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AbstractAbstractAbstractAbstract    
Background: Most urinary tract infections (UTIs) are trivial; but complicated UTIs are 

a growing reason for hospitalisation in the UK, and are among the commonest 

sources of sepsis. Increasing resistance among uropathogens complicates treatment 

and drives wider empirical use of previously-reserved antibiotics. Rapid precise 

detection of pathogens and resistances, without culture, might better guide early 

therapy in deteriorating UTI patients. 

Methods: Two approaches were evaluated: i) MALDI-TOF mass spectrometry for 

direct identification of pathogens from urine together with multiplex, tandem PCR 

(MT-PCR) for resistance gene profiling. MALDI-TOF was also explored for rapid 

detection of β-lactamase activity in bacteria harvested from urine; ii) MinION 

sequencing for bacterial and resistance gene identification, again directly from urine. 

As background, an epidemiological surveillance of uropathogens from the Norfolk 

and Norwich University Hospital in July and November 2014 was performed. 

Results: Direct MALDI-TOF on urines could achieve rapid bacterial identification 

within 1.5 h and also allowed direct detection of extended-spectrum β-lactamase 

(ESBL) activity. MT-PCR showed satisfactory results in detecting the commonest 

resistance genes in Enterobacteriaceae directly from urines and cultivated isolates 

within 3 h. Weaker association was found between streptomycin resistance and 

aadA1/A2/A3 genes. Fluoroquinolone-susceptible and -resistant Escherichia coli 

were distinguished by the melting temperatures of their gyrA product. MinION 

sequencing correctly identified uropathogens and their resistances in all urine 

samples within <5 h, without culture.  Acquired resistance genes agreed with 

resistance phenotypes and closely matched Illumina sequencing, albeit with poor 

discrimination within some β-lactamase families (e.g. blaTEM). Epidemiological 

surveillance showed E. coli predominant in all age groups and location types, with 

high resistance rates to amoxicillin and trimethoprim.  

Conclusion: Either a MALDI-TOF plus PCR or a sequencing approach could 

significantly shorten the time required for microbiological investigation of urosepsis, 

allowing clinicians to adjust therapy before the second dose of a typical (i.e. q8h) 

antibiotic.  
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INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION    
 

 

1.1 Anatomy of the urinary tract 

The urinary tract is made up of the kidneys, ureters, bladder and urethra (Figure 

1). The kidneys belong to the upper urinary tract along with the ureters, and are 

located in the abdomen, on either side of the spine. The ureters are thin tubules that 

carry urine from kidney to the bladder. The remaining structures comprise the lower 

urinary tract. The bladder a balloon-shaped organ, is located in the pelvis of women 

while in men it lies above the prostate gland. The urethra is the tube through which 

urine exits the bladder.  

 

 

 

 

 

 

 

 

 

      Figure 1. Principal anatomical components of the urinary tract. 
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1.2 Urinary tract infections (UTIs) 

An inflammation of the urinary tract can occur in urethra (urethritis), bladder 

(cystitis), kidneys and renal pelvis (pyelonephritis), epididymis (epididymitis) or 

prostate gland (prostatitis). In extreme cases infection overspills to the bloodstream 

and manifests as sepsis, severe sepsis or septic shock. For clinical management, UTIs 

are classified into four categories: asymptomatic bacteriuria, uncomplicated UTI, 

complicated UTI and catheter-related UTI. Depending on the location of the infection, 

symptoms vary ranging from mild irritation during voiding to sepsis (Table 1). The 

bacterial counts for clinically relevant diagnostic of UTI are presented in Table 2. 

 

Table 1. Clinical symptoms and signs of upper and lower urinary tract infection. 

 (Field, 2010) 

 

 

 

 

 

 

 

 

Lower urinary tract infections Upper urinary tract infections 

Dysuria 

Burning with urination 

Frequency of urination 

Malodorous urine 

Suprapubic, and rectal (men) pain 

Normal temperature 

Haematuria 

Systemically unwell 

Nausea and vomiting 

Uncontrollable shivering 

Hypotension or shock 

Loin pain and tenderness in the upper 
back and sides 
 
Fever 

+/- Features of lower urinary tract 
infection 
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Table 2. Laboratory correlates of different form of urinary tract infection. 

(Naber et al., 2006; Nicolle, 2006; Ipe et al., 2013; Grabe, 2015) 

 

1.2.1 Asymptomatic bacteriuria (ASB) 

Asymptomatic bacteriuria is defined as the presence of significant numbers (>105 

cfu/mL for women and men or >102 cfu/mL for patients with indwelling urethral 

catheter) (see Table 2) of a single organism in urine in the absence of symptoms 

indicating infection (see Table 1). The prevalence of ASB among the general 

population is estimated at 3.5% (Foxman, 2002) and increases with the age. Among  

elderly (>65 years old) living independently the ASB rate is three times greater in 

women (16% to 18%) than men (6%) (Nicolle et al., 2005). Among elderly people 

women living in nursing homes, ASB rates range from 17% to 55% and among elderly 

Categories Clinical diagnosis Laboratory correlated 

1 Asymptomatic bacteriuria (ASB) ≥105 cfu/mL for women (in two 

consecutive voided specimen with 

the same species) and men (in one 

voided specimen with one 

species); 

 ≥102 cfu/mL for patients with 

indwelling catheter 

2 Acute uncomplicated cystitis 

 

Acute uncomplicated 
pyelonephritis 

>10 WBC/mm3 

≥103  cfu/mL 

>10 WBC/mm3 

≥104  cfu/mL 

3 Complicated UTI (cUTI) >10 WBC/mm3 

≥105  cfu/mL for women  

≥104  cfu/mL for men or in straight 

catheter urine for women 

4 Catheter-related UTI >10 WBC/mm3 

≥103 cfu/mL  



4 | P a g e  
 

men from 15% to 31% (Nicolle et al., 2005). ASB is even more prevalent among 

residents of long-term facilities, at up to 75% of institutionalized women and 52% of 

men (Ipe et al., 2013). Other groups with substantial ASB include pregnant women 

(1.9-15%) (Ipe et al., 2013), also transplant and diabetic patients, whose have 2-fold 

to 4-fold higher incidence rate of ASB compared with non-diabetic patients (Foxman, 

2002).  

 

1.2.2 Uncomplicated UTIs 

Uncomplicated UTIs occur in lower and upper urinary tracts in healthy women 

who have no underlying structural or neurological lesions of the urinary tract, no 

history of recent instrumentation and no other systemic diseases predisposing them 

to bacterial infection. Infection is usually caused by single pathogens, principally 

Eschericha coli. Uncomplicated UTIs are encountered most frequently in young, 

sexually-active women (Mehnert-Kay, 2005), and manifest usually as acute 

uncomplicated cystitis with colony counts ≥103 cfu/mL. Sometimes infection spreads 

from bladder to the upper urinary organs (kidneys or renal pelvis) and manifests as 

uncomplicated pyelonephritis with a diagnostic threshold ≥104 cfu/mL (see Table 2) 

along with clinical symptoms.  Symptoms of upper UTI usually involve fever and pain 

in the upper back (see Table 1) even without the symptoms typical for lower urinary 

infections.  

Early studies by Kass  (Kass, 1960) demonstrated that asymptomatic bacteriuria 

during pregnancy is associated with an increasing risk of developing pyelonephritis 

due to mechanical compression of the enlarging uterus (Schnarr & Smaill, 2008). The 

incidence of pyelonephritis during pregnancy ranges from 0.5 to 9% (Bookallil et al., 

2005; Sharma & Thapa, 2007; Hill et al., 2005) and it is associated with many 

complications including bacteraemia, renal disease, hypertension, preterm labour 

and low birth weight (Hill et al., 2005; Schnarr & Smaill, 2008). 
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1.2.3 Complicated UTIs (cUTIs) 

Complicated UTIs occur in patients in whom there are residual inflammatory 

changes following recurrent infection and instrumentation or with anatomical, 

structural or functional abnormality due to intrinsic or extrinsic factors (Mazzulli, 

2012). Complicated UTIs may occur with or without clinical symptoms common for 

lower and upper urinary tract infections (see Table 1). Infection is usually caused by 

E. coli, but other pathogens including non-fermenters (Pseudomonas aeruginosa) and 

Gram-positive cocci (e.g. staphylococci or enterococci) may be important. E. coli 

isolated from patients with complicated urinary infection have a lower prevalence of 

virulence genes and less phenotypic expression of virulence factors compared with 

E. coli isolated from uncomplicated infections (Johnson et al., 1988; Johnson et al., 

1987; Benton et al., 1992; Sandberg et al., 1988; Nicolle, 2001). 

Complicated UTIs can arise in both sexes regardless of age; however UTIs in men 

are usually considered complicated (Naber et al., 2001; Naber et al., 2006) and are 

frequently associated with acute or chronic pyelonephritis, prostatitis or perinephric 

and renal abscesses.  

UTIs are a growing cause of hospitalization in the UK, with 67 emergency 

admissions per 100,000 population per quarter on average, mostly of elderly patients 

(see Figure 2) (NHS, 2014). In recent years the number of  E. coli bloodstream 

infections has significantly increased with 35,676 incidences recorded in England in 

2014-15 (Figure 3) over 60% with an urinary origin (PHE, 2016b). 
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Figure 2. Growing rate of admission for UTI compared with other causes for 
hospitalization over time (NHS, 2014). 
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      Figure 3. E. coli bacteraemia rate per 100,000 population in England 2008-2015        
(PHE, 2016b). 

 

 

1.2.4 Catheter-related UTIs (CA UTIs) 

Catheter-associated urinary tract infections (CA) arise in patients with indwelling 

urinary catheters. A colony count >103 cfu/mL of one bacterial species in a single 

catheter urine specimen is microbiologically significant among patients with a 

urethral, suprapubic or condom catheter, even where this has been removed within 

the previous 48 h (Hooton et al., 2010). From 15% to 25% of patients admitted to 

hospital undergo urinary catheterization (Hooton et al., 2010; Warren, 2001) and a 

similar proportion of patients cared in nursing homes have long-term indwelling 

catheters (Godfrey & Evans, 2000). CA-bacteriuria can occur in patients with or 

without clinical symptoms and signs referable to urinary infections with the incidence 

rate of bacteriuria between 3%-10% per cathetered day (Rosser et al., 1999; Warren 

et al., 1978; Lo et al., 2014).  

Most catheter-associated UTIs derived from patient’s own colonic flora (Tenke et al., 

2008) but long-term catheterization increases the risk of UTI caused by nosocomial 

pathogens (e.g. Pseudomonas spp.). The major risk factor of developing catheter-

related bacteriuria is the duration of catheterisation. Short-term episodes (less than 

7 days) mostly are asymptomatic and often caused by a single organism, while a long-

term catheterization (more than 30 days) increases the risk of polymicrobial infection 

(Warren, 2001; Tenke et al., 2008; Rosser et al., 1999). Other risk factors associated 
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with CA-bacteriuria include lack of systemic antimicrobial therapy, gender (female), 

microbial colonization of the drainage bag, catheter insertion outside the operating 

room, catheter care violations, comorbidity or fatal underlying illness, older age, 

diabetes (Maki & Tambyah, 2001; Saint & Chenoweth, 2003; Rosser et al., 1999). 

Infection is usually caused by E. coli, but a wide variety of others pathogens might 

be isolated including P. aeruginosa, Klebsiella pneumoniae, Proteus mirabilis, 

Stahylococcus epidermidis, Enterococcus spp. and Candida spp. (Warren, 2001; Sedor 

& Mulholland, 1999). Bacterial adhesins initiate attachment by recognizing receptors 

located on the surfaces of the host cells or catheter. Once attached to the catheter 

internal or external surface, bacteria grow by initially forming microcolonies with a 

mature biofilm developing later (Jacobsen et al., 2008). Bacteria within the biofilm 

produce exopolysaccharides which protects them from mechanical flushing by urine 

flow and other host defences whilst cell dormany protects from antibiotics (Tenke et 

al., 2008). Treatment of asymptomatic CA UTIs is not recommended. Antibiotic 

treatment is administrated only for symptomatic infection. 

 

1.2.5 Urosepsis 

Urosepsis is defined as sepsis (septicaemia syndrome) arising from prior 

infections  localized in the upper urogenital tract or male genital organs (prostate) 

(Wagenlehner et al., 2007a) typically with bloodstream overspill.  It may be 

associated with multi-organ dysfunction, hypo-perfusion or hypotension. Sepsis can 

develop from community- or nosocomial-acquired complicated UTI. However, in a 

study performed during the 1990s by Richards et al. it was noted that 23% of all cases 

of hospital-acquired sepsis were due to UTI and were mostly seen in catheterized 

patients (Richards et al., 2000). Severe sepsis is most often associated with 

pulmonary and abdominal infections, but prior urinary tract infections account for 

about 5% cases (Hotchkiss & Karl, 2003). The prevalence of nosocomial urosepsis in 

urological patients in urology is high and in one study it was estimated at 12% 

(Bjerklund Johansen et al., 2007). In general, urosepsis accounts for approximately 

25% of all sepsis (Wagenlehner et al., 2013). The mortality rate of urosepsis is high 

and ranges from 20-42% in high-risk group patients (Levy et al., 2012; Rosser et al., 
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1999; Tal et al., 2005). These high-risk cases include patients with comorbid illnesses, 

advanced age, diabetes, immunosuppression (transplant), tumour receiving 

chemotherapy or corticosteroids and patients with acquired immunodeficiency 

syndrome. The commonest risk factor associated with developing urosepsis are 

structural or functional genito-urinary abnormalities. These include congenital or 

acquired obstruction (e.g. calculi, ureteric or urethral strictures or tumours), 

instrumentation (e.g. indwelling urethral catheters, nephrostomy tubes, urological 

procedures), impaired voiding (e.g. neurogenic bladder, cystocele), metabolic 

abnormalities (e.g. diabetes) and immunodeficiency (Kalra & Raizada, 2009). 

Gram-negative bacilli account for majority of the cases of urosepsis. They include 

E.  coli (50%), Proteus spp. (15%), Enterobacter spp. and Klebsiella spp. (15%), and P. 

aeruginosa (5%), while Gram-positive organisms are involved less frequently (15%) 

(Wagenlehner et al., 2007b).  

