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Abstract

Current clinical practice for immobilisation for patients undergoing brain or head and
neck radiotherapy is normally achieved using Perspex or thermoplastic shells that are
moulded to patient anatomy during a visit to the mould room. The shells are “made to
measure” and the methods currently employed to make them require patients to visit
the mould room. The mould room visit can be depressing and some patients find this
process particularly unpleasant. In some cases, as treatment progresses, the tumour
may shrink and therefore there may be a need for a further mould room visits. With
modern manufacturing and rapid prototyping comes the possibility of determining
the shape of the shells from the CT-scan of the patient directly, alleviating the need
for making physical moulds from the patients’ head.

However, extracting such a surface model remains a challenge and is the focus of
this thesis. The aim of the work in this thesis is to develop an automatic pipeline
capable of creating physical models of immobilisation shells directly from CT scans.
The work includes an investigation of a number of image segmentation techniques to
segment the skin/air interface from CT images. To enable the developed pipeline to
be quantitatively evaluated we compared the 3D model generated from the CT data
to ground truth obtained by 3D laser scans of masks produced by the mould room
in the frame of a clinical trial. This involved automatically removing image artefacts
due to fixations from CT imagery, automatic alignment (registration) between two
meshes, measuring the degree of similarity between two 3D volumes, and automatic
approach to evaluate the accuracy of segmentation.

This thesis has raised and addressed many challenges within this pipeline. We
have examined and evaluated each stage of the pipeline separately. The outcomes
of the pipeline as a whole are currently being evaluated by a clinical trial (IRAS
ID:209119, REC Ref.:16/YH/0485). Early results from the trial indicate that the

approach is viable.
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Chapter 1

Introduction

This chapter forms an introduction to this thesis in which we present the aims and
the motivations of the research in Section 1.1 and Section 1.2 respectively. It also
presents a brief overview on the current treatment pathway for patients requiring
head and neck radiotherapy in Section 1.3. Section 1.4 presents a general description
about our proposed treatment approach in which Head-and-Neck cancer patients are
no longer need to visit the mould room. Section 1.5 listed the contributions of this

thesis. Thesis organisation is presented in Section 1.6.

1.1 Research Aim

Radiotherapy is normally delivered in fractions over a period of time and patients need
to be carefully and consistently positioned during treatment to ensure tumours are
accurately targeted. Patients undergoing treatment of the head and neck are normally
immobilised by fitting a facial mask. Two types of facial masks (immobilisation
masks) are commonly used in hospitals nowadays for the purpose of immobilisation
[5]. The first one, see Figure 1.1, is the Polycarbonate or Perspex (hard plastic) mask
which is formed from a model created from a Plaster of Paris mould of the patient’s
face and in some cases extending to the neck and shoulders. Alternative soft plastic

immobilisation systems (thermoplastic), see Figure 1.2, require a plastic mesh to



Figure 1.2: Examples of thermoplastic shells.

be heated and draped over the patient’s face. Immobilisation masks are fitted by
radiotherapists and technicians during a mould room appointment scheduled before
treatment commences. Both approaches are invasive and some patients find the
mould room visit unpleasant and distressing. With modern advanced manufacturing
comes the possibility of automatically producing an immobilisation mask from a 3D
computer model built using CT scans. This non-invasive approach would improve
the patient experience, improve efficiency and save time.

Successful radiation therapy treatment outcomes rely on accurate targeting of can-
cerous tissue while minimising the dose to surrounding healthy organs. Consequently,
the process of immobilisation for head-and-neck cancer patients during the treatment
sessions is a big challenge. The core goal of this research is focused on demonstrating
that the model needed to construct a mask could be produced automatically from

the CT with similar accuracy as those currently made by the moulding process.



1.2 Motivation

Head-and-Neck Cancer (HNC) refers to a group of different malignant tumors that
develop in or around the throat, larynx, nose, sinuses, and mouth [6]. Staging of the
cancer may be determined by medical imaging, biopsy and blood tests [7]. HNC is
the eighth most common cancer in the UK (2014), accounting for 3% of all new cases
[8]. Figures published from the United States estimate that 61,760 people developed
head and neck cancer in 2015 [9].

Acquiring CT data is necessary and indispensable step in treatment planning, and
so reusing these data to construct a 3D-printed model of the mask does not introduce
any additional steps to the treatment pathway. The existence of these data motivate
us to reuse it to produce a printed mask instead of looking for another additional
acquisition method that can produce a high quality 3D model. Consequently, this
research addresses the problem of how to create high quality models with smooth
iso-surfaces.

As stated in Section 1.1, immobilisation for HNC patients is currently accom-
plished through the use of perspex/thermoplastic shells. This process requires direct
moulding to the patient’s face and in some cases to the neck. Consequently, a visit to
the mould room is a prerequisite. The patient may have undergone previous surgery
to remove malignant tissue and taking the mould can be painful and is sometimes a
cause of distress. In some cases additional moulds are required as treatment progresses
and the tumour shrinks.

Many UK radiotherapy centres are currently using the Orfit soft-drape masks in
treatment sessions [10, 5]. Extended discussions have taken place between the research
group and radiologists and radiotherapist in Ipswich Hospital NHS Foundation Trust,
Suffolk, UK and St James’s University Hospital NHS Foundation Trust, Leeds, UK

in order to investigate the nature of the problem and to discuss deeply the feasibility



of generating 3D printed shells for HNC patients. Those discussions and meetings as
well as other recent studies [5, 11] indicate that constructing 3D-printed masks for
HNC patients is worthy of further investigation. This research is motivated by many
challenges arising from the following points:

- The current perspex/thermoplastic shells used in radiation therapy cause distress,
anxiety, stress, pain and worry.

- The current process of producing shells is manually intensive, physically demanding,
and requires a dedicated facility (i.e. the mould room) and specialist staff [12].

- Visiting mould room and the moulding process itself are time consuming.

- The current process does not use digital data to store shell’s measurement and
features. So there is a need to store the shell itself for future comparison and conse-
quently this shortage of digital data complicates the comparative studies over time
[12].

- Since the recent developments in 3D printing indicate that this technique may
present a cheap and affordable choice in many industrial and medical applications,
it worth exploring the using of this technique in our research. It may present in the
future a cheaper choice than using the current perspex/thermoplastic shells.

- There is an increasing interest worldwide toward the development of new health-
care technologies and especially in the field of image guided planning for surgery and
radiotherapy to enhance precision/targeting. For example, one of the funding oppor-
tunities offered by the Engineering and Physical Sciences Research Council (EPSRC)
is: frontiers of physical intervention grand challenges. One of the specific impacts that
could be achieved under this grand challenge is “Advances in physics modelling and
image guided planning for surgery and radiotherapy to improve precision/targeting,
leading to fewer side-effects, faster recovery, and better outcomes” [13].

- The need for a high level of accuracy of radiation beams and the need for a precise



immobilisation for the patient during the treatment session create a strong motivation

for us to focus on creating a 3D-printed immobilisation mask for HNC patients.

1.3 Radiotherapy Planning Process

A course of Radiotherapy Treatment is typically prescribed for patients diagnosed
with Head-and-Neck Cancer (HNC). It directs high energy ionising radiation to de-
stroy malignant cells, but it must be accurately targeted to limit harm to healthy
cells. A typical course of radiotherapy treatment for HNC is delivered in fractions
over several weeks and masks Figure 1.1 and Figure 1.2 are employed to ensure the
patient can be consistently repositioned for each dose fraction.

The radiation therapy process consists of various steps. It starts with data acqui-
sition using for example a CT scan. This is followed by treatment planning stages
including tumour localisation then treatment planning and beam positioning, and at
the end radiation delivery. Producing a 3D radiation treatment plan requires defin-
ing the target volume and organs at risk accurately, and these in turn require image
segmentation either manually or automatically as is clarified in the next paragraphs.
Radiation treatment is delivered in fractions, each session taking 15-30 minutes and
the whole process, from beginning to end, takes four to six weeks|[14, 15].

Since radiation damages both healthy and malignant cells, precise positioning of
the patient prior and during the treatment sessions is a basic and important compo-
nent in achieving a successful outcome [16]. The dose given to surrounding healthy
tissues and ‘organs at risk’” which are particularly sensitive to radiation should be
minimised [17].

Tumour localisation, the accurate placement of radiation beams and the precise
calculation of dose distributions are of great importance in reducing side effects of

radiotherapy treatment [18]. In order to understand the nature of the radiotherapy



planning process and to appreciate to what extent this process is critical we present
a brief description about these consecutive stages:

Stagel: Tumour localisation, identifying of target volume and organs at risk.
The radiotherapy planning process starts with the identifying of the location and
the form of the tumour. After that, the detecting of the target volume should take
place by identifying the volume which has to be totally covered by the therapeutic
dose. This stage involves the definition of tumour margins and safety margins which
are detected according to histology and the organs at risk. Errors and uncertainties
which are produced during this stage significantly impact the efficiency of treatment
planning and the result of the whole process [18].

Stage2: Modelling of anatomy and image segmentation.

In this phase, organs and tissues which will be irradiated have to be involved in the
treatment planning process. Moreover these tissue and organs have to be modelled in
three dimensions. The commonly approach used for extracting 3D information is the
manual segmentation of CT slices. Automatic or semi-automatic segmentation can
also be used since manual segmentation is time consuming, extremely tedious and
needs a great amount of efforts.

Stage3: Treatment design and dose calculation.

After finishing the delineation of anatomical structures and modelling of it in 3D, a
selection of the best directions from which to direct radiation beams at the target
volume is taken place. Numerous beams of radiation focused from different angles at
the target in order to allow for a better separation between the target volume and
the critical structures. The calculations of irradiation dose has three prerequisite [18]:
The precise patient geometry, the distribution of electron densities within the body,
and the physical beam characteristics of the irradiation units. The first and second

prerequisite (i.e. patient geometry and electron densities) can be acquired from CT
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Figure 1.3: The treatment process for HNC patients. The green blocks would replace
those shown in red if the mask was printed directly from the CT scan. The black
blocks belong to the common stages between the two approaches.

slices.

Stage4: Transfer of treatment to the patient
This is the final stage in which the settings that have been defined in the previous
stages are transferred to the patient during the treatment sessions.

Figure 1.3 illustrates the current patient treatment approach for Head-and-Neck
cancer in addition to our proposed treatment approach. The stages that are coloured
in black in the figure are common stages between the current treatment approach
and our approach. The red blocks belong to the current approach whereas the green
blocks belong to our proposed approach. Notice that most of the stages are common
between the two approach except that we replace the visit to the mould room with the
automatic construction of the mask using computer algorithms. Treatment of HNC
is slightly different from general cases of radiotherapy treatment since it involves a
mould room visit and because the CT planning scan is done with the patient wearing

the mask.



1.4 Overview of our proposed treatment approach

We have presented in the previous section a general description about our proposed
treatment approach. In this section we present more scientific description of the main
phases of our proposed treatment approach. We mentioned that the current treatment
process requires direct moulding to patient anatomy. The proposed approach of
treatment enables the immobilisation masks to be obtained directly from the CT
data without requiring patients to visit the mould room. The phases of the proposed
approach are presented in Figure 1.4 in which the process starts by reading a stack
of CT images for those patients who have a Head-and-Neck cancer. This CT scan is
routinely performed on those patients as part of their radiotherapy planning process.
Then the image segmentation process takes place. The aim of the image segmentation
is to label pixels as belonging to the foreground or background. The details of the
image segmentation process is presented in Chapter 5. The foreground area, which
represents the region of the patient’s head, is then dilated (see Figure 1.4 (c)). The aim
of the dilation process is to gradually enlarge the boundaries of regions of foreground
pixels to form a representation of mask to be fitted around patient’s face.

A volume is constructed from those dilated images using the Marching Cubes
algorithm [19](see Figure 1.4). The digitally constructed model represents a larger
volume than the head itself. From that constructed model we extract the mask as
a mesh. This mesh is sent later to 3D printer to produce a physical immobilisation
mask. Notice that we just present in this section a general description about our
proposed approach to construct automatically radiotherapy treatment immobilisation
masks. In the next chapters we present all the details of the proposed approach and

the evaluation process.
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Figure 1.4: (a) A general schema represents our proposed treatment approach. (The
photo of the 3D-printing of the mask (f) is from [1]).

1.5 List of Contributions

This thesis makes the following contributions to enhance the treatment of HNC:

e [t presents an automatic approach to generate a 3D model from which an immo-
bilisation mask can be constructed for use in radiotherapy treatment of Head-
and-Neck cancer using the CT volume currently acquired for treatment planning

purposes.

e [t presents a novel, fast, and automatic approach to remove image artefacts due
to fixations (i.e. immobilisation masks as it is depicted in Figure 3.2 Chapter
3) in CT images with Particle Swarm Optimisation and without affecting pixel

values representing tissues.

e [t investigates the use of five different segmentation techniques to segment the

air /skin boundary interface in CT images and evaluates the outcomes generated
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by each technique.

e [t presents a customised version of the iterative closest point algorithm in or-
der to automatically align (register) two 3D meshes. This version exceeds the

conventional algorithm in terms of accuracy and speed.

e It presents an approach to 3D-overlap measurement for medical volumes. The
proposed approach does not just produce a figure-of-merit but it also gives
complementary statistical information that enables the observer to assess the

scale and positions of regions/volumes of match and mismatch.

e [t presents a novel pipeline to automatically evaluate the accuracy of segmen-

tation of CT images when a laser-scan mesh is available as a ground-truth.

e It presents and evaluates the early outcome of a clinical trial (IRAS 1D:209119,
REC Ref.:16/YH/0485) which is designed to provide data and a framework to
evaluate computer algorithms designed to construct immobilisation masks for

Head-and-Neck cancer patients.

1.6 Thesis Structure

The remainder of chapters of this thesis are organised as follows. Chapter 2 presents
background information on radiation therapy, common radiology imaging modalities,
laser scanners, 3D-printing, image segmentation and the common overlap measure-
ments which are used to evaluate the outcomes of image segmentation. Chapter 3
describes the procedures by which we evaluate the reliability of our work and the
data sets that have been used in this thesis. In Chapter 4 we present a fast and auto-
matic approach that removes image artefacts due to fixations in CT images which are

captured with the immobilisation mask fitted. The presented approach in Chapter 4
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prepares the C'T data sets to be ready for automatic segmentation. This segmenta-
tion is investigated in Chapter 5 in which five segmentation techniques are applied
and evaluated.

Chapter 6 presents a customised version of the iterative closest point algorithm
that we develop to align between the CT-derived model and the ground-truth (laser-
scan model). Chapter 7 develops a 3D-overlap measurement for medical volume
images which will be used later to evaluate the accuracy of the constructed CT-derived
model when compared to the ground-truth. Chapter 8 introduces a novel pipeline to
be used to evaluate the accuracy of segmenting a CT volume by comparing to a 3D
ground-truth model acquired using a laser scanner. A pre-clinical trial is presented
to evaluate the reliability of the proposed pipeline. Chapter 9 presents the early
outcome of a clinical trial that we conduct to evaluate the reliability of the whole
system. Chapter 10 concludes this thesis and discusses the possibilities of future

work.



Chapter 2

Background

This chapter aims to present to the reader an overview of the process of Radiation
Therapy (RT) and a general description about the common radiology imaging modal-
ities such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI).
In addition, an overview is presented on laser scanners and three-dimensional (3D)
printing and its applications in medical fields. The chapter ends by presenting an
overview of the image segmentation concepts and a description on the common over-
lap measures of labelled regions that are used to evaluate the outcomes of image
segmentation. Other literature and background information are presented in relevant

chapters to keep the transitions within chapters more simple and understandable.

2.1 Radiation Therapy (RT)

Radiation Therapy (RT) is the use of high-energy radiation from x-rays, gamma rays,
neutrons, and other sources to kill cancer cells [20]. X-rays used in radiation therapy
employ voltages between 6 MV and 20 MV [21]. Radiation therapy, also referred to
as radiotherapy, can be given either externally or internally. External radiotherapy
employs a large machine called a linear accelerator to direct high-energy X-rays at
the area requiring treatment whereas internal radiotherapy, known as brachytherapy,

uses a small piece of radioactive material placed inside the body near the cancerous

12
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cells or a radioactive liquid that is swallowed or injected.

There are three major methods used in treatment of cancer: Radiation therapy,
chemotherapy, and surgery. Contrary to other medical specializations that depend
principally on the clinical knowledge and experience of medical specialists, radiother-
apy, with its use of ionising radiation in treatment of cancer, depends on modern
technology and collaborative efforts of a number of professionals whose coordination
significantly affects the result of the treatment [22].

The radiation therapy process includes numerous phases. The main phases are:
data acquisition, typically using a CT scanner, tumour localisation, planning treat-
ment, and radiation delivery. As it known in Radiology, radiation damages both
healthy and malignant cells. Consequently, radiation should be oriented to the ma-
lignant cells precisely. Positioning the patient accurately is very important to get
successful outcome [16]. A precise procedure for patient positioning saves time and
reduces errors in targeting cancerous cells at the tumour site.

There are several different types of radiation therapy systems such as: Linear

accelerator, Tomotherapy and CyberKnife.

e Linear Accelerator (LINAC)
LINAC accelerator is the most commonly used radiation therapy system for
patients with cancer. It customizes high energy x-rays to be consistent with
a tumors shape and damage cancer cells while saving surrounding normal tis-
sue. It can be used for a stereotactic radiosurgery so it is used to treat all

parts/organs of the body [23].

e Tomotherapy
This system of radiation therapy merges the Intensity Modulated Radiation

Therapy (IMRT) delivery with an internal image guided system that uses a
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MegaVoltage computed tomography scanning (MVCT). It is capable of deliv-
ering IMRT by radiating tumours helically with a combination of the use of
sophisticated computer controlled radiation beam collimation and the use of

on-board CT scanner for treatment site imaging.

e CyberKnife
The CyberKnife is an image-guided frameless radiosurgery system. The system
involves primarily a robotic controller, an X-ray radiographic locating system

and a light weight 6 MV linear accelerator head [24].

Intensity Modulated Radiation Therapy (IMRT) is now the fundamental means
of delivering radiation to the tumour site in the correct dose and location without
influencing the surrounding healthy cells [25]. That is because in IMRT radiation
beams are shaped to be similar to the shape of tumour, and this allows a more
precise conformal radiation dose to be delivered to the tumour site [26]. The next

section will present an overview of the common radiology imaging modalities.

2.2 Common Radiology Imaging Modalities

This section presents an overview of some common imaging modalities used by on-

cologists to diagnose and treat disease.
X-ray imaging

In 1895, Rontgen published his initial results of using X-rays and since then X-ray
imaging has been used heavily in medical applications. The important reasons that
stand behind the widespread use of X-rays are the simplicity to be generated and
detected, and because it is still the cheapest choice for acquiring medical images [27].
In medical diagnostics, the used X-rays are generated by acceleration voltages chosen

between 25 kV and 150 kV, while those employed in radiation therapy use voltages



CHAPTER 2. BACKGROUND 15

between 6 MV and 20 MV [9]. X-ray imaging modality is considered the first modality
used in medical applications and it has been used to develop other medical imaging

techniques.

Computed Tomography (CT)

Godfrey Hounsfield, an English scientist, developed the process of Computed Tomog-
raphy (CT) in the early 1970s. CT images, or CT slices, are produced using X-rays.
The mechanism that CT imaging follow can be described as rebuilding a two dimen-
sional image slice using one dimensional X-ray projections that are acquired from
different angles [28] and then a three dimensional volume could be generated from
the resulting stack of two dimensional CT slices.

The idea of X-ray CT is to reconstruct a 2D image slice using 1D X-ray projections
that are acquired from different angles [28], and then stack the CT slices to reconstruct
a 3D volume. This volume could be used in several medical applications such as
medical diagnosis and the planning of surgical or radiotherapy treatment. This may,
in turn require image segmentation, surface rendering, image registration etc.

Since the 1970s, the means of acquiring CT images have been improved in numer-
ous generations of scanners. The basic aspects of differences between these generations
are:

- Geometry of the X-ray source
- Scanning configuration
- Scanning motions

- Detector arrangement

Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI) is a medical imaging technique used in radiology

to investigate the anatomy and physiology of the body. It uses a powerful magnetic
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field and radio waves to produce detailed images of the inside of the body. The
outcomes of an MRI scan is used to help plan treatments, diagnose conditions, and
evaluate the effectiveness of previous treatment. An MRI scan is a painless and safe
process since MRI scans do not implicate exposure to ionizing radiation.

MRI was developed in 1973 by Lauterbur and Mansfield. In MRI, the hydrogen
nuclei, which make up 80% of all atoms in the human body, are lined up as a nuclear
magnetised atoms by strong magnetic fields. After that, radio frequency fields are
used to change the alignment of the previous magnetised atoms. This produces mag-
netic signals from the hydrogen nuclei which are then detected by the MRI scanner
and rebuilt as an MRI image [29].

Laser scanners are used in our research to acquire surfaces to be used later as a
ground-truth in evaluation process. We present in the next section basic concepts of

laser scanning technology.

2.3 Three dimensional laser scanning

3D laser scanning is a non-contact technology that digitally acquires the shape of
real objects using a line of laser light. 3D laser scanners generate a point cloud
model of data from the surface of an object. The idea that stands behind the laser
scanner is that the scanner projects a line of laser light onto the surface while sensor
cameras continuously record the changing distance and shape of the laser line in three
dimensions as it sweeps along the object.

The term laser scanning is used with two connected, but separate concepts. The
first concept which was presented by Marshall et al. [30] refers to the controlled
deflection of laser beams, visible or invisible. These laser beams are employed in
used in different fields like their use for material processing, ceramic laser treatments,

laser printers, rapid prototyping, laser engraving machines, etc. The second concept
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which is of our interest in this thesis, often called 3D object laser scanning, refers to
the controlled steering of laser beams followed by a distance measurement at every
pointing direction in order to capture shapes of objects.

Laser scanner machines are common in industry and medicine as a non-invasive
method for producing a 3D digital surface models [31]. Physical anthropologists,
forensic scientists, and conservators used laser scanner machines to record, recreate,
and analyze objects and human remains, involving craniofacial features[32, 33, 34, 35,
36]. The laser surface scanner is considered by craniofacial investigators as one of the
most common types of surface data acquisition machine nowadays [37]. This tech-
nique provides an accurate and precise approach for identifying craniofacial surface

landmarks [31].

2.4 Three Dimensional Printing in Medical Appli-
cations

As our aim in this research is to construct 3D models of radiotherapy immobilisation
mask to be printed later using 3D printing technology, this section aims to present
general ideas about 3D printing and its applications in medical fields. 3D printing
is a process of creating 3D solid objects from a digital file where the construction of
a 3D printed object is achieved using additive processes in which an object is built
by laying down consecutive layers of material under computer control until the entire
object is created. These layers can be considered as a collection of lightly sliced
horizontal cross-section of the resultant object. According to the kind of production
method used, 3D printing is also named Rapid Prototyping (RP), solid free form or

layered manufacturing.
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Methods of Rapid Prototyping

Rapid Prototyping (RP) involves a number of established manufacturing techniques
and experimental technologies. Rengier et al. [38] presented an overview of estab-
lished rapid prototyping techniques used in the medical fields where Wendel et al.
[39] described in details some selective additive processing technologies. The current

common RP techniques are:

e Stereolithography technique (SLA)
SLA is a technology used for creating models and patterns in a layer by layer
fashion using photopolymerization. Photopolymerization is the process by which
a machine, called a stereolithograph apparatus (SLA), converts liquid plastic
into solid objects [40]. (e.g. 3DSYSTEMS company, Rock Hill, SC, USA,

http://www.3dsystems.com).

e Three-Dimensional printing techniques (3DP)

Inkjet printing (INK) techniques are the most common form of 3DP techniques.
These techniques are based on different kinds of fine powders such as plaster
or starch. An inkjet-like printing head goes across a bed of powder, deposit-
ing a liquid binding material in the shape of the section. After that, a new
layer of powder is spread across the top of the object, and the procedure is
repeated again. Unbound powder is automatically detached when the model is
complete [41]. (e.g. Z Corporation, Burlington, MA, USA which was acquired
by 3DSYSTEMS).

e Selective Laser Sintering (SLS)
SLS is an additive manufacturing technique that uses a laser as the power source
to sinter powdered material. In SLS, small particles of plastic, ceramic or glass

are fused together by heat to form a solid object. (e.g. EOS, GmbH, Munich,
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Table 2.1: Comparison between RP techniques (advantages)

Technique  Good strength  Low cost  High speed  Variety of materials Large part size

SLA X
3DP X X

SLS X X X
FDM X X
LOM X X

Table 2.2: Comparison between RP techniques (disadvantages)

Technique  Moderate strength ~ High cost Low speed  Limited materials powdery surface

SLA X
3DP X
SLS X X
FDM X
LOM X

Germany, http://www.eos.info).

e Fused Deposition Modelling (FDM) Small beads of fused thermoplastic material
is extruded through a nozzle to lay down plastic according to slice information.

(e.g. Stratasys Inc., Eden Prairie, MN, USA, http://www.stratasys.com).

e Laminated Object Manufacturing (LOM)
This technique employs a laser cutter to shape layers of paper or plastic films
that are glued together. (e.g. Cubic Technologies, Torrance, CA, USA, http://

www.cubictechnologies.com).

Table 2.1 shows the important advantages for each one of the RP techniques where
Table 2.2 displays the basic disadvantage for each one. A comparison between the
five different techniques in terms of accuracy and cost are presented in Figure 2.1.
Notice that the attributes can change according to the specific printing system used.

As Figure 2.1 shows, the SLA technique has the highest accuracy among others
where the LOM and INK have the lowest. According to [39], the accuracy of SLA
reaches <0.05mm, followed by SLS which has accuracy in the range (0.05 - 0.1) mm.
The accuracy of FDM is closed to SLS such that the accuracy of FDM reaches 0.1

mm. LOM technique has low accuracy (0.15mm) comparing to others, where the
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Figure 2.1: A comparison between five different RP techniques in terms of accuracy
and cost.

accuracy of 3DP reaches, described using dots per inch (dpi) metric, 0.1/600 x 540
dpi. In terms of cost, it is difficult to supply exact numbers and figures because
the cost depends on the size and complexity of samples, but we can describe the
cost relatively. As displayed in Figure 2.1, SLS is the most expensive one, followed
by SLA, where the remaining techniques have closed values in terms of cost. The
following subsection presents some coomon applications of 3D printing and specially

in medical fields.

Applications of 3D Printing

Rapid prototyping has afforded new technologies that help in visualization of intri-
cate structures. It has been employed in different fields like: industry, biomedical
engineering, forensic science, education, customizable labware ([42], digital preser-
vation and study of cultural heritage artefacts (e.g. [43] 3D printing was used to
study the fine details of a Cantonese chess piece with complex internal structure),
space vehicles manufacturing (in [44] NASA explores the potential of 3D printing in
the development of the next generation space exploration vehicle) and many other

numerous applications.
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In addition to the numerous applications of rapid prototyping and 3D printing that

are mentioned above, they are also used in different medical applications. Using 3D

printing in medicine saves the time in most cases as well as reducing errors [45]. The

following list include some of the medical fields which benefit from the 3D printing

technology:

It is used in prosthesis design [46, 47].

It allows the production of a realistic, physical, understandable and true 3-D
object which are of useful clinical value (e.g. in [48] the 3D-printed model
provides a better understanding of a large osteochondroma arising from the

scapula).

3D-printed models aid surgeons, radiologists and junior trainees in their works

49, 50].

It makes the process of communication with patients easier [40].

It helps plan surgical management [48].

It is important for planning maxillofacial and craniofacial surgery [41, 51].

It is used for neurosurgical procedures and repairing of skull defects. (e.g. [52]

used it to create an implant for the surgical reconstruction of a large cranial

defect).

It used in orthopaedics diagnosis and for treating disorders of the spine [53],
pelvis [54] and shoulder. (e.g. in [55] the 3D printed model helped the surgeons

preoperatively decide the proper location for positioning of pedicle screws).

3D-printed models help in diagnosis and treatment of cardiovascular disease

[56, 57], (e.g. [58] used 3D-printed models to determine patients suitability for



CHAPTER 2. BACKGROUND 22

percutaneous pulmonary valve implantation).
e Producing phantoms for medical research [59].

Accurate segmentation of the CT slices leads to more accurate final outcomes in

our research. The following section presents an overview of images segmentation.

2.5 Image Segmentation

Image segmentation is the process of partitioning an image into multiple meaningful
segments (i.e. dividing into multiple regions) [60]. These regions correspond to differ-
ent objects or parts of objects. In medical imaging, these regions normally correspond
to different tissue classes, organs, or other biologically relevant structures [61]. As
image segmentation forms a basic part of the work in this thesis and since successful
segmentation of 2D CT image slices can significantly assist the next reconstruction
of a 3D model, we present in this section an overview on the image segmentation
concepts. There is no standard classification of the image segmentation algorithms
in literature. Algorithms are categorised in [62] in accordance with their primary
methodologies based on thresholds, clustering techniques and deformable models.
Image segmentation is one of the most important steps that should take place in the
treatment process in order to benefit from the medical images produced by the mod-
ern imaging modalities such as computed tomography (CT) and magnetic resonance
imaging (MRI).

Segmentation of medical images can be performed manually, automatically (com-
puterized) or using a combination of methods. Manual segmentation is time-consuming
comparing to automatic segmentation and the results may be prone to observer vari-
ability whereas using computer-aided segmentation techniques have significantly im-

proved the accuracy of the segmentation outcomes [63, 62].
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Many image segmentation algorithms use a threshold value as a basis for segmen-
tation. Thresholds can be chosen manually or automatically. Manual selection of
a threshold value requires prior information and occasionally trial experimentations
while automatic segmentation uses image information such as the image histogram
and pixel intensities to determine the threshold value automatically. The algorithms

that are categorised as thresholds-based algorithms can be classified as:
e Edge-based algorithms.
e Region-based algorithms.
e Hybrid algorithms.

Edge-based algorithms
The existence of edges represents an important features of images. Edges, in digital
image processing, represent a part of the image where the intensity of the image
local area changes greatly. In other words, edges represent points in an images where
brightness changes abruptly. Edges can be generally categorised into four types: step,
ramp, line and roof. A step edge, as shown in Figure 2.2(a), represents a complete
transition from one segment to another whereas a ramp edge, as in Figure 2.2(b),
represents a smoother transition between the two segments. A line edge represents two
edges in close proximity. See Figure 2.2(c) for illustration. Figure 2.2(d) and 2.2(e)
represent the two types of roof edges. Roof edges occur when two adjacent ramps
exist in an image. Edges are commonly present between objects and backgrounds,
objects and objects, primitives and primitives [64] (i.e. the primitive represent an
image element from which more complex images can be reconstructed such as line,
arc, etc.).

The general approach to detect edges in images is to investigate the change of

intensity level in an image as changes reflect discontinuities that separate parts in the
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(a)Step edge (b)Ramp edge (c) Line edge (d) Roof edge  (e) Roof edge
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Figure 2.2: Edge types.
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Figure 2.3: General description for edge-detection algorithms.

image. The general methodology of edge-detection algorithms is presented in Figure
2.3. The first step as shown in Figure 2.3 is to use an edge estimator to highlight
local edges in images. After that, a threshold value should be selected, manually or
automatically, depending on the strength of edges. The detected edge may not be
continuous due to several reasons such as noise etc., so some of algorithms try to
link edge points into lines by using some post-processing steps such as morphological
operations.

Edge detection algorithms are further categorized as static or dynamic. Static
algorithms use one threshold for the whole image while dynamic thresholding adjusts
the threshold depending on local information. Edge detection is the most common
method for identifying meaningful discontinuities in intensity values.

