remove DMSO from cells, within 20 minutes of thawing. Cell pellets 

were resuspended in media containing 90% RPMI 1640, 10% heat-inactivated FBS, 

and supplemented with 2 mM L-glutamine and 100 U penicillin and 0.1 mg/ ml 

streptomycin antibiotics. Cells were counted using the viability stain, trypan blue, and 

resuspended to give a final concentration of 0.5 x 106 cells / 200 µl. Cells were 

aliquoted into 96 well flat bottom tissue culture plates and covered with a plate seal 

before being left to recover at 37ºC in 5% CO2 for 18 hours.  

2.2.8 Statistical analysis 

Statistical analysis carried out for this thesis was conducted using GraphPad Prism 

Version 7 or 7.02. The specific tests performed for the analysis of data collected are 

detailed in relevant chapters, at the end of the methods section.  
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Chapter 3 

Impact of age on the distribution and function of plasmacytoid 

and myeloid dendritic cells  

3.1 Introduction  

The increased susceptibility to infection with increased ageing, such as that 

demonstrated between 2003 and 2015 where increased deaths, particularly of the 

very old, coincided with a peak in hospital admissions and intensive care for influenza 

(Wells, 2016). Since, antigen presentation is of crucial importance for protection 

against infection, respiratory or otherwise, and DCs are a major initiator of primary 

immune responses by presenting unique antigen to naïve T cells (Uyemura et al., 

2002), this cell type is therefore of interest with regard to ageing.  

3.1.1 Effect of ageing on DC numbers  

Whether DCs continue to be produced with increasing age could be questioned since 

it has been shown that with increasing age there are changes in the numbers of both 

mDCs and pDCs (Della Bella et al., 2007; Jing et al., 2009; Pérez-Cabezas et al., 

2007; Shodell and Siegal, 2002), though the findings thus far are inconsistent, with 

some observations of no differences between age groups (Agrawal et al., 2007). To 

date different antibody combinations have been applied to surface stain immune cells 

(within whole blood or PBMCs), using lineage negative staining in combination with 

positive staining for HLA-DR, CD11c and CD123 (Della Bella et al., 2007; Jing et al., 

2009; Shodell and Siegal, 2002), or the use of specific markers for DCs of CD1c and 

CD303 (Pérez-Cabezas et al., 2007). In addition, whole blood or isolated PBMCs 

have been used as a starting material for analysing DCs, with DC counts determined 

using a combination of flow cytometry and leukocyte cell counts using flow count 

fluorospheres (Pérez-Cabezas et al., 2007) or haemocytometers (Ciaramella et al., 

2011; Della Bella et al., 2007). The lack of consistency and standardisation in 

methodology may explain the inconclusive observations. However, since DCs are 

crucial for the generation of adaptive immune responses, it seems plausible that there 

may be an effect on DCs with increasing host age which would influence downstream 

T and B cell responses. 

3.1.2 Effect of ageing on DC function 

The effect of host ageing on the production of efficient T cell responses by DCs has 

shown that T cells and DCs from aged mice resulted in reduced proliferative 
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responses in mixed leukocyte reactions (You et al., 2013a) and adoptive transfer 

experiments where T cells from old transgenic mice (20–24 months) transferred to 

young mice (2–4 months) (source of APCs) showed significantly greater (3-fold; 

p<0.01) T cell proliferation compared to old mice, though there were still impairments 

since T cells from young transgenic mice transferred to young mice demonstrated 

7.4-fold higher recovery of T cells (p<0.01) (Pereira et al., 2011). This suggests that 

host age is more influential than whether T cells are from a young or old host on 

APCs, in terms of their ability to induce T cell proliferation. Measurement of T cell 

proliferation using carboxy fluorescein succimidyl ester (CFSE) and IFN-γ production 

both showed ~50% reduction, when using an in vitro model of HLA-A2+ restricted, 

influenza matrix protein (M158-66) specific T cell line, generated from PBMCs from a 

healthy human donor; after co-culture with HLA-matched influenza infected DCs from 

old subjects (Liu et al., 2012).    

Cytokines are produced by and induce the differentiation of DCs from immature into 

mature cells to allow interaction with antigen-specific T cells (or B cells) (Blanco et 

al., 2008). Therefore, the ability of DCs to produce cytokine after antigenic exposure, 

as well as the quantity of the cytokines produced is important for DC function, which 

may be affected by host ageing. TLR stimulation of mDCs and pDCs in PBMCs 

derived from both elderly (≥65 years) and young (21–30 years) healthy subjects 

induced less IL-6, TNF-α and IL-12(p40) (Panda et al., 2010), which was also 

observed when the experiment was repeated using DCs enriched from PBMCs, along 

with reduced IFN-α. While this finding does not fit with the “inflamm-aging” theory, the 

observation that unstimulated PBMC samples showed highly statistically significant 

increases (p<0.0001) in IL-12p40, TNF-α and IL-6 secretion by mDCs, and TNF-α 

and IFN-α by pDCs from older subjects when compared to younger subjects, 

suggests an underlying level of inflammation prior to TLR ligand exposure in the 

elderly (Panda et al., 2010). Similarly the percentage of DCs expressing IL-12 upon 

LPS stimulation was lower in whole blood samples from elderly than young subjects 

(Della Bella et al., 2007), in addition to reductions in IFN-α production by pDCs within 

PBMCs, and IL-6 and TNF-α by isolated pDCs upon stimulation, comparing elderly to 

young subjects (Jing et al., 2009).  

However, enhanced secretion of TNF-α, IL-12p70 and CXC chemokine ligand 10 

(CXCL10) has also been observed by MoDCs generated from aged subjects infected 

with Chlamydophila pneumoniae (Cpn) (Prakash et al., 2014), with similar findings 

when human DNA, isolated from human blood (as a model self-antigen), was 

delivered intracellularly to MoDCs, from blood of elderly subjects (65–90 years) with 
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increased secretion of IL-6 and IFN-α in cell culture supernatants (Agrawal et al., 

2009). Significant increases in IL-6 and TNF-α (p<0.01) secretion were observed after 

LPS stimulation of MoDCs (Agrawal et al., 2007) and peripheral blood mDCs (p<0.05) 

from elderly subjects (60–80 years) (Janssen et al., 2015), compared to DCs from 

young subjects (20–35 years), in addition to significant reductions in IL-10 (~1.5 fold), 

IFN-λ (~1- fold) and IFN-α (~2-fold) secretion by MoDCs after stimulation with Cpn 

(Prakash et al., 2014). These data imply that DCs from the elderly have an enhanced 

ability to secrete pro-inflammatory mediators while secretion of anti-inflammatory 

mediators is inhibited, additionally TLR4 responses of these elderly individuals 

appears intact (Janssen et al., 2015). However, not all of the studies to date confirm 

this and many, discussed here, have observed reduced secretion of TNF-α, IL-6 and 

IL-12 (Della Bella et al., 2007; Jing et al., 2009; Panda et al., 2010) so there are 

inconsistencies within the current literature of cytokine secretion by DCs from elderly 

compared to young subjects; with different source of cells used within these 

experiments providing a potential cause for the differing results. 

3.1.3 Effect of age on adipokine production by PBMCs   

Since ageing is associated with increased risk of disorders and diseases such as 

atherosclerosis, CVD and T2D, the possibility that adipokines may play a part in the 

ageing process, via the response of APCs or T cells to stimulation, is of interest. Thus, 

other cytokines of interest with regards to ageing are of adipokine origin and include 

resistin, leptin, adiponectin, adipsin, monocyte chemoattractant protein 1 (MCP-1) 

and retinoic binding protein 4 (RBP4). Resistin is thought to originate from fat-

infiltrating immune cells, and since induction of resistin secretion has been observed 

as a result of LPS treatment of human macrophages, which was further induced by 

TNF-α treatment and addition of neutralising antibodies to TNF-α, IL-6 and IL-1β 

(Lehrke et al., 2004). This suggests that endotoxin induced resistin secretion is 

mediated by the secretion of inflammatory cytokines and that the low grade 

inflammatory state, often observed in ageing may enhance resistin secretion further 

upon exposure to inflammatory stimuli. 

3.1.4 Gaps in knowledge; variation in methodology and inconclusive results 

Since the studies carried out to date have resulted in inconsistent findings, likely as a 

result of the variation in the methodologies used, direct comparisons are difficult. The 

aim of this work was to use the present commonly agreed method by the 

Nomenclature Committee of the International Union of Immunological Societies 

(Ziegler-Heitbrock et al., 2010) for identification of DC subsets and to use the most 

robust method of detecting DC subsets in terms of sample choice, choice of antibody 
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panel and method of cell counting to provide robust data which can aid in clarifying 

the effect of age on DC subsets. Since, a decline in DC numbers with age could 

impact on antigen presentation this chapter also investigated the impact of changes 

in DC subsets on cytokine production by stimulating DCs, ex vivo. 

3.1.5 Rationale for choice of cytokines to investigate  

IL-8 was found to be the predominant cytokine produced upon TLR stimulation of 

CD1c-DCs (Piccioli et al., 2007) and IL-1β is secreted as a result of antigen specific 

DC:CD8+ T cell interactions during antigen presentation (Gardella et al., 2000). 

Significant increases in IL-6 secretion (up to 2-fold greater) by DCs have been 

observed in numerous studies with increasing age of subjects (Agrawal et al., 2007; 

Agrawal et al., 2009; Janssen et al., 2015; Prakash et al., 2014), while others have 

shown significant reductions (up to 2-fold lower, depending on stimulus) in secretion 

with increasing age of the host (Panda et al., 2010). Additionally, IL-6 and IL-1β are 

components of inflammaging (Ostan, 2008; Salvioli et al., 2013). These cytokines (IL-

6, IL-8 and IL-1β) were investigated in terms of secretion by DCs, comparing samples 

derived from young and elderly subjects, within this thesis. Additionally, since IL-8, 

MCP-1 and resistin have been associated with increased age (Lee et al., 2007) and 

IL-6, TNF-α and IL-1β secretion have been observed with age-associated conditions 

such as atherosclerosis and T2D (Pickup, 2004; Spranger et al., 2003), but the 

immune role is less well understood, secretion of a panel of adipokines was assessed 

from PBMC samples isolated from young and elderly subjects. 

3.1.6  Aims and objectives 

Are DCs effected numerically or functionally with increasing age? Also, do PBMCs of 

elderly subjects produce more adipokines? To answer these questions the following 

objectives were undertaken: 

Objective 1: Determine absolute numbers of mDCs and pDCs within peripheral blood 

extracted from young (18–40 years) and elderly (65–79 years) subjects using 

multiparameter flow cytometry 

Objective 2: Determine cytokine response of PBMCs of young and elderly donors to 

TLR stimulation.  
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3.2 Methodology 

3.2.1 Recruitment of subjects 

Study subjects were recruited onto either the Im-AGE (18–40 years) or Nu-AGE (65–

75 years) studies; details provided in Chapter 2 in sections 2.2.1, and 2.2.2, 

respectively. The inclusion and exclusion criteria used to select suitable study 

participants can be found in Tables 2.3, and 2.4, respectively. 

3.2.2 Blood dendritic cell enumeration 

The protocol was carried out as detailed in the manufacturers’ instructions with whole 

blood (Blood Dendritic Cell Enumeration kit, human; 130-091-086, Miltenyi Biotec) 

using the mAbs CD1c-PE (Clone: AD5-8E7), CD303-FITC (Clone: AC144), CD14-

PE-Cy5, CD19-PE-Cy5 and CD141-APC (Clone: AD5-14H12). As controls, isotype 

matched mouse IgG2a-PE, IgG1-FITC, IgG1-APC, Ig-G2a-PE-Cy5 and IgG1-PE-Cy5 

antibodies were used. Dead cell discriminator was also included. After incubation on 

ice under a 60 W light bulb for 10 minutes, red blood cells were lysed using 1x red 

blood cell lysis solution (details in Chapter 2, Table 2.1) for 10 minutes in the dark, at 

21ºC. Following two washing steps, by centrifugation at 300 x g for 5 minutes, 

samples were fixed with 3.7% formaldehyde in PBS and resuspended in 600µL flow 

cytometry buffer (details in Chapter 2, Table 2.1). 100 μL of Flow-countTM 

fluorospheres were added to each tube prior to acquisition for an accurate absolute 

count of leukocytes (Flow-CountTM Fluorospheres, 7547053, Beckman Coulter). Data 

was acquired on the Beckman Coulter Cytomics FC500 MPL (100 μL sample/ run), 

and the Sony EC800 (150 μL sample/ run), so that back-up data was available, a 

minimum of 1000 events were acquired within the flow count fluorosphere gate, and 

a minimum of 100,000 events were acquired within the cell gate, which excluded 

debris from analysis. 

Single-stained compensation controls, prepared using Ultracomp ebeads (Affymetrix 

eBioscience), and unstained control samples were run on both cytometers to allow 

for manual compensation to be applied to all sample data acquired. Acquired data 

was analysed using FlowJoTM software (TreeStar, San Carlos, CA), Version 10. The 

gating strategy (Figure 3.1) for Im-AGE samples was consistent with that set out by 

Miltenyi-Biotec.  
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Figure 3.1 Electronic gating strategy applied to all samples using FlowJoTM 
V.10. 
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Figure 3.1 Electronic gating strategy applied to all samples using FlowJoTM 
V.10. Whole blood was stained with the Miltenyi Biotec DC enumeration Test cocktail 
(CD1c-PE, CD303-FITC, CD14-PE-Cy5, CD19-PE-Cy5 and CD141-APC) and with 
the control cocktail (Mouse IgG2a-PE, Mouse IgG1-FITC, Mouse IgG1-APC, CD14-
PE-Cy5 (isotype: Mouse IgG2a) and CD19-PE-Cy5 (isotype: Mouse IgG1)), followed 
by dead-cell discriminator (DCD). After activation of the DCD, the red blood cells were 
lysed and the washed cells are fixed with 3.7% formalin before running on the Sony 
EC800 iCyt Flow Cytometer. a) Acquired data were gated to exclude debris and any 
remaining red blood cells; cells gate, b) cells within cells gate were gated to exclude 
B cells and granulocytes as well as dead cells; gate P2, c) gate P2 allowed detection 
of cells positive for CD303-FITC, gate pDC, and cells positive for CD1c-PE, gate 
mDC, d) count beads were gated to ascertain the absolute number of flow count 
fluorospheres detected, for use in calculating the absolute total counts of mDCs and 
pDCs.
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3.2.3 Calculation of mDC and pDC subset counts 

For each individual sample the absolute number per μL of blood of the pDC and mDC 

subsets was calculated, by subtracting the number of cells in the DC gate for the 

isotype control, from the count in the DC gate for the test sample. This number, for 

each subset, was then divided by the count of Flow-countTM fluorospheres and 

multiplied by the assayed concentration of the Flow-countTM fluorospheres; calculated 

by the manufacturer and provided with each new lot of beads. 

3.2.4 Functional analysis of blood DCs  

PBMC stimulation  

Frozen PBMCs were thawed in a 37 ºC water bath and washed in an excess of thaw 

media (90% RPMI 1640 and 10% heat-inactivated FBS) to remove DMSO from cells, 

within 20 minutes of thawing. Cells pellets were resuspended in tissue culture media 

supplemented with 2mM L-glutamine, 100 U penicillin and 0.1 mg/ml streptomycin 

(details in Chapter 2, Table 2.1). Cells were counted using the viability stain, trypan 

blue (Sigma Aldrich, T8154), and resuspended to give a final concentration of 0.5 x 

106 cells / 200 µl. Cells were aliquoted into 96 well flat bottom tissue culture plates 

(Sarstedt) and covered with a plate seal before being left to recover at 37ºC in 5% 

CO2 for 18 hours.  

PBMCs were then incubated with 1 μg/ml LPS (Ultrapure LPS, E. coli 0111:B4; 

Invivogen) and 2.5 μg/ml R848 (Imidazoquinoline compound, Invivogen), in the 

presence or absence of 2 μM monensin (Sigma Aldrich, M5273) for 3 hours. 

Unstimulated controls were incubated with fresh tissue culture media, with or without 

2 µM monensin. Supernatants were stored at -80°C prior to analysis. 

Intracellular staining  

The mAbs for the surface markers CD1c-PE (Clone: AD5-8E7), CD303-PE (Clone: 

AC144), CD304-PE (Clone: AD5-17F6), (all from Miltenyi-Biotec), CD3-FITC (Clone: 

UCHT1), CD16-FITC (Clone: 3G8), (Becton Dickinson), CD14-FITC (Clone: TÜK4), 

CD19-FITC (Clone: LT19), HLA-DR-Alexa Fluor 700 (Clone: L243) (all from 

Biolegend) and Fc Receptor block (Miltenyi-Biotec) were added and incubated with 

the samples for 25 mins, at 4⁰C in the dark. The corresponding isotype controls IgG1-

FITC (Biolegend), IgG2a-PE, IgG1-PE (Miltenyi-Biotec) and IgG2-AF700 (Biolegend) 

were also used.  

Cell membranes were fixed and cells permeabilised using Leucoperm cell fixation 

and permeabilisation reagents (AbD Serotec) then stained for intracellular cytokines 
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with the mAbs IL-1β-PE-Cy7 (Clone: JK1B-1), IL-6-Pacific Blue (Clone: MQ2-13A5) 

and IL-8-Alexa-Fluor-647 (Clone: E8N1), and the corresponding isotype controls PE-

Cy7-Mouse IgG1 and Alexa-Fluor-647-Rat IgG1 were also used (all from Biolegend). 

Cells were incubated for 30 minutes at 21ºC, in the dark, washed thoroughly with PBS 

supplemented with 0.5% FBS then resuspended in flow cytometry buffer containing 

1% formalin. Data was acquired on the BD LSR Fortessa cytometer. Spectral overlap 

that occurred between channels was manually compensated in FlowJoTM software 

Version 10, after measurement of single-stained compensation controls prepared 

using Ultracomp ebeads (Affymetrix eBioscience) and unstained control samples. 

Data was analysed using FlowJoTM software Version 10 according to the gating 

strategy detailed in Figure 3.2. 

3.2.5 Multiplex immunoassay of culture supernatants 

Supernatants were thawed on ice and analysed by Multiplex immunoassay 

(LEGENDplex Human Adipokine panel, Biolegend) to assess overall cytokine and 

chemokine secretion from the PBMCs; targeting IL-8, IL-1β, IL-6, MCP-1, TNF-α, 

leptin, IL-10, adiponectin, adipsin, IFN-γ, IP-10 (CXCL10), RBP4 and resistin 

secretion. The assay was performed at 21ºC in a 96-well V-bottom microplate 

(Greiner-Bio), according to manufacturers’ instructions (Figure 3.3), using cell culture 

supernatant, previously frozen at -80 ºC. The standard provided within each kit was 

serially diluted (1:4) six times after the top standard (neat standard); in addition to 

assay buffer (zero standard). To perform the assay, 25 µL of assay buffer was added 

to all wells, 25 µL of diluted standard was added to standard wells and 25 µL of 

sample (cell culture supernatant) was added to sample wells, followed by 25 µL pre-

mixed beads and 25 µL detection antibodies to all wells. The plate was incubated in 

the dark for 2 hours on a plate shaker, 1000 rpm. After the incubation 25 µL of 

Streptavidin-PE conjugated beads were added to all wells, followed by a 30 minute 

incubation on the plate shaker, 1000 rpm. The plate was centrifuged at 1000 x g for 

5 minutes, after removing the supernatant 200 µL wash buffer was added before a 

further centrifugation step. Each well was resuspended in 300 µL wash buffer before 

acquiring data on the flow cytometer (BD Fortessa X-20); mean fluorescence intensity 

(MFI) for the top standard was kept consistent between every experiment. 
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Figure 3.2 Gating strategy applied to PBMC samples to identify DCs producing 
IL-6, IL-8 and IL-1β.  



91 
 

Figure 3.2 Gating strategy applied to PBMC samples to identify DCs producing 
IL-6, IL-8 and IL-1β. After 3 hour stimulation with or without LPS and R848, peripheral 
blood mononuclear cells (PBMCs) were surface stained with the monoclonal 
antibodies CD1c-PE, CD303-PE, CD304-PE, CD3-FITC, CD16-FITC, CD14-FITC, 
CD19-FITC, HLA-DR-Alexa Fluor 700 to allow identification of DCs, and Fc Receptor 
block. Intracellular cytokine staining was performed, after permeabilisation of the cell 
membranes, with the intracellular monoclonal antibodies IL-1β-PE-Cy7, IL-6-Pacific 
Blue and IL-8-Alexa-Fluor-647. Fixed samples were run on the BD LSR Fortessa and 
at least 100,000 events were acquired in the cell gate, data were analysed using 
FlowJoTM software version 10. a) FSc versus SSc plot allowed cells to be gated and 
debris to be excluded based on light scattering properties of cells, b) Lineage (FITC) 
versus HLA-DR (Alexa Fluor 700) plot excluding lineage+ cells (T cells, B cells, 
monocytes) and gating on HLA-DR+ MHC-II expressing cells, c) CD1c, CD303, 
CD304 (PE) versus SSc to gate only HLA-DR+ cells that expressed the specific DC 
markers, d) IL-6 (Pacific Blue) versus IL-8 (PE-Cy7) identified DCs that expressed 
these cytokines singly or in combination, e) IL-8 (PE-Cy7) versus IL-1β (Alexa Fluor 
647) identified DCs that expressed these cytokines singly or in combination.  
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Acquired data were analysed using the Biolegend LEGENDplex software. Briefly, 

standard curves are produced for each of the 13 analytes, these standard curves 

allowed the concentrations of each analyte, within the samples measured, to be 

determined. This was based on mean fluorescence intensity (MFI) values which 

related to known concentrations for serial dilution of the standards. The standard 

curves also provided validation for each experiment. Inter-plate variability was 

determined for experiments carried out on different days. 

3.2.6 Statistical analysis 

Subject demographics of young and elderly subjects (at baseline) were compared 

using Mann Whitney U test, after carrying out D’Agostino & Pearson normality tests, 

using GraphPad Prism Version 7. 

Blood mDC and pDC phenotypes were compared between elderly and young 

volunteers using a Welch-Satterthwaite t-test on rank transformed data. For mDC, the 

size of the difference (Hodges Jr and Lehmann, 1963) and the 95% confidence 

intervals (Moses, 1965) were estimated for a Wilcoxon Mann Whitney U test.  

GraphPad Prism Version 7 was used to determine the differences in proportions and 

cell counts of DCs which were positive for IL-6, IL-8 and IL-1β secretion between 

young and elderly subjects using Mann-Whitney U tests, after performing a 

D’Agostino & Pearson normality test to determine non-gaussian distribution. One-way 

analysis of variance (ANOVA) using the Kruskal-Wallis test with Dunn’s multiple 

comparisons post-hoc test was used to identify any differences in proportions of 

single and double positive cells. 

GraphPad Prism Version 7 was used to determine inter-plate variability between 

multiplex immunoassays using repeated-measures ANOVA. Differences in 

concentration of each analyte between unstimulated and stimulated samples were 

calculated using two-tailed paired t-tests, differences in concentration change from 

unstimulated level between young and elderly subjects was determined using two-

tailed Mann-Whitney U tests for each analyte.    
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Figure 3.3 Schematic of Biolegend’s LEGENDplex multiplex immunoassay; 
(Biolegend, 2016). The kit comprised two sets of pre-mixed capture beads which 
were different sizes (set A and B) within which the beads had different levels of APC 
fluorescence. Each bead within the set bound to a specific analyte. Upon incubating 
samples with the pre-mixed beads any analyte present would bind to the beads. 
Biotinylated detection antibody would bind to its specific analyte bound to the capture 
beads. Addition of streptavidin PE provided the fluorescent signal which was detected 
by the flow cytometer, the intensity of the signal indicated the proportion of analyte 
bound. The LEGENDplex software used the mean fluorescence intensity of each 
analyte detected within each sample, with the standard curves based on the serial 
dilution of the standard, to calculate concentrations in pg/ml of each analyte within 
each sample.  
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3.3 Results  

3.3.1 Subject demographics 

Mean ages of the two groups were 30.71 years for the young cohort and 70.33 years 

for the elderly cohort (Table 3.1). In both groups there was a greater number of female 

than male participants, however, this was not significantly different. The mean weight 

and BMI of participants between groups was similar though the upper range of 

weights of the elderly cohort was greater than for the young group. When considering 

height there was a significant difference between the young and elderly groups, with 

the elderly having a lower mean value, which is of importance because losing height 

with age would have implications on BMI.   

3.3.2 Numerical analysis of blood DC subsets 

To obtain an accurate comparison of DC subset counts between the two age groups, 

with minimal sample processing whole blood was used and an antibody panel 

comprising the blood DC specific markers CD1c and CD303, excluding CD14 and 

CD19 positive monocytes/macrophages and B cells, respectively. 

Comparing the young to the elderly cohort the mDC phenotype, using a Welch-

Satterthwaite t-test on rank transformed data, there was sufficient evidence to reject 

the null hypothesis of equal cell counts in each group. The data showed that the young 

cohort had greater numbers of mDCs compared to the elderly cohort, with the 

difference estimated to be 0.4831 (0.1622, 0.7932; 95% Confidence interval [CI]) with 

a corresponding significance level of p=0.0043, Figure 3.4a. When mDC counts were 

plotted against age, Figure 3.4b, a trend for reduced cell numbers with increasing age 

was seen.  

However, when comparing the pDC phenotype between the young and elderly 

cohorts there was insufficient evidence to reject the null hypothesis of no difference 

between the cell counts in each group at the 5% significance level (P=0.3108), Figure 

3.5. Additionally, upon comparison of the mDC: pDC ratio between peripheral blood 

samples taken from the young cohort and the elderly cohort, there was no significant 

difference between the two groups; indicated by a significance level of P=0.2078, 

Figure 3.6. 
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  Im-AGE 

(n=45) 

Nu-AGE 

(n=122) 

p value 

Age (years) Mean (SD) 30.71 (6.36) 70.33 (4.16) <0.0001 

 Range 20–40 65–79  

Gender % Female 57 61 0.8589 (ns) 

Weight (kg) Mean (SD) 74.46 (6.36) 73.27 (13.85) 0.6676 (ns) 

 Range 53.98–108.0 49.50–128.50  

Height (cm) Mean (SD) 169.30 (0.10) 165.70 (9.16) 0.0311 

 Range 147.30–191.00 145.60–188.20  

BMI (kg/m2) Mean (SD) 26.13 (3.66) 26.62 (3.96) 0.7237 (ns) 

 Range 19.86–34.15 18.50–43.20  

Table 3.1 Baseline anthropometric data for Im-AGE and Nu-AGE participants. 
SD = Standard deviation, ns= not statistically significant. 
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Figure 3.4 mDC counts for the Im-AGE (young) and Pre-intervention Nu-AGE 
(elderly) cohorts. Whole blood was stained with antibodies reactive with CD1c to 
identify mDCs and to CD14 and CD19 to exclude CD14+ monocytes and CD19+ B 
cells, of which a high proportion express CD1c. N=45 in the young cohort and n=120 
in the elderly cohort. a) Shows box and whisker plot of mDC counts for young and 
elderly subjects extending from the 25th to the 75th percentiles with the line through 
the box representing the median and plus (+) representing the mean value. Whiskers 
were determined using Tukey’s method using the 25th and 75th percentile plus 1.5 
times the interquartile range (IQR) as the end of the whiskers. Dots represent 
individual participants where the values fell above the 25th or 75th quartile plus 1.5 
times the IQR. Welch-Satterthwaite t-test on rank transformed data was used to 
determine the presence of differences between the young and elderly cohorts; 
significance assumed at p <0.05, ** p <0.01, p=0.0043. b) Scatter plot of the entire 
dataset (young and elderly subjects) showed mDC counts per µL blood as age 
increases. 
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Figure 3.5 pDC counts for the Im-AGE (young) and Pre-intervention Nu-AGE 
(elderly) cohorts. Box and whisker plot of pDC counts for young and elderly subjects 
extending from the 25th to the 75th percentiles, the line through the box representing 
the median and plus (+) representing the mean value. Whiskers were determined 
using Tukey’s method using the 25th and 75th percentile plus 1.5 times the interquartile 
range (IQR) as the end of the whiskers. Dots represent individual participants where 
the values fell above the 25th or 75th quartile plus 1.5 times the IQR. Welch-
Satterthwaite t-test on rank transformed data was used to determine the presence of 
differences between the young and elderly cohorts; significance assumed at p <0.05, 
p =0.3108. N=45 in the young cohort and n=120 in the elderly cohort.
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Figure 3.6 mDC: pDC ratio for the Im-AGE (young) and Pre-intervention Nu-AGE 
(elderly) cohorts. Box and whisker plot of mDC: pDC ratios for young and elderly 
subjects extending from the 25th to the 75th percentiles, the line through the box 
representing the median and plus (+) representing the mean value. Whiskers were 
determined using Tukey’s method using the 25th and 75th percentile plus 1.5 times 
the interquartile range (IQR) as the end of the whiskers. Dots represent individual 
participants where the values fell above the 25th or 75th quartile plus 1.5 times the 
IQR. Welch-Satterthwaite t-test on rank transformed data was used to determine the 
presence of differences between the young and elderly cohorts; significance 
assumed at p <0.05, p=0.2078. N=45 in the young cohort and n=120 in the elderly 
cohort. 
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3.3.3 Functional analysis of blood DCs 

DC cytokine secretion 

Intracellular staining (ICS) is a robust method for observing cytokine production by 

individual cell populations within a complex multicellular sample that obviates the 

need for further manipulation for isolation of cells of interest (Freer and Rindi, 2013; 

Pala et al., 2000). As the study samples were collected over the period of two and a 

half years it was not possible or appropriate to use fresh PBMCs for these 

experiments, therefore isolated PBMCs were cryopreserved prior to analysis. The 

median cell count post-thawing was 6.46 x106 cells, and the estimated recovery range 

was 2–85% of those stored. However all samples were resuspended at a final 

concentration of 0.5 × 106 / 200 μl to ensure that the same number of live cells was 

used in each culture. 

PBMCs were surface stained to distinguish DCs and intracellularly stained with anti-

IL-8, IL-6 and IL-1β antibodies. Comparing DCs from young and elderly subjects 

showed that the proportion of IL-8+ and IL-1β+/IL-8+ double positive cells were 

significantly greater in the cells derived from young subjects compared to those from 

elderly subjects; this was apparent both with and without LPS/R848 stimulation 

(Figure 3.7a and b). The proportion of DCs secreting IL-1β was not significantly 

different between samples derived from young and elderly subjects (p=0.324). 

Additionally, a highly significant difference in secretion of IL-8+/IL-6- was observed in 

DCs from young subjects, compared to DCs from elderly subjects (Figure 3.8). While, 

the significant difference observed in IL-8+/IL-6+ DCs in samples derived from young 

subjects compared to those from the elderly, was only seen after LPS/R848 

stimulation (Figure 3.8a and b). The proportion of single positive cells for IL-8 (IL-6-

/IL-8+) was significantly greater in samples from young subjects, while IL-6 single 

positive cells were not significantly different between the two groups; this was 

apparent for both unstimulated and stimulated samples. Further analysis, by one-way 

ANOVA, identified that there were significant differences in the proportion of IL-1β- 

/IL-8+ DCs and IL-1β+ /IL-8- cells, as well as between IL-8- IL-6+ compared to IL-8+ IL-

6- cells, and IL-8+ IL-6+ compared to IL-8+ /IL-6- DCs, in LPS and R848 stimulated 

samples from young subjects. While in the DCs from elderly subjects there were only 

significant differences observed between proportions of IL-8+ /IL-6+ compared to IL-

8+/IL-6- DCs in LPS and R848 stimulated samples.
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Figure 3.7 Scatter plots showing proportion of cytokine producing DCs from 
young and elderly subjects. PBMCs were cultured in vitro for 3 hours with tissue 
culture media alone (a) or in media containing LPS and R848 (b) in the presence of 
2μM monensin. PBMC samples were subsequently surface stained with monoclonal 
antibodies against HLA-DR, CD1c, CD303 and CD304, CD14, CD16, CD19 and CD3, 
permeabilised and stained with anti-IL-1β, IL-6 and IL-8 antibodies. *p<0.05, 
**p<0.01, ***p<0.001, ****p<0.0001 indicate significance between age groups as 
measured by Mann-Whitney U tests, and post-hoc analyses, performed by one-way 
ANOVA using the Kruskal-Wallis test with Dunn’s multiple comparisons post-hoc test, 
to identify any differences in proportions between the three cell types by one-way 
ANOVA.    
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Figure 3.8 Scatter plots showing proportion of cytokine DCs from young or 
elderly subjects. PBMCs were cultured in vitro for 3 hours with tissue culture media 
alone (a) or in media containing LPS and R848 (b) in the presence of 2µM monensin 
and stained with anti-HLA-DR, CD1c, CD303 and CD304, CD14, CD16, CD19 and 
CD3 monoclonal antibodies. After permeabilisation cells were stained with anti-IL-1β, 
IL-6 and IL-8 monoclonal antibodies. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 
indicate significance between age groups as measured by Mann-Whitney U tests, 
and post-hoc analyses, performed by one-way ANOVA using the Kruskal-Wallis test 
with Dunn’s multiple comparisons post-hoc test, to identify any differences in 
proportions between the three cell types by one-way ANOVA.    
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Total PBMC cytokine secretion 

Supernatants were aspirated from pelleted PBMC samples after the three hour 

incubation and utilised in multiplex bead based immunoassays (LEGENDplex Human 

Adipokine panel; Biolegend). 