Effective antimicrobial therapy within the first hour of documented hypotension 

was associated with a survival rate of 80%  in sepsis generally (Kumar et al., 2006). 

Each hour of delay in the subsequent six hours was associated with an average 

decrease in survival by 8%. 

 

1.3 Microbiological definition of UTI 

A "significant" bacteriuria is conventionally defined as ≥108 cfu/L or ≥105 cfu/mL 

of one bacterial species in a clean-catch mid-stream urine as first proposed by (Kass, 

1956). Kass found that lower numbers of bacteria generally indicated contamination 

during sample collection, although bacterial loads of 104-105 cfu/mL were difficult to 

interpret. Nevertheless, approximately one-fourth of patients presenting with 

symptoms suggesting acute uncomplicated UTIs yield no bacterial growth on urine 

culture or counts between 102 - 104 cfu/mL (Gallagher et al., 1965). Acute 

pyelonephritis can occur with lower bacterial counts, especially among some groups 

of patients (MacDonald et al., 1957) e.g. children, pregnant women, and elderly 

populations with comorbid illnesses. McIsaac  et al. (2005) reported that single 

culture-based methods miss more than one-half of asymptomatic bacteriurias among 
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pregnant women before 20 weeks gestation, and recommended culture in each 

trimester to identify more cases (McIsaac et al., 2005).  

Therefore, the microbiological criteria for the diagnosis of significant UTI have 

gradually been refined and depends on the patient group and types of bacteria 

detected (see Table 2).   

 

1.4 Aetiology of urinary tract infection 

UTIs are among the most frequent bacterial infections. It is estimated that there 

are about 150 million cases worldwide per annum (Stamm & Norrby, 2001); they 

account for over 8 million physician visits p.a in the USA (Schappert, 2008) and for 1-

6% (Nazareth & King, 1993) of all consultations in general practice in the UK each 

year. The prevalence of UTIs depends on demographics, medical interventions and 

comorbidities (see Table 3). For anatomical reasons, women are more prone to 

develop UTIs than men. Most infections in adult men are complicated and related to 

abnormalities of the urinary tract.  Approximately 50% of women experience 

uncomplicated UTI requiring antimicrobial therapy by the age of 30 (Foxman, 2002; 

Ikaheimo et al., 1996). The recurrence rate is as high as 20-30% (Hooton, 2001) within 

6 months of completing antimicrobial treatment. The incidence of UTI increases with 

the age for both genders. It is estimated that the incidence of UTIs per year in children 

ranges between 1-3% (Foxman, 2002); in premenopausal women it is 12% (Hagglund 

et al., 1999); in elderly non-institutionalized women and men, 6-30%, and 11-13%, 

respectively (Wolfhagen et al., 1990) while, in institutionalised elderly women, UTI 

rates range from 25-50% (Raz, 2011; Wolfhagen et al., 1990).  

UTIs among the elderly population (>65 years old) are very common, occurring 

both in community and long-term care settings. The clinical presentation of UTI range 

from asymptomatic bacteriuria to complicated UTI. Although most infections are 

asymptomatic or mild, severe infections can also be devastating, resulting in sepsis 

or death.  Screening for a treatment of asymptomatic bacteriuria in elderly 

institutionalized residents of long term care facilities is not recommended (Ronald et 

al., 2001) and  treatment of asymptomatic bacteriuria does not reduce mortality or 



11 | P a g e  
 

prevent symptomatic episodes but increases side effect and antibiotic resistance 

(HPA, 2011.). Antibiotic therapy is only administrated for asymptomatic bacteriuria 

in the presence of factors potentially leading to complicated UTI and before urologic 

procedures during which mucosal bleeding is anticipated (Nicolle et al., 2005). There 

are many factors that predispose older patients to develop symptomatic and 

complicated UTI (see Table 3). Chronic disease (e.g. Alzheimers and Parkinsons) and 

neurological conditions associated with cerebrovascular disease lead to impaired 

bladder empting (Nicolle, 2002). Urological conditions causing obstruction (e.g. 

stones, tumours) also increase the risk of developing UTI. The presence of urinary 

catheters and external urine collection devices increases the frequency of bacteriuria. 

Patients with comorbid diabetes with contributing factors including neurogenic 

bladder and poor glycemic control are at high risk of developing asymptomatic 

bacteriuria (Zhanel et al., 1995). In postmenopausal women oestrogen deficiency 

corresponds to recurrent UTI (Stamm & Raz, 1999). In men, chronic prostatic 

disorders cause urinary symptoms and urinary retention.  

 

Table 3. Major risk factors prone to developing UTIs. 

Young population Elderly population 

Sexual activity 

Diaphragm and spermicidal use  

Use of antimicrobial agents 

Pregnancy 

Chronic diseases and specific 
medications 
 
Anatomical or functional abnormalities 
of urinary tract 
 
Comorbid diabetes 

Institutionalization 

Presence of a urinary catheter 

Oestrogen level (women) 

Chronic prostate disorder (men) 

Poor health 

Vaginal disorders 

Urge incontinence 

Delayed, incomplete postcoital voiding 
Recent UTI 
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1.5 Epidemiology 

More than 95% of uncomplicated UTIs are caused by a single bacterial pathogen 

(Lentz, 2009). The great majority- 75-90%- are caused by E. coli (Koksal et al., 2017; 

Malmartel & Ghasarossian, 2016; Karlowsky et al., 2011; Gupta et al., 2001; Nicolle, 

2013; Kahlmeter, 2003), however UTIs are caused by only a few E. coli types. 

Historically these were defined by serotyping and important type was e.g. 

O15:K52:H1   (Dalmau et al., 1996; Olesen et al., 1995; Johnson et al., 1999; Prats et 

al., 2000; Phillips et al., 1988). Sequence typing has now replaced serotyping, but still 

a few types dominate e.g. 025b-ST131 (Rogers et al., 2011; Cagnacci et al., 2008; Day 

et al., 2016), ST69 (Matsumura et al., 2012), ST73 (Alhashash et al., 2016), ST95 

(Ciesielczuk et al., 2016). This might reflect their prevalence in the faecal flora, or 

reflect differences in virulence factors. Uropathogenic E. coli possess adhesive 

organelles (fimbriae or pilli) facilitating bacterial attachment on the luminal surface 

of the bladder epithelium and penetrating into epithelial cells (Ronald, 2002). A 

variety of virulence factors are associated with E. coli UTI. Johnson et al. (2005) 

showed that E. coli isolates from patients with pyelonephritis and prostatitis 

exhibited more virulence factors than those with cystitis (Johnson et al., 2005). 

Certain virulence factors such as haemolysin (hly gene), necrotizing factor type 1 (cnf1 

gene) or class III P-pilli (papGIII gene) specifically favour the development of 

prostatitis (Ruiz et al., 2002; Johnson et al., 2005) whereas others such as  type 1 

fimbriae (fim gene) and ireA, the K2 kpsM variant, cvaC, and ibeA favour 

pyelonephritis (Johnson et al., 2005).   

Most non E. coli cases of uncomplicated UTI are caused by other Gram-negative 

bacteria such as Proteus mirabilis, Klebsiella and Enterobacter species (5-10%) (Gupta 

et al., 2001; Karlowsky et al., 2011; Kahlmeter, 2000; Stefaniuk et al., 2016) and by 

Gram-positive bacteria such as Staphylococcus saprophyticus, Enterococcus faecalis, 

and Streptococcus agalactiae (group B strep) (5-15%) (Farrell et al., 2003; Kim et al., 

2008) 

Complicated UTIs from patients with indwelling catheters are more often caused 

by two or more pathogens, which are likely to be multi-drug resistant. 

Enterobacteriaceae (E. coli, Klebsiella spp., Enterobacter spp., and Proteus spp.) are 
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the predominant pathogens (15%), with E. coli remaining the commonest (25-50%) 

(Mazzulli, 2012; Lentz, 2009; Ipe et al., 2013). Other frequent isolates include the non-

fermenters Pseudomonas aeruginosa, which accounts for approximately 5% of 

infected patients with indwelling devices (Nicolle & Committee*, 2005; Nicolle, 

2012). Gram-positive cocci are responsible for around 15% infections mostly 

involving Enterococcus species (Nicolle and Committee*, 2005; Nicolle, 2012).   

 

1.6 Treatment 
 

In general, antimicrobial treatment in UTI should be reserved only for patients 

with clinical symptoms and signs, except for asymptomatic bacteriuria (>105 cfu/mL) 

in pregnancy and in transurethral resection of prostate where mucosal bleeding is 

likely to occur (Nicolle & Committee*, 2005). Local epidemiology, resistance profiles, 

and patient factors (age, gender, medical interventions, and comorbidities such as 

diabetes, immunosuppression, catheterisation, neuromuscular disorders, renal 

transplantation) should be taken into consideration before deciding on antimicrobial 

therapy.  

Clinical laboratories should be also aware of natural (inherent) resistance 

phenotypes profile of common uropathogens. For example Proteus mirabilis is 

naturally resistant to nitrofurantoin and colistin, Enterobacter spp., Citrobacter 

freundii are naturally resistant to ampicillin, amoxicillin, co-amoxiclav, first-

generation cephalosporins and cefoxitin (Livermore et al., 2001). 

Monitoring antimicrobial resistances, combined with reasonable antibiotic 

therapy should help to reduce the rate at which resistance emerges and spreads. It 

should also seek to minimise the super-infection rate with Clostridium difficile. 

Guidelines for empirical treatment of UTIs need to be regularly reviewed and 

updated. 

The first-line treatment in the UK for community-acquired uncomplicated cystitis 

is nitrofurantoin (50 mg 4 times per day (qds) or 100 mg modified-release twice daily 

(bd)) given as a three- or five-days course for women and seven-days for men. 

Trimethoprim (200 mg bd) remains an alternative in an areas where the resistance 

rate for E. coli is <20%. A third possible agent is pivmecillinam (400 mg immediately 
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(stet) then 200 mg tds for 3 days) or, if the patient has penicillin allergy cephalexin 

(500 mg bd) (ASC, 2016; APC, 2017; PHE, 2016c; CCG, 2016). Fosfomycin (3 g stet) 

might be an alternative if the above agents cannot be used (ASC, 2016). 

If infection is associated with diabetes, an indwelling catheter, renal impairment, 

an abnormal urinary tract, immunosuppression or recent UTI it is recommended to 

extend the therapy to 7 days still using above antibiotics (ASC, 2016). If symptoms 

persist, urine should be send for microscopy, culture and susceptibility testing and a 

further three-day course of nitrofurantoin or trimethoprim is prescribed. 

Simultaneously treatment is adjusted later according to the susceptibility testing 

results.  

Hospital-acquired acute pyelonephritis without penicillin allergy in the UK often 

is treated by a course of piperacillin/tazobactam (4.5 g three times per day (tds)) with 

step down to oral cephalexin (500 mg bd) or co-amoxiclav if the bacteria are sensitive. 

Alternatives are ciprofloxacin (500 mg bd) or co-amoxiclav (500/125 mg tds). In cases 

of severe complicated pyelonephritis with penicillin allergy gentamicin or 

ciprofloxacin (500 mg bd) are recommended (ASC, 2016; APC, 2017; PHE, 2016c; CCG, 

2016). The total duration of treatment, including the oral step-down, is around 10-14 

days.  

Severe urosepsis without penicillin allergy is treated by a ten-day course of single 

dose of gentamicin plus piperacillin/tazobactam (4.5 g) or if the patient has penicillin 

allergy, gentamicin plus meropenem (1 g tds), which is likely to induce a less severe 

reaction than penicillin or ciprofloxacin (500 mg bd) are used for 14-21 days (ASC, 

2016). More generally carbapenems (ertapenem, imipenem, meropenem) should be 

used only in extreme cases when pathogen is resistant to standard antibiotics. 

Suspected acute prostatitis is treated by ciprofloxacin (500 mg orally twice daily) 

or trimethoprim (200 mg bd) for 28 days (PHE, 2016c), though both these are 

seriously threatened by resistance.  

Lower UTI in pregnancy is treated by a seven-day course of nitrofurantoin (50 mg 

qds) during the first and second trimesters; cephalexin (500 mg bd) or trimethoprim 

(200 mg bd) are alternatives during the third trimester. In the case of severe sepsis 

ceftriaxone is recommended (PHE, 2016c). Before implementing antibiotic therapy, 

urine from the pregnant woman should be sent for routine examination and 
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susceptibility testing; antimicrobial choice should be reviewed when culture results 

become available. 

 

1.7 Antibiotic resistance 
 

Antimicrobial resistance is causing a serious global public health care threat. The 

rapid spread of bacterial resistance while few new antibiotics are being developed 

has led to pressure to develop stewardship and treatment guidelines so as to better 

manage our dwindling antibiotic resources.  

Until recently, it was considered that the hospitals, and especially intensive care 

units, were the major source of bacterial resistance, however the spread of 

antimicrobial resistances in community settings is increasingly seen. Examples 

include the increase of ESBL-producing E. coli (Doi et al., 2013; Fan et al., 2014; 

Woodford et al., 2004). 

The rise of resistance in the community links to growing antibiotic consumption.  

In the four years 2010-2014 total antibiotic consumption in England rose by 6.5% 

(PHE, 2016a). The majority of antibiotic prescribing is in primary care though 

secondary care prescribes more broad-spectrum agents, which are more likely to 

drive antibiotic resistance than narrow-spectrum antibiotics. Changes in the 

community e.g. increasing day-care for children, institutionalization of care for the 

elderly population, antibiotic abuse and agricultural use of antibiotics create the 

ground for the spread antimicrobial resistance. 