The following are the common approaches classified as edge-based algorithms:

Canny edge detection (presented in [65]); Sobel; Laplacian; Prewitt and Roberts.
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Region-based algorithms
The basic idea in this group of algorithms is to look for pixels that share similar
characteristics like intensity. One of the differences between the algorithms in this
group lies in their search strategy. The following are common algorithms classified as
region-based: Seeded region growing presented in [66] by Adams and Bischof, adap-
tive region growing presented in [67] by Pohle and Toennies, adaptive region growing
based on centerline estimation presented in [68] by Yi and Ra, a bayes-based region-
growing presented in [69] by Pan and Lu.
Hybrid algorithms
Watershed algorithms are typical examples of hybrid algorithms. The following is
some of the common algorithms classified as watershed algorithms: watershed algo-
rithm based on immersion simulations presented in [70] byVincent and Soille, im-
proved watershed transform using prior information presented in [71] by Grau et al,
using K-means clustering and improved watershed algorithm presented in [72] by
Ng et al, and watershed segmentation using prior shape and appearance knowledge
presented in [73] by Hamarneh and Li.

The process of image segmentation needs to be followed by evaluating the accuracy
of segmentation. Common measurements of overlapped regions used to evaluate the

accuracy of segmentation are presented in the next section.

2.6 Measures of Overlap of Labelled Regions

There are a number of measurements that are useful for evaluating results derived
from image segmentation algorithms. The two most popular measures of region over-
lap are the Tanimoto Coefficient (TC) and the Dice Similarity Coefficient (DSC) [74].
The following paragraphs presents the common measurements used to evaluate the

overlap of labelled regions.
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Tanimoto Coefficient (TC)

Tanimoto Coefficient (TC) [75] is a statistic used for comparing the similarity of two
sample sets. TC, also known as Jaccard Similarity [76], evaluates similarity between
finite sample sets through dividing the size of the intersection over the size of the

union of the sample sets as shown in Equation (2.6.1).

_ N(ANnB)

re= N(AU B)

(2.6.1)

Where N() refers to the number of pixels in the enclosed set. A high value of TC
shows a well correspondence between the two sets. A value of one points to complete
correspondence where a value of zero indicates that there is no any correspondence.
Rogers and Tanimoto [77] presented the concept of similarity ration over bitmaps.
The definition of the Tanimoto similarity ratio over bitmaps is the number of joint
bits, divided by the number of nonzero-bits in either sample as shown in Equation

(2.6.2).

> (A A By)
> (Aiv By

Where TSR(A, B) refers to the Tanimoto similarity ratio, n refers to the total

TSR(A,B) = (2.6.2)

number of bits in set A or set B (i.e. set A should contains the same number of
bits as set B), A; represents the i'" bit of A, A and V are bitwise logical ‘and’, ‘or’
operators respectively.

Equation (2.6.3) clarify how the calculation of TC is performed over two binary
images where G represents the ground truth image, S represents the segmented image,
g; represents the it bit of G and s; represents the i*" bit of S.

TC(G,S) = > (9iXsi) (2.6.3)

YA s = Y (9i X si)
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Dice Similarity Coefficient (DSC)

Dice Similarity Coefficient (DSC) [74] is a statistic used for comparing the similarity
of two sample sets. DSC is used as a spatial overlap index and a reproducibility
validation measurement [78]. If there are no spatial overlap between two sets of
binary segmentation, DSC takes a value of zero where it takes a value of one when

there are a complete overlap. Equation (7.3.2) displays how DSC is calculated.

2N(ANB)
N(A)+ N(B)

TC = (2.6.4)

Where N() refers to the number of pixels in the enclosed set. The definition of
the Dice similarity ratio over bitmaps is shown in Equation 2.6.5 .
2% (AN By)

DSR(A,B) = 2.6.5
(4.8) = 5o Sy (2:6.5)

Hausdorff Distance (HD)

Hausdorff Distance (HD), named after Felix Hausdorff, is a measurement used to
measure how far two subsets of a metric space are from each other. HD represents
the greatest of all the distances from a point in one set to the closest point in the

other set. Given Equation 2.6.6 where ||.|| represents the Euclidean norm

h(A, B) = maz,c aminyeplla — b|| (2.6.6)

then Hausdorff distance is computed as shown in Equation 2.6.7 .

H(A, B) = maz(h(A, B), h(B, A)) (2.6.7)

HD was used heavily in the literature and in many applications. It was used for

example [79] to measure the difference between two different representations of the
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same 3D object particularly for efficient display of complex 3D model.

2.7 Summary

This chapter presented some background information that is related to our work
in this thesis. It started by describing the radiation therapy treatment phases and
then several different types of radiation therapy systems were introduced. The X-
ray imaging, CT and MRI imaging systems were presented as these common medical
image modalities are related to our research. Moreover, basic concepts about 3D laser
scanning were discussed. The chapter also presented some discussion on different
applications of 3D printing in medical applications and the principal methods used
for rapid prototyping. An overview of basic concepts of image segmentation and the
common measures of overlap of labelled regions are presented in this chapter since
these measurements are used to assess the accuracy of image segmentation. The next
chapter presents the research workflow, a brief description of the evaluation pipeline

and the group of data sets which are employed in this research.



Chapter 3

Research Workflow

This chapter presents an overview of the progression of chapters presented later in
this thesis. It also describes generally the strategies and procedures by which we
evaluate the reliability of our work. Finally we present a description of the data sets

that have been used through the different stages of preparing this thesis.

3.1 Research Workflow

Evaluation of surface models built from Computed Tomography (CT) is of vital im-
portance to validate the outcomes of the segmentation and registration of medical
images. 3D models obtained through laser scanning have been used in numerous
studies as a ground-truth [80, 81, 82, 83, 84, 85, 86, 87, 88]. In a related context,
laser scanners were used in a few studies to verify the accuracy of 3D-printing models
of bones created from previously acquired CT-derived data [89, 90, 91]. Moreover, the
following studies recommended laser scanners to be used to provide a ground truth
for the model being acquired[92, 93, 94].

We evaluate the accuracy of surface models built from CT images by employing
laser-scan model as a ground-truth. Figure 3.1(a) represents a general pipeline that
we apply in order to evaluate models built from data acquired in pre-clinical and clin-

ical studies presented in chapters 8 and 9. For the clinical study patients undergoing

29
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Figure 3.1: (a) A general schema represents the evaluation process in our study (b)
A schema points in which chapter each phase of the evaluation process is presented.

THE CLINICAL TRIAL

radiotherapy treatment for head and neck cancer at the Norfolk and Norwich Uni-
versity Hospital (NNUH) NHS Foundation Trust are recruited by the oncology team.
Treatment progresses normally and the CT planning data are acquired. Additional
data, captured by a hand held laser scanner are also gathered (see Chapter 9 for more
details about the clinical trial).

As we mentioned in Chapter 1 immobilisation masks are used to immobilise pa-
tients undergoing radiotherapy treatment for tumours affecting the head and neck.
Consequently the CT slices of those patients that are normally acquired within on-
cology departments include immobilisation masks (see Figure 3.2). Manually editing
the data to remove artefacts due to the mask is time consuming and error prone. This
challenge is addressed in this thesis in Chapter 4 and a fast and automatic approach

to edit the immobilisation mask in CT images is presented and evaluated.
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Figure 3.2: Example of CT slice which involves immobilisation mask.

After automatically removing the artefacts and preprocessing the CT images, the
head is segmented from successive CT slices. We tested five different segmentation
techniques for this purpose. The experimental work and the outcomes of the seg-
mentation process is presented in Chapter 5. We then use the Marching Cubes to
construct a 3D model of patient’s head. To avoid confusion, it is important here to
mention that there are some common steps between the evaluation pipeline process
presented in this chapter and the proposed treatment pipeline presented in Chapter
1.

As Figure 3.1(a) shows, The 3D-alignment between the laser-scan model and the
CT-derived model is one of the essential parts of this evaluation pipeline. The details
of the process that we follow to automatically align the two models are presented in
Chapter 6. The overlap measurements are calculated after our system aligns auto-
matically both of the 3D models. The overlap measurements produces readings that
determine to which degree is the overlap between the laser-scan model as a ground-
truth and the CT-derived model as an examined model. More details on the overlap
measurements are explained in Chapter 7.

The evaluation of different segmentation techniques is performed by applying each

segmentation technique over the stack of 2D images (see Figure 3.3). So the resultant
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Figure 3.3: Different segmentation techniques generate different CT models. Each
CT model is evaluated with regard to laser-scan model.

overlap measurement is considered as an evaluation of the accuracy of the applied
segmentation technique.

Figure 3.1(b) illustrates graphically the evaluation pipeline process and which
chapter covers each stage of this evaluation pipeline. A pre-clinical trial is presented
in Chapter 8 in which the evaluation pipeline was employed over some 3D printed
homogeneous objects. In Chapter 9 we present the details, experiments and outcomes

of our clinical trial (IRAS project ID:209119, REC reference:16/YH/048).

3.2 Data Sets

This section presents an overview on the different data sets that are used through
this thesis. The description, properties and sources of these data sets are tabulated

in Table 3.1.
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Figure 3.4: The different data sets used in this study. (a), (b), (c), (d) and (e) display
surface meshes represent respectively real pelvis, real knee, plastic object in a shape
of nested cubes, plastic object in a shape of dome, and the Cantonese head. (f) and
(g) represent one CT image slice for two CT data sets of human head from TCIA. (h)
represents one CT image slice for one of the three data sets that we got from Leeds.
(i) represents the perspex mask and (j) represents the surface mesh of this mask.
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Table 3.1: Description of data sets used in this Thesis.

Name & Format

Source

Properties

Pelvis

STL file

Knee

Able Software Corp (Lexington, USA)

Mesh surface/ Pelvis File-size =750 KB (7625 vertices)

STL file

Cubes, Dome

The Biomedical 3D Printing Commu-
nity (embodi3D LLC)

Mesh surface/ Knee File-size =2665 KB (26651 ver-
tices)

STL file + CT DI-
COM images

Ipswich Hospital NHS Foundation

Trust, Suffolk, UK

CT images (helical, pitch = 0.562:1, collimation
16x0.625 mm (10mm), 512 x 512 x 60 for the cubes,

512 x 512 x 129 for the dome). STL file-size of
cubes=6299 KB and of dome=155478 KB

Cantonese head
STL file + CT DI-
COM images

Combining X-Ray Micro-CT Technol-
ogy and 3D Printing project [43]

CT images (helical, pitch = 0.562:1,
16x0.625 mm (10mm), 512 x 512 x 180).
size =849 KB

collimation
STL file-

Headl, Head2
CT DICOM im-
ages

The Cancer Imaging Archive (TCIA):
a project funded by the National Can-
cer Institute

CT images (512x512x130, 512x512x156, pixel-spacing
1.08x1.08 mm 0.98x0.98 mm, slice-thickness 3.14 mm)

Head3, Head4, Head5
CT DICOM im- St James’s University Hospital NHS
ages Foundation Trust, Leeds, UK

CT images (512x512x155, 512x512x146, 512x512x151,
helical, pixel- spacing 1.367x1.367 mm, slice-thickness
2.5 mm)

Clinical Trial/Perspex Mask
STL file + CT DI- Collaborative project (UK) between  CT images (512x512x90, helical, pixel-spacing
COM images the University of East Anglia, Univer- 0.9765x0.9765 mm, slice-thickness 2.5 mm). STL
sity Campus Suffolk and Norfolk and file-size = 6198 KB
Norwich University Hospital

The first dataset [95], shown in Figure 3.4(a), represents a surface produced from
pelvis CT images and saved in STereoLithography (STL) file format. The second
dataset [96], shown in Figure 3.4(b), represents a surface produced from knee CT
images and saved in STL format.

The third and the fourth data sets, shown in Figure 3.4 (c¢) and (d) respectively,
represent two plastic objects in a shape of nested cubes and dome (hemisphere). These
two objects were initially designed digitally with known dimensions and then printed
in the 3D-printing lab in Computing Sciences School at University of East Anglia.
The fifth data set, shown in Figure 3.4 (e), represents a 3D-printed scaled head of
a Cantonese chess piece that were delicately carved from ivory throughout the 19"

Century. This object was produced using a 3D printer by Laycock et al. [43]. CT data
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(a)

Figure 3.5: Plastic objects in a shape of (a) Cubes and (b) Dome. Examples of CT
image slices of (¢) Cubes and (d) Dome. The hand-held laser scanner (Artec Space
SpiderTM from Artec 3D, Luxembourg) that we used to scan the plastic objects are
shown in (e).
sets of those three objects (i.e. cubes, dome, and the Cantonese head) were acquired
at Ipswich Hospital, UK. We also scanned these three objects using a hand-held laser
scanner (Artec Space SpiderTM laser scanner from Artec 3D, Luxembourg) for the
cubes and the dome, and (REVscanTM laser scanner from Handyscan 3D Creaform,
Canada) for the Cantonese head. We performed the laser-scanning for the cubes and
the dome in University Campus Suffolk, UK, and performed the laser-scanning for
the Cantonese head in a local company (Nexus training & resources for engineering,
Gt Yarmouth, Norfolk, UK [97]). Figure 3.5(a), (b) and (c) display photos for the
nested cubes, dome and the Cantonese head respectively. The two hand-held laser
scanners that we used to scan these three objects are shown in Figure 3.5(d) and (e).
Two other data sets (Headl and Head2) were downloaded from the Cancer Imag-
ing Archive (TCIA)/Head-Neck-Cetuximab [98, 99]. These two data sets represent
stack of C'T image slices for two subjects who have had CT scanning for their heads.
Examples of two CT images slices of those two humans are displayed in Figure 3.4
(f) and (g). We also used three other data sets (Head3, Head4 and Head5) form St
James’s University Hospital at Leeds, UK. These three data sets also represent stack
of CT images for three subjects. An examples of a CT image from those images is

displayed in Figure 3.4 (h). The eleventh dataset, shown in Figure 3.4 (i), represents
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Table 3.2: Showing in which chapter each data set is used.

Data Set Ch.4 | Ch.5 | Ch.6 | Ch.7 | Ch.8 | Ch.9
Cubes X X X
Dome X X X
Cantonese X X
Pelvis
Knee
Headl
Head2
Head3
Head4
Headb
Clinical Trial X X

SRRl

Sl

a Perspex mask of a patient who have a neck cancer. The CT scan of this patient
is gotten based on our registered clinical trial (IRAS project 1D:209119, REC refer-
ence:16/YH/0485, Sponsor: University of East Anglia, Health Research Authority,
NHS, UK). We also had a laser-scan for the Perspex mask itself using a hand-held
laser scanner (Artec Space SpiderTM laser scanner from Artec 3D, Luxembourg).
Since each stage (and then each chapter) of the work plan has its own field and
evaluation procedure, we employed different data sets in this thesis. Table 3.2 shows
in which chapter each data set has been used. In Chapter 4 our aim was to validate
the accuracy of our approach to remove immobilisation masks from CT imagery
and then we used five different CT data sets (738 CT images) to run our approach.
The “Perspex Mask” data set is employed in Chapter 5 to evaluate the accuracy of
different segmentation techniques. In Chapter 6 we were interested in development of
an automatic approach to align 3D models and then we used three objects of which we
have different scans of different poses to prove the accuracy of the alignment approach.
The target of Chapter 7 is to develop and validate the reliability of a proposed model
for overlap measurements. This model accepts as inputs two surfaces, two volumes,

or one surface and one volume. Consequently we used different groups of data sets
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which represent surfaces and volumes. Our interest in Chapter 8 is to evaluate the
accuracy of our automatic pipeline over homogeneous objects for which we have two
scans (i.e. laser-scan and CT-scan). For that reason we run the experiments of this
chapter over the cubes, dome and the Cantonese head. The experimental works that

are displayed in Chapter 9 are run over the clinical trial data sets.

3.3 Summary

This chapter presented an overview of the chapters of this thesis. It described the
topics that have been covered in each chapter. The evaluation pipeline was also
described in this chapter since the main steps of this pipeline forms the core of the
next chapters. The description, properties and sources of the data sets which were
used in this thesis are presented in details. The next chapter presents the automatic
approach that we developed to remove artefacts in CT slices in order to be ready for

segmentation.



Chapter 4

Automatic Removal of
Immobilisation Masks from CT
Imagery with Particle Swarm
Optimisation

Radiotherapy planning CT data sets for those patients who have HNC are currently
captured with the immobilisation mask fitted. Manually editing the CT images to
remove artefacts due to the mask is time consuming and error prone. This chapter
presents a fast and automatic approach that removes image artefacts due to fixations
in CT images without affecting pixel values representing tissue. The proposed ap-
proach is tested on five CT data sets. The results show that the proposed approach
achieves an average specificity of 92.01% and sensitivity of 99.39%. We also present
results showing how fractional order Darwinian particle swarm optimisation has been
employed to speed up the process.

Section 4.1 provides an introduction to the artefacts in CT images due to the mask
for those patients who have Head-and-Neck Cancer. Section 4.2 presents a descrip-
tion on Particle Swarm Optimisation and its uses in medical image segmentation.
The proposed approach for the removal of immobilisation masks from CT images is

explained in Section 4.3. The experimental work performed to evaluate the approach
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is discussed in Section 4.4 and the results are presented in Section 4.5.

4.1 Introduction

CT data used for planning HNC radiotherapy treatment contain artefacts due to the
mask (see Figure 3.2 in Chapter 3) which can make planning more difficult and can
affect the process of constructing the volume from the CT images as it is required in
our research.

Segmentation of the brain, lateral ventricles, and skull are made more complicated
by artefacts due to the mask. For example [11] and [5] need to edit the CT images to
render a reconstructed 3D CT volume of the head. Removing the mask by manually
editing individual C'T image slices, is time consuming and prone to errors particularly
in the regions where the mask contacts the skin. Development of a robust approach to
automatically remove the masks from the CT slices represents an appreciable saving
in time and avoids the possibility committing manual errors.

There are numerous studies related to the segmentation and identification of the
head/intra-cranial structures in the CT images [100, 101, 102, 103] but in our knowl-
edge, the study that is included in this chapter is the first to present a fully automatic
approach for removing CT image artefacts due a fixation mask. Our algorithm em-
ploys an extension of Otsu’s method [104], which classifies pixels as belonging to
one of many classes using multi-level thresholding. Exhaustive search for multiple
thresholds requires the evaluation of (n + 1)(D — n + 2)" combinations of thresh-
olds [105, 106] where n represents the number of thresholds and D represents the ab-
solute difference between the maximum and minimum image pixel value. Since pixel
intensities in DICOM images (Digital Imaging and COmmunications in Medicine)
are represented by 16-bit signed integers this can be very time consuming. The

range of values that DICOM images do normally have lies in [-1000, 3000]. So if
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we need, for example, to apply the exhaustive search (i.e.brute-force) method to
look for the optimal five thresholds that segment a DICOM image, then we need for
(5 + 1)(4000 — 5 + 2)> = 6.1210 * 10'® combinations of thresholds to be evaluated.
Taking into consideration that this evaluation of large number of combinations is re-
peated normally more than 100 times (since scanning human head using CT scanner
with normal resolution leads to produce a stack of CT slices of more than 100 images),
then this implies that the exhaustive search method will be absolutely undesirable in
terms of speed. To address this we test three optimisation techniques: Particle Swarm
Optimisation (PSO)[107], Darwinian Particle Swarm Optimisation (DPSO)[108] and
Fractional Darwinian Particle Swarm Optimisation (FDPSO) [109] in order to speed

up the segmentation process.

4.2 Background

Otsu’s Method

Otsu’s method [104] is a common approach in image segmentation field used to auto-
matically perform clustering-based image thresholding [110]. The basic assumption
of Otsu’s approach, as shown in Figure 4.1, is that the image contains two classes of
pixels (i.e. foreground pixels and background pixels). It then computes the optimum
threshold separating the two classes so that their inter-class variance (i.e. between-
class variance or the variance within the class) is maximal. An extension of the basic
assumption of Otsu’s method to multi-level thresholding, is presented in [111]. We

refer to this extension as multi-Otsu method.

Optimisation Techniques

Numerous artificial intelligence and machine learning algorithms have been widely

applied in image segmentation field to segment non-medical images (e.g. modified
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Figure 4.1: A chart represents the basic assumption of Otsu’s method.

bacterial foraging algorithm was used in [112], artificial bee colony in [113], Cuckoo
search algorithm and wind driven optimization in [114], particle swarm optimisation
based in [115], differential evolution in [116] and genetic algorithms in [117]).

Numerous studies have also applied the PSO, DPSO and FODPSO algorithms
on image segmentation (e.g. the authors of [118] applied those algorithms over hy-
perspectral remote sensing images which contain numerous number of data chan-
nels). In the context of medical images, there are a number of studies that ap-
plied the traditional form of the PSO algorithm to segment medical images (e.g
(119, 100, 120, 121, 122]).

PSO-based techniques

Particle swarm optimization (PSO) is a population based stochastic optimization
algorithm developed in 1995 [107] inspired by social behaviour of bird flocking or fish
schooling in search of food. It is basically initialized with a population of random
solutions and searches for optima by updating generations. The basic drawback of
the PSO algorithm is that there is a possibility, as other optimisation algorithms,
to be trapped in a local optima. Darwinian particle swarm optimization (DPSO)
introduced in 2005 [108] as an extension to the PSO algorithm by adding the natural

selection mechanism (i.e. survival of the fittest) to improve the ability of the PSO
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algorithm to escape from local optima. In DPSO, many parallel PSO algorithms,
each one forms a swarm, operate on the same search space. The fractional-order
Darwinian PSO (FODPSO) [109] algorithm was published in 2012 as an extension to
the DPSO algorithm. In the FODPSO, fractional calculus concepts are used in order

to control the convergence rate of the DPSO.
Particle Swarm Optimisation (PSO)

Particle swarm optimisation (PSO) algorithm is inspired in the way swarms act and
its elements move in a synchronized way. It is based on a population initialized with
a random solutions called particles. Each particle is distinguished by its own position
and velocity. Equations (4.2.1) and (4.2.2) describes how the velocity v;; and position
X,q are updated at each iteration k. Each particle has a kind of memory which stores
the position where it had the lowest cost (Xpbest;y), and the position of the best

particle in the population (X gbesty).
Via(k) = wvig(k — 1) + crryia(k) (X pbest,q — Xia) + cargia(k) (X gbesty — Xig) (4.2.1)

Xia(k) = Xoa(k — 1) + Via(k) (4.2.2)

In equations (4.2.1) and (4.2.2), w represents the inertia weight, r; and ry are random
numbers with a uniform distribution in the range [0,1], and ¢; and ¢, are assigned
weights to the local and global best solutions respectively.

Algorithm 1 represents the basic steps that PSO algorithm follows until it reaches
the stopping criteria. It is obvious that the algorithm starts by initialising some
parameters for the swarm. Those parameters include the population-size, number-
of-iterations, ¢ (cognitive weight), co(Social weight), w(Inertial factor), and V4, and
Viin to set the limits of velocities. After that, the algorithm iterates through all
particles to calculate the fitness function. Notice that the fitness function in this study

will be the inter-class variance between pixels intensities. Our aim is to search for the
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Algorithm 1 Steps of PSO Algorithm

Initialize parameters of particles;
repeat
forall particles do
calculate fitness f
end
forall particles do
update Vi4(k) according to equation (4.2.1)
update X;4(k) according to equation (4.2.2)
end
t=t+1
until stopping condition;

threshold(s) that maximise this fitness value to global optima. The algorithm will
iterate again through all particles to update the value of the velocity Vi4(k) and the
location of the new position X;4(k). Those iterations will be repeated until stopping
criteria happen. These criteria includes setting a maximum number of iterations or

stopping after executing a fixed number of iterations without giving any enhancement.

Darwinian Particle Swarm Optimisation Algorithm (DPSO)

A general problem with optimization algorithms is that of becoming trapped in a
local optimum. This leads a specific technique to work well on one problem but may
fail on another one. Tillett et.al. proposed an approach, named Darwinian PSO [108]
and based on natural selection, in which when a search have a tendency to a local
optimum, the search in that area is basically ignored and another area is searched
instead. More than one swarm exist in DPSO. Each swarm separately behaves like
a normal PSO algorithm with some rules controlling the group of swarms that are
intended to simulate natural selection.

Algorithm 2 displays the internal processes that are performed by the DPSO al-

gorithm. The algorithm starts by setting initial values in a collection of parameters.
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Those parameters include number of swarms, maximum and minimum possible num-
ber of swarms, maximum and minimum possible population size in addition to the
basic parameters of the traditional PSO. It is worthy to notice that the swarm in the
DPSO algorithm spawns (reproduce) a new particle if it finds a new global optimum,
and a particle is removed if the swarm has been unsuccessful in achieving a better

fitness in a fixed number of steps.

Algorithm 2 Steps of DPSO Algorithm

Initialize parameters of swarms;
repeat
forall swarms do
forall particles do
calculate fitness f
end
forall particles do
Update particle Bests
end
forall particles do
Move particle
end
if swarm gets better then
Reward swarm, spawn particle and extend swarm life
end
if swarm has not enhanced then
Delete particle and reduce swarm life
end
end
forall swarms do
Allow the swarm to spawn
end
Delete failed swarms
until stopping condition;

Fractional Order Darwinian Particle Swarm Optimisation Algorithm (FODPSO)

The name ‘fractional’ PSO derives from the use of fractional calculus. The frac-

tional calculus is a generalization of the ordinary differentiation and integration to
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non-integer order [123]. There are numerous uses of fractional calculus in physics,
mechanics, chemistry, computational mathematics and others. The basic idea that
stands behind the FODPSO algorithm is that this algorithm utilises the fractional
calculus concepts in order to control the convergence rate of the DPSO algorithm.
Those systems that comprise the using of fractional processes reveal residual mem-
ory and their fractional order is understood as a measure of the memory strength
(124, 125].

Equation 4.2.3 presents the Grunwald-Letnikov description based on the concept

of fractional differential of a general signal x(t):

N 1 & (D (a+ 1)a(t — kh)
Dle(t)] = Jim {ﬁ; Tk + Do —k+ 1) (4.2:3)

where I' is the gamma function and « is the fractional coefficient such that o € C.
It is worthy to notice that while an integer-order derivative is evaluated as an finite
series, the fractional-order derivative is evaluated as an infinite number of terms.
Consequently, integer-order derivative behaves like a local operator, while fractional-

order derivative behaves like a structure that has a memory of all past events [109].

4.3 The Proposed Approach

The basic steps of the proposed approach [126] are presented in Figure 4.2. The
algorithm applies FDPSO ‘slice-by-slice’ to segment the image to six different classes
under Otsu’s criterion. Section 4.4 explains that we found segmenting the image into
six different classes empirically classifies all or most of the pixels belonging to the
mask as one class. Algorithm 1 implements a heuristic search method to find pixels
in the labelled image that represent the immobilization mask and background.
Algorithm 1 further refines the output of the FODPSO segmentation. We assume

the top middle pixel represents the image background (air) and search the labeled
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Figure 4.2: Overview of the proposed approach.

image until we find a different pixel value (See the pixel in red square in Figure 4.3).

This pixel is assumed to belong to the class mask. Using these pixel labels we identify

sets of pixels {M} and {B} that represent the mask and background respectively.

Figure 4.4 illustrates that {M} and {B} sometimes include erroneous pixels be-

cause the FODPSO segmentation process groups these as one cluster. The sets {M }

and {B} contain pixels that are misclassified because the FDPSO algorithm only uses

intensity to cluster pixels. In our experiments, illustrated in Figure 4.4 we found that

the misclassified pixels are always located inside the skull. we correct this problem

by recovering the coordinates of those pixels located within the skull and excluding
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Algorithm 1 Finding the pixels that represent the immobilization mask and those
that represent the background pixels

1: height < height_of _image

2: width < width_of _image

3: mid_col < the index of the middle column in the image
4: s < Get the segmented image.

5. for row < 2, height do

6: if s (row, mid_col) = s(1, mid_col) then

7 v_omask < s (row, mid_col)

8: v_bg_in CT_img < IMG(row — 1, mid_col)

9: Break

10: end if

11: end for

12: indices_of mask_pixels(M) <+ find (s == v_mask)
13: indices_of bg_pizels(B) < find (s == s(1, mid_col))

these from {M} by a sequence of operations that split the original CT image to two
clusters (i.e. foreground(head) and background(air)) using Otsu’s method. We then
automatically flood-fill holes that may appear inside the skull using the morphological
reconstruction operator described in [127]. Subsequently we proceed by performing
an erosion [128] over the filled image. The aim of this process is to erode away the
boundaries of the skull thus areas of foreground pixels shrink in size. This will guar-
antee that none of the pixels that belong to the mask will be excluded later and
the only pixels that will be excluded are those which are exist inside the skull. The
index of those pixels which represent the skull are recovered from the eroded image
as {H}. Equations (4.3.1) and (4.3.2) identify the sets { M’} and {B’} that exclude
those pixels within {M} and {B} that are also with the skull {H}.

M =M — (MnH) (4.3.1)

B'=B - (BnH) (4.3.2)



CHAPTER 4. REMOVAL OF IMMOBILISATION MASKS WITH PSO 48

28|10 |22 8 |33 |24
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Figure 4.3: A CT image in DICOM format and the same image after segmentation
using the FODPSO algorithm along with their pixel region tool.

4.4 Experimental Work
Data set

Five CT data sets from anonymized patients have been used in this study. The
first three data sets (512x512x155, 512x512x146, 512x512x151, helical, pixel-spacing
1.367x1.367 mm, slice-thickness 2.5 mm) were acquired at St James’s University Hos-
pital NHS Foundation Trust, Leeds, UK and the other two data sets (512x512x130,
512x512x156, pixel-spacing 1.08x1.08 mm 0.98x0.98 mm, slice-thickness 3.14 mm)

were downloaded from the Cancer Imaging Archive (TCIA)/Head-Neck-Cetuximab [98,

99].
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W | | &

Figure 4.4: Examples of pixels mislabeled by FDPSO. Upper row: pixels mislabeled
as {M}; Lower row: pixels mislabeled as {B}.

Experiments

The experimental work in this chapter consists of two aspects. In the first aspect
we evaluate the PSO-based algorithms for medical image segmentation in terms of
speed, accuracy and stability of outcomes. In the second aspect, we evaluate the

performance of the automatic approach which is described in Section 4.3.

4.4.1 Evaluation of PSO-based algorithms

PSO-based algorithms need to define search space, candidate solutions and global
optima. In our case, the pixel intensities of the image will form the search space, the
possible threshold values (i.e. [min_intensity, max_intensity]) will form the candi-
date solutions, and maximising the interclass variance (i.e. Otsu criterion) will be our
global optimisation function. In addition to that, PSO-based algorithms need to ini-
tialise some parameters (e.g population size, number of swarms, ...). We chose these
empirically. Table 4.1 displays those values. The initial values of those parameters
were adjusted experimentally to lead for faster convergence. We found that there is no

significant influence on the CPU execution time and the fitness value when a slightly
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Table 4.1: Initial parameters of the PSO, DPSO and FODPSO algorithms

Parameter PSO DPSO FODPSO
Population size 180 35 35
Number of iterations 25 25 25
Cognitive weight 0.8 1.1 1.1
Social weight 0.8 0.9 0.9
Inertial factor 1.2 1.2 1.2
Vmax 3 3 3
Vmin -3 -3 -3
Number of swarms N/A 5 5
Max number of swarms N/A 7 7
Min number of swarms N/A 3 3
Max population size N/A 50 50
Min population size N/A 20 20
Stagnancy N/A 8 8
Fractional coefficient N/A N/A 0.8

change is made on the values of those parameters. However, we recommend using
those values for any future studies in the field of DICOM images segmentation since
we found those values are the most efficient values that speed up the convergence
rate.