Due to the large number of samples analysed and the ability to only process 40 unique 

samples per plate, it was not possible to avoid a “plate effect” and differences in 

detection range between plates resulting in different limits of detection for analytes. 

Therefore, to ensure that any changes observed between groups were independent 

of the “plate effect”, the absolute concentrations for each serial dilution of the 

standards, which were run on every plate, were compared. Concentrations for all 

dilutions of the standard were comparable between all plates (Suppl Table 3.1, 

Appendix IX) and all corresponded to the expected concentration (Figure 3.9 a–m). 

The co-efficient of variance (CV) for each analyte on each plate (Table 3.2) were all 

within acceptable limits of less than 5%, highlighting the precision of each dataset. 

RBP4 was not detectable on plate one due to degradation of the beads as a result of 

a delay in running the plate due to breakdown of the cytometer. All R2 values were 

≥0.998. Repeated-measures ANOVA was used to determine whether there were 

differences between plates for each analyte, with all p values greater than 0.05 

(range: 0.34–0.9). The plate effect was therefore considered insignificant, accounting 

for <0.1% of the total variance for all analytes except IL-8, which accounted for 3.91%. 

Since the detected concentrations for all of the known standards were not significantly 

different and had CVs within the acceptable range for the assay, there was no need 

for normalisation of the data and any differences observed within the dataset were 

real and not due to inter-assay differences.     

Differences in secretion between baseline (unstimulated) and post-stimulation with 

LPS and R848 for the young, as determined by paired t tests (Figure 3.10) was 

significantly different for MCP-1, IL-1β, IP-10, IL-10, IL-8, IL-6 and TNF-α. However, 

the difference in secretion by PBMCs from elderly subjects (Figure 3.11) was only 

significant for IL-1β, IL-8, IL-6 and TNF-α when comparing stimulated to unstimulated 

samples. Upon comparison of cytokine secretion in samples from young to elderly 

subjects the levels of secretion were ~10-fold lower in samples from the elderly. To 

ensure accurate comparisons between samples any samples that resulted in values 

below the level of detection were recorded as 0.0 pg/ml.  
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Comparisons of the change from baseline after LPS and R848 stimulation between 

young and elderly subjects clearly showed that the PBMCs from young subjects 

secreted higher concentrations of MCP-1, TNF-α, IL-8, IL-1β and IL-6 compared to 

those from elderly subjects, all of which were significantly greater (p<0.05) (Figure 

3.12a–e). Resistin secretion decreased after stimulation of the PBMCs from the 

young subjects (mean of 29 donors), while secretion from PBMCs derived from 

elderly subjects was statistically higher between these groups (Figure 3.12f). Levels 

of adiponectin were not significantly different between young and elderly subjects 

(Figure 3.12g).  
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Figure 3.9 Concentrations of standards across the serial dilution from each 

plate overlaid with the expected concentrations for each of the 13 analytes 

analysed.   
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Figure 3.10 Continued. Concentrations of standards across the serial dilution 
from each plate overlaid with the expected concentrations for each of the 13 
analytes analysed. A standard curve was prepared for every assay run on a new 
plate. For this the standard supplied with each kit, all kits used had the same lot 
number and batch number, was serially diluted (1:4 dilutions) from the top standard 
which had expected concentrations of 10,000 pg/ mL for MCP-1, IL-1β, IP-10, IL-10, 
IL-8, Leptin, IL-6, IFN-γ, Resistin and TNF-α, 50,000 pg/ mL for Adipsin and RBP4, 
and 200,000 pg/ mL for Adiponectin. Six 1:4 dilutions were performed after the top 
standard, with a final dilution of 0 pg/mL; which contained only assay buffer. Each 
serial dilution of standards with the resulting concentrations was overlaid with the 
expected theoretical values provided by Biolegend, graphs are on a Log10 scale.  



106 
 

3.4 Discussion  

3.4.1 Baseline characteristics are comparable between study populations 

There are significant differences between the heights of young and elderly subjects, 

as would be expected since height loss occurs in adults with increasing age (Cline et 

al., 1989; Sorkin et al., 1999) which has been linked to osteoporosis (Berecki-Gisolf 

et al., 2010) and changes in hormone secretion in post-menopausal women (Cauley 

et al., 2001). This is an important consideration when making measurements such as 

BMI as increases in BMI could be as a result of height loss instead of weight gain 

(Sorkin et al., 1999). However, the observation that the mean heights for both the 

young and the elderly subjects were greater than the Reference Man values of 170 

cm for men and 160 cm for women (Snyder, 1975) is consistent with a more recent 

study showing that more than 200 healthy subjects were both heavier and taller as 

well as having greater fat and muscle masses than the Reference Man (Later et al., 

2010); this implies that UK population height and body composition has increased in 

recent years, compared to 40 years ago. While the mean weight and BMI values are 

not significantly different, it is of interest that the upper BMI range for the elderly cohort 

reached 43.2 kg/m2, while the upper range for the young cohort is 34.15 kg/m2, 

highlighting that some individuals in the Nu-AGE study are classified within obesity 

class III, while the young cohort range from normal weight to obesity class I (WHO, 

2009). Increased adiposity has been observed with increasing age in a ten year 

longitudinal study where 129 elderly subjects significantly increased their total fat 

mass (1 kg for men, 1.3 kg for women; p<0.05) and body fat percentage (1.2–1.3%; 

p<0.05) (Hughes et al., 2004). To obtain a better representation of baseline body 

composition waist: hip circumference ratios would be advantageous, in addition to the 

BMI recorded, especially since in addition to increased adiposity, risk of T2D and CVD 

among many other conditions increase with age, all of which are thought to 

accompany a pro-inflammatory state (Vasto et al., 2007). 
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Table 3.2 Table of Coefficient of Variance (CV) values for all 13 analytes for all 

plates run. 
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3.4.2 Numbers of mDCs are reduced in the elderly, while pDC numbers remain 

similar to young subjects 

The reduction of mDCs but not pDCs with age is consistent with that by Della Bella 

et al. (2007) who also analysed whole peripheral blood samples for their 

immunophenotypic analysis and counting of blood DCs. The authors used lineage 

negative and HLA-DR positive gating accompanied by positive staining for CD11c for 

mDCs and CD123 for pDCs, which is different to the staining approach used here. It 

is possible therefore that processing of blood samples may be a contributory factor 

for differing results; previous studies of DC subset counts using the same antibodies 

as Della Bella but using PBMCs isolated from heparinised blood instead of using 

whole blood (Jing et al., 2009; Panda et al., 2010; Shodell and Siegal, 2002) found 

reductions in pDCs only. An effect of sample manipulation has been proposed by 

Gerrits et al. (2007) who compared fresh blood samples to Ficoll-isolated fresh and 

cryopreserved PBMCs using the anti-CD1c, CD303, CD19 and CD14 antibodies, and 

found that PBMC isolation resulted in an approximate 3-fold increase in mDCs and 

pDCs when compared to fresh blood, and cryopreservation produced a 5-fold 

increase.  

However, one previous study using very similar methodology to that used here 

produced opposing results (Pérez-Cabezas et al., 2007). A possible reason for this 

may be that the identification of blood DCs by Pérez-Cabezas et al. (2007), using 

CD1c and CD303, was not accompanied by the exclusion of CD14, CD19 or CD20 

so these data may be overstating the numbers of mDCs present. This is important 

since B cells also express CD1c (Delia et al., 1988) in addition to a recent finding that 

CD14+ monocytes were also present after CD19 depletion and staining for CD1c+ in 

PBMCs (Schroder et al., 2016).  

With regard to the reduction in mDCs, an interesting finding of increased numbers of 

CD14+ monocytes and decreased numbers of CD34+ precursors (haematopoietic 

stem cells) alongside the reduction in mDCs by Della Bella and colleagues (2007) 

implies that there may be an age-associated impact on the differentiation of these 

cells, preventing DC differentiation. However, this was not investigated here so these 

findings cannot be confirmed in the Norfolk cohort. 

3.4.3 DCs from elderly subjects produce less IL-8 and have reduced expression of 

DCs producing IL-6+ IL-8+ and IL-1β+ IL-8+  

Investigation of ex vivo cytokine production by DCs after stimulation with the TLR 

ligands, LPS and R848, was performed by ICS. To improve performance of ICS after 
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thawing, the PBMCs were left to “rest” for 18 hours at 37ºC in 5% CO2 before the 

addition of stimulants, which has been shown to improve outcomes (Horton et al., 

2007). However, the variable recovery rates of PBMCs observed in our samples may 

have impacted on the results observed, since numbers of DC subsets have been 

shown to increase 5-fold after cryopreservation (Gerrits et al., 2007). All samples were 

prepared and stored according to identical methodology in batches so that samples 

from young and elderly subjects were processed at the same time. In addition all 

samples were resuspended at a final concentration of 0.5 × 106 / 200 μl to ensure that 

the same number of viable cells was used in each culture. It is possible that PBMC 

samples from elderly subjects demonstrated poorer recovery after cryopreservation, 

compared to samples from younger subjects, since different levels of cellular damage, 

metabolic states and cell age have been suggested as unavoidable factors which can 

reduce the success of cryopreservation (Woods et al., 2016). Additionally, while the 

PBMCs from the Nu-AGE study were frozen for a greater duration of time than the 

Im-AGE samples, a previous study has shown that storage of PBMCs for 18 months 

was successful (Valeri and Ragno, 2006). 
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Adipokine Age group Media alone 

(pg/ml) 

Stimulated 

(pg/ml) 

p value  

MCP-1 Young Mean (SEM) 1237 (279.00) 1507 (315.90) 0.004 

Range 1.2–7054 1.24–8080  

 Elderly Mean (SEM) 11.24 (3.37) 22.05 (8.40) 0.065 (ns) 

Range 0–57.54 0–199.90  

IL-1β Young Mean (SEM) 334.70 (191.00) 519.10 (149.40) 0.049 

Range 0–4304 0–3217  

 Elderly Mean (SEM) 1.12 (0.53) 11.38 (3.36) 0.005 

Range 0–9.49 0–52.37  

IP-10 Young Mean (SEM) 144.60 (96.79) 302.10 (130.60) 0.001 

Range 0–2830 1.28–3617  

 Elderly Mean (SEM) 2.37 (0.83) 2.14 (0.89) 0.670 (ns) 

Range 0–17.14 0–21.72  

IL-10 Young Mean (SEM) 18.89 (7.76) 40.73 (8.84) 0.006 

Range 0–178.90 0–149.90  

 Elderly Mean (SEM) 0.08 (0.05) 0.13 (0.08) 0.116  (ns) 

  Range 0–1.24 0–1.85  

IL-8 Young Mean (SEM) 2987 (458.10) 4998 (742.30) 0.003 

Range 5.36–8231 5.12–15430  

 Elderly Mean (SEM) 115.30 (61.45) 346.10 (118.30) 0.007 

Range 0–1610 0–2422  

IL-6 Young Mean (SEM) 529.70 (229.50) 1392 (240.10) 0.001 

Range 

 

0–4880 

 

0–4470 

 

 



111 
 

1 

Table 3.3 Mean concentration for each adipokine in cell culture supernatants 
from PBMCs with or without LPS/R848 stimulation from young or elderly 
subjects. Footnotes: Adiponectin, Adipsin, RBP4, leptin and IFN-γ were not detected from 

one, or both conditions so comparisons could not be made. Paired t tests were performed to 
compared unstimulated to stimulated for each analyte, significance assumed at p<0.05, 
*p<0.05, **p<0.01, ***p<0.001.  

 Elderly Mean (SEM) 2.34 (2.06) 15.43 (7.64) 0.034 

Range 0–53.43 0–187.40  

Resistin Young Mean (SEM) 169.40 (42.51) 140.90 (40.04) 0.054 

Range 0–998.40 1.43–991.40  

 Elderly Mean (SEM) 121.60 (51.93) 136.40 (54.34) 0.264 (ns) 

Range 0–1028 0–869.90  

TNF-α Young Mean (SEM) 81.06 (49.42) 2782 (459.60) <0.0001 

Range 0–1207 0.9–7550  

 Elderly Mean (SEM) 0.77 (0.59) 48.27 (16.41) 0.008 

Range 0–15.42 0–350.90  
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The proportions of DC secreting IL-8 alone or in combination with IL-1β or IL-6 are 

significantly reduced with age after stimulation with LPS and R848. The highest 

proportion of cytokine secretion by DCs derived from both young and elderly donors 

is seen for IL-8+ IL-6- producing DCs. The results from unstimulated and stimulated 

DCs are similar, except no statistically significant difference is observed between IL-

8+ IL-6+ DCs from young and elderly subjects. This finding suggests that the freeze-

thaw process alone may induce spontaneous stimulation, however a similar study 

using frozen PBMCs as a source of DCs for ICS (Janssen et al., 2015) and after 6 

hours stimulation with 0.5 µg/mL of LPS the DCs from elderly subjects shows 

significantly greater amounts of IL-6 than the unstimulated cells (and TNF-α); the 

increase in IL-6 is only slight, but sufficient to be statistically significant. Janssen et 

al. (2015) recruited cytomegalovirus (CMV) seropositive young subjects, to exclude 

CMV seropositivity as a confounding factor when comparing results with elderly 

individuals, this is a difference with the present work and could explain the differing 

results observed between the studies.  

Another study confirms the results found here, as stimulation of PBMCs with the TLR 

ligands pam3CSK4 (TLR1/2), lipoteichoic acid ((LTA) TLR2/6), poly I:C (TLR 3), 

flagellin (TLR5), R848 (TLR7/8) CpG-odn2216 (TLR9) for 6 hours resulted in 

significant reductions in IL-6 (in addition to other cytokines tested) (Panda et al., 

2010). Similarly, in peripheral blood samples from elderly subjects incubation with 

LPS resulted in reduced secretion of IL-12 when compared to samples from young 

subjects (Della Bella et al., 2007). Also, significantly reduced secretion of IL-1β, IL-6 

and IL-8 was observed in supernatants using ELISA after 24 hour stimulation of 

PBMCs with LPS, from healthy elderly subjects recruited according to the SENIEUR 

protocol compared to healthy young subjects (Gabriel et al., 2002). IL-8 secretion was 

significantly greater without stimulation in the PBMCs from the young compared to 

elderly subjects but levels were comparable after stimulation (Gabriel et al., 2002). 

Similarly, levels of TNF-α and IL-1β within whole blood supernatant after 24 hour LPS 

stimulation were significantly lower in samples from elderly compared to from young 

subjects, again determined by ELISA (Bruunsgaard et al., 1999). These experiments 

however, do not provide information regarding cytokine secretion specifically from 

DCs, since PBMCs or whole blood were used as the source of cells, and identification 

of DCs was not possible, unlike ICS techniques.  

There are relatively few studies investigating the effects of ageing on DC function that 

use peripheral blood as the source of DCs. Other findings are based on the responses 

of MoDCs. The use of granulocyte macrophage colony stimulating factor (GM-CSF) 
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to induce differentiation of monocytes to DCs has been suggested to mask age-

associated alterations in DC function (Panda et al., 2009), and upon comparison of 

global gene expression profiling using gene-chip data, GM-CSF DCs cluster with 

monocytes and macrophages, not lymph node DCs (Robbins et al., 2008), suggesting 

that conclusions drawn from functional studies performed using in vitro derived GM-

CSF DCs should be made with caution. 

The present findings, in combination with those by Panda and colleagues (2010), 

suggest that there may be an age-associated defect in the cytokine secretion 

pathways. A previous study using MoDCs found significant changes in intracellular 

signalling in the MoDCs from elderly compared to young subjects, whereby AKT 

phosphorylation, a downstream event of PI3K-Akt activation, is significantly reduced 

(Agrawal et al., 2007). This regulates mitogen-activated protein kinase (MAPK) and 

NF-κB activation and is implicated in regulation of TLR activation; Agrawal et al. 

(2007) postulated that reduced phosphorylation of AKT could cause overactivation of 

MAPK pathway signalling and thus induce cytokine production. A later study showed 

that DCs from aged subjects displayed elevated levels of NF-κB activation at baseline 

(Agrawal et al., 2009). However, the use of CD1c+ mDCs yielded different results 

when investigating the intracellular signalling pathways and found that the p38 

pathway was crucial for inhibition of IL-12, since inhibition of p38 stress-activated 

protein kinase (p38SAPK) increased IL-12 production (Franks et al., 2014). 

Nevertheless, investigation of CD303+ pDCs also found that the reduction in IFN-I 

and -III production with age is linked to impairment in interferon regulatory factor 7 

(IRF-7) phosphorylation (Sridharan et al., 2011). These findings imply that MoDCs 

may be more likened to pDCs than mDCs and highlights the differing responses 

observed between MoDCs and peripheral blood DCs, suggesting that the functional 

responses of these two cell types cannot be compared. Research by Franks et al. 

(2014) also confirmed that IL-6 and IL-1β are not regulated by p38SAPK, so the 

observed reduction in their secretion with age may be due to a defect in a different 

signalling pathway, or could be as a result of the reduced number of mDCs with 

increasing age.  
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Figure 3.11 Change in concentration with LPS and R848 stimulation of MCP-1, 
TNF-α, IL-8, IL-6, IL-1β, Resistin and Adiponectin in young compared to elderly 
subjects; from unstimulated. Concentrations (pg /ml) in unstimulated samples were 
subtracted from stimulated samples to give a change in concentration as a result of 
the stimulus. Scatter plots show individual subjects as dots (young) or squares 
(elderly), horizontal bars represent mean and the error bars indicate SEM. N=29, 
young; N=26, elderly. Mann-Whitney U tests were performed to compare changes in 
concentration between young and elderly subjects, significance assumed at p<0.05, 
*p<0.05, **p<0.01, ***p<0.001. 
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Another potential reason for the differing results could be the length of time that the 

PBMCs were stimulated since in addition to use of a different source of DCs, 

increases in secretion of IL-6 from MoDCs have been observed with LPS stimulation 

(Agrawal et al., 2007; Ciaramella et al., 2011) for 24 and 48 hours, respectively. The 

kinetics of DC cytokine secretion has been investigated to show that while DCs 

“exhaust” their capacity to produce IL-12 after long stimulation periods (such as 24 

and 48 hours), capacity to secrete IL-6 remained intact, even at 48 hours 

(Langenkamp et al., 2000), and could be detected after just 3 to 4 hours. The 

reduction in mDC numbers observed in the elderly cohort compared to the young 

cohort, may also be a contributing factor to the reduction in cytokine secretion 

observed in the present study.     

3.4.4 Secretion of adipokines by PBMCs is significantly reduced in the elderly  

The concentration of cytokines secreted by LPS/R848 stimulated PBMCs isolated 

from elderly subjects was 10-fold lower than the concentrations from PBMCs derived 

from young subjects. As secretion was still observed for most analytes (excluding IL-

10, which was below the limit of detection of the assay) the ability to respond to 

antigenic stimulation was still present, but reduced for specific analytes. The present 

study found significant reductions in MCP-1, TNF-α, IL-8, IL-6 and IL-1β in PBMCs 

from elderly subjects. A similar study comparing cell culture supernatants from 

MoDCs stimulated with LPS (for 20–24 hours) found significantly increased 

concentrations of IL-6 and TNF-α with single stranded RNA (ssRNA) stimulation also 

significantly increasing TNF-α secretion in the MoDCs from elderly subjects (Agrawal 

et al., 2007). However, mDCs and pDCs isolated from PBMCs of young and elderly 

subjects and stimulated with poly I:C and influenza virus, respectively, found that 

pDCs secreted less IFN-α, IL-6 and TNF-α compared to young controls, while mDCs 

secreted comparable levels of cytokines (Jing et al., 2009). Additionally, after 24 hour 

LPS stimulation of PBMCs, but not whole blood, IL-6, IL-8 and IL-1β secretion 

decreased (Gabriel et al., 2002), and in whole blood supernatants IL-1β and TNF-α 

secretion declined in samples from elderly compared to young subjects (Bruunsgaard 

et al., 1999). Therefore, the source of cell samples may again be a determining factor 

in whether cytokine secretion increases or decreases upon TLR stimulation. 

3.4.5 Resistin secretion by PBMCs increases with age  

The present finding of a significant increase in the production of resistin by PBMCs 

from elderly subjects compared to young subjects after LPS and R848 stimulation is 

interesting since inflammatory events can induce resistin production (Al Hannan and 

Culligan, 2015). Resistin, in humans, is expressed predominantly in the BM but is 
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also present in circulating blood (Filková et al., 2009) and PBMCs have been shown 

to be an important source (Kaser et al., 2003). Upregulated resistin mRNA expression 

was observed in PBMCs from type II diabetic women compared to healthy controls 

(21–49 years), in parallel with plasma resistin levels (Tsiotra et al., 2008); in addition 

PBMC mRNA expression of IL-1β, TNF-α and IL-6 was significantly elevated in 

women with T2D. The increased expression of these cytokines may have increased 

resistin secretion since increased mRNA expression of resistin was observed in the 

presence of IL-6, IL-1 and TNF-α, along with LPS (Kaser et al., 2003). As the present 

data shows that LPS and R848 stimulation induces PBMCs from elderly subjects to 

produce more resistin than those from young subjects, this implies a potential 

underlying inflammatory state or inflammaging. LPS has been shown to increase 

resistin gene expression from human PBMCs after a four hour incubation, while this 

data is only based on samples from three healthy volunteers, the increases in resistin 

were substantial and consistent between all volunteers (Lu et al., 2002); a more 

quantitative measure, such as a cytokine bead array, would aid in the explanation. 

Resistin has also been shown to suppress the ability of MoDCs to secrete IL-6, TNF-

α and IL-12 (p40) after incubation with LTA from Staphylococcus aureus for 24 hours, 

but not without these stimulatory conditions (Son et al., 2008). This suggests that the 

observed decreases in IL-6 and TNF-α, and possibly the other cytokines in the 

present study could have been due to the elevated secretion of resistin in the elderly 

subjects.  

Contrary to these findings, previous research has shown that plasma concentrations 

of resistin in a healthy population of over 250 subjects did not differ with donor age 

(Vilarrasa et al., 2005). This may have been because the recruited cohort were 

healthy since previous observations of higher serum levels of resistin were also 

associated with increasing risk of CVD events (Gencer et al., 2016). Resistin is also 

influenced by insulin resistance and adiposity, which was demonstrated upon 

comparison of offspring of non-long-lived individuals and centenarians (Ostan et al., 

2013). This study showed increased levels of plasma resistin which were positively 

associated with waist circumference, while centenarian offspring had significantly 

lower resistin levels that are unaffected by prevalence of metabolic syndrome (MetS). 

Additionally, in non-long-lived offspring prevalence of MetS increased with increasing 

levels of resistin (Ostan et al., 2013); suggesting genetic predisposition could also be 

influential.  

When considering the two cohorts of volunteers recruited for this study there were no 

significant differences in mean BMI or weight of the individuals. After identifying 
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individuals that exhibited increases in resistin concentration, from unstimulated to 

stimulated samples, BMI or weight was not consistently high for these individuals. In 

fact, out of the four individuals identified only one had a high BMI (pre-obese) (27.1 

kg/m2), the rest were within the normal range (18.50–24.99 kg/m2) (WHO, 2009) and 

the highest concentration recorded was by an elderly individual with a healthy BMI of 

23.0 kg/m2. This implies that while adiposity is commonly attributed with elevated 

resistin levels this may not be the cause of the observed increase in resistin in this 

study. However, BMI may not be the best means to assess body composition and 

thus increased adiposity in some cases may only be observed by taking 

measurements such as waist and hip circumferences, in addition to bioelectrical 

impedance or DXA scan, especially since increases in body fat and reductions in fat 

free mass occur with age and differences were only seen in resistin concentration 

when subjects were grouped by body fat content as opposed to BMI (Vilarrasa et al., 

2005).  

An interesting comparison to this data would have been assessment of baseline 

plasma or serum levels of adipokines to establish the levels at the time of blood draw, 

since healthy ageing males and female centenarians have shown higher levels of 

adiponectin (typically considered to be anti-inflammatory) (Adamczak et al., 2005; 

Arai et al., 2006). While leptin, TNF-α, IL-6 and MCP-1 are thought to be pro-

inflammatory and may increase with normal ageing as they are associated with 

increased adiposity and insulin resistance, while centenarians remain insulin 

sensitive (Arai et al., 2011). 

3.4.6 Impact of findings 

The reduction in mDC numbers with age observed in the present study using the 

current methodological approach defined by the Nomenclature Committee of the 

International Union of Immunological Societies (Ziegler-Heitbrock et al., 2010) may 

lead to improved validity of future studies, if a commonly agreed method could be 

adopted. Additionally, the source of cells may impact on the response of DCs in in 

vitro stimulation assays, and while MoDCs are a crucial source of DCs, particularly in 

terms of generating large numbers of cells, they do not appear to have the same 

functional characteristics as peripheral blood derived DCs identified within PBMCs or 

isolated from PBMCs.  

MCP-1, TNF-α, IL-8, IL-6 and IL-1β were reduced with age in this study upon TLR 

stimulation, which adds to previously observed reductions in the ability of DCs of 

elderly subjects to secrete these, and other, cytokines. Further research into the 
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underlying causes, potentially in terms of cytokine signalling pathways, would be of 

great importance. Additionally, the increase in resistin secretion may have inhibited 

the secretion of these cytokines.  

An interesting outcome of this research is the observation of increased resistin 

concentrations upon LPS and R848 stimulation of PBMCs from elderly subjects. The 

impact of this finding, in addition to the current understanding of resistin in terms of 

healthy ageing, implies that preservation of insulin sensitivity with increased age may 

be of importance to preserve health of the elderly. The biological impact of this finding 

is that since elevated levels of resistin secretion, predominantly observed in plasma, 

have been associated with negative health outcomes such as MetS, CHD and insulin 

resistance, resistin levels may be implicated in the prevalence of these age-

associated disorders and diseases. Resistin could provide a potential therapeutic 

target for alleviating the increased economic and social pressures associated with our 

ageing population.   
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Chapter 4 

Study design, subject characteristics and compliance 

4.1 Introduction  

The Nu-AGE study, new dietary strategies addressing the specific needs of the 

elderly population for healthy ageing in Europe, is a multicentre study with sites in five 

countries; the United Kingdom (UK), the Netherlands, Italy, France and Poland. A 

total of 1250 participants were recruited throughout the study with the UEA recruiting 

250 of the participants. For the research carried out at the IFR for this thesis, 120 of 

UEA-participants gave additional consent for analysis of immune function using their 

samples. The participants were recruited onto the study via advertisements in 

Norwich in locations relevant to the cohort in question, in addition to GP surgeries. 

The design of the study was a randomised, controlled intervention trial, one year in 

duration, which comprised of two groups; intervention and control. As a laboratory 

researcher not interacting with the study participants, all of the work carried out for 

this thesis was blinded to treatment allocation of samples. This chapter addresses 

the design of the study in terms of the observed subject characteristics and the dietary 

consumption of all participants as assessed by diet diary analysis, in addition to 

compliance data with the overarching aim to address whether study participants in 

the intervention arm of the study consumed the study provided olive oil, as directed.  

4.1.1 Gaps in knowledge 

The studies carried out to date have used in vitro  models, with very few studies using 

human samples collected after dietary intervention, of which the dietary interventions 

consisted of consumption of an additional single dietary component such as the 

prebiotic (B-GOS) (Vulevic et al., 2008; Vulevic et al., 2015) or FA containing 

supplements, oils and fish (Bechoua et al., 2003; Grieger et al., 2014; Han et al., 

2012; Meydani et al., 1991). The study populations for these studies were older 

subjects (50–79 years), though the inclusion of subjects >50 years is not 

representative of the elderly population. Also, previous in vitro studies are not 

representative of the ageing population, making the data less transferable to an 

ageing population. In order to gauge an accurate understanding of the effect of 

changing dietary intake, the whole diet needs to be monitored to account for any 

interactions which may occur between food components.  
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4.1.2 Rationale for studying the Mediterranean diet 

The MED diet has been chosen for this work because this diet has been shown to be 

effective in reducing risk factors and increasing overall survival in patients with CHD, 

MetS and post-MI (Esposito et al., 2004; Panagiotakos et al., 2009; Trichopoulou et 

al., 2005), which are diseases associated with ageing. There are indications that this 

diet may be able to improve immune parameters since increased adherence 

significantly reduced plasma levels of IL-6, IL-8, and the components olive oil and red 

meat showed significant negative and positive associations with plasma IL-6, IL-8, 

MCP-1 and TNF-α, respectively (Dedoussis et al., 2008; Mena et al., 2009).  

4.1.3 Aims and objectives 

This chapter addresses the specific details of the dietary intervention study carried 

out and addresses the questions were the two study groups different in terms of 

demographics and body composition, and were the subjects compliant to their 

allocated dietary intervention?  

Objective 1: Compare subject characteristics collected at baseline for subjects in each 

group of the dietary intervention study by members of the study team  

Objective 2: Calculate Mediterranean diet scores using the diet diary reports to 

compare compliance in both study groups 

Objective 3: Determine hydroxytyrosol sulphate (HTS) concentration within urine 

samples collected from participants from both study groups. 
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4.2 Methodology  

4.2.1 Composition of the Nu-AGE study diet 

The study participants were randomly allocated into two groups, control and 

intervention; the control group were provided with a standard healthy living advice 

leaflet from the British Dietetic Association (Appendix X) and asked to maintain their 

habitual dietary intake. The participants within the intervention group were provided 

with dietary advice sheets (Appendix XI) and individual dietary advice by members of 

the study team at the CRTU at the UEA in order to achieve the quantitative 

requirements for the Nu-AGE dietary intervention (Table 4.1). This advice was based 

on the information provided within the seven-day food records collected at baseline. 

Study participants randomised to the dietary intervention arm of the study were given 

extra virgin olive oil, wholegrain pasta and low fat margarine rich in MUFA and PUFA, 

freely throughout the study. The study team distributed these products to intervention 

participants at baseline, four, and eight months, when the participants attended the 

CRTU, either for their baseline measurements or for their interim interview 

questionnaires to assess blood pressure, cognitive function and physical function; 

data not shown.  

4.2.2 Randomisation and blinding of study participants 

Study participants were recruited onto the Nu-AGE study upon provision of informed 

written consent and providing they fulfilled the eligibility requirements detailed in Table 

2.4; full details in Chapter 2, Section 2.2.2. Computer software developed in-house 

by the University of Bologna was used by the study team to randomise the 

participants to the study groups; this was stratified by age, sex and BMI. The software 

was limited in that postcode was not included in the process of randomisation so that 

co-habiting participants were randomised together with the aim of increasing 

compliance. Study participants whom provided additional informed consent for the 

collection of additional blood samples were included in the immunologic 

measurements. The same computer software was used to randomise these study 

participants, which was also stratified by age, sex, and BMI, to ensure that the groups 

were equal. It was not possible to blind the participants to their allocated study group, 

however, all samples received and handled were coded with unique sample 

identification numbers with no indication of grouping, making all analyses anonymous 

and blind. Only the study co-ordinator and selected members of the study team had 

access to volunteer names and codes. 
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4.2.3 Interaction of study team with participants  

Study participants attended the CRTU, after an eight hour (overnight) fast, for a 

baseline visit which lasted for two hours, to provide anthropometric measurements, 

DXA scans, (further details in Chapter 2, sections 2.2.3 and 2.2.4) blood samples 

(further details in Chapter 2, Section 2.2.5), and a twenty-four hour urine sample 

(Appendix XII). After one year of MED diet intervention, or maintenance on their 

habitual diets, study participants returned to the CRTU for the same measurements. 

Ethical approval was only granted for the collection of blood and urine samples at the 

pre- and post-intervention study time points, so further samples could not be collected 

without the provision of a substantial amendment to the ethical application. 

Additionally, the large volume (100 ml) of blood collected at each visit, and the 

difficulty in cannulating the elderly subjects meant it would have been difficult to obtain 

further samples of blood from these subjects. Dietary intervention 

Subjects enrolled onto the intervention arm of the Nu-AGE study were given tailored 

dietary advice in order to change their own diet to a MED diet, according to set 

guidelines (Annex VIII). The guidelines stated that participants should aim to consume 

4–6 servings of whole-grains per day, at least two servings of fruit per day, at least 

300 g of vegetables per day, 500 ml dairy per day, 125 g fish twice a week, meat and 

poultry four times per week, 20 g nuts twice a week, 150 g potato, pasta or rice per 

day, 2–4 eggs per week, 20 g extra virgin olive oil (generic brand supplied; 1.5g SFA, 

14.7g MUFA, 1.6g PUFA/ 20g serving) per day and 30 g Flora Original margarine per 

day (supplied; 3g SFA,3.3g MUFA, 6.9g PUFA/ 30g serving). In addition, if 

participants consumed alcohol then red wine was to be selected with a maximum of 

one glass per day for women and one to two glasses for men.    
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Food group Quantity required in dietary intervention 

Whole grains 6 servings per day; 1 serving=25 g bread, 50 g 

breakfast cereal 

Fruits  2 servings per day; 1 serving=1 apple, 1 banana, 8 

small plums 

Vegetables and legumes 330 g per day, once per week 200 g legumes 

Dairy and cheese 500 ml dairy per day (of which 30 g cheese) 

Fish and other seafood 2 times per week; 1 portion=125 g 

Meat and poultry 4 times per week; 1 portion=125 g 

Nuts  2 times per week; 20 g portion 

Potatoes, pasta and rice 150 g per day; 80 g (raw weight) whole grain rice or 

pasta at least twice a week 

Eggs  2–4 times per week 

Oil or fat 20 g oil per day, 30 g margarine per day; maximum 

of 50 g fat per day. Should be olive oil and low fat 

margarine rich in MUFA and PUFA 

Alcohol Maximum of 1–2 glasses per day for men, and 1 

glass per day for women. Preferably red wine, if not 

abstain  

Fluid  1.5 litre per day, including milk 

Salt  Reduce added salt, and intake of ready meals 

(soups, gravy, sauce) 

Sugar  Limit consumption of sugar and sweetened drinks 

(replace with fruit or yoghurt, no/reduce sugar in tea 

or coffee). 