 Although it is easy to assess resistance rates to antibiotics in nosocomial urinary 

infection, surveillance of community-acquired infections is a challenge.  MacGowan 

et al. (1998) suggested that route testing of E. coli isolated from urine specimens 

over-estimates the rate of resistance among E. coli in the community (MacGowan et 

al., 1998). This is because the majority of samples submitted to the laboratory for 

routine examination lack details on why the sample was sent and may be from 

treatment failures-which may fail owing to resistance. Moreover, some patients 

group e.g. the elderly are more likely to have specimens taken than others (Livermore 

et al., 1998). To measure the true rate of resistance in the community it would be 
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necessary the use a clinical denominator (number of infected patients) not number 

of laboratory isolates (Livermore et al., 1998), and to test the isolates from all these 

patients by a standardized laboratory method for both bacterial identification and 

susceptibility testing.  

The prevalence of antimicrobial resistance in urinary pathogen varies widely 

depending on the patient severity of illness, demography (e.g. urosepsis vs. cystitis 

and elderly vs. young), geographic location, primary care or hospital patient care. 

Local and stratified antimicrobial susceptibility and resistance rates therefore should 

ideally be considered in making treatment decision, but are rarely available. 

Antimicrobial agents are often categorized according to their principal 

mechanism of action. Those include (i) interference with cell wall synthesis (e.g. β-

lactams and glycopeptides), (ii) inhibition of protein synthesis (e.g. macrolides, 

aminoglycosides and tetracyclines), (iii) interference with nucleic acid synthesis (e.g. 

fluoroquinolones and rifampicin), (iv) inhibition of a metabolic pathway (e.g. 

trimethoprim-sulfamethoxazole), and (v) disruption of bacterial membrane structure 

or function (e.g. polymyxins and daptomycin) (Tenover, 2006). Bacteria may manifest 

intrinsic resistance to antibiotic or may acquire resistance by mutations or gene 

transfer from other bacteria. Specific mechanisms include (i) acquisition of β-

lactamase genes (e.g. extended-spectrum β-lactamase or plasmid-mediated ampC 

genes) that hydrolyse antibiotic agents, (ii) expression of efflux pumps that extrude 

antibiotics from the cell before they reach the target site, (iii) acquisition of genes for 

a metabolic pathway by passes the binding site of the antimicrobial agents, (iv) 

mutations or acquisition of genes that modify an antibiotic target site and (v) 

mutations that down regulate porin genes, thereby limiting access of antibiotics to 

the intracellular target sites. Bacterial exchange of genetic information, increasing 

the spread of resistance genes occurs through transformation, conjugation and 

transduction and facilitates accumulation of multidrug resistance.  

The years 1960-1980 saw dramatic rises in the antibiotic resistance for E. coli to 

amoxicillin/ampicillin (Kresken & Wiedemann, 1986; Atkinson & Lorian, 1984). Over 

succeeding decades E. coli progressively acquired resistance to trimethoprim, 

quinolones, amoxicillin-clavulanate, cephalosporins and to a lesser degree 
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piperacillin/tazobactam i.e the drugs that are commonly used to treat severe and 

complicated UTIs in hospitals (Potz et al., 2006).  

Resistance to β-lactams is typically mediated by the acquisition of plasmid-

encoded β-lactamases including classical penicillinases (e.g. TEM-1, TEM-2, or SHV-

1); AmpC cephalosporinase enzymes (e.g. CMY-1, 2, 3, FOX-1, MIR-1, LAT-1, MOX-1), 

which escaped from the chromosomes of Enterobacter and Citrobacter spp. (Bush et 

al., 1995) and ESBLs. ESBLs, which mediates hydrolysis of cephalosporins include 

mutations of TEM and SHV penicillinases and CTX-M enzymes, which escaped from 

Kluyvera spp.  (Tenover, 2006).  

Resistance to trimethoprim is largely mediated by acquisition of resistant DHFR 

enzymes, which functionally by pass the drug’s target site (Eliopoulos & Huovinen, 

2001). Other rare mechanisms to trimethoprim include (i) changes to the 

permeability barrier and/or efflux pumps, (ii) regulatoryn changes in these DHFR 

target enzymes (DHFR) and (iii) mutational or recombination changes in the target 

enzymes (Eliopoulos & Huovinen, 2001). Presently, resistance rates among E. coli in 

the UK to trimethoprim and amoxicillin/ampicillin are around 30-40% and >50% 

isolates, respectively. Resistance for co-amoxiclav was found to be 27-47%, and for 

cefotaxime/ceftazidime and piperacillin/tazobactam around 10% (PHE, 2016a; PHW, 

2015; HPS, 2014), through the situation for co-amoxiclav is confused by breakpoint 

changes. 

Resistance to nitrofurantoin in E. coli occurs mainly by mutations in the 

chromosomal nfsA or nfsB genes encoding oxygen-intensive nitroreductases, which 

are involved in converting the drug into toxic intermediate compounds (Sandegren 

et al., 2008). Recently, Ho et al. (2015) reported that the plasmid-mediated OqxAB 

efflux gene also can contribute to nitrofurantoin resistance in E. coli (Ho et al., 2015). 

In general E. coli isolates show very low rates of resistance to nitrofurantoin c. 3% 

both in the UK (PHE, 2016a; PHW, 2015; HPS, 2014) and European countries 

(Kahlmeter, 2003; Kahlmeter & Poulsen, 2012). 

Fluoroquinolones (in the UK, not elsewhere) and aminoglycosides are mostly 

reserved to treat hospital-acquired and complicated UTIs. High-level resistance to 

fluoroquinolones is generally mediated by mutations that alter the drug target and 
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mutations that affect permeation of the drug to its target or efflux (Jacoby, 2005). 

The mutation conferring high-level resistance occur in gyrA gene encoding DNA 

gyrase and parC gene encoding DNA topoisomerase IV. Plasmids that protect cells 

from the lethal effect of quinolones can also contribute to low level resistance 

(Hooper, 2001; Jacoby, 2005).  

Aminoglycoside resistance occurs through several mechanisms that can coexist 

simultaneously in the same cell (Alekshun & Levy, 2007; Houghton et al., 2010). These 

include (i) modification of the target by mutation of the 16s RNA (streptomycin only) 

or ribosomal proteins (Shaw et al., 1993), (ii) methylation of 16s RNA (Galimand et 

al., 2003; Doi & Arakawa, 2007), (iii) modification of outer membrane permeability 

or diminished inner membrane transport (Magnet & Blanchard, 2005), (iv) up-

regulation of efflux pumps or (v) the most common mechanism in clinical strains- by 

enzymatic inactivation of the antibiotic molecules (Shaw et al., 1993). 

 Among E. coli isolates resistance rates for fluoroquinolones (e.g. ciprofloxacin) 

and gentamicin have remained relatively unchanged at 15% and 10%, respectively 

from the last 4 years in the UK (PHE, 2016a; PHW, 2015; HPS, 2014).  

The majority of Enterobacteriaceae, including ESBL producers, remain 

susceptible to carbapenems, and these agents are preferred as empiric therapy for 

serious Enterobacteriaceae infections, including urosepsis, in settings where ESBL 

producers are frequent; elsewhere effort is placed in conserving their utility. 

Carbapenem resistance, although rare, appears to be increasing e.g. through the 

spread of KPC, OXA-48 and NDM-1 enzymes (Paterson, 2006; Kumarasamy et al., 

2010) becoming a major public health problem. Better antibiotic stewardship and 

infection control are needed to slow and prevent the further spread of ESBLs, 

carbapenemases and other forms of resistance in Enterobacteriaceae throughout the 

world. 
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1.8 Diagnostics 

Laboratory investigation  of urine samples in the UK commonly relies on i) Triage 

on a screening system; ii) Culture on chromogenic agar; iii) Disc testing by BSAC 

(British Society for  Antimicrobial Chemotherapy) or EUCAST (European Committee 

on Antimicrobial Susceptibility Testing)  methodology. In recent years the diagnostic 

technology for urinary tract infections has improved significantly, with moves to 

mechanize traditional manual methods and to adopt fully automated systems. The 

pressure to increase laboratory efficiency, reduce costs, and allow clinicians to 

optimize therapy earlier prompts use of rapid and innovative technologies. Although 

microscopy and quantitative culture are still the gold standard, non-culture 

techniques with urine analyzers are increasingly used as the first triage to predict the 

presence of infections. 

Public Health England proposed a diagnostic algorithm for better management 

of UTI in adults in primary care (PHE, 2014). The guideline recommend empirical 

treatment without routine culture for patients with uncomplicated UTIs with more 

than three clinical symptoms (i.e. any three or more of dysuria, urgency, polyuria, 

haematuria, frequency or suprapubic tenderness) without vaginal discharge or 

irritation. The diagnosis of mild UTI with fewer than two clinical symptoms requires 

collecting a urine specimen and performing a point-of-care dip-stick test to seek 

nitrites and leucocytes as UTI markers (see Section 1.8.3). If the results are both 

negative the GP should consider other diagnoses; negative nitrite and positive 

leucocyte or positive nitrite and negative leucocyte indicates a likely UTI, therefore 

the patient should be treated with the first-line antibiotic, and a simultaneous urine 

send to culture; if both markers are positive treatment with first-line agents is 

required.  

 

1.8.1 Visual inspection  

The primary urine analysis is based on the visual inspection of colour, turbidity 

and odour. The urine colour reflects the dehydration level, consumption of certain 

foods (e.g. beets, berries) or medicine, but may also change with infections requiring 
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treatment. Normal urine colour ranges from pale yellow to deep amber depending 

on the pigments present (urochrome and urobilin) and their concentration. A cloudy 

urine or one with unusual colour such as white can occur due to vaginal discharge or 

kidney stones (Bartley, 2008); deep red to brown generally indicates secretion of 

excess bilirubin into the urine potentially indicating presence of certain diseases 

including liver cancer or acute hepatitis (Fernandez & Flaxman, 1985); blue or blue 

green could be associated with benign hypercalcaemia or infection caused by 

Pseudomonas spp. (Chung et al., 2008). 

 

1.8.2 Classical microscopy investigation 

 

Classical microscopy for the detection of urinary tract infection looks for red 

blood cells (RBCs), white blood cells (WBCs), epithelial cells, casts, crystals, and 

bacteria.  

A microtitre tray with an inverted microscope or a disposable counting chamber are 

recommended for semi-quantitative routine analysis. Due to methodological 

limitations, the sensitivity for detecting bacteria in uncentrifuged, unstained urine is 

around 107 cfu/L (104 cfu/mL). Some studies have found that experienced workers 

can achieve better diagnostic precision if the urine is centrifuged and/or Gram-

stained (Pezzlo, 1988), however this is time consuming for centralized microbiology 

laboratories, where large numbers of urines are submitted for analysis.  

Significant pyuria of ≥104 WBC/mL in a freshly voided urine specimen or >5 WBC 

in a high-power microscope field of centrifuged urine correlates with bacteriuria and 

clinical symptoms to indicate UTI. Significant pyuria is present in 96% of symptomatic 

patients with bacteriuria of >105 cfu/mL, but only in <1% of asymptomatic patients 

(HPA, 2011.). Pyuria in the absence of bacteriuria (≥104 WBC/mL) may be the result 

of many factors, including the presence of a foreign body (urinary catheter, urinary 

stones or neoplasms) (Khamees, 2012), infection caused by fastidious bacteria 

difficult to cultivate on standard medium (Hooker et al., 2014), prior antibiotic 

treatment reducing the bacterial count, renal tuberculosis especially among high-risk 



21 | P a g e  
 

patients (Kulchavenya et al., 2013), vaginal secretion and chronic UTIs associated 

with relatively sterile urine (men). 

Bacteriuria (>105 cfu/mL) in the absence of pyuria may indicate colonization of 

the lower urinary tract, contamination of the sample (Stansfeld, 1962), poor urine 

storage in routine laboratories or during transport to these laboratories. 

Pathological findings in urine can also relate to acute or chronic inflammatory 

processes in the kidneys, elsewhere the urinary tract and to other diseases.  

In particular the detection of RBCs in urine (haematuria) may reflect pre-renal, renal 

or post-renal diseases, but also occurs in certain physiological conditions such as 

menstruation or following strenuous exercise. Casts (hyaline, cellular, granular) are 

cylindrical protein mouldings formed in renal tubules; their presence may indicate 

renal pathology such as pyelonephritis, glomerulonephritis, nephritis, tubular 

necrosis and nephrotic syndrome. Crystals are often associated with the formation 

of urinary tract calculi or acute hepatic injury but they may be also benign. 

Identification of epithelial casts is a useful indicator of the degree of contamination 

from the perineal region. 

 

1.8.3 Rapid point-of-care screening  

Chemical dipstick tests are widely used to recognize pathological changes in 

urine, and to infer UTI. Figure 4 shows an exemplar of result interpretation for a 

commercial dipstick test. Conclusion are based on the detection of the colour 

changes contingent on the presence of compounds, enzymes or cell types that 

ordinarily are absent from urine e.g.  nitrite, leukocyte esterase, erythrocytes, protein 

(albumin), glucose, ketone bodies,  bilirubin, urobilinogen and ascorbic acids; pH is 

also tested.  

The presence of nitrite, which is the metabolic product of Enterobacterial nitrate 

reductase, indicates infections caused by Gram-negative rods, however it is not 

detected if the causative uropathogen is not nitrate-reducing (or if reduces nitrate to 

nitrogen gas) as with e.g., Enterococcus spp., S. saprophyticus, Pseudomonas spp., or 

Acinetobacter spp. Therefore the sensitivity of the method is variously reported as 
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from 75-85%, but specificity is higher at around 95% (Hooton & Stamm, 1997; 

Orenstein & Wong, 1999; ECLM, 2000). 

Leucocyte esterases are detected on the basis of indoxyl esterase activity. They 

arise from the neutrophil granulocytes and macrophages, which enter the urine both 

in UTIs and in non-infectious renal disease. The sensitivity for UTI detection ranges 

from 75-96%, and specificity from 94-98% (Williams et al., 2010).  

Other tests on the dipstick are not primarily related to the infection. Detection 

of RBCs or their haemoglobin relies on pseudoperoxidase activity from the haem 

moiety and corresponds with renal diseases. It can be found in patients with muscle 

necrosis, alcohol and cocaine abuse, polymyosities. The sensitivity for RBC detection 

is in a range 70-80%, but specificity is lower due to rapid RBC lysis.  