Evaluating the accuracy of the PSO, DPSO and FODPSO is performed by mea-
suring the fitness (i.e. inter-class variance) for each algorithm and comparing the out-
puts with the brute-force (BF) method. BF method performs an exhaustive search
by evaluating the outcomes of all combinations of threshold values. The fitness in
this context refers to the inter-class variance between pixels intensities as it is pre-
sented in Section 4.2. Table 4.2 presents the average fitness values generated by the
PSO, DPSO and FODPSO algorithms against the fitness value generated by the BF
method. It is clear from Table 4.2 that FODPSO algorithm generates either exactly
the same or a slightly less fitness value compared to the BF method. This indicates
that applying the FODPSO algorithm for segmentation leads to a very high accurate

outcomes.
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Table 4.2: Average fitness values of Brute-Force, PSO, DPSO and FODPSO algo-
rithms for different number of thresholds over different five data sets

Dataset Thr. Brute-Force PSO DPSO FODPSO
Dataset#1 1 3269.09 3269.09 3269.09 3269.09
(155 images) 2 3773.38 3773.37 3773.38 3773.38
3 3829.39 3829.36  3829.38 3829.38
4 3855.43 3854.92  3855.25 3855.39
5 3871.88 3871.81  3871.72 3871.82
Dataset#2 1 3488.54 3488.49 3488.54  3488.54
(146 images) 2 4067.33 4067.21  4067.30  4067.30
3 4142.05 4141.87  4141.91 4142.02
4 4178.69 4178.11  4178.67 4178.67
5 4197.88 4197.09  4197.09 4197.86
Dataset#3 1 2374.66 2374.39  2374.54 2374.54
(151 images) 2 2635.29 2634.50  2634.88 2635.26
3 2657.87 2654.98  2655.29 2657.84
4 2679.31 2677.82  2679.19 2679.27
5 2688.69 2685.58  2686.44 2688.64
Dataset#4 1 3749.77 3749.77 3749.77  3749.77
(130 images) 2 4264.51 4264.01 4264.32 4264.51
3 4363.87 4363.12  4363.72 4363.86
4 4418.97 4417.99 4418.96 4418.96
5 4435.87 4431.89  4435.82 4435.85
Dataset#5 1 2870.42 2870.18 2870.42 2870.42
(156 images) 2 3386.32 3385.83  3386.12 3386.32
3 3462.11 3460.76  3460.76 3462.10
4 3516.13 3515.73  3516.08 3516.11
5 3535.57 3533.12  3534.84 3535.53

Table 4.3 displays the average CPU processing time that PSO, DPSO, FODPSO
and BF methods need to segment the whole images in each data set. The table con-
firms that the FODPSO algorithm is always slightly faster than the DPSO algorithm
and the DPSO algorithm is significantly faster than the PSO algorithm. It is worth
noting that the speed of BF search is similar to, but less than the speed of FODPSO
when the number of thresholds equals one. But as the number of thresholds increases,

the difference between the speed of BF and the speed of the other three optimisation
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algorithms becomes significant. In our case (i.e. removing artefacts due to immobi-
lization masks) we are interested in the case when the number of thresholds equals
5, and then the use of the FODPSO algorithm will make a significant enhancement
in terms of speed. We empirically found that segmenting the image into six different
classes (i.e 5 thresholds) classifies all or most of the pixels belonging to the mask as
one class and this interprets our interest in choosing the number 5 as the number of
thresholds. The fractional coefficient used in FODPSO allows the convergence rate
of the algorithm to be controlled and this explains why FODPSO outperforms the
DPSO algorithm.

The standard deviation was used as an evaluation measurement of stability. Table
4.4 shows that FODPSO produces the most stable results when compared to the PSO
and DPSO, and the standard deviation increases as the number of thresholds increase
in most cases. Typical results of segmentation using the FODPSO algorithm over one

sample image using different number of thresholds is shown in Figure 4.5.

1 threshold 2 thresholds 3 thresholds 4 thresholds 5 thresholds

Figure 4.5: Applying FODPSO using different number of thresholds.

4.4.2 Removal of the Immobilisation mask

Figure 4.6(a) displays an example of one of the CT slices from the first data set. A
previous study [106] evaluated the use of Particle Swarm Optimisation for medical
image segmentation and demonstrated the the FODPSO algorithm delivered high

accuracy, stability and speed. We found that segmenting the image to six different
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Table 4.3: Average execution time (in sec) of the Brute-Force, PSO, DPSO and
FODPSO algorithms for different number of thresholds over different five data sets

Dataset T.holds Brute-Force PSO DPSO FODPSO
Dataset#1 1 10.86 33.81 12.15 9.72
2 235.52 73.12 58.38 56.75
3 25951 90.85 74.90 72.53
4 2408545 111.01 90.04 86.82
5 > lweek 131.06 103.25 98.03
Dataset#2 1 7.28 20.95 8.37 6.96
2 221.46 65.56 53.39 50.27
3 24429 84.90 71.50 67.20
4 1709952 104.41 83.91 79.08
5 > lweek 123.61 97.84 93.42
Dataset#3 1 7.25 20.20 7.03 6.20
2 232.58 69.35 56.92 54.85
3 25118 88.02 70.82 66.54
4 1809433 107.73 86.51 82.36
5 > lweek 127.18 100.57 94.81
Dataset#4 1 8.06 16.15 8.51 7.97
2 195.84 58.54 47.82 46.69
3 21717 75.35 61.32 60.80
4 1908530 92.85 76.12 72.91
5 > lweek 109.67 86.73 84.16
Dataset#5 1 9.26 49.02 8.75 8.09
2 238.19 70.40 57.81 57.59
3 26148 90.99 76.13 72.12
4 2173860 111.82 90.04 84.29
5 > lweek 132.30 104.59 97.21

classes tends to lead to better results as this number classifies all or most of the pixels

belonging to the mask as one class.

The FODPSO algorithm delivers significant

benefits in terms of execution speed over the BF approach (i.e. exhaustive search)

which takes a very long time when the number of clusters equals six. In Section 4.5

we tabulate the time required by the FODPSO algorithm against the time needed by

other techniques in order to segment the stack of CT slices comprising each data set.

Figure 4.6(b) displays the image after it was segmented to six different clusters using

the FODPSO algorithm.



CHAPTER 4. REMOVAL OF IMMOBILISATION MASKS WITH PSO 54

Table 4.4: Standard deviation of fitness for PSO, DPSO and FODPSO after running
each algorithm 15 times over different five data sets.

Dataset T .holds PSO DPSO FODPSO
Dataset#1 1 0 0 0
2 0.0001 0 0
3 0.0036 0.0003 0.0002
4 1.2873 0.0114 0.0105
5 0.0206 1.2195 0.0190
Dataset#2 1 0.0001 0 0
2 0.0009 0.0002 0.0001
3 0.0021 0.0005 0.0002
4 0.0122 0.0120 0.0113
5 0.0787 0.0342 0.0341
Dataset#3 1 0.0023 0.0001 0
2 0.0082 0.0009 0.0001
3 0.0810 0.0569 0.0015
4 0.0254 0.0143 0.0061
) 0.5932 0.5437 0.2903
Dataset#4 1 0.0011 0.0002 0
2 0.0008 0.0002 0.0001
3 0.0110 0.0089 0.0073
4 0.0196 0.0159 0.0161
5 1.7163 0.0938 0.0884
Dataset#5 1 0.0005 0.0003 0.0001
2 0.0012 0.0004 0.0001
3 0.0082 0.0027 0.0011
4 0.0243 0.0199 0.0190
5 1.3081 0.0373 0.0361

In Figure 4.6(c-e) we present the output that is generated by part-B of the pro-
posed approach. The image was firstly segmented to two classes (foreground and
background) using Otsu’s method. It was then filled automatically and eroded as it
displayed in 4.6(e). Part-A and part-B of the proposed approach produced three
data structures of indices (M, B, and H) and those indices were used to form the
final output image which is displayed in Figure 4.6(f). Finally, Figure 4.7 illustrates

randomly-selected input images and their outputs after applying the approach.
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(a) CT image (b)(FODPSO)

nn

(d) Filled (e) Eroded (f) Output

(c)(Otsu)

Figure 4.6: An example of a CT slice from the first dataset.

4.5 Results, Validation and Discussion

The Performance of the Approach

We used the Sensitivity and the Specificity to evaluate the proposed approach as
both of them are statistical measures of the performance of a binary classification
test. We have identified the True Positive Rate (TPR), False Positive Rate (FPR),
True Negative Rate (TNR) and False Negative Rate (FNR) in this context as:

e TPR: percentage of mask pixels correctly identified as mask.

e FPR: percentage of not-a-mask pixels incorrectly identified as mask.

e TNR: percentage of not-a-mask pixels correctly identified as not-a-mask.
e FNR: percentage of mask pixels incorrectly identified as not-a-mask.

The pixels that represent the immobilisation mask were identified by an expert in
25 CT images (5 randomly-selected from each dataset) and compared to the num-
ber of pixels identified by the proposed approach. Table 4.5 displays the average

values, rounded to the whole number, of TP, FP, TN and FN for each dataset and
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(a) In.D2 (b) Out.D2

(c) In.D3  (d) Out_-D3
(e) In.D4  (f) out-D4  (g) In.D5  (h) Out_-D5

Figure 4.7: One CT slice example from each dataset (Input & Output).

the percentage values of TPR, TNR, FPR and FNR. Table 4.6 displays the sensitiv-
ity, also called the true positive rate (TPR), specificity (SPC) and the Number-Of-

Observations (NOO) for each dataset.

Table 4.5: The average values of TP, FP, TN, FN, TPR, FPR,
each dataset

TNR and FNR for

Dataset TP TN FP FN TPR FPR TNR FNR
Dataset#1 380 30,239 100 23  94.41% 99.67% 0.33% 5.59%
Dataset#2 403 30,152 154 42 90.56 % 99.49% 0.51% 9.44%
Dataset#3 429 30,199 93 30 93.64% 99.69% 0.31% 6.54%
Dataset#4 1714 29,060 465 203 89.41% 98.42% 1.58% 10.59%
Dataset#5 841 45371 148 71  92.21% 99.67% 0.33% 7.79%

As is shown in Table 4.6 the average value of the sensitivity (TPR) is 92.01%
which indicates to the proportion of positives that are correctly identified (i.e. the
percentage of mask pixels which are correctly identified by the proposed approach as
mask pixels) and the average value of the specificity (SPC) is 99.39% which points
to the proportion of negatives that are correctly identified (i.e. the percentage of
not-a-mask pixels who are correctly identified as not-a-mask pixels). The heading

'NOOQO’ in the table indicates to the number of observations which is equivalent to the
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Table 4.6: The values of TPR, SPC, and NOO for each dataset

Dataset TPR SPC NOO
Dataset#1 0.9441 0.9967 30751
Dataset#2 0.9056 0.9949 30751
Dataset#3 0.9346 0.9969 30751
Dataset#4 0.8941 0.9842 31442
Dataset#5 0.9221 0.9967 46431
Average 0.9201 0.9939 34,025

number of pixels in each image.

Handling Exceptions

We applied our approach over five different data sets (total= 738 images) and noticed

that the approach did not work on 13 images of them for two reasons. Firstly some CT

images include a noise in the middle column on the top of the mask itself, as displayed

in Figure 4.8-left and secondly some CT images have disconnected representation of

the mask pixels, as displayed in Figure 4.8-middle. We handled the first exception

by applying the median filter over the background area in order to remove the noise

from the background area, and we handled the second exception by changing the

seeking mechanism in Algorithm 1 by searching the segmented image horizontally

and vertically from different five start points as displayed in Figure 4.8-right.

Figure 4.8: (left) Example of a CT image includes a noise in the middle col-
umn  (Middle) A CT image has a disconnected representation of the mask pixels
(Right) Defining new start points to seek horizontally.
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4.6 Summary

This chapter presented an automatic approach for segmenting immobilization masks
in Head-and-Neck CT data sets. The approach identifies the pixels that belong to
the immobilization mask and replaces their intensity value with that of air, thereby
eliminating the mask from the output image. Five different data sets were tested
to evaluate the accuracy of the approach. Sensitivity and specificity were used as
statistical measures of the performance of the approach in this chapter. The eval-
uation indicates that the proposed approach is robust and of practical use. Some
enhancements to speed up the process using Particle Swarm Optimisation were also
presented and tested in the chapter.

Since this chapter presented an approach that removes the fixation and prepares
the CT slices for the segmentation process, the next chapter presents the different
segmentation techniques that were investigated to segment the CT images before

constructing a 3D volume of the head.



Chapter 5

Image Segmentation

This chapter presents the part of the thesis which addresses image segmentation.
The chapter begins by presenting in Section 5.1 a brief overview on five different
segmentation techniques which are employed in this research to segment the CT
images. Section 5.2 illustrates the steps that we developed within the framework of
Distance Regularized Level Set Evolution (DRLSE) to set the initial level set binary
function and to handle the case when more than one contour is found in the final
output image. The experimental work is presented in Section 5.3 and the results in
Section 5.4 include the outcomes after applying the five segmentation techniques over

our dataset. Section 5.5 draws a conclusion for this chapter.

5.1 Technical Background

We have presented in Chapter 2 an overview on the basic concepts of image segmen-
tation and we present in this section a brief overview over the five image segmentation
techniques that are employed in this research. The five segmentation techniques that
we applied and run over our data sets are: Otsu, K-means, Expectaion Maximization,
Hidden Markov Random Field Model with Expectation-Maximization, and Distance
Regularized Level Set Evolution. We have chosen these techniques since they are

common image segmentation techniques, widely accepted and tested, and have been

29
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successfully employed for medical image segmentation. In addition to that, since
image segmentation techniques are normally categorised in accordance with their
primary methodologies based on (1) thresholds, (2) clustering techniques and (3) de-
formable models [62] then these five techniques represent representative sample for

the three main categories of segmentation techniques.

5.1.1 Otsu’s method

Otsu’s method [104] is a common method in image segmentation which selects the
threshold to minimise the inter-class variance of the foreground and background pix-
els. It comprises iterating through all the possible threshold values. The details of

this method were presented in Chapter 4 Section 4.2.

5.1.2 K-Means

The term “K-means” was first used in 1967 [129]. Image segmentation using the
K-means approach is one of the common examples of the state-of-the-art clustering
methods for image segmentation [130] and it is used in different applications including
medical image segmentation [131, 132, 133, 134, 135]. The aim of the K-means
approach is to partition n observations into m clusters in which each observation
belongs to the cluster with the nearest mean. In the context of image segmentation,
the K-means takes an n of pixel values (x1, x2, ..., zn) and partition these pixels
into m sets S = {51, 52, ..., Sm} in order to minimise the within-set sum of squares

(wsss) as shown in Equation (5.1.1).

wsss:iz |2 — ps |2 (5.1.1)

i=1 €851

where p; is the mean of pixel values in set S;. Notice that m equals 2 in the case

of binary image segmentation since we have just two sets (i.e. black and white).
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In this case, consider ¢, is the centre of cluster and p(z,y) is an input pixel. The

K-means algorithm for binary image segmentation is described as follows:
1. Set m = 2.
2. Initialize the centroids for each cluster with random intensities.

3. For each pixel in the image, calculate the distance d of their intensities from

the centroid intensities as shown in Equation (5.1.2)
d =] p(a,y) — cm | (5.12)

4. Assign all the pixels to the nearest centre based on distance d.

5. Update the new positions of the centres as shown in Equation (5.1.3)

- % S5 pay) (5.1.3)

TECM YECmM

6. Repeat from step 3 to 5 for specific number of iterations or until the difference

satisfies a threshold value.

The next subsection presents an overview of another algorithm employed in image

segmentation named Expectation Maximization.

5.1.3 Expectation-Maximization (EM)

The Expectation-Maximization (EM) algorithm presents an intuitive iterative pa-
rameter estimation scheme. It relies on finding the maximum likelihood estimates
of parameters. Each iteration of the EM algorithm involves two procedures: max-
imization and expectation. In this approach, alternating steps of expectation and
maximization are executed iteratively until convergence [131]. The maximization

computes the maximum likelihood estimates by maximizing the expected likelihood
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detected on the last expectation step and the parameters detected on the maximiza-
tion step are then used to initiate another expectation step [136]. The EM algorithm
was explained and named in [137]. This algorithm has been employed in image seg-
mentation in different studies [138, 139, 140, 141, 142]. A very detailed description

of the EM algorithm is presented in [143, 144].

5.1.4 Hidden Markov Random Field Model and Expectation-
Maximization (HMRF-EM)

Markov Random Field Models (MRFM) have been used for image segmentation in
different studies [145, 146, 147] by incorporating the spatial relationships among
neighbouring labels as a Markovian prior [148]. The Hidden Markov Random Field
with Expectation Maximization (HMRF-EM) approach was first presented in [149]
in which the authors incorporated the HMRF and the EM approaches into a unified
framework. In this framework the likelihood probability parameters are estimated
through the EM algorithm [150].

The algorithm can be described as follows. Suppose that we have an image M
consisting of n pixels (mq, ma,..., m,) where m; represents the intensity of pixel i.
The target of HMRF-EM is to infer a configuration of the set of all possible labels L

= (l, l,..., I,,) where [; € L by seeking the labelling L* as shown in Equation (5.1.4)

L*=P(M | L,9)P(L) (5.1.4)
where the joint likelihood probability is shown in Equation (5.1.5)

P(M | L) =]]P(M;| L, 0y,) (5.1.5)

where P(M; | L;,0r,) is a Gaussian distribution function and 6, = (ur,,0r,). Notice

that ¥ = {6, | | € L} is the parameter set that is found by the EM algorithm.
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HMRF-EM has been employed in image segmentation in different studies [141,
151, 152, 153, 154, 155].

5.1.5 Distance Regularized Level Set Evolution (DRLSE)

The level set method was introduced by Osher and Sethian [156]. In the level set
method the interface is described by the zero level set [157]. It works by representing
a contour as the zero level set of a higher dimensional function, called a level set
function (LSF), and formulating the motion of the contour as the evolution of the
level set function [2]. The level set framework is now used on a numerous applications,
including capturing moving fronts [158], image segmentation [159, 160, 161, 162],
image reconstruction [163], moving liquid interfaces [164, 165], image analysis [166],
reservoir simulations [167], optimal shape design [168], and computer vision [169].
The details of employing the conventional level set method in the field of image
segmentation and active contour models are presented in [170, 169, 171].

The Distance Regularized Level Set Evolution (DRLSE)[2] is a new variational
level set form in which the regularity of the LSF is preserved through the evolution
process. The derived level set evolution has a unique Forward-And-Backward (FAB)
diffusion effect to preserve a desired shape of the LSF. The diagram in Figure 5.1
displays the problems that normally accompany the conventional level set formulation
and how the DRLSE technique overcomes these problems.

It is obvious from Figure 5.1 that irregularities is the main drawback that hap-
pens during the evolution of conventional level set formulation. The concept of the
irregularity in this context is illustrated in Figure 5.2 in which Figure 5.2(a) displays
a level set function (LSF) which developed irregularities during its evolution. The
LSF evolution in this figure constantly degrades the LSF to a function with unde-

sirable irregularities (i.e. very steep shape in some regions and very flat shape in
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DRLSE: Distance Regularized Level Set Evolution

Figure 5.1: A schema represents the problems and drawbacks accompanying the
conventional level set formulation (left part) and the reasons that make the DRLSE

able to overcome these problems (right part).

other regions). Figure 5.2(b) displays a level set function which applied the DRLSE

in its evolution to preserve the regularity through its evolution. The irregularity may

lead to numerical errors and destroy the stability of level set evolution. However, the

typical treatment for the irregularities problem is the use of the reinitialization. Al-

though the reinitialization is able to replace the degraded LSF with a signed distance

function, but there are some drawbacks produced by performing the reinitialization.

The drawbacks of the reinitialization include possible wrong movement of the zero
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Figure 5.2: Level set function which (a) develops irregularity through its evolution
and (b) another level set function in which the regularity is preserved during the
evolution (imported from [2]).

level set away from the anticipated position and defining numerical precision in an
undesirable way.
On the other hand, the derived level set evolution in DRLSE technique has a

unique FAB diffusion effect. Hence, the DRLSE has a number of advantages:

It eliminates the need for reinitialization and then it avoids all of the reinitial-

ization’s drawbacks.

It accepts the employment of more general initialization of the LSF.

It can be implemented with more efficient difference scheme.

It can use large time steps to reduce the number of iterations and computation

time.

The authors of the DRLSE technique have applied it to an edge-based active
contour model for image segmentation and proved its efficiency and accuracy. They
have used this technique to segment a CT image with a tumor in human liver and

to segment MR image of a human bladder. The active contour model in the DRLSE
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permit the employment of large time steps to reduce iteration numbers and computa-
tion time while preserving the numerical accuracy to a very great degree. Giving that
the active contour models including conventional level set method are not designed
to process large amounts of data [172], then the enhancement on the computation

time that is offered by the DRLSE will be an important feature.

5.2 Our Customisation/Handling of the DRLSE
Technique

Applying the DRLSE technique requires to set the initial level set binary function in
accordance with your specific application. In addition to that it is possible to have
more than one contour as a final output when applying the DRLSE. We present in
this section the procedure that we follow to set the initial level set binary function

and illustrate the algorithm that we develop to handle the multi-contour case.

5.2.1 Setting the Initial Level Set Binary Function

As the DRLSE technique requires the use of an initial LSF, we present a procedure to
derive the initial LSF to be used in the context of segmentation. The procedure that
we follow to set the initial LSF is illustrated in Figure 5.3. This procedure allows the
Region R to be close to the region to be segmented where R, represents the region
which surrounds the object to be segmented by an initial contour. Consequently a
small number of iterations are required to move the zero level set to the desired border
of the object.

The process of deriving the initial LSF starts, as illustrated in Figure 5.3, by
reading the CT image and applying Otsu method over that image. Notice that
the segmented image is stored as temporary image. Automatic image filling is then

performed over the temporary image and followed by dilation process to allow the
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CT image (IMG)
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Figure 5.3: A schema showing the procedure that we follow to derive the initial level
set binary function.
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boundary of object to expand. The borders of the temporary image is then extracted
to form the initial LSF for the CT image (see the red contour around the head in the

bottom image in Figure 5.3.

5.2.2 Handling the Multi-Contour Case

The DRLSE technique may lead to produce more than one contour during its evolu-
tion (See Figure 5.4). We present here Algorithm 2 in which we develop a procedure
to deal with the case of more than one contour in the final output of the DRLSE tech-
nique. The structure of Contour Matrix in Algorithm 2 is illustrated in Figure 5.5.
As it is shown in the figure, the data structure C'ontour M atriz represents a two-row
matrix. The element that lies in first column and second row represents the number
of vertices that form the contour line. The remaining columns represent the vertices
itself for the contour line. In the case of multi-contour the Contour M atrix contains a
separate definition for each contour line. Fox example, the Contour M atriz in Figure
5.5 indicates that there are four contour lines. The dotted red circles show the starts
of each one of the contour line definitions. The first contour consists of four vertices,
the second of three vertices, the third of ninety-five vertices and the last of three
vertices. Algorithm 2 is employed when we find that the Contour Matriz consists of
more than one contour line. The basic operation of this algorithm is to search for the
start location of the largest contour line (i.e. the one that has the maximum number
of points) and extract the vertices that belong to that contour. This operation is
performed in the algorithm through the while loop (line 5 - line 12) by getting the
element that lies in first column and second row and storing it in max_size. After
that, the algorithm repeatedly skips a number of elements equals to the value of

stze_of _current_contour and compares the value of the new size_of_current_contour
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Figure 5.4: Examples of images that have more than one contour.
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Figure 5.5: Structure of Contour Matrix.

ContourMatrix max-size Final Contour

with the value of the max_size until it reaches the end of Contour Matriz. The al-
gorithm then continues by setting on the pixels which lie inside the largest contour

and return the final result as a segmented image consisting of ones and zeros.

5.3 Experiments

The experiments in this chapter are performed over the “Perspex Mask” data set
which is a part of the data sets of our clinical trial (IRAS project 1D:209119, REC
reference:16/YH /0485, Sponsor: University of East Anglia, Health Research Author-
ity, NHS, UK). The details of this data set is presented in Chapter 3.

Although a large concentration has been given to propose new segmentation tech-
niques in the literature, a slight interest given to derive a uniform framework to be

used in comparing different segmentation approaches and evaluate their performance
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Algorithm 2 Handling multi-contour when the DRLSE technique is used in segmen-
tation
loc <1
max_size < (
size_of _current_contour < (
start < 0
while loc <(No. of columns of ContourMatriz) do
size_of _current_contour < Contour M atriz(2,loc)
if size_of _current_contour > max_size then
max_size < size_of _current_contour
start < loc
end if
loc < loc + size_of _current_contour + 1
: end while
: for i < 1, maz_size do
FinalContour(Contour Matrixz(2, start +1i), Contour Matriz(1, start+1))=1
: end for

—_

e e e e

[173]. Accuracy of a segmentation algorithm can be defined as the level to which
the segmentation outcomes agree with the ground truth, a so called ”gold standard”
[174]. In the case when dealing with images of real patients, the ground truth is con-
sidered not known. There are some choices that can be considered as a replacement
or a substitution for the ground truth [175]. These choices include, but not limited to,
using the laser-scan mesh, using manual segmentation by experts, different imaging
modality, or another segmentation algorithm known to give accurate outcomes. We
employed in our clinical trial the laser-scan mesh as a ground-truth.

The schema that is presented in Figure 5.6 illustrates the procedure that we
follow to evaluate the accuracy of each segmentation technique (i.e. evaluate the
the similarity ratio between the laser-scan model as a ground-truth and the outcome
of each one of the five segmentation techniques). For each one of the segmentation
techniques, the stack of CT slices (in DICOM format) is read and segmented. After
that a 3D model is constructed from these segmented slices using Marching Cubes

algorithm [19]. The laser-scan 3D model, which represents the ground-truth, is then
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Figure 5.6: A schema illustrates the procedure that we follow to evaluate the accuracy
of the five segmentation techniques.

automatically aligned with the CT-derived 3D model. The details of the process
of alignment are presented in Chapter 6. The aligned laser-model is then sliced in
z — direction as it is presented in details in Chapter 7. At that point the slices image
resulted from the slicing process for the laser-scan model and the segmented CT
slices are automatically filled and compared. The comparison is performed between
each segmented filled CT slice and its corresponding filled laser image slice. The
overlap measurement that we used is Dice similarity coefficient (DSC) [74] which
finds the similarity ratio between each corresponding slices from each model. The
average similarity ratio is then calculated to represent the final outcome. It is worth
mentioning here that the details of the procedure illustrated in Figure 5.6 are clarified

and tested in detail in Chapter 6, Chapter 7 and Chapter 8.

5.4 Results

The stack of CT slices which represent the head of the patient are segmented five

times each time by one of the segmentation techniques that are mentioned before.
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Figure 5.7 displays random segmented CT slices generated when applying the Otsu,
K-means, EM, DRLSE, and HMRF-EM segmentation techniques to segment the CT
slices of the “Perspex Mask” data set. The figure also displays the slices that are
generated from the laser-mesh and used as a ground-truth. The techniques display
the pixels which belong to the background in black colour and the pixels which belong
to the object in white colour. It is clear from the figure that the EM algorithm does
not identify well, in some images, the foreground and background pixels. This will
lead later to construct the 3D model of the head in an incorrect way. Figure 5.8
displays three random slices that are generated when we sliced the laser-scan mesh.
The constructed models that are generated from each group of segmented images are
displayed in Figure 5.9.

Table 5.1 displays, for each segmentation technique, the average similarity ratio
between the segmented CT slices and the slices obtained from the ground-truth (i.e.
laser-scan mesh). Notice that the exact details of the procedure that we follow to
obtain these readings are presented in the next three chapters. We present these read-
ings here to give a perception about the performance of each one of the segmentation
techniques.

Exploring the values in Table 5.1 leads to a number of observations. The first one
is that the DRLSE technique exceeds the other four techniques in terms of accuracy.
This is obvious from the table since the value of the calculated average similarity ratio
for the DRLSE technique is the highest one. This in turn makes the DRLSE technique
a good candidate to be used for segmentation of CT slices for those patients who have
Head-and-Neck cancer in order to construct an immobilisation mask for them. The
second observation on the readings is that all the employed segmentation techniques,
except the EM technique, achieved satisfactory similarity ratio and close to each other

results which indicates that the selection of a specific segmentation technique will not
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Technique Slice#1 Slice#9 Slice#18  Slice#36
Otsu
K-means D
DRLSE D
HMRF-EM [u]
Ground-truth .

Figure 5.7: Random segmented CT slices generated by applying Otsu, K-means, EM,
DRLSE, and HMRF-EM techniques to segment the CT slices of the Perspex mask.

AlAIR

Figure 5.8: The first three images represent three images generated when slicing the
laser-scan mesh and the last three images represent the same images after applying
automatic filling.

D

() (b) ()

Figure 5.9: Constructed models generated from CT segmented slices after applying
(a) Otsu (b) K-means (¢) EM (d) DRLSE and (e) HRMF-EM.
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Table 5.1: The Average Similarity Ratio (ASR), for each segmentation technique,
between the CT segmented slices and the ground-truth, Standard deviation (STD),
90" percentile, and the time (in sec) required to segment the whole dataset.

Technique ASR  Max. val Min. val STD 90" perc. Time(s)

Otsu 0.9601  0.9796 0.9369  0.00968  0.9711 12.63
K-means 0.9564  0.9747 0.9334 0.01253  0.9714 14.58
EM 0.3537  0.9579 0.0249  0.21215  0.3937 103.83

DRLSE 0.9656  0.9777 0.9462  0.00796  0.9729 114.27
HMRF-EM 0.9597  0.9756 0.9417  0.00813  0.9693 822.36

have a big influence on the final outcome of the process.

The third observation is that the value of the standard deviation when a slice
by slice comparison takes place by all the employed segmentation techniques, except
the EM technique, is very low which indicates that the results generated by the
four segmentation techniques (Otsu, K-means, DRLSE, and HMRF-EM) are stable
and similarity ratios between each slice and its corresponding slice are not spread
out over a wider range of values. This fact is also supported when we see in the
table the difference between the maximum and the minimum similarity ratio for the
four techniques. The fourth observation is that the outcomes of the DRLSE are the
most stable and tend to be closest one to the mean with a standard deviation equals
(0.00796) which makes it again the most convenient candidate for head segmentation
in CT slices. Notice that we have presented in this chapter the use of similarity
ratio for evaluation. While this similarity ratio enables the techniques to be ranked
it doesn’t give any insight into absolute errors. These absolute errors and other
evaluation for the whole process are presented in Chapter 9.

Figure 5.10 displays histograms representing the similarity ratio slice by slice for
each one of the five segmentation techniques. The similarity ratio is measured here by
calculating the Dice similarity coefficient (DSC) between each corresponding slices.

DSC produces a value between 0 and 1 which indicates to which degree the similarity
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Table 5.2: The similarity ratio for the slices 20 to 25 (around patient’s nose).

Otsu  K-means EM  DRLSE HRMF-EM
0.9531 0.9479  0.3850 0.9570 0.9515

is between the two corresponding slices. The results shown in the histograms support
the observations that we got from Table 5.1 in which we noticed that results generated
by (Otsu, K-means, DRLSE, and HMRF-EM) are close to each other and there are
no high variance over the whole set of slices. It is worth noting, in Figure 5.10, that
there is a small decrease in the similarity ratio, for the four segmentation techniques
mentioned before, around the region of patient’s nose (slices 20 - 25) but this small
decrease is very low and has no real effect on the accuracy of the derived model. The
reasons for that decrease is explained in the discussion part of Chapter 9. Table 5.2
displays the average similarity ratio over the slices (20-25) in which we can observe
that the DRLSE produced the higher similarity ratio when compared to the other four
techniques. Anyway, as manufacturing the immobilisation mask includes defining a
hole on the nose region for breathing purposes then the accuracy around that area is

not a priority in our case.

5.5 Summary

This chapter evaluated five different segmentation techniques. A brief technical back-
ground on these segmentation techniques is presented in the beginning of this chapter.
We also developed a post processing algorithm to handle the case when the DRLSE
produces more than one contour in the final output. This algorithm in addition to our
work to set the initial level set binary function for head segmentation in CT images
is explained in a separate section. The experiments, results, and outcomes of this
chapter encourage us to apply the DRLSE technique for segmentation of the skin/air

interface of the head as this technique leads to relatively better results than the other
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Figure 5.10: Similarity ratio slice by slice for different segmentation techniques. The
process that we follow to find these similarity ratio is presented in Chapter 7.