Table 4.1 Quantitative dietary guidelines given to study participants whom were 
allocated to the intervention arm of the study. 
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4.2.4 Study compliance 

Study participants were required to complete seven-day diet diaries (7DD) at pre-

intervention and post-intervention, which were used to assess study compliance. In 

addition, twenty-four hour urine samples were collected from study participants at 

baseline and one year post-intervention. These samples were aliquoted by the study 

team and frozen at -80°C until further analysis, for urine collection instruction sheet 

provided to volunteers see Appendix XII. The samples selected for these analyses 

were derived from the same subjects for whom PBMC samples were available (n=34), 

since PBMCs could not collected from the whole subset of Nu-AGE subjects due to 

unavoidable, unforeseen circumstances.  

Seven-day diet diary (7DD) analysis 

Self-reported 7DDs were completed by the study participants at the baseline and 

post-intervention study days. Participants were asked to record all food intake over 

seven consecutive days using the eight sections for each day; before breakfast, 

breakfast, during the morning, lunch, during the afternoon, evening meal, evening 

snack, during the night. Participants were required to record the time and place that 

foods were consumed and a description which included any brand names and 

methods of preparation, in addition to the portion size using household measures. 

The diaries included a section to record any recipes used and a notes section for any 

other additional information (Appendix VII). 

Calculation of the Mediterranean Diet score 

Using the output food group data from the 7DDs nine overall food groups were 

defined, these were total cereals, total fruit which included nuts, total vegetables, total 

legumes, total fish, total meat and meat products, total dairy, total alcohol and total 

olive oil. To determine values for these overall food groups the sum of the recorded 

intakes of all recorded food groups that constituted that category, such as for the 

cereal food group white bread, brown bread, wholemeal bread, luxury bread, rusk 

(crispbread), white rusk, non-white rusk, non-wholegrain breakfast cereal, wholegrain 

breakfast cereal, pastry, refined cereal products (flour), refined cereal products (rice, 

pasta), wholemeal cereal products (rice, pasta) and stuffed cereal products (rice, 

pasta) were summed to determine the overall cereal intake. The food groups included 

for the remaining categories are detailed in Table 4.2. 
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Overall food group Food groups included from diet diary 

output 

Cereals White bread, brown bread, wholemeal 

bread, luxury bread, rusk (crispbread), 

white rusk, non-white rusk, non-

wholegrain breakfast cereal, wholegrain 

breakfast cereal, pastry, refined cereal 

products (flour), refined cereal products 

(rice, pasta), wholemeal cereal products 

(rice, pasta) and stuffed cereal products 

(rice, pasta) 

Fruits Citrus fruits, apple and pear, grape and 

berries, stone fruits, melon, tropical 

fruits, mixed fruits (excluding citrus), 

dried fruit, pure fruit juice, canned or 

cooked fruit in syrup, canned or cooked 

fruit in water, salted peanuts, unsalted 

peanuts, salted nuts, unsalted nuts, 

unsalted mixed nuts and peanuts, salted 

mixed nuts and peanuts 

Vegetables Leafy vegetables, fruiting vegetables, 

root vegetables, cabbages, cruciferous 

vegetables, stalk/ shoot vegetables, 

mixed salad, mixed vegetables, 

mushrooms, grain and pod/ other 

vegetables, vegetable juice, onion, 

garlic, pickled vegetables, avocado 

Legumes Legumes  

Fish Oily fish, white fish, fish products (fish in 

crumbs), seafood/ crustaceans, 

molluscs  

Meat and meat products Organ meat, red unprocessed meat, 

lean unprocessed red meat (10g 
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fat/100g), fat unprocessed red meat 

(>10g fat/100g), lean processed meat  

(10g fat/100g), fat processed meat 

(>10g fat/100g), lean poultry (10g 

fat/100g), fat poultry (>10g fat/ 100g), 

lean cold cuts (10g fat/100g), fat cold 

cuts (>10g fat/100g), game  

Dairy products Creamy (milk) products, ≥8g fat, full-fat 

(milk) products ≥2<8g fat, semi-

skimmed milk products, >0.5<2g fat, 

skimmed milk products ≤0.5g fat, 

powdered milk, cheese ≤30% fat, 

cheese >30-50% fat, cheese >50% fat, 

butters, margarines  

Alcohol  Alcoholic beverage not stated or mixed, 

wine, red wine, other wine, fortified beer, 

spirits/ brandy, liquors, cocktails 

punches 

Olive oil Olive oil and olives. 

Table 4.2 Foods included within each food group from seven-day diet diary 
entries, used to determine MED diet scores for each participant. 
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The scoring criteria developed by (Sofi et al., 2014) was used such that the portions 

of each overall food group were 150 g fruit, 100 g vegetables, 70 g legumes, 130 g 

cereals, 100 g fish, 80 g meat, 80 g dairy products, 1 alcohol unit=12 g, olive oil 

consumption was scored as occasional, or regular use, which was interpreted as <5 

g/day as occasional, and >20 g/ day as regular use. To calculate the MED diet scores, 

the sum of each food group was subjected to an IF statement to determine whether 

the score would be 0, not compliant with the Mediterranean diet, 1, moderately 

compliant or 2, very compliant. The scores were added together to give an overall 

score out of 18, Table 4.3 
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Food group 

Score value 

0 1 2 

Fruit  <150 g/ day 150–225 g/ day >300 g/ day 

Vegetables  <100 g/ day 100–250 g/ day >250 g/day 

Legumes  <70 g/ day 70–140 g/ day >140 g/ day  

Cereals  <130 g/ day 130–195 g/ day >195 g/ day 

Fish  <100 g/ day 100–250 g/ day >250 g/ day 

Meat & meat 

products 

>120 g/ day 80–120 g/ day <80 g/ day 

Alcohol  >24 g/ day <12 g/ day 12–24 g/ day 

Olive oil <5 g/ day 5–20 g/ day >20 g/ day 

Table 4.3 Cut-off values for consumption of each food group to calculate the 
Mediterranean Diet score, which is the sum of the scores out of a total of 
eighteen.  
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High Performance Liquid Chromatography-Mass Spectrometry 

(HPLC-MS/MS) analysis of urine samples 

Twenty-four hour urine samples were collected at baseline and one year post-

intervention from Nu-AGE participants. In order to determine compliance to the study, 

concentrations of hydroxytyrsol (HT), a metabolite derived from olive oil, were 

measured using HPLC coupled to tandem mass spectrometry (MS/MS). The column 

used was 2.7µm Supelco Ascentis Express C18 (150 mm x 4.6 mm i.d) with a mobile 

phase of water/ 0.1% formic acid as solvent A, and acetonitrile/ 0.1% formic acid as 

solvent B, at a temperature of 40°C. The HPLC gradient began with 5% of solvent B, 

followed by an increase to 55% at 11 minutes for one minute, then increased to 95% 

for a further four minutes, and was then returned to the initial conditions in 0.1 

minutes, with a re-equilibration time of 22 minutes, Figure 4.1. The flow rate was 600 

µl/ minute and the injection volume was 10 µl.  

The standard used was Hydroxy Tyrosol 3- sulphate sodium salt (Toronto Research 

Chemical Inc) which has a molecular weight of 232 g. Hydroxytyrosol was detected 

and quantified according to its ion fragmentation in the tandem MS/MS using multiple 

reaction monitoring (MRM) mode, and ionisation was performed in the negative 

mode. Three product ions of hydroxytyrosol sulphate (HTS) were detected at 

molecular weights of 153, 123 and 80 m/z, Figure 4.2. Taxifolin, a flavanol which is a 

derivative of quercetin and has a molecular weight of 304 g, was used as the internal 

standard, the product ion had a molecular weight of 125 m/z. Urine samples (200 µl) 

were mixed with 10 µl 40 µg/ ml taxifolin in methanol and made up to 600 µl with 

water. Standards were prepared in water at 2000, 1000, 500, 100, 50 and 0 ng/ ml 

(ppb); with control samples prepared at the same time in urine, to perform calibration 

curves in the desired biological matrix.  
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Figure 4.1 HPLC gradient applied to analyse urine samples. The HPLC gradient 
began initially with 5% of solvent B for 1 minute, then increased to 55% for 11 minutes, 
before increasing further to 95% for 4 minutes, initial conditions of 5% solvent B were 
then resumed in 0.1 minutes for the duration of the 22 minute re-equilibration time.  
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Figure 4.2 Representative chromatogram showing the HTS and taxifolin peaks 
recorded. The chromatogram shows the intensity against the retention time, with the 
peaks of interest, HTS and taxifolin, identified. HPLC-MS/MS completed by Mark 
Philo, Metabolomics Department at the Institute of Food Research. 
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4.2.4 Statistics  

Anthropometric data from Nu-AGE participants at baseline was separated by 

allocated study group and a two-tailed t-test for unmatched samples comparing the 

two groups was carried out, with p<0.05 showing significance.    

Change in MED diet scores from baseline were calculated for subjects in the control 

and MED diet groups, an unpaired t test was applied to determine whether the 

changes in MED diet differed between the two groups. Ten subjects dropped out of 

the study and thus did not provide post-intervention data, to account for this intention 

to treat (ITT) was applied and missing values were imputed using last observation 

carried forward (LOCF). Multivariate analysis of the nine food categories, used to 

calculate the MED diet scores, was carried out using variance scaled single cross-

validated partial least squares-linear discriminant analysis (PLA-LDA). The 

associations of the individual food categories with the overall MED diet scores were 

assessed using Wilcoxon Mann-Whitney U test, after controlling for the false 

discovery rate (q= 0.05). Change in HTS concentration from baseline was calculated 

for each subject, and an unpaired t test was applied to determine whether the 

changes in HTS concentration differed between the two groups.  



133 
 

4.3 Results  

4.3.1 Observed subject characteristics 

The overall characteristics of the study participants, reported in Table 4.4 show that 

the age of the participants ranged from 65 to 79 years, with a mean age of 70.33 

±4.16 years. When the two study groups were compared the mean age was similar 

with the same age range. The gender spread was more favoured towards females 

although it was not significantly different when the two study groups, control and 

intervention, were compared. Body mass indices (BMIs) of study participants ranged 

from normal (18.5–24.0 kg/m2), overweight (25–29.9 kg/m2), obese (≥30 kg/m2) to 

extreme obesity (≥40 kg/m2) (WHO, 2009), with the mean BMI of 26.62 ± 3.96 kg/m2, 

which classified as overweight. When comparing the two groups, the BMI was similar, 

however the range of values was greater in the MED diet group with the greatest 

value being 43.20 kg/m2. The weight of participants between the two groups was 

again comparable with similar mean values; however the range of values was larger 

in the MED diet group, reaching up to 128.50 kg. The height of the participants was 

similar between the study groups and the ranges were also comparable. In terms of 

waist circumference the study population was well distributed with relatively equal 

groups at normal, at risk or high waist circumference (Dobbelsteyn et al., 2001; Qiao 

and Nyamdorj, 2010), the mean values were similar while the range of values in each 

group was greater in the MED diet group than the control group. When assessing 

frailty status, a large proportion of the participants were pre-frail, with two participants 

recorded as being frail. Table 4.5 shows the results of DXA scans at baseline and 

one year post-intervention and shows that there were minimal changes to the mean 

body weight, fat mass, lean mass, bone mineral content (BMC), soft tissue and bone 

mineral density (BMD). The fat mass and regional fat mass percentages were 

reduced at post-intervention but minimally. The mean T scores were similar but the 

upper value of the range was much smaller, indicating deterioration in some subjects.  

Of these participants ten dropped out of the study and thus a post-intervention sample 

was not collected, therefore overall 112 participants completed the study.   

  

 

 



134 
 

Table 4.4 Baseline anthropometric data for Nu-AGE participants. P; probability 
value, ns; not statistically significant, SD; standard deviation. 

 All subjects 
Control group 

(n=57) 

MED-diet 

group (n=65) 

p 

value 

Age (years) 
Mean 

(SD) 
70.33 (4.16) 70.95 (4.07) 69.78 (4.18) 

0.32 

(ns) 

 Range 65–79 65–79 65–79 

Gender (n=) Male 48 22 26 
0.88 

(ns) 
 Female 74 35 39 

BMI (kg/m2) 
Mean 

(SD) 
26.62 (3.96) 26.56 (3.25) 26.67 (4.51) 

0.73 

(ns) 

 Range 18.50–43.20 20.00–37.40 18.50–43.20 

Weight (kg) 
Mean 

(SD) 
73.27 (13.85) 73.18 (12.46) 73.36 (15.05) 

0.94 

(ns) 

 Range 49.50–128.50 52.50–108.90 49.50–128.50 

Height (cm) 
Mean 

(SD) 
165.70 (9.16) 165.70 (9.29) 165.60 (9.11) 

0.73 

(ns) 

 Range 145.60–188.20 148.60–187.40 145.60–188.20 

 

Waist 

circumference 

(cm) 

Mean 

(SD) 
91.40 (11.80) 91.49 (11.11) 91.31 (12.46) 

0.92 

(ns) 

 

 Range 63.50–134.80 72.00–122.00 63.50–134.80 

 

Frailty status 

(n=) 

Non frail 26 12 14 
0.74 

(ns) 

 
 Pre frail 94 44 50 

 Frail 1 1 0 
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Nu-Age cohort pre-

intervention 

Nu-AGE cohort 

post-intervention 

Body weight (kg) 

Mean (SD) 74.8 (13.7) 74.2 (13.5) 

Range 47.7–12.9 48.0–119.5 

Fat mass (kg) 

Mean (SD) 23.7 (8.1) 23.1 (8.2) 

Range 6.7–50.4 5.6–55.9 

Lean mass (kg) 

Mean (SD) 48.8 (10.3) 48.8 (10.1) 

Range 31.9–81.1 32.5–78.4 

Bone mineral content 

(BMC) (kg) 

Mean (SD) 2.2 (0.5) 2.2 (0.5) 

Range 1.4–3.8 1.3–3.9 

Soft tissue (kg) 

Mean (SD) 72.5 (13.4) 72.0 (13.2) 

Range 46.1–125.3 46.4–116.1 

Fat mass (%) 

Mean (SD) 32.5 (8.4) 31.9 (8.6) 

Range 11.7–49.9 9.9–51.3 

Regional fat mass (%) 

Mean (SD) 31.6 (8.2) 31.0 (8.4) 

Range 11.3–48.8 9.5–50.2 

Bone mineral density 

(BMD) (g/cm2) 

Mean (SD) 1.1 (0.1) 1.1 (0.1) 

Range 0.8–1.5 0.8–1.5 

T score 

Mean (SD) -0.9 (1.2) -0.9 (1.2) 

Range -3.3–4.1 -3.3–3.0 

Fat mass/ lean mass 

Mean (SD) 0.5 (0.2) 0.5 (0.2) 

Range 0.1–1.0 0.1–1.1 

Table 4.5 Dual x-ray bone densitometry (DXA) results for all Nu-AGE subjects 
at baseline (n=272), showing mean, standard deviation (SD) and range for each 
variable.   
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4.3.2 Diet diary analysis  

To assess compliance self-reported 7DDs were kept at baseline and post-intervention 

by the study participants, which allowed MED diet scores to be calculated to 

determine how well participants complied as a whole. The MED diet scores were 

calculated for each participant, pre- and post-intervention, according to the method 

described by Sofi et al. (2014). The mean MED diet score for the control group was 

5.8, and for the MED diet group was 5.5, at baseline (Table 4.6). In both groups, the 

mean scores decreased at post-intervention, to 4.7 and 5.1, respectively. When 

comparing mean change in MED diet scores from baseline for the two groups, the 

control group decreased, on average, by one point, while there was little change in 

mean score of the MED diet group. The differences between the mean change from 

baseline between the two groups was significantly different (P=0.03), however, as the 

mean MED diet score for the MED diet group did not increase this does not show 

evidence of an association between score and group allocation, control or 

intervention, despite the significant difference between the two groups (Figure 4.3). 

This analysis used ITT as a less biased estimate, and it was evident that completion 

rate was not related to the intervention (ITT), as the distribution of drop outs between 

the two groups was equal. This was achieved by including all participants who were 

randomised into the study, regardless of whether or not they completed it, in order to 

avoid over-confident estimates of the intervention effect which could be achieved as 

a result of removing non-compliant participants (Gupta, 2011).    
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 Control (n=57) MED Diet (n=65) 

Pre-intervention 

Mean (SD) 5.8 (1.6) 5.5 (1.7) 

Median 6.0 6.0 

Range 3–10 2–10 

Post-intervention 

Mean (SD) 4.7 (1.4) 5.1 (1.7) 

Median 5.0 5.0 

Range 1–9 2–7 

Table 4.6 Mean and median values for MED diet scores for the control and MED 
diet groups, at pre- and post-intervention. 
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Figure 4.3 Change in Mediterranean diet scores from baseline in the control and 
MED diet groups. Shown as box and whisker plots which extend to the 25th and 75th 
percentiles, with the mean change from baseline represented by the plus (+) and 
median change by the horizontal line through the box plots. Whiskers are determined 
using Tukey’s method, which uses the 25th and 75th percentile, plus 1.5 times the 
interquartile range (IQR). An unpaired t-test was used to determine whether the 
changes in the diet score differed between the two groups. *p<0.05. 
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The MED diet scores were created using the following nine categories; cereals, fruits, 

vegetables, legumes, fish, meat, dairy, alcohol and olive oil. Multivariate analysis was 

also carried out in the form of principle component analysis (PCA), (Figure 4.4), 

showing the first two principle components. The results of the Welch t-test suggest 

an association between the score and intervention (p=0.0028) and whether there was 

a clear difference between the groups according to the nine food groups. The PCA 

plot showed no separation in terms of clustering as control group (open circles) and 

the MED diet group (closed circles) did not separate into clusters within the plot; a 

lack of variability in the diets between the two groups within the study was shown.  

To investigate the predictive ability of correctly classifying the group based on the 

nine dietary categories, partial least squares-linear discriminant analysis (PLS-LDA) 

was used, using three PLS factors, as this was the highest number to correctly 

classify the group (164/253) but the fewest PLS factors in which to achieve this. The 

null hypothesis of making successful predictions was 0.5 and the model was based 

on a two-sided comparison of the binomial distribution. Figure 4.5 shows that 11% of 

the variance in the food intakes can be explained by the predictive component of the 

model, while 19% of the variance can be explained by the orthogonal scores, which 

were unrelated to dietary intervention. The figure (4.5) shows that olive oil was the 

best variable to predict compliance to the MED diet as there was a very low value of 

unrelated scores (orthogonal scores), while there was between 50–90% correlation 

with the prediction; the next best predictor was alcohol consumption. There was 

strong evidence that the prediction of total olive oil intake was associated with the 

MED diet (p=1.82 x10-9), as defined by a non-parametric two sample t-test, after 

controlling false discovery rate, in order to control the number of type one errors of 

falsely classifying results as significant (Verhoeven et al., 2005). Again, it was 

observed that total olive oil intake was significantly different between the two groups.    
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Figure 4.4 Principle component analysis score plot for variance of intake of the 
nine categories of food intake utilised to compile the Mediterranean diet score. 
Control group, open circles; MED diet group, filled circles. PCA plot produced in R by 
Dr Henri Tapp. 
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Figure 4.5 Target Plot (Tapp et al., 2011) representing the correlation between 
predictive and orthogonal scores for a three-component Partial Least Squares 
regression model. Each dot represents one of the nine food groups, as labelled, the 
dashed lines represent the 10%, 50% and 90% of the variance, respectively from the 
inner to the outer circle, in each food group that is explained by these two scores; 
produced using R by Dr Henri Tapp. 
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4.3.3 Compliance 

To ascertain a more valid and biologically determined indication of study participants’ 

compliance, it was decided that since olive oil was given out as part of the study it 

would be appropriate to determine levels of one of the main phenolic constituents, 

HT, in the urine of participants as a biological marker of consumption. Since real life 

doses (25 ml) of olive oil, containing varying levels of phenolics, have demonstrated 

dose-dependent increases in urinary HT levels, which are typically in the form of 

glucuronide conjugates (Khymenets et al., 2016; Khymenets et al., 2011). The 

metabolites HTS and HT acetate sulphate are suitable compliance markers for olive 

oil consumption (Rubió et al., 2014), since olive oil undergoes extensive metabolism 

and biotransformation in the gastrointestinal tract (Corona et al., 2009). Therefore, to 

assess study compliance HTS was used as a compliance marker for assessing the 

urine samples. 

Briefly, HPLC coupled with tandem MS was used to quantitatively determine the 

levels of HTS according to ion fragmentation in 24-hour urine samples collected from 

a subset of the Nu-AGE participants; the same participants whose PBMC samples 

were utilised for functionality of dendritic cells (Chapter 5) and VDJ-Seq analysis 

(Chapter 6).   

The data show, surprisingly, that HTS was present in all samples at baseline, with a 

minimum concentration of 90 ng/ml, with one participant having a particularly high 

baseline concentration of 5154 ng/ml urinary HTS, which fell to 215 ng/ml after one 

year intervention and was much greater than the highest observed level at post-

intervention of all participants studied. This participant was therefore classified as an 

outlier and was excluded from all further analysis, leaving 17 participants in each 

group (Table 4.7). Upon grouping the samples according to study group allocation, 

control or intervention, the MED diet group showed a greater increase from baseline 

in concentration of HTS, with 11 out of the 17 participants showing an increase as 

opposed to a decrease from baseline levels (Figure 4.6). When change in HTS 

concentration from baseline was compared between the control and MED diet groups, 

using an unpaired t-test, (Figure 4.7) there was strong evidence that HTS 

concentrations differed between the two groups (p=0.0063). Additionally, the group 

with the higher levels of HTS was also the group which were found to consume 

significantly greater quantities of olive oil, determined when analysing data from their 

7DDs (Figure 4.7).   
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Table 4.7 Hydroxytyrosol sulphate (HTS) concentrations (ng/ ml) at 
baseline and post-intervention for study participants in each group. p 
value: probability value. 
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Figure 4.6 Change in hydroxytyrosol sulphate (HTS) concentrations (ng/ml) 
from baseline in the control and MED diet groups. Each bar represents one Nu-
AGE participant, with the height of bars showing increased or decreased 
concentrations from baseline. N=34; 17 participants in each group. Dotted horizontal 
lines represent the mean change from baseline for the control group (black), and the 
MED diet group (grey).  



145 
 

 

Figure 4.7 Change in hydroxytyrosol sulphate (HTS) concentration (ng/ml) from 
baseline, for the control and MED diet groups. Shown as box and whisker plots 
which extend to the 25th and 75th percentiles, with the mean change from baseline 
represented by the plus (+) and median change by the horizontal line through the box 
plots. Whiskers are determined using Tukey’s method, which uses the 25th and 75th 
percentile, plus 1.5 times the interquartile range (IQR). An unpaired t-test was used 
to determine whether the changes in the HTS concentration differed between the two 
groups.*p<0.05. 
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4.4 Discussion  

4.4.1 Subject characteristics are comparable between study groups 

Comparison of the control and intervention groups showed that participants are 

evenly matched in terms of age, gender, weight, BMI, height and waist circumference 

in each group. While the MED diet group appear to have a greater range of weight, 

BMI and waist circumference values, the mean values for these characteristics are 

similar between groups and variability between people is to be expected. When 

comparing these values to previously published data these data correspond with the 

EPIC-Norfolk figures as the overall mean values for all of the Nu-AGE participants fall 

within the range from the men and women in the EPIC study. When looking at gender 

specific means (data not shown) the values between the two studies are very similar 

(Park et al., 2011). The DXA results indicated that at one year post-intervention body 

composition is generally maintained, however, mean T scores, which are used as a 

measure for diagnosing osteopenia and osteoporosis, are considered low (< –1.0 but 

>–2.5), and those subjects at the lower end of the range have very low scores (≤-2.5) 

(NHANES, 2007), characteristic of osteoporosis (Ramos et al., 2012). Additionally, 

the upper range of T scores is reduced from 4.1 to 3.0, showing a reduction in bone 

density after one year. Similarly, another MED diet intervention, one year in duration, 

showed no effect on BMD values in elderly subjects (Bullo et al., 2009). 

4.4.2 MED diet scores are higher in the MED diet intervention group than the 

control group 

A recent meta-analysis (Sofi et al., 2014) developed a literature-based MED diet 

score (MEDI-LITE) utilising median or mean values for each food group from the 

studies evaluated, and included weighting for the number of subjects enrolled in the 

study, gender and age. This method includes fruits, vegetables, legumes, cereals, 

fish, meat and meat products, dairy products, alcohol and olive oil, all of which have 

a determined portion size calculated from the mean, of the median or mean values in 

the current literature, to give a final score out of 18 (Sofi et al., 2014). Other methods 

of measuring adherence to the Mediterranean diet include the absolute-normative 

Mediterranean score (MEDAS) (Dominguez et al., 2013), which utilises the Food 

Frequency Questionnaire from the PREDIMED study and comprises 136 items but 

similarly is based on scoring of either 0 or 1 depending on cut-off values, as well as 

the Mediterranean diet score (MDS) which was the first scoring method, proposed in 

1995 (Pérez-Tasigchana et al., 2016; Trichopoulou et al., 2003; Trichopoulou et al., 

1995). The MEDI-LITE score has recently been validated against the MDS in a cohort 

of 204 healthy subjects (23–78 years) and is able to differentiate adherent from non-
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adherent subjects, and demonstrates significant positive correlations between the two 

scoring methods for all nine food groups (Dinu et al., 2017). Therefore, although 

different methods of analysis could have been used to calculate these scores, as the 

methods are similar the overall outcome would likely be the same. The present 

method was chosen since it utilises absolute values for determining scores for each 

food group, allowing consistency when comparing its use between studies. The 

results observed show an insufficient alteration in dietary intake towards a MED diet 

in the intervention group at post-intervention, and the dietary patterns are similar 

between the groups at both pre- and post-intervention, implying that the study 

participants may not have followed the dietary guidelines set out for them by the study 

team. Self-report diet diaries in nutritional intervention studies are less sensitive when 

detecting minor changes to the diet and it should also be noted that the methods of 

self-reporting dietary intakes are limited in their validity. However, comparisons 

between FFQ and 7DDs have been carried out and although the FFQ is less prone 

to the introduction of human error since they are machine-readable, while the 7DD 

requires manual coding (Brunner et al., 2001), the FFQ is associated with participants 

recording the dietary patterns they believe to be the desired response in an 

intervention study (Cade et al., 2002). Comparison of 7DD and FFQ with urinary 

measures of sodium, potassium and nitrogen show the 7DD to be the better method 

for estimating average intake (Day et al., 2001; McKeown et al., 2001), however, 

these studies only look at three individual nutrients so cannot predict the ability of the 

self-report methods for other food groups.  

The food group that shows the best prediction of compliance to the MED diet is olive 

oil, which was expected since olive oil was provided to study participants as part of 

the intervention study. However, cereals are more influenced by orthogonal scores 

than predictive scores which is surprising since wholegrain pasta was also provided 

to study participants. This could be because this food group included all types of 

cereals, both refined and wholegrain, so intake of large quantities of cereals did not 

necessarily correlate with high wholegrain intake. 

   

4.4.3 Subjects allocated to the MED diet group have higher urinary HTS 

concentrations at post-intervention   

Olive oil is the predominant source of fat in the MED diet and is high in MUFA but 

also contains phenolic components, such as HT (Perez-Jimenez et al., 2005). The 

concentration of HT in olive oil varies dependent on the amount of processing and 
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the olive variety, in addition to the source of olives (Owen et al., 2000; Ramos-

Escudero et al., 2015; Romero and Brenes, 2012). Upon consumption of olive oil the 

majority of HT is absorbed in the small intestine, since ileostomy effluent post 

consumption of olive oil phenol rich supplements contained low concentrations of HT 

(Vissers et al., 2002). While it has been demonstrated, in vitro, that HT remains intact 

after passing through the acidic conditions similar to that of the stomach, with elevated 

levels observed in the small intestine (Corona et al., 2009), which together suggest 

that HT is mostly absorbed once the ileum is reached. It is thought that the sulphate 

conjugate metabolites are produced in the liver after HT has crossed the small 

intestinal epithelium, and these products of methylation, sulphation and 

glucuronidation are then excreted in the urine (D’Archivio et al., 2010).     

These data show, surprisingly, that HTS is present in all samples at baseline, with the 

minimum concentration being 90 ng/ml (or 0.39 µM), though similar observations are 

made in previous studies (Khymenets et al., 2011; Rubió et al., 2014). Additionally, it 

has been noted that even after strict dietary control and fasting prior to blood sampling 

it is not possible to clear HT from biological fluids (Miro-Casas et al., 2003), 

suggesting that detection of HT in all samples is to be expected. 

A comparative study looking at the administration of olive oil to rats or humans 

showed much greater basal urinary levels of HT of 180 µg/ 24 hours from the human 

samples with concentrations reaching 1118.8 µg/ 24 hours after administration of 

olive oil (Visioli et al., 2003). This provides further evidence of the difficulty to clear 

HT from biological fluids and implies that there is variability between participants, 

explaining the inter-subject variability. Additionally, these comparable studies were 

investigating solely HT or olive oil, and their designs included control groups provided 

with a placebo, with baseline measurements taken after a run-in period of a low-

phenolic diet (Khymenets et al., 2016; Khymenets et al., 2011; Suárez et al., 2011). 

The Nu-AGE study differs from this design, making comparisons between these 

studies difficult. As participants in the present study were not asked to consume a 

low-phenolic diet prior to the provision of their baseline urine samples, it is possible 

that they were habitually consuming olive oil or other phenolic compounds, resulting 

in the presence of HTS in their urine samples. 
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However, using this as a baseline was still valid as each participant serves as their 

own control, so if their dietary pattern changed to include greater amounts of olive oil 

then this would have been observed as an increase from baseline. Upon comparison 

of the MED diet scores with the concentrations of HTS, it is apparent that the two sets 

of data do not align, showing that the participants in the MED diet intervention may 

not have adopted a Mediterranean style diet, but instead only consumed more olive 

oil, or phenolic rich foods. However, while the data from the MED diet scores 

demonstrate that this type of data was insufficient to record compliance, it 

demonstrates that it is important to include a measure of biological compliance, 

especially if only small changes to the diet were made, since they may not be easily 

detected from a self-report diary.  

One participant has a very high urinary concentration of HTS at baseline of 5154 

ng/ml, which decreases to 215 ng/ ml after one year intervention. Upon investigation 

of the participant’s diet diary it is apparent that while their consumption of olive oil is 

relatively low, at 1.57 g per day, their consumption of red wine is substantially higher 

at 203 g per day; which may be contributory to the observed elevated HTS 

concentration. This participant’s data are therefore excluded from the overall analysis. 

Recent investigations into the consumption of alcohol, in particular red wine, have 

demonstrated that while the concentration of HT in red wine is low, red wine appears 

to interact with dopamine oxidative metabolism resulting in the formation of HT (de la 

Torre, 2008; Pérez-Mañá et al., 2015; Pérez‐Mañá et al., 2015). The levels of HTS 

recovered in urine samples may therefore be representative of not just olive oil 

consumption but a sum of the consumption of olive oil, directly, and red wine 

consumption. This may add value to the data of this study as red wine is part of the 

MED diet, so elevated HTS caused by either of these pathways is a sign of 

compliance, but it does not discriminate between these two dietary components. 

 Overall, the study population used for this study is suitable as the participants fit the 

criteria for inclusion and exclusion, as well as being distributed between the two 

groups effectively, such that neither group is biased in any way. The diet diary data 

shows that the participants may not have followed the instructions given to them 

regarding taking part in the study. However, the urinary compliance data gives some 

validity to the data that this study produces, since it can be seen that participants in 

the MED diet group display significantly greater change in HTS concentrations 

compared to the control, suggesting that they consumed some components of the 

study diet, possibly olive oil or other phenolic rich foods. This shows that theoretically 

the dietary intake may have caused the changes in immune parameters found. The 
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choice of HTS as a sole compliance marker is a limitation to this study, and more 

biomarkers would have produced more conclusive results. Additionally, the Nu-AGE 

study design was limited because the subjects only attended two visit days, and thus 

only provided two sets of samples for analysis. While considering the ethical 

constraints of this study, it would have been easy to obtain further urine samples, so 

this should have been carried out to give more data points for this analysis, upon 

successful approval of an ethical amendment.  
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Chapter 5 

Impact of diet on the distribution and function of plasmacytoid 

and myeloid dendritic cells in aged individuals  

5.1 Introduction 

With increased age a significant reduction in numbers of mDCs was shown in Chapter 

3, in addition to significantly reduced secretion of pro-inflammatory cytokines (IL-1β, 

IL-8, IL-6, TNF-α and MCP-1) upon TLR stimulation, and elevated secretion of resistin 

by DCs and PBMCs, respectively. The presence of FAs has been shown to both 

increase and decrease pro-inflammatory cytokine secretion by DCs (Fogarty et al., 

2015; Zapata-Gonzalez et al., 2008; Zeyda et al., 2005), of which the type of FA is of 

principal importance. In addition, SCFAs and polyphenols have been demonstrated 

to reduce secretion of IL-6 and IL-12 by LPS-stimulated MoDCs and murine derived 

DCs, respectively (Delvecchio et al., 2015; Geisel et al., 2014; Nastasi et al., 2015). 