Proteinuria reflects renal, prostatic or bladder diseases and vaginal discharge. 

The sensitivity is 90-95% for clinical proteinuria (Schmiemann et al., 2010). Urine 

glucose measurement in usually combined with a blood glucose test to reveal 

diabetes. Ketone bodies appear in urine in diabetic acidosis, strenuous exercise, 

fasting and enteric inflammation. They are used as a marker to classify of treat 

specific patient populations. Bile pigments such as urobilinogen and bilirubin are 

useful in differentiating icteric patients or in detecting alcoholic liver disease. 

 Urinary pH varies between 5 and 9. Urine usually is acidic in the morning in 

adults whilst it is often alkaline in children. Measurements of urine pH are needed for 

the diagnosis of acid-base disturbances, renal tubular acidosis, and renal stone 

disease or during the elimination of specific drugs.  

Dipstick tests are quick, easy to perform, and can be carried out in primary care, 

giving an immediate result including detection of relevant infection. However, the 

leucocyte esterase and nitrite tests are less reliable in diabetic and elderly individuals 

(Ipe et al., 2013). Moreover, both markers have poor positive and negative predictive 

values for asymptomatic bacteriuria. The presence of bacteria alone in urine 

specimen may not necessarily be of clinical significance. It may indicate colonization 

or contamination in the absence of pyuria (Ipe et al., 2013).  
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                  Figure 4. Chemical dipstick test screening for urinalysis.  

        The dipstick consists of small pads containing reagents which react with        
compounds present in urine producing characteristic colours. The results 
are available after a few minutes as qualitative (positive or negative) or 
quantitative values reported as (1+, 2+, 3+, 4+) or milligrams/decilitre.  

 

 

1.8.4 Machine-based screening 

Rapid semi-automated urine analysers are an alternative to manual laboratory 

screening methods. They are particularly useful to exclude non-infected patients, 

reducing unnecessary manual work on these specimens. They also promote 

standardisation. The systems require a small volume of urine and abolish the 

problems associated with microscopic examination of urine sediment which needs to 

be a centrifuge before analysis.  As with manual microscopy they seek RBCs, WBCs, 

crystals, casts, epithelial cells, mucus, bacteria and yeasts. Currently-available 
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automated screening systems include those based on (i) flow-cell digital imaging, (ii) 

fluorescence flow cytometry, (iii) sediment analysis.   

 

Flow-cell digital imaging  

The iQ®200 (Iris Diagnostics, Chatsworth, CA, USA) analyser (Figure 5) is the only 

currently-available automated microscopic system to screen urine specimens based 

on flow cell digital images with automatic particle-recognition software. Particles are 

classified-on the basis of texture, contrast, shape and size-into 12 categories (e.g. as 

WBC, RBC or bacteria). Quantitative results are presented as number of particles of 

each sort/µL, /high power field, /low power field. Throughput is 60 samples/hour. 

The reliable detection limit is 6 particles/ µL (Alves et al., 2005).  

Stürenburg et al. examined 963 urines using the iQ200 system against a culture 

method to assess cut-off values. Using different threshold combinations of indicators 

(e.g. bacteria, leucocytes and all small particles) he achieved sensitivity at 95% for the 

detecting of UTI, reducing the proportion of urines needing culture by 30.4-35.9% 

(Stürenburg et al., 2014). In other studies (Linko et al., 2006; Alves et al., 2005; 

Čabarkapa et al., 2009) the iQ200 showed good performance to reliably count RBC, 

WBC, squamous epithelial cells, and to detect bacteria and renal elements.   
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       Figure 5. iQ®200 Elite urine screening analyzer. 

         Specimens are hydrodynamically focused between two layers of suspending fluid. 
The particles are viewed through the objective lens of a microscope connected with 
a camera. The analyser captures 500 frames/samples from the planar flow of urine. 

The software displays the images for visual confirmation. 
 

 

Sediment analyser 

The SediMax (Menarini Diagnostics, Florence, Italy) shown in Figure 6, is walk-away 

microscopic sediment analyser for urine screening. The system depends upon 

digital imaging and automatic particle-recognition software enable to distinguish 

urine components (human cells, cast, crystal) and pathogens within whole fields of 

view. Quantification of these particles is either as number/µL or /high power field. 

The identified particles can be seen on the screen as black and white images 

obtained by microscopy. Throughput is 100 samples/hour.  
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The performance varies depending on the bacteria and leukocyte count cut-

offs applied. Sterry-Blunt et al. (2015) reported that analyser is not suitable to 

screen routine urines prior to culture due to a low negative predictive value (87.5%) 

(Sterry-Blunt et al., 2015) but other studies showed that the system could be 

reliably applied to urine screening (Tessari et al., 2015; Falbo et al., 2012) 

decreasing (as with an iQ®200 system) the number of unnecessary urine cultures 

performed and thereby reducing both costs and workload. Overall, compared to 

manual microscopy the instrument performed well for detecting bacteriuria, RBCs, 

WBCs, yeast cells, but not as well for pathological casts and particularly squamous 

epithelial cells (Bogaert et al., 2016).  

 

 

 

 

 

 

 

 

 

 

 

         

 

         Figure 6. SediMax urine screening analyzer.  

The sediment is analyzed by a bright field microscope and with a digital camera 
to capture and categorize 15 particle types based upon size and shape, using 
image processing software.  
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Fluorescence flow cytometry  

This technology combines a diode laser with hydrodynamic focusing conductometry 

for bacterial detection and counting. The first commercially available system was UF-

100 (Sysmex Corporation, Kobe, Japan) using electrical impedance to measure 

forward light scatter as a marker of human or bacterial cell, size and length. The 

system was updated to the UF-1000i (Figure 7) with a separate ‘BACT’ analytic 

channel measuring fluorescent light from bacterial DNA stained with phenathridine 

dye. Particulate components in the urine are discriminated by size and stain 

sensitivity, and the results are displayed as scattergrams.  

The sensitivity and specificity of the system vary depending on the parameters 

and cut-offs employed. Wang et al. (2009) and Manoni et al. (2013) reported a 

sensitivity of 97%, and specificity in a range 79-94% when the definition of a negative 

urine culture was <105 cfu/mL (Wang et al., 2013b; Manoni et al., 2009). In another 

study, the sensitivity was 95%, and specificity 85% for ‘negative’ urine culture with 

<104 cfu/mL (De Rosa et al., 2010). It was suggested that cut-off criteria should be 

chosen for an analyser to balance the levels of sensitivity and specificity required 

according to a local assessment. 

Many studies show that the pre-screening with the Sysmex UF-1000i can 

potentially reduce the culture-negative samples put through full testing by more than 

40% (van der Zwet et al., 2010; Broeren et al., 2011). Throughput is higher compared 

to the iQ®200 flow cell imaging system at 100 samples/hour. 
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        Figure 7. UF-1000i urine screening analyzer.  

        The laser-beam irradiates a fluorescein-stained urine sample that produce signals 
as forward-scattering light, side-scattering light and side-fluorescence signal. 
These are converted into optoelectronic signals, enabling component 
identification, counting and analysis. 

 

 

1.8.5 Culture-based methods 

None of the automated screening analyser identify species of bacteria present in 

a urine and test their antibiotic susceptibility. Culture thus remains the “gold 

standard” for investigation of these aspects and may be performed on all urines or 

only on those still considered as “possibly infected” following triage with a screening 

analyser as above.  

Quantitative urine culture is commonly performed using calibrated loops, usually 

on unselective media including blood agar, MacConkey, or Cysteine Lactose 

Electrolyte Deficient (CLED) agar or the selective chromogenic agar where the colony 
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colour varies with the organism species. These methods require 24-72 h for bacterial 

identification, with subsequent susceptibility testing and refinment of whether 

empirical treatment was started. Despite near-universal use culture has inadequate 

sensitivity and specificity to define ‘significant’ bacteriuria in all the diversity of 

clinical scenarios (Ipe et al., 2013).  

Approximately one-fourth of patients presenting with symptoms suggesting acute 

uncomplicated UTI yield no bacterial growth on urine culture or give counts between 

102 - 104 cfu/mL (Gallagher et al., 1965). Acute pyelonephritis can occur with lower 

bacterial counts than the classical 105 cfu/mL, especially among some groups of 

patients (MacDonald et al., 1957) e.g. children, pregnant women, and elderly 

populations with comorbid illnesses. These points underline the need for new, more 

sensitive diagnostic methods that could detect bacteriuria with lower bacteria 

counts.   

 

1.8.6 Classical bacterial identification  

The bacteria grown from the urine and then are identified. Traditional methods 

for identification rely on cell morphology, staining and chromogenic reactions in 

biochemical tests. Technologies include: 

 

Chromogenic media 

Identification (combined with the initial isolates) is based on colony pigmentation or 

colour changes to chromogenic agar due to bacterial interactions with specific dyes 

or chemicals in the growth media, as shown in Figure 8. Urine is plated directly on 

the agar using calibrated loop, without prior culture, to assess the present of 

uropathogens. Chromogenic media can distinguish Gram-negative bacteria including 

E. coli, ‘other Coliforms’, Proteeae, Pseudomonas spp., and Gram-positive pathogens 

e.g. Enterococcus spp., Streptococcus spp., Staphylococcus spp. and S. saprophyticus.  

E. coli and S. saprophyticus both produce the enzyme β-glucuronidase, which 

attacks a β-glucuronide chromogenic substrate, and consequently grow as distinct 
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pink to reddish colonies. Although both species give the same colour, E. coli colonies 

are bigger and darker than S. saprophyticus. Others coliform species such as Klebsiella 

spp., Enterobacter spp., Citrobacter spp., and Serratia spp. produce the enzyme β-

glucosidase that attacks a β-glucoside chromogenic substrate to give deep metallic 

blue colonies.  

Enterococcus spp. produces the same enzyme β-glucosidase resulting in growth 

as small turquoise blue colonies. Tryphan deaminase activity produce a brown halo 

around Proteus spp., Morganella spp., and Providencia spp. colonies. S. aureus and 

Candida spp. produce their natural pigments, resulting in grow as small white 

colonies.  Pseudomonas spp. grows as cream, translucent colonies.  

Distinguishing among ‘other coliforms’ (Enterobacter spp., Klebsiella spp., 

Citrobacter spp., Serratia spp.) is not achieved, therefore further identification to 

genus level is performed, if desired using other systems (e.g. Vitek, MALDI-TOF). 

Chromogenic media are produced by different companies. The commonest 

include Brillance UTI or Brillance UTI Clarity agar (Oxoid, Basingstoke, UK), ChromIDTM 

(bioMerieux Clinical Diagnostics, Marcy I’Etoile, France) and CHROMagar 

OrientationTM (Biomed Diagnostics, Oregon USA). 

Samra et al. (1998) evaluated the CHROMagar Orientation plate using 900 urine 

specimens from hospital patients. The study showed that orientation media detected 

all uropathogens (Gram-negative bacilli, streptococci, staphylococci and yeast) grown 

on reference media (5% sheep blood and MacConkey agar), however it failed to 

distinguish Klebsiella, Enterobacter and Citrobacter isolates owing to their similar 

pigmentation. Otherwise, CHROMagar Orientation plates were useful for primary 

identification of uropathogens (Samra et al., 1998). 
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    Figure 8. Phenotypic identification of bacteria using CHROMagar OrientationTM  
media  (Biomed Diagnostics). 

 

 

API ID Strips  

Until recently API ID strips were the standard identification method for bacteria in 

most clinical laboratories. Urine is first plated on the media (e.g. CLED or MacConkey). 

Colonies that grow are resuspended in a sterile water or saline to the density of a 0.5-

4 McFarland and then transferred into microtubes (cupules) of the API plastic strip 

(Figure 9). Identification is based on colour changes due to enzymatic activity or the 

assimilation/fermentation of sugars using miniaturized biochemical tests. When 

carbohydrates are fermented, the pH within the microtubes changed as shown by a 

pH indicator. In assimilation tests (e.g. with citrate) the test shows if the bacteria are 

able to utilize the substrate as a carbon and energy source. After overnight incubation 

results are read, converted to a profile number and the bacterial identification is 

determinated by reference to an online database.  

Depending on the pathogen, there are different API strips available (bioMerieux 

Clinical Diagnostics). These include the API 20 NE for identification of oxidase-positive 

non-fastidious Gram-negative bacilli, API 20 E for Enterobacteriaceae and oxidase-
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negative, non-fastidious other Gram-negative bacilli, API 20 Strep for streptococci 

and enterococci groups, API ID32 Staph for staphylococci and API NH for Gram-

negative cocci. 

The API identification system was introduced to the clinical laboratories in 1970s 

and gradually replaced manual biochemical tests done in tubes. In 1990s O’Hara et 

al. revaluated the API 20E strip versus conventional biochemical tests for the 

identification of 291 Enterobacteriaceae isolates (O'Hara et al., 1992). They achieved 

78.7% accuracy of identification after 24h incubation period. This was significantly 

lower than earlier evaluations (Aldridge et al., 1978; Butler et al., 1975; Swanson & 

Collins, 1980) but rose to 95.2% after 48h incubation. Despite this lower identification 

precision the study considered that API 20 E remained a reliable identification system 

for Enterobacteriaceae. However, the method have several drawbacks including 

limited databases that do not contain a new species (Janda & Abbott, 2002) leading 

to unreliable identification, relatively long turnaround (24-48h), low capacity and lack 

of automation. These limitations mean that the UK system has gradually been 

replaced by new rapid methods (e.g. Vitek and MALDI-TOF).  
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Tests Active 

ingredients 

Reaction/Enzymes Results 

Negative Positive 

ONPG 2-nitrophenyl-ßD-
galactopyranoside 

β-galactosidase 
(Ortho NitroPhenyl-

βDGalactopyranosidase) 

colourless yellow 

ADH L-arginine Arginine dihydrolase yellow red/orange 

LDC L-lysine Lysine decarboxylase yellow red/orange 

ODC L-ornithine Ornithine decarboxylase yellow red/orange 

CIT trisodium citrate CITrate utilization pale green / 
yellow 

blue-green / 
blue 

H2S sodium 
thiosulphate 

H2S production colorless / 
greyish 

black deposit / 
thin line 

URE urea UREase yellow red/orange 

TDA L-tryptophan Tryptophan deaminase TDA /immediate 

yellow reddish/brown 

IND L-tryptophan INDole production James/ immediate 

colourless 
pale 

green/yellow 

pink 

VP sodium pyruvate Acetoin production 
 

VP1 + VP2 10 min 

colourless pink/red  
(after addition 

of reagent) 

GEL gelatin 
(bovine origin) 

GELatinase no diffusion diffusion of 
black pigment 

GLU D-glucose Fermentation/oxidation blue/blue-
green 

yellow/greyish 
yellow 

MAN D-mannitol Fermentation/oxidation blue/blue-
green 

yellow 

INO inositol Fermentation/oxidation blue/blue-
green 

yellow 

SOR D-sorbitol Fermentation/oxidation blue/blue-
green 

yellow 

RHA L-rhamnose Fermentation/oxidation blue/blue-
green 

yellow 

SAC D-sucrose Fermentation/oxidation blue/blue-
green 

yellow 

MEL D-melibiose Fermentation/oxidation blue/blue-
green 

yellow 

AMY amygdalin Fermentation/oxidation blue/blue-
green 

yellow 

ARA L-arabinose Fermentation/oxidation blue/blue-
green 

yellow 

       Figure 9. Bacterial identification using the API ID Strip system.     