CHAPTER 5. IMAGE SEGMENTATION 77

four techniques.

As the experiments in this chapter produced CT-derived model from the seg-
mented CT slices, we are now in a place which qualifies us to move on and perform
a 3D automatic alignment between the CT-derived model and the laser-scan model.
The following chapter presents the details of the process that we developed in order

to perform an alignment (i.e. registration) between the two models.



Chapter 6

Automatic 3D Alignment

It was presented in Chapter 3 Section 3.1 that the laser-scan digital models will be
used as a ground-truth for evaluating the accuracy of the CT-derived models. This
evaluation requires an accurate alignment between the ground-truth (i.e. laser-scan
model) and the input model (i.e. CT-derived model). Consequently an automatic
approach should be developed to align (register) the laser-scan model and the CT-
derived model. This chapter presents the details of the approach that we follow
to align the two models automatically. Section 6.1 presents an overview on one
of the most well-known techniques used for geometric alignment of 3D data-models
named the Iterative Closest Point (ICP) algorithm. Section 6.2 describes a customised
version of ICP that we developed in order to speed up the alignment process and
increase the accuracy of it. Experimental work and results are displayed in Section
6.3. Finally, in Section 6.4, we present a summary describing the main parts of this

chapter.

6.1 Iterative Closest Point (ICP)

The ICP algorithm is a frequently and widely used method for 3D alignment [176,
177]. It is an optimization algorithm that performs a number of iterations in order

to minimize root mean square distances (RMSDs) of corresponding points between

78
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two data sets and consequently to align them. The two datasets, the input and the
target, are normally given to ICP as a set of sparse representation of points. As
the relative positions of these points is not known and as noisy data are a problem
with all kinds of 3D acquisition methods [178], performing an accurate registration
between them represents a challenging task and needs a robust algorithm. The ICP
algorithm is one of the popular algorithms in this field which focuses on two issues:
(1) discovering the best correspondence between points in each dataset and (2) deter-
mining the most accurate transformation from input dataset to target dataset. The
ideal transformation is identified to be the one that let the least squares reaches the
minimum [179].

ICP was introduced mainly to find the transformation that aligns between two
data sets by minimizing the root mean square errors between the corresponding points
in each dataset. After that, ICP was employed in different applications and research
areas. For example, in [180] ICP was used to register two sequences of eight surfaces
of the left ventricle of the heart, obtained from two different medical imaging modal-
ities. In [181], ICP was used for camera pose refinement. In [182], a high-standard
vehicle control system was proposed in which ICP was used to evaluate and obtain
state quantities of vehicles with roadside sensors. [183] used ICP in scanned model
reconstruction. [184] and [185] employed ICP in 3D face pose estimation.

The followings represent the main steps of the ICP algorithm:

Stepl: Input for two data sets. (We will call the first one a target mesh and the
second one an input mesh).

Step2: Observing corresponding points in both meshes. Finding the corresponding
points can be done through different approaches. The common approach is to find,
for each point in the input mesh, the closest point in the target mesh. The other

approaches used to find the corresponding points are presented in Section 6.1.1 which
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discusses the different variants of the ICP algorithm.

Step3: Computing transformation matrices (rotation and translation) in order to
minimize the total distance between the two meshes.

Step4: Moving the input mesh to match the reference target mesh according to the
transformation matrices resulted from step3.

Step5: Loop (from step2 to step4) until the total distance between the two meshes
becomes less than a threshold value or until a specific number of iterations is per-

formed.

6.1.1 Variants of ICP

The basic concept of ICP was presented in the early 1990s nearly at the same time
by Besl and McKay [186] and Chen and Medioni [187]. The form which introduced in
[186] is the most frequently cited one. ICP takes two 3D models, as an input, and an
initial transform estimation that can find the correct alignment between the two mod-
els. It then improves the transform by repetitively producing sets of corresponding
points from the two models and reducing the measured value of error.

Many variations of the ICP algorithm have been presented in literature. Good
reviews about these variations were presented by [176] and [188]. If we look at ICP
as an algorithm consisting of six phases, then we can classify the variations of ICP
according to their effects on each one of these phases. We prepare a schema to rep-
resent these variations in Figure 6.1. The phases of the ICP algorithm are:
Phasel: Selection
In this phase, selection of all or some of points are carried out. More than one method
have been proposed to perform the selection. The common approaches which have
been proposed for the selection process include:

A. Selecting all points as in the basic ICP proposed by [186].
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Figure 6.1: ICP phases and common approaches.

B. Uniform subsampling [189].

C. Random subsampling [190].

D. Normal space sampling [176].

E. Gradient-based or colour-based selection [191].

Phase2: Initial transform estimation

Creating the initial transform can be performed in different ways.

A. Exhaustive search for corresponding points [192, 193].

B. ‘Spin-image’ surface signatures [194].

C. Computing principal axes of scans [195].

D. Identification and indexing of surface features [196, 197].

Phase3: Matching

In this phase, each selected point from the input dataset should be paired with a
correspondent point from the target dataset. The following are some of the common

methods used in literature to match the points:
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A. Finding the closest point in the target dataset as proposed in the basic ICP [186].
B. Normal shooting [187].

C. Reverse calibration [198, 199].

D. Using the invariant features [200, 201], colour or surface normals [202] in the dis-
tance metric.

E. Using fuzzy correspondences [203].

F. M-estimation-based method for correspondences [204].

G. Point-to-ray [205] or point-to-plane [206] metrics.

H. Mahalanobis distance for correspondence.

Phase4: Weighting

In this phase, different weights are assigned to the corresponding points. The clas-
sification of algorithms which are grouped under this field depends on the approach
that each algorithm use to assign weights. The following are some of the common
approaches used to assign weights:

A. Constant weight

B. Providing higher weights to pairs with smaller distance.

C. Compatibility of normal based weighting in which Equation 6.1.1 will be used to
find the compatibility of normals between the two paired points given that the plane
which contains the first point has a normal named nl and the plane which contains

the second point has a normal named n2.

Weight = nl.n2 (6.1.1)

Phase5: Rejecting Some Pairs of Points
The main target of this phase is to remove outliers which have a big influence on
the registration outcomes when working on least-squares minimization. The common

proposed approaches in this field are:
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A. Removing the worst n% of points [207, 202].
B. Removing points which are located on mesh boundaries [189].
C. Removing points which are not consistent with neighbouring points [205].
D. Removing points with a distance greater than a threshold value [176]. This thresh-
old value could be defined as in [190] in which the authors rejected the corresponding
points with distances greater than 2.5 times the standard deviation of distances.
Phase6: Setting an error metric and minimizing it
In this phase, an error metric should be used and iteratively minimized in order to
reach to a better registration results. The common error metric used in the literature
are:
A. Sum of squared distances between paired points. This metric was used by most
algorithms in this field [188].
B. Point-to-point with colour metric [208].
C. Point-to-plane metric [187].
D. Using fractional root mean squared distance (FRMSD) which includes the fraction
of inliers when finding the distance [209].

In the next section we present a customised version of the ICP algorithm that we

applied to align between the laser-scan model and the CT-derived model.

6.2 Customised version of ICP

Since using the basic form of the ICP algorithm to match the corresponding points
between two datasets may lead the process of ICP to converge but to a local mini-
mum [209], and since many variations of the ICP algorithm have been presented in
the literature, we implemented numerous forms of ICP in order to find the best form
which presents the optimal alignment and registration between the two models in the

shortest amount of time. The settings that we chose in order to achieve the best
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performance in terms of time and accuracy of registration are:

- In terms of selection, we allow the ICP to include all the points in the registration
process. This will help the ICP algorithm to align the two models better and will
not divert the algorithm to incorrect matching. We have not used subsampling in the
selection process although random subsampling [190], uniform subsampling [189] and
normal space sampling [210] have been used in some cases in some studies because
the sampling process is a critical issue and can lead to misalignment between the two
models. The experiments that we implemented indicate that there is no considerable
time saving when we used subsampling.

- In terms of matching, we pair each point from the laser-scanned model with a cor-
responding point from the CT-derived model according to the closest point rule as
proposed in [186].

- In terms of setting an error metric to be minimized, we use the ‘sum of squared
distances’ between paired points since this metric is used by most studies in this field
[188].

Since 3D meshes normally have a large number of points, the registration/alignment
process could be time consuming. We applied some additional steps in order to
shorten the required time for the alignment process:

- A KD tree data structure is used to specify how point matching should be done
quickly. The aim of using KD trees to search for closest points is that it transforms
the process of searching the closest point to searching inside a binary tree. In this
process, the set of points is divided according to the value of the median of first
coordinates of all points. The point that corresponds to the median is set to be the
root of the binary tree. Then, the two consequential subsets are divided according
to the value of the median of their second coordinates. This process can be extended

to higher dimensional spaces as it is the case in our alignment problem since we have
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three coordinates for each point. The concept and details of the KD tree is presented
in [211].

- Point to point minimisation is employed when surface normals for the points are
not available and point to plane minimisation is employed when surface normals are
available. Point to point minimisation is based on the Singular Value Decomposi-
tion (SVD) and is usually the fastest method. Point normals will be found through
Principal Component Analysis (PCA) procedure of the 4-nearest neighbours. This
implies that the error metric, which defines the objective function, sums the squared
distances of input-model points to target-model points. Equation 6.2.1 represents
the objective function where R and T represent the final rotation and translation
matrices respectively, d and g represent the i** point in an input and target mod-
els respectively, and n represents the total number of corresponding points. Point
to plane minimisation will often yield higher accuracy. It uses linearized angles and

requires surface normals for all points.

n

TotalDist = Y (Rd; + T — g;)* (6.2.1)

=0

- Extrapolation is used so the iteration direction will be evaluated and extrapolated
if possible using the approach outlined by Besl and McKay [186].

- Detecting convergence is activated thus allowing a good short-term performance.
We will refer to the ICP algorithm that uses the above mentioned settings as ‘cus-
tomised ICP’or adjusted throughout this chapter. ICP will return the final trans-
lation T and rotation R matrices which are required to transform the vertices of
the laser-scanned model from its initial position and orientation to a new position
and orientation as presented in (6.2.2) where P and Q represent the vertices of the

laser-scanned model before and after the alignment respectively.
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Q=R+*P+T (6.2.2)

The customised version of ICP that we applied achieved great results in terms of
speed and accuracy of alignment as it will be presented in Section 6.3 , but we tried
to search for another 3D alignment approach to explore if we can get more accurate
results. We applied the basic form of a technique named Procrustes Superimposition
(PS) [212] which is performed by optimally translating, rotating and uniformly scal-
ing the objects. PS method did not achieve competitive results in some cases and

completely failed to align the two models in other cases.

6.3 Experimental Work & Results

The three objects that were used in these experiments are shown in Figure 6.2. We
chose these objects at this stage because it is easy to acquire CT data for these
objects (i.e. no ethical approval needed) and at this stage in the project we didn’t
have ethical approval. The first object is a 3D-printed scaled head of a Cantonese
chess piece, the second dataset is a plastic object in a shape of nested cubes and
the third dataset represents a plastic hemisphere. The details of these data sets
are presented in Chapter 3. The head was scanned using a hand-held laser scanner
(REVscanTM laser scanner from Handyscan 3D Creaform, Canada) where the other
two objects were scanned using (Artec Space SpiderTM laser scanner from Artec 3D,
Luxembourg) in order to use the resultant 3D meshes as a ground-truth. The two
hand-held laser scanners which were used to scan the objects are displayed in Figure
6.3.

A comparison between the results that we got from the customised ICP against the
basic form of the ICP is presented in this section. Figure 6.4 (top) shows the two mod-

els (i.e. the CT-derived model and laser-scan model) before performing an alignment
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Figure 6.2: Three objects (left): head (middle): cubes (right): dome.

Figure 6.3: (left): The REVscan™ laser scanner from Handyscan 3D (right): Artec
space spider™ laser scanner from Artec 3D.

and Figure 6.4 (bottom) shows the two models after applying the customised ICP.
The two models, as shown in Figure 6.4 (top), were completely misaligned, having
different coordinate systems, different image resolution and different point-set densi-
ties. Applying the customised ICP algorithm leads to a high level of superimposing

and registration between the two models.

Enhancements produced by the customised ICP algorithm

Table 6.1 presents a comparison between the basic form of the ICP algorithm and
the customised one in terms of execution time and average distance between the two
models. It is obvious from the table that the customised ICP requires much less time
to converge than the basic form of ICP. This is due to the use of the KD tree, point
to point minimisation and the ability to detect convergence. It is worthy to be noted
that the average distances that we got for the three objects were smaller than the CT
pixel-spacing value.

Figure 6.5 displays the two models after performing the alignment using the basic
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Figure 6.4: The two models (top): before alignment (bottom): after alignment

Table 6.1: Comparing the basic ICP algorithm with the customised ICP in terms of
execution time and average distance

Average distance(mm) Execution time(sec)
Method head cubes dome head cubes dome
Basic ICP 2.8651  3.5256 0.7346  61.80 263.26 423.45

customised ICP  0.60392 0.6192 0.47472 3.28 26.96 9.10

form of the ICP and the two models after performing the alignment using the cus-
tomised ICP. It is obvious that the two models were superimposed very well when the
customised ICP was used whereas the models were not well aligned when the basic
form of the ICP was used. There is a high possibility for the basic form of the ICP
algorithm to be trapped in local minima. This is very clear in the case of the cubes
as column 2 displays in Figure 6.5.

Figure 6.6 displays the convergence plots when we applied the basic form of the
ICP algorithm over the three objects (left column) and the convergence plots for

the same objects when we applied the customised form of the ICP algorithm (right
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column). The plots show that both of the forms are able to converge but to a local

minima in the case of the basic form of the ICP algorithm.

Head Cubes Dome

Figure 6.5: The outcomes after performing the alignment when using (top): the basic
form of ICP, (bottom): customised (adjusted) ICP.

6.4 Summary

This chapter presented a detailed description of the ICP algorithm; one of the well-
known algorithms used for 3D alignment. It then presented an overview on many
variations of the ICP algorithm. We developed a customised version of the ICP
algorithm in order to achieve the best performance in terms of time and accuracy of
alignment. The outcomes of the experiments show that the average distances between
the aligned models were smaller than the CT pixel-spacing value which ensures the
accuracy of the employed approach. The outcomes, in this chapter, are presented
visually and in tabular format to get a clear evidence on the accuracy and correctness

of the output. The next chapter will present the details of a proposed 3D overlap
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measurement approach that we developed to be used as measurement to find the

degree of alignment between 3D models.
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Chapter 7

Overlap Measurement

The evaluation of the accuracy of 3D medical image segmentation and registration
is normally performed by measuring the overlap ratio between the examined model
and the ground-truth. Consequently the reliability and accuracy of the applied over-
lap measurement play a key role in the evaluation process. This chapter presents a
3D-overlap measurement for medical volume images. For convenience we will refer
to the proposed overlap measurement as “Dice_3S5” similarity measurement through-
out this chapter. While the current overlap measurements employed in biomedical
fields were initially designed for computer graphics applications, the Dice_3S simi-
larity measurement extends 2D overlap measures that are popular for evaluating 2D
medical image segmentation to 3D medical volumes. Dice_3.S does not just produce a
figure-of-merit of the proportion of the region match but it also gives complementary
statistical information that enables the observer to assess the scale and positions of
regions/volumes of match and mismatch. The information is organised for each one
of the axial, sagittal and coronal planes which makes this measurement convenient
for medical images. Six different datasets are used in this chapter to test and validate
the results. We use two strategies in order to evaluate the proposed model (Dice_35).
The first is examining the correlation between Dice_ 35 and other overlap measure-

ments which are widely used and accepted. The second is analyzing our model’s

92
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outcomes for particular test cases in which we know in advance how the trend of the
correct outputs should be. The results support the importance of employing the pre-
sented overlap measurement, Dice 35, to evaluate the outcomes of the segmentation
and registration of medical images.

We have also employed Dice 35 in two different applications which are related to
the quality of surface simplification of volume images. For convenience, we present
the experimental work and results that are related to the surface simplification in

Appendix A.

7.1 Introduction

A typical medical volume image is a stack of 2D slice images acquired by an X-ray CT,
Magnetic Resonance Imaging (MRI), or Positron Emission Tomography (PET). The
3D overlap measurement is a measure that finds the proportion of overlap between
two 3D models (i.e. between two medical volumes in our context).

The accuracy of a segmentation and registration algorithm can be defined as the
level to which the outcomes agree with the ground truth, a so called “gold standard”
[174]. In this study, we employ the mesh which is generated from the laser scan as a
ground truth. The need for a robust and accurate overlap measurement to be used as
a measure in biomedical engineering is of great significance. This measurement should
quantify the region agreement between two volumes and consequently will reflect the
quality of the registration and segmentation processes.

A good example motivating the need for 3D overlap measurement is cone-beam
CT. Radiotherapy treatment is increasingly using cone-beam CT for monitoring pre-
treatment patient set-up. Hence it needs registration of CT volumes (rather than
images). The accuracy of the registration and segmentation processes plays a key

role in medical applications. In registration, a group of methods are employed to
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establish anatomical or functional correspondence between images/volumes obtained
at different times, with different modalities, or of different subjects [213, 214]. Reg-
istration is of vital importance for image-guided radiosurgery [215], image-guided
radiation therapy [216], interventional radiology [217], and image-guided minimally
invasive surgery [218]. For example, in image-guided minimally invasive surgery, the
registration of pre- and intra-interventional data supply a surgeon with notifications
about the current position of the used instruments relative to the planned trajectory
and the definitive target [219]. In external beam radiotherapy, registration of plan-
ning CT images and daily pre-treatment images lead to more accurate positioning for
a patient, which is important for accurate targeting of cancerous tissue while min-
imising the dose to surrounding healthy organs [11]. Moreover, 3D image registration
is of vital importance in dental surgery [220] and has numerous applications in that
field [221, 222].

The segmentation is also one of the primary procedures that are required in medi-
cal applications. The importance of segmentation comes from its ability to delineate,
characterise, and visualise regions of interest in medical volumes [223]. Segmentation
of medical volumes can be performed manually, automatically (computerized) or using
a combination of methods. However, manual segmentation is time-consuming com-
pared to automatic segmentation and the results may be prone to observer variability
whereas using computer-aided segmentation techniques have significantly improved
the accuracy of the segmentation outcomes [175] [62]. Both of the segmentation
methods (i.e. manual and automatic) need a reliable overlap measurement to quan-
tify the quality of the segmentation process and can be evaluated numerically using
appropriate measurements [224].

There are three measurements that are widely used by researchers to measure

the overlap between medical volumes. These measurements are: Hausdorff Distance
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(HD), Mean Surface Distance Error (MSDE), and Signed Distances with a Colour-
Coded Visualization (SDCCV). The distances in MSDE and SDCCV are calculated
for each point of the first surface by computing its Euclidean distance to the cor-
responding point of the second surface. The average value of absolute distances
is calculated in MSDE whereas signed distances are calculated for each point in SD-
CCV. Examples of studies that applied the MSDE and SDCCYV for evaluation include
[225, 83, 88, 80, 226, 227, 228, 229]. It is worth noting that there is no definite line
between MSDE and SDCCV and numerous studies applied the two concepts inter-
changeably as both of them use the Euclidean distance (i.e. Root Mean Square Error
(RMSE)) as a base for the comparison.

Hausdorff Distance (HD) is used to measure how far two subsets of a metric space
are from each other. It can be applied to determine the degree of similarity between
two models that are superimposed on one another [230]. Examples of studies used
HD for evaluation include [231, 232, 233, 234, 235]. HD represents the greatest of
all the distances from a point in one set to the closest point in the other set. Given

Equation (7.1.1) where ||.|| represents the Euclidean norm
h(A, B) = maz,c aminpeplla — b|| (7.1.1)
then Hausdorff distance is computed as shown in Equation (7.1.2).
H(A, B) = maz(h(A, B),h(B, A)) (7.1.2)
A review of current overlap measurements leads to some observations:

e Signed distances with colour-coded visualisation does not quantify the outcome

as a single number (i.e. figure of merit).

e Most of overlap measurements including the HD, MSDE and SDCCV measure
the degree of agreement with regard to the surface points but not for each voxel

inside the object.
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e Those overlap measurements are initially designed for general purposes and
specially for computer graphics applications but not particularly for medical
application. This means that those measurements are more appropriate to 3D

surface models than 3D solid models.

e HD is sensitive to outliers in the input data [236] which is a common case in

medical images.

e MSDE and SDCCV are sensitive to point positions and they are classified as

distance-based measurements more than overlap-based measurements [237].

e HD can sometimes produce misleading results since it finds the greatest of all
the distances from a point in one set to the closest point in the other set (i.e.

the maximum of minimums).

e [t is not an easy for distance-based error measurements including the HD, MSDE
and SDCCV to measure a precise geometric error on a highly curved surfaces
since the error calculated by these measurements on such a region is usually

small [238].

e None of those overlap measurements present an analysis with regard to the
axial, sagittal and coronal planes whereas this analysis is convenient in different

clinical cases.

Dice_3S similarity measurement produces a proportion (a number between 0 and
1) to reflect the ratio of overlap between two 3D models where 1 indicates a complete
match and 0 a complete mismatch. This overlap measurement forms a framework to
quantify the degree of agreement between two volume images. In this framework, the
overlap proportion can be measured between one surface and another surface, one

surface and one volume (i.e 3D grid), and one volume and another volume. These
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three cases are common and required in numerous medical applications. Dice 35
does not just produce, as a final output, a figure of merit of the proportion of the
region match but it gives complementary figures that allow the scale and location of
regions/volumes of match and mismatch to be visualised and subjected to statistical
analysis. These complementary figures make Dice_3S a specialised and comprehen-
sive tool to measure the overlap between medical images in particular.

Dice_3S examines the overlap ratio taking the axial, sagittal and coronal planes
into consideration. This makes it the appropriate choice for medical volume images.
It is very important to not only derive global measures but to analyse the local dis-
tribution of these errors since local distributions may immediately show where/which
kinds of anatomical shapes are not correctly matched [232]. The complementary
figures, which are offered by the overlap measurement, give the facility to help in
identifying where/which regions are not correctly matched or mismatched.

The Dice similarity coefficient (DSC) is one the most popular and used 2D overlap
measure to evaluate the outcome of the image segmentation. Dice_3S applies DSC,
which was presented earlier in this thesis in Section 2.6, in three dimensions (axial,
sagittal, and coronal). Dice_3S slices the examined objects in three dimensions and
applies DSC over the collection of all slices in each direction. This explains the
reason for naming the proposed model as Dice_3S. Since Dice_3S applies DSC, it is
insensitive to outliers. Dice 395 is designed to be overlap-based oriented measurement
and it is able to locate geometric errors on highly curved surfaces when the image fill
property is deactivated as it will be discussed in Section 7.2.

The remainder of this chapter is organised as follows: Section 7.2 presents the data
sets used in this study and describes the Dice 35S model. Section 7.3 presents three
algorithms that we follow to slice surfaces (i.e. divide them into layers). Section

7.4 presents the experimental work that is performed to evaluate the reliability of
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Dice_3S. The results are presented in Section 7.5 and discussions of these results are

presented in Section 7.6. Section 7.7 draws the conclusions for this chapter.

7.2 Materials and Methods

7.2.1 Data Sets

There are six different data sets used in this chapter (see Table 7.1). The description,
properties and sources of these data sets are presented in Chapter 3. The ‘Pelvis’ and
the ‘Knee’ data sets are used to evaluate the performance of the overlap measurement
when it is applied to measure the overlap between two surfaces. The ‘Cubes’ and the
‘Dome’ data sets are used to measure the overlap between one surface and one volume
(3D-grid) since we have acquired a laser scan (surface) and a CT scan (volume) for
those two objects. The ‘Headl’and the ‘Head2’ data sets are used to evaluate the

overlap measurement when it is applied to measure the overlap between two volumes.

Table 7.1: Description of data sets used in this study.

Dataset Format
Pelvis STL file
Knee STL file

Cubes, Dome STL file + CT DICOM images
Headl, Head2 CT DICOM images

7.2.2 Methods

The proposed similarity measurement (Dice_3S), shown as a model in Figure 7.1,
evaluates numerically the degree of overlap between two 3D models. It accepts two 3D
models as inputs and classifies each input as a surface or a volume. According to that,
the approach selects one of three paths to measure the proportion of overlap. The first
one represents the case in which the two inputs are surfaces. This case is common in

medical applications. An example of this case is performing registration between two
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surfaces acquired for the same object by two acquisition devices. Another example
of that case is evaluating the quality of segmentation of the 3D model by comparing
it to a ground-truth surface [84, 89, 239, 90]. The second path represents the case in
which one of the inputs is a surface and the other is a volume (i.e. 3D grid of volume
data). An example of this case is when an evaluation is needed for a CT-derived
model by comparing it with a surface mesh as a ground truth [11, 5, 106, 240, 82].
The third path represents the case when both the inputs are a 3D grid of voxels. An
example of this case is when an object is CT-scanned by different CT scanners to
evaluate the accuracy of each scanner [241, 242, 243, 244, 245].

In the case of surface ~ volume matching, the first step that Dice_3S will perform
is extracting the isosurface from the volume to form a surface. This extraction is done
by a common algorithm called the Marching Cubes algorithm [19]. After that, the
slicing process takes place by performing plane/triangle intersections for each surface
in the three different planes (i.e. axial, sagittal and coronal). The slicing process

consists mainly of :
e Simplifying the mesh
e Plane/triangle intersection
e Projection of intersection points into 2D-image pixels

The following section presents three algorithms that we follow to slice surfaces.

7.3 The Slicing Process

7.3.1 Simplifying the Mesh

The aim of this step is to extract the vertices from the mesh and then to remove

the duplicated vertices, a process named simplifying the mesh. Removing duplicated
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Figure 7.1: The proposed model of measuring the degree of overlap between two
medical volumes.
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vertices will reduce the computational cost and will not affect the quality of the
outcomes.

Suppose that a mesh has Ny facets and NN, vertices, then the relation between
the two values can be described as in Equation (7.3.1). Observing that the number
of vertices is 3 x Ny and noting that many of the triangle facets share vertices, then
there will be redundant vertices. Removing these duplicated vertices will make a

significant difference in terms of the required memory and time.
Ny < N, %3 (7.3.1)

The steps that trace the process that we follow to simplify the mesh is displayed in
Algorithm 3. In the algorithm, View will store the coordinates of triangles’ vertices
without repetition, and Fnew will keep a record of which vertices to connect according
to the new ordered non-duplicated values stored inside Viaew. Both of the two struc-
tures Vinew and Fuew will be used later instead of V and F respectively as inputs to

the next step when performing the plane/triangle intersection.

Algorithm 3 Simplifying the mesh

Declarations

V' a structure of vertices before simplifying.

View: a structure of vertices after simplifying.

F: a structure of facets’labels before simplifying.
Flew: a structure of facets’ labels after simplifying.
Procedure

View < unique_rows_of (V)

Sort Vi,ew

Create indexN such that V(i) <= Ve (indexN)
Frew < index N (F)

7.3.2 Plane/Triangle Intersection

The aim of this step is to perform an intersection between the triangles of the mesh

and the group of planes located at equal distance from each other. There are a group
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Algorithm 4 Getting intersection segments

1. current_perspective = {Azial, Sagittal, coronal}.

2: intersection_points: intersection points between each facet and planes.
3: for 1+ 1,3 do

4: for all plane(p) € current_perspective(i) do

5: Get a point @ lies on that plane.

6: Find the normal N of that plane.

7 for row < 1, num_of _rows_in_F,.,, do

8: Construct a triangle (¢) of 3 vertices such that:
9: Pl + Vyew (Frew(row, 1))

10: P2 Ve (Frew(row, 2), )

11: P3 < Vyew(Frew(row, 3), )

12: Intersect p with ¢

13: if intersection_exist then

14: intersection_points <— coordinates
15: end if

16: end for

17: end for

18: end for

of planes located in axial direction, a group of planes in sagittal direction, and a group
of planes in coronal direction. Notice that each plane is defined by a point that lies
on it ) and a normal vector N, and each triangle is defined by three vertices (P1,
P2 and P3).

Algorithm 4 presents the procedure that we follow to get the intersection line
segments between triangles and planes. In this algorithm we calculate the intersection
points between each facet of the surface and planes to store those points in a structure
named intersection_points. It is worth noting that the process of getting the corners
of each triangle (i.e. P1, P2 and P3) is not performed directly in Algorithm 4 since
we reorganised the order of storing the points when we simplified the mesh in the
previous step. Instead of that, we use the stored labels inside Frew as an index to
pick the vertex from Vaew at that specific index. The loop which starts at line 7 will

iterate through each facet in the mesh in order to find the intersection segments.
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7.3.3 Projection of Intersection Points into Image Pixels

Since surface meshes have coordinates in a “space-domain” which represent a contin-
uous range of values (float numbers), we follow a method to map these continuous
values to discrete values and then project them into 2D images. Algorithm 5 rep-
resents the procedure that we follow to generate a stack of 2D binary images from
the surface model. As Algorithm 5 displays, there are some declarations and initial
calculations at the beginning of the algorithm followed by the procedure. The aim of
that procedure is to translate the continuous range of values in 3D space to values
located on the slice planes. These slice planes will produce a stack of binary images
for each surface model. The two stacks of 2D images will be later compared via DSC
[74].

The procedure starts by creating a black slice with a number of rows equal to
height and a number of columns equal to width. These values of height and width are
unified for each slice in the same perspective. So the algorithm will generate a stack
of 2D slices of the same height and width for the axial perspective, another stack of
2D slices with different height and width for the sagittal perspective, and another one
for the coronal perspective. After that, two main iterations take place. The first one
(line 14-35) is responsible for quantisation by taking the intersection_points generated
from the previous step (i.e. plane/triangle intersection) and projecting each point to
the nearest pixel location in the output slice. The second main iteration (line 36-42)
employs the Bresenham’s line algorithm [246] to connect between the end points of
each intersection segment and setting the corresponding pixels at those locations.
The final output of Algorithm 5 will be a stack of binary images to represent the

outer surface of the object.
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Algorithm 5 Generating 2D slices from the mesh

Initializations

minX: min value stored in (x) triangle’s coordinates.

mazX: max value stored in (x) triangle’s coordinates.

minY: min value stored in (y) triangle’s coordinates.

maxY: max value stored in (y) triangle’s coordinates.

width: the width of each slice.

height: the height of each slice.

r_data: a row vector of length = height.

c_data: a row vector of length = width.

Initial Calculations

9: Fill r_data with evenly spaced points in [minX ,mazxX].

10: space_rows < (maxX —minX)/(height — 1).

11: Fill c_data with evenly spaced points in [minY ,mazY].

12: space_cols < (mazxY — minY")/(width — 1).
Procedure

13: Create a black slice of size (width x height)

14: for all row; € intersection_points do

15: x < the_first_element_in_row;
16: for j < 1, height do

17: condl = x > r_data(j)

18: cond2 = x < (r_data(j) + space_rows/2)
19: if condl&cond2 then

20: randex < j

21: else

22: rander < j + 1

23: end if

24: end for

25: y < the_second_element_in_row;
26: for j «+ 1, width do

27: condl =y > c_data(y)

28: cond2 =y < (c-data(j) + space_cols/2)
29: if condl&cond2 then

30: yandex < j

31: else

32: yandex <— 7+ 1

33: end if

34: end for

35: end for

36: for all end_points € intersection_segments do

37: Apply Bresenham algorithm to connect end_points.
38: Update x_index and y_index

39: for k < 1,length_of _x_index do

40: Slice(z_index(k),y-index(k)) < 1

41: end for

42: end for
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(b)

Figure 7.2: 2D binary image generated after applying Algorithm 5 over the Pelvis
dataset (a): Without activating the automatic fill (b): activating the automatic fill.

7.3.4 Filling the Slices

The presented approach offers the option to fill or not to fill the slices which represent
the outer surface of the object (see Figure 7.2). The algorithm that is described in
[127] is used for filling the slices automatically. This algorithm performs a flood-fill
operation on background pixels based on morphological reconstruction. We recom-
mend deactivating the automatic-filling option when the contour is of interest (e.g
when the focus of research is to find an exact boundary delimitation). We recommend
activating the automatic-filling when the general alignment and overlap is of interest.