While there is some evidence that dietary intake can influence cytokine secretion by 

PBMCs (Vulevic et al., 2008; Vulevic et al., 2015; Zhao et al., 2007), this was not 

reproduced in other studies (Grieger et al., 2014; Thies et al., 2001; Wu et al., 1999). 

These findings suggest there is potential for a MED diet to impact on the age-

associated changes to DC numbers and function as this traditional dietary pattern 

includes unsaturated FAs in the form of olive oil and oily fish, and high intakes of 

wholegrains, fruits and vegetables providing a source of SCFAs and polyphenols.  

5.1.1 Evidence of a dietary effect on DCs 

Lipids 

To date only one study (Rehman et al., 2013) has shown that blockade of FA 

synthesis, using acetyl CoA carboxylase inhibitor (Tall oil fatty acid, TOFA), inhibited 

DC production and significantly increased production of pro-inflammatory cytokines 

(IL-1α, IL-1β, IL-6, IL-10, IL-12, IFN-γ, IP-10 and MCP-1), using  MoDCs and murine 

derived BMDCs. These results imply that FAs have a role in DC production and 

function. However, no studies, to date, have directly assessed the effect of diet on 

peripheral blood DC composition and function in elderly populations. While the effect 

of FA intake on the production of cytokines by DCs has been investigated in both 

human studies and in vitro models. The type of FA has been shown to be important 

in the DC response, since LPS-stimulated MoDCs released IL-1β and IL-6 and 
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strongly induced IFN-γ production by T cells with palmitic acid treatment (Stelzner et 

al., 2016). Additionally, provision of a high fat diet (breakfast, 965 kcal, 65 g fat; lunch, 

870 kcal, 42 g fat) induced significantly elevated release of TNF-α, IL-1β and IL-6 by 

LPS-stimulated MoDCs and CD1c+ human mDCs from T1D patients (18–65 years), 

but only in the fasted state (Fogarty et al., 2015). These findings suggest that SFA 

has pro-inflammatory effects on DC function but they were not as a consequence of 

systemic LPS and that therefore, diets which reduce SFAs in favour of increasing 

unsaturated FAs may be favourable. Especially since oleic acid (MUFA) (250-500 

µM) blocked the palmitic acid induced effects of reduced MHC I expression, inhibited 

T cell stimulation (Shaikh et al., 2008) and induced secretion of IL-17A by T cells 

(Stelzner et al., 2016). Whereas, PUFA administration to human derived MoDCs 

significantly reduced TNF-α, IL-12, IL-10 and IL-6 release (Zapata-Gonzalez et al., 

2008; Zeyda et al., 2005). This implies that SFAs act as activators of TLR4, mimicking 

the action of LPS, and that unsaturated FAs can inhibit this interaction resulting in 

reduced secretion of pro-inflammatory cytokines and T cell proliferation.  

Dietary fibre 

In comparison to the present knowledge of FA influence on DCs, much less is known 

regarding the effect of dietary fibre on DCs. SCFAs, the fermentation end products of 

dietary fibre, are readily absorbed by colonocytes and released into the bloodstream 

(Cummings et al., 1987), where they can interact with peripheral DCs. In vitro models 

using human derived MoDCs have shown that addition of SCFAs (butyrate and 

propionate) or intact fibres results in significant reductions in the pro-inflammatory 

cytokines IL-12 and TNF-α (Bermudez‐Brito et al., 2015b), in addition to reduced gene 

expression of IL-6, IL-12, surface expression of maturation marker CD83 and a 

number of chemokines, in the presence of LPS (Nastasi et al., 2015). However, 

exposure of  MoDCs, co-cultured with autologous T cells, to RS (High-maize®) alone 

was shown to significantly increase secretion of IL-6, IL-12, IL-8, TNF-α, MCP-1, MIP-

1α and RANTES, while exposure of RS to IECs (in a transwell, co-culture system) 

lessened the RS induced pro-inflammatory response with only MIP-1α and TNF-α 

secretion by DCs showing small, but statistically significant increases (Bermudez‐

Brito et al., 2015a). The latter approach was more biologically relevant to the in vivo 

situation, however, since DCs would encounter dietary fibres after they have been 

exposed to intestinal IECs and highlights that dietary fibre may impact on DC function 

directly, as well as indirectly via the production of SCFAs. These observations are 

not, however, representative of an ageing population, so it is difficult to extrapolate 

these findings to the elderly. 
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Polyphenols 

 Plant-derived polyphenols have been shown to exhibit protective effects in murine 

and human derived DCs; by reducing secretion of IL-6, IL-8, IL-12 and IL-23 from 

LPS-stimulated DCs co-cultured with protocatechuic acid and isothiocyanate 

sulforophane (Del Cornò et al., 2014; Geisel et al., 2014). Additionally, a recent study 

found that treatment of LPS-stimulated BMDCs with the polyphenols quercetin and 

piperine reduced TNF-α mRNA expression (Delvecchio et al., 2015). The lack of 

studies in elderly subjects, or ageing models, makes it difficult to know whether these 

effects are relevant to aged individuals.  

5.1.2 Effect of diet on adipokine production by PBMCs 

Confounding evidence exists for the effects of dietary FAs on immune function in the 

elderly. Whilst studies have failed to detect an effect on serum or PBMC cytokine 

concentrations after consumption of large quantities of fish per week (4 portions) 

(Grieger et al., 2014), fish oil capsules or blackcurrant seed oil, rich in GLA and ALA 

(Thies et al., 2001; Wu et al., 1999). Other studies using LPS-stimulated PBMCs from 

hypercholesterolemic subjects (36–69 years) demonstrated reduced secretion of IL-

6, TNF-α and IL-1β after consumption of an ALA rich diet (Zhao et al., 2007). 

Additionally, reduced T cell proliferation has been observed after fish oil consumption 

(Bechoua et al., 2003; Meydani et al., 1991). The variation in formulation and doses 

of n-3 PUFA administered in the aforementioned studies, makes direct comparison 

of studies difficult and may account for the conflicting findings in the elderly. 

Investigation of dietary fibre consumption in elderly populations is sparse, although 

provision of a prebiotic mixture (B-GOS) to elderly subjects (64–79 years) significantly 

increased IL-10 and IL-8 production and reduced IL-6, IL-1β and TNF-α production 

by LPS-stimulated PBMCs (Vulevic et al., 2008; Vulevic et al., 2015). In addition, 

reduced TNF-α and IL-6 mRNA expression in PBMCs from the elderly (77–91 years) 

was seen after 12 week supplementation with 1.3 g/ 250 ml FOS (1.5–3 times per 

day) (Schiffrin et al., 2007).  

Provision of nutritional supplements containing 20% PUFA, 6 g oligosaccharides, 109 

cfu of Lactobacillus paracasei and 62 g carbohydrate, in addition to vitamins and 

minerals, to Chilean elderly subjects (≥70 years) failed to demonstrate any diet 

induced effect on LPS-elicited secretion of IL-1 or TNF-α (Bunout et al., 2004) by 

PBMCs. Of the few whole diet studies investigating the effects of a MED diet on 

cytokine secretion, investigators have shown reductions in plasma levels of IL-6 
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(Dedoussis et al., 2008; Mena et al., 2009; Panagiotakos et al., 2007) and IFN-γ 

(Konstantinidou et al., 2010).  

5.1.3 Gaps in knowledge 

In Chapter 3 both numbers and function of DCs in the elderly were shown to be 

reduced with age. Studies investigating the impact of dietary intervention of DC 

function have shown potential for ameliorating the effects of chronic age-related 

inflammation, as dietary MUFAs and PUFAs can inhibit cytokine secretion induced 

by prolonged activation of TLRs by SFAs or bacterial LPS (Rehman et al., 2013; 

Zapata-Gonzalez et al., 2008; Zeyda et al., 2005). In addition SCFAs, have been 

shown to interact with DCs in a similar manner by inhibiting LPS-induced pro-

inflammatory cytokine secretion (Nastasi et al., 2015). However, the studies carried 

out have relied on cell lines and animal models or, have been conducted by directly 

adding FAs, SCFAs or polyphenols to human derived cells. There is therefore a need 

for human intervention studies to test these hypotheses in vivo in the context of 

consumption of food, as opposed to supplementation with single compounds to 

account for any interactions which may occur between food components in the 

appropriate target population. Furthermore, the study populations used within 

previous interventions were described as “older” subjects, but included subjects as 

young as 55 years in one study (Zhao et al., 2007), while the previous in vitro studies 

are not representative of ageing individuals, making the data less relevant to this 

population.  

Additionally, since reduced secretion of cytokines (IL-1β, IL-8, IL-6 TNF-α, and MCP-

1) and increased secretion of resistin by LPS/R848 stimulated PBMCs was observed 

in Chapter 3, the potential for dietary intervention to ameliorate this is worth 

investigating, particularly as few studies to date have looked at the effect of diet on 

resistin secretion. Although associations have been made with “healthy diets” 

containing lower SFA and elevated MUFA (Cabrera de León et al., 2014; Fargnoli et 

al., 2008). Resistin may have negative health effects, such as the suggested 

association with insulin resistance and elevated resistin levels (Koerner et al., 2005), 

so exploration of dietary sources to reduce the increases associated with age is of 

interest, however the health effect of elevated resistin is not certain at present.   

5.1.4 Rationale for investigating the Mediterranean diet  

Combining the aforementioned dietary components into a whole diet is beneficial in 

determining whether these effects are only apparent in vitro or when consumed in 

isolation, or whether they are still apparent when the components are consumed 
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naturally, as part of the whole diet. The MED diet is an appropriate diet to investigate 

since it encompasses increased quantities of dietary fibre through wholegrains, fruits 

and vegetables, and MUFA is the predominant source of fat, from olive oil, with 

increases in PUFA from fish intake but reduced SFA intakes (Willett et al., 1995). The 

increased fruit and vegetable intakes are also associated with increased polyphenol 

consumption. Therefore this diet includes all of the components with potential to 

influence DC production and function. As the MED diet has been shown to have a 

positive effect in non-MED populations in Australia and Sweden on longevity (Kouris-

Blazos et al., 1999; Tognon et al., 2011), it is feasible that adoption of this dietary 

pattern in the Norfolk Nu-AGE cohort would be beneficial.     

5.1.5 Aims and objectives 

Does consumption of a MED-style diet by elderly subjects restore the reduction in 

mDCs observed with age? Also, can this dietary intervention increase the secretion 

of MCP-1, TNF-α, IL-8, IL-6 and IL-1β in DCs and PBMCs which were observed to 

decrease with age, or, reduce elevated levels of resistin secretion by PBMCs 

observed with increasing age?  

Objective 1: Determine absolute numbers of mDCs and pDCs within peripheral blood 

extracted from elderly Nu-AGE subjects at pre- and post-intervention after 

consumption of a MED-style or control diet, using multiparameter flow cytometry 

Objective 2: Determine cytokine response of DCs and PBMCs from elderly Nu-AGE 

subjects, pre- and post-dietary intervention, to TLR stimulation, using intracellular 

staining and multiparameter flow cytometry, and multiplex bead based 

immunoassays. 
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5.2 Methodology 

5.2.1 Recruitment of Nu-AGE participants, and sample collection 

Study participants were recruited onto the Nu-AGE study upon provision of informed 

written consent and providing they fulfilled the eligibility requirements detailed in Table 

2.4; full details in Chapter 2, Section 2.2.2. Blood samples were collected from 

participants at the baseline and post-intervention study visit days, as described in 

Section 2.2.5. 

5.2.2 Blood DC enumeration 

The protocol was carried out following the manufacturers’ instructions using whole 

blood (Blood Dendritic Cell Enumeration Kit, Human; 130-091-086, Miltenyi Biotec). 

(See Chapter 3, Section 3.2.2). 

Single-stained compensation controls, prepared using Ultracomp ebeads (Affymetrix 

eBioscience), and unstained control samples were run on both cytometers to enable 

manual compensation to be applied to all sample data acquired. Acquired data was 

analysed using FlowJoTM software (TreeStar, San Carlos, CA), Version 10. The gating 

strategy (Figure 3.1, Chapter 3) for Nu-AGE samples was consistent with that 

described by Miltenyi-Biotec.  

5.2.3  Functional analysis of blood DCs 

PBMC stimulation  

Frozen PBMCs were thawed in a 37ºC water bath and washed within 20 minutes in 

an excess of thaw media (90% RPMI 1640, 10% heat-inactivated FBS) to remove 

DMSO (Sigma Aldrich). Cell pellets were resuspended in tissue culture media 

including the same supplements as used in earlier experiments. Cell viability was 

determined using trypan blue viability dye exclusion (0.4%; Sigma Aldrich) and 

resuspended in a final concentration of 0.5 x 106 cells / 200 µl. Cells were aliquoted 

into 96 well flat bottom tissue culture plates (Sarstedt) and covered with a plate seal 

and left to recover at 37ºC in 5% CO2 for 18 hours.  

Cells were incubated in the presence or absence of LPS and R848 ± monensin, as 

previously described (Chapter 3, Section 3.2.4). PBMC culture supernatants were 

stored at -80°C prior to analysis. 
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Intracellular staining  

Staining for surface markers, fixation of cell membranes, cell permeabilisation and 

intracellular cytokine staining was performed as previously described (Chapter 3, 

Section 3.2.4).  

Data was acquired on the BD LSR Fortessa cytometer. Spectral overlap between 

channels was manually compensated in FlowJoTM software version 10, after 

measurement of single-stained compensation controls prepared using Ultracomp 

ebeads (Affymetrix eBioscience) and unstained control samples. Analysis of data was 

performed using FlowJoTM software Version 10 according to the gating strategy 

detailed in Figure 3.2 (Chapter 3). 

Multiplex immunoassay of PBMC culture supernatants 

Supernatants were thawed on ice and analysed by Multiplex immunoassay 

(LEGENDplex Human Adipokine panel, Biolegend) using the human adipokine panel 

(IL-8, IL-1β, IL-6, MCP-1, TNF-α, leptin, IL-10, adiponectin, adipsin, IFN-γ, IP-10 

(CXCL10), retinoic binding protein 4 (RBP4) and resistin). The assay was performed 

at 21ºC in a 96-well V-bottom microplate (Greiner-Bio), according to manufacturers’ 

instructions. Sample preparation and data acquisition were performed as detailed in 

Chapter 3 (Section 3.2.5). 

5.2.4 Statistical analysis 

Demographic information for study participants within each dietary group (control or 

MED diet intervention) was recorded at baseline and at the one-year post-intervention 

time point and the change from baseline to post-intervention was compared between 

groups by unpaired t tests using GraphPad Prism 7.02. 

Blood mDC and pDC phenotypes were compared between groups by change from 

baseline to post-intervention using Mann Whitney U tests. 

GraphPad Prism 7.02 was used to determine differences in proportions and cell 

counts of DCs positive for IL-6, IL-8 and IL-1β secretion at pre- to post-intervention 

for each intervention group using Wilcoxon matched pairs signed rank tests, after 

performing a D’Agostino & Pearson normality test to determine non-gaussian 

distribution. Post-hoc analyses were performed by one-way ANOVA using the 

Kruskal-Wallis test with Dunn’s multiple comparisons post-hoc test to identify any 

differences in proportions of single and double positive cells. 
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GraphPad Prism 7.02 was used to determine differences in concentration of each 

analyte between unstimulated and stimulated samples using two-tailed paired t tests 

for each group at pre-intervention and post-intervention. Differences in concentration 

from unstimulated were compared per group, pre- versus post-intervention using 

paired t-tests. Comparison of post-intervention values to young subject values was 

determined by Mann Whitney U test for each analyte. 
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5.3 Results  

5.3.1 Subject demographics 

The intervention was a year in duration and thus the significant differences observed 

in age between pre- and post-intervention were expected (Table 5.1). Both groups 

had lower mean weight (-0.5 kg) and BMI (-0.3 kg/m2) after the year intervention, but 

the change from baseline between the two groups was not significantly different for 

either variable. Similarly, change from baseline in height, waist circumference and 

frailty status were comparable with no significant difference observed between the 

groups at post-intervention. Ten participants dropped out of the study, however the 

gender ratios of the two groups remained similar at post-intervention, with no 

significant difference observed between the groups at post-intervention. Plasma lipid 

analysis shows that while all subjects had high total and LDL cholesterol, and normal 

HDL and triglyceride concentrations, these concentrations were unaffected in both 

dietary groups, Figure 5.1. 

5.3.2 Numerical analysis of blood DC subsets  

No effect was observed in numbers of either mDC (Figure 5.2) or pDC (Figure 5.3) 

subset, which remained consistent over the dietary intervention for both groups. 

There was therefore insufficient evidence to reject the null hypothesis of no difference 

between the cell counts in each group at the 5% significance level. Additionally, the 

ratio of mDC: pDC was also unaffected by dietary intervention (Figure 5.4).  

5.3.3 Functional analysis of blood DCs 

DC cytokine secretion in control diet samples 

PBMCs were surface stained to distinguish DCs and intracellularly stained with anti-

IL-8, IL-6 and IL-1β antibodies. Significant reductions in IL-1β+ /IL-8+ DCs were 

observed between pre- and post-intervention in the control group with LPS/R848 

stimulation (Figure 5.5a, b; p=0.0264). A significant reduction was also observed in 

IL-8- /IL-6+ DCs in unstimulated samples from the control group (Figure 5.6a and b; 

p=0.0269).  

Post-hoc analyses (by one-way ANOVA) showed significant differences in the 

proportion of IL-8+ /IL-6+ DCs and IL-8+ /IL-6- DCs in the control group after LPS/R848 

stimulation (p=0.0386). Additionally, numbers of IL-8+ /IL-6+ DCs at pre-intervention 

were significantly reduced compared to IL-8+ /IL-6- DCs at post-intervention 

(p=0.0380), after LPS/R848 stimulation.  
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Pre-intervention Post-intervention 

 
 

  

 

 

 

 

Control 
Group 
(n=57) 

MED 
Diet 

Group 
(n=65) 

Control 
Group  
(n=54) 

MED 
Diet 

Group 
(n=61) 

Mean 
CFB in 
Control 
Group  

Mean 
CFB in 
MED 

Group 

p values 
(Control 
v MED)  

Age (years) 
Mean 
(SD) 

71.0 (4.1) 69.8 (4.2) 71.6 (3.8) 70.8 (4.2) 
0.6 1.0 0.55 

 Range 65–79 65–79 66–80 66–80 

Gender (%) 
Female 61 60 61 57 0 -3 >0.99 

 

BMI (kg/m2) 
Mean 
(SD) 

26.6 (3.3) 26.7 (4.5) 26.3 (3.6) 26.4 (4.6) 

-0.3 -0.3 0.99 

 Range 
20.0–
37.4 

18.5–
43.2 

18.9–
37.9 

18.2–
45.8 

Weight (kg) 
Mean 
(SD) 

73.2 
(12.5) 

73.4 
(15.1) 

72.7 
(12.6) 

72.9 
(14.7) 

-0.5 -0.5 0.40 

 Range 
52.5–
108.9 

49.5–
128.5 

52.0–
101.0 

49.7–
118.7 

Height (cm) 
Mean 
(SD) 

165.7 
(9.3) 

165.6 
(9.1) 

166.1 
(9.3) 

165.8 
(9.0) 

0.4 0.2 0.26 

 Range 
148.6–
187.4 

145.6–
188.2 

149.6–
186.5 

146.6–
187.1 

Waist 
circumference 

(cm) 

Mean 
(SD) 

91.5 
(11.1) 

91.3 
(12.5) 

91.2 
(11.7) 

91.5 
(12.6) 

-0.3 0.2 0.96 

 Range 
72.0–
122.0 

63.5–
134.8 

69.1–
127.9 

65.0–
126.7 

Frailty status 
(%) 

Non 
frail 

77 77 78 89 1 12 

0.62 
 Pre frail 21 22 17 15 -4 -7 

 Frail 0.04 0 0 0 -0.04 0 

Table 5.1 Characteristics of study participants at pre- to post-intervention. p values 
determined by paired t tests. CFB: Change from baseline, ns: not statistically significant, 
SD: Standard deviation. 
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Figure 5.1 Plasma lipid concentrations at pre- and post-intervention for all 
subjects, separated by allocated diet group.  Plasma concentrations for all Nu-
AGE subjects in the control (top graph) and MED-diet group (lower graph) are shown 
as box and whisker plots which extend from the 25th to the 75th percentiles, with the 
horizontal line representing the median and the plus (+) representing the mean. 
Whiskers are determined using Tukey’s method, which uses the 25th and 75th 
percentile plus 1.5 times the interquartile range (IQR). The dotted lines indicate the 
British Heart Foundation’s recommended levels of blood cholesterol and triglycerides; 
total cholesterol <4 mmol/l, LDL cholesterol <2 mmol/l, triglycerides <1.7 mmol/l and 
HDL cholesterol >1 mmol/l (BHF, 2017). n=134, control group; n=138, MED-diet 
group. 
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DC cytokine secretion in MED diet samples 

In the MED diet group no significant differences were observed on comparison of the 

same cell type from pre- to post-intervention in LPS/R848 stimulated or unstimulated 

samples (p>0.05).  

Post-hoc analyses were performed and showed significant differences between IL-

1β- /IL-8+ DCs at pre-intervention and IL-1β+ /IL-8+ DCs at post- intervention 

(p=0.004), and IL-1β- /IL-8+ DCs post-intervention compared to IL-1β+ /IL-8+ DCs at 

pre-intervention (p=0.0146) in unstimulated PBMCs. While, LPS/R848 stimulated IL-

8+ /IL-6+ DCs at pre-intervention were significantly reduced compared with IL-8+/ IL-

6- DCs at post-intervention (p=0.0051), IL-1β- /IL-8+ DCs at pre-intervention were 

significantly greater than IL-1β+ /IL-8- DCs at post-intervention (p=0.0105) and IL-1β- 

/IL-8+ DCs at post-intervention were significantly greater than IL-1β+ /IL-8- DCs at pre-

intervention (p=0.0087); Figure 5.5 a and b.  

Significant differences were observed between IL-8+ /IL-6+ and IL-8+ /IL-6- DCs both 

at pre- (p=0.0051) and post-intervention (p=0.0008) with LPS/R848 stimulation. The 

same was also observed for unstimulated samples (p=0.0118, pre; p=0.0154, post). 

While, proportions of IL-1β- /IL-8+ DCs and IL-1β+ /IL-8- DCs were significantly 

different (p<0.0001) at pre-intervention with LPS/R848 stimulation (Figure 5.6 a, b). 

PBMC cytokine secretion 

There were no significant differences in secretion of any of the cytokines analysed in 

the control group by unstimulated or LPS/R848 stimulated PBMCs at baseline (Table 

5.2); determined by paired t-tests. While in the MED diet group LPS/R848 stimulation 

induced significant increases in IL-1β, IL-8 and TNF-α secretion (Table 5.3). The 

absolute concentrations recorded for the two groups at baseline were similarly low for 

Adipsin, RBP4, MCP-1, IP-10, Leptin, IL-6 and IFN-γ. However, adiponectin was 

detected to mean levels >100 pg/ ml in the control group, but this adipokine was not 

detected in the MED-diet group, at baseline. As in Chapter 3, any samples that 

resulted in values below the level of detection were recorded as 0.0 pg/ ml. 

At post-intervention, in the control group, the secretion of IL-1β and TNF-α were 

significantly increased after LPS/R848 stimulation (Table 5.2). The concentration of 

resistin was significantly reduced post-dietary intervention (Table 5.2). All other 

analytes remained the same, with no significant differences observed between 

unstimulated and LPS/R848 stimulated PBMC samples. 
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Figure 5.2 mDC counts after dietary-intervention for control and MED-diet study 
groups. Whole blood from control and dietary intervention groups was stained with 
anti-CD1c to identify mDCs, and anti-CD14 and CD19 to exclude CD14+ monocytes 
and CD19+ B cells, of which a high proportion express CD1c. The data shows box 
and whisker plots of change in mDC counts from pre to post intervention in elderly 
subjects extending from the 25th to the 75th percentiles, with the horizontal line 
representing the median. Whiskers were determined using Tukey’s method using the 
25th and 75th percentile plus 1.5 times the interquartile range (IQR) as the end of the 
whiskers. Squares represent individual participants where the values fell above the 
25th or 75th quartile plus 1.5 times the interquartile range (IQR). A Mann Whitney test 
was used to determine the presence of differences between the control and dietary 
intervention cohorts. N= 58, Control group, n= 62, MED diet group, significance 
assumed at *p<0.05, **p<0.01; p=0.9104. 
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Figure 5.3 pDC counts after dietary-intervention for control and MED diet 
intervention study groups. Whole blood from control and dietary intervention 
groups was stained with anti-CD303 to identify pDCs. The data shows box and 
whisker plots of change in pDC counts from pre to post intervention in elderly subjects 
extending from the 25th to the 75th percentiles, with the horizontal line representing 
the median. Whiskers were determined using Tukey’s method using the 25th and 75th 
percentile plus 1.5 times the interquartile range (IQR) as the end of the whiskers. 
Squares represent individual participants where the values fell above the 25th or 75th 
quartile plus 1.5 times the interquartile range (IQR). A Mann Whitney test was used 
to determine the presence of differences between the control and dietary intervention 
cohorts. N= 58, Control group, n= 62, MED diet Group, significance assumed at 
*p<0.05, **p<0.01; p=0.3553.   
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Figure 5.4 mDC/pDC ratios at pre dietary-intervention for control and MED diet 
intervention study groups. Whole blood from control and dietary intervention 
groups was stained with anti-CD1c to identify mDCs, anti-CD303 to identify pDCs , 
and anti-CD14 and CD19 to exclude CD14+ monocytes and CD19+ B cells, of which 
a high proportion express CD1c. The data shows box and whisker plots of change in 
mDC: pDC ratio from pre to post intervention in elderly subjects extending from the 
25th to the 75th percentiles, with the horizontal line representing the median. Whiskers 
were determined using Tukey’s method using the 25th and 75th percentile plus 1.5 
times the interquartile range (IQR) as the end of the whiskers. Squares represent 
individual participants where the values fell above the 25th or 75th quartile plus 1.5 
times the interquartile range (IQR). A Mann Whitney test was used to determine the 
presence of differences between the control and dietary intervention cohorts. N= 58, 
Control group, n= 62, MED diet group, significance assumed at *p<0.05, **p<0.01; 
p=0.8404. 
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Comparison of PBMC cytokine secretion from pre- to post-intervention showed that 

all analytes investigated, except for resistin, were not significantly affected by control 

or dietary intervention. Comparing changes in resistin concentration, between 

unstimulated pre- and post-intervention for each group revealed that while the resistin 

levels were not significantly different between the pre- and post-intervention sample 

in the control group (Figure 5.7c), they were significantly reduced at post-intervention 

in the MED diet group (Figure 5.7c). However, upon comparison of the two dietary 

intervention groups, it was apparent that while resistin secretion was significantly 

different from pre- to post-intervention in the MED diet group, the change in resistin 

secretion from baseline was not significantly different between the control and the 

MED diet groups (Figure 5.8c). While, the change from baseline in secretion of TNF-

α and MCP-1 were significantly different between the control and MED diet groups 

(Figure 5.8 a, d).  
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5.4 Discussion 

5.4.1 MED diet intervention results in weight loss 

BMI values are significantly reduced in both study groups at post-intervention implying 

that participants were more aware or cautious of their dietary intake as a result of 

being on the study. Dietary advice was given to all study participants, as the control 

group were provided with a healthy eating fact sheet from the British Dietetic 

Association (Appendix X), therefore, as a result all participants may have altered their 

dietary habits post-intervention. Additionally, having to complete 7DDs could 

introduce error since this data is self-reported, reducing its reliability. However, when 

compared with food frequency questionnaires (FFQ), 7DD have been shown to be 

better able to predict potassium and nitrogen intakes, which were quantified by urinary 

biomarker analysis (Day et al., 2001; McKeown et al., 2001). Although, as mentioned 

in Chapter 4, 7DD are more prone to human error as data is manually coded (Brunner 

et al., 2001). Only participants on the MED diet intervention group lost a significant 

amount of weight at post-intervention, though the control group are close to 

significance at p=0.0567. The MED diet consists of fewer calorie dense sweet 

products such as cakes and biscuits, as well as less red and processed meat. 

Therefore the observed weight loss is expected, as seen in a MED diet weight loss 

study that resulted in greater weight loss than adherence to a low fat diet (Shai et al., 

2008).  

5.4.2 Diet has no effect on numbers of mDCs or pDCs distribution in 

elderly subjects 

Although, production of DCs may be dependent on FA synthesis (Rehman et al., 

2013), no studies have investigated the effect of diet on peripheral blood production 

of DCs. Our observation that the MED diet has no effect on mDC or pDC numbers is 

inconsistent with the previous findings of Rehman et al (2013). However the 

consistency in DC numbers from both subsets at one year post-intervention may be 

a positive finding as the numbers of mDCs or pDCs do not decrease further with an 

additional year of age. This has not been explored in previous papers, since resulting 

numbers, determined from one-off blood or PBMC samples from young and elderly 

subjects, have been compared, but the elderly have not been followed up over time. 
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Figure 5.5 Cytokine producing DCs from elderly subjects at pre- and post-
dietary intervention. PBMCs from control subjects and MED diet intervention 
subjects were cultured for 3 hours in complete tissue culture media alone (a), or in 
media containing LPS and R848 (b) in the presence of 2μM monensin. Samples were 
subsequently surface stained with anti-HLA-DR, CD1c, CD303 and CD304, CD14, 
CD16, CD19 and CD3 antibodies, permeabilised and stained with anti-IL-1β and IL-
8 antibodies. Squares represent values for each individual subject with filled squares 
(■) representing pre-intervention values and open squares (□) representing post-
intervention values. Significance assumed at p<0.05; *p<0.05, **p <0.01, ***p<0.001, 
****p<0.0001 indicate significance between pre- and post-dietary intervention as 
measured by Wilcoxon matched pairs signed rank test, and between the three cell 
types by one-way ANOVA.  
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Figure 5.6 Cytokine producing DCs from elderly subjects at pre- and post-
dietary intervention. PBMCs from control subjects and MED diet intervention 
subjects were cultured for 3 hours in complete tissue culture media alone (a), or in 
media containing LPS and R848 (b) in the presence of 2μM monensin. Samples were 
subsequently surface stained with anti-HLA-DR, CD1c, CD303 and CD304, CD14, 
CD16, CD19 and CD3 antibodies, permeabilised and stained with anti-IL-8 and IL-6 
antibodies. Squares represent values for each individual subject with filled squares 
(■) representing pre-intervention values and open squares (□) representing post-
intervention values. Significance assumed at p <0.05; *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001 indicate significance between pre- and post-dietary intervention as 
measured by Wilcoxon matched pairs signed rank test, and between the three cell 
types by one-way ANOVA.  
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5.4.3 The MED diet changes DC cytokine secretion  

LPS/R848 stimulation of PBMCs does not induce any changes in the same cell type 

at pre- and post-intervention, indicating that the MED diet did not change DC cytokine 

secretion after one year intervention. However, significant differences were observed 

between pre- and post- MED diet intervention between IL-8+ /IL-6+ and IL-8+ /IL-6- 

DCs, IL-1β- /IL-8+ and IL-1β+ /IL-8- DCs and IL-1β+ / IL-8- and IL-1β- /IL-8+ DCs, after 

LPS/R848 stimulation. The stimuli applied to these samples was a combination of 

LPS, derived from E. coli 0111:B4 which activates the TLR4 pathway, and the 

synthetic compound R848, which has been shown to activate cells via TLR7 and 8 

(Jurk et al., 2002). LPS induced responses may therefore be more reliable, since LPS 

would reflect the true in vivo response, while the synthetic R848 may not. However, 

the combination of LPS and R848 demonstrated strong induction of IL-10, IFN-γ and 

IL-17A in CD4+ T cells co-cultured with MoDCs, an effect which was not observed 

with each stimuli alone (Lombardi et al., 2009). 

In comparison to the age associated effects observed in Chapter 3 of reduced IL-6+ 

/IL-8+ and IL-1β+ /IL-8+ expressing DCs, post MED diet there are fewer of these DCs 

although differences did not reach statistical significance. While secretion of IL-8 is 

seen to decrease with age, post MED diet IL-8 secretion increases, with significantly 

greater proportions of IL-8+ /IL-6- DCs compared to IL-8+ /IL-6+ DCs, as well as greater 

proportions of IL-1β- /IL-8+ DCs compared to IL-1β+ /IL-8- DCs. These differences may 

be indicative of EPA and DHA (from consumption of oily fish) since these FAs 

diminish IL-6 secretion by LPS stimulated MoDCs, with DHA treatment providing the 

most prominent effects (Zapata-Gonzalez et al., 2008). Additionally, DHA decreases 

IL-1β secretion after palmitic acid induction (Snodgrass et al., 2016), though these 

results were derived from a monocyte cell line, so cannot be directly compared to 

data from human blood derived DCs. The recent findings of Stelzner et al. (2016), 

which used LPS-stimulated MoDCs, yielded similar findings of palmitic acid induced 

increases in IL-1β and IL-6, although oleic acid produced no effect. Additionally, no 

effect of human consumption of DHA and EPA rich capsules was observed on 

cytokine secretion by PBMCs isolated from these subjects (Kew et al., 2004). 