       The API 20 E was read after 24h at 37°C and results are illustrated for an E. coli.  

 



34 | P a g e  
 

Matrix Assisted Laser Desorption Ionization Time-Of-Flight (MALDI-TOF)  

Mass spectrometry has recently been adopted widely in diagnostic microbiology 

laboratories for bacterial and yeast species identification from primary cultures 

(Bizzini et al., 2010; Marklein et al., 2009; van Veen et al., 2010). It has also been 

investigated for use directly from clinical samples (Ferreira et al., 2011; Wang et al., 

2014a; Rossello et al., 2014; Hong et al., 2014).  

The MALDI-TOF instrument consists of three principal components: i) an 

ionization chamber, within which the laser-based vaporization of the specimen takes 

place, ii) a time of flight mass analyzer, and iii) a particle detector (see Figure 10). 

Biopolymer molecules (e.g. DNA, protein, peptides), normally present in the 

condensed phase, are converted into intact ionized molecules in the gas phase. There 

ions are then separated based on their molecular weight after migration in an electric 

field. Each molecule detected is characterized by: its molecular mass (m), its charge 

(z), its mass/charge ratio (m/z), and the relative intensity of the signal (Carbonnelle 

et al., 2012). The system generates a unique, specimen specific mass spectral protein 

fingerprint from a cell extract of the tested microorganism, and compare this profile 

to a database of reference spectra.  

Currently, there are two commercially available MALDI-TOF systems.  These are 

the VITEK MS (bioMérieux Clinical Diagnostics) and MALDI Biotyper (Brüker, Daltonics 

GmbH). Both machines demonstrated similar efficiency, with a high accuracy to 

genus/species-level identification and workflow robustness (Bilecen et al., 2015). 

Both provide results in less than 1 hour. The major difference is the number of taxa 

in the reference database. The VITEK MS system contains >25,000 spectra covering 

586 species, consisting of 508 bacteria and 78 fungi, while Brüker Biotyper contains 

>80,000 spectra covering 2048 species and 385 genera (Bilecen et al., 2015). 

Limitation are seen in relation to some groups: neither can distinguish E. coli from 

Shigella spp. and nor can they differentiate within the Acinetobacter baumannii 

complex.  

Detection of antibiotic resistance profiles by MALDI-TOF is challenging but 

remains under evaluation. Recent studies have investigated the use of MALDI-TOF to 

discriminate extended-spectrum-β-lactamase (ESBL) or metallo-β-lactamase (MBL)-
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producing and -non-producing strains of Enterobacteriaceae (Schaumann et al., 

2012; Hoyos-Mallecot et al., 2014a). The approach generates different molecular 

mass profiles when the central β-lactam ring of a carbapenem or extended-spectrum 

cephalosporin is opened by enzymatic hydrolysis.  If bacteria are incubated with β-

lactams, these changes can be used to detect β-lactamase activity.   

These β-lactamase assays use commercially-available software (Brüker Daltonics 

GmbH) but are still under evaluation and need to be validated in the clinical 

laboratories.  

 

 

    Figure 10. The workflow of MALDI-TOF MS (Brüker Daltonics GmbH). 

 

 

There are several automated systems that combine both classical identification 

and antibiotic susceptibility testing (i.e. Vitek, MicroScan WalkAway, BD Phenix and 

Sensititre ARIS 2x). These are included in the section 1.8.7.2 (Automated systems for 

both bacterial identification and susceptibility testing). 
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1.8.7 Classical antimicrobial susceptibility testing  

The main purposes of in vitro susceptibility testing are i) to guide treatment of 

the immediate patients, ii) to assess appropriate empirical therapy, based on the local 

resistance epidemiology and iii) to compare resistance rates to new and established 

agents over time. Current systems for susceptibility testing from urine are outlined 

below. The interpretation of results is based on measurement of the zone diameter 

or MIC (minimal inhibitory concentration) of each antibiotic. Results are classified 

into one of three interpretative categories: susceptible, intermediate, or resistant 

using the criteria provide by EUCAST (European Committee on Antimicrobial 

Susceptibility Testing) or CLSI (Clinical and Laboratory Standards Institute). Larger 

zones in disc tests correlate with lower MICs of antibiotics, including susceptibility, 

and small zones or the absence of zones reflect high MICs and resistance. For most 

antibiotics there is good correlation between log MIC and zone diameter in disc tests. 

 

1.8.7.1 Manual antibiotics susceptibility methods 
 

Broth and agar dilution 

In dilution methods a standardized inoculum of bacterial cells are tested for their 

ability to produce visible growth on agar plates (“agar dilution”) or in broth (“broth 

dilution”) containing geometric dilutions (0.25, 0.5, 1, 2, 4, 8, 16 etc. mg/L) of the 

antimicrobial. Growth is assessed after incubation for a defined period of time usually 

16–20 h and MIC results are read.  

 

Antimicrobial gradient strips (E-test) 

A reagent strip containing a gradients of an antibiotics is placed onto the surface of 

an agar plate inoculated with the test bacteria. The strip releases the antimicrobial 

into the agar and forms a stable gradient. The MIC value is read from the scale as 

mg/L or µg/mL where the ellipse edge intersects the strip (Figure 11A).   
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Disc Diffusion  

This method, the most widely used in routine clinical laboratories in the UK, is based 

on measurement of growth zone inhibitions. Discs containing antibiotics are placed 

onto agar inoculated with bacteria to a standardized density (Figure 11B). The plate 

is examined after 18-24 h of incubation and the zones measured. 

 

 

 

 

 

 

   

 

   Figure 11. Antibiotics susceptibility testing using gradient strips and a disc 
diffusion method. 

Both tests were performed on Mueller-Hinton agar with a bacterial density equal to a 0.5 
McFarland. Gradient strips (Oxoid) (A) show MIC results for ceftazidime and cefotaxime. 
Disc diffusion test (B) with discs containing the following antibiotics: co-amoxiclav (AMC), 
ciprofloxacin (CIP), streptomycin (S), gentamicin (CN), trimethoprim (W), amikacin (AK), 
tobramycin (TOB) (Oxoid) 

 

 

Biochemical tests 

Biochemical and phenotypic tests are widely used to detect specific β-lactamase 

types. Examples include various double disc synergy and antagonism test for ESBL 

and AmpC enzymes. Detection of carbapenemase-producing Enterobacteriaceae is 

possible using the recently released commercially RAPIDEC CARBA NP kit and its 

variations (Rapid CARB Screen and the Carba NP test) (bioMérieux Clinical 

Diagnostics). Results are obtained within 30 min to 2 hours using colonies recovered 

from the culture plate. The test is based on detection of hydrolysis of the β-lactam 

(A) (B) 
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ring of a carbapenem molecule (imipenem), which generates acidity, changing the 

colour of the phenol red pH indicator. The principle is that of the long-established 

acidimetric test. The sensitivity and specificity of the assay is 97.8% (except OXA-48) 

compared to molecular methods.  

 

1.8.7.2 Automated systems for both bacterial identification and susceptibility 

testing 

 

The use of automated systems enables standardization of testing reading and 

results; it also speeds-up susceptibility testing. The aim is to classify bacteria as 

susceptible, intermediate or resistant against particular antibiotics. There are four 

commonly used systems available: 

 

Vitek®  

This is a fluorimetric test with biochemical substrates for bacterial growth during an 

abbreviated incubation period in the microwells of thin plastic reagent cards with 

microlitre quantities of antibiotics and test media (see Figure 12A). The system 

requires cultivated bacteria grown on specific media. The technology is available in 

three formats: Vitek 2 Compact, Vitek 2 and Vitek 2 XL (bioMérieux Clinical 

Diagnostics) differing in capacity and automation. All three systems accommodate 

the same reagent cards and therse are incubated and interpreted automatically, 

yielding identification for Gram-negative fermenting and non-fermenting bacilli, 

Gram-positive cocci and spore- and non-spore forming bacilli, yeasts along with 

susceptibility testing. The results are available within 8-10 hours.  

The reagent cards have 64 wells each containing an individual test substrate or 

antibiotic dilution. Substrates measure various metabolic activities such as 

acidification, alkalization, enzymatic hydrolysis and growth in the presence of 

inhibitory substances. Each card has a pre-inserted transfer tube used for inoculation.  

Many studies have evaluated the Vitek system for rapid identification and 

susceptibility testing against different types of clinical isolates (Ling et al., 2001; 

Joyanes et al., 2001). In most studies the technology gave reliable and reproducible 

results, with >95% of isolates correctly identified to species level.  
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MicroScan WalkAway system  

The technology compromises with large self-contained incubator/reader for 

analyzing 40–96 microdilution trays (Figure 12B) for identification of both Gram-

negative and Gram-positive bacteria and susceptibility testing. The instrument 

incubates the trays which contain substrates for around 16-18 h. Identification of the 

bacteria is based on periodically measuring colour change or increases in turbidity. 

For susceptibility testing the system reads the MIC essentially using conventional 

micro-titration trays containing antibiotic dilution series. The use of fluorogenic 

growth substrates give results readable in 3.5–7 h for Gram-negative bacteria; 

alternatively turbidimetric end points for Gram-positive and -negative bacteria are 

available in 4.5–18 h (Jorgensen & Ferraro, 2009). Rhoads et al. (1995) compared the 

MicroScan WalkAway system (Beckman Counter, Brea, CA, USA) with Vitek 

(bioMérieux Clinical Diagnostics) for identification of Gram-negative bacteria from 

urine isolates. The authors found 97.4% agreement between these two methods 

(Rhoads et al., 1995). In another study, the system was compared against reference 

molecular methods for detection of ESBL producers among Enterobacteriaceae, 

finding sensitivity and specificity at 83.5% and 72.9%, respectively (Wiegand et al., 

2007).  

 

BD Phoenix system  

The Phenix technology (BD Diagnostics, Sparks MD, USA) compromises an 

incubator/reader with the capacity to process 100 test panels for pathogen 

identification and susceptibility testing. Different panels are used for 

Enterobacteriaceae, non-Enterobacteriaceae and Gram-positive bacteria including 

staphylococci, enterococci and streptococci and also for Gram-positive bacilli.  

The panel contains 136 micro-wells, including 51 wells for identification and 85 

wells for susceptibility testing including one growth control.  Panels are available 

separately or with combining of identification and susceptibility.   

Panels are inoculated manually and then incubated into the instrument. The 

system monitors each panel every 20 min up to 16 h, if necessary, using both 

turbidometric and colorimetric (oxidation, fermentation, hydrolysis indicator) growth 
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detection. Additionally, the instrument utilizes chromogenic and fluorogenic 

substrates for pathogen identification (Figure 12C). MIC results are generated in 6–

16 h. There are many studies evaluating the use of the Phoenix system for pathogen 

identification and susceptibility testing (Carroll et al., 2006; Stefaniuk et al., 2003; 

Snyder et al., 2008); the platform provides reliable results for most organism-

antimicrobial agent combination.  

 

Sensititre ARIS 2X system  

This is a bench-top incubating and reading system with a 64-panel capacity for both 

identification and susceptibility testing. The test panel are standard 96-well 

microdilution plates which can be inoculated with a Sensititre auto inoculator.  The 

system is based on fluorometic detection of bacterial growth (Figure 12D). Test 

panels are available for the most common aerobic Gram-positive and Gram-negative 

bacteria. Presumptive identification of Gram-negative pathogens can be obtained 

within 5 h, however comprehensive identification to species level is only available 

after 18 h.  Standard susceptibility MIC plates include those for Gram-positive and 

Gram-negative (with an ESBL confirmatory test bacteria), anaerobes, Campylobacter, 

and fastidious pathogens (S. pneumoniae, Haemophilus influenzae). A few studies 

have compared the Sensititre ARIS 2x system (Trek Diagnostic Systems, Cleveland, 

OH, USA) against Vitek (bioMérieux Clinical Diagnostics) or BD Phoenix (BD 

Diagnostics) as a reference methods (Fritsche et al., 2011; Dickenson & Chapin, 2006) 

finding that the platform can be used to accurately identify and determinate 

susceptible including fastidious pathogens.  
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    Figure 12. Commercially available systems used for pathogen identification and 
antibiotic susceptibility testing. 

(A) Vitek 2 Compact  (bioMerieux Clinical Diagnostics) 
(B) MicroScan WalkAway (Beckman counter) 
(C) BD Phoenix (BD Diagnostics) 
(D)   Sensititre ARIS 2X (Trek Diagnostic Systems) 

 

.     

 

 

 

 

(A) (B) 

(C) (D) 
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1.8.8 New developmental methods to improve diagnostics  

Global concern about antibiotic resistance, the lack of new classes of antibiotics 

and increased hospital admissions for infections, including complicated UTIs, mean 

that there is a need for rapid, sensitive and specific methods for both pathogen 

identification and resistance profiling directly from clinical specimens, including 

urines. Possible approaches include those based upon PCR, sequencing, and rapid 

phenotypic testing.  