Equation 7.3.2 displays how DSC is calculated

ON(AN B)

b5t = N(A) + N(B)

(7.3.2)

Where A and B represent the first and second sets respectively and N() refers to the
number of pixels in the enclosed set. Dice_3S finds three separated values of DSC
one for each plane (axial, sagittal, and coronal). These three values can be averaged
to produce the mean or displayed individually according to the requirement of the
examined case.

Since DSC measures the ratio between the number of white pixels common in the

two images to a total number of white pixels in the two image, its value can change
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dramatically when no-filling option is activated if the total number of white pixels

common in the two images changes slightly.

7.4 Experimental Work

The experimental work in this chapter aims to evaluate the reasonability of the out-
come generated by Dice_3S5. We use two strategies in order to analyze Dice_3S. The
first is examining the correlation between Dice_3S and the outcome of the Root Mean
Square Error measurement (RM SFE) and Hausdorff distance (H D) as these two mea-
surements are widely used and accepted by researchers. The second is analyzing our
Dice_3S outcomes for particular test cases (shown in Table 7.2) in which we know in
advance how the trend of the outputs should be.

The experiments are designed to evaluate the reliability of the outcomes produced
by 3D overlap measurements when a surface is compared with a surface, surface with
a volume, and volume with a volume. Table 7.2 displays the test cases that have been
performed and the data sets that have been used for each input.

The outcomes that are generated when applying the test cases are investigated
and compared with the outcomes of the Root Mean Square Error (RMSE) and the
Hausdorff Distance (HD) method. Note that RMSE measurement is the measure-
ment that is used by MSDE and SDCCYV to find the distances. The results of those

comparisons are presented in Section 7.5.

7.5 Results

As mentioned in Section 7.4 we design the experiments to measure the overlap between
two surfaces, between one surface and one volume, and between two volumes. This

section focuses on presenting the results whereas Section 7.6 discusses these results.
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Table 7.2: Description of the test cases used in the experimental part and their
corresponding data sets.

Inputs Sets Test Cases
Surface ~ Surface  Pelvis The same surface
Knee Rotate the surface 2 degrees in x direction

Rotate the surface 2 degrees in y direction
Rotate the surface 2 degrees in x direction
Rotate the surface 2 degrees in 3 directions
Rotate the surface 5 degrees in x direction
Rotate the surface 5 degrees in y direction
Rotate the surface 5 degrees in z direction
Rotate the surface 5 degrees in 3 directions
Rotate the surface 15 degrees in x direction
Rotate the surface 15 degrees in y direction
Rotate the surface 15 degrees in z direction
Rotate the surface 15 degrees in 3 directions
Translate the surface 2% in y direction
Translate the surface 5% in y direction
Translate the surface 25% in y direction
Completely separate the objects

Surface ~ Volume Cubes The same as test cases in the above
Dome
Volume~Volume Headl The same volume
Head2 Random voxels inverting (percenatge = 5%)

Random voxels inverting (percenatge = 20%)
Random voxels inverting (percenatge = 35%)
Completely inverted voxels

Inverting specific column in each slice

Surface ~ Surface Overlap

Table 7.3 displays the values that are generated by Dice_3S, RMSE, and HD when
they are applied over the ‘Pelvis’and ‘Knee’data sets. These experiments over the
‘Pelvis’ and ‘Knee’ data sets are examples on applying the overlap measurements be-
tween two surfaces.

Figure 7.3 displays six bar charts that Dice 3S generates for axial, sagittal and
coronal perspectives when it is run to find the ratio of overlap between the original
surface of the Pelvis dataset and the same surface after translating it 2% and 5% in
y-direction (Row#14 and Row#15 in Table 7.3). Figure 7.3 (b) and (e), represents
the bar charts of the sagittal plane which show that the number of images that have
a zero similarity ratio (i.e. identified by a red ellipse) when the dataset is translated
5% is greater than the number of images when it is translated by 2%. This outcome

is the expected result for translation in the y-direction only. Note that the bar charts
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Table 7.3: Surface ~ Surface overlap measurements for different test cases of axial,

sagittal and coronal views.

Row# Case Dice_3S RMSE HD
Axial Sagittal Coronal Average
Pelvis
1 Same 1.00000  1.00000 1.00000 1.0000 0.0000 0.00
2 Rot_2deg_xdir 0.91849  0.87023  0.8983 0.8957 0.7981 1811
3 Rot_2deg_ydir 0.86423  0.87877  0.8608 0.8679 0.9859 2531
4 Rot_2deg_zdir 0.86566  0.83477  0.88539 0.8619 0.9144 2597
5 Rot_2deg_3dir 0.82493  0.79827  0.82531 0.8162 1.2269 2490
6 Rot_5deg_xdir 0.8131 0.77446  0.7899 0.7925 1.4078 1871
7 Rot_5deg_ydir 0.71122  0.75858 0.70818 0.7260 1.6659 2549
8 Rot_5deg_zdir 0.72988  0.68254  0.76811 0.7268 1.6831 2544
9 Rot_5deg-3dir 0.65774  0.64804 0.64529 0.6504 2.1291 2501
10 Rot_15deg_xdir 0.54668 0.50139 0.51741 0.5218 3.0101 1985
11 Rot_15deg_ydir 0.43425  0.50979  0.40788 0.4506 4.1092 2635
12 Rot_15deg_zdir 0.42622  0.38793 0.46384  0.4260 4.1253 2533
18 Rot_15deg_3dir 0.34392  0.33966  0.31900 0.3342 5.3131 2564
14 Trans_02perc_ydir 0.87093  0.79052 0.87813  0.8465 0.9858 99
15 Trans-05perc_ydir 0.77063  0.6625 0.78236 0.7385 1.7848 248
16 Trans_25perc_ydir 0.11866  0.087385 0.13057 0.1122 7.6134 1240
17 Non_overlap 0.0000 0.0000 0.0000 0.0000 64.3856 8846
Knee
18 Same 1.00000  1.00000 1.00000 1.0000 0.0000 0.00
19 Rot_2deg_xdir 0.9196 0.83161 0.8941 0.8818 2.6070 608
20 Rot_2deg_ydir 0.82128 0.92154 0.87666 0.8732 2.4930 24312
21 Rot_2deg_zdir 0.94411 0.95532  0.98071 0.9600 1.1942 23906
22 Rot_2deg_3dir 0.81134  0.81561 0.91447 0.8471 3.1930 24449
23 Rot_5deg_zdir 0.80689  0.68254  0.7503 0.7466 5.7851 1523
24 Rot_5deg_ydir 0.6515 0.82636  0.73783  0.7386 5.4974 24796
25 Rot_5deg_zdir 0.88337  0.9131 0.95502 0.9172 2.0253 24018
26 Rot_5deg-3dir 0.63208 0.66772 0.81023 0.7033 7.0673 25031
27 Rot_15deg_xzdir 0.53832  0.3862 0.42773  0.4507 15.5593 4578
28 Rot_15deg_ydir 0.37252  0.60694 0.45142 0.4770 14.7794 24199
29 Rot_15deg_zdir 0.72557  0.81077 0.87932  0.8052 4.9550 24218
30 Rot_15deg_-3dir 0.32311  0.39495 0.56676  0.4283 18.8890 24072
31 Trans_02perc_ydir 0.93367  0.86478  0.94484 0.9144 2.1983 514
32 Trans_0bperc_ydir 0.83781 0.73161 0.86625 0.8119 4.9985 1286
33 Trans_25perc_ydir 0.38327  0.31021 0.46253 0.3853 20.6401 6523
34 Non_overlap 0.0000 0.0000 0.0000 0.0000 134.694 22483
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in Figure 7.3 (a),(c),(d) and (f), which represent the axial and coronal planes, do not

have images of zero similarity ratio since the translation was done in y-direction only.

Surface ~ Volume Overlap

Table 7.4 displays the values that are generated by Dice 3S, RMSE, and HD when
they are applied over the ‘Cubes’ and ‘Dome’ data sets. These experiments over the
‘Cubes’and ‘Dome’ data sets are examples on applying the overlap measurements

between one surface and one volume.

Volume ~ Volume Overlap

Table 7.5 displays the values that are generated by Dice_3S when it is applied over
‘Headl’ and ‘Head2’. The test cases that are performed here are:
- The same volume image
- 5% random changes over the original voxel values
- 20% random changes over the original voxel values
- 35% random changes over the original voxel values
- Completely inverted-voxels of the same volume image

The values in Table 7.5 indicate that the results generated by Dice_3S are rea-
sonable when it is used to find the overlap between two volumes. In the first case
when the volume is compared to itself the overlap measurement gives the degree of
similarity equals one (i.e. total match) which is expected. In the case when we in-
verted the white voxels to black ones the overlap measurement gives the degree of
similarity equals zero (i.e. no overlap) which is expected as well. The values also
show a clear agreement between the degree the similarity of the two inputs and the
value generated by the overlap measurement. As the percentage of random changes
increases in the input model (i.e. less degree of similarity), the value generated by

the overlap measurement decreases. This supports the ability of Dice_3S to reflect
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Figure 7.3: Bar charts that Dice_3S generates for axial (a and d), sagittal (b and e)
and coronal (c and f) perspectives. These charts are produced when it is run to find
the ratio of overlap between the original surface of the Pelvis dataset and the same
surface after translating it 2% in y-direction (a, b and ¢) and 5% in y-direction (d,
e and f) (Row#14 and Row#15 in Table 7.3). (b) and (e) show that the number
of images that have a zero similarity ratio (i.e. identified by a red ellipse) when the
dataset is translated 5% is greater than that number of images when it is translated

2%.
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Table 7.4: Surface ~ Volume overlap measurements for different test cases of axial,

sagittal and coronal views.

Row# Case Dice_3S RMSE HD
Axial Sagittal Coronal Average
Cubes
1 Same 1.0000 1.0000 1.0000 1.0000 0.0000 0.00
2 Rot_2deg_xdir 0.96143 0.91862 0.94637 0.9421 0.8103 419
3 Rot_2deg_ydir 0.89718 0.96854  0.94634 0.9374 0.6429 478
4 Rot_2deg_zdir 0.98502  0.99687 0.99834 0.9934 0.8788 473
5 Rot_2deg_3dir 0.88539  0.90944 0.90868 0.9012 1.3440 473
6 Rot_5deg_xdir 0.90417 0.83176 0.86346 0.8665 1.8172 419
7 Rot_5deg_ydir 0.81104 0.92159 0.86346 0.8654 1.6069 478
8 Rot_5deg_zdir 0.96777  0.99388  0.99693 0.9862 2.1954 466
9 Rot_5deg_3dir 0.78912  0.81934 0.8146 0.8077 2.7825 477
10 Rot_15deg_xdir 0.76907  0.63786  0.64748 0.6848 3.1058 255
11 Rot_15deg_ydir 0.62499  0.78981 0.64749 0.6874 2.5553 476
12 Rot_15deg_zdir 0.96585  0.99265  0.99591 0.9848 2.9046 489
18 Rot_15deg_3dir 0.57462  0.63946 0.55562 0.5899 3.9880 483
14 Trans_02perc_ydir 0.94798  0.90552  0.94737 0.9336 1.2386 23
15 Trans-05perc_ydir 0.88442  0.79355 0.88189 0.8533 3.0033 58
16 Trans_25perc_ydir 0.55683  0.41948 0.54984  0.5087 8.0510 294
17 Non_overlap 0.0000 0.0000 0.0000 0.0000 44.9030 1013
Dome
18 Same 1.00000  1.00000 1.00000 1.0000 0.0000 0.00
19 Rot_2deg_xdir 0.91849  0.87023  0.8983 0.8957 0.5546 65
20 Rot_2deg_ydir 0.86423  0.87877  0.8608 0.8679 0.5762 2495
21 Rot_2deg_zdir 0.86566  0.83477  0.88539  0.8619 0.1164 2653
22 Rot_2deg_3dir 0.82493 0.79827 0.82531 0.8162 0.7182 2639
23 Rot_5deg_zdir 0.81310  0.77446  0.7899 0.7925 1.1001 162
24 Rot_5deg_ydir 0.71122  0.75858 0.70818 0.7260 1.1779 2727
25 Rot_5deg_zdir 0.72988  0.68254  0.76811 0.7268 0.1960 2654
26 Rot_5deg_3dir 0.65774  0.64804 0.64529 0.6504 1.5778 2617
27 Rot_15deg_xzdir 0.54668 0.50139 0.51741 0.5218 3.1325 486
28 Rot_15deg_ydir 0.43425 0.50979  0.40788 0.4506 3.4278 2663
29 Rot_15deg_zdir 0.42622  0.38793 0.46384  0.4260 0.2668 2639
30 Rot_15deg_3dir 0.34392  0.33966  0.3190 0.3342 4.6057 2650
31 Trans_02perc_ydir 0.87093 0.79052 0.87813  0.8465 0.7953 168
32 Trans_0bperc_ydir 0.77063  0.6625 0.78236 0.7385 1.7378 421
33 Trans_25perc_ydir 0.11866  0.087385 0.13057 0.1122 8.7223 2103
34 Non_overlap 0.0000 0.0000 0.0000 0.0000 74.3029 6441
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Table 7.5: Volume ~ Volume overlap measurements for different test cases of axial,
sagittal and coronal views.

DataSet Case Axial Sagittal Coronal Average

Headl same 1.00000  1.00000  1.00000 1.0000
perc=0.05 0.97507 0.97502 0.97522 0.9751
perc=0.20 0.90055 0.90025 0.90045 0.9004
perc=0.35 0.82631 0.82593  0.8265 0.8262
inverted 0.00000  0.00000 0.00000 0.0000

Head2 same 1.00000  1.00000  1.00000  1.0000
perc=0.05 0.97505 0.97519  0.9749 0.9750
perc=0.20 0.90028 0.89805 0.89991 0.8994
perc=0.35 0.82693 0.82684  0.82609 0.8266
inverted 0.00000  0.00000  0.00000  0.0000

Figure 7.4: The values of the same specific column are inverted (from white to black)
in each slice.

to which degree the overlap is between the two input models when both of the inputs
represent volume data.

In order to evaluate the ability of the overlap measurement to produce correct
outcomes for each plane (axial, sagittal or coronal) separately, we inverted the values
of the same specific column in each slice (see Figure 7.4) from white to black and
applied the overlap measurement. The values of these measurements are displayed
in Table 7.6. The values indicate that the minimum value of similarity ratio occurs
in the sagittal plane, which supports the ability of the overlap measurement to sense

the source of any non-overlapped regions.
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Table 7.6: Volume ~ Volume overlap measurements when the values of the same
specific column in each slice are inverted.

DataSet  Plane Avg. Dice Max_Dice Min_Dice

Headl Axial 0.99939 1.0000 0.99837
Sagittal ~ 0.99805 1.0000 0.0000
Coronal  0.99931 1.0000 0.99634
Head2 Axial 0.99942 1.0000 0.99736
Sagittal ~ 0.99802 1.0000 0.0000
Coronal  0.99935 1.0000 0.99074

Computing the Correlation

Measuring the linear dependence of two random variables represent the value of the
correlation coefficient. The correlation coefficient has a value ranges from (-1) to
(+1), where (+1) indicates to a total positive linear correlation (all data points lying
on a line for which set2 increases as setl increases), (-1) to a total negative linear
correlation (all data points lying on a line for which set2 decreases as setl increases),
and (0) to no linear correlation between the two random variables. Table 7.7 displays
the correlation coefficients, pyqiue, lower and upper bounds for a 95% confidence in-
terval for each coefficient between Dice_3S, RMSE and HD. In this context pyaiue
takes a value range from 0 to 1 for testing the hypothesis (i.e. null hypothesis) that
there is no relationship between the observed phenomena. The more smaller value of
Pualue Means the corresponding correlation coefficient is considered more significant.
In other words, values close to 0 correspond to a low probability of observing the null
hypothesis. Numerous studies presented interpretation of the values of correlation
coefficients [247] but all such criteria are considered arbitrary to some extent [248].
The computations in the first part of Table 7.7 (i.e. between Dice_3S and RMSFE)
lead to some observations. Firstly, the results indicate that there is a good correla-
tion between Dice 3S and RMSE (average=-0.7559) giving that we have a very
small number of points in each data set (17 values). This supports the fact that

our proposed overlap measurement correlates with one of the most widely accepted
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Table 7.7: Correlation coefficients, pyaiue, lower and upper bounds for a 95% confi-
dence interval for each coefficient between Dice 3S, RMSE and HD.

Data set  Correlation  P-value L-bound R-bound

Dice.3S ~ RMSE

Pelvis -0.6727 0.0031 -0.8715 -0.2838
Knee -0.8115 0.0001 -0.9296 -0.5425
Cubes -0.8838 0.0000 -0.9576 -0.7009
Dome -0.6558 0.0043 -0.8641 -0.2558
Average -0.7559 0.0018 N/A N/A
Dice3S ~ HD

Pelvis -0.6004 0.0108 -0.8389 -0.1684
Knee -0.1709 0.5119 -0.6021 0.3374
Cubes -0.5768 0.0153 -0.8279 -0.1331
Dome -0.6343 0.0062 -0.8545 -0.2211
Average -0.4956 0.1360 N/A N/A
RMSE ~ HD

Pelvis 0.8803 0.0000 0.6927 0.9563
Knee 0.1741 0.5040 -0.3346 0.6042
Cubes 0.6698 0.0033 0.2789 0.8703
Dome 0.7117 0.0014 0.3512 0.8884
Average  0.6089 0.1271 N/A N/A

measures. Secondly, the correlation coefficient value is a negative value. The rea-
son of that is while the proportion of similarity ratio is getting bigger, the value of
Dice_3S increases whereas the value of RMSFE decreases. The third observation is
the small value of py.ue (0.0018 as an average of the four data sets) which refers to a
low probability of observing the null hypothesis.

We mentioned in Section 7.1 that HD can sometimes produce misleading re-
sults. This interprets the reason of the relatively low values of the correlation be-
tween (Dice_3S and HD) and (Dice_3S and RMS) when compared to (Dice_3S and
RMSE). The pyaye that is generated when we computed the correlation between
(HD and Dice_3S) and (HD and RMSE) for the knee data set is very high (0.5119

and 0.5040) which indicates that the HD leads to misleading results in this case.

7.6 Discussion

The results that are generated by Dice_3S support the fact of the ability of this

measurement to avoid the drawbacks of the current overlap measurements. While
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most of the current overlap measurements finds the degree of similarity with regard
to the surface points, Dice 3.5 is able to measure the similarities not only with two
surfaces but even with solid models. Since Dice_3S applies the DSC so this makes
Dice_3S insensitive to outliers whereas some of the current overlap measurements are
sensitive.

The evaluation through slicing the object (dividing the object into layers) is ap-
propriate for the applications that use 3D-printing since the 3D-printing process takes
a 3D mesh and translates this model into individual layers [249, 42]. So the accuracy,
that we got for the similarity ratio and the physical distances between individual
slices, correlates with the accuracy that we will get when the object is manufactured
through the 3D-printing process.

Figure 7.5 displays a screen shot for the Matlab GUI tool that we created to run
Dice 3S. Table 7.3 and Table 7.4 in Section 7.5 presented some observations that
we are discussing here. The first observation is that the results that are generated
by Dice_3S are correlated with the results generated by the RMSE measure which is
considered one of the most widely accepted measure used in research. This correlation
reinforces the reliability of Dice_3S. The second observation is that the outcomes of
Dice 35S presented in those two tables are rational and reasonable in the context
of geometry and transformation. For example, the similarity ratio when the object
is rotated 15 degrees is less than the similarity ratio when the object is rotated 5
degrees, and the similarity ratio for the later is less than the similarity ratio when the
object is rotated 2 degrees (See as an example row#5, row#9 and row#13 in Table
7.4). Another example on the rationality of the outcomes, the similarity ratio when
the object is translated 2% is greater than when it is translated 5% and the later is
greater than when it is translated 25% (see as an example row#31-row#33 in Table

7.3). The third observation is that the complementary values generated by Dice 35
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Figure 7.5:

A screen shot for the Matlab GUI tool of Dice_3S.



CHAPTER 7. OVERLAP MEASUREMENT 117

could help in recognising the cause of mismatch and then could lead to help any
other alignment-algorithm to better alignment. For example (see row#14-row#16
and row#31-row#33 in Table 7.3 and the same rows in Table 7.4), when the object
is translated in the y-direction (i.e. sagittal view), the outcomes indicate that the
similarity ratio in sagittal view is the lowest when compared to the similarity ratio in
axial and coronal views. Another example (see row#2 row#6 and row#10 in Table
7.4), when the object is rotated about the x-axis (i.e. axial view), the outcomes
indicate that the similarity ratio in axial view is the highest when compared to the
similarity ratio in sagittal and coronal views.

With regard to the use of image filling; We present in Appendix A in Table A.1,
A.2 and A.3 the average similarity ratios with and without using the automatic fill of
images. There are two observations on these values. The first one is that the overlap
measurement becomes more sensitive when the automatic fill of images is deactivated
since the number of common white pixels becomes low comparing to the total number
of white pixels in the two images. The second observation is that the values generated
when the image fill is activated agree with the values generated when the image fill
is deactivated. This agreement is obvious in Table A.1, A.2 and A.3 for all rows
with just one exception in row#10 and row#11 in Table A.2 where the similarity in
row#11 is less than in row#10 (with-filling column) whereas the similarity in row#11
is greater than in row#10 (no-filling column). This can be understood when we know
that the similarity values in both rows are very close to each other as the difference
between the two values is less than 0.0006.

It is worth noting that Dice 3S is robust to partial volume effects (See Figure
7.6). That is because Dice_3S takes 3 perspectives (i.e. axial, sagittal and coronal)
into consideration when it measures the proportion of overlap between two objects.

This leads to more accurate results for partial volume estimate.
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Figure 7.6: The three different perspectives intersect the voxel space in different
positions producing more accurate results for partial volume estimate.

The standard deviation of the DSC for each image slice is supplied by Dice_3S
as a complementary value. High values of the standard deviation indicates that the
similarity ratio between the corresponding 2D images are spread out over a wide range
of values. This in turn means there are a proportion of outliers and then the figures
that display the similarity ratio for each slice should be investigated to recognise the
images which cause that.

The axial, sagittal and coronal analysis figures that are supplied by Dice_3S can
lead to recognise the regions/positions of mismatch or lower overlap. For example
the bar charts, shown in Figure 7.7, are produced by Dice_3S to find the proportion
of overlap between a 3D model of a head and an edited version of that model. To
simplify, a delineation of a head is shown in Figure 7.8(a) and the edited version
of that model is shown in Figure 7.8(b). Notice that the editing is performed over
the region that is shown in red colour. The slicing process in our approach generates
(102,61,74) images in axial, sagittal and coronal directions respectively. Having a look
over the three bar charts in Figure 7.7 it can be seen that there is a low proportion
of similarity on the left half of the top region of the head (displayed in red in Figure

7.8(b)). The first 50% (30 images) in the sagittal chart have a lower value of similarity
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Figure 7.7: Bar charts generated by Dice_3S to find similarity ratios between a head
displayed in Figure 7.8(a) and another edited version of that head displayed in Figure
7.8(b). (left): axial, (middle): sagittal, and (right): coronal
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Figure 7.8: (a) Delineation of a head shows the axial, sagittal and coronal perspectives
(imported from [3] and edited) (b) The region that has a low overlap is displayed in
red.

than others which means a mismatch in the left half of the head, and the first 20% (20
images) in the axial chart have a lower value of similarity than others which means a
mismatch in the top region of the head. The proportion of similarity of the images in
the coronal direction show that all the images have convergent values which indicates

that the problem does not occur at specific region when we direct from the front of

the head to the back.
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7.7 Summary

This chapter presented a model to measure the 3D-overlap ratio between medical
volume images. The proposed overlap measurement (Dice_3S) plays a key role in
the process of quantifying the quality of the image segmentation and registration. It
has a number of characteristics; firstly it presents a figure-of-merit to quantify the
proportion of overlap between medical volume images. Secondly, it accepts as inputs
two surfaces, two 3D-grid, or one surface and one 3D-grid. Thirdly, it gives comple-
mentary figures of statistical use that lead to recognise the amount and positions of
regions of match and mismatch. Fourthly, it examines the overlap ratio taking the
axial, sagittal and coronal planes into consideration which makes it convenient for
medical applications. Fifthly, it is insensitive to outliers which makes this measure-
ment of vital importance for medical images in particular. Sixthly it does not need
to orient or position the objects under-evaluation in specific pose. It takes the two
objects as they are and starts the evaluation without the need for any initialisation
or specific setting and furthermore it is able to locate geometric errors on a highly
curved surfaces.

An intensive evaluation, over six different data sets with different test cases, has
been performed to validate the outcomes of Dice 3S. The values that were generated
by Dice_3S were compared with the values that are generated by other three widely-
accepted overlap measurements. The correlation and rationality of the outcomes of
Dice_3S are evident. The analysis that we presented in this study indicates that
Dice_3S presents complementary values that describe the regions of overlaps with
regards to the axial, sagittal, and coronal planes which makes this measurement
convenient for medical volume images.

Down-sampling (i.e. size-reduction) of medical volume images is a critical issue

since high-density volume images need high resources (memory, graphic cards, CPU,
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...) and since over-downsampling can decrease the quality of the volume image.
We employed Dice 3S to evaluate the effect caused by the Quadric Edge Collapse
Decimation technique and the Uniform Mesh Resampling technique, and to find the
optimal value of the parameter o in Poisson Surface Reconstruction technique. The

results of these experiments are displayed in Appendix A.



Chapter 8

Pre-clinical Trial

The evaluation of segmentation of CT medical images to construct CT-derived models
is gaining importance since it is required in many applications such as radiotherapy
treatment, the diagnosis of malignant tumours and guiding surgical and remedial
procedures. This chapter presents a pre-clinical trial of an automatic segmentation
pipeline that is the main component in a system designed to automatically generate
a 3D model that in turn can be printed to create an immobilisation shell. The
focus of this chapter is to introduce a novel pipeline that can be used to evaluate
the accuracy of segmenting a CT volume by comparing to a 3D ground-truth model
acquired using a laser scanner. Section 8.1 presents an overview on what has been
used in the previous studies as a ground-truth. Section 8.2 explains in detail the steps
of the proposed pipeline and how it can be employed to evaluate the accuracy of the
segmentation methods. The experimental work is presented in Section 8.3 and the

results are displayed in Section 8.4. Section 8.5 draws a conclusion for this chapter.

8.1 Introduction

This chapter introduces a novel pipeline that can be used to evaluate the accuracy
of medical image segmentation techniques when a 3D mesh is employed as a ground-

truth (e.g laser-scan mesh). In terms of selecting a ground-truth, there are numerous
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studies that use a 2D manual segmentation as a ground-truth to evaluate the accu-
racy of the segmentation process for CT-derived models. For example: [250] used
the manual segmentation as a ground-truth to segment and reconstruct a newborn’s
skull, [251] to segment the kidney into multiple components, [252] for segmentation of
muscle and fat tissues from CT images to estimate body composition, [253] for crown
segmentation from CT images with metal artefacts, [254] to segment the hematoma
region from CT images and [255] for 3D medical image segmentation.

There are many other studies that used real physical measurements as a ground-
truth using a calliper or a coordinate measuring machine and compared them with
linear measurements of the images. For example: the authors in [256] used linear
measurements to compare the depth and diameter of simulated bone defects in an
acrylic block and a human mandible with predetermined machined dimensions to
validate whether Cone Beam Computed Tomography (CBCT) measurements were
precise. In [257], a geometric measuring object made of polymethylmethacrylate
whose geometry is exactly known was used to determine the geometric accuracy of
CBCT and to evaluate their convenience for implant planning. In [258], the authors
determined the accuracy of measuring linear distances between landmarks commonly
used in orthodontic analysis on a human skull using two CBCT systems and compared
their readings with physical measures using a calliper. A calliper was used in [259]
to evaluate the accuracy of the linear measurements obtained in CT images when
compared with measurements obtained in dry skulls. In [240], three 3D scanning
systems were evaluated using the physical linear measurements as a ground truth
to evaluate the accuracy of standard anthropometric linear measurements. Other
examples of using real physical measurements as a ground-truth include [260, 231, 261]

There are also many other studies which employed the laser-scan mesh as a ground-

truth as it is presented in Chapter 3. Examples of those studies include [80, 81,
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82, 83, 84, 85, 87, 88, 89, 90, 91]. Manual segmentation is time consuming and
prone to error. Real physical measurements do not lead to accurate results in our
research project since attempting to accurately measure the human head would be a
challenging task. On the other hand, laser scanning is a fast process when compared
to manual segmentation, not subjective as is the case in manual segmentation, and
it can lead to an accurate representation given the precision of scanners available on

the market.

8.2 The Proposed Pipeline

The proposed pipeline consists of various steps that produce in the end a value which
represents the ratio of similarity between the two input models. The key to our
pipeline is the process of generating 2D slices from a 3D mesh (i.e. laser-scan mesh).
The generated 2D slices can then be compared with the stack of CT images. Since
the CT-derived model and the laser-scan model may be completely misaligned, have
different image resolution and/or different point-set densities, our pipeline handles
all of these differences in order to produce an accurate alignment between the two
models. This pipeline employs the whole 3D model surface for registration and not
only certain landmarks. In addition to that, this pipeline presents a standardized
methodology that can be used to assess the accuracy of various CT scanners when a
specific segmentation approach is used.

In order to convert the 3D laser-scan mesh to a stack of 2D slices, the pipeline
applies plane/triangle intersection in order to intersect the geometry of the scanned
object with the slicing plane to obtain 2D slices from the 3D model. A graphical
representation of the pipeline is presented in Figure 8.1. This pipeline is applied to
align and evaluate a stack of 2D CT images of an object (normally saved in DICOM

file format) and a 3D mesh acquired for that object via a laser scanner (saved in an stl
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file format). The output produced by this pipeline is a ratio (a number between 0 and
1) which measures to which degree the CT-derived model is similar to the laser-scan

model.

8.2.1 Reading a stack of 2D CT images and constructing a
3D model

The first step in our pipeline includes reading a group of 2D CT images, building a

3D volume that represents the CT-scanned object to which the CT slices belong and

surface reconstruction. Surface reconstruction techniques are widely used in medical

applications to build 3D models [262]. This step includes a group of sub steps (shown

in Figure 8.2 and explained in next paragraphs).
2D Image Segmentation

This step involves Implementing a 2D image segmentation technique to convert the
images to binary. We used Otsu’s method [104] to produce black/white images since
the data sets that are being used represent homogeneous surfaces which should be

easily segmented by Otsu’s method.
Automatic Cropping

In this step an automatic preprocessing is performed by cropping segmented images
to remove unrelated-components from the image that do not form a part of the object
like the couch and most of the pixels that form the background of the image. This
is done automatically by scanning each segmented image form the top most row, the
left most column and the right most column to find the area that forms the borders
of the target object. The next step is to search for the bottom border by finding
the pixels that represent the couch which normally occupy most of the width of the

image.
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Figure 8.1: A schema represents the pipeline of the proposed approach



CHAPTER 8. AUTOMATIC PIPELINE FOR EVALUATION 127
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Figure 8.2: The first step of the pipeline includes image segmentation and surface
reconstruction.

Applying the Marching Cubes

We then use the Marching Cubes algorithm [19] to build a 3D model of the scanned
object. The basic function of the Marching Cubes algorithm is to compute a triangu-
lated mesh of the isosurface within a 3D matrix of scalar values at a specific isosurface
value. The x, y and z coordinates of the stack of CT slices should be prepared before
sending them to the Marching Cubes algorithm. This implies performing a mesh grid
operation in which we produce a 3D coordinate array. It is of high importance in this
step to consider the ”pixel-spacing” and the ”spacing-between-slices” parameters of
the CT-scanner in order to produce an accurate 3D coordinate array which will be sent
later to the Marching Cubes algorithm. Pixel-spacing is a value generated from the
CT-scanner that specifies the physical distance measured between the centres of two
adjacent pixels (see Figure 8.3) where spacing-between-slices gives the distance be-
tween two adjacent slices (perpendicular to the image plane). The triangulated mesh
returned by the Marching Cubes algorithm includes a structure of vertices (V) and
another structure of faces (F). Structure (V) specifies triangle vertex values whereas
structure (F) defines which vertices to connect. The precise description of how the

Marching Cubes algorithm generates triangles is presented in [19].
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Figure 8.3: Graphical representation of the concepts of pixel-spacing and spacing-
between-slices.