Therefore, DHA inhibition of DC activation via PPARγ and retinoic X receptors (RXR) 

(Zapata-Gonzalez et al., 2008) could explain the present findings of reductions in 

secretion of IL-6, although current evidence is limited due to very few studies being 

carried out to date.  
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Adipokine Study time point Media alone Stimulated p values 

Adiponectin Pre-int Mean (SEM) 217.80 (135.20) 162.80 (162.80) 0.612 (ns) 

 Range 0–1254 0–1791  

Post-int Mean (SEM) n.d  n.d - 

 Range n.d n.d  

Adipsin Pre-int Mean (SEM) 21.28 (9.66) 25.13 (10.80) 0.551 (ns) 

Range 0–98.29 0–91.65  

 Post-int Mean (SEM) 96.99 (62.22) 89.06 (58.75) 0.076 (ns) 

Range 0–710.70 0–669.50  

RBP4 

 

Pre-int Mean (SEM) 1.85 (1.85) 1.60 (1.60) 0.341 (ns) 

Range 0–20.29 0–17.58  

Post-int Mean (SEM) 40.07 (16.22) 36.87 (16.78) 0.115 (ns) 

Range 0–183.30 0–192  

MCP-1 Pre-int Mean (SEM) 4.50 (3.02) 6.81 (4.69) 0.205 (ns) 

Range 0–34.13 0–52.88  

 Post-int Mean (SEM) 16.48 (6.70) 29.77 (12.53) 0.177 (ns) 

Range 0–71.79 1.11–121  

IL-1β Pre-int Mean (SEM) 1.83 (1.01) 4.58 (2.49) 0.275 (ns) 

Range 0–9.49 0–25.03  

 Post-int Mean (SEM) 25.69 (17.19) 29.22 (17.06) 0.026 

Range 0–153.70 0–158.90  

IP-10 Pre-int Mean (SEM) 4.59 (1.75) 3.29 (1.93) 0.227 (ns) 

Range 0–17.14 0–21.72  

 Post-int Mean (SEM) 1.35 (0.59) 1.32 (0.60) 0.963 (ns) 

Range 3.48–1751 4.87–1668  

IL-10 Pre-int Mean (SEM) n.d n.d - 

Range n.d n.d  
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Post-int Mean (SEM) n.d n.d - 

Range n.d n.d  

IL-8 Pre-int Mean (SEM) 32.84 (19.74) 104.4 (52.48) 0.065 (ns) 

Range 0–220.70 0–580.50  

 Post-int Mean (SEM) 318.5 (185.80) 552.10 (169.80) 0.070  

Range 3.48–1751 4.87–1668  

Leptin Pre-int Mean (SEM) 6.35 (1.48) 3.08 (3.08) 0.198 (ns) 

Range 0–45.20 0–33.90  

Post-int Mean (SEM) n.d 0.70 (0.70) 0.341 (ns) 

Range n.d 0–7.72  

IL-6 Pre-int Mean (SEM) 0.50 (0.50) 3.90 (2.83) 0.185 (ns) 

Range 0–5.48 0–29.38  

 Post-int Mean (SEM) 32.38 (22.26) 33.60 (19.39) 0.761 (ns) 

Range 0–214.30 0–181.10  

IFN-γ 

 

Pre-int Mean (SEM) 12.69 (10.14) 6.11 (6.11) 0.176 (ns) 

Range 0–110.7 0–67.21  

Post-int Mean (SEM) 0.25 (0.25) 0.24 (0.24) 0.341 (ns) 

Range 0–2.72 0–2.62  

Resistin Pre-int 

 

Mean (SEM) 164.90 (100.30) 183.70 (100.50) 0.531 (ns) 

Range 0–1028 0–869.90  

Post-int Mean (SEM) 309.10 (124.00) 285.10 (120.70) 0.124 (ns) 

Range 0–1245 0–1246  

TNF-α Pre-int Mean (SEM) 0.09 (0.09) 16.68 (7.67) 0.054 (ns) 

Range 0–0.96 0–75.91  

Post-int Mean (SEM) 2.95 (2.01) 53.26 (16.63) 0.016 

Range 0–18.85 0–151  

Table 5.2 Absolute concentrations of cytokines in PBMC culture supernatant, 
from elderly subjects in the control dietary intervention group, at pre- and post-
intervention. SEM = standard error of the mean, ns = not statistically significant.  
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Adipokine Age group Media alone  Stimulated p values 

Adiponectin Pre-int Mean (SEM) n.d n.d - 

Range n.d n.d  

Post-int Mean (SEM) 27.39 (20.24) 20.06 (20.06) 0.220 (ns) 

Range 0–260.70 0–260.70  

Adipsin Pre-int Mean (SEM) 3.83 (2.12) 4.74 (3.89) 0.743 (ns) 

Range 0–23.14 0–57.72  

 Post-int Mean (SEM) 103.40 (48.23) 92.73 (48.59) 0.132 (ns) 

Range 0–661.30 0–651.00  

RBP4 Pre-int Mean (SEM) n.d n.d - 

Range n.d n.d  

 Post-int Mean (SEM) 41.87 (11.20) 28.42 (7.81) 0.089 (ns) 

Range 0–141.70 0–79.50  

MCP-1 Pre-int Mean (SEM) 16.19 (5.12) 33.22 (13.63) 0.093 (ns) 

Range 0–57.54 0–199.90  

 Post-int Mean (SEM) 199.80 (183.30) 179.20 (166.00) 0.264 (ns) 

Range 0–2398 0–2170  

IL-1β Pre-int Mean (SEM) 0.59 (0.54) 16.37 (5.25) 0.009 

Range 0–8.17 0–52.37  

 Post-int Mean (SEM) 41.26 (30.94) 16.57 (11.54) 0.447 (ns) 

Range 0–401.60 0–152.20  

IP-10 Pre-int Mean (SEM) 0.73 (0.33) 1.30 (0.61) 0.225 (ns) 

Range 0–4.28 0–7.67  

 Post-int Mean (SEM) 30.97 (28.74) 9.89 (7.62) 0.338 (ns) 

Range 0–375.70 0–101.00  

IL-10 Pre-int Mean (SEM) 0.13 (0.09) 0.22 (0.13) 0.169 (ns) 

Range 0–1.24 0–1.85  

Post-int Mean (SEM) 3.27 (2.98) 0.82 (0.52) 0.348 (ns) 
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Range 0–38.87 0–6.39  

IL-8 Pre-int Mean (SEM) 175.80 (104.20) 523.40 (191.30) 0.018 

Range 0–1610 7.07–2422  

 Post-int Mean (SEM) 810.60 (395.90) 961.10 (480.10) 0.226 (ns) 

Range 0–4738 17.27–6130  

Leptin Pre-int Mean (SEM) n.d n.d - 

Range n.d n.d  

 Post-int Mean (SEM) 0.94 (0.94) 1.19 (0.80) 0.716 (ns) 

Range 0–12.16 0–8.02  

IL-6 Pre-int Mean (SEM) 3.69 (3.56) 23.89 (12.82) 0.056 (ns) 

Range 0–53.43 0–187.40  

 Post-int Mean (SEM) 218.60 (208.80) 15.71 (6.24)  0.342 (ns) 

Range 0–2723 0–64.81  

IFN- γ Pre-int Mean (SEM) n.d 0.22 (0.22) 0.334 (ns) 

Range n.d 0–3.30  

 Post-int Mean (SEM) 0.83 (0.63) n.d 0.217 (ns) 

Range 0–8.01 n.d  

Resistin Pre-int Mean (SEM) 89.80 (53.89) 101.70 (60.39) 0.204 (ns) 

Range 0–747.20 0–790.70  

 Post-int Mean (SEM) 304.60 (110.40) 251.10 (101.80) 0.049 

Range 14.03–1320 12.98–1262  

TNF-α Pre-int Mean (SEM) 1.28 (1.02) 71.44 (26.68) 0.021 

Range 0–15.42 0–350.90  

Post-int Mean (SEM) 394.20 (393.10) 18.35 (6.57) 0.360 (ns) 

Range 0–5111 0–64.89  

Table 5.3. Absolute concentrations of cytokines in PBMC culture supernatant, 
from elderly subjects in the MED diet intervention group, at pre- and post-
intervention. SEM = standard error of the mean, n.d. = not detected, ns = not 
statistically significant. 
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Another consideration, with regard to the reduction in IL-6+ DCs at post-intervention 

could be the increase in dietary fibre, since a pilot study showed significant reductions 

in blood levels of IL-6 after 30 participants supplemented their diets for 30 days with 

pasta enriched with β-glucans (6%) (Barera et al., 2016). This finding, along with 

downregulation of IL-6 mRNA expression and IL-6 secretion upon butyrate and 

propionate treatment of LPS-stimulated MoDCs (derived from healthy donors) 

(Nastasi et al., 2015) or PBMCs derived from elderly subjects given the prebiotics B-

GOS (Vulevic et al., 2008) suggests a role for dietary fibre and the microbiota 

generated SCFAs in controlling DC secretion of IL-6. However, since the present data 

also demonstrates some changes in cytokine secretion by DCs sampled from 

participants in the control group the impact of these findings is reduced.  

5.4.4 The MED diet reduces resistin production   

Resistin concentration, after stimulation with LPS/R848 is significantly reduced from 

pre-intervention (p=0.0367) after a one-year intervention of a MED diet. This finding 

could be related to the weight loss of the participants in the intervention group, as a 

recent study found resistin levels positively correlated with BMI as well as abdominal 

visceral and subcutaneous fat volume and mass, determined by computer 

tomography (CT) (Gencer et al., 2016). However, a weight loss study found no effect 

on plasma resistin levels after a short term, four week reduced calorie diet, resulting 

in a mean weight loss of 3.4 kg (Wolfe et al., 2004). Additionally, no association was 

observed between plasma resistin levels and intra-abdominal fat levels, insulin 

sensitivity nor MetS, and only a weak association was observed with BMI 

(Utzschneider et al., 2005). The relationship between the adiposity and resistin levels 

is likely therefore to be complicated and the weight loss achieved by the participants 

in the present study may not be causal in reducing resistin levels. This is especially 

apparent as the control group also lost weight, but there was no significant difference 

in weight loss between the two groups at post-intervention, and the control group 

showed no significant difference in resistin levels at post-intervention (p=0.2052). 

However, it should be noted that upon comparison of the change in resistin secretion 

from baseline, between the control and MED diet group, there was no significant 

difference (Figure 5.8c). 

As the association of resistin levels with adiposity is uncertain, the dietary composition 

may account for the observed changes which has been demonstrated in a similar 

study, where adherence to a “healthy diet” resulted in significantly lower resistin 

concentrations (Fargnoli et al., 2008). In the study by Fargnoli et al. (2008) 

participants’ diets were assessed according to the Alternate Healthy Eating Index 
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(AHEI) to score intakes of fruits, vegetables, ratio of white to red meat, trans fats, ratio 

of PUFA to SFA, cereal fibre, nuts, soy and alcohol. Additionally, a cross-sectional 

study investigating over six thousand participants found a positive association with 

SFA intake and serum resistin levels, while greater intake or MUFA and adherence 

to a MED diet was inversely associated with serum resistin levels (Cabrera de León 

et al., 2014). These studies were observational and correlative. However, our findings 

validate these observations since the reduction in resistin may be attributed to the 

dietary intervention. Another key difference between these studies and the present 

study is the use of serum for cytokine and adipokine analysis compared to the 

analysis of supernatant samples derived from LPS-stimulated PBMCs. Therefore, the 

present findings represent the functional response of PBMCs derived from elderly 

participants on the intervention study, as compared to the pre-existing inflammatory 

state of participants, without any experimental challenge. Further studies similar to 

the present study are required to confirm our findings. Particularly, as although a 

significant reduction in resistin was observed after the MED diet intervention, the 

change in secretion from baseline was not significantly different to that observed for 

the control group. This is likely due to the observations that the two groups did not 

report differences in their dietary intakes in the self-reported diet diaries, which 

suggest that either one, or both of the groups did not follow the study guidelines 

provided to them. Therefore, future studies, with more stringent control over dietary 

intake and more frequent contact with the study participants would be beneficial. 

Additionally, as the intervention was not blinded to the subjects, it is possible that both 

groups improved their diets, as a reduction in resistin has been correlated with more 

nutritious diets (Cabrera de León et al., 2014; Fargnoli et al., 2008). 
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Figure 5.7 Change in cytokine production by PBMCs in response to LPS and 
R848 stimulation in pre- versus post-dietary intervention. PBMCs from control 
subjects and MED diet intervention subjects were cultured for 3 hours in complete 
tissue culture media alone, or in media containing LPS and R848 in the presence of 
2μM monensin. PBMC culture supernatants were analysed by multiplex bead based 
immunoassay to determine absolute concentrations of each analyte in the samples. 
Concentrations (pg /mL in unstimulated samples were subtracted from stimulated 
samples to give a change in concentration as a result of the stimulus. Squares and 
dots represent individual values for change in secretion of each cytokine by PBMCs, 
error bars represent the SEM.  Determination of significant differences between pre- 
and post-intervention by paired t-tests, comparison of post values to young values (●) 
determined by Mann Whitney U test, significance assumed at *p<0.05, **p<0.01, 
***p<0.001.  
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Figure 5.8 Change from baseline in cytokine production by PBMCs in response 
to LPS and R848 stimulation after one-year of control and MED-diet 
intervention. PBMCs from control subjects and MED diet intervention subjects were 
cultured for 3 hours in complete tissue culture media containing LPS and R848 in the 
presence of 2μM monensin. PBMC culture supernatants were analysed by multiplex 
bead based immunoassay to determine absolute concentrations of each analyte in 
the samples. Concentrations (pg/mL) of each cytokine at pre-intervention were 
subtracted from the post-intervention values to give a change from baseline value. 
Change from baseline in the control and MED diet groups were compared using a 
Mann Whitney U test, with significance assumed at *p<0.05. CFB: change from 
baseline, IL-8: interleukin-8, MCP-1: monocyte chemoattractant protein-1, MED: 
Mediterranean, PBMC: peripheral blood mononuclear cell, pg: picogram, TNF-α: 
tumour necrosis factor alpha. 
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We show, however, that the MED diet consuming study participants consume an 

increased amount of phenolic compounds, most likely from olive oil, consistent with 

elevated urinary HTS concentrations in this group. Since it is apparent that the 

subjects were compliant the effects observed may be a consequence of altered 

dietary intake. In considering FA intake calculated form the self-report 7DD it is 

apparent that the MED diet group consumed significantly less saturated fat 

(p<0.0001) compared to the control group while the MUFA and PUFA intakes were 

not significantly different between the groups (p=0.063 and 0.902, respectively). As 

shown in Figure 5.9 the MUFA intake is decreased compared to baseline for both 

groups in the present study, suggesting the effects observed may be attributed to 

changes in the SFA: MUFA or SFA: PUFA ratio, or simply the reduced intake of SFA. 

However, this cannot be confirmed since we assume that the control group were not 

compliant, as the MED diet scores were not different between the two groups and 

therefore these analyses lack an effective control group to confirm our findings. 

A consideration for the present findings is the evidence that resistin expression is 

regulated by PPARγ activators (Patel et al., 2003) and as such it is possible that the 

dietary intervention may have impacted on PPARγ initiated signal transduction. 

Increased MUFA intake (via the consumption of olive oil) or PUFA (via the 

consumption of oily fish) by study participants decreases PPARγ signal transduction 

and thus inhibits cytokine secretion, as seen in previous studies (Zapata-Gonzalez et 

al., 2008; Zeyda et al., 2005), giving potential for effects on adipokine secretion. 

Provision of 0.4 g or 1.8 g EPA and DHA to elderly subjects resulted in altered gene 

expression profiles of PBMCs after a period of only 26 weeks consumption, with 

downregulation of PPARα observed (Bouwens et al., 2009). This finding corresponds 

with the data from previous studies showing that inhibition of cytokine secretion upon 

treatment with EPA and DHA involved PPARγ (Marion-Letellier et al., 2008; Zapata-

Gonzalez et al., 2008). An interesting confounding observation is that MUFA 

consumption had the opposite effect and resulted in upregulation of PPAR signalling 

(Bechoua et al., 2003). It would be interesting to investigate this in future work aimed 

at determining whether PPAR signalling is involved and whether the effect is induced 

by the reduced SFA: MUFA ratio or the SFA: PUFA ratio. 
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Previous studies show that IL-6, TNF-α, and IL-1β can induce secretion of resistin 

and that the insulin sensitizer, rosiglitazone, can neutralise these cytokines by 

activating PPARγ (Lehrke et al., 2004), suggesting that the presence of low grade 

chronic inflammation may enhance secretion of resistin in the elderly subjects in the 

present study. Since in the present study levels of IL-6, TNF-α and IL-1β are already 

low in the elderly subjects (Tables 5.2 and 5.3) and a significant reduction in TNF-α 

was observed after one year MED diet intervention (Figure 5.8d), the diet could 

potentially induce a reduction in resistin secretion via activation of PPARγ. Therefore, 

n-3 PUFA or MUFA consumption could impact on cytokine signalling pathways and 

thus inhibit the secretion of resistin, as a consequence of the observed reduction in 

consumption of SFAs by the MED diet intervention group and the confirmed intake of 

olive oil by the urinary HTS concentrations. However, this study is limited by the poor 

control group and therefore these data need validating in future studies with more 

stringent control over dietary intake and more frequent contact with the study 

participants. (Cabrera de León et al., 2014; Fargnoli et al., 2008). 
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Figure 5.9 Change in fatty acid intake, from baseline, in study participants from 
the control and intervention study groups. Nutrient intakes were determined, by 
members of the study team, using dietary analysis software (WISP, Tinuviel Software) 
to input the 7-day diet diary information self-reported by the study participants. Fatty 
acid intakes in terms of saturated (SFA), monounsaturated (MUFA) and 
polyunsaturated (PUFA) were calculated in grams (g) and the change in intake from 
baseline calculated by subtracting the baseline intake from the post-intervention 
intake. Bars represent mean with the SEM (indicated by error bars). Determination of 
significant differences between groups for each type of FA by Mann-Whitney U test, 
significance assumed at *p<0.05, **p<0.01, ***p<0.001.   
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5.4.5 Impact of findings  

The study participants in the MED diet intervention group show a significant reduction 

in body weight at post-intervention, which is of importance since increased adiposity 

is often attributed with ageing and the associated negative health consequences. 

Maintaining a healthy weight with increasing age is important and thus this dietary 

pattern may prove to be an appropriate long term method of reducing weight in these 

individuals. 

The significant reduction in resistin production after the MED-diet intervention is of 

biological relevance since elevated resistin is associated with insulin resistance, CVD 

risk and obesity (Koerner et al., 2005). Therefore, if only one year of dietary change 

to increase consumption of phenolic-rich food can reduce resistin levels, this could 

have beneficial implications as a potential target for reducing the burden of these age-

associated conditions. Other studies have also shown that dietary modification can 

reduce resistin levels in serum (Cabrera de León et al., 2014; Fargnoli et al., 2008). 

This data is also of biological significance for the study participants since four were 

taking medications for T2D, including simvastatin and metformin, and 55 were taking 

medications for high cholesterol, therefore, these participants are an at risk group for 

developing MetS, especially since the mean BMI classifies them as overweight in 

both intervention groups, even after weight loss. These data are limited by the 

assumed lack of compliance by the control group and therefore further dietary 

interventions are necessary in order to replicate these findings using a more 

stringently monitored control group.   

Further investigation into the mechanistic action responsible for this reduction in 

resistin secretion would be of interest since while there is speculation in the field as 

to the mechanism, little is currently known due to very few human studies. Especially 

since this finding could be relevant for the future investigation of drug targets to treat 

these conditions, such as the current pharmaceutical use of the PPARγ agonist 

(thiazolidinedione; TZD) to treat insulin resistance in patients with T2D, which  is 

associated with numerous adverse side effects such as body weight gain, fluid 

retention, heart failure, bone fractures and increased risk of bladder cancer (Cariou 

et al., 2012). Patel et al. (2003) have shown that expression of resistin by human 

macrophages can be reduced with extensive (96 hour), but not short-term (24 hour), 

exposure to rosiglitazone, which is a TZD. Therefore, the observation that dietary 

modification to a MED diet shows similar reductions in resistin secretion is of great 

interest, since if the public could be persuaded to adopt this dietary pattern, there may 

be potential for the age-associated increase in resistin, as seen in Chapter 3, to be 
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prevented, and thus the need for such drugs to improve insulin sensitivity might be 

reduced, in addition, potentially, to those required for other inflammatory conditions.     
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Chapter 6  

Impact of a Mediterranean diet on the diversity of the aged 

immunoglobulin repertoire  

6.1 Introduction 

With increased age there is an increased susceptibility to infection and despite high 

uptake (72.7%) of the influenza vaccination in the over 65 age group, the elderly are 

typically the predominant group infected by influenza virus within the population 

(Public Health England, 2015a). Vaccination responses rely on the production of  

antigen-specific cell-mediated and humoral immune responses and the subsequent 

production of immunological memory, which includes the production of plasma cells 

which secrete specific antibodies to destroy pathogens or inhibit their ability to interact 

with host cells (Sallusto et al., 2010). Plasma cells, which reside in the BM, secrete 

specific antibodies, in an antigen-independent manner to maintain effective 

concentrations within the serum, and also to respond to re-encounter with the same 

pathogen, after rapid proliferation and differentiation of memory B cells (Sallusto et 

al., 2010). In parallel to the quantitative measures of age-associated reduction in 

serum IgM and hemagglutination inhibition (HI) responses post vaccination 

(Ademokun et al., 2011; Frasca et al., 2010), and delayed serum IgA production post 

pneumonia vaccination (Ademokun et al., 2011), qualitative alterations to the Ig 

repertoire have also been observed. Early observations in aged mice showed loss of 

diversity and increased oligoclonality of the antibodies produced (Nicoletti et al., 1991; 

Nicoletti et al., 1993). This failure to produce sufficiently diverse antibody repertoires 

has been observed in the elderly, whom demonstrate poor immune function (Bolland 

et al., 2016), which could explain why the elderly are predominantly infected with 

influenza despite high vaccination uptake (Public Health England, 2015a). This poses 

the question of whether it is possible to intervene at the Ig level, to improve humoral 

immune responses in the elderly. Therefore, the potential for dietary intervention to 

influence the Ig repertoire will be investigated within this chapter. The gene names 

and definitions of Igs approved by the HUGO Nomenclature Committee (HGNC) 

(Gray et al., 2016) will be used throughout this chapter to identify Ig heavy chain 

variable (IGHV) regions, which classifies by group (IGHV), of which there are 

subgroups (IGHV3), which comprise genes (IGHV3-15), these genes are ordered 

within the locus (IGH (14q32,33)) and alleles (IGHV3-15*01) are a variant of the gene 

(Lefranc et al., 2003). Functionality refers to germline V, D, J and C sequences where 
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coding regions have an open reading frame (ORF) with no stop codon and no effect 

within splicing sites, recombination signals or regulatory elements (Lefranc et al., 

2003).     

6.1.1 Evidence of collapse of immunoglobulin repertoire with age 

Assessment of CDR3 length and diversity are useful determinants of Ig repertoire 

diversity (Pickman et al., 2013), since the CDR3 is the most hypervariable region of 

the Ig encoding antigen specificity and reactivity. The length of CDR3 of IgM and IgG 

heavy chains has shown no differences with age, when comparing young (24–31 

years) to aged subjects (>65 years) (Wang and Stollar, 1999; Xue et al., 1997). These 

studies were carried out using PBMC or single cell PCR and Sanger sequencing prior 

to the advent of more sensitive and accurate methodologies utilising high-throughput 

and deep sequencing (van Dijk et al., 2014). More recent work has shown shorter 

CDR3 lengths in IgM naïve B cells from old subjects (65–92 years and 86–94 years, 

respectively) (Chong et al., 2003; Pickman et al., 2013), but similar lengths for IgM 

memory and IgG CDR3 regions with age (Chong et al., 2003).   

Spectratype size analyses, examine CDR3 length distribution of the Ig heavy chain 

(IgH). Non-normally distributed spectratypes indicate multiple identical or near 

identical sequences, implying increased clonality, and thus reduced Ig repertoire 

diversity of B cells derived from elderly, frail subjects (Gibson et al., 2009). This 

finding, accompanied with significantly fewer samples matching Gaussian distribution 

in spectratypes of elderly subjects, prior to vaccine challenge, when compared to 

young subjects (Ademokun et al., 2011) suggests that there are age-associated 

reductions in the level of diversity in the IgH repertoire. While CDR3 length was 

significantly longer for IgH from naïve B cells from elderly subjects at baseline and 

both time points post vaccination (7 and 28 days) (Ademokun et al., 2011). However, 

recently, computational models have been applied to spectratype analyses to obtain 

more information, resulting in the identification that, when excluding frail individuals, 

CDR3 lengths of IgH from elderly subjects were positively skewed towards shorter 

lengths with more clonal expansions present (Pickman et al., 2013), after re-analysis 

of the CDR3 data from Gibson et al. (2009). Two-fold increases in the number of 

clones of the IgA isotype in B cells from the older subjects, compared to young, was 

also observed (Wu et al., 2012a). Older subjects had larger CDR3 regions of the 

heavy chain and lower mutational frequency compared to young subjects (Wu et al., 

2012a), in addition to persistence of B cell clonality 28 days post-vaccination 

(Ademokun et al., 2011; Wu et al., 2012a). This implies a delayed immune response 
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in the elderly; an observation also made in a B cell kinetics study (Macallan et al., 

2005).  

High-throughput sequencing allows more in-depth and detailed investigation of the 

IgH variable region (IGHV), including the usage of V, D and J gene subgroups and 

genes within the antigen binding region (Dunn-Walters, 2016). Earlier studies, 

utilising single-cell PCR, detected significantly greater use of the IGHV4 gene 

subgroup, while IGHV3 usage was diminished in the elderly (Wang and Stollar, 1999); 

with more recent observations supporting this reduction in IGHV3 gene subgroup 

usage (Martin et al., 2015; Wu et al., 2011). By contrast, reduced usage of the IGHV6 

gene subgroup has been observed in B cells from young subjects (Wu et al., 2011). 

Conversely, no age-associated differences were observed post-influenza vaccination 

in IGHV gene usage in one study (Wu et al., 2012b), however IGHV3-30 gene usage 

was significantly increased after pneumonia vaccination (PPS4 and PPS14) in B cell 

samples from elderly subjects (Kolibab et al., 2005). While, Ig from peripheral B cells 

from young subjects displayed gene usage dominated by IGHV3-74 and IGHV3-01 

for PPS4 and IGHV3-48 for PPS14, along with increased frequency of somatic 

mutations in samples from young compared to old subjects (Kolibab et al., 2005). It 

is clear from the current published data that there is a lack of consistency between 

studies in terms of the age-associated changes to both IgH CDR3 length and V gene 

subgroup and gene usage within the IGHV when comparing young to aged subjects. 

6.1.2 Influence of dietary intervention on the B cell production, function and 

immunoglobulin repertoire of elderly subjects 

Ageing is accompanied by increased adiposity of the BM (Justesen et al., 2001). 

Since adipocytes and osteoblasts arise from the differentiation of MSCs, which are 

also involved in the development and differentiation of B cells from HSCs within the 

BM (Tabera et al., 2008), BM adiposity may impair earlier precursor stages of B cell 

development; including Ig production. Additionally, the BM is the site of storage for 

antibody-producing plasma cells (Caraux et al., 2010), and since increases in BM 

adiposity results in tightly packed adipocytes the reduced space has been suggested 

to inhibit haematopoiesis (Bonomo et al., 2016), it could also inhibit plasma cell 

storage; an important part of the memory response (Janeway Jr et al., 2012). The 

presence of adipocytes within other tissues can influence surrounding cells and 

tissues via the secretion of adipokines with implications for insulin resistance, fatty 

liver and hyperlipidaemia (Vázquez-Vela et al., 2008). It is feasible therefore to 

hypothesise that this could also occur in bone cavities (Yokota et al., 2003), since 

greater adiponectin secretion was observed from BM adipose tissue than WAT 
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(Cawthorn et al., 2014). Additionally, osteoblasts have been shown to support the 

differentiation of HSCs to lymphoid precursors and the subsequent differentiation of 

B cell precursors and mature B cells, since depletion of osteoblasts severely depleted 

pre-pro-B and pro B cells from murine BM (Zhu et al., 2007).  

High fat diets and calorie restriction (30%) have been shown to increase BM adiposity 

(Adler et al., 2014; Devlin et al., 2010; Doucette et al., 2015; Halade et al., 2010). 

Similarly, alcohol increased BM adiposity (Maddalozzo et al., 2009), though this 

evidence is all derived, to date, from animal models. Six weeks of high fat diet 

significantly increased BM adiposity (+363%) in C57BL/6 mice compared to regular 

diet, with an accompanying reduction in BM B cells (-25%) compared to the regular 

diet (Adler et al., 2014). A significant deficit in total B cells was also observed, after 

extrapolation from flow cytometry determined total cell counts (Adler et al., 2014). The 

accumulation of adipocytes after high fat diet was, however, suppressed by increased 

exercise in C57BL/6 mice (Styner et al., 2014). Feeding of CLA isomers to 12 month 

old C57BL/6 mice for six months significantly reduced BM adiposity after consumption 

of the trans-10, cis-12 CLA (Rahman et al., 2011). Also, addition of oleuropein, a 

major polyphenol in olive oil, to cell culture media significantly reduced adipocyte 

differentiation and expression of genes involved in adipogenesis using MSCs from 

human BM (Santiago-Mora et al., 2011). This suggests the potential for altered FA 

intake, predominantly in the form of elevated MUFA from olive oil intake, may reduce 

the age-associated accumulation of adipose tissue in the BM. Since, adiposity of the 

BM can dysregulate B cell populations in mice (Adler et al., 2014), reducing 

adipogenesis may influence B cell populations and functions in elderly subjects.  

6.1.3 Gaps in knowledge 

At present experimental evidence for dietary interventions with outcomes relating to 

B cell function have been restricted to animal and in vitro models (Gurzell et al., 2015; 

Rockett et al., 2013; Rockett et al., 2012). While, interventions of dietary fat 

(particularly n-3 PUFA), dietary fibre, protein and phytochemical intakes have been 

conducted in human studies, immune parameters are often not investigated.  

The Ig repertoire studies of young and elderly subjects have not included complete 

analysis of VDJ recombination at the DNA level due to PCR-based methodological 

issues (Bolland et al., 2016), due to the lack of a primer that can detect all genes (95), 

within the seven V gene subgroups in the human IgH, which altered primer design 

could resolve (Wood et al., 2013). Similarly, while age-associated effects on B cell 
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subset numbers and intrinsic genetic alterations in the Ig repertoire have been 

reported no observations have been made in relation to dietary impact in humans.  

6.1.4 Rationale 

This study utilised blood samples from human subjects to provide initial and novel 

data regarding the effects of dietary intervention on immune function, in relation to 

VDJ recombination within the IGHV region. A VDJ sequencing assay (VDJ-seq) has 

been developed at the Babraham Institute utilising high-throughput next generation 

sequencing which captures primer extension products of genomic DNA from JH gene 

oligonucleotides without the need for multiple V gene primers, allowing detection of 

unbiased DJH and VDJH recombination products (Bolland et al., 2016). Since there 

are only six human JH genes (Wood et al., 2013), every DJH and VDJH recombination 

event will end with one of these six genes. 

6.1.5 Aims and objectives  

Does the VDJ-seq assay provide equivalent data to the current literature comparing 

young and elderly Ig repertoires and does dietary intervention with a 12 month MED 

diet effect the Ig repertoire? This work is in collaboration with the Babraham Institute 

and is acknowledged within the text.     

Objective 1: Compare the frequency of usage of IGHV gene subgroups and genes 

between elderly (65–79 years) and younger subjects, using the VDJ-seq assay 

utilising B cell DNA extracted from PBMC samples derived from Nu-AGE participants; 

re-analysing sequencing data previously collected from young subjects at the 

Babraham Institute. 

Objective 2: Determine whether dietary intervention influences the frequency of 

usage of IGHV genes, the CDR3 length of the IGHV and the overall diversity of the 

Ig by allocation of clonotypes. 

6.2 Methodology 

6.2.1 Thawing of PBMCs  

Frozen PBMCs were thawed as described in Chapter 2. Cells were counted using the 

viability stain, trypan blue (Sigma Aldrich, T8154), and resuspended to give a final 

concentration of 1 x 106 cells / ml. Cells were “rested” for 2 hours at 37 ºC, before B 

cells were isolated.  
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6.2.2 B cell isolation 

A subset of Nu-AGE PBMC samples were selected based on those that had a 

corresponding post-intervention sample and those that had been analysed for DC 

functionality in Chapter 5. Of which ten samples were selected blinded and at random, 

due to the cost implications of this analysis, with verification from a colleague not 

involved in the research that allocation from the two dietary groups had been 

achieved. PBMC-B cells were purified, from this subset of samples, by negative 

immunomagnetic selection. Briefly, cells were incubated with 10µl/ 107 cells of 

antibodies specific for T cells, NK cells, monocytes, DCs, granulocytes and 

erythrocytes (MACS pan B cell isolation kit, Miltenyi-Biotec). Anti-biotin magnetic 

microbeads (20µl/ 107 cells) were added and antibody-labelled cells were separated 

by passing the labelled samples through MS columns (Miltenyi-Biotec) on a mini-

MACS magnet (Miltenyi-Biotec), by three washes with MACS buffer (see Chapter 2 

for details). The remaining, untouched, B cell fraction was flushed through the MS 

column with MACS buffer after removing the MS column from the magnet. Isolated B 

cells were analysed for purity by flow cytometry by staining samples with a CD19-

VioBlue antibody (Miltenyi-Biotec).   