Novel tests performed directly on clinical samples, without culture have the 

potential to significantly shorten the time required for microbial identification and to 

select appropriate therapy. This would improve care of individual patients and reduce 

unnecessaily prolonged use of broad-spectrum antibiotics, which presently must be 

given until a pathogen is grown and characterized by conventional methods, which 

typically take a total of 48-72 h.  

 

1.8.8.1 PCR-based assays 

Conventional PCR, with subsequent gel electrophoresis, was progressively 

replaced by multiplex PCR and quantitative real-time PCR. Multiplex PCR uses 

multiple primers to detect several genes simultaneously and therefore requires 

specific primers that do not self-and cross-react. The real-time technology uses 

fluorescence sequence-specific probes or non-specific fluorescent dyes that 

intercalate with double-stranded DNA, allowing monitoring of the amplified product. 

The results are displayed as fluorescence intensity of the desired product against the 

number of amplified cycles (Ct curve analysis) and/or a melting temperature graph 

(melting curve analysis).  Combining multiplex PCR and real-time analysis gave an 

opportunity to detect multiple targets in a single reaction in a short turnaround time.  

Within these main PCR types there are many other variations that can be used 

for rapid detection of pathogens and antibiotic susceptibility testing. These include 

(i) digital PCR, where a single DNA molecule is isolated by dilution and individually 

amplified by PCR (Vogelstein & Kinzler, 1999; Kelley et al., 2013; Roberts et al., 2013), 

(ii) asymmetric PCR later modified to Linear-After-The-Exponential PCR (LATE-PCR), 



43 | P a g e  
 

where one strand of the target DNA is amplified with a limiting amount of primer 

(Carver-Brown et al., 2012; Rice et al., 2013) and (iii) nested PCR, where two sets of 

primers are used, one pair to generate DNA template and the second pair to amplify 

a specific product from the first step (Gómez-Couso et al., 2004).  

Several commercially available tests have been developed variously targeting 

bloodstream infections, respiratory pathogens, sexually-transmitted diseases or 

enteric infections. For example, bloodstream pathogens may be identified, without 

culture, using the following tests Magicplex Sepsis Test (Seegene, Seoul, Korea), 

SepsiTest (Molzym, Bremen, Germany), SeptiFast (Roche, Basel, Switzerland), 

Bacteraemia Panel (Ausdiagnostics, Sydney, Australia) and Sepsis Microbial DNA 

qPCR array (Qiagen, Hilden, Germany). These kits seek the commonest bacteria 

causing bloodstream infection, including Enterobacteriaceae and Pseudomonas spp., 

also Gram-positive cocci including staphylococci, streptococci and enterococci as well 

as Candida yeasts. 

In-house PCR-based methods for the diagnosis of UTIs have been described (van 

der Zee et al., 2016; Hansen et al. 2013; Shigemura et al., 2005; Lehmann et al., 2011). 

These sought the commonest Gram-positive and Gram-negative uropathogens 

including E. coli, Klebsiella spp., Citrobacter spp., Enterobacter spp., Proteus spp., 

Pseudomonas spp., Enterococcus spp., Streptocossus spp. and Staphylococcus spp. 

Van der Zee et al.  (2016) evaluated two multiplex real-time PCR assays for 

targeted common uropathogens, and simultaneously performed 16S PCR to identify 

all microorganisms in there urine specimens. The authors showed that the 

concordance between the real-time approach and culture was 98%, with PCR more 

sensitive than culture. Hansen et al. (2013) demonstrated that the multi-probe 16S 

rDNA-based real-time PCR has a sensitivity 97% and specificity 80% and provide 

results within 4 h.  

Molecular assays for antibiotic resistance gene detection also are accessible for 

clinical microbiology laboratories, through largely for use on nasal or rectal swabs to 

seek carriers of resistant strains so as to implement infection control  rather than to 

guide therapy (through those for TB are exception). Available commercial PCR assays 

seek the presence of (i) mecA and mecC genes that confer methicillin resistance in S. 

aureus (e.g. Cepheid Xpert/Gene Expert, Cepheid Sunnyvale, CA, USA; BD GeneOhm 
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MRSA Becton Dickenson, Heidelberg, Germany; LightCycler® MRSA Advanced Test, 

Roche); (ii) vanA, vanB and vanC genes that confer glycopeptide resistance (e.g. 

Xpert/Gene Expert, Cepheid; LightCycler® VRE Detection Kit, Roche); (iii) mutations 

in rpoB that confer resistance to rifampicin or those in the katG and inhA genes that 

confer resistance to isoniazid (e.g. Xpert MTB/RIF, Cepheid, RealTime MDR TB Abbott 

Molecular, Illinois, USA). In recent years the growing spread of β-lactamases among 

Enterobacteriaceae has lead to development of several commercial PCR-based assays 

seeking the coding genes for extended-spectrum β-lactamase (blaCTX-M), ampC 

(mostly blaCMY), penicillinases (e.g. blaTEM, blaSHV) and carbapenemases (e.g. blaOXA-48, 

blaKPC, blaNDM, blaVIM). 

At present there are at least four commercial real-time PCR tests available for 

rapid detection of ESBL and/or carbapenemase genes (mostly on rectal swabs). These 

include: (i) the Check-Direct CPE kit (Check-Points, Netherlands), which targets 4 

carbapenemase genes (blaKPC-like, blaOXA-48-like, blaNDM-like, blaVIM-like) used together with 

the Check-MDR ESBL kit (Check-Points, Aageningen, Netherlands) for detection of 3 

ESBL genes (blaCTX-M-like, blaTEM-ESBL like, blaSHV-ESBL like), (ii) the Easyplex® SuperBug CPE 

kit (Amplex Diagnostics GmbH, Mark Gars, Germany) for detection of 5 

carbapenemase genes (blaKPC, blaNDM, blaOXA-48, blaOXA-181 and blaVIM) and 2 ESBL genes 

(blaCTX-M-1 and blaCTX-M-9 groups) combined with two extensions (A and B kits) targeting 

6 additional blaOXA genes, (iii) the Xpert® Carba-R kit (Cepheid) for detection 5 

carbapenemase genes (blaKPC, blaNDM, blaOXA-48, blaIMP-1 and blaVIM) and (iv) the BD 

MAXTM CRE assay (Becton Dickenson Diagnostics, MD, Germany) to seek 3 

carbapenemase genes (blaKPC, blaNDM, blaOXA-48). These assays can provide results 

within 45 min-3 hours, informing infection control team. Ther are designed for 

cultured isolates (the Check-Direct CPE kit) or in the case of the Easyplex® SuperBug 

CPE kit, the Xpert® Carba-R kit and the BD MAXTM CRE assay for rectal swabs. In 

principle they could be applied to clinical samples including urine, but have not been 

validated for this purpose.  
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Multiplex tandem real-time PCR (MT-PCR) 

Multiplex tandem real-time PCR was brought into commercial diagnostics by 

AusDiagnostics, Sydney, Australia more than 10 years ago. The method combines a 

real-time PCR in which the progress of reaction can be followed cycle-by-cycle and 

multiplexing, enabling detection several targets genes in one reaction. The general 

principle is presented at Figure 13. It is a two-step approach in which multiplexed 

amplicons of interest are first enriched by PCR. In the second step the products from 

the multiplex amplification are used as a template for a large number of single-gene 

PCRs (Stanley & Szewczuk, 2005). The use of two-step amplification minimizes the 

competition for substrates between individual PCRs in the second step and the 

formation of primer-dimer products (Stanley & Szewczuk, 2005). Analysis of melting 

temperatures of PCR products allows specific and easy confirmation that the 

amplified products obtained are those sought.  This method was used to develop a 

new commercial kit that identities a broad range of antibiotic resistance genes, 

including not only β-lactamase families but also genes that confer aminoglycoside, 

trimethoprim and fluoroquinolone resistances  in Enterobacteriaceae species within 

a timeframe of <3 hours. The system incorporates a liquid-handling robot to reduce 

hands-on-time sample preparation and a real-time PCR amplifier.  
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       Figure 13. Principle of multiplex tandem PCR. 
(A) Amplicons are simultaneously amplified in a multiplexed reaction in a 

 PCR tube for 15-18 cycles;  
(B) The PCR products are diluted and divided into a number of real time  

PCR reactions containing targets and nested PCR primers.  
(C) PCR products are analysed based on the melting curves.  

 

 

 

 

(A) 

(B) 

(C) 
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1.8.8.2 DNA Microarray technology 
 

Microarray technology offers an alternative to PCR for simultaneous 

identification of pathogens and their antibiotic resistance genes. The assay contains 

pre-designed oligonucleotide probes that are bound and immobilized on a solid 

surface as an array (Lupo et al., 2013). If the targeted allele of a pathogen-specific or 

resistance gene is present it becomes hybridized to the immobilized probe and 

generate a fluorescence signal, which is measured and detected by scanner. The 

technology allows simultaneous detection of a greater number of genes interest 

compared to PCR-based assays.  

Several commercial microarrays have been developed for rapid identification of 

extended-spectrum β-lactamase (blaTEM, blaSHV, blaCTX-M) and carbapenemase (blaNDM, 

blaVIM, blaKPC, blaOXA-48, blaIMP) genes in Gram-negative bacteria (e.g. Check-Points 

ESBL/KPC) and antibiotic resistance gene determinant in Staphylococcus spp. (e.g. 

StaphPlex system Genaco Biomedical Products, Huntsville, USA).  

Stuart et al. (2010) and Endimiani et al. (2010) evaluated microarray platform for 

ESBL and KPC gene detection.  Both studies showed high sensitivity (>95%) and 

specificity (100%) for the Check-Points ESBL/KPC microarray assays (Cohen Stuart et 

al., 2010; Endimiani et al., 2010). In another study Batchelor et al. (2008) developed 

a miniaturized microarray for identification of 47 resistance genes in Gram-negative 

bacteria. These included aminoglycoside, quinolone, trimethoprim, sulphonamide, 

chloramphenicol, tetracycline and β-lactam resistance genes. The performance of the 

assay compared well to a PCR method, showing a concordance of 98.8% (Batchelor 

et al., 2008).  

 

1.8.8.3 Sequencing-based assay 
 

Semi-automated Sanger sequencing has been used in clinical diagnostics for 

many years. However, the low throughput and high cost of sequencing multiple 

targets led to the development of new high-throughput next-generation sequencing 

platforms e.g. Roche 454, Solexa/Illumina, SOLiD and Ion Torrent. The major 
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advantage of next-generation technology is to yield overall DNA content information 

on an isolate and to convert it into a comprehensive diagnostic picture. An obvious 

application for whole genome sequencing (WGS) is epidemiological typing to 

determine transmission pathways of pathogen and to support outbreak 

investigation. Salpante et al. (2015) explored using the Miseq Illumina platform for 

strain typing of vancomycin-resistant enterococci (VRE), methicillin-resistant S. 

aureus (MRSA) and multi-drug resistant Acinetobacter baumannii and compared 

results with pulsed-field gel electrophoresis (PFGE). The authors suggest that WGS 

should replace PFGE as more sensitive method for strain typing (Salipante et al., 

2015). In another study Joensen et al. (2014) proved that Ion Torrent allowed rapid 

discrimination between sporadic and outbreak isolates of verocytotoxin-producing E. 

coli (VTEC) (Joensen et al., 2014).  

The use of this technology for pathogen profiling and the detection of antibiotic 

resistance and virulence factor genes has become widespread in reference 

laboratories. Most sequencing is done using isolated bacteria in pure culture, 

obviating the challenge of remaining human cells and their DNA. However, Hasman 

et al. (2014) evaluated the Ion Torrent system for sequencing pathogens directly from 

clinical urines. He found identical resistance genes as in the cultivated pathogens thus 

removing the 24 h delay needed for pathogen cultivation (Hasman et al., 2014).  

In another study Bradley et al. evaluated the MiSeq Illumina platform to detect 

antibiotic resistance genes in cultivated isolates of S. aureus and M. tuberculosis and 

used these data to predict phenotypic resistance. The authors showed that the error 

rates for the sequencing method were comparable to “gold standard” phenotypic 

testing using either automated systems or disc diffusionwith >99% sensitivity and 

specificity across 12 resistance genes in S. aureus and 82.6% sensitivity and 98.5% 

specificity for 9 antibiotic determinants in M. tuberculosis (Bradley et al., 2015).   

The Hospital Acquired Infection (HAI) BioDetection system (Pathogenica, Boston 

MA, USA) is a new commercial NGS-based assay that targets a selection of short DNA 

regions for rapid identification of the 12 commonest hospital-acquired pathogens 

and 18 antibiotic resistance genes in a timeframe <12 hour with a detection cut-off 

<104 cfu/mL.  Veenemans et al. (2014) and Arena et al. (2014) evaluated this assay 

for the detection of ESBLs and carbapenemase genes in cultivated isolates. In both 



49 | P a g e  
 

studies the method showed accurate identification of gene presence compared to 

the reference methods (microarray and multilocus sequence typing, pulsed-field gel 

electrophoresis, respectively); however the assay could not discriminate ESBL and 

non-ESBL types of TEM and SHV β-lactamase genes (Arena et al., 2014; Veenemans 

et al., 2014).  

Ongoing development in sequencing should decrease the cost, accelerate 

analysis workflow and lead to smaller sequencing devices suitable to busy arranged 

laboratories. The MinION DNA-based sequencer (Oxford Nanopore Technology) is 

the exemplar of a new, innovative sequencing technology that will potentially 

revolutionize the future of diagnostics. 

 

MinION nanopore sequencing 

In 2012 Oxford Nanopore Technology, UK released a new platform with real-time 

analysis of streaming event data on an internet-connected laptop. The major 

advantages of the approach over other sequencing platform are (i) small size and 

portability, (ii) relatively low capital cost, (iii) long sequence reads (up to 700 bp, vs. 

150-300 bp for standard sequencing), facilitating alignment to an existing reference 

data and assembly of the reads into a genome, providing more reliable information 

e.g. in plasmid and integron structures and context, (iv) rapid turnaround and real-

time data analysis, (v) automation, and (vi) ease-to-use.  