Creating Triangulated Mesh

This step involves creating an stl (Stereo Lithography) file using the returned faces
(F) and vertices (V) produced by the Marching Cubes algorithm. Stl file is a trian-
gular representation of a three dimensional surface geometry. The surface is broken
down into a series of small triangles (facets). Each facet is described by a perpen-
dicular direction, named normal, and three vertices representing the corners of the
triangle. Most of all today’s 3D scanners are capable of producing output using the
stl file format and this format is supported by many software packages, commonly
used in computer-aided manufacturing (CAM), computer-aided design (CAD), rapid
prototyping and 3D printing. Due to this we decided to build an stl file from the
stack of CT slices and then we can let the two models go through the same pipeline.
The stl format can be stored either in ASCII or in binary representation. Binary files
are more common, since they are more compact. Table 8.1 shows the general format
of a binary stl file.

All of the steps of our pipeline are performed automatically with no need for

human intervention.
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Table 8.1: The syntax for a binary stl file

UINTS8[16] Header
UINT32 Number of triangles

for each triangle

REAL32[3] Normal vector
REAL32[3] Vertex 1
REAL32[3] Vertex 2
REAL32[3] Vertex 3
UINT16 Attribute byte count

end
Stl file Stl file
represents the CT-derived model represents the laser-scan model
v v
( Vertices ) ( Vertices )
l P> J

Figure 8.4: The second phase of the pipeline: Extracting the vertices.

8.2.2 Extracting the vertices from the triangulated mesh and
simplifying it

After the end of the first step, two triangulated meshes each in stl file format will
be produced. The first mesh is a 3D model generated from a stack of 2D CT slices
and the second one is the laser-scan model, see Figure 8.4. In order to align and
register these two models, we extract the vertices from each mesh and then remove
duplicated vertices, a process named simplifying the mesh. Removing duplicated
vertices will reduce the computation required for the alignment algorithm. The details
of simplifying the mesh are presented in Chapter 7.

We present here just a simple example that shows how simplifying the mesh can
decrease the size of the vertices array to 1/3 of its original size (see Figure 8.5). In the
example, the vertices array (V') consists of 12 rows before removing the duplicated
values and the number of rows becomes 4 rows after simplifying the mesh (see Figure

8.6).



CHAPTER 8. AUTOMATIC PIPELINE FOR EVALUATION 130

) 0.650
0.375 0.433
0.375 0
0.750 0.650
0.375 0.433
0 0.650

V =10.3715 o
0.375 0.433
0.375 0.433
0.750 0.650
0.375 0
0.750 0.650
Lo 0.650

Figure 8.5: A simple mesh includes 12
form [4] and edited).

BN NN

RraHEWw
-

0 0.650
0.375 0.433
VvV =

0.750 0.650

o

w

~

(8]

o
oo oo

00000000000 OO

708

708

.708
.708

4,9,11

1,6,12
3,7,10

rows of vertices before simplifying (imported

.708}
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8.2.3 Alignment, Slicing, and Measuring the Overlap Ratio

We now have two groups of non-duplicated vertices. The first group belongs to the
model generated from CT slices whereas the second group of vertices belongs to the
laser-scan model. Our adjusted ICP algorithm, which we presented in Chapter 6, is
being used to align the CT-derived model and the laser-scan model.

The next step includes slicing the aligned laser-scan mesh by intersecting its trian-
gles with the z-planes constructed at the same locations as the slices of the CT-derived
model in order to be able to match each slice from the laser-scan model with its cor-
responding slice from the CT-derived model.

The vertices that we have so far represent the corners of 3D triangles which com-
pose the surface of the mesh of the aligned laser-scan model. It is necessary at this
stage to calculate the line segments which result from intersecting Z-planes with each
triangle from the set of the triangles’ vertices of the laser-scan model. Z-planes are
set at the same locations as the CT slices. Notice that each plane is defined by a
point lies on it () (which is located in the CT slices) and a normal vector N, and each
triangle is defined by three vertices (P1, P2 and P3).

To calculate the intersection segment between a plane and a triangle, we firstly find
in which side the vertices of each triangle (P1, P2 and P3) lies regarding to the plane
according to equations (8.2.1) (8.2.2) and (8.2.3). The equations apply dot product
to determine the side in which each corner of each triangle lie regarding to the plane.
For example, if d1 and d2 have the same sign, then that means P1 and P2 lie in the
same side regarding to the plane, whereas if they have different signs then that means
P1 and P2 lie on different sides. Knowing on which side each triangle vertex lies will
lead us to the next stage in which we calculate the intersection segment between a
plane and a triangle. The details and the algorithms that we derive to apply the

plane/triangle intersection and to project the intersection points into image pixels
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I "l

Figure 8.7: Examples of laser slices and its corresponding slices after filling.

are presented in Chapter 7.

dl=(P1-Q).N (8.2.1)
d2 = (P2 — Q).N (8.2.2)
d3=(P3—Q).N (8.2.3)

Since laser-scan models provide just the surface of the scanned object whilst the
CT scanner provides the internal structure of the scanned object in addition to the
surface, we filled the images and then applied the overlap measurements. Figure 8.7
shows three examples on the filling operation of images obtained from the laser-scan
model after applying the slicing process over that laser-scan model.

The overlap measurement is then performed between each slice from the stack of
CT slices and its corresponding slice from the stack of laser-scan slices. The Dice
measurement is used to find the level of similarity between the two corresponding
slices. We define a measure that represents the total mean of similarity between the
two groups of images according to the Dice measurement. This mean value is shown

in (8.2.4) where n represents the total number of compared slices.

Y iy Dice(CT Slice(t), laserSlice(1))

n

Avg — Dice =

(8.2.4)

Since the 3D mesh that is generated by laser scanners may have some gaps and

may suffer from incompleteness in some regions, then we define in our pipeline an
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ROI 2 ROI1

Figure 8.8: Two regions of interest defined by the user.

optional step in which we allow to define a region of interest (ROI). This means to
define a window (region) over an area of a slice so the overlap measurements will be
performed over just these defined regions. If, for example, the user is interested on
the area that lies on the bottom right of the image, then the overlap measurement
will be calculated over those pixels that lie on that region of interest only (see Figure

8.8).

8.3 Experimental Work

There are three data sets used in the experiments of this chapter: the cubes, dome
and the Cantonese head. The description, properties and sources of these data sets
are presented in Chapter 3. It is worth mentioning here that we have two scans for
these objects (a CT scan and a laser scan).

This part will present the experiments that were applied over the three objects.
Figure 8.9 shows the first steps that we did over the stack of CT slices to build a 3D
triangulated mesh for each object. We started the process by implementing Otsu’s
segmentation algorithm to get segmented binary images (see Figure 8.9 (b), (f) and
(j) ), and then we applied the automatic preprocessing steps to crop images (see
Figure 8.9 (c), (g) and (k)). After that we applied the Marching Cubes algorithm

over the stack of segmented images to build a 3D model for each object and converted
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Figure 8.9: Building 3D models from 2D medical images. (a-d): head (e-h): cubes
and (i-1): dome. The first column displays the original images (DICOM images),
the second column displays the segmented images, the third column displays the
segmented images after the automatic cropping and the fourth column displays the
constructed 3D models.

that 3D model to stl file format as depicted in Figure 8.9 (d), (h) and (1). We then
converted the two meshes to vertices and removed duplicated vertices. The details of
this process were presented in Section 8.2.

After that, we moved to apply the adjusted ICP algorithm over the two models
(i.e. the CT-derived model and laser-scan model). The two models, as displayed
in the figures of Chapter 6, were completely misaligned, having different coordinate
systems, different image resolution and different point-set densities. Applying the
adjusted ICP algorithm achieved a high level of superimposing and alignment between
the two models. More details and readings on applying the adjusted ICP over these
objects are presented in Chapter 6.

We then calculated the plane/triangle intersections between the set of facets of the
laser-scan model and the set of planes which are imported from CT images as it was
described previously in Section 8.2. Finding those intersection segments formed the
base to perform slicing of the aligned 3D laser-scan model. After that, we converted

all laser slices to binary images.
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Then we filled the slices as presented in Section 8.2 Figure 8.7 and calculated the
overlap measurements between the two stacks of slices. The results of this phase are

presented in the next section.

8.4 Results

As stated before, the reliability of the similarity value generated by the proposed
pipeline is affected by the accuracy of the alignment process between the CT-derived
model and the laser-scan model. The experimental results of applying the adjusted
ICP are presented in Chapter 6. We will just present here the final readings that are
generated by the pipeline to evaluate the accuracy of segmentation.

The average values of the Dice similarity measure were calculated according to
Equation (8.2.4). Table 8.2 displays the average Dice value, standard deviation and
the 90*" percentile for the three objects. It is obvious that all the three objects
achieved high level of Dice value which supports the claim that surface models derived
from CT data are an excellent representation of the real scanned object. Notice that
although the surface of the head contains many more complex structures, engravings
and curvatures, it still achieved 96.96% which made us very assured that the proposed
pipeline presents a robust approach to evaluate the accuracy of surface models built
from CT images. We present in the table the 90'" percentile and the low values of
the standard deviation to indicate the stability of results over the whole collection
of slices. Moreover, the success of applying this pipeline over three different objects
each with its different characteristics increases the reliability of the output generated

from the proposed pipeline.
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Table 8.2: Dice value, Standard deviation and the 90" percentile for the three objects.

Measurements head cubes dome
Average Dice value 96.96%  99.40% 98.61%
Standard deviation 0.073341 0.00268 0.022607
90*™" percentile 0.9844 0.99689 0.99039

8.5 Conclusion and Discussion

This chapter presented a fully automatic approach that can be followed to evaluate the
accuracy of CT-derived models. The experimental work and results indicated clearly
that CT-derived models achieved very high values of similarity with the ground-
truth. While most of the published studies in this field either require 2D manual
segmentation or use linear physical measurements for the purpose of providing a
ground-truth, the proposed pipeline presents an automatic approach for evaluation
of CT-derived models using 3D triangulated-meshes acquired by a laser scanner as
a ground-truth. Using a laser-scan model as a ground truth saves much time and
effort. Manual segmentation and/or physical measurements are time-consuming and
prone-to-error since they are done by humans where the recent advances in laser
scanning technology makes it strongly relevant to be used as a ground-truth. The
chapter presented a detailed description about the proposed approach in the form of
a pipeline which shapes a framework that can be followed by researchers. MATLAB
R2014a Image Processing Toolbox was used in implementing this pipeline.

Since the first element that affects the overall accuracy of the CT-derived models
is the accuracy of the 2D-segmentation technique, then the proposed pipeline can be
used for evaluation of the accuracy of 2D segmentation techniques. Applying differ-
ent segmentation techniques in the proposed pipeline will produce different output
similarity values. A higher similarity value means a higher matching between the CT

segmented-images and the ground truth, and consequently means a more accurate 2D
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segmentation technique convenient for extracting the surface of the scanned object.
The two inputs of the proposed pipeline could be two meshes scanned by two
different 3D acquisition devices. Consequently, we can evaluate the accuracy of a 3D
derived mesh produced by one of these devices assuming that the mesh produced by
the other device forms the ground-truth. Figure 8.10 displays the pipeline that can
be used to evaluate the accuracy of a mesh generated from a 3D acquisition device
compared to another mesh generated from another device which has a higher resolu-
tion (i.e. ground truth). This pipeline is similar to the pipeline presented in Figure
8.1 except that this pipeline skips the steps that are responsible of segmentation
and building a mesh from the stack of 2D slices, and it performs the plane/triangle

intersection for both inputs not for only one input.
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Figure 8.10: A proposed pipeline that can be used if two meshes are the inputs.



Chapter 9

Clinical Trial

This chapter starts by presenting, in Section 9.1, an overview of the clinical trial
which forms a part of this thesis. The basic features of this trial and the design and
methodology of it are also described. Section 9.2 describes the experimental work
which was designed to evaluate the outcomes of constructing an immobilisation mask
for the “Perspex Mask” data set. A detailed discussion is presented in Section 9.3
on the results generated and the possible sources of inaccuracies when applying our
pipeline. Section 9.4 summarises the main points of this chapter. Related documents

to our clinical trial are presented in Appendix B.

9.1 Overview of the Clinical Trial

This section presents an overview of the clinical trial and its basic features. Our
clinical trial is registered under the permission and approvals of the (Health Research
Authority, NHS, UK) and the (Research Ethics Committee (REC), Yorkshire & The
Humber, UK) and sponsored by the University of East Anglia, UK. It was given
the following ID under the Integrated Research Application System (IRAS project
ID:209119) and the following reference under the Research Ethics Committee (REC
reference:16/YH/0485). Our clinical trial is posted online (see [263, 264, 265]). Table

9.1 illustrates some basic information about this clinical trial.
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Table 9.1: Basic description of our clinical trial.

Title of the trial

Acquisition of 3D facial geometry of patients’ scheduled for
RT 1.0

Category

Basic science study involving procedures with human partic-
ipants.

Site of the trial

England

Principal inclu-  Patients undergoing radiotherapy treatment for tumours af-
sion criteria fecting their head and neck.

Principal exclu-  Age not in 18-69 years and patients who are not able to give
sion criteria written informed consent (in English).

Identification The oncology department, Norfolk and Norwich University
process Hospital will identify patients who are planned to have head

and neck radiotherapy.

To compare 3D models of facial geometry built from CT and
laser-scanner data sets in terms of accuracy and precision.
providing patient specific data that will in turn enable al-
gorithms developed to be quantitatively evaluated and com-
pared, thus allowing us to determine if the approach is clin-
ically viable.

Trial’s Objective

Trial’s Outcome

Methodology

The stages of the clinical trial are represented as a flowchart in Figure 9.1. Patients
will follow a normal treatment pathway, using an immobilisation shell manufactured
normally (i.e. ‘softdrape’ or ‘hard-shell’). Once the mask has been manufactured
(by mould room technicians) it will be scanned (in the mould room) using the laser
scanner. Researchers at UEA will need a copy of (pseudonymised) patient’s CT data.
This will be held at the School of Computing Sciences, UEA (for more information
see the clinical trial protocol in Appendix B).

Laser Scanning of patients will take place at the Norfolk and Norwich University
Hospital (NNUH) NHS Foundation Trust. A researcher from UEA will perform the
scan, supervised by a radiographer or nurse from NNUH. The participant will be
asked to sit in an office chair and participant’s head will be scanned using a hand

held laser scanner. The laser scanning session will take about 15 minutes and during
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Figure 9.1: Flowchart represents the stages of the clinical trial.

this time participant will need to wear an eye mask. The process can be completed in
stages with a break of 2-3 minutes between each session. The hand held laser scanner
will be moved around the participant and the distance between participant’s head
and the laser machine will be in the range 20-60 cm (for more information about the
laser scanning session see the participant information sheet in Appendix B).

The low power laser used in the scanner is no more powerful than a laser pointer.
The laser machine is CE marked which means that the machine complies with the
essential requirements of the relevant European health, safety and environmental pro-
tection legislation. This procedure will be applied one time only for each participant.
Participant’s eyes will be covered while being scanned.

Objectives
The main three questions that this trial aims to answer:

1. To determine if a computer vision system can automatically generate 3-D printed
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immobilisation masks having performance comparable to existing head and neck im-
mobilisation systems from a CT scan?
2. To compare 3-D models of facial geometry built from CT and laser-scanner data
sets in terms of accuracy and precision?
3. To identify if patients find the experience of making a facial mould using plaster
of paris distressing and painful?
Outcome
The potential broad outcomes for the trial which will reflect the research question
aims:
1. We will place the mask on the patients face (virtually, using 3-D computer mod-
elling) and report errors measured between the immobilisation shell and the patients
skin. This will enable us to benchmark a range of algorithms used to segment the
CT and extract a surface contour that could be used to print a shell.
2. By comparing results of computer modelling with those reported for thermoplastic
masks we can determine if the approach is viable.
3. Patient responses to the questionnaire data will provide limited insight into their
experience in the mould room.

Although the ethical and HRA approval that we have got relates to scanning
patients and masks, the work reported in this chapter only relates to a mask (i.e.
currently no patients have been scanned due to the unavailability of the laser scanner).

More details and documents of our clinical trial are presented in Appendix B.

9.2 Experiments and Results

Although our Dice_3S measurement, presented in Chapter 7, provides a ‘figure of
merit’ that can be used to assess the degree of agreement between the models it

does not provide any information about the degree of immobilisation provided by the
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mask. To address this we also provide absolute measurements of the space between
the surfaces of the two models.

We present in this section two approaches in order to evaluate the accuracy of the
outcomes that were generated when we applied our experiments over the “Perspex
Mask” data set. In the first approach we use our pipeline that was presented in
Chapter 8 to evaluate the similarity between the CT-derived model and the laser-
scan model. In the second approach we measure the distances (in pixels) between the
external border of the CT slices and their corresponding external borders of laser slices

in order to have a good conception about the accuracy of physical measurements.

Evaluation through our Pipeline

As explained in previous chapters, our pipeline presents statistics which represent
the degree of similarity ratio between the CT slices of the patient’s head and its
corresponding slices calculated from the laser-scan model. The overlap measurement
that is used by the pipeline to find the similarity ratio between each two corresponding
slices is the DSC. Table 9.2 shows the statistics generated by our pipeline to represent
the similarity ratio between the CT slices and the slices that are calculated from the
laser-scan model for the “Perspex Mask” data set. The readings in this table shows
that the average similarity ratio equals 96.56% which indicates to a relatively high
degree of similarity between the two groups of images. Figure 9.2 displays a histogram
representing the similarity ratio slice by slice for the “Perspex Mask” data set. The
results shown in the histogram support the readings that we got in Table 9.2 in which
we notice that the standard deviation has a low value which indicates that the values
of similarities between corresponding images are close to the mean. This in turn

increases the robustness and reliability of the outcomes.
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Table 9.2: Statistics generated by our pipeline to represent the similarity ratio be-
tween the CT slices and the slices that are calculated from the outer surface of the
mask for the “Perspex Mask” data set.

Avg. Similarity ratio Max. value Min. value Standard deviation 90" percentile

96.56% 97.77% 94.62% 0.00796 97.29%
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Figure 9.2: A histogram representing the similarity ratio slice by slice for the “Perspex

Mask” data set generated by our pipeline.

Evaluation through Physical Measurements

Figure 9.3 displays a flowchart which represents the procedure that we follow to
calculate the physical distances between the surface of the CT-derived constructed
model and the laser-scan model. In each iteration of this procedure two images are
entered as inputs. The first input represents a filled segmented CT image (see Figure
9.4(left)) and the second one represents its corresponding filled image calculated from
the laser model (see Figure 9.4(right)).

The next step in the procedure is to get the border of each image. This process
involves creating a binary image having ones where the process finds edges and zeros
elsewhere. We used the Sobel approach to detect edges in both images. Figure 9.5

shows the two images displayed in Figure 9.4 after getting the borders. We then
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Figure 9.3: A flowchart represents the procedure to calculate the physical distances
between the two surfaces (CT-derived model and laser-scan model).

Figure 9.4: (left) A CT image segmented using DRLSE technique and filled, (right)
Its corresponding image computed from laser model and filled.
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Figure 9.5: (left) A CT image after detecting the edges, (right) Its corresponding
laser image after detecting the edges.

(a) slice 1 (b) slice 2

(c) slice 3 (d) slice 4

(e) slice 5

Figure 9.6: Screen shots of five composite slice images which are spaced apart in
different locations on the face. The red colour represents the border of CT image, the
green colour represents the border of laser image, and the yellow colour represents
the pixels where the two images are superimposed.

move in the procedure to create a composite image in which the two images are
superimposed (overlaid). We present in Figure 9.6 screen shots of five composite slice
images, which are spaced apart in different locations of the face, and selected from
the two models (the laser-scan model and the CT-derived model). The red colour
in the figure represents the border of the CT images, the green colour represents the
border of the laser images, and the yellow colour represents the pixels where the two
images are superimposed.

We measure the distances between the external border of CT slices and laser slices
by investigating the pixels in the composite images. Figure 9.7 displays zoomed-in

regions of a composite image. This display for the pixels enable us to easily find
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the physical distances between the borders of the two images since any CT image
(DICOM format) has a ‘pixel-spacing’ property which specifies the physical distance
between the centres of two adjacent pixels. The pixel-spacing equals 0.9765 mm in
our “Perspex Mask” data set for both directions (i.e. x-direction and y-direction)
which means that the real physical distance between the centres of each adjacent
pixels is 0.9765 mm.

In order to derive statistics and generate histograms to represent the total num-
ber of pixels that have specific distances between the two corresponding images, we
followed the approach, which is displayed in Figure 9.8. Since the CT scan images
represent the patient’s head where the laser-scan images represent the external surface
of the perspex mask (immobilisation mask) then we expect the border of the laser
image to be wider than the border of the CT image. We labelled the case shown in
Figure 9.8(a) with (-1) which indicates that the CT border for that pixel is wider than
the laser border for its corresponding pixel. When the two borders are superimposed
over a specific pixel we labelled that case with (0) which indicates that the distance
between the two borders equals zero as shown in Figure 9.8(b). When the laser bor-
der on a specific pixel is adjacent and wider than the CT border on its corresponding
pixel, as the case in Figure 9.8(c), we labelled this case with (+1) which means the
the laser border is wider than the CT border with only one pixel. This means that
the laser border is 0.9765 mm wider than the CT border at that pixel location since
the ‘pixel-spacing’ equals 0.9765 mm in our case. This implies that the laser border
is wider (2 x 0.9765 mm) in 9.8(d) and wider (3 x 0.9765 mm) in 9.8(e) than the CT
border at that locations.

Table 9.3 displays readings for five composite images which are spaced apart in
different locations of the face. The table shows, for each image, how many pixels

are labelled with -1, 0, +1, 42, ..., +7 and what is the percentage of this label over
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(a) Regionl

(b) Region2

(c) Region3

Figure 9.7: Investigation for the pixels in different regions of a composite image. Red
squares belong to the border of the CT image, green squares belong to the border
of the laser image, and yellow squares represent pixels where the two images are
superimposed.
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(a) (e)

Figure 9.8: Representation of the approach that is used to find the distances between
the borders in composite images. Red squares belong to the border of the CT image,
green squares belong to the border of the laser image, and yellow squares represent
pixels where the two images are superimposed.

the whole set of labelled pixels. Figure 9.9 shows the measurements in a form of
histograms to represent the distances between the border of the laser slice and the
border of the CT slice. It is obvious in the table and histograms that the majority of
pixels have either a distance equal to one pixel (i.e 0.9765 mm) or a distance equal to
two pixels (i.e. 2 x 0.9765 = 1.953 mm). The average percentage, for the five images,
of the pixels which have a distance labelled (+1) or (42) is 87.62% which means
in other words that the laser border is wider than the CT border with a distance
equals either (0.9765 mm) or (1.953 mm) over 87.62% of the whole set of points.
This difference in distance represents the thickness of the mask. More discussions
and explanation about these measurements are presented in Section 9.3.

As we presented in Section 7.6, the evaluation through slicing the object (dividing
the object into layers) is appropriate for the applications that use 3D-printing since
the 3D-printing process takes a 3D mesh and translates this model into individual

layers [249, 42].

9.3 Discussion

In this section we address some issues that may affect, one way or another, the

accuracy of the outcomes that we got when we applied our whole pipeline over the
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Figure 9.9: Histograms represent the total distance between the laser slice and the
CT slice in pixels.
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Table 9.3: Values represent how many pixels labelled with {-1, 0, +1, +2, +3, +4,
+5, +6, +7} and the percentage of this label over the whole set of labelled pixels.

Image# -1 0 +1 +2 +3 +4 +5 +6 +7
Imagel

total 1 15 123 76 10 0 0 0 0
percentage 0.44% 6.67% 54.67% 33.78% 4.44% 0.00% 0.00% 0.00% 0.00%
Image2

total 0 0 120 92 6 5 3 3
percentage  0.00% 0.00% 52.40% 40.17% 2.62% 2.18% 0.00% 1.31% 1.31%
Image3

total 0 0 59 122 35 12 0 0
percentage  0.00% 0.00% 25.88% 53.51% 15.35% 5.26% 0.00% 0.00% 0.00%
Image4

total 0 9 75 122 13 3 0 0
percentage 0.00% 4.05% 33.78% 54.95% 5.86% 1.35% 0.00% 0.00% 0.00%
Image5b

total 0 4 86 92 13 0 1 4

percentage  0.00% 2.00% 43.00% 46.00% 6.50% 0.00% 0.00% 0.50% 2.00%

“Perspex Mask” data set.

e The data sets that we got from our clinical trial are for patients who have
treatment in the neck region. This implies that the radiotherapy treatment
plan for those patients does not involve scanning the patients to the top vertex
of the skull. Those patients are scanned as far as the supraorbital ridge (see

Figure 9.10).

According to that and since the alignment process (i.e. registration) works for
two similar objects, the laser-scan model should be pre-processed by cutting
(cropping) the region which represents the top region of the head since the CT-
derived model of the “Perspex Mask” is incomplete (i.e. missing a group of
slices representing the top region of the head). This cutting for the laser-scan
model is performed using open-source software (MeshLab) for processing and
editing 3D triangular meshes. As the cutting process is not exactly accurate

then that may have an effect on the final outcome of the whole pipeline.

e One of the common problems in medical imaging which complicates the seg-
mentation process is the partial volume effects (PVE). PVE, also named as

tissue-fraction effect, happens when multiple tissues are part of a single pixel
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Figure 9.10: Constructed model generated from the CT corresponding to the patient
for whom the perspex mask was made. The scan does not involve scanning the
patients to the top vertex of the skull.

or voxel due to the finite spatial resolution of the imaging device. This will
result in a blurring of intensity across boundaries [266]. PVE depends on the
characteristics of the imaging device, scanned object and activity distribution
[267]. PVE can cause errors in volume measurement in the range of 20%-60%

268, 269].

e Automatic segmentation, especially facial soft tissue, is still a complicated pro-
cess due to the fact that the human head is one of the most complex parts of
the body because it contains thin layers of tissue, which contain muscles that
are often touching each other and this complicate the morphological character-
istics of facial tissues [270]. Although there are several studies on brain tissue
segmentation, there are only a few studies related to facial soft tissue [175]. The
most salient drawback of those studies is that most of them involve manual seg-
mentation [271, 272], but, as it known, manual segmentation is time consuming

and prone to inter-expert and intra-expert variability [175].

e Medical images are prone to be affected by different types of noise sources
[273, 274] such as the quantum structure of the X-ray beam, the structure of
the film, or digital receptors. This image noise may affect the accuracy of the
segmentation process and consequently may affect the accuracy of the whole

process to construct our immobilisation mask.
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e The thickness of the Perspex mask, see Figure 9.11, that we have scanned using
the hand-held laser scanner is variable in different regions. We have measured
the thickness of that mask in the mechanical workshop of University of East
Anglia using a digital calliper and found that the thickness varies from region to
region. The thickness values range from [1.25 - 2.13]Jmm which means that the
mesh generated by scanning the outer surface of the mask does not represent

the exact dimensions of the patient’s head.

Figure 9.11: A photo shows the Perspex mask that we have scanned by the hand-held
laser scanner.

e Since we use the Marching Cubes algorithm to construct the CT-derived model
and since the exact position of the vertex along the edge is computed through
linear interpolation in marching cubes, then this interpolation may have an

effect over the whole process.

e The immobilisation masks, including the Perspex mask, are normally having
some extension to be used for fixation purposes (see the red circle in Figure
9.12). On the other hand, the CT-derived model is constructed for the head
itself without any other extensions. Consequently the two meshes (i.e. the CT
mesh and the laser mesh) do not represent similar objects. This point requires
some pre-processing for the laser mesh and this in turn may lead to a loss in

accuracy through the whole process.

e The process of slicing the laser mesh into 2D images, which was presented in
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Figure 9.12: A photo shows the Perspex mask and the red circle shows the extension
that is used to fix the mask over the couch.

Chapter 7, needs the use of quantisation and mathematical rounding. This may

define some inaccuracies in the final outcome.

e The existence of holes/gaps/incomplete regions on the surface of the laser mesh,

see Figure 9.13, may affect the the accuracy of the whole pipeline.

Figure 9.13: A photo shows the laser mesh acquired for the Perspex mask and the
red circles show some examples of incomplete/gaps on the surface of the mesh.

9.4 Summary

This chapter presented at the beginning a brief description of the clinical trial and its
main features. It moved then to illustrate two approaches which are used to evaluate
the accuracy of the outcomes that were generated when we applied our experiments
over the “Perspex Mask” data set. In the first approach, we used our pipeline to
evaluate the degree of similarity between the CT constructed model and the ground-
truth (laser mesh). The pipeline produced figures and statistics which indicated that
there is a relatively high match between the two models. In the second approach, we

investigated and calculated the distances between the borders of the CT images and
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the borders of images got from the laser model. This investigation of pixels indicated
that about 87% of points have distance-between-borders equals either (0.9765 mm)
or (1.953 mm). These calculated distance-between-borders are considered acceptable
for clinical practice as it is presented in [275, 5]. The chapter also presented exten-
sive discussion on the possible sources that may cause any inaccuracy on the final
outcomes. As a conclusion of this chapter we will raise two questions: (a) If we print
this mask will it fit the patient? The answer based on the presented work is ‘very
probably’. If it didn’t then some very minor changes to the algorithm would fix the
problem. (b) Would the printed mask provide better immobilisation than the existing
shell? This is a more difficult question and we think we would need to do further

clinical trials with patients ‘wearing’ printed masks.



Chapter 10

Conclusions

10.1 Conclusions

This thesis presented an automatic pipeline which aims to evaluate the accuracy of
the CT-derived models which are built using different segmentation techniques. The
outcome of this pipeline can be employed to construct immobilisation masks for Head-
and-Neck cancer patients to be used in their radiotherapy treatment. The phases of
the presented pipeline have been examined separately and then as a unit. A clinical
trial has been conducted to allow the presented pipeline to be quantitatively evalu-
ated. The results show that the presented pipeline is clinically viable. However, we
conclude and summarise the work in this thesis by presenting the main outcomes and
contributions.

Removing image artefacts due to fixations in CT images

We presented in this thesis a fast and automatic approach to remove image arte-
facts due to fixations in CT images. Our approach uses a fractional order Darwinian
particle swarm optimisation of Otsu’s method combined with morphological post-
processing to classify pixels belonging to the mask. We applied our approach over

five different CT data sets comprising a total of 738 image slices. The evaluation

156
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indicates that the proposed approach is robust and of practical use. Some enhance-
ments to speed up the process using PSO were also presented and tested in the thesis.
The presented approach achieved an average specificity of 92.01% and sensitivity of
99.39%.

Image segmentation

We applied five segmentation techniques in this thesis to segment the head from CT
images. The five techniques are: Otsu, K-means, EM, DRLSE, and HMRF-EM. We
found,when we evaluated their accuracy, that DRLSE is the most accurate one and
this is expected as the level set methods have been successfully employed in the field
of active contour models. In this context, we presented a procedure to set the level
set binary function in order to segment CT images, and developed an algorithm to
handle the case when more than one contour is found. The accuracy of segmentation,
for the five techniques, were analysed slice by slice and the stability of results were
addressed. We found that the DRLSE achieved 96.56% as a similarity ratio with a
standard deviation equals 0.00796. All the generated figures encouraged us to employ
the DRLSE in our pipeline.