6.2.3 DNA Extraction 

DNA was extracted from isolated B cells using the DNeasy kit (Qiagen), following the 

manufacturer’s instructions. DNA was quantified, and purity (260/280) and integrity 

(260/230) ascertained via UV/VIS spectrophotometry using the Thermo Scientific 

Nanodrop™ 1000; DNA samples were stored at -20°C until the VDJ-seq assay was 

carried out. 

6.2.4 Generation of IGHV gene libraries for high throughput sequencing; 

VDJ-seq assay 

The VDJ-Seq technique was performed by researchers at The Babraham Institute 

according to the protocol described by (Bolland et al., 2016), with some adjustments 

including the omission of the step to deplete unrecombined DNA; a brief description 

is given below. 

Fragmentation and repair of DNA samples 

DNA was fragmented by sonication, to generate ~500bp, using Covaris E220 system. 

End repair of sonicated DNA was carried out followed by a purification step using 

QiaQuick columns (Qiagen).  
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PE1 adapter ligation 

A-tailing of end-repaired DNA and incorporation of two adaptor mixes, which each 

incorporate six nucleotides at the start of read 1 followed by a known “anchor” 

sequence of 7 or 8 bp; unique molecular identifier (UMI) adapters; details in Appendix 

XIII. Fragmented DNA samples were ligated with one of these mixes (mix 1 or 2) to 

fulfil the criteria for Illumina red/ green laser registration of clusters; sequences of 

adapter mixes in Appendix XIII.  

Enrichment of VDJ recombined fragments 

Biotinylated primer extension was carried out using oligonucleotides annealing within 

each J segment, with five rounds of PCR; details of thermal cycler conditions in 

Appendix XIV. Primer-extended DNA were enriched for J-containing fragments using 

JH specific oligonucleotides according to method detailed by (Bolland et al., 2016).  

Incorporation of PE2 adapter by PCR 

PCRs were carried out using a mixture of 7 reverse primers 15 bp downstream of the 

recombination junction with paired-end 2 (PE2) sequence at the 5′ end, combined 

with a single forward primer annealed to PE1 sequence in the ligated adapter. Up to 

1 µg starting DNA was used for each primer extension reaction, 5x primer extension 

reactions; thermal cycler conditions in Appendix XIV.  

Flowcell binding and barcoding sequencing 

PCR was carried out using universal Flowcell PE1 primer (forward primer) in 

combination with one of 12 index PE2 primers (reverse primer) to each sample. Each 

primer extension reaction used up to 1 µg DNA, thermal cycler conditions and primer 

sequences detailed in Appendix XIV.  

6.2.5 DNA-library quality control 

DNA-libraries ready for sequencing underwent analysis using Agilent 2100 

Bioanalyser and Kapa qPCR for quantification, and qPCR for quality control of 

libraries at the Babraham Institute; to ensure that libraries were of sufficient quality 

and quantity to be sequenced. Bioanalyser results in Appendix XV. DNA-libraries that 

passed QC tests were sequenced by Illumina MiSeq 2 x 300bp paired end 

sequencing.  

6.2.6 Bioinformatics analysis   

Fastq files from Illumina 2x300bp MiSeq paired end sequencing entered Babraham 

LinkON VDJ-Seq pipeline. The initial pre-clean stage identified paired-end assembled 

reads (PEAR), removing any unassembled reads. The assembled reads were pre-
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filtered to remove germline reads, sequences containing bases of low quality (Q2 

sequences) and sequences with UMI bases lower than Q30. The sequences were 

aligned to J primers, any sequences that fitted more than one J primer sequence were 

ambiguous and were discarded. To account for any mispriming, five base pairs 

beyond the primer were used to identify the original J gene. If the five base pairs 

matched more than one J gene, the sequences were discarded and if they didn’t 

perfectly match the reference they were classed as unclear. The sequences were 

then demultiplexed by assigning to one of the two anchors; Appendix XVI. The UMI 

was extracted along with the anchor sequence and placed in the read name. These 

are used in the deduplication step. Sequences were discarded if they could not be 

assigned to either of the anchors. 

The fastQ files then underwent deduplication in order to remove sequencing errors. 

Sequences with less than five reads per UMI group were discarded. If the reads within 

a UMI group were more than 5bp different from the consensus the entire group was 

discarded to remove early PCR errors and incorrect grouping. The output  fasta files 

containing the consensus sequence were then inputted into the IgBLAST analysis 

tool (NCBI) (Ye et al., 2013) with the international ImMunoGeneTics information 

system (IMGT) database to annotate the Ig domain. Clonotypes were assembled and 

assigned to each read. Clonotypes are clones (reads) with one mismatch in the 

CDR3, and the same V gene.  

Young samples (<40 years) previously analysed using VDJ-seq at the Babraham 

Institute were re-analysed in the same way as that carried out for the Nu-AGE 

samples, to enable comparison between the two groups. 

6.2.7 Statistical analysis 

Frequency of V gene usage within each gene subgroup (IGHV1–7) was compared 

between young (n=12) and elderly subjects (n=10) using two-way ANOVA with a priori 

Sidak’s multiple comparisons tests to compare means for each gene subgroup. 

Significance assumed at alpha=0.05, using GraphPad Prism V7.02. The same 

analysis was carried out to compare, pre- to post-intervention, V gene subgroup 

frequency of usage values for control diet (n=6) allocated subjects, and MED diet 

(n=4) allocated subjects. 

Comparison of V gene usage by young and elderly subjects was carried out after 

aligning all genes represented within both groups of subjects by multiple unpaired t-

tests to compare means of the usage of each gene for the elderly and the young 

subjects. Statistical significance was determined using the Holm-Sidak method, which 
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corrects for multiple comparisons, with alpha=0.05, no assumption of consistent 

standard deviations was made, as each gene was analysed individually; this analysis 

was performed using GraphPad Prism V7.02.  

For V allele analysis pre- and post-intervention frequencies for all V alleles, 

represented across all Nu-AGE subjects, were compared for each subject by two-way 

ANOVA with Sidak’s multiple comparisons test, using GraphPad Prism V7.02. This 

allowed comparison of each of the 246 alleles from pre- to post-intervention, in all 

subjects allocated to the MED diet or control diet intervention, for functional or non-

functional alleles. 

The frequency distributions of the CDR3 lengths for functional and non-functional 

genes for all samples at pre- and post-intervention were determined using GraphPad 

Prism V7.02 and compared using the Kolmogorov-Smirnov (K-S) test for equality of 

distributions when comparing non-parametric, unpaired data. Samples were grouped 

according to study group allocation, MED diet or control diet. D’Agustino & Pearson 

normality tests were performed on the frequency distribution data to determine 

whether data were normally distributed for functional and non-functional genes in both 

dietary groups and pre- and post-intervention.  

Tree maps were produced using RStudio to show the hierarchical structure of the 

clonotype data using a space-filling visualisation method, this method efficiently 

represents the size of clonotypes which can easily be displayed with nesting to 

subdivide each of the subjects, while colour is used to determine study time point; 

pre- or post-intervention (van Wijk and van de Wetering).   
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6.3 Results 

6.3.1 V gene subgroup usage frequency 

Effect of age 

The clone frequencies for all of the V genes within each of the IGHV subgroups 

IGHV1, IGHV2, IGHV3, IGHV4, IGHV5, IGHV6 and IGHV7 were grouped to 

determine gene usage within gene subgroups. Comparable profiles of IGHV gene 

subgroups within the Ig repertoire of naïve B cells were evident for both young and 

elderly subjects. IGHV3 was the predominant subgroup, followed by IGHV1, while 

IGHV6 and IGHV7 were represented the least for both young and elderly subjects. 

The frequency of gene usage within the IGHV3 subgroup was however significantly 

reduced in the elderly compared to the young samples; p=0.0037, Figure 6.1. 

Conversely, the frequency of gene usage within the IGHV1 subgroup was significantly 

increased in the elderly compared to the young subjects; p<0.0001. All other gene 

subgroups had similar gene usage between young and elderly subjects; p>0.05.   
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Figure 6.1 Comparison of immunoglobulin heavy chain variable (IGHV) gene 
usage by gene subgroup for functional genes between young and elderly 
subjects.  
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Figure 6.1 Comparison of immunoglobulin heavy chain variable (IGHV) gene 
usage by gene subgroup for functional genes between young and elderly 
subjects. 2x 300bp paired end sequencing was carried out using the Illumina MiSeq 
platform for DNA libraries by Dr Daniel Bolland (Babraham Institute) prepared from 
DNA extracted from human peripheral B cells. After analysis of the Illumina acquired 
Fastq files through the Babraham LinkON analysis pipeline to remove sequencing 
errors and de-duplicate the data, the consensus Fasta files were run through the 
NCBI IgBLAST tool using the IMGT database and subsequently the clones were 
assembled and assigned clonotypes; all by Peter Chovanec (Babraham Institute). 
Frequencies of usage of genes determined for all subjects were grouped by gene 
subgroup to give an overall frequency of gene variant use within the seven IGHV gene 
subgroups. Frequencies of variable gene usage within gene subgroups is shown for 
each subject, greyscale bars refer to young subjects, blue scale bars refer to elderly 
subjects (65–79 years) from the Nu-AGE study at pre-intervention. Statistical analysis 
was carried out using GraphPad Prism V7.02 to compare IGHV gene subgroup usage 
between young and elderly subjects by two-way ANOVA with a priori Sidak’s multiple 
comparisons comparing row means.  
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 Effect of dietary intervention 

The frequency of V gene usage was determined for all of the V genes and alleles 

represented within the Nu-AGE subject cohort. Initially, the clone frequencies for all 

of the genes within the IGHV subgroups IGHV1, IGHV2, IGHV3, IGHV4, IGHV5, 

IGHV6 and IGHV7 were grouped to determine gene usage within gene subgroups. 

This showed that the subgroup expressed predominantly in the naïve B cell repertoire 

from the elderly subjects was IGHV3, in both functional and non-functional subgroups; 

comparison of all gene subgroups against IGHV3 were significantly different 

(p<0.00001). The functional IGHV4 subgroup was expressed with the second 

greatest frequency, while IGHV6 and IGHV7 were expressed at the lowest 

frequencies. Comparing gene subgroup usage across all subjects showed significant 

differences between all combinations (p<0.00001; VH7 versus VH5; VH6 versus VH5; 

VH6 versus VH2 p<0.001) except VH4 versus VH1; VH5 versus VH2; VH6 versus 

VH2 for functional genes at pre-intervention which did not show statistically significant 

differences. All combinations were significantly different (p<0.00001) with the 

exception of VH4 versus VH1; VH5 versus VH2; VH6 versus VH2; VH7 versus VH2; 

VH6 versus VH5; VH7 versus VH5; and VH7 versus VH6 for functional genes at post-

intervention (Figure 6.2), and non-functional genes at both pre- and post-intervention 

(Figure 6.3). Comparison of pre- to post-intervention for the control and MED diet 

groups showed similar usage of gene subgroups at both time points. 

However, a large increase was observed in one MED diet subject in the frequency of 

IGHV4 clone usage, while a decrease was observed in IGHV1 gene usage 

(MED146). In terms of the non-functional IGHV frequencies this subject displayed an 

increase in IGHV4 clone usage, and a decrease in IGHV3 clone usage, while a 

decrease in IGHV1 gene usage was apparent in MED159. These differences were 

not, however statistically significantly upon comparison of the pre- and post-

intervention frequencies for any of the IGHV subgroups in any of the subjects, 

regardless of whether they were on the control or MED diet; p>0.05. 
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Figure 6.2 Immunoglobulin heavy chain variable (IGHV) gene usage by gene 
subgroup for functional genes. 2x 300bp paired end sequencing was carried out 
using the Illumina MiSeq platform for DNA libraries prepared by Dr Daniel Bolland 
(Babraham Institute) from DNA extracted from human peripheral B cells. After 
analysis of the Illumina acquired Fastq files through the Babraham LinkON analysis 
pipeline to remove sequencing errors and de-duplicate the data, the consensus Fasta 
files were run through the NCBI IgBLAST tool using the IMGT database and 
subsequently the clones were assembled and assigned clonotypes; all by Peter 
Chovanec (Babraham Institute). Frequencies of usage of genes determined for all 
subjects were grouped by gene subgroup to give an overall frequency of gene use 
within the seven IGHV gene subgroups. 
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Figure 6.2 (Continued) Immunoglobulin heavy chain variable (IGHV) gene 
usage by gene subgroup for functional genes. a) Variable gene usage within gene 
subgroups for all Nu-AGE subjects at pre-intervention. b) Variable gene usage within 
gene subgroups for all Nu-AGE subjects at post-intervention. Statistical analysis was 
carried out, using GraphPad Prism V7.02, to compare frequency of usage of each 
IGHV gene subgroup for control and MED diet allocated subjects from pre- to post-
intervention, for functional genes by two-way ANOVA with Sidak’s multiple 
comparisons comparing row means. Each subject’s pre- to post-intervention values 
for each of the gene subgroups were compared by two-way ANOVA, with Sidak’s 
multiple comparison test.  
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Figure 6.3 Immunoglobulin heavy chain variable (IGHV) gene usage by gene 
subgroup for non-functional genes. 2x 300bp paired end sequencing was carried 
out using the Illumina MiSeq platform for DNA libraries prepared by Dr Daniel Bolland 
from DNA extracted from human peripheral B cells. After analysis of the Illumina 
acquired Fastq files through the Babraham LinkON analysis pipeline to remove 
sequencing errors and de-duplicate the data, the consensus Fasta files were run 
through the NCBI IgBLAST tool which utilised the IMGT database to assemble the 
clones and assign clonotypes; all by Peter Chovanec (Babraham Institute). 
Frequencies of usage of genes determined for all subjects were grouped by gene 
subgroup to give an overall frequency of gene use within the seven IGHV gene 
subgroups.  
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Figure 6.3 (Continued) Immunoglobulin heavy chain variable (IGHV) gene 
usage by gene subgroup for non-functional genes. a) Variable gene usage within 
gene subgroups for all Nu-AGE subjects at pre-intervention. b) Variable gene usage 
within gene subgroups for all Nu-AGE subjects at post-intervention. Statistical 
analysis was carried out, using GraphPad Prism V7.02, to compare frequency of 
usage of each IGHV gene subgroup for control and MED diet allocated subjects from 
pre- to post-intervention, for non-functional genes by two-way ANOVA with Sidak’s 
multiple comparisons comparing row means. Each subject’s pre- to post-intervention 
values for each of the gene subgroups were compared by two-way ANOVA, with 
Sidak’s multiple comparison test.  
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6.3.2 V gene usage frequency 

Effect of age on V gene usage frequency  

Comparison of IGHV gene usage between young and elderly subjects revealed that 

the frequency of usage of V genes, IGHV4-28, IGHV3-23, IGHV4-30-2, IGHV3-30 

and IGHV3-13 were significantly decreased in the Ig heavy chains of naïve B cells of 

elderly subjects, compared to young, Figure 6.4. While, usage of IGHV3-15 was 

significantly increased in the Ig heavy chains of naïve B cells of elderly compared to 

young subjects. Frequency of usage of all other genes were not significantly different 

between young and elderly subjects; all p>0.05.  

Effect of age on regional location of V genes 

V gene usage was ordered to determine the regional position of genes on the 

chromosome, so as to determine whether proximity of the genes to either the 3′ or 5′ 

end of the chromosome had any influence on gene and allele usage. The sequencing 

data from 12 control subjects were re-analysed according to a similar pipeline 

analysis workflow to allow comparison of the baseline elderly sequences to a younger 

control group (Supplementary Figure 6.1; Appendix XVII). After aligning all genes 

represented within both subject cohorts in regional order of location on the 

chromosome, comparisons of IGHV gene and allele usage was compared between 

young and elderly subjects were made, with a representative example of young 

compared to elderly subjects shown in Supplementary Figure 6.2; Appendix XVIII. As 

shown in Figure 6.4 IGHV3-23, IGHV3-30, IGHV4-30-2 and IGHV3-13 were used 

significantly more frequently in the young than elderly subjects. Conversely, IGHV3-

15 was used significantly more frequently in the elderly subjects compared to the 

young. IGHV4-28 was only expressed in 4/10 elderly subjects, while it was expressed 

in all 12 young subjects’ B cell repertoires. Figure 6.5 shows the frequency of 

functional IGHV gene usage between young (blue) and elderly (at baseline; green), it 

is clear that some genes are affected by ageing. IGHV3-30, IGHV3-23, IGHV3-21 

and IGHV3-11 were reduced in elderly compared to young subjects with smaller 

decreases observed in IGHV4-1 and IGHV3-7 in the elderly compared to young 

subjects. These genes are displayed on the left side of the x axis (Figure 6.5), which 

indicates that they are closer to the 3′ end of the chromosome. Additionally, IGHV3-

15, IGHV4-31, IGHV4-34 and IGHV4-39 were all increased in the elderly compared 

to young subjects which are located in region I or II of the chromosome, while IGHV1-

3 is increased in the elderly compared to the young and this is located very close the 

3′ prime end of the chromosome.  
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Figure 6.4 Change in frequency of usage for significantly different V genes in 
IGHV of elderly subjects in comparison with young subjects. Mean frequency of 
V gene usage was compared between elderly and young subjects for each V gene 
represented within the study cohort using multiple t tests, one per V gene (row), and 
the Holm-Sidak multiple comparisons test. Significance was assumed at alpha=0.05. 
Differences in V gene usage between young and elderly mean values were plotted 
for individual IGHV genes with probability values < 0.05. IGHV4-28 (p<0.00001), 
IGHV3-23 (p<0.001), IGHV3-15 (p<0.01), IGHV4-30-2 (p<0.01), IGHV3-30 (p<0.01) 
and IGHV3-13 (p<0.01). 
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Figure 6.5 Frequency of functional V gene usage within the IGHV region, 
ordered by regional location on the chromosome; comparison of young 
subjects to elderly (Nu-AGE) subjects, pre and post-intervention. The 
sequencing data from 12 previously analysed control subjects were re-analysed by 
Peter Chovanec (Babraham Institute) using the LinkON VDJ-Seq pipeline analysis 
workflow used for the Nu-AGE data to allow comparison of the baseline elderly 
sequences to a young control group. After aligning all genes represented within both 
subject cohorts in regional order of location on the chromosome, comparisons were 
made between gene usage by the elderly and young groups of subjects; graphs 
produced in RStudio by Peter Chovanec. Nu-AGE subjects n=10, young subjects 
n=12, blue= young subjects, green= pre-intervention and red= post-intervention. 
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Figure 6.6 Frequency of non-functional V gene usage within the IGHV region, 
ordered by regional location on the chromosome; comparison of young 
subjects to elderly (Nu-AGE) subjects, pre and post-intervention. The 
sequencing data from 12 previously analysed control subjects were re-analysed by 
Peter Chovanec (Babraham Institute) using the LinkON VDJ-Seq pipeline analysis 
workflow used for the Nu-AGE data to allow comparison of the baseline elderly 
sequences to a young control group. After aligning all genes represented within both 
subject cohorts in regional order of location on the chromosome, comparisons were 
made between gene usage by the elderly and young groups of subjects; graphs 
produced in RStudio by Peter Chovanec. Nu-AGE subjects n= 10, young subjects 
n=12, blue= young subjects, green= pre-intervention and red= post-intervention.   
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Reductions in usage of non-functional IGHV3-23, IGHV3-30 and IGHV3-30-2 was 

observed in the elderly compared to young subjects, while usage of non-functional 

IGHV6-1, IGHV1-2, IGHV1-3, IGHV1-8, IGHV3-11, IGHV3-13, IGHV3-15, IGHV1-18, 

IGHV4-31, IGHV3-33 and IGHV4-34, were all increased in the elderly compared to 

young subjects (Figure 6.6). These genes were all located from the 3′ end towards 

the middle of the chromosome, respectively. Increases in non-functional IGHV4-59, 

IGHV1-69 and IGHV3-74 usage frequency were also observed in the elderly 

compared to the young subjects, though these genes were located at the 5′ end of 

the chromosome.  

Impact of dietary intervention on V gene usage frequency  

Comparison of pre- to post-intervention V gene usage of the individual subjects in the 

control group revealed that the greatest number of significant changes in gene usage 

were within the IGHV1 (10 changes), IGHV3 (14 changes) and IGHV4 (10 changes) 

subgroups. Six of the IGHV3 genes significantly increased while eight genes 

significantly decreased. The genes that significantly changed were V3-11, V3-15, V3-

21, V3-23, V3-30, V3-33, V3-49 and V3-9 (Supplementary Figure 6.3 b, c, d, e, g, h 

[Appendix XIX] and Figure 6.7). 

Comparison of the pre- to post-intervention V gene usage of the individual subjects 

in the MED diet intervention group revealed that the most significant changes in gene 

usage were within the IGHV3 subgroup. Seven of the IGHV3 genes significantly 

increased while five significantly decreased gene usage. The IGHV gene variants that 

significantly changed were V3-23, V3-30, V3-33, V3-43, V3-48 and V3-74 

(Supplementary Figure 6.9 a, f, i, j [Appendix XIX] and Figure 6.7). 

Summaries comparing the gene usage for each subject at pre- and post-intervention 

(Figures 6.8a-i) identify the differences in usage of functional and non-functional 

genes. Across subjects, most genes were present at similar frequencies at pre- and 

post-intervention, as points cluster on or close to the dotted line; particularly apparent 

for subjects 134 and 157 (Figure 6.8d and h). Functional genes were expressed at 

greater frequencies at both pre- and post-intervention, with non-functional genes 

clustering to the bottom of the plots and functional at the top, Figures 6.8e, h and j.  
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Figure 6.7. Numbers of Nu-AGE subjects with significantly changed IGHV 
alleles one-year post-intervention, in the control and MED-diet groups. After 
comparison of V allele usage between pre- and post-intervention for each individual 
subject (detailed in Figure 6.9), for alleles which were significantly changed, the 
number of observations of significant increases or decreases in each study group 
(control or MED diet) were plotted.   
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Figure 6.8a Scatter plot of IGHV gene usage for subject s112 comparing pre- to 
post-intervention. Frequencies of each IGHV gene, represented within the Nu-AGE 
sample, were plotted for functional (orange) and non-functional (blue) genes. The plot 
represents IGHV gene frequencies for an individual subject, with dots representing 
the frequency at pre-intervention (on the x axis) and post-intervention (on the y axis). 
The line indicates where pre- and post-intervention gene usage frequencies are the 
same, while dots represented on either the x or y axis indicate genes which were only 
represented at pre- or post-intervention, respectively. Plots produced in R studio by 
Peter Chovanec (Babraham Institute). 
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Figure 6.8b Scatter plot of IGHV gene usage for subject s121 comparing pre- to 
post-intervention. Frequencies of each IGHV gene, represented within the Nu-AGE 
sample, were plotted for functional (orange) and non-functional (blue) genes. The plot 
represents IGHV gene frequencies for an individual subject, with dots representing 
the frequency at pre-intervention (on the x axis) and post-intervention (on the y axis). 
The line indicates where pre- and post-intervention gene usage frequencies are the 
same, while dots represented on either the x or y axis indicate genes which were only 
represented at pre- or post-intervention, respectively. Plots produced in R studio by 
Peter Chovanec (Babraham Institute). 
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Figure 6.8c Scatter plot of IGHV gene usage for subject s127 comparing pre- to 
post-intervention. Frequencies of each IGHV gene, represented within the Nu-AGE 
sample, were plotted for functional (orange) and non-functional (blue) genes. The plot 
represents IGHV gene frequencies for an individual subject, with dots representing 
the frequency at pre-intervention (on the x axis) and post-intervention (on the y axis). 
The line indicates where pre- and post-intervention gene usage frequencies are the 
same, while dots represented on either the x or y axis indicate genes which were only 
represented at pre- or post-intervention, respectively. Plots produced in R studio by 
Peter Chovanec (Babraham Institute). 
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Figure 6.8d Scatter plot of IGHV gene usage for subject s134 comparing pre- to 
post-intervention. Frequencies of each IGHV gene, represented within the Nu-AGE 
sample, were plotted for functional (orange) and non-functional (blue) genes. The plot 
represents IGHV gene frequencies for an individual subject, with dots representing 
the frequency at pre-intervention (on the x axis) and post-intervention (on the y axis). 
The line indicates where pre- and post-intervention gene usage frequencies are the 
same, while dots represented on either the x or y axis indicate genes which were only 
represented at pre- or post-intervention, respectively. Plots produced in R studio by 
Peter Chovanec (Babraham Institute). 
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Figure 6.8e Scatter plot of IGHV gene usage for subject s141 comparing pre- to 
post-intervention. Frequencies of each IGHV gene, represented within the Nu-AGE 
sample, were plotted for functional (orange) and non-functional (blue) genes. The plot 
represents IGHV gene frequencies for an individual subject, with dots representing 
the frequency at pre-intervention (on the x axis) and post-intervention (on the y axis). 
The line indicates where pre- and post-intervention gene usage frequencies are the 
same, while dots represented on either the x or y axis indicate genes which were only 
represented at pre- or post-intervention, respectively. Plots produced in R studio by 
Peter Chovanec (Babraham Institute). 
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Figure 6.8f Scatter plot of IGHV gene usage for subject s146 comparing pre- to 
post-intervention. Frequencies of each IGHV gene, represented within the Nu-AGE 
sample, were plotted for functional (orange) and non-functional (blue) genes. The plot 
represents IGHV gene frequencies for an individual subject, with dots representing 
the frequency at pre-intervention (on the x axis) and post-intervention (on the y axis). 
The line indicates where pre- and post-intervention gene usage frequencies are the 
same, while dots represented on either the x or y axis indicate genes which were only 
represented at pre- or post-intervention, respectively. Plots produced in R studio by 
Peter Chovanec (Babraham Institute). 

  



215 
 

 

Figure 6.8g Scatter plot of IGHV gene usage for subject s147 comparing pre- to 
post-intervention. Frequencies of each IGHV gene, represented within the Nu-AGE 
sample, were plotted for functional (orange) and non-functional (blue) genes. The plot 
represents IGHV gene frequencies for an individual subject, with dots representing 
the frequency at pre-intervention (on the x axis) and post-intervention (on the y axis). 
The line indicates where pre- and post-intervention gene usage frequencies are the 
same, while dots represented on either the x or y axis indicate genes which were only 
represented at pre- or post-intervention, respectively. Plots produced in R studio by 
Peter Chovanec (Babraham Institute). 
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Figure 6.8h Scatter plot of IGHV gene usage for subject s157 comparing pre- to 
post-intervention. Frequencies of each IGHV gene, represented within the Nu-AGE 
sample, were plotted for functional (orange) and non-functional (blue) genes. The plot 
represents IGHV gene frequencies for an individual subject, with dots representing 
the frequency at pre-intervention (on the x axis) and post-intervention (on the y axis). 
The line indicates where pre- and post-intervention gene usage frequencies are the 
same, while dots represented on either the x or y axis indicate genes which were only 
represented at pre- or post-intervention, respectively. Plots produced in R studio by 
Peter Chovanec (Babraham Institute). 
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Figure 6.8i Scatter plot of IGHV gene usage for subject s158 comparing pre- to 
post-intervention. Frequencies of each IGHV gene, represented within the Nu-AGE 
sample, were plotted for functional (orange) and non-functional (blue) genes. The plot 
represents IGHV gene frequencies for an individual subject, with dots representing 
the frequency at pre-intervention (on the x axis) and post-intervention (on the y axis). 
The line indicates where pre- and post-intervention gene usage frequencies are the 
same, while dots represented on either the x or y axis indicate genes which were only 
represented at pre- or post-intervention, respectively. Plots produced in R studio by 
Peter Chovanec (Babraham Institute).  
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Figure 6.8j Scatter plot of IGHV gene usage for subject s159 comparing pre- to 
post-intervention. Frequencies of each IGHV gene, represented within the Nu-AGE 
samples, were plotted for functional (orange) and non-functional (blue) genes. Each 
plot represents IGHV gene frequencies for an individual subject, with dots 
representing the frequency at pre-intervention (on the x axis) and post-intervention 
(on the y axis). The line indicates where pre- and post-intervention gene usage 
frequencies are the same, while dots represented on either the x or y axis indicate 
genes which were only represented at pre- or post-intervention, respectively. Plots 
produced in R studio by Peter Chovanec (Babraham Institute). 
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Changes in the frequency of usage of IGHV alleles from pre- to post-intervention were 

determined for all alleles represented within the Nu-AGE cohort. Significantly 

decreased usage of IGHV1-2*02 (p<0.0001), IGHV3-9*01 (p<0.0001) and IGHV1-

69*01 (p=0.01) was observed at post-intervention, while usage of IGHV3-30*01 

increased at post-intervention (p<0.0001) in the control diet group (Figure 6.9). 

Significantly increased frequency of IGHV4-34*01 (p<0.0001) usage was observed at 

post-intervention in the MED diet group (Figure 6.9). However, overall differences in 

IGHV4-34*01 in the MED diet group were explained by one subject, MED146, for 

whom the frequency of usage of the allele IGHV4-34*01 was high at pre-intervention, 

and significantly increased one year after dietary intervention (p<0.0001). The 

frequency of VH4-34*01 usage by this subject was significantly greater than all other 

subjects analysed (p<0.0001) at both pre- and post-intervention (Figure 6.10).  
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Figure 6.9 Change in frequency of usage for significantly different V alleles in 
IGHV of Nu-AGE subjects at pre-intervention compared to post-intervention, for 
both dietary groups. Mean change in frequency of IGHV allele usage from pre- to 
post-intervention was determined for all V genes for subjects on the control diet and 
the MED diet and analysed by two-way ANOVA, with a priori Holm Sidak’s multiple 
comparisons tests. Differences in frequency of usage of IGHV alleles were plotted for 
IGHV alleles where p<0.05. Control diet; IGHV1-2*02 (p<0.0001), IGHV3-9*01 
(p<0.0001), IGHV1-69*01 p<0.001), IGHV3-30*01 (p<0.0001). MED-diet, IGHV4-
34*01 (p<0.0001).  
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Effect of dietary intervention on regional location of V genes 

The regional location of functional V genes and alleles (Figures 6.5 and 

Supplementary Figure 6.4a-j; Appendix XX) in pre- to post-intervention showed no 

significant changes in IGHV gene usage in the control group. In the MED-diet group 

IGHV3-NL1 was significantly increased at post-intervention (p<0.05), while all other 

genes were not significantly different (all p>0.05). IGHV3-NL1 genes are located at 

the 5′ end of the chromosome and are most distal to the D/J recombination site. 

Comparison of alleles showed that in the control group significant reductions were 

observed in the usage of IGHV1-2*02, IGHV3-9*01 and IGHV1-69*01, while IGHV3-

30*01 was significantly increased (Figure 6.9). IGHV1-69*01 is located most distal to 

the D/J region with close proximity to the 5′ end of the chromosome. While, IGHV1-

2*02 and IGHV3-9*01 are located at the 3′ end of the chromosome and IGHV3-3*01 

is located in the middle of the chromosome but closer the 3′ end (Supplementary 

Figure 6.4a-j; Appendix XX). 

6.3.3 CDR3 length 

The CDR3 length was determined by the length of the nucleotide sequence and was 

compared from pre-intervention to post-intervention (Figure 6.11 and 6.12), for 

functional and non-functional genes respectively. The Kolmogorov-Smirnov (K-S) test 

compared the equality of the frequency distributions and showed no statistically 

significant changes in the distribution of CDR3 length of functional genes when 

comparing pre- to post-intervention derived samples from either the control or the 

MED diet intervention group (Figure 6.13). However, D’Agostino & Pearson normality 

tests on the frequency distribution data, show that the CDR3 length at pre-intervention 

was not normally distributed for functional gene in the control or MED diet group, nor 

the non-functional genes in the control group; CDR3 length was normally distributed 

for non-functional genes from samples on the MED diet at pre-intervention. All CDR3 

length histograms for functional and non-functional genes, at post-intervention, were 

not normally distributed. The mean CDR3 length for the elderly subjects was 26 bp 

and the range was 2-103 bp across pre- and post-intervention samples. The 

sequence (nt) lengths of the IGH variable, diversity and joining regions, and junction 

length are detailed in Supplementary Table 6.1 (Appendix XXI). 
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Figure 6.10 IGHV4-34*01 allele usage of one study individual compared to the 
remainder of the study cohort at pre- and post-intervention. Frequency of usage 
of the IGHV4-43*01 allele was determined after allocating gene identities using 
IgBLAST and IMGT. For analysis of IGHV4-34*01 usage, pre- and post-intervention 
frequencies, were compared for all subjects compared to the individual (MED146) 
using two-way ANOVA with Sidak’s multiple comparisons test, using GraphPad Prism 
V7.02. Statistical significance was assumed at the p<0.05 level at the 95% confidence 
interval (CI). **** indicates p<0.00001. N= 10; all other subjects (9), compared to one 
individual value.  

  



223 
 

 

Figure 6.11. CDR3 length of nucleotide sequence for functional genes at pre- 
and post-intervention, for subjects on the control and MED diets. The x-axis 
represents the CDR3 lengths (nucleotides; nt) across all subjects, and lengths were 
divided into bins from 0 to 100 with a bin size of five nucleotides. The y-axis shows 
the frequency of CDR3 lengths which fall within each of these sizes; determined using 
relative frequency (fractions). Each histogram plots the normalised counts for each of 
these CDR3 lengths within the dataset, produced in GraphPad Prism V7.02; n=10 
subjects. a) CDR3 lengths of functional genes represented in B cell DNA libraries 
prepared from subjects on the control diet; 6 subjects, b) CDR3 lengths of functional 
genes represented in B cell DNA libraries prepared from subjects on the MED diet; 4 
subjects. D’Agostino & Pearson normality tests were applied to the frequency 
distribution data, normality tests were passed where alpha=0.05. Control group, pre-
intervention (P=0.1546), post-intervention (P=0.1532), MED diet group, pre-
intervention (P=0.1492) and post-intervention (P=0.0350). 