The MinION technology is based on the sequencing single-stranded ssDNA as it 

passes through a protein nanopore placed over an electrical detection grid, as 

presented on Figure 14. The translocation of the ssDNA through the pores causes a 

drop in the ionic current that is characteristic of the bases in contact with the pore at 

that time (Laszlo et al., 2014). The fluctuations in current are sequence dependent 

and so can be used by a base-calling algorithm to infer the sequence of nucleotides 

in the DNA (Stoddart et al., 2009; Clarke et al., 2009). This technology is still driven 

by the developer and it is continually evolving. Preliminary experiments showed that 

the method can identify microorganism (Kilianski et al., 2015; Wang et al., 2014b), 

investigate hospital outbreaks (Quick et al., 2014) and predict bacterial antibiotic 

resistances (Ashton et al., 2015; Bradley et al., 2015; Cao et al., 2016; Judge et al., 
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2015). However, the use of this device directly on clinical samples had not been 

described prior to the present study. This system potentially provides an alternative 

approach for pathogen and antibiotic resistance gene identification. In contrast to 

other PCR-based assays that seek only well known targets it has potential to provide 

comprehensive genetic data.  

 

 (A) 

 

 

 

 

 

 

 

             (B) 

 

 

 

 

 

  

 

                 Figure 14. MinION Nanopore sequencer (A) and workflow (B). 
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1.8.9 Other systems in an early stage evaluation for antimicrobial 

susceptibility testing  
 

Besides molecular testing there is also interest in developing systems 

(commercial or otherwise) based on measurement of early bacterial growth curves 

after exposure to antimicrobial agents. MIC values are thereby assessed in a 

significantly shorter period compared to conventional antimicrobial susceptibility 

testing. Bacterial growth can be recorded by digital microscopy, laser scattering 

technology and biosensor technology.  These technologies are in an early stage of 

evaluation and there is limited published data. Nevertheless they may become 

valuable diagnostic tools in the future. 

Digital microscopy technology 

The Accelerate Pheno system (Accelerate Diagnostics, Tuscon, Arizona, USA) is based 

on cellular analysis of individual bacterial cells and colonies. Microbial cells are 

captured on a flowcell channel surface using a mild electrical charge. In situ 

hybridization with target probes is utilized for bacterial identification. MICs are 

determinated by analyzing of growth/lysis/morphology of individual cells to a single 

antibiotic concentration, with results available within 7 h. Price at al. (2014) 

evaluated the performance of this automated microscopy system for immobilized S. 

aureus cells, seeking to detect the MRSA phenotype and clindamycin resistance 

against a conventional disk diffusion method.  They showed that the system could 

perfectly discriminate MRSA and MSSA phenotypes and, in the majority of cases also 

detect clindamycin resistant isolates (Price et al., 2014).  

 

Laser scattering technology  

 

There are two commercial systems based on laser light scattering technology that 

allow antibiotic susceptibility testing directly on urine specimens, though they cannot 

identify bacteria. These are the Alfred60 (Alifax, Italy) and BacterioScan™ 216Dx 

(Kibbutz Eilon, Western Galilee, Israel) systems. Both monitor the intensity of 

bacterial replication, providing real-time bacterial growth curves. The Alfred60 
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system uses specific culture broth bottles (Uro-Quick detection kit) whilst the 

BacterioScan™ 216Dx utilizes specific microcuvettes. Roveta et al. (2004) evaluated 

the Uro-Quick system for antimicrobial resistance profiling for the main agents used 

to treat UTI directly on urine samples. The study showed good agreement (>90%) 

with a disc diffusion reference method. Results were available within 5 h (Roveta et 

al., 2004). In another study Zerda et al. (2015) compared the BacterioScan system 

against conventional phenotypic method with EUCAST breakpoints again directly on 

urine specimens. The system showed 92% sensitivity and 81% specificity for urine 

with bacterial counts >104 cfu/mL and data were available within 3 h (De la Zerda et 

al., 2015). 

 

Biosensor systems 

A molecular biosensor device has two components: a recognition element (enzyme, 

antibody or DNA) and a transducer. The target specimen is bound to the recognition 

element, generating a measurable signal (light or an electrical current) which is 

detectable via the transducer (CCD camera, photodiode, electrode). The in-house UTI 

Sensor Array  is an example of a biosensor for uropathogen profiling with a cut-off of 

104 cfu/mL, whilst the biosensor-based AST was designed for susceptibility testing 

(Mach et al., 2011). In this latter assay, 16S rRNA probes are utilized to monitor 

bacterial growth and to allow identification and antimicrobial testing.  Species-

specific DNA probes targeting the most common uropathogens are immobilized on 

the sensor surface and are used to measure growth of the pathogen under different 

antibiotic conditions. Biosensor signals from samples incubated with an antibiotic are 

compared to those from samples incubated without antibiotic. 

 

Cell Phone-based microphotometric systems  

This technique compromises three major components i) gas-permeable microwell 

arrays with antibiotics precoated on the wells, ii) a colorimetric indicator of cell 

viability to monitor bacterial growth and iii) a cell phone–based microphotometric 

system. 
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The system was developed to rapidly detect bacterial growth and allows 

antimicrobial susceptibility testing in a microwell array directly from urine samples 

with bacterial concentrations of 101-106 cfu/mL (Kadlec et al., 2014). The assay was 

designed for point-of-care applications in a low-resource settings as it does not 

required complicated sample procedures. Previously Johnson et al. (1985) showed 

the utility of a colorimetric indicator to determinate the antibiotic susceptibilities of 

Gram-negative bacteria. The authors used tetrazolinum (triphenyltetrazolium 

chloride), an organic salt dye reduction, as a colorimetric indicator of bacterial growth 

that converts to a red colour in the presence of reducing substances (Johnson et al., 

1985). 

 

Microfluidic system 

These small called 'lab-on-a-chip' platforms (LOC) are portable and utilize small 

volumes of reagent and test analyte. They might be suitable for rapid point-of-care 

detection of antibiotic susceptibility. Microfluidic systems are in an early phase 

development but so far have been shown able to assess MICs using (i) microfluid 

agarose channels (Chen et al., 2010), (ii) electrochemical quantification of 16S rRNA, 

without the need to perform amplification steps (Riahi et al., 2011) or (iii) a 

microfluidic pH sensor (Pulido et al., 2013). In all those cases susceptibility testing 

results were available in 3-4 h. 

 

Rapid EUCAST disc diffusion test 

Recently it has been showed that disc diffusion test can reliably be read after 6 h of 

incubation. Fröding et al. (2017) evaluated phenotypic tests for production of ESBLs and 

carbapenemases using tablet kits from ROSCO Diagnostica A/S (Taastrup, Denmark) and 

Mast Group Ltd (Bootle, UK) on multi-drug resistant Enterobacteriacea based on the EUCAST 

methodology. The study demonstrated that inhibition zones for extended-spectrum 

cephalosporins could be interpreted after 6 h. The authors showed that more than 

80% of ESBL and non-ESBL producing Enterobacteriacea gave reliable results for 

ceftazidime, cefotaxime, ciprofloxacin, gentamicin and meropenem, but 
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carbapenem-producing strains needed a full 18-20 h of incubation (Fröding et al., 

2017).  

1.9 Rationale and aims of the research 
 

1.9.1 Rationale 

Rapid identification of E. coli and other common uropathogens, together with 

antibiotic resistance profiling are desirable in both community and hospital settings 

in order to: (i) decrease the number of hospital admissions for complicated UTIs, (ii) 

minimize the risk of treatment failure or size effects (e.g. C. difficile) caused by 

inadequate or excessive empirical therapy, (iii) decrease the further spread of strains 

resistant to standard antibiotics used in the treatment of uncomplicated UTIs, (iv) 

conserve the antibiotics presently reserved for treatment of difficult nosocomial 

infections and (v) shorten patients’ hospitalization.  

Conventional testing needs cultivated bacteria, meaning c. 24-72 h delay before 

targeted therapy can be deployed. Review of the current literature identified several 

potential rapid systems for faster pathogen identification and susceptibility testing 

through some are limited to only detecting well-known targets. What is desirable, at 

least for severe infection leading to hospitalization, is to develop comprehensive 

methods enabling fast pathogen identification and resistance profiling directly from 

urine, without culture. To achieve this two approaches were evaluated: 

Firstly, MALDI-TOF (Matrix-Assisted Laser Desorption Ionization Time-of-Flight) 

mass spectrometry for direct bacterial identification from urine together with 

multiplex tandem PCR for resistance gene profiling. MALDI-TOF was also evaluated 

for rapid β-lactamase detection and profiling directly from urines and their cultivated 

isolates 

Secondly, MinION sequencing for simultaneous bacterial and resistance gene 

identification, again directly from urine. 

 As background to developing these rapid methodologies, a surveillance of 

uropathogens from the Norfolk and Norwich University Hospital in July and 
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November 2014 was performed to investigate the local aetiology, epidemiology, and 

antimicrobial resistance of UTIs.  

Overall the studies aimed to develop two approaches that might significantly shorten 

the time needed for UTI diagnostics to <5 hours, and thereby to enable earlier 

appropriate targeted antimicrobial therapy, within the typical dosage interval of a 

q8h therapy. 

1.9.2 Aims of the research 

• To determinate the local aetiology, epidemiology and antibiotic resistances of 

UTIs at the NNUH and in the community. 

• To indicate patient groups and locations where a rapid diagnostic could be 

implemented.  

• To analyze seasonal variations of UTIs. 

• To develop a MALDI-TOF mass spectrometry method for rapid identification of 

pathogens directly from clinical urines, without culture. For this purpose, 

different sample preparation procedures to deplete human cells were 

evaluated.  

• To develop a MALDI-TOF assay for detection of β-lactamase (ESBL/AmpC) 

activity directly from urine specimens and their cultivated isolates. 

• To develop and evaluate multiplex tandem PCR assays for rapid detection of 

the commonest antibiotic resistance genes in Enterobacteriaceae directly from 

urine specimens, without culture. 

• To develop a nanopore sequencing technology using the MinION device for 

rapid simultaneous detection of uropathogens and their antibiotic resistance 

genes directly from clinical urines. To allow this, also a sample preparation 

procedure to enrich bacterial DNA was investigated.  

• To propose possible fast diagnostic workflows to detect trimethoprim-resistant 

E. coli in uncomplicated UTIs in the primary care. 

• To propose possible rapid diagnostic workflows for identification of E. coli and 

other common uropathogens together with their antibiotic resistance profilies. 
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Chapter 2 

MMMMATERIALS AND METHODSATERIALS AND METHODSATERIALS AND METHODSATERIALS AND METHODS    
 

2.1 Epidemiology of UTI specimens at the NNUH 

An epidemiological study was performed based on urines processed in the 

clinical microbiology laboratory of the Norfolk and Norwich University Hospital in the 

months of July and November 2014. All urine specimens (July n= 9558; November n= 

8991) including those triaged out on account of low bacterial counts <105 cfu/mL 

were analysed.  

Submitted urines undergo a screening process on an automated iQ®200 (Iris 

Diagnostics, Chatsworth, CA, USA) analyser, which captures and reviews flow cell 

digital images using automatic particle-recognition software. Particles are classified 

on the basis of texture, contrast, shape and size (e.g. as WBC, RBC or bacteria). Figure 

15 shows the urine processing performed in the NNUH.  

Those urines meeting the criteria for culture are plated on BD CHROM agar 

Orientation Medium (Becton Dickinson, Oxford, UK) and incubated at 37oC overnight. 

Species or bacterial groups were identified according to the colouration of growth on 

this medium which is described in Section 1.8.6 (Classical bacterial identification- 

Chromogenic media).  

In vitro susceptibility testing was primarily performed by the BSAC disc diffusion 

method using commercially discs from Oxoid, (Basingstoke, UK) (see Table 4). 
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   Figure 15.Urine processing performed at the NNUH. 

 

Table 4. Antibiotic susceptibility discs used for susceptibility testing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Antibiotic susceptibility discs Disc content 

First line antibiotics 

Amoxicillin 

Co-amoxiclav  

Cefpodoxime 

Cephalexin  

Gentamicin  

Nitrofurantoin 

Piperacillin/Tazobactam 

Trimethoprim 

10 µg 

20 µg + 10 µg 

10 µg 

30 µg 

10 µg 

200 µg 

75 µg + 10 µg 

2.5 µg 

Second line antibiotics 

Fosfomycin  

Ertapenem  

Meropenem 

Ciprofloxacin 

Ceftazidime  

Cefuroxime  

50 µg 

10 µg 

10 µg 

1 µg 

30 µg 

30 µg 



58 | P a g e  
 

2.1.1 Statistics 

Epidemiological data were analysed using two statistical tests of significance. 

These were (i) significance of the changes in population proportions and (ii) chi-

square test to compare observed data with expected data. Both tests were applied 

to determin whether there was significant variation between July and November in 

(i) the total number of urines submitted to the microbiology laboratory, (ii) the 

numbers of urines submitted by locations and the results from investigations, (iii) the 

distribution of the Gram-positive vs. Gram-negative isolates by the patients’ age and 

gender and (iv) the resistance rates for amoxicillin and trimethoprim for different 

locations.  

The test of significance for differences in population proportions was performed 

in two steps. Firstly, the null (H0) and alternative (Ha) hypotheses were assessed based 

on following assumptions:  

(i) The null hypothesis H0, states that there is no difference in the population 

proportions between two investigated groups  

H0 : p1 – p2 = D0 

where D0=0  

(ii) The alternative hypothesis Ha contains the reliable values of the parameter if 

the null hypothesis is rejected. Ha may be written as one of the following 3 

possibilities: 

Ha : p1 – p2 < D0 (Lower-tail test) 

Ha : p1 – p2 > D0 (Upper-tail test) 

Ha : p1 – p2 ≠ D0 (Two tailed test) 
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Secondly, the test statistic was calculated using the formula: 

 

 

 

 

 

where: 

x1, x2- the number of submitted urines in a specified location or for a given group 

in July and November respectively; 

n1, n2- the total number of submitted urines in July and November respectively; 

�̂�, �̂�-  relative proportions (%) of submitted urines in a specified location or for a 

given group in July and November, respectively. 