Automatic 3D Alignment

As one of the main parts of the evaluation process in this thesis is to compare be-
tween the laser-scan model as a ground-truth and the CT-derived model, a precise
alignment between the two models is necessary. We presented a customised version
of the ICP algorithm which shows better results than the conventional ICP algorithm
in terms of speed, accuracy and convergence. We have applied our experiments to
compare between the conventional ICP algorithm and our customised version of the
ICP over three objects. In terms of execution time, the conventional ICP needed to
align the three objects (61.80, 263.26, 423.45) seconds whereas the customised version

needed (3.28, 26.96, 9.10) seconds respectively. In terms of the accuracy, the average
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distances between the aligned models achieved by the conventional ICP are (2.8651,
3.5256, 0.7346)mm whereas the distances for the customised ICP are (0.60392, 0.6192,
0.47472)mm. The results show that the average distances between the two models,
after applying the our customised version of the ICP algorithm, were smaller than
the CT pixel-spacing value which ensures the reliability of the presented algorithm.
Overlap measurement for medical volumes

An overlap measurement specifically designed to measure the ratio of overlap between
two medical volumes is presented. The presented measurement generates figures rep-
resenting the similarities along the axial, sagittal and coronal planes. Two strategies
were used to test the proposed measurement. We examined the correlation between
the proposed measurement and other widely used and accepted measurements. In
addition to that, we examined methodically our outcomes for particular test cases in
which we know in advance how the correct outputs should be. The average value of
correlation between our overlap measurement and the RMSE is -0.7559 over our data
sets and the average value that we got for the pyuue is 0.0018 which indicates that
there are a very low probability of observing the null hypothesis. The extensive anal-
ysis of this measurement showed that this measurement is convenient to be used for
medical volumes and to evaluate the outcomes of the segmentation and registration
processes.

Automatic evaluation of segmentation techniques

We presented in this thesis an automatic pipeline to be used to evaluate and compare
the accuracies of different segmentation techniques. This pipeline supposes that we
have a 3D model (e.g. laser-scan model) employed as a ground-truth. The experi-
ments have been applied over homogeneous 3D printed objects of different shapes.
The average similarity values that we got for the three objects are (96.96%, 99.40%,

98.61%). These outcomes indicate that the presented pipeline is reliable and can be
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used to quantify the accuracy of segmentation of medical images.

Automatic approach to construct immobilisation masks

This thesis presented an automatic approach to construct immobilisation masks for
use in radiotherapy treatment of HNC patients. The chapters of this thesis displayed
in sequence all the required phases of this approach and examined the outcome of
each phase separately. The whole approach was examined by conducting a clinical
trial at the Norfolk and Norwich University Hospital. We found when we investi-
gated the absolute measurements of the space between the surface of the CT-derived
model and the external surface of the ground-truth that about 87% of points have
distance-between-borders equals either (0.9765 mm) or (1.953 mm) which represent
the thickness of the scanned mask. This makes the proposed approach of treatment
which is presented in this thesis a promising alternative to the current immobilisation

masks used nowadays in hospitals.

10.2 Future Work

We have identified in this research two main points which we think are needed to be

further investigated:

e Conducting a feasibility study in order to evaluate whether manufacturing im-
mobilisation masks from an economic and operational standpoint is affordable
and applicable. This requires us to communicate with companies in industry

sector to show them our work and outcomes.

e Getting more patient specific data from our clinical trial by performing laser
scanning for a cohort of patients and evaluating the outcomes. These outcomes
will supply us with more comprehensive vision on the accuracy of the process

when considering real human skin.
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e Doing more enhancement over our customised version of the iterative closest
point algorithm. This enhancement includes the employing of the FODPSO
and other optimisation techniques to speed up the matching of corresponding

points between two datasets.

e Testing our customised version of the ICP algorithm over different forms of
meshes and generalise the presented approach to be of practical use not only in

medical applications but in computer graphics applications in general.

e Evaluating the performance of the presented 3D overlap measurement over a

benchmark dataset.

e Using the convolutional neural network and deep learning techniques to segment

the skin/air boundary in humans.

e Publishing the novel pipeline that is presented in this thesis which performs an
automatic evaluation of the accuracy of segmentation as well as the novel 3D

overlap measurement.
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Appendix A

Applying our Overlap
Measurement in Related
Applications of Surface
Simplification

This appendix presents the experimental work in which we employed our overlap
measurement (Dice_3S5) in two different applications which are related to the quality
of surface simplification of volume images. The ‘Pelvis’and the ‘Knee’ data sets are

used here to evaluate the experimental work.

A.1 Introduction

Transmitting and displaying of medical volume images are two of the most technical
difficulties in medical fields [276]. Reducing the size of medical volume images is one
of the possible approaches to deal with those difficulties. The aim of reducing the
size (surface simplification) is to produce high quality approximations of the original
surface but in smaller size. Size reduction of medical volume images can have a
significant impact on processing speed especially on low-end workstations [277] and
it is considered an essential process when the computing resources (i.e. CPU, RAM,
graphics card) is a matter. In addition to that, size reduction is used to export
3D medical image volumes for the production of physical biomodels [277]. There are

different techniques used for reducing the size of volume images (down-sampling). 3D
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overlap measurements are used as a measure to evaluate the validity of the techniques
which are used for reducing the size of volume images.

The experiments in this appendix are designed to illustrate how Dice_3S can
be employed in useful applications for surface simplification in the field of medical

images. We present two applications in this part:

e In the first application, we utilised Dice_3S to compare between the Quadric
Edge Collapse Decimation (QECD) technique [278] [279] and the Uniform Mesh
Resampling (UMR) technique to determine which technique produces a higher
level of similarity using different reduced versions of medical images. For each
data set, 10 reduced versions of different sizes were generated using the QECD
technique and another 10 reduced versions were generated using the UMR tech-
nique. The overlap measurement was run over each corresponding versions to
find the technique that gives a higher level of similarity. Notice that UMR tech-
nique creates a new mesh that is a resampled version of the original one. The
proportion of resampling depends on value of precision which is selected by the

user.

e In the second application, we utilised Dice_3S5 to be used to choose the opti-
mal correction value (offsetting value) when a Poisson Surface Reconstruction
(PSR) technique [280] is used. For each data set, a comparison between sur-
faces generated by 9 offsets was performed in order to find the optimal surface

position.

A.2 Comparing Two Surface-Simplification Tech-
niques

Table A.1 displays the average similarity value generated by Dice_3S when applied
over the Pelvis and the Knee data sets using the QECD technique for surface sim-
plification. The experiments are run over 11 resized versions of the same object (i.e
each row represents one case). Each case of those represent a different percentage of

reduction of the initial size.
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Table A.1: Testing Dice_3S on different reduced (simplified) versions of the pelvis
and knee data sets. The QECD technique was used here to reduce the size of objects

Row#  Percentage File-Size  Vertices faces Average Overlap
With-filling  No-filling

Pelvis

1 Same 750 7,625 15,350 1.0000 1.0000
2 90% 675 6,854 13,814 0.9969 0.9785
3 80% 600 6,090 12,279  0.9908 0.9385
4 70% 525 5,323 10,744  0.9760 0.8591
5 60% 450 4,556 9,210 0.9613 0.7742
6 50% 375 3,793 7,674 0.9383 0.6801
7 40% 300 3,030 6,140 0.9231 0.6045
8 30% 225 2,268 4,604 0.9145 0.5569
9 20% 150 1,505 3,070 0.9013 0.4940
10 10% 75 742 1,534 0.8732 0.4119
11 1% 8 70 152 0.6089 0.1501
Knee

12 Same 2,665 26,651 53,314 1.0000 1.0000
18 90% 2,343 23,985 47,982  0.9984 0.9535
14 80% 2,132 21,319 42,650 0.9965 0.8995
15 70% 1,823 18,653 37,318  0.9949 0.8475
16 60% 1,562 15,988 31,988  0.9921 0.7970
17 50% 1,332 13,322 26,656  0.9907 0.7535
18 40% 1,042 10,656 21,324 0.9886 0.7117
19 30% 782 7,991 15,994 0.9861 0.6755
20 20% 521 5,325 10,662 0.9841 0.6429
21 10% 261 2,659 5,330 0.9813 0.6099
22 1% 27 261 532 0.9511 0.2933

Table A.2 displays the average similarity value generated by Dice_3S when applied
over the Pelvis and the Knee data sets using the UMR technique for surface simpli-
fication. The experiments are run over different resized versions (approximations) of
the same object (i.e each row represents one case). Each case of those represent a
different precision value. The resampling in UMR is performed by building a uniform
volumetric representation where each voxel contains the signed distance from the
original surface. The precision in this context refer to size of the cell where smaller
cells produces better precision.

Figure A.1 illustrates and compares, as bar charts, the quality of the simplification
between the QECD and the UMR techniques. It is obvious from the bar charts
that the QECD technique produces a higher level of similarity ratio than the UMR
technique for the same file size (i.e. the same percentage of approximation) which
agrees with the results introduced in [278]. This applies for all the different test cases
(i.e. all the file sizes) which leads to a conclusion that the QECD is more convenient

than the UMR for approximation of volume medical images. The same test can be
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Table A.2: Testing the overlap measurement on different reduced versions of the
pelvis and knee data sets. The UMR technique was used here to reduce the size of
objects

Row#  Precision File-Size  Vertices faces Average Overlap
With-filling  No-filling

Pelvis

1 Same 750 7,625 15,350  1.0000 1.0000
2 1.5 747 7617 15280 0.8858 0.4236
3 2.0 403 4124 8247 0.8558 0.3500
4 2.5 241 2441 4928 0.8247 0.3167
5 3.0 165 1668 3358 0.7817 0.2579
6 3.5 111 1135 2270 0.7461 0.2318
7 4.0 81 824 1652 0.7108 0.2018
8 4.5 63 654 1284 0.6568 0.1739
9 5.0 46 487 934 0.6181 0.1375
10 5.5 34 367 694 0.5357 0.1058
11 6.0 28 294 560 0.5348 0.1064
12 6.5 24 248 472 0.4507 0.0813
13 7.0 18 197 362 0.4414 0.0811
14 7.5 18 191 366 0.4712 0.0851
15 10 7 82 140 0.2211 0.0357
Knee

16 Same 2,665 26,651 53,314  1.0000 1.0000
17 1.5 605 6182 12384  0.9765 0.5174
18 2.0 324 3308 6624 0.9670 0.4278
19 2.5 207 2112 4228 0.9574 0.3487
20 3.0 139 1407 2830 0.9391 0.2703
21 3.5 100 1015 2034 0.9230 0.2055
22 4.0 75 757 1522 0.9110 0.1747
23 4.5 61 623 1238 0.8952 0.1558
24 5.0 43 438 876 0.8637 0.1011
25 5.5 37 378 756 0.8578 0.0920
26 6.0 33 332 668 0.8504 0.0911
27 6.5 23 234 464 0.8206 0.0527

used to compare between any size-reduction techniques to see which one gives a higher
similarity ratio. The figures also support what we stated before, in Chapter 7 Section
7.6, on the stability of results generated by the overlap measurement either if we use
or not the image filling. Moreover, the relation between the file size and the similarity
ration for the QECD is more linear than the UMR technique which is a good feature

and makes the outcomes of this technique more reasonable.

A.3 Determining the Optimal Correction Value in
Poisson Surface Reconstruction Technique

We have utilised Dice_3S to choose the optimal correction value (i.e. surface offsetting

value or «) for the isosurface threshold when Poisson surface reconstruction (PSR)
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Figure A.1: Comparison between the QECD and the UMR techniques. Interpolation
has been used to find the interpolated values at specific file sizes for the UMR

technique is used. Table A.3 displays the average similarity ratio for the pelvis and
the knee data sets using different values for the parameter o when PSR technique is
applied to reduce the size of the mesh.

Figure A.2 plots the average similarity ratio for different values of a@ when the
PSR technique is used. The red ellipses in the figure represent the point at which
the parameter o reaches the maximum value of similarity ratio. It is obvious from
the figures that choosing a value for a to be in the range [0.90 - 1.0] will be the best

choice to have the optimal similarity ratio.
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Table A.3: The average similarity ratio for the pelvis and the knee data sets using
different values for the parameter .

Row# () File-Size Vertices faces Average Overlap
With-filling No-filling
Pelvis
1 Same 750 7,625 15,350 1.0000 1.0000
2 0.25 840 8592 17192  0.5731 0.0129
3 0.50 781 7986 15980 0.7421 0.1035
4 0.75 712 7278 14568  0.8320 0.2535
5 0.875 680 6944 13908  0.8400 0.2935
) 1.0 638 6526 13052  0.8408 0.3090
7 1.25 562 5752 11492  0.7506 0.2286
8 1.5 459 4706 9384 0.6029 0.1021
9 1.75 325 3366 6652 0.4143 0.0293
10 2.0 194 1994 3968 0.2293 0.0053
Knee
12 Same 2,665 26,651 53,314 1.0000 1.0000
13 0.25 456 4664 9324 0.7478 0.0001
14 0.50 442 4518 9032 0.8318 0.0024
15 0.75 429 4392 8784 0.9069 0.0811
16 0.875 427 4362 8724 0.9324 0.1797
17 1.00 426 4356 8712 0.9424 0.2628
18 1.25 415 4240 8480 0.8892 0.0750
19 1.50 386 3946 7888 0.7943 0.0066
20 1.75 341 3485 6970 0.6570 0.0011

21 2.00 235 2401 4794 0.4516 0.0001
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Figure A.2: Average similarity ratio for different Offsetting values. The red ellipses in
the figure represent the point at which the parameter a reaches the maximum value
of similarity ratio.



Appendix B

Related Documents of the Clinical
Trial

The following documents, which are related to our clinical trial, are attached to this
appendix. This clinical trial is registered under the permission and approvals of the
(Health Research Authority, NHS, UK) and the (Research Ethics Committee (REC),
Yorkshire & The Humber, UK) and sponsored by the University of East Anglia, UK. It
was given the following ID under the Integrated Research Application System (IRAS
project ID:209119) and the following reference under the Research Ethics Committee
(REC reference:16/YH/0485). Our clinical trial is posted online (see [263, 264, 265]).

e HRA approval (Health Research Authority approval)
e REC approval (Research Ethics Committee approval)
e (linical trial protocol

e Participant information sheet (PIS)

e Consent form

e Good clinical practice certificate

e Letter of access for research
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HRA Approval
(Health Research Authority Approval)



NHS

Health Research Authority

Mr Mohammad Ryalat

University of East Anglia Email: hra.approval@nhs.net
School of Computing Sciences

UEA, Norwich.

NR4 7TJ

23 January 2017

Dear Mr Ryalat

Letter of HRA Approval

Study title: Feasibility Study: Acquisition of 3D facial geometry of
patients' scheduled for head and neck Radiotherapy
Treatment (RT).

IRAS project ID: 209119
REC reference: 16/YH/0485
Sponsor University of East Anglia

| am pleased to confirm that HRA Approval has been given for the above referenced study, on the
basis described in the application form, protocol, supporting documentation and any clarifications
noted in this letter.

Participation of NHS Organisations in England
The sponsor should now provide a copy of this letter to all participating NHS organisations in England.

Appendix B provides important information for sponsors and participating NHS organisations in
England for arranging and confirming capacity and capability. Please read Appendix B carefully, in
particular the following sections:

e Participating NHS organisations in England — this clarifies the types of participating
organisations in the study and whether or not all organisations will be undertaking the same
activities

e Confirmation of capacity and capability - this confirms whether or not each type of participating
NHS organisation in England is expected to give formal confirmation of capacity and capability.
Where formal confirmation is not expected, the section also provides details on the time limit
given to participating organisations to opt out of the study, or request additional time, before
their participation is assumed.

¢ Allocation of responsibilities and rights are agreed and documented (4.1 of HRA assessment
criteria) - this provides detail on the form of agreement to be used in the study to confirm
capacity and capability, where applicable.

Further information on funding, HR processes, and compliance with HRA criteria and standards is also
provided.
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It is critical that you involve both the research management function (e.g. R&D office) supporting each
organisation and the local research team (where there is one) in setting up your study. Contact details
and further information about working with the research management function for each organisation
can be accessed from www.hra.nhs.uk/hra-approval.

Appendices
The HRA Approval letter contains the following appendices:

e A — List of documents reviewed during HRA assessment
e B - Summary of HRA assessment

After HRA Approval

The document “After Ethical Review — guidance for sponsors and investigators”, issued with your REC
favourable opinion, gives detailed guidance on reporting expectations for studies, including:

e Registration of research
¢ Notifying amendments
¢ Notifying the end of the study

The HRA website also provides guidance on these topics, and is updated in the light of changes in
reporting expectations or procedures.

In addition to the guidance in the above, please note the following:

e HRA Approval applies for the duration of your REC favourable opinion, unless otherwise
notified in writing by the HRA.

e Substantial amendments should be submitted directly to the Research Ethics Committee, as
detailed in the After Ethical Review document. Non-substantial amendments should be
submitted for review by the HRA using the form provided on the HRA website, and emailed to
hra.amendments@nhs.net.

¢ The HRA will categorise amendments (substantial and non-substantial) and issue confirmation
of continued HRA Approval. Further details can be found on the HRA website.

Scope

HRA Approval provides an approval for research involving patients or staff in NHS organisations in
England.

If your study involves NHS organisations in other countries in the UK, please contact the relevant
national coordinating functions for support and advice. Further information can be found at
http://www.hra.nhs.uk/resources/applying-for-reviews/nhs-hsc-rd-review/.

If there are participating non-NHS organisations, local agreement should be obtained in accordance
with the procedures of the local participating non-NHS organisation.

User Feedback

The Health Research Authority is continually striving to provide a high quality service to all applicants
and sponsors. You are invited to give your view of the service you have received and the application
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IRAS project ID 209119

procedure. If you wish to make your views known please email the HRA at hra.approval@nhs.net.
Additionally, one of our staff would be happy to call and discuss your experience of HRA Approval.

HRA Training

We are pleased to welcome researchers and research management staff at our training days — see
details at http://www.hra.nhs.uk/hra-training/

Your IRAS project ID is 209119. Please quote this on all correspondence.
Yours sincerely

Beverley Mashegede
Assessor

Email: hra.approval@nhs.net

Copy to: Ms Tracy Moulton, Sponsor Contact
Mr Michael Sheridan, Lead NHS R&D Contact

Dr Mark Fisher, Chief Investigator, Supervisor
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Appendix A - List of Documents

The final document set assessed and approved by HRA Approval is listed below.

Document Version Date

Covering letter on headed paper [Covering letter] 1.0 02 November 2016
IRAS Application Form [IRAS_Form_09122016] 09 December 2016
IRAS Application Form XML file [IRAS_Form_09122016] 09 December 2016
IRAS Checklist XML [Checklist_09122016] 09 December 2016
Letter from sponsor [Sponsor &amp; Indemnity Letter] 1.0 03 November 2016
Non-validated questionnaire [Questionnaire] 20 02 November 2016
Other [List of Amendments] 1.0 17 November 2016
Other [IRAS Trial Form: Amendments] 1.0 09 December 2016
Participant consent form [Consent Form] 3.0 10 November 2016
Participant information sheet (PIS) [Participant Information Sheet] |3.0 17 November 2016
Research protocol or project proposal [Research Protocol] 3.0 10 November 2016
Summary CV for Chief Investigator (CI) [CV: Dr Mark Fisher] 1.0 02 November 2016
Summary CV for student [CV: Mohammad Ryalat] 1.0 02 November 2016
Summary CV for supervisor (student research) [CV: Dr Mark Fisher]|1.0 02 November 2016
Summary, synopsis or diagram (flowchart) of protocol in non- 1.0 02 November 2016
technical language [Flowchart]

Page 4 of 8



IRAS project ID 209119

Appendix B - Summary of HRA Assessment

This appendix provides assurance to you, the sponsor and the NHS in England that the study, as
reviewed for HRA Approval, is compliant with relevant standards. It also provides information and
clarification, where appropriate, to participating NHS organisations in England to assist in assessing
and arranging capacity and capability.

For information on how the sponsor should be working with participating NHS organisations in
England, please refer to the, participating NHS organisations, capacity and capability and
Allocation of responsibilities and rights are agreed and documented (4.1 of HRA assessment
criteria) sections in this appendix.

The following person is the sponsor contact for the purpose of addressing participating organisation
guestions relating to the study:

Name: Tracy Moulton
Tel: 01603 591482
Email: t.moulton@uea.ac.uk

HRA assessment criteria

Section HRA Assessment Criteria | Compliant with Comments
Standards
1.1 IRAS application completed Yes No comments
correctly
2.1 Participant information/consent | Yes No comments
documents and consent
process
3.1 Protocol assessment Yes No comments
4.1 Allocation of responsibilities Yes The Sponsor contact confirmed that no
and rights are agreed and Statement of Activities is expected as a
documented form of agreement as UEA and NNUH
have a joint working relationship with
Joint SOPs.
4.2 Insurance/indemnity Yes Where applicable, independent
arrangements assessed contractors (e.g. General Practitioners)
should ensure that the professional
indemnity provided by their medical
defence organisation covers the
activities expected of them for this
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Section HRA Assessment Criteria | Compliant with Comments
Standards

research study.

4.3 Financial arrangements Yes No funds will be provided to the
assessed participating organisation.
5.1 Compliance with the Data Yes No comments

Protection Act and data
security issues assessed

5.2 CTIMPS — Arrangements for Not Applicable | No comments
compliance with the Clinical
Trials Regulations assessed

5.3 Compliance with any Yes No comments
applicable laws or regulations

6.1 NHS Research Ethics Yes Provisional Opinion was issued 14
Committee favourable opinion November 2016. Further Information
received for applicable studies FO issued 12 December 2016.

6.2 CTIMPS — Clinical Trials Not Applicable | No comments
Authorisation (CTA) letter
received

6.3 Devices — MHRA notice of no | Not Applicable | No comments

objection received

6.4 Other regulatory approvals Not Applicable | No comments
and authorisations received
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Participating NHS Organisations in England

This provides detail on the types of participating NHS organisations in the study and a statement as to whether
the activities at all organisations are the same or different.

This is a non-commercial student (PhD Computing Sciences) and there is one site type.

The Chief Investigator or sponsor should share relevant study documents with participating NHS
organisations in England in order to put arrangements in place to deliver the study. The documents
should be sent to both the local study team, where applicable, and the office providing the research
management function at the participating organisation. For NIHR CRN Portfolio studies, the Local
LCRN contact should also be copied into this correspondence. For further guidance on working with
participating NHS organisations please see the HRA website.

If chief investigators, sponsors or principal investigators are asked to complete site level forms for
participating NHS organisations in England which are not provided in IRAS or on the HRA website,
the chief investigator, sponsor or principal investigator should notify the HRA immediately at
hra.approval@nhs.net. The HRA will work with these organisations to achieve a consistent approach
to information provision.

Confirmation of Capacity and Capability

This describes whether formal confirmation of capacity and capability is expected from participating NHS
organisations in England.

Participating NHS organisations in England will be expected to formally confirm their capacity
and capability to host this research.

¢ Following issue of this letter, participating NHS organisations in England may now confirm to
the sponsor their capacity and capability to host this research, when ready to do so. How
capacity and capacity will be confirmed is detailed in the Allocation of responsibilities and
rights are agreed and documented (4.1 of HRA assessment criteria) section of this appendix.

e The Assessing, Arranging, and Confirming document on the HRA website provides further
information for the sponsor and NHS organisations on assessing, arranging and confirming
capacity and capability.

Principal Investigator Suitability

This confirms whether the sponsor position on whether a PI, LC or neither should be in place is correct for each
type of participating NHS organisation in England and the minimum expectations for education, training and
experience that Pls should meet (where applicable).

A Principal Investigator is expected at the participating organisation.

GCP training is not a generic training expectation, in line with the HRA statement on training
expectations.
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IRAS project ID 209119

HR Good Practice Resource Pack Expectations

This confirms the HR Good Practice Resource Pack expectations for the study and the pre-engagement checks
that should and should not be undertaken

A Letter of Access or honorary contract is expected for external research team members undertaking
any research activities that may impact on the quality of care of the participant.

Students supervised under close clinical supervision may not require honorary research contracts.

Other Information to Aid Study Set-up

This details any other information that may be helpful to sponsors and participating NHS organisations in
England to aid study set-up.

The applicant has indicated that they do not intend to apply for inclusion on the NIHR CRN Portfolio.
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Yorkshire & The Humber - Leeds East Research Ethics Committee
Jarrow Business Centre
Rolling Mill Road

Jarrow

NE32 3DT

Telephone: 0207 104 8081

03 November 2016

Mr Mohammad Ryalat

NR4 7TJ

University of East Anglia
School of Computing Sciences
UEA, Norwich.

NR4 7TJ

Dear Mr Ryalat

Study title: Feasibility Study: Acquisition of 3D facial geometry of
patients' scheduled for head and neck Radiotherapy
Treatment (RT).

REC reference: 16/YH/0485

IRAS project ID: 209119

Thank you for your application for ethical review, which was received on 3" November. |
can confirm that the application is valid and will be reviewed by the Proportionate Review
Sub-Committee on 14 November 2016. To enable the Proportionate Review Sub
Committee to provide you with a final opinion within 10 working days your application
documentation will be sent by email to Committee members.

One of the REC members is appointed as the lead reviewer for each application reviewed
by the Sub-Committee. | will let you know the name of the lead reviewer for your
application as soon as this is known.

Please note that the lead reviewer may wish to contact you by phone or email between 11"
and 18" November to clarify any points that might be raised by members and assist the
Sub-Committee in reaching a decision.

If you will not be available between these dates, you are welcome to nominate another key
investigator or a representative of the study sponsor who would be able to respond to the
lead reviewer’s queries on your behalf. If this is your preferred option, please identify this
person to us and ensure we have their contact details.

You are not required to attend a meeting of the Proportionate Review Sub-Committee.

Please do not send any further documentation or revised documentation prior to the review
unless requested.

Documents received

The documents to be reviewed are as follows:



16/YH/0485
Document Version Date
Covering letter on headed paper [Covering letter] 1.0 02 November 2016

IRAS Application Form [IRAS_Form_03112016]

03 November 2016

IRAS Application Form XML file [IRAS_Form_03112016]

03 November 2016

IRAS Checklist XML [Checklist_03112016]

03 November 2016

technical language [Flowchart]

Letter from sponsor [Sponsor &amp; Indemnity Letter] 1.0 03 November 2016
Non-validated questionnaire [Questionnaire] 2.0 02 November 2016
Participant consent form [Consent Form] 2.0 03 November 2016
Participant information sheet (PIS) [Participant Information Sheet] |2.0 02 November 2016
Research protocol or project proposal [Research Protocol] 2.0 03 November 2016
Summary CV for Chief Investigator (CI) [CV: Dr Mark Fisher] 1.0 02 November 2016
Summary CV for student [CV: Mohammad Ryalat] 1.0 02 November 2016
Summary CV for supervisor (student research) [CV: Dr Mark Fisher]|1.0 02 November 2016
Summary, synopsis or diagram (flowchart) of protocol in hon 1.0 02 November 2016

No changes may be made to the application before the meeting. If you envisage that
changes might be required, you are advised to withdraw the application and re-submit it.

Notification of the Sub-Committee’s decision

We aim to notify the outcome of the Sub-Committee review to you in writing within 10

working days from the date of receipt of a valid application.

If the Sub-Committee is unable to give an opinion because the application raises material
ethical issues requiring further discussion at a full meeting of a Research Ethics Committee,
your application will be referred for review to the next available meeting. We will contact
you to explain the arrangements for further review and check they are convenient for you.
You will be natified of the final decision within 60 days of the date on which we originally
received your application. If the first available meeting date offered to you is not suitable,
you may request review by another REC. In this case the 60 day clock would be stopped

and restarted from the closing date for applications submitted to that REC.

Setting up sites in the NHS

All researchers and local research collaborators who intend to participate in this study at
sites in the National Health Service (NHS) or Health and Social Care (HSC) in Northern
Ireland should work with the relevant care organisation to ensure management permission
is confirmed before the study begins. Guidance on how to work with sites is provided in the
IRAS help section at https://www.myresearchproject.org.uk/help/hlpnhshscr.aspx

Final management permission will not be confirmed until after a favourable opinion has
been given by this Committee, and all other relevant approvals for the research to begin are
in place. Please contact the NHS R&D office at the lead site in the first instance for further

guidance.

Communication with other bodies

All correspondence from the REC about the application will be copied to the research
sponsor and to the R&D office for Norfolk and Norwich University Hospitals NHS
Foundation Trust. It will be your responsibility to ensure that other investigators, research

A Research Ethics Committee established by the Health Research Authority
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collaborators and NHS care organisation(s) involved in the study are kept informed of the
progress of the review, as necessary.
HRA Training

We are pleased to welcome researchers and R&D staff at our training days — see details at
http://www.hra.nhs.uk/hra-training/

| 16/YH/0485 Please quote this number on all correspondence

Yours sincerely

|l o
Katy Cassidy

Email: nrescommittee.yorkandhumber-leedseast@nhs.net
Enclosure: [Further information about REC membership]
Copy to: Ms Tracy Moulton
Mr Michael Sheridan, Norfolk and Norwich University Hospitals NHS

Foundation Trust
Dr Mark Fisher, University of East Anglia

A Research Ethics Committee established by the Health Research Authority
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FULL/LONG TITLE OF THE STUDY

Feasibility Study: Acquisition of 3D facial geometry of patients'
scheduled for head and neck Radiotherapy Treatment (RT).

SHORT STUDY TITLE / ACRONYM

Acquisition of 3D facial geometry of patients' scheduled for RT
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PROTOCOL VERSION NUMBER AND DATE
Version Number: 3.0 Date: 10.11.16

OTHER RESEARCH REFERENCE NUMBERS
Norfolk & Norwich University Hospital NHS Foundation Trust R&D number: 82-03-16
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SIGNATURE PAGE

The undersigned confirm that the following protocol has been agreed and accepted and that the Chief
Investigator agrees to conduct the study in compliance with the approved protocol and will adhere to
the principles outlined in the Declaration of Helsinki, the Sponsor’'s SOPs, and other regulatory
requirement.

| agree to ensure that the confidential information contained in this document will not be used for any
other purpose other than the evaluation or conduct of the investigation without the prior written
consent of the Sponsor

| also confirm that | will make the findings of the study publically available through publication or other
dissemination tools without any unnecessary delay and that an honest accurate and transparent
account of the study will be given; and that any discrepancies from the study as planned in this
protocol will be explained.

For and on behalf of the Study Sponsor:

Signature: Date:

Name (please print):

Ms Tracy Moulton,

Position:

Contracts Manager, Research Enterprises, UEA.

Chief Investigator:

Signature: Date: ....[....[....

Name: (please print):
Dr Mark Fisher, School of Computing Sciences, UEA.
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STUDY SUMMARY

Immobilisation for patients undergoing brain or head and neck radiotherapy is achieved using perspex
or thermoplastic devices that require direct moulding to patient anatomy. The mould room visit can be
distressing for patients and the shells do not always fit perfectly. In addition the mould room process
can be time consuming. With recent developments in 3D printing technologies comes the potential to
generate a treatment shell directly from a computer model of a patient. Typically, a patient requiring
radiotherapy treatment will have had a CT scan and if a computer model of a shell could be obtained
directly from the CT data it would reduce patient distress, reduce visits, obtain a close fitting shell and
possibly enable the patient to start their radiotherapy treatment more quickly. However, extracting
such a surface remains a challenge and is currently the focus of a PhD research project in the School
of Computing Sciences, UEA that aims to develop software capable of creating physical models of
treatment shells directly from CT scans. This study will provide patient specific data that will in turn
enable algorithms developed as part of the PhD to be quantitatively evaluated and compared, thus
allowing us determine if the approach is clinically viable.

Study Title Feasibility Study: Acquisition of 3D facial geometry of
patients' scheduled for head and neck Radiotherapy
Treatment (RT).

Internal ref. no. (or short title) Acquisition of 3D facial geometry of patients' scheduled for
RT

Study Design

Study Participants Adults (age 18-69 inclusive). Patients undergoing
radiotherapy treatment for tumours affecting their head and
neck.