224 
 

 

Figure 6.12. CDR3 length of nucleotide sequence for non-functional genes at 
pre- and post-intervention, for subjects on the control and MED diets. The x-
axis represents the CDR3 lengths (in nucleotides; nt) across all subjects, lengths were 
divided into bins from 0 to 100 with a bin size of five nucleotides. The y-axis shows 
the frequency of CDR3 lengths which fall within each of these sizes; determined using 
relative frequency (fractions). Each histogram plots the normalised counts for each of 
these CDR3 lengths within the dataset; n=10 subjects. a) CDR3 lengths of non-
functional genes represented in peripheral B cell derived DNA libraries prepared from 
blood samples from subjects on the control diet; 6 subjects, b) CDR3 lengths of non-
functional genes represented in peripheral B cell DNA libraries prepared from blood 
samples from subjects on the MED diet; 4 subjects. D’Agostino & Pearson normality 
tests were applied to the frequency distribution data; normality test passed where 
alpha=0.05. Control group, pre-intervention (P=0.0431), post-intervention 
(P=0.0410), MED-diet group, pre-intervention (P=0.0083) and post-intervention 
(P=0.0029). 
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Figure 6.13. CDR3 length for functional and non-functional genes, comparison 
of pre- to post-intervention for subjects on the control diet or the MED diet. 
CDR3 length determined by count of bases within the CDR3 sequence determined 
using the IMGT database. Box and whisker plots with whiskers extending to the 
minimum and maximum values within the dataset; horizontal line through box 
represents median, mean represented by (+) plus sign. The Kolmogorov-Smirnov (K-
S) test to compare the equality of the frequency distributions between the pre- and 
post-intervention data; a) control diet (P=0.5911; ns) and MED diet (P=0.9135; ns), 
b) control diet (P=0.2372; ns) and MED diet (P=0.0082). Tests were two-tailed, 
confident intervals were 95%, and statistical significance was assumed at p>0.05; 
ns= not significant, *p<0.05, **p<0.001, ***p<0.0001. 



226 
 

6.3.3 Clone analysis 

Clonotypes were assigned to each gene represented for all subjects using IgBLAST 

and the IMGT database such that the same clonotype was assigned where the same 

V gene was used and the CDR3 length was the same ± one bp. The presence of 

different clonotypes in the VDJ-seq data from each of the libraries prepared from 

individual subjects’ B cell DNA is represented in the tree map in Figure 6.14. Tree 

maps are a visualisation method which display hierarchical information in a 2-

dimensional, space-filling map where 100% of the space is utilised (Johnson and 

Shneiderman, 1991). Information of more importance can be allocated more space 

within the map and the map can be divided into a collection of rectangular bounding 

boxes, which in turn can be divided into nodes within their bounding box (Johnson 

and Shneiderman, 1991). The tree maps used within this study allow display of 

clonoype size for study participants using nesting to subdivide each subject and 

colour to identify study time point (van Wijk and van de Wetering). Study subjects 

s134, s157, s141, s127, s147 and s121 were allocated to the control diet. With the 

exception of s121, the tree map for these subjects demonstrates the most unique 

clonotypes, as observed by the larger overall area (bounding box) for each subject 

and the larger size of the internal squares (nodes), representing a greater frequency 

of each unique clonotype. This suggests that subjects in the control group had more 

unique clonotypes but that the frequency of each of these clonotypes was high. While, 

s112, s158, s146 and s159 were allocated to the MED diet group and, with the 

exception of s159, these subjects had smaller areas (bounding boxes) within the tree 

map and the smaller size of the internal squares (nodes) suggests that while these 

subjects had fewer unique clonotypes, the frequency of each of these unique 

clonotypes was lower. 

 



227 
 

 

Figure 6.14. Clonotype analysis of all Nu-AGE samples comparing pre- to post-
intervention. Clonotypes were assigned where the same V gene was used and the 
same CDR3 length, allowing one base pair (bp) difference, where different unique 
molecular identifiers (UMIs) and/ or start positions were observed, using IgBLAST 
and the IMGT database. Tree maps show the diversity of recombined VDJs for each 
individual subject, represented by their sample ID code. The smaller squares 
represent the number of unique clonotypes present within B cell derived DNA libraries 
from each subject, with the size of each square representing the frequency of each 
clonotype. Pre-intervention values are shown in orange, and post-intervention values 
are shown in blue. N= 10 subjects. Produced in RStudio by Peter Chovanec 
(Babraham Institute). 
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Figure 6.15 is a visual representation of the subjects clustered into their allocated 

dietary intervention group (control or MED diet), comparing pre- to post-intervention. 

The tree map shows greater frequency of unique clonotypes represented by greater 

overall area of each group and greater frequency of each unique clonotype within 

the sample group was represented by larger sizes of the internal squares. It is 

apparent that subjects in the control group had more unique clonotypes at both pre-

intervention and post-intervention compared to the MED diet group. However, the 

frequency of unique clonotypes decreased in the control group after one year 

intervention. In the MED diet group, although there were fewer unique clonotypes at 

pre-intervention, the frequency remained constant after one year dietary 

intervention. Also, the size of the internal squares, which indicates that the subjects 

in the control diet group had a large number of clones of some of the clonotypes, is 

indicative of oligoclonality within the Ig repertoire. There were more small internal 

squares at post- intervention in the MED diet group suggesting that there were 

fewer clones of the same clonotypes and that there are more unique clonotypes one 

year after the dietary intervention. 
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Figure 6.15. Clonotype analysis of all Nu-AGE samples, separated by dietary 
intervention group, comparing pre- to post-intervention. Clonotypes were 
assigned where the same V gene was used and the same CDR3 length, allowing one 
base pair (bp) difference, where different unique molecular identifiers (UMIs) and/ or 
start positions were observed, using IgBLAST and the IMGT database. Tree maps 
show the overall diversity of recombined VDJs for subjects allocated to the control or 
MED diet groups. The smaller squares represent the number of unique clonotypes 
present within B cell derived DNA libraries from each subject, with the size of each 
square representing the frequency of each clonotype. Pre-intervention values are 
shown in orange, and post-intervention values are shown in blue. N= 10 subjects. 
Produced in RStudio by Peter Chovanec (Babraham Institute). 
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6.4 Discussion 

Overall, this study shows that with increased age usage of the IGHV3 gene subgroup 

is reduced, while usage of the IGHV1 gene subgroup is increased in elderly subjects 

compared to young. The age-associated genes changes observed are located at the 

3′ end of the chromosome. CDR3 length is unaffected by the one year intervention 

with the MED diet. However, the MED diet intervention is associated with 

maintenance of the frequency of the unique clonotypes observed, while increased 

frequency of unique clonotypes is observed one year post-intervention in the control 

diet group.   

6.4.1 IGHV3 gene subgroup usage is reduced in elderly subjects compared to 

young with dietary intervention having no effect on IGHV gene subgroup 

usage 

The pattern of IGHV gene subgroup usage, from highest to lowest usage, is 

comparable between young and elderly subjects. With usage of IGHV3 being the 

most prominent gene subgroup used with the IGHV region, consistent with previous 

observations in peripheral blood B cells of healthy adults (Davidkova et al., 1997). 

However, there is a reduction in IGHV3 usage in the elderly, which is also consistent 

with previous findings (Martin et al., 2015; Wang and Stollar, 1999; Wu et al., 2011). 

Additionally, we found that elderly subjects display an increase in IGHV1 subgroup 

usage compare to the young subjects, though this has not been reported in previous 

studies. 

6.4.2 Age-associated IGHV gene changes are located at the 3′ end of the 

chromosome 

Of the IGHV gene subgroups, IGHV6 is the most D-proximal (Davidkova et al., 1997). 

Regional analysis of V gene usage within the IGHV region of haploid samples, 

allowed IGHV genes to be subdivided into three groups (Regions I-III) based on their 

locations (Chimge et al., 2005). Region I begins at the 3′ -end of the IGHV locus and 

includes genes from IGHV6-1 to IGHV2-28-1, Region II covers genes from IGHV3-29 

to IGHV3-52 and Region III genes begin at the 5′-end of the IGHV locus and include 

IGHV3-53 up to IGHV3-52 (Chimge et al., 2005).  

The regional analysis of V gene usage between young and elderly subjects reveals 

significant decreases in frequency of usage of the genes IGHV3-13, and IGHV3-23 

which are all located within Region I, and proximal to the 3′ end of the chromosome. 

Significant increases in usage of IGHV3-15 is observed in the elderly compared to 

young, which is also located within Region I, close to the 3′ end of the chromosome. 
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The other significant decreases observed (IGHV3-30 and IGHV4-30-2) in functional 

genes are located just inside Region II of the chromosome. This is of interest since 

all of these genes are located in closest proximity to the D/J region and is consistent 

with unpublished data from the Babraham Institute where aged mice display a subtle 

increase in some IGHV genes, in close proximity to the 3′ end of the chromosome 

(Personal communication: Bolland and Matheson (2016)). However, in contrast to 

these provisional findings, post-pneumonia vaccination gene locus expression of 

IGHV3-30 was favoured in the elderly (>65 years) with a significantly greater 

frequency of IGHV3-07, VH3-74 (to PPS4) and IGHV3-48 and IGHV3-33 (to PPS14) 

usage observed in young subjects (< 30 years) (Kolibab et al., 2005). Additionally, 

the significant increases observed in usage of IGHV4-59, IGHV1-69 and IGHV3-74 

in the elderly are all genes located at the 5′ end of the chromosome. This is of interest 

since IGHV1-69 gene usage has been investigated in the elderly (>75 years), in whom 

a small increase was observed (6%) compared to young subjects (0.8%) using IgM 

cDNA libraries (n=5) and single IgM B cell analysis (Potter et al., 2003). This allele is 

located at the 5′ end of the chromosome and is more distal to the D/J recombined 

region.  

6.4.3 IGHV3-NL1 is significantly increased in the MED diet group post-

intervention 

The only significant increase in gene usage post MED-diet intervention is of IGHV3-

NL1. This gene was recently discovered as a new member within the IGHV3 

subgroup (Wang et al., 2011) and is the most 5′ gene on the chromosome, when 

considering  all genes represented in samples from the Nu-AGE cohort. In addition, 

the significant reduction observed between pre- and post-intervention in usage of the 

allele IGHV1-69*01, which is also located at the 5′ end of the chromosome could be 

a consequence of an additional year of age and thus an artefact of ageing, however, 

comparison of IGHV1-69 gene usage between young and elderly subjects showed 

increased not decreased usage with age (Potter et al., 2003).  

Significantly high usage of the allele IGHV4-34*01 is observed in one subject, the 

frequency of which significantly increases one year post-intervention. IGHV4-34 

genes encode antibodies that are intrinsically autoreactive (IgM cold-agglutinins) due 

to their recognition of conserved carbohydrate self-epitopes on red blood cells (Potter 

et al., 2002; Pugh-Bernard et al., 2001; Silberstein et al., 1996). This is of relevance 

because IGHV4-34 gene usage has been shown to be a feature of autoimmune 

diseases such as systemic lupus erythematosus (SLE) or infection with Epstein-barr 

herpes virus (EBV) or Mycoplasma pneumoniae (IJspeert et al., 2016; Pugh-Bernard 
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et al., 2001), while reduced usage in IGHV regions is observed in antigen experienced 

(switched memory) compared to naïve B cells (Wu et al., 2010). Therefore, the 

remainder of the subjects, with lower frequencies of IGHV4-34 usage, may have 

repertoires more typical of antigen-experienced B cells, a common hypothesis for the 

reduced response to vaccinations and increased susceptibility to infections observed 

in the elderly. While this one individual may be displaying a greater expression of IgM 

cold agglutinin autoantibodies, since expression of IGHV4-34 is very high, indicating 

multiple clones of heavy chains expressing this gene, the highly significant changes 

observed in IGHV4-34 gene usage are unlikely to be a result of dietary intervention, 

both due to the very small sample sizes for the two dietary groups and the lack of 

dietary compliance observed from the diet diary analysis.  

6.4.4 CDR3 length and the MED diet 

Previous spectratyping based studies have shown that B cell populations of healthy 

young individuals typically display CDR3 spectratypes in the range of 57–117 bp 

(Gibson et al., 2009), with earlier reports identifying CDR3 ranges of 3-28 amino acids 

(9-84 nt) (Kirkham and Schroeder, 1994). The range of CDR3 lengths observed in 

the Nu-AGE cohort is 2-103 nt with a mean length of 26 nt. This is shorter than the 

reported values for young healthy subjects (Gibson et al., 2009), but in agreement 

with Pickman et al. (2013) where CDR3 length distributions were positively skewed 

toward shorter CDR3s. Similarly, comparison of young and elderly peripheral B cells 

show that those derived from the elderly are significantly shorter than those from 

young subjects, with 28 analysed sequences recorded for IgM naïve B cells from the 

elderly, compared to 37 sequences for the cells isolated from young subjects (Chong 

et al., 2003). This may be due to the elderly having greater numbers of memory B 

cells, with shorter CDR3s (Pickman et al., 2013). Similarly, heavy chain CDR3 

repertoire diversity was significantly reduced in IgG compared to IgM from peripheral 

blood B cells of healthy volunteers after hepatitis B vaccination (HBV) (Ma et al., 

2017). Longer CDR3 lengths have been associated with autoantibodies which display 

self reactivity, which in healthy individuals are mostly removed at the checkpoints 

during B cell developments (IJspeert et al., 2016; Kaplinsky et al., 2014; Wardemann 

et al., 2003). The shortened CDR3 length associated with age, is not influenced by 

dietary intervention as there are no significant differences in equality of distribution 

when comparing pre- to post-intervention. 

The histograms of the CDR3 lengths for the functional genes are not normally 

distributed, which has been observed in spectratyping of CDR3 lengths of peripheral 

B cells from elderly subjects (Gibson et al., 2009). In addition, oligoclonality is 
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observed more frequently in the elderly, than in the young subjects (Kolibab et al., 

2005). While, CDR3 length distribution from healthy, young mice follow a normal 

Gaussian distribution (Kaplinsky et al., 2014). The CDR3 length histogram for the 

non-functional genes from the MED diet intervention group is normally distributed at 

pre-intervention but not post-intervention, which may imply a reduction in clonality of 

CDR3 regions after one year of dietary intervention. However, as the frequency 

distribution of lengths were highly variable, (2-103 nt) this difference could have been 

due to an outlier.  

6.4.5 Frequency of each unique clonotype was maintained post-MED diet 

intervention but decreased after the control diet  

The lower frequency of each unique clonotype for three of the MED-diet subjects 

suggests that these subjects have B cells with less oligoclonality as compared to the 

subjects in the control group, where each unique clonotype is present in a greater 

frequency of Igs. This finding indicates that there are more B cells with the same 

random VDJ recombination, since identification of the same cell again was prevented 

by the use of UMIs. This has previously been observed as a feature of increased age 

(Gibson et al., 2009). This analysis cannot, however, be used in isolation as a 

measure of Ig diversity, since it does not take into consideration the amount of DNA 

used. The B cells utilised for the DNA library preparation were isolated from peripheral 

blood and were not stimulated in anyway before or after blood draw, therefore only 

naïve B cell repertoires are compared.  

The maintenance of the clonotype profile pre- compared to post-intervention for the 

MED diet group suggests that the dietary intervention may have prevented, or at least 

delayed, the age-associated increase in oligoclonality. High MUFA diets and CLA (3 

g/day) increased lymphocyte proliferation in older subjects and healthy volunteers 

(Han et al., 2012; Nugent et al., 2005), while fish oils decreased mitogen induced 

lymphocyte proliferation (Bechoua et al., 2003; Meydani et al., 1991). In addition to 

reduced accumulation of MHC II and PKC-θ at the immunological synapse, binding 

of antigen and the downstream signalling resulting in IL-6 secretion (Gurzell et al., 

2015; Rockett et al., 2013; Rockett et al., 2012), there is potential for FA intake to 

influence B cells during development of the Ig. BM adiposity via adipokine production, 

which increases with increased age, could influence the B cells during development 

as adiponectin can inhibit early B cell precursors in murine BM and human cord blood 

cultures (Yokota et al., 2003). These findings were attributed to the production of 

PGE2 and cyclooxygenase-2 (COX-2), which both inhibited lymphopoiesis, but was 

restored with addition of COX-2 inhibitor to adiponectin-containing cultures (Yokota 
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et al., 2003). Additionally, high fat diet induced obesity in mice, promoted the 

production of IgG autoantibodies in the spleen and serum, while reducing production 

of spontaneous IgM (Winer et al., 2011). Since diet can influence CSR outcomes in 

mice and the production of early B cell precursors is thought to be influenced by the 

pro-inflammatory eicosanoids PGE2 and COX-2 then dietary (particularly dietary fat) 

modification could also influence antigen binding sites of antibodies during VDJ 

recombination, as this occurs in early precursor B cells.  

It has been demonstrated that BM adiposity is strongly, positively correlated with 

serum total cholesterol, LDL cholesterol and triglyceride levels (Slade et al., 2012). 

Therefore, to determine whether BM adiposity may be influencing these results blood 

lipids profiles for the study cohort were analysed to determine whether high levels of 

total or LDL cholesterol or triglycerides were present within the subjects (Figure 5.1, 

Chapter 5). The mean total and LDL cholesterol concentrations within plasma of the 

Nu-AGE subjects are higher than the recommendations of <4 mmol/l and <2 mmol/l, 

respectively, by the British Heart Foundation (BHF, 2017). Mean HDL cholesterol and 

triglyceride concentrations are in accordance with the BHF recommendations of >1 

mmol/l and <1.7 mmol/l, respectively (BHF, 2017). As this study cohort have high total 

and LDL cholesterol levels, there is potential that BM adiposity may have contributed 

to the age-associated alterations in the IGHV regions in this study. Additionally, BMD 

was negatively correlated with BM adiposity (Slade et al., 2012), so the DXA results 

of the study cohort (Table 4.5, Chapter 4) were investigated. The results show that 

the while the mean BMD is just in the normal range, a proportion of the subjects 

classify as having osteopenia (<1.06, >0.98 g/cm2) or osteoporosis (<0.98 g/cm2) 

confirmed by the range of T scores, which are typically used to determine presence 

of these conditions (between -1 and -2.5, osteopenia; ≤-2.5, osteoporosis) (Ramos et 

al., 2012).  

Significant reductions of adipocyte differentiation and expression of genes involved in 

adipogenesis have been observed after in vitro supplementation of human stem cell 

derived BM cultures with the olive oil polyphenol, oleuropein (Santiago-Mora et al., 

2011). Additionally, inhibition of BM adiposity has been observed with a PPARγ 

antagonist, which suppresses mRNA gene expression of PPARγ2, and the mature 

adipocyte marker (aP2) in bones of diabetic mice (Botolin and McCabe, 2006). BM 

adipocyte numbers of mice treated with the PPARγ agonist were also reduced 

compared to untreated mice, though this did not reach statistical significance (Botolin 

and McCabe, 2006). These results suggest a potential role for PPARγ in BM adiposity 

and that PPARγ could be a target for reducing this and potentially the observed 
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defects in B cell production and antibodies in previous studies. As discussed in 

Chapter 5, increases in PUFA intake have demonstrated downregulation of PPARα 

in PBMCs (Bouwens et al., 2009) and PPARγ in DCs (Zapata-Gonzalez et al., 2008; 

Zeyda et al., 2005) showing that dietary intervention has potential to induce such 

changes.  

6.4.6 Impact of findings 

Our VDJ-seq has produced similar observations in young compared to elderly 

subjects comparable to existing methodologies and previously published studies. The 

key difference between this study and previous studies in the use of J-specific 

oligonucleotides whereas previous methodologies have relied on cocktails of V-

specific primers which could not represent all 95 V genes present in the human IgH 

(Boyd et al., 2010; Wood et al., 2013) and therefore result in incomplete or biased 

detection of some recombined products (Bolland et al., 2016). The data from this 

study are therefore representative of recombined IGH-VDJ and IGH-DJ sequences 

which are unbiased since V gene primers were not used. Consequently, this and 

future studies utilising this methodology would provide more comprehensive data as 

a result of the improved methodological approach. Since the published work using 

VDJ-Seq utilised murine samples (Bolland et al., 2016), this study provides proof of 

concept for its use in human studies using B cell DNA and is therefore novel and 

innovative.    

Additionally, this method has been shown to be sensitive enough to detect potential 

markers or predisposition for autoimmune conditions such as systemic lupus 

erythematosus (SLE) (Pugh-Bernard et al., 2001). While this study cannot extrapolate 

any clinical relevance of this finding, future investigations and development of this 

methodology could result in the possibility of screening patients to identify “at risk” 

patients earlier, allowing time to intervene to reduce the associated risks or potentially 

even disease outcomes. 

There have been several observations of reduced B cell output from the BM with 

increased age, and thus a subsequent accumulation of antigen experienced B cells 

(Banerjee et al., 2002). If the observed age-associated BM adiposity, which has been 

shown to reduce production of early precursor B cells, is reversible, as some studies 

have shown (Botolin and McCabe, 2006; Rahman et al., 2011; Santiago-Mora et al., 

2011), then this could be a potential target for improving the deficits of ageing on 

humoral immune function. Production of pro-inflammatory eicosanoids such as PGE2, 

as a consequence of the n-6 PUFA synthesis as opposed to n-3 PUFA, have been 
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demonstrated to induce defects in B cells. Therefore, since subjects within this study, 

on average, have high cholesterol levels, which is associated with increased age, 

dietary modification or provision of cholesterol lowering medications, such as statins, 

could be an area to target. This could contribute to ameliorating the adiposity 

associated inhibition of early B cell precursor development; where VDJ recombination 

of Ig heavy and light chains occurs.    
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Chapter 7 

Conclusions  

7.1  Summary 

The aim of this PhD project was to identify age-associated numerical and functional 

changes in peripheral blood DCs and determine whether dietary intervention could 

improve DC function. In addition, the Ig repertoire was investigated to identify whether 

dietary intervention could alter VDJ recombination events that occur during the 

development of precursor early B cells in the BM. This discussion summarises the 

findings of this work and the impact of these findings for the field and their wider 

implications. Finally, future directions and recommendations for further work, which 

could be conducted as a consequence of this work, will be discussed.    

7.2  Thesis outcomes & implications  

7.2.1 Overall outcomes 

The main findings from this thesis are that the elderly have significantly fewer 

peripheral mDCs than younger subjects. LPS/R848 stimulated-PBMCs derived from 

elderly subjects secrete significantly higher levels of resistin compared to those from 

younger subjects. Other cytokines including MCP-1, TNF-α, IL-8, IL-6 and IL-1β are 

significantly reduced with age. The usage of the IGHV3 gene subgroup within Igs 

from naïve B cells of elderly subjects is reduced, while usage of the IGHV1 gene 

subgroup is increased compared to those of younger subjects. Frequency of usage 

of IGHV3-15 increases while frequency of usage of IGHV4-28, IGHV3-23, IGHV4-30-

2, IGHV3-30 and IGHV3-13 decreases in IgH of naïve B cells of elderly compared to 

younger subjects. These genes are located proximal to the 3′ end of the chromosome, 

in closer proximity to the DJ recombination product. MED diet intervention has no 

observed effect on DC number. LPS/R848 stimulated-PBMCs from elderly subjects 

secrete significantly less resistin after the 12 month MED diet intervention. The 

highest quantity of changes in frequency of gene usage is within the IGHV3 gene 

subgroup in both the control and MED diet groups. The significant increase in IGHV3-

NL1 gene usage is only observed in the MED diet group; which is located at the 5′ 

end of the chromosome. More unique clonotypes are observed in naïve B cells of 

subjects in the control diet group, but at one year post-intervention the frequency of 

each unique clonotype increases, suggesting greater oligoclonality, while the 

frequencies of each unique clonotype are maintained post-MED diet intervention. 
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Assessment of urinary biomarker (HTS) analysis demonstrates compliance to the 

study in terms of phenolic intake, so the post-interventional changes observed can be 

partially attributed to the study intervention. However, analysis of the 7DD data show 

that the control group and the MED diet group have similar MED diet scores, which 

do not increase at post-intervention in the MED-diet group, as would be expected. 

7.2.2 Implications of DC subset data and VDJ-Seq data   

With increased age the mDC subset is reduced in number and in secretion of IL-1β, 

IL-6 and IL-8 when compared to younger subjects. The published data at present is 

conflicting (Agrawal et al., 2007; Della Bella et al., 2007; Jing et al., 2009; Pérez-

Cabezas et al., 2007; Shodell and Siegal, 2002) so our findings add to the current 

literature and are in agreement with Della Bella et al. (2007). Since our 

methodological approach is specific to DCs and omits additional sample processing, 

which could induce cell losses, this study may encourage the use of the same 

methodology in future DC studies, since, while no differences were observed post-

dietary intervention, the numbers were consistent after one year highlighting the 

reproducibility of the method. This would benefit the field since accurate comparisons 

between study cohorts from different studies, using consistent methods, are lacking; 

particularly in clarification of age-associated effects on DCs. However, this study lacks 

the use of an additional method to phenotypically identify and count DCs in order to 

compare different methodologies with our chosen method; this would have confirmed 

that our numbers are accurate. Compared to published reference values for a healthy 

cohort (11 and 28.2 cells/µl; mDCs, pDCs) using the same method with PBMCs 

(Narbutt et al., 2004), our mean DC counts are lower for both subsets, and our 

proportion of mDCs is higher than pDCs for both young and elderly subjects; however 

the reference data from Miltenyi Biotec (2008) is more consistent with our proportion 

of mDCs to pDCs (15.6 and 11.2 cells/µl; mDCs, pDCs) while our values are still 

lower. Our approach complies with the recommendation approved by the 

Nomenclature Committee of the International Union of Immunological Societies 

(Ziegler-Heitbrock et al., 2010). As we only show reductions in mDC counts it seems 

unlikely that this is a result of defective DC precursors with increased age, since both 

pDCs and mDCs are derived from macrophage and DC precursors (MDPs) and 

differentiate into common DC precursors (CDPs) (Schraml and e Sousa, 2015).       

Additionally, the VDJ-Seq data comparing IgH from naïve B cells of younger and 

elderly subjects show comparable IGHV gene subgroup and gene usage to previous 

studies (Martin et al., 2015; Wang and Stollar, 1999; Wu et al., 2011), with the addition 

of observations not seen previously. This suggests that while previous methods of 
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DNA-library preparation, for high-throughput sequencing, have identified some of the 

age-associated changes, their use of differing combinations of V-specific primers to 

amplify VDJ regions – due to the lack of a primer to identify all genes within each of 

the seven V gene subgroups (Wood et al., 2013) – may have been insufficient to 

identify all changes in VDJ recombination events. Therefore, the VDJ-Seq method 

could provide a more comprehensive approach, since it uses six J-specific primers, 

as there are only six human J genes; compared to the 95 V genes in the human 

genome (Wood et al., 2013). This may allow further studies to be conducted to 

determine IGHV gene usage, CDR3 lengths and assignment of clonotypes which 

identify all changes in VDJ recombination events, with applications not just for ageing 

but also in particular diseases such as systemic lupus erythematosus (SLE) or 

rheumatoid arthritis (RA) (Pugh-Bernard et al., 2001; Samuels et al., 2005). This could 

have major implications for the development of treatments to alleviate symptoms or 

potentially to reduce risk of certain immunological disorders, with a current SLE 

treatment (rituximab) inducing CD20+ B cell depletion (Anolik et al., 2004), while if 

specific genes could be identified, more targeted approaches might become 

available.  

7.2.3 Implications of increased resistin secretion  

The concentration of resistin secreted by PBMCs in response to ex vivo stimulation 

is significantly increased in cells derived from elderly subjects compared with younger 

subjects. This is of potential importance since it is becoming increasingly apparent 

that adipokine secretion increases with age (Arai et al., 2011; Ostan et al., 2013). 

Resistin suppresses secretion of IL-6, IL-12 and TNF-α by LTA-stimulated MoDCs 

(Son et al., 2008). Study of the BM has shown that secretion of IL-6 and a 

proliferation-inducing ligand (APRIL), which are important for maintenance of long-

lived plasma cells, decrease with age and after incubation with ROS (Pangrazzi et 

al., 2017). Therefore the age-associated reductions observed in cytokine secretion 

(IL-6, IL-8 and IL-1β) but increases in the adipokine, resistin, could be due to an 

inflammatory state, typical of inflammaging.  

Ageing is accompanied by replacement of BM with fat (Justesen et al., 2001) and BM 

adiposity is strongly positively correlated with serum lipid profiles (Slade et al., 2012). 

Our observations of high serum total and LDL cholesterol levels in study subjects 

therefore imply that elderly Nu-AGE subjects may have increased BM adiposity. Early 

B cell precursor and Ig production occurs in the BM and therefore increased BM 

adiposity could impair production, particularly since adiponectin inhibits the 

establishment of early B cells in cultures derived from murine BM (CD19-CD45R-
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CD11b/Mac-1- cells) and human cord blood cultures (CD34+CD38- cells) (Yokota et 

al., 2003). The observation that resistin secretion is increased in LPS/R848 

stimulated-PBMCs from elderly but not younger subjects implies an age-associated, 

potentially adipocyte induced, defect in these cells, with additional observations of 

increased resistin levels in plasma, and secretion from PBMCs, associated with 

adiposity, CVD, insulin resistance and MetS (Arai et al., 2011; Gencer et al., 2016; 

Ostan et al., 2013). However, our results only imply the presence of BM adiposity in 

our subjects, in order to confirm this it would be necessary to take BM biopsies or 

carry out more in depth scans of subjects. BM biopsy analysis at the iliac crest has 

been utilised previously (Cohen et al., 2012; Cohen et al., 2015; Verma et al., 2002) 

and allows determination, by microscopy, of total adipocyte area, perimeter and 

percentage adipocyte volume within marrow, and has been compared to the less 

invasive, proton magnetic resonance spectroscopy (1H-MRS) imaging technique but 

this only correlated at the spine, not at the proximal femur (Cohen et al., 2015). 

Therefore, we would need to confirm our findings using BM biopsies from the Nu-

AGE subjects. Additionally, while we show DXA scan results for our elderly subjects, 

we do not have these data for the younger subjects, this would have been valuable 

to compare whether there are differences in BMD between the two groups, since 

Slade et al. (2012) report that BMD is negatively associated with BM adiposity. Our 

data provide additional evidence for altered cytokine and adipokine secretion 

associated with age, but further investigation is required to demonstrate BM adipocyte 

accumulation. This may encourage further investigation into the relationship between 

adipokine secretion and immune cell responses in the elderly, with further studies 

including clinically validated methods, such as BM biopsies, to determine whether BM 

adiposity is increased. 

7.2.4 Implications of MED diet consumption  

High fat diet promotes accumulation of large and small pre-B cells, immature and 

mature B cells in BM in mice (Trottier et al., 2012) in addition to promotion of 

inflammation and insulin sensitivity via production of autoantibodies (Shaikh et al., 

2015; Winer et al., 2011). High fat diet feeding in mice also increases BM adiposity 

and consequently inhibits CD34+ derived B cell production (Adler et al., 2014; 

Doucette et al., 2015). 

PPARs, which are members of the nuclear receptor family, have suggested roles in 

nutrient sensing and regulation of the metabolism of carbohydrates and lipids 

(Semple et al., 2006). Both resistin expression and BM adiposity are shown to be 

regulated by PPARγ (Botolin and McCabe, 2006; Patel et al., 2003). Since increases 
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in MUFA and PUFA intakes downregulate PPARγ in DCs and PBMCs (Bouwens et 

al., 2009; Zapata-Gonzalez et al., 2008; Zeyda et al., 2005), this suggests that the 

MED diet intervention, with significantly reduced SFA intake, could reduce both BM 

adiposity and associated adipokine secretion (resistin), potentially reducing the age-

associated inflammatory state. Additionally, cytokine secretion, induced by PPARγ 

receptors on DCs, is inhibited by PUFA treatment, in terms of IL-6, IL-10, IL-12, TNF-

α and IFN-γ (Marion-Letellier et al., 2008; Zapata-Gonzalez et al., 2008; Zeyda et al., 

2005), using in vitro models and ex vivo human PBMCs. This complements our 

findings of reduced IL-6+ DCs compared to increased IL-8+ DCs at post-dietary 

intervention. However, other studies contradict these findings (Kew et al., 2004; 

Stelzner et al., 2016) with one conflicting observation showing that MUFA upregulates 

PPARγ (Bechoua et al., 2003) suggesting that the SFA: MUFA or SFA: PUFA ratio 

could be more important that absolute MUFA or PUFA intakes.  