 

The test statistic z is normally distributed if the null hypothesis H0 is true. The p- value 

associated with z was determinated based on the formula above. If the p was less 

than the significance level (ordinarily p <0.05) the null hypothesis was rejected and 

the difference assigned to be statistically significant or if the p- value was higher than 

the significance level (ordinarily p >0.05), we cannot reject the null hypothesis and 

the differences in the population are not statistically significant. 

The second statistical approach utilized the chi-square (X2 or chi2) test to 

determine if there was a significant relationship between two nominal variables. The 

distribution of one nominal variable, given different values of the second nominal 

variable, were compared and test aimed to verify whether the differences in the 

conditional distributions was significant. The procedure of the test includes the 

following steps: 



60 | P a g e  
 

Firstly, the chi-squared test statistic resembling a normalized sum of squared 

deviations between observed and predicted frequencies was calculated using the 

formula: 

 

 

where: 

Oi- the number of observations e.g. the total number of urines submitted for GP in 

July or November; 

N- the total number of observations; 

Ei- the expected (theoretical) frequency of type i, asserted by the null hypothesis 

that the fraction of type i in the population is pi;  

n- the number of cells in the table. 

 

The number of the result of the test was selected compared to the critical value from 

the chi-squared distribution for the appropriate number of degrees (ordinarily one 

fewer than the number of categories being compared) of freedom and the selected 

confidence level. The null hypothesis (H0) of independence was rejected when the 

test statistic was higher than the critical value corresponding to the assumed 

significance level.  
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2.2 Matrix-Assisted Laser-Desorption/Ionization Time of 

Flight Mass Spectrometry (MALDI-TOF MS) to identify 

bacteria from urine specimens 
 

All MALDI-TOF analysis was performed on a Microflex LT instrument (Brüker 

Daltonics GmbH, Leipzig, Germany) with FlexControl 3.4 software (Brüker Daltonik 

GmbH) for visual inspection of the mass spectra. The spectra were recorded in the 

linear positive mode at a laser frequency of 60 Hz within a mass range from 2-20 kDa. 

The trigger delay time was 10 µs. For each spectrum, 800 laser shots were collected 

and analyzed (4×200 laser shots from different positions of the target spot). 

Automated analysis of the raw data, involving database searching and bacterial 

identification, was performed by MALDI Biotyper Real Time Classification software 

and MALDI Biotyper OC 3.1 (Brüker Daltonik GmbH). The results were analyzed across 

a mass range from 4-15 kDa giving ‘score values’ between 0 and 3, reflecting the 

similarity between the sample and the reference spectrum. The display gives the top 

10 matching database records. Ordinarily a score of <1.699 generally indicates no 

reliable identification, a score 1.700-1.999 indicates genus level, and >2.000 gives 

species identification. We reviewed the use of lower criteria to potentially increase 

the number of direct identifications from urine. In particular we took a score value 

<1.450 to indicate no identification; a score of 1.450-1.600 to indicate genus level, 

and >1.600 for species identification. 

All identification were performed in duplicate. E. coli (BTS- bacterial testing 

standard, Brüker Daltonics GmbH) was used as a standard to calibrate the instrument 

for all experiments. Calibration points with a reference mass compromised RL29 

[M+2H]2+ (3637.8 Da), RS32 [M+H]+ (5096.8 Da), RS34 [M+H]+ (5381.4 Da),  

RS33meth [M+H]+ (6255.4 Da), RL29 [M+H]+ (7274.5 Da), RS19 [M+H]+ (10,300.1 

Da), RNAse A [M+H]+ (13,683.2 Da), Myoglobin [M+H]+ (16,952.3 Da). As a starting 

point for direct tests on urines we used the method of (Ferreira et al., 2010) described 

in Figure 16 and sought to improve it.  
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Figure 16. Initial sample preparation protocol for MALDI-TOF identification 
of bacteria from urine by (Ferreira et al., 2010). 

For abbreviations see page number xvi. 
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2.2.1 Optimisation of the sample preparation procedure for pathogen 

identification for MALDI-TOF 
 

In order to optimise the MALDI-TOF procedure for rapid identification of 

pathogens directly from urine samples (see Figure 16), several factors were varied 

(Table 5). 

 

Table 5. Optimization of parameters for rapid bacterial identification directly from 
urine specimens (steps refer to Figure 16).   

Factors Variations  

Volumes of urine specimen 2 mL, 5 mL, 10 mL 

Centrifugation period (step 1) 30 s, 2 min, 5 min 

Centrifugation speed (step 1) 

2000 rpm (300 g), 3000 rpm (600 g),  

4000 rpm (1100 g), 5000 rpm (2400 g) 

Ethanol volume (step 4) 300 µL, 600 µL, 900 µL 

Chemical reagents (step 2) 

 

Addition of Anionic Acid Labile Surfactant II 

(AALS II) (Protea Biosciences, Morgantown, 

WV, USA), lysis buffer: Pierce IP 

(immunoprecipitation), and CM (mammalian 

cells), 0.5% and 1% SDS (sodium dodecyl 

sulphate), lysozyme (1 mg/mL) 

Extraction reagents (step 5) 

 

B-PER extraction buffer (Thermo fisher), 70% 

formic acid/acetonitrile, formic acid/2-

propanol, acetonitrile/trifluoroacetic acid (1:1), 

acetonitrile/trifluoroacetic acid (2:1) 

Commercial kit (variously at step 1-

5 following manufacturer’s 

instruction) 

Sepsityper kit (Brüker Daltonik GmbH) 
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Further parameters considered included (i) the sensitivity of the instrument, (ii) the 

effect of boric acid (1-2% used as a transport preservative) in urine, (iii) the effect of 

antibiotics (ciprofloxacin, trimethoprim and trimethoprim/sulfamethoxazole (co-

trimoxazole)) in the urine, and (iv) the different ratios of two bacterial strains present 

in the urine. In each experiment single colonies from the plates containing cultivated 

Gram-negative or Gram-positive bacteria (E. coli, K. pneumoniae, P. mirabilis, P. 

aeruginosa, E.  faecalis, and S. aureus) were inoculated in LB (Luria-Bertani, Sigma, St. 

Louis, USA) broth for overnight at 37oC. One millilitre volumes of the overnight 

cultures at a density between 108 - 109 cfu/mL were then spiked into 9 mL of 

uninfected urine from a healthy volunteer. Two millilitres (or other volumes see Table 

5) of the diluted ‘spiked urine’ were used for MALDI-TOF analyses according to the 

protocol shown in Figure 16.  

 

Detection limit 

To assess the minimal bacterial concentration that allowed reliable MALDI-TOF 

identification, serial dilutions from 10-1 to 10-4 of overnight LB cultures were 

performed in urine and analysed as shown in Figure 16.  

 

Effect of boric acid 

The effect of boric acid on MALDI-TOF scores was investigated because most clinical 

urine specimens are collected in containers with 1-2% boric acid, as a sample 

preservative, added to prevent bacterial overgrowth during transport to the 

laboratory, and allowing satisfactory culture and microscopy when analysis is 

performed up to 48 h later. To determine the effect of boric acid on MALDI-TOF scores 

urines from boric acid- containing and non-containing tubes were analyzed for up to 

7 days storage in the fridge (4-8°C), using the extraction procedure with FA (70%)/ACT 

presented in Figure 16 (step 5), and without extraction (i.e direct spotting of the 

washed bacterial pellet >105 cfu/mL onto the MALDI-TOF target, after step 3, Figure 

16). 
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Effect of antibiotics 

The presence of antibiotics in urine might affect MALDI-TOF analysis. To investigate 

this possibility ciprofloxacin, trimethoprim and trimethoprim/sulfamethoxazole (1:5) 

(co-trimoxazole) at concentrations of 100 mg/L, 200 mg/L, 600 mg/L (100 mg/L + 500 

mg/L), respectively, were added to urine spiked with bacteria (109 cfu/mL) before 

repeated analysis on MALDI-TOF for 6 days storage in the fridge (4-8°C).  

 

Presence of multiple organisms 

To ascertain ranges where MALDI-TOF detected one or both pathogens present in a 

mixture of overnight broth cultures, urine was spiked with two organisms in the ratios 

(volume): 1:1; 1:2; 1:3; 1:4; 1:10; 2:1; 3:1; 4:1; 10:1 using bacterial suspension with 

densities: 0.26 x 109 cfu/mL; 0.33 x 109 cfu/mL; 0.5 x 108 cfu/mL; 0.15 x 109 cfu/mL for 

E. coli; P. aeruginosa; E. faecalis and S. aureus respectively. These samples were then 

analysed on the MALDI-TOF as shown in Figure 16.  

 

Effect of bacteria-lysing agents 

In an attempt to improve MALDI-TOF analysis, SDS (sodium dodecyl sulphate) and 

the enzyme lysozyme (only with Gram-positive bacteria) were added. Two millilitres 

of clinical urine sample with high concentrations of white blood cells (>109 WBC/L) 

were processed followed the extraction procedure (Figure 16) but with the addition 

of 1% SDS (50 µL) and 15 µL of lysozyme (1 mg/mL) to the bacterial pellet obtained 

(step 2). This was then immediately re-centrifuged (step 3), except for Gram-positive 

isolates where the mixture was first held for 30 min at 37OC with lysozyme.  
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2.2.2 Rapid identification of pathogens directly from clinical urines by 

MALDI-TOF 
 

A pilot study was undertaken with clinical urine samples from the Microbiology 

Department of NNUH to evaluate the use of MALDI-TOF for the clinical laboratory 

investigation of urinary infection. Urines included in the study were selected based 

on culture results or Iris screening, aiming to investigate the detection of various 

Gram-positive and Gram-negative bacteria, whereas consecutive sample were 

dominated by E. coli. 

One hundred fifty clinical urine samples were analysed. These were from in- and 

out-patients and standardly were collected into boric acid containers for routine 

clinical laboratory analysis. Each sample first underwent routine screening using the 

automated iQ®200 (Iris Diagnostics) analyser, with culture then performed, (or not) 

based on the results according to standard laboratory protocols presented in Figure 

15.  

Selected samples (96 culture-positive; 27 culture-negative but microscopy 

positive, and 27 heavy mixed bacterial growth) were run on the MALDI-TOF using the 

optimised method (see Figure 17). Samples that gave discrepant identifications 

between the clinical laboratory results and the direct MALDI-TOF analysis were re-

cultured and re-identification was performed from single colonies by MALDI-TOF.  
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   Figure 17. Optimised procedure for direct bacterial identification on  
                      MALDI-TOF. 

    Identification was performed by clinical laboratory based on the culture plated on the  

    BD OrientationTM  agar. 

*GPB- Gram-positive bacteria 
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2.2.3 Rapid discrimination of β-lactamase-producing pathogens 

directly from urine and cultivated isolates by MALDI-TOF 
 

 

2.2.3.1 Optimization of assays of cephalosporins hydrolysing activity 

In order to optimize methodology for the detection of cephalosporin hydrolysis 

activity directly from urine and from cultivated isolates on the MALDI-TOF, two 

parameters- incubation time and antibiotic diluent buffers-were varied.  

 

Antibiotic diluent buffer 

We assessed three buffers as dilutions for cephalosporins, namely (i) 10 mM 

ammonium phosphate pH 7.2,  (Sigma-Aldrich, St. Louis, USA), (ii) 10 mM ammonium 

bicarbonate pH 8-9 (Sigma-Aldrich), and (iii) 10 mM ammonium hydrogen citrate pH 

7.2 (Sigma-Aldrich). Ten-fold concentrated solution of ceftazidime (Sigma-Aldrich, 

0.25 mg/mL) and cefotaxime (Sigma-Aldrich, 0.5 mg/mL) were diluted in these 

buffers. Then 50 µL of antibiotics solution was added to sufficient cultivated bacteria 

to fill a 1 µL inoculation loop. Multi-resistant E. coli H141480453 with NDM-4 and 

OXA-181, and penicillin- and cephalosporin-susceptible E. coli recovered from a 

clinical urine were used as positive and negative controls. These mixtures were 

incubated at 37oC with shaking at 900 rpm for 2 hours (cefotaxime), and 4 hours 

(ceftazidime). Subsequently, the mixtures were centrifuged at 13,500 rpm for 3 

minutes to pellet the bacteria and 1 µL of the supernatant was placed on the MALDI-

TOF target plate as two replicates, dried at room temperature, and overlaid with 

MALDI matrix (10 mg/mL of cyano-4- hydroxy-cinnamic acid [HCCA] in 50% 

acetonitrile – 0.1% trifluoroacetic acid (Brüker Daltonik, Bremen). MALDI-TOF 

analysis was performed as described in Section 2.2.3.2 (MALDI-TOF MS analysis of 

the hydrolysis assays). 
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Incubation time 

To assess the incubation time required for cephalosporin hydrolysis assays cultivated 

isolates of β-lactamase positive and negative controls filling a 1 µL inoculation loop 

were mixed with following antibiotics: cefpodoxime (Sigma-Aldrich, 0.25 mg/mL), 

cefepime (Alfa Aesar, Ward Hill, USA; 0.5 mg/mL), ceftriaxone (Alfa Aesar, 0.5 

mg/mL), cefotaxime (0.5 mg/mL), and ceftazidime (0.25 mg/mL) diluted in 50 µL of 

10 mM ammonium citrate buffer pH 7.2 (Sigma Aldrich). These suspension, and the 

same antibiotics without bacteria, were incubated at 37oC with shaking at 900 rpm 

for different time periodd: 0.5 h, 1 h, 1h 30 min, 2 h, 2h 30 min, 3h, 3h 30 min, 4h.   

Multi-resistant E. coli H141480453 harbouring β-lactamase genes (blaNDM-4 and 

blaOXA-181) and E. coli strain J53 producing TEM-10 (only with ceftazidime assay) were 

used as positive controls.  E. coli recovered from clinical urine and fully susceptible to 

penicillins and cephalosporins was