Planned Size of Sample (if applicable) | 12

Follow up duration (if applicable) N/A
Planned Study Period 01.12.2016 — 31.01.2017
Research Question/Aim(s) Can an automatic system generate 3-D printed immobilisation

masks having performance comparable to existing head and
neck immobilisation systems from a CT scan?

How do 3-D facial models built from CT and laser-scanner
data sets compare in terms of accuracy and precision?
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FUNDING AND SUPPORT IN KIND

NHS

Health Research Authority

FUNDER(S)

(Names and contact details of ALL organisations
providing funding and/or support in kind for this
study)

FINANCIAL AND NON FINANCIALSUPPORT
GIVEN

University of East Anglia

Sponsor, limited Financial Support (PhD Bench
Fees)

University Campus Suffolk

Loan of 3D Laser Scanner and technical support

Norfolk and Norwich University Hospital NHS
Foundation Trust

Clinical support

Version 3.0 10.11.16




Acquisition of 3D facial geometry of patients'

scheduled for RT

KEY STUDY CONTACTS
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Chief Investigator

Dr Mark Fisher, Senior Lecturer, School of Computing
Sciences, University of East Anglia, Norwich Research Park,
Norwich, NR4 7TJ.

Email: mark.fisher@uea.ac.uk
Phone: 01603 592671
Fax: 01603 593345

Study Co-ordinator

As Above

Sponsor

Ms Tracy Moulton, Contracts Manager, Research and
Enterprise Services, University of East Anglia, Norwich
Research Park, Norwich, NR4 7TJ.

Email: t.moulton@uea.ac.uk
Phone:

Joint-sponsor(s)/co-sponsor(s)

N/A

Funder(s)

University of East Anglia - Support in Kind
University Campus Suffolk - Support in Kind

Norfolk & Norwich University Hospital NHS Trust - Support in
Kind

Key Protocol Contributors

Sarah Barber, Trials and Research Radiographer, Norfolk &
Norwich University Hospital NHS Foundation Trust, Colney
Centre, East Block Level 1, Colney Lane, Norwich, Norfolk,
NR4 7UY.

Email: sarah.barber@nnuh.nhs.uk

Michal Sheridan, Research Study & Recruitment Facilitator
(General Surgery, Haematology, Oncology, Plastic Surgery &
Urology], R&D office, Level 3 East Norfolk & Norwich
University Hospitals NHS Foundation Trust Colney Lane,
Norwich, NR4 7UY.

Email: michael.sheridan@nnuh.nhs.uk

Mark Hulse, Senior Lecturer, Radiotherapy and Oncology,
Faculty of Health Science, University Campus Suffolk,
Ipswich, IP4 1QJ

Email: m.hulse@UCS.AC.UK

Committees
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ROLE OF STUDY SPONSOR AND FUNDER

The clinical trial is the next step in a programme of research investigating the use of 3D printing of
patient immobilisation masks and it is a key component of a research project carried out by Mr
Mohammad Ryalat, a PhD student at UEA. UEA are the sponsor. The PhD is supervised by Dr Mark
Fisher (Co-supervisor Dr Stephen Laycock), in the School of Computing Sciences, UEA.

Mohammad Ryalat is funded by Al-Balga’ Applied University, 19117 Al-Salt, Jordan

The project is part of an ongoing collaboration between the University of East Anglia, University
Campus Suffolk, and Norfolk and Norwich University Hospital NHS Foundation Trust. The initial
stages of the project attracted funding from BigC cancer charity (http://www.big-c.co.uk/), but this
small clinical study has no direct funding, apart from the student’s bench fees.

ROLES AND RESPONSIBILITIES OF STUDY MANAGEMENT COMMITEES/GROUPS &
INDIVIDUALS

Study Steering Groups

As this represents a small pilot study, involving only 12 patients, there is no formal management
group.

Protocol contributors

Aim: To describe all the contributors to the protocol.

The protocol has been developed in consultation with clinical partners, principally:

Sarah Barber, Trials and Research Radiographer, Norfolk & Norwich University Hospital NHS
Foundation Trust, Colney Centre, East Block Level 1, Colney Lane, Norwich, Norfolk, NR4 7UY.

Email; sarah.barber@nnuh.nhs.uk

Michal Sheridan, Research Study & Recruitment Facilitator (General Surgery, Haematology,
Oncology, Plastic Surgery & Urology], R&D office, Level 3 East Norfolk & Norwich University Hospitals
NHS Foundation Trust Colney Lane, Norwich, NR4 7UY.

Email: michael.sheridan@nnuh.nhs.uk

Alison Vinall, Consultant Physicist, Head of Radiotherapy Physics, Norfolk and Norwich University
Hospital NHS Trust. Colney Centre, East Block Level 1, Colney Lane, Norwich, Norfolk, NR4 7UY.

Email: alison.vinall@nnuh.nhs.uk

Mark Hulse, Senior Lecturer, Radiotherapy and Oncology, Faculty of Health Science, University
Campus Suffolk, Ipswich.

Email: m.hulse@UCS.AC.UK

Tom Roques, Consultant Oncologist, Norfolk and Norwich University Hospital NHS Trust.
Email: TOM.ROQUES@nnuh.nhs.uk

The sponsor (UEA) will provide indemnity insurance.

KEY WORDS: External Beam Radiotherapy; Patient Immobilisation;
Head and Neck Cancer; 3D Printing
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STUDY FLOW CHART
Aim: To give readers a schematic overview of the study

Suitable Head and Neck RT
- Patients Identified by
| consultant oncologist. Cohort
of 12 patients.
h 4

Patients Recruited to Trial by
Oncology Team coordinated by
NO Trails & Research Radiographer
Sarah Barber. Trial is explained

and patients given Patient
Information Sheet (PIS).

NMNUH Mould Room appointment is
extended by 15 mins. To allow patients’
\"ES_} head to be scanned using laser s@nner. 1
Operator: Mohammad Ryalat, (under

clinical supemision).

v

Patients to answer a questionnaire

) Radiotherapy Treatment Progresses
Normally

Informed
Consent?

Y

After Treatment, Immobilisation
Mask will be scanned in the mould
¢ room using laser scanner

related to their visit to the mould room

CT & Laser Scanner Data Archived and
held in Radiotherapy Dept. NNUH

Y

CT and Laser Scanner data anonymised
and transferred to UEA, School of
Computing Sciences for analysis.

v

Analysis Completed. Research Published
UEA Copy of CT & Laser Scan data
achived
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STUDY PROTOCOL

Feasibility Study: Acquisition of 3D facial geometry of patients' scheduled for head and neck
Radiotherapy Treatment (RT).

1 BACKGROUND
Aim: To place the study in the context of available evidence.

The background should be supported by appropriate references to published literature on the area of
interest:-

Accurately targeting radiation therapy treatment is critical to minimise side-effects and achieve a
successful treatment outcome. Immobilisation of patients is essential when treating tumours located in
the head and neck to ensure adequate target coverage and to minimise dose to organs at risk (OARS)
most notably the eyes, spinal cord and brain stem. To ensure proper immobilisation and treatment
reproducibility custom made thermoplastic face masks (beam directional shells) are usually used.
These are tailor made for each patient by a specialist team of technicians in the Mould Room.
Creating a plaster positive can be rather messy and some patients find it uncomfortable and
distressing. An alternative approach that creates a thermo-plastic mesh shell directly can be equally
unpleasant. The long-term objective of the project is to use rapid prototyping technology to generate
immobilisation shells non-invasively from 3D volumetric data acquired from the CT used for treatment
planning.

Patient immobilisation and the modelling of geometrical uncertainty are important topics that are
generally well represented in the literature on radiotherapy physics. Research has shown that rigid
immobilization could improve targeting in radiotherapy reducing the dose to normal tissue and
potentially increasing the dose to the target [Verhey, 2006]. Verhey outlines the challenges of
immobilizing patients with tumours in the head and neck due to the flexibility of the neck and the
location of the tumour relative to organs at risk (OARS). A variety of immobilisation devices and
techniques have been developed to minimise inter and intra fraction target registration error and beam
directional shells (BDS) constructed from thermoplastic [Christiansen et al. 2012] are often employed.
The processes involved in constructing these devices is a specialised task and can be distressing and
inconvenient (e.g. requiring the removal of facial hair) for the patient.

With modern manufacturing and rapid prototyping comes the possibility of determining the shape of
the immobilisation device from the CT-scan of the patient directly, alleviating the need for making
physical moulds from the patients’ head. Earlier work funded by a Big-C research grant demonstrated
that masks to fit the contours of a Phantom [Hulse et al., 2012][Laycock et al., 2015][Fisher et al,
2014] could be automatically generated. However, extracting the facial geometry from human subjects
is more challenging as the facial tissue is heterogeneous and automatically determining the skin / air
interface in CT is challenging. This trial provides data and a framework to evaluate computer
algorithms designed to solve this problem, and to compare printed thermoplastic immobilisation
solutions.

2 RATIONALE

Aim: To explain why the research questions/aim(s) being addressed are important and why closely
related questions are not being covered.

A previous study using a rando-phantom demonstrated the feasibility of printing immobilisation masks
but was not able to determine if their performance was comparable to existing systems, because the
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task of automatically locating the ‘skin’ / air boundary is trivial since the phantom is encapsulated in
epoxy (i.e. homogeneous material). Facial skin is heterogeneous and it is far more challenging to build
automatic systems that address this segmentation task. To develop and evaluate computer algorithms
that are able to accurately reconstruct a model of the skin surface from CT imagery we need both CT
data and a ground truth model of the patient’s facial features. A laser scanner is widely accepted as
the most accurate method of obtaining ground truth. A trail involving a small number of patients is
need to provide data to evaluate our algorithms and measure errors between surface models
reconstructed from CT and those reconstructed from laser scan data.

3 THEORETICAL FRAMEWORK
Aim: To describe the theoretical framework for the study.

We plan to repeat the study reported by [Fisher et al, 2014] but using human subjects rather than a
rando-phantom. Standard metrics will be used to comparing the two surface models derived from CT
and laser scan data, e.g. [Crum et al. 2006].

4 RESEARCH QUESTION/AIM(S)
Aim: To define the primary research question/aim(s)

4.1 Objectives

Aim: To clearly define the study’s objectives (there may be more than one).

1. To determine if a computer vision system can automatically generate 3-D printed
immobilisation masks having performance comparable to existing head and neck
immobilisation systems from a CT scan?

2. To compare 3-D models of facial geometry built from CT and laser-scanner data sets in terms
of accuracy and precision?

3. Toidentify if patients find the experience of making a facial mould using plaster of paris
distressing and painful?

4.2 Outcome
Aim: To outline potential broad outcomes for the study which will reflect the research question aim(s).

1. We will place the mask on the patients face (virtually, using 3-D computer modelling) and
report errors measured between the immobilisation shell and the patient’s skin. This will enable
us to benchmark a range of algorithms used to segment the CT and extract a surface contour
that could be used to print a shell.

2. By comparing results of computer modelling with those reported for thermoplastic masks we
can determine if the approach is viable.

3. Patient responses to the questionnaire data will provide limited insight into their experience in
the mould room.
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5 STUDY DESIGN and METHODS of DATA COLLECTION AND DATA ANALYIS

Aim: To describe the study design. To clearly describe the data collection methods and outline the
roles involved in data collection. To clearly describe the data analysis methods.

A suitable design should be chosen to reflect the aim(s) of the study and the chosen theoretical
framework. A suitable design might include ethnography, interviews, focus groups, documents, and so
on.

The study aims to evaluate computer algorithms for automatically generating immobilisation masks. .
CT data that is required, together with an accurate (ground truth) 3D facial model, for a small cohort of
patients. An accurate surface model can be acquired in a few minutes using a hand-held laser
scanner. The algorithms are implemented in MATLAB™ a computer language used for prototyping
and modelling. This software environment allows us to construct a 3D models derived from the CT and
laser scanner data. The CT-derived model will be evaluated and compared with the acquired laser
model, using the same programming tool. We have tested this approach with other objects, e.g.
Rando-Phantom, 3D printed Geometric Objects etc. using CT data acquired at Ipswich Hospital NHS
Trust [Ryalat 2016]. We now need to show the approach works in a clinical setting.

Patients are asked to complete a short questionnaire regarding their experience in the mould room
and their responses are recorded on a Likert scale. Since the cohort is only 12 patients the results will
not be subject to statistical analysis. The questionnaire results may be used to inform a secondary
research question and to motivate a future study involving a larger number of participants.

6 STUDY SETTING

e Aim: To state where the data will be collected, explain what activities will take place in that
site, and justify the choice of site and any special requirements.

Twelve patients undergoing radiotherapy treatment for head and neck cancer at the Norfolk and
Norwich University Hospital (NNUH) NHS Foundation Trust will be recruited by the oncology team.
Their treatment will progress normally and the CT planning data will be archived and anonymised and
copied to researchers at UEA. Additional data, captured by a hand held laser scanner will be gathered
by Mohammad Ryalat. This will take place at NNUH (under clinical supervision). The laser scanning is
non-intrusive and the scan can be completed in approximately 15 minutes. The scanning process
involves the patient sitting in a chair while a researcher performs the scan. As a precautionary
measure we require the patient to wear an eye mask as although the scanner is CE marked and
completely safe patients' may have read reports in the press of eye damage resulting from the illegal
use of higher powered lasers. The process can be completed in stages (e.g. 3 x 5 minutes) with a
break of 2-3 minutes between each session. The laser scanner will then be moved around the patient
to obtain a set of 3D points forming the surface of the patient’s head.

Patients will follow a normal treatment pathway, using an immobilisation shell manufactured normally
(i.e. 'soft-drape’ or 'hard-shell’). Once the mask has been manufactured (by mould room technicians) it
will be scanned (in the mould room) using the laser scanner.

7 SAMPLE AND RECRUITMENT
7.1 Eligibility Criteria

Aim: To define the study population/sample
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12 subjects will be selected by NNUH consultant oncologists.

7.1.1 Inclusion criteria

12 Patients undergoing radiotherapy treatment for tumours affecting their head and neck at NNUH.

Age - 18-69 years inclusive. Ethnicity and Socio economic grouping are not critical factors.
7.1.2 Exclusion criteria

Patients who are not able to give written informed consent (in English) and those who are outside of
age range 18-69.

7.2 Sampling

Aim: To clearly explain and justify the detail of sampling in terms of volume and technique.

7.2.1 Size of sample
Aim: to explain the rationale behind the size of the sample.

Total sample size is 12 subjects. The sample size was decided considering this is the first clinical study
addressing 3D printed fixations for radiotherapy. The sample size (12) is considered as sulfficient for a
pilot feasibility study (i.e. suitable for inclusion in a PhD Thesis). The CT data sets comprise a far greater
(in the order of 1000's) number of voxels indicative of air/skin interface.

7.2.2 Sampling technique

Aim: To describe the selection of participants.

This section should detail the methods of selection used for example:
e Atrandom, snowball, convenience sampling, purposive sampling?
e Where has the sample been derived from?

e What is the rationale for this sampling strategy? The rationale should reflect the
methodological and theoretical framework for the study.

The oncology department, Norfolk and Norwich University Hospital will identify patients who are
planned to have head and neck radiotherapy.

7.3 Recruitment

Aim: To describe how participants are identified and recruited.
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This section should give details of the participant eligibility screening process for the project including
methods of identifying eligible participants/sample.

7.3.1 Sample identification

The oncology department, liaising with consultant oncologists at Norfolk and Norwich University
Hospital will identify patients who are planned to have head and neck radiotherapy. The identification
of potential participants does not involve reviewing or screening the identifiable personal information of
patients, service users or any other person. No participants will be recruited neither by publicity
through posters, leaflets, adverts or websites nor by Patient Identification Centres (PICs). Research
participants will not receive any payments, reimbursement of expenses or any other benefits or
incentives for taking part in this research.

7.2.2 Consent

Participants’ oncology consultant will identify the participants at their initial meeting. Trials and
research radiographer, Sarah Barber will discuss with them about the nature and objectives of the
study and possible risks associated with their participation. Patients will be informed of the study and
given the Patient Information Sheet. The research radiographer will follow up on any patients who are
willing to take part in the study, answer any questions and obtain informed consent. Potential
participants will be given a minimum of 7 days to decide whether or not to take part and we will not
recruit any participants who are involved in current research or have recently been involved in any
research prior to recruitment. The patient information sheet explains that participants are free to
withdraw at any time without giving any reason and without their medical care or legal rights being
affected.

8 ETHICAL AND REGULATORY CONSIDERATIONS

Aim: To explain how the research question/aim(s) and design/methods fit into the ethical and
regulatory framework. A clear explanation of the risk and benefits to the participants should be
included as well as addressing any specific needs/considerations of the sample. State how the data
collection methods used uphold the dignity of the participants.

The protocol should also include a justification of how the protocol is in line with relevant legislation.

8.1 Assessment and management of risk

Aim: To describe a risk analysis plus risk management if the researcher were to come into information
which had safeguarding implications.

There are no clinical risks associated with this study. The laser used by the laser scanner is
completely safe. Since we aim to capture facial features there is risk that the data may compromise
patient anonymity. To mitigate this possibility and distinguishing features which appear in publications
will be redacted.

8.2 Research Ethics Committee (REC) review & reports
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Aim: to demonstrate that the study will receive ethical review and approval from the necessary body
Ethical approval via IRAS will be sought before the trial commences.
8.3 Peer review

Aim: to describe the peer review process for the study which should be instigated and/or approved by
the sponsor.

Publications arising from the preclinical research have been subject to peer review. Some reviewers
identified the need for a clinical study, and their comments motivate this trial.

8.4 Patient & Public Involvement
Aim: to describe the involvement of the Public in the research

Anecdotal evidence from patients (reported by Macmillan Cancer Support) suggests they find the mould
room experience rather unpleasant and uncomfortable.

8.5 Regulatory Compliance
Aim: to demonstrate that the study will comply with regulations
NNUH R&D management committee has approved the study.

8.6 Protocol compliance
Aim: to demonstrate how protocol compliance will be managed

Protocol deviations represent a low risk and do not affect the patients’ treatment.

8.7 Data protection and patient confidentiality

Aim: To describe how patient confidentiality will be maintained and how the study is compliant with the
requirements of the Data Protection Act 1998

All investigators and study site staff will comply with the requirements of the Data Protection Act 1998
with regards to the collection, storage, processing and disclosure of personal information and will
uphold the Act’s core principles. Data will be stored on NHS hospital computers in the Colney centre.
Pseudononymised data will then be encrypted and transferred to university computers at UEA for data
analysis. The stored data complies with UEA's Information Security Policy, which includes security
standards, procedures and guidelines developed in accordance with ISO27001. The physical security
arrangements for storage of personal data during the study will be under the UEA General Information
Security Policy, V4.2. Each patient will be given a unique study identifier. A key to link the data to the
patient will be held separately in a filing cabinet in the locked office of Mr Tom Rogues, NNUH
Foundation Trust, Norwich, only accessible to Mr Rogues. Only NHS clinical staff will have access to
personal data. Research monitors from the University of East Anglia may need to see data for the
study to ensure best practice is maintained in line with University policy. Data will be made available to
the institutional review board (IRB) if necessary. Pseudononymised data generated by the study will
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be analysed by researchers in the School of Computing Sciences, UEA. Ms Sarah Barber (Trials &
Research Radiographer at Norfolk & Norwich University Hospital NHS Foundation Trust) will have
control of and act as the custodian for the data generated by the study. The data held at UEA will be
destroyed 12 months after the end of the study. A data archive (DVD) will be held at Colney Centre,
NNUH for 10 years.

8.8 Indemnity
Aim: to fully describe indemnity arrangements for the study

The sponsor (UEA) is responsible for insurance and indemnity

8.9 Amendments
Aim: to describe the process for dealing with amendments
Any necessary amendments will be discussed and agreed with

Michal Sheridan, Research Study & Recruitment Facilitator (General Surgery, Haematology,
Oncology, Plastic Surgery & Urology], R&D office, Level 3 East Norfolk & Norwich University Hospitals
NHS Foundation Trust Colney Lane, Norwich, NR4 7UY.

and we will seek further ethical approvals is necessary.
8.10 Access to the final study dataset

Aim: to describe who will have access to the final dataset
NNUH Colney Centre will have access to the final dataset.

9 DISSEMINIATION POLICY
9.1 Dissemination policy
Aim: to describe the dissemination policy for the study

NNUH Colney Centre owns the data captured by the trial and will be acknowledged in publications arising
from the study. The study will be reported in Mohammad Ryalat’s PhD Thesis, planned submission date:
September 2017. The thesis will act as the final study report. Results will also be presented at appropriate
UK conferences and an article will appear in a relevant scientific journal.

9.2 Authorship eligibility guidelines and any intended use of professional writers
Aim: to describe who will be granted authorship on the final study report

Mohammad Ryalat (See 9.1).
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Clinical Trial: Acquisition of 3-D facial geometry of patients’ scheduled for head and neck RT.

PARTICIPANT INFORMATION SHEET

The School of Computing Sciences, UEA in collaboration with University Campus Suffolk and
Norfolk and Norwich University Hospital NHS Trust are investigating an alternative non-invasive
technique for manufacturing immobilisation masks used during radiotherapy treatment. Methods
for creating computer models for the mask are being investigated as part of a PhD at UEA and
we seek your cooperation to help the student complete his research.

You have been invited to participate in this study because you have been prescribed a course of
radiotherapy treatment that requires an immobilisation mask. The manufacture and fitting of the
mask will involve a visit to the Mould Room. It would be helpful if you would tell us something
about your experience of this process by completing a short questionnaire after your visit.

This study aims to evaluate a new approach to manufacturing immobilization masks but the new
masks will not be used in your treatment. If you decide not to take part in the study then your
treatment will progress normally. However, if you agree to take part in the trial, further
measurements of your head will be made using a hand held laser scanner. This procedure is non-
invasive and completely safe but it will take about 15 minutes of your time.

We hope to develop a process that allows the immobilization mask to be manufactured by a 3-D
printer using a model constructed from your CT scan. The digital information we collect will allow
us to build a digital 3-D model of your head that in turn will allow us to assess the accuracy of the
model built from CT. We do not need to physically manufacture a printed immobilisation mask
to assess the accuracy of the model as we can do this using a computer simulation. The information
we collect will be stored and analysed by the School of Computing Sciences, UEA and results of
the analysis will be published in a PhD thesis and presented at relevant conferences and in journals.
If successful, we hope that in the future, our non-invasive approach to manufacturing
immobilisation masks may be adopted within the NHS and plaster of Paris moulds will no longer
be needed.

To ensure patient confidentiality, the data is anonymised and only a fragment of the model will be
included in any published work arising from the study.

Your participation in this study is entirely voluntary and will not affect your treatment outcome.
Anonymised data generated by the study will be analysed by researchers in the School of
Computing Sciences, UEA. Ms Sarah Barber (Trials & Research Radiographer at Norfolk &
Norwich University Hospital NHS Foundation Trust) will manage the anonymization process and
Dr Mark Fisher, School of Computing sciences, UEA will act as custodian for the data generated
by the study. The data held at UEA will be destroyed after a period of 10 years. All information
which is collected about you during the course of the study will be kept within the hospital. Any
information about you which leaves the hospital will have your name and address removed so that
you cannot be recognised. Measurements gathered as part of this study will enable approaches
developed as part of the PhD to be quantitatively evaluated and compared, thus allowing
researchers determine if the approach is clinically viable. Your treatment will progress normally
and so there is very little risk involved in participating in the study. However, if you have any
concern about any aspect of this study, you should ask to speak to Ms Sarah Barber. She will do
her best to answer your questions. You may withdraw from the study at any time without affecting
your planned treatment and any data or models collected as part of the study will be destroyed.
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Radiotherapy treatment is part of your routine care. If you take part in this study you will not
undergo any additional radiotherapy sessions and the radiotherapy dose you receive will not be
affected. Radiotherapy treatment involves the use of ionising radiation to form images of your
body, kill cancerous cells and provide your doctor with other clinical information. However,
ionising radiation can cause cell damage that may, after many years or decades, turn cancerous.
The chances of this happening to you are the same whether you take part in this study or not.

Laser-scanning session

After completing the questionnaire we will ask you to sit in an office chair and the PhD student,
supervised by a nurse or radiographer, will be scan your head using a hand held laser scanner, held
at a distance of 20-60 cm, as illustrated below. The procedure will take about 15 minutes and
during this time you will be asked to wear an eye mask. The procedure is non-invasive, try to relax
during the session and feel free to ask for breaks at any time.

Is the laser scanner safe?

The low power laser used in the scanner is no more powerful than a laser pointer. The laser
machine is CE marked which means that the machine complies with the essential requirements of
the relevant European health, safety and environmental protection legislation. However, there is a
small risk of eye damage if one looks directly at a laser and for this reason we will cover your eyes
while being scanned.

If you have any concerns about participating in the project, require any further information about
the project, or would like to receive a summary of the results of the research please contact either:

Dr Mark Fisher, School of Computing Sciences, UEA, Norwich, NR4 7T].
Tel: 01603 592671 Email: mark.fisher@uea.ac.uk

Ms Sarah Barber, Trials & Research Radiographer at Norfolk & Norwich University Hospital NHS
Foundation Trust. Colney Centre, East Block Level 1, Colney Lane, Norwich, Norfolk, NR4 7UY.
Tel: 01603 646736 Email: sarah.barber(@nnuh.nhs.uk

Thank you.
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University of East Anglia

Project Lead: Mark Fisher
School of Computing Sciences
University of East Anglia
Norwich Research Park,
Norwich, NR4 7TJ

Centre Number:

Study Number:

Patient Identification Number for this trial:

CONSENT FORM

Title of Project: Construction of 3D-Printed Immobilisation Masks for Use in Radiotherapy Treatment of
Head-and-Neck Cancers.

Name of Researcher: Mohammad Ryalat .
Initial Box

1. | confirm that | have read and understand the information sheet dated 10.11.16 (version
3.0) for the above study. | have had the opportunity to consider the information, ask
guestions and have had these answered satisfactorily.

Initial Box

2. lunderstand that my participation is voluntary and that | am free to withdraw at any time
without giving any reason, without my medical care or legal rights being affected.

Initial Box

3. lunderstand that relevant sections of my medical notes and data collected during the study
may be looked at by individuals from the NHS Trust, from regulatory authorities or from
The University of East Anglia, where it is relevant to my taking part in this research. | give
permission for these individuals to have access to my records.

Initial Box

4. |agree to take partin the above study.

Name of Participant Date in full Signature
in full
Name of Person taking Date in full Signature

consent in full, as per
study Delegation Log

1 for patient; 1 for researcher; 1 to be kept with hospital notes

IRAS Ref: 209119 Version 3.0 10.11.16
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CERTIFICATE of ACHIEVEMENT

Thisisto certify that

Mohammad Ryalat

has completed the course

Introduction to Good Clinical Practice eLearning (Secondary
Care)

June 29, 2016

Modules completed:

Introduction to Research in the NHS
Good Clinical Practice and Standards in Research
Study Set Up and Responsibilities
The Process of Informed Consent
Data Collection and Documentation
Safety Reporing

This course is worth 4 CPD credits
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Mohammad Hashem Ryalat Research and Development Department
" . Level 3, East Block, Room 032
School of Computing Sciences Norfolk & Norwich University Hospitals NHS Foundation Trust
University of East Anglia Colney Lane
. Norwich
Norwich Research Park NR4 7UY
Norwich Direct Dial: 01603 597305
NR4 7T) e-mail: rdoffice@nnuh.nhs.uk
Website: www.nnuh.nhs.uk

23/01/2017

Dear Mr Ryalat,

Re: 209119 - Feasibility Study: Acquisition of 3D facial geometry of patients' scheduled for head and
neck Radiotherapy Treatment (RT).

Letter of access for research

This letter confirms your right of access to conduct research through Norfolk & Norwich University
Hospitals NHS Foundation Trust for the purpose and on the terms and conditions set out below. This
right of access commences on 24™ January 2017 and ends on 31* December 2017 unless terminated
earlier in accordance with the clauses below.

You have a right of access to conduct such research as confirmed in writing in the letter of permission for
research from this NHS organisation. Please note that you cannot start the research until the Principal
Investigator for the research project has received a letter from us giving permission to conduct the
project.

The information supplied about your role in research at Norfolk & Norwich University Hospitals NHS
Foundation Trust has been reviewed and you do not require an honorary research contract with this NHS
organisation. We are satisfied that such pre-engagement checks as we consider necessary have been
carried out.

You are considered to be a legal visitor to Norfolk & Norwich University Hospitals NHS Foundation Trust
premises. You are not entitled to any form of payment or access to other benefits provided by this NHS
organisation to employees and this letter does not give rise to any other relationship between you and
this NHS organisation, in particular that of an employee.

While undertaking research through Norfolk & Norwich University Hospitals NHS Foundation Trust, you
will remain accountable to your employer the University of East Anglia but you are required to follow
the reasonable instructions of Alison Vinall in this NHS organisation or those given on her behalf in
relation to the terms of this right of access.

Where any third party claim is made, whether or not legal proceedings are issued, arising out of or in
connection with your right of access, you are required to co-operate fully with any investigation by this
NHS organisation in connection with any such claim and to give all such assistance as may reasonably be
required regarding the conduct of any legal proceedings.

You must act in accordance with Norfolk & Norwich University Hospitals NHS Foundation Trust policies
and procedures, which are available to you upon request, and the Research Governance Framework.

You are required to co-operate with Norfolk & Norwich University Hospitals NHS Foundation Trust in
discharging its duties under the Health and Safety at Work Act 1974 and other health and safety
legislation and to take reasonable care for the health and safety of yourself and others while on Norfolk
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& Norwich University Hospitals NHS Foundation Trust premises. You must observe the same standards of
care and propriety in dealing with patients, staff, visitors, equipment and premises as is expected of any
other contract holder and you must act appropriately, responsibly and professionally at all times.

You are required to ensure that all information regarding patients or staff remains secure and strictly
confidential at all times. You must ensure that you understand and comply with the requirements of the
NHS Confidentiality Code of Practice
(https://www.gov.uk/government/uploads/system/uploads/attachment data/file/200146/Confidentialit
y - NHS Code of Practice.pdf) and the Data Protection Act 1998. Furthermore you should be aware
that under the Act, unauthorised disclosure of information is an offence and such disclosures may lead to
prosecution.

You should ensure that, where you are issued with an identity or security card, a bleep number, email or
library account, keys or protective clothing, these are returned upon termination of this arrangement.
Please also ensure that while on the premises you wear your ID badge at all times, or are able to prove
your identity if challenged. Please note that this NHS organisation accepts no responsibility for damage
to or loss of personal property.

We may terminate your right to attend at any time either by giving seven days’ written notice to you or
immediately without any notice if you are in breach of any of the terms or conditions described in this
letter or if you commit any act that we reasonably consider to amount to serious misconduct or to be
disruptive and/or prejudicial to the interests and/or business of this NHS organisation or if you are
convicted of any criminal offence. As from 26 July 2010, your HEl employer may initiate your
Independent Safeguarding Authority (1I1SA) registration (where applicable), and thereafter, will continue
to monitor your ISA registration status via the on-line ISA service. Should you cease to be ISA-registered,
this letter of access is immediately terminated. Your employer will immediately withdraw you from
undertaking this or any other regulated activity. You MUST stop undertaking any regulated activity.

Your substantive employer is responsible for your conduct during this research project and may in the
circumstances described above instigate disciplinary action against you.

Norfolk & Norwich University Hospitals NHS Foundation Trust will not indemnify you against any liability
incurred as a result of any breach of confidentiality or breach of the Data Protection Act 1998. Any

breach of the Data Protection Act 1998 may result in legal action against you and/or your substantive
employer.

If your current role or involvement in research changes, or any of the information provided in your
Research Passport changes, you must inform your employer through their normal procedures. You must
also inform your nominated manager in this NHS organisation.

Yours sincerely

Juuz Tuas—

Julie Dawson
Research Services Manager

ce: HR department of the substantive employer
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