Drugs target PPARγ to increase insulin sensitivity in T2D patients (thiazolidinediones; 

TZD) (He et al., 2015) by increasing circulating adiponectin levels, preventing 

increased circulating free FAs and decreasing pro-inflammatory cytokine secretion 

(Lefterova et al., 2014). Undesirable side effects including weight gain and increases 

in osteopenia and thus bone fractures (Cariou et al., 2012) reduces their use clinically 

(Soccio et al., 2014). However, recent observations show a novel TZD which does 

not to induce bone loss in mice but still decreases serum insulin levels and increases 

mRNA expression of adiponectin, and while increases in BM adipogenesis were still 

apparent, the increase was more than two-fold lower than that observed by the 

traditional TZD, rosiglitazone (Fukunaga et al., 2015). However these observations 

are independent of PPARγ (Fukunaga et al., 2015). Therefore, considering our finding 

that dietary FA modulation by reducing SFAs in favour of MUFA and PUFA can 

reduce adipokine secretion (resistin), this suggests that increased consumption of 

phenolic-rich foods may provide a useful and cost-effective method of reducing age-

associated adipokine secretion, given that the net cost of prescription items (including 

TZDs) for diabetes cost £956.7 million between 2015–2016 (NHS, 2016). Circulating 

levels of adipokines are emerging as potential therapeutics or biomarkers for 

assessment of treatment responses (Blüher and Mantzoros, 2015), however since 

some of these adipokines were only discovered in the past 20 years, it is not known 

at present, whether reduced levels may also have negative health implications.  

Similarly, production of B cells is regulated by prostaglandins and cyclooxygenases 

(Yokota et al., 2003), the series (anti- or pro-inflammatory) of which is influenced by 

FA intake. Production of the Ig occurs during B cell production and therefore, as no 
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change in frequency of each unique clonotype is observed in the present VDJ-Seq 

data, the one year dietary intervention may have prevented this. However, it is not 

possible to speculate this from our present findings since the clonotype analysis is 

only a qualitative measure, based on visualisation of the data within a tree plot. 

Additionally, this analysis cannot be used as an independent measure of Ig repertoire 

diversity since the amount of DNA used in library preparations is not taken into 

consideration. Therefore, to be able to interpret this data more accurately it may be 

appropriate to normalise the data to account for any variations in starting quantities 

of DNA. Since, our dataset for the VDJ-Seq analysis only includes four subjects 

randomised to the MED diet and six randomised to the control diet, it is not possible 

to infer any dietary effect of these results, as a much larger sample number is 

required. 

7.3  Recommendations for future work 

To further validate and expand on the outcomes of the present study, the next steps 

include testing immune response to antigens, directly in elderly subjects, as opposed 

to ex vivo. This could be achieved by taking blood samples, including serum, pre- and 

one month post-vaccination (Frasca et al., 2010; Saurwein-Teissl et al., 2002) (with 

the seasonal influenza vaccine) in addition to pre- and post-MED diet intervention for 

one year, with the inclusion of a much more stringent control diet group. The serum 

samples from subjects could then be tested for influenza specific antibodies using an 

ELISA (specific to the strain of the influenza vaccination) such as that discussed by 

Alvarez et al. (2010). Further B cell DNA-libraries could be prepared for samples pre- 

and post-vaccination, and pre- and post-dietary intervention in order to demonstrate 

whether the IGHVs are influenza-specific. This would add to the IGHV gene usage 

and clonotype repertoire information and determine whether these observations 

correspond with biological outcomes post-vaccination. Also, phenotypic analysis of B 

cells could be performed by multi-colour flow cytometric analysis, using fluorochrome 

conjugated mAbs to determine B cell subsets. This would give an indication of the 

proportions of naive, transitional and memory B cells (class-switched and non-class-

switched), plasmablasts and plasma cells, using the markers CD19, CD20, CD24, 

CD27, CD38, IgD, IgM and CD138 (Caraux et al., 2010; Kaminski et al., 2012). In 

order to determine whether MED diet intervention could increase the production of 

naïve B cells, since reduced naïve and increased memory B cells have been 

observed with increased age (Lin et al., 2016; Macallan et al., 2005). 
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To further test DC function the phagocytic ability of DCs could be investigated using 

polystyrene beads or microparticles coated in protein to act as antigen, to visualise 

phagocytic activity and particle presentation on MHC II complexes ex vivo in 

peripheral DCs by confocal microscopy. A similar study design was utilised by Thiele 

et al. (2001) where it was noted that greater size of the microparticles (4.5 compared 

to 1.0 µm) and the surface coating (poly-ʟ-lysine compared to bovine serum albumin) 

enhanced phagocytic ability. This would indicate whether the age-associated 

reductions in cytokine secretion by DCs were a result of impaired phagocytosis and 

thus a reduction in peptide presentation via MHC II complexes to engage in the 

peptide-MHC II: TCR immunological synapse, since this and co-stimulatory molecule 

interactions between DCs and T cells induce cytokine secretion (Guermonprez et al., 

2002; Kambayashi and Laufer, 2014).  

Furthermore, considering the overall study design, the Nu-AGE study had some 

weaknesses which could be addressed in future nutritional intervention studies. As 

the control group were ineffective in this study it would be beneficial to monitor dietary 

intake of the subjects more stringently and to provide more of the food components 

to the subjects within the study centre to both groups, to encourage and monitor 

changes in dietary intake. For example participants were not asked to adopt a low-

phenolic or low-MED diet prior to the study, so, as observed in urinary HTS 

concentrations, any phenolic consumption prior to baseline was detected in pre-

intervention urine samples, which may have skewed the results. However Miro-Casas 

et al. (2003) demonstrated that even strict dietary control prior to blood sampling could 

not clear HT from biological fluids. Therefore, the use of HTS as the only biological 

marker is another limitation to this study and the use of multiple biomarkers would be 

more informative to demonstrate adherence to the whole diet, not just olive oil, and 

potentially red wine, consumption. Previous studies assessing the MED diet have 

assessed plasma levels of oleic acid (olive oil), ALNA (nuts) (Mena et al., 2009), EPA, 

DHA (fish) and carotenoids (fruit and vegetables), in addition to the presence of 

SCFAs in faecal samples (wholegrain) (Vincent-Baudry et al., 2005), a combination 

of these approaches would be a much more valuable measure of compliance. 

Additionally, the collection of more frequent blood samples would have been 

advantageous, as the data for this thesis rely on just one blood sample at pre-

intervention and one at post-intervention, whereas additional blood draw throughout 

the year intervention, at three monthly increments, would have provided more reliable 

data and demonstrated reproducibility of the results.  
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Overall, the data presented within this thesis provide evidence for age-associated 

impairments in both DCs and the Ig repertoire, with the observation that dietary 

intervention with a MED diet reversed the age-associated increases in resistin 

secretion. This is the first study to investigate the impact of dietary intervention in 

relation to IGHV gene usage and clonotypes. This data provides both methodological 

improvements and novel findings in the field of immunonutrition and as such provides 

the basis for further investigation of the MED diet for immunomodulation, particularly 

in terms of increased adipokine secretion and altered IGHV gene usage in Ig 

repertoires, with potential pharmaceutical implications. 
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 Im-AGE study flowchart 
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 Im-AGE Consent Form 
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 Nu-AGE NRES ethical approval 
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 Nu-AGE study flow chart 
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 Nu-AGE Consent form 
 

NU-AGE CONSENT FORM 

 

Title of Project: New dietary strategies addressing the specific 

needs of the elderly population for healthy ageing in Europe (NU-

AGE) 

 

Name of Researchers: Prof Sue Fairweather-Tait, Prof Aedin 

Cassidy, Prof Anne Marie Minihane 

  

Volunteer Identification Number for this trial: ______________ 

 

Please initial box 

 

1. I confirm that I have read and understand the Volunteer 
Information Sheet dated .................................. (version 
..................) for the above study. 

 

2. I confirm that I have had the opportunity to discuss the 
study and ask questions, and that all of my questions 
have been answered in a satisfactory manner. 
 

3. I understand that my participation is voluntary and that I 
am free to withdraw at any time, without giving any 
reason, and without affecting future participation in other 
research studies. 
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4. I am aware that personal information will be held 
confidentially by responsible members of the research 
team at the University of East Anglia, and that 
anonymised data will be shared with other NU-AGE 
project partners. 

 

5. I understand that my anonymised samples will be shared 
with other NU-AGE partners and may be stored and 
analysed beyond the scope of the current project.  

 

6. I understand that the study includes DXA scans involving 
the direction of a low level of X-ray radiation, exposing me 
to a level of radiation which is equivalent to about one to 
two days of environmental or background exposure. 

 

7. I agree to my GP being informed of my participation in the 
study. 

Name and address of GP 

...............................................................................

............................. 

..............................................................................

............................. 

..............................................................................

............................. 

 

8. I agree for the results of the cognition/mood assessments 
to be sent to my GP.                                                                                                  
YES/NO* 
 

9. I understand that some genetic information will be 
assessed during the study and that this information will 
not be clinically significant and will not be passed on to 
me or my GP. 

 

10. A) I volunteer to give a faecal sample at the start and 
end of the study 
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YES / NO* 

 

B) I volunteer to give an additional 23mL of blood for 

immune characterisation at the start and end of the 

study                      YES / NO* 

 

 

11.  I agree to take part in the above study. 
 

______________________  ____________ 

 __________________ 

Name of Volunteer   Date   

 Signature 

______________________  ____________ 

 __________________ 

Name of Researcher   Date   

 Signature 

*Please delete as appropriate 

 

A copy of the signed consent form must be given to the 

volunteer. 
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 Seven-day food diary 
 

 

 

 

 

New dietary strategies addressing the specific needs of the  

elderly population for healthy ageing in Europe 

 

 

 

 

 

 

 

 

 

 

 

As part of your participation in our research, we would like to know more about 

your dietary habits. For this, we ask you to keep a food diary for seven 

consecutive days. 

INSTRUCTIONS       

Carry the diary with you and write down everything you eat or drink 

immediately after doing so to avoid forgetting any items. Do not forget to write 

down things that you eat or drink in between meals (e.g. apples, nuts, cups of 

NU-AGE 7 DAY FOOD 

DIARY To be filled in by NU-AGE staff 

 Subject Code                              

Diary start date (dd/mm/yy): _________________________ 

Diary end date (dd/mm/yy):  _________________________ 

The home visit is scheduled for :___________________________ 

Intervention time: Code   

 S  C 
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tea etc.) and things you have during the night (e.g. a few sips of water). Meals 

outside the home should also be recorded.  

The diary should be recorded in the following way: 

 Please write down the date and day of the week in the space provided at the 

top of the page at the start of each day that you record your diary. 

 Start each day with the page titled ‘before breakfast’.  

There are 8 sections available for each day; before breakfast, breakfast, during 

the morning, lunch, during the afternoon, evening meal, evening snack, during 

the night. 

 If nothing is eaten or drunk during one of these sections, draw a line through 

that section. 

 Fill in the diary using the headings provided; time, place, description of foods 

and drinks and portion size.  

 

Time: In this box write the time you ate or drank the item/meal. 

Place: Write down the place where you ate the item or meal (e.g. home, 

restaurant, cafeteria at work, friend’s house etc.)  

Description of foods and drinks: Write down a clear description of the food 

or beverage that you have consumed. It is important to use exact names and 

descriptions and whenever the product has a brand name, please, write that 

down too (e.g. Tropicana smooth orange juice, Tesco light choices cottage 

cheese, Hovis wholemeal farmers loaf). Also write down any additions you add 

to the food or drink such as sugar or salt.  

When describing a dish, write down the method of preparation (e.g. boiled or 

fried or grilled). If fat was used in the preparation, write the type of fat used 

(e.g. meatballs fried in vegetable oil). Also write down whether the food is 

home-made or bought ready-made. 

If you make a meal that involves a recipe please make a precise note of the 

recipe including all the ingredients, their quantities and the main cooking 

methods involved. It is important to give full details of ingredients (e.g. chicken 

breast, no skin). Please also note the number of portions that the recipe served 

and indicate how much you ate from this. If someone else made the meal, ask 



257 
 

them for the details. There is additional space for recipe notes at the end of 

each day. 

Meals eaten outside the home should also be recorded. When possible ask 

the cook or a member of the restaurant/canteen staff for information about the 

dish including the main ingredients and approximate quantities.  

 

Amounts / portion sizes: Write down the portion sizes of the foods and 

beverages as you list them. Please weigh your food or use household 

measures such as coffee mugs, tablespoons, millilitres or grams to help you 

with this.  

Use the following to help you estimate portion sizes: 

Beverages: state the volume if known (e.g. 300ml) or describe using a 

description of the size of the glass, cup, mug etc. (e.g. large mug).  Milk or 

cream added to coffee or tea should be measured in teaspoons or 

tablespoons. If you had a drink from a bottle, carton or can make a note of the 

size stated on the packaging, and how much you drank (e.g. “250ml bottle. 

Drank all”). 

Bread: write the number of slices of bread eaten. Describe the loaf as small, 

medium or large, or give the total loaf weight. Describe the slice as thin, 

medium, thick or extra thick (most pre-sliced loaves state the loaf size and the 

slice thickness on the packaging). (e.g. “2 medium slices, 800g loaf”). 

Breakfast cereal: describe the portion using small, medium or large bowl sizes 

or use tablespoons. Describe the amount of milk had on cereal using pints or 

millilitres or say if it was a ‘large’, ‘medium’ or ‘small’ amount. (e.g. 4 

tablespoons of cornflakes with ¼ pint skimmed milk). 

Cheese: for hard cheeses write down the number and thickness of slices. Use 

tablespoons to measure grated cheese. For soft cheeses such as Philadelphia 

measure in teaspoons or tablespoons.  
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Confectionary (sweets and chocolate): describe using the weight on the 

packet, bar weight, number of pieces or individual sweets. 

Fruit: record the number of whole fruits, segments or slices. For canned fruit 

give the can weight and the proportion of which you ate. 

Ice cream, cream and dairy desserts: use scoops or tablespoons. Where 

whole items are eaten give the pot or packet weight.   

Meat and fish dishes: record the number or weight of meat or fish portions 

(e.g. “one chicken breast”, “3 rashers of unsmoked back bacon” or “1/4 of 515g 

pack, lean beef mince, raw weight”). Remember to state if you are recording 

the weight as the cooked or raw weight. Also note if the meat or fish includes 

skin or fat and if this was eaten.  

For roast meats and cold cuts of meat state the number and thickness of slices 

(e.g. 2 slices of Tesco wafer thin cooked ham). 

Oils, butter and margarine: use teaspoons or tablespoons. When spreading 

on bread or toast state if the layer was thin, medium or thick. 

Pasta, spaghetti: Describe the weight using a proportion of the packet weight 

(e.g. 1/10 of 1kg packet of dried wholemeal fusilli) or measure in tablespoons.  

Remember to state if you are giving the dried weight or cooked weight.  

Puddings and desserts: use tablespoons, or slices with a description of small, 

medium or large. For commercial items describe as a proportion of the packet 

weight (e.g. Sainsbury’s strawberry cheesecake 530g. Ate 1/5). 

Rice: Describe the weight using a proportion of the packet weight or use 

tablespoons. Remember to state if you are measuring cooked or raw rice.  

Sauces, gravy and dressings: use teaspoons or tablespoons. Note that even 

the amount of meat sauces such as Bolognaise sauce should be estimated 

this way (e.g. “one teaspoon of sweet chilli sauce”). 

Soups: use bowls to describe the size of the portion as a small, medium or 

large bowl. Or if you are using canned or carton soups note the size marked 

on the packaging and state how much you ate (e.g. “440g can, ate half”). 
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Sugar: use teaspoons or tablespoons or if the sugar is cubed state the number 

of cubes. Remember to mention sugar sprinkled on top of cereal and sugar in 

tea etc. 

Vegetables and salad items: use whole vegetables or salad items, slices or 

tablespoons as measures (e.g. “4 cherry tomatoes, 5 thin slices of cucumber 

and 2 tablespoons lettuce”). 

Other foods: use the information given on the packaging whenever possible. 

The weight should be included on the packet information. If you don’t eat the 

whole packet note the total weight of the packet followed by the amount you 

think you ate (e.g. if you had a packet of walnuts, “100g packet, ate ¼ of the 

packet”).  

If in doubt about how to describe a portion, write as much detail as possible. 

The portion can then be further discussed with the research assistant once the 

diary is complete.  

Leftovers: We want to know the amount that was actually eaten, this means 

leftovers need to be taken into account. This can be done in two ways:                                                                                                            

1. If any leftovers remained on your plate from the originally stated portion in 

your food diary, please make a note of this (e.g. “1/4 of lasagne recipe, 3 small 

boiled potatoes. Only ate 1 of the boiled potatoes”).                                   

 2. Alternatively, you can just record the actual amount eaten (e.g. “1/4 of 

lasagne recipe, 1 small boiled potato”). 

Labels/wrappers: Labels are a very useful source of information for us. When 

possible please save any labels or packaging that shows the product 

information for an item you have consumed.  This is especially useful for foods 

or brands you record which are perhaps lesser known or uncommon. 

Comments: At the end of each day there is space to write any comments you 

might feel are relevant. For example this may be to inform us if the day was 

not a typical day or if there was any reason why you might have eaten more 

or less than usual.  
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The dietary records will be discussed with the research assistant during your 

visit to the UEA to be sure that you haven’t forgotten anything and to verify 

whether you have given enough detail.  

 

Example day 

EXAMPLE 

Date:  07/05/2012                      Day of the week: Monday 

BEFORE BREAKFAST 

Time Place Description of foods and drinks Portion size 

07:30 Home Cup of Nescafe instant coffee 

semi skimmed milk 

1 large mug 

1 tablespoon 

BREAKFAST 

Time Place Description of foods and drinks Portion size 

 

08.00 

 

 

 

Home 

 

 

 

 

 

Kellogg’s fruit n fibre with 

Semi skimmed milk 

Tesco orange juice from concentrate  

 

 

30g 

1/5 pint  

150ml 

 

DURING THE MORNING 

Time Place Description of foods and drinks Portion size 
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09.30 

 

11.00 

 

Friend’s 

House 

Home 

 

Cup of Tetley decaffeinated tea   

with semi-skimmed milk 

Water  

 

Medium mug 

tablespoon 

Tall glass, 250ml 

 

 

LUNCH 

Time Place Description of foods and drinks Portion size 

13.00 Home Chicken salad sandwich: 

Hovis wholemeal medium 

sliced,800g loaf. 

Flora light low fat vegetable 

spread 

Tesco sliced roast chicken (240g 

pack)  

Tesco salad tomatoes 

Tesco baby leaf and rocket salad 

(90g pack) 

Banana 

Robinson orange squash, no 

added sugar 

diluted with tap water 

 

2 slices 

 

1 teaspoon 

 

1 slice  

 

1 tomato 

1/6 of packet 

 

1 medium  

50ml 

 

200ml 

DURING THE AFTERNOON 

Time Place Description of foods and drinks Portion size 
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15.00 Starbucks 

coffee shop 

Green tea 

Blueberry muffin 

 

Regular 

Ate half 

EVENING MEAL 

Time Place Description of foods and drinks Portion size 

18.30 Home Wholemeal pasta 

 

Homemade bolognaise sauce (see 

recipe) 

Grated cheddar cheese 

Tap water 

 

Strawberries 

Tesco low fat natural yogurt (500g tub) 

 

150g (cooked 

weight) 

1/8 of recipe 

 

1 tablespoon 

Large glass, 

300ml 

6 medium  

2 heaped 

tablespoons 

EVENING SNACK 

Time Place Description of foods and drinks Portion size 

20.30 Home PG tea with 

Semi-skimmed milk 

Medium mug 

1 tablespoon 

DURING THE NIGHT 

Time Place Description of foods and drinks Portion size 
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Recipe notes 

Please write the recipe or list the ingredients of any dishes that may require 

more information to be given. This might include home-made dishes, take-

away meals etc that you have mentioned but not described previously. Where 

applicable please list amounts of ingredients and brand names. Please 

indicate the amount or proportion actually consumed by you.  

Name of dish:   Bolognaise sauce                                                                                                         
Number of portions the recipe serves (if applicable):  8 portions 
Ingredient Amount Ingredient Amount 
Tesco lean beef 
mince 
 
Garlic  
 
Red onion 
 
Red pepper 
 
Yellow pepper 
 
Courgette 

500g 
 
 
2 cloves 
 
1 medium 
 
1 medium 
 
1 medium 
 
1 medium 
 
 
 

Napoli chopped 
tomatoes 
 
Tesco tomato 
puree 
 
Tesco mild olive 
oil 
 
Dried mixed 
herbs 

400g can 
 
 
1 tablespoon 
 
 
1 tablespoon 
 
 
2 teaspoons 
 

Brief description of the cooking method: 
Fry onion & garlic in oil, add mince and fry until brown. 
Add peppers, courgette, tomatoes, puree & herbs.                                                       

Simmer for 30 minutes 

Any additional comments: 

I ate 1 portion from the above recipe. 

 

 

 

 

 

 

END OF EXAMPLE 
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Additional space for notes and comments that may be useful to the researchers: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thank you for completing your 7 day food diary 

Dietary strategies for healthy ageing in Europe (NU-AGE) 
ANNEX 25a: Food records (7 day) version 3, 24.07.12 
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 Im-AGE Lifestyle Questionnaire 
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 Control group dietary advice 

 

 

Dietary strategies for healthy ageing in Europe 
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Dietary strategies for healthy ageing in Europe 

ANNEX 16, BDA dietary advice for control volunteers: Version 1, 06.01.2012 
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 MED-diet intervention group dietary advise sheets 
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 Urine collection information sheet 

Urine collection information for volunteers 

On the day prior to both of your study day appointments you will be 

required to collect all of your urine for a 24 hour period. This should 

include only one first urine of the day. 

You have been provided with a collection pot in a plastic bag. You should 

collect all of your urine into this pot. If you find it difficult to use the pot 

directly, it is recommended that you use a suitable smaller container 

(e.g. plastic measuring jug or small plastic bowl) to collect your urine, 

and then carefully transfer it into the collection pot each time you go to 

the toilet. 

You should try to keep the collection pot as cool as possible whilst you 

are collecting your urine. Please try to find a cool place in your home to 

store it, but do not put it in a refrigerator that contains food items and 

please keep it away from children. It may be practical to store it in the 

bathroom during the collection period to remind you to collect your urine 

during this time. 

Please remember that you need to collect ALL of the urine you produce 

in a 24 hour period. Therefore, if you go out during the day of collection 

you must take your collection pot with you, or another smaller container 

to collect your urine whilst you are out. This can then be transferred into 

the main collection pot later on. When scheduling your first study day 

the study team will remind you of this and will try to make sure that the 

preceding day is suitable for such a collection. 

On the morning of the day before your study day appointment do not 

collect the first urine of the day – this should be discarded (not collected). 

Then, collect all the subsequent urine you pass during the rest of the day 

into the collection pot. Please include any urine passed during the night 

and collect the first sample of the following morning (i.e. the morning that 
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you are coming in to the CRTU). The collection stops at this point and 

you should return your collection pot to the plastic carrier bag and 

remember to bring it with you to your study day appointment. 

Please try not to alter your normal drinking patterns as a result of this 

collection. If you feel that you may need an additional sample pot please 

let the study team know. 

Please remember, you are also asked to avoid heavy exercise and 

alcohol the day prior to your first study day. 

If you have any questions about the urine collection, please contact the 

study team. 
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 Supplementary Tables 3.1  
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Supplementary Table 3.1 Concentrations of serial diultion of standards across 

plates all plates run, for all 13 analytes.   
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 PE1 Adapter ligation 
 

Mix 1: 

5’ ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNGACTCG*T 3’  

      

3’ [SpcC3]C*GAGAAGGCTAGANNNNNNCTGAGC[Phos] 5’ 

Mix 2: 

5’ ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNCTGCTCC*T 3’ 

    

3’ [SpcC3]C*GAGAAGGCTAGANNNNNNGACGAGG[Phos] 5’ 

 

*Adapter mix = 2 oligos: “PE1 adaptor F1/F2” & “Short adaptor R1/R2-block”, 

annealed together to create asymmetric PE1 adaptors.  

* = phosphorothioate bond; short R adaptors should be phosphorylated at 5’ end 

and have a Carbon-3 spacer incorporated at 3’ end to prevent it being used to 

prime in later reactions. 
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 Biotinylated primers 
 

Enrichment of VDJ recombined fragments 

Thermal cycler conditions: 95°C 4 min, then 6-8 cycles of (95˚C 30s, 59°C 5 min, 

72°C 2 min), 4°C pause 

* A mixture of 6 biotinylated primers are used, Tms between 62.4°C to 64.2°C: 

 

Hu J1 R Bio CCAGACAGCAGACTCACCTG 

Hu J2 R Bio TGCAGTGGGACTCACCTG 

Hu J3 R Bio AGAAGGAAAGCCATCTTACCTG 

Hu J4 R Bio CAGGAGAGAGGTTGTGAGGACT 

Hu J5 R Bio AGGGGGTGGTGAGGACTC 

Hu J6 R Bio CCATTCTTACCTGAGGAGACG 

 

Incorporation of PE2 adapter by PCR 

Place on the PTC100 using the following conditions: 

Thermal cycler conditions: 94°C 2mins, X cycles of: 94°C 15 secs, 61°C 30 secs, 

72°C 45 secs, followed by 72°C 5mins, and 4°C pause.  

X= number of cycles dependant on starting amount of DNA; 12-15 cycles to Nu-

AGE samples.  

* = phosphorothioate bond 

* Primer sequences, Short PE1 primer Tm 68.5°C, J primers Tm range 70.1-73°C 

Short PE1 primer ACACTCTTTCCCTACACGACGCTC*T 

Hu J1 PE2 PCR  GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGGTGCCCTGGCCCCAGT*G 

Hu J2 PE2 PCR  GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGGTGCCACGGCCCCAGAG*A 

Hu J3 PE2 PCR  GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTACCATTGTCCCTTGGCCCCA*G 

Hu J4 PE2 PCR  GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGACCAGGGTYCCYTGGCCC*C 

Hu J5 PE2 PCR  GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCAGGGTTCCYTGGCCCCAG*G 
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Hu J6 PE2 PCR.1 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCCTTTGCCCCAGACGTCCATGTAG*T 

Hu J6 PE2 PCR.2 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTKSCCCCAGACGTCCATACCG*T 

Incorporation of flowcell binding & barcoding sequences by PCR 

Thermal cycler conditions: 94°C 2mins, 5 cycles of: 94°C 15 secs, 55°C 30 secs, 

72°C 45 secs, followed by 72°C 5mins, and 4°C pause. 

Tms of regions annealing to target are 58.2°C - PE1, and 61.9°C PE2. 

 

 Flowcell PE1  AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGAC 

Flowcell PE2 Index 1 CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCAGACGTGT 

Flowcell PE2 Index 2 CAAGCAGAAGACGGCATACGAGATACATCGGTGACTGGAGTTCAGACGTGT 

Flowcell PE2 Index 3 CAAGCAGAAGACGGCATACGAGATGCCTAAGTGACTGGAGTTCAGACGTGT 

Flowcell PE2 Index 4 CAAGCAGAAGACGGCATACGAGATTGGTCAGTGACTGGAGTTCAGACGTGT 

Flowcell PE2 Index 5 CAAGCAGAAGACGGCATACGAGATCACTGTGTGACTGGAGTTCAGACGTGT 

Flowcell PE2 Index 6 CAAGCAGAAGACGGCATACGAGATATTGGCGTGACTGGAGTTCAGACGTGT 

Flowcell PE2 Index 7 CAAGCAGAAGACGGCATACGAGATGATCTGGTGACTGGAGTTCAGACGTGT 

Flowcell PE2 Index 8 CAAGCAGAAGACGGCATACGAGATTCAAGTGTGACTGGAGTTCAGACGTGT 

Flowcell PE2 Index 9 CAAGCAGAAGACGGCATACGAGATCTGATCGTGACTGGAGTTCAGACGTGT 

Flowcell PE2 Index 10 CAAGCAGAAGACGGCATACGAGATAAGCTAGTGACTGGAGTTCAGACGTGT 

Flowcell PE2 Index 11 CAAGCAGAAGACGGCATACGAGATGTAGCCGTGACTGGAGTTCAGACGTGT 

Flowcell PE2 Index 12 CAAGCAGAAGACGGCATACGAGATTACAAGGTGACTGGAGTTCAGACGTGT 
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 Bioanalyser results 
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 Babraham LinkOn pipeline analysis flow chart 
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  Supplementary Figure 6.1. IGHV allele usage for all young subjects after 

ordering alleles according to regional location on the chromosome. 
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Supplementary Figure 6.1. IGHV allele usage for all young subjects after 

ordering alleles according to regional location on the chromosome. The 

sequencing data from 12 previously analysed control subjects were re-analysed 

by Peter Chovanec (Babraham Institute) using the LinkON VDJ-Seq pipeline 

analysis workflow used for the Nu-AGE data to allow comparison of the baseline 

elderly sequences to a young control group. All alleles represented within the 

subject cohort were aligned in regional order of location on the chromosome. 

Each graph represents data from one individual subject. Functional genes 

(orange), non-functional genes (blue).      
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 Supplementary Figure 6.2. Representative example of ordered IGHV 

allele usage of one young (H001_CVID_C1) and one elderly subject 

(s112) at baseline, according to regional location on the chromosome. 

   
     



308 
 

Supplementary Figure 6.2 Representative example, ordered IGHV alleles of one 

young subject (H001_CVID_C1) and one elderly subject (s112) at baseline, 

according to regional location on the chromosome. The sequencing data from 12 

previously analysed control subjects were re-analysed by Peter Chovanec 

(Babraham Institute) using the LinkON VDJ-Seq pipeline analysis workflow 

used for the Nu-AGE data to allow comparison of the baseline elderly 

sequences to a younger control group. All alleles represented within both 

subject cohorts were aligned in regional order of location on the 

chromosome, to allow comparisons between elderly and younger subject 

cohorts.  
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 Supplementary Figure 6.3. Variable allele usage within the IGHV for each 
subject.  
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Supplementary Figure 6.3 Variable allele usage within the IGHV for each 
subject. Frequency of usage of V alleles by each subject, pre- (B) and post-
intervention (A), all alleles shown are representative of the alleles expressed in 
DNA-libraries derived from samples across the entire study cohort; n=10. Plots 
produced in RStudio by Peter Chovanec (Babraham Institute). Clones represent the 
frequency of expression. Non-function (blue) and functional (orange) genes. For 
comparison of V allele use between baseline and post-intervention, frequencies for 
all alleles, represented across all Nu-AGE subjects, were compared for each subject 
by two-way ANOVA with Sidak’s multiple comparisons test, using GraphPad Prism 
V7.02. This allowed comparison of each of the 246 alleles, which were classified as 
functional or non-functional. MED diet (Figure 6.9 a, f, i and j), Control diet (Figure 6.9 
b, c, d, e, g and h). 
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 Supplementary Figure 6.4. Variable allele usage within the IGHV ordered 

by regional location on the chromosome for each subject 
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Supplementary Figure 6.4 (a–j) Variable allele usage within the IGHV ordered 
by regional location on the chromosome for each subject. Regional positions of 
the V alleles were determined by ordering alleles according to location on the 
chromosome, from the 3′ to the 5′ end; carried out by Peter Chovanec (Babraham 
Institute) using the IMGT database. Frequency of usage of V alleles by each subject, 
pre- (B) and post-intervention (A), all alleles shown are representative of the alleles 
expressed in DNA-libraries derived from samples across the entire study cohort; 
n=10; graphs produced in RStudio by Peter Chovanec. Clones represent the 
frequency of expression. Non-function (blue) and functional (orange) genes. For 
statistical analysis of V allele usage, baseline and post-intervention frequencies for 
all alleles, represented across all Nu-AGE subjects, were compared for each subject 
by two-way ANOVA with Sidak’s multiple comparisons test, using GraphPad Prism 
V7.02. This allowed comparison of each of the 246 alleles, which were classified as 
functional or non-functional. MED- diet group (Supplementary Figure 6.4 a, f, i and j), 
control diet group (Supplementary Figure 6.4 b, c, d, e, g and h).   



331 
 

XXI. Supplementary Table 6.5 Average sequence lengths of IGH 
regions 

Sample 
V SEQ 

LENGTH 
D SEQ 

LENGTH 
J SEQ 

LENGTH 
JUNCTION 
LENGTH 

112-PRE 142.3517 15.05936 27.37651 30.55901 

112-POST 142.3784794 14.85278484 27.76518288 30.05952381 

121-PRE 138.6917 13.37422 27.56166 30.25307 

121-POST 137.5994356 14.07118386 28.565381 29.56274694 

127-PRE 160.8628 14.91129 30.06739 35.18643 

127-POST 158.5040573 13.65429853 29.84236277 33.02159905 

134-PRE 170.4771 15.84149 29.56878 34.43026 

134-POST 163.6021548 16.03053113 30.09228315 36.96242253 

141-PRE 135.3157 14.52862 28.56405 30.95315 

141-POST 138.6234283 14.81081081 28.73197648 31.30357304 

146-PRE 130.976 15.33764 29.24033 31.97629 

146-POST 136.7730645 14.91192299 28.5764071 31.62114967 

147-PRE 141.6585 13.90832 28.2058 30.22146 

147-POST 172.2778539 14.58261785 29.71529567 32.59692004 

157-PRE 139.5441 15.15375 29.00526 30.92206 

157-POST 148.7399057 14.99435864 28.38057662 30.66424131 

158-PRE 130.969 15.1715 28.9257 31.00561 

158-POST 135.177394 15.31282351 29.30422209 31.17061885 

159-PRE 136.2603 13.87854 28.82845 29.09689 

159-POST 171.7949604 13.89075012 29.54511962 30.29546075 

Supplementary Table 6.5 Average sequence lengths of V, D, J and Junction 

regions of sequenced IGH of peripheral B cell derived DNA-libraries from Nu-

AGE subjects, pre- and post-intervention.  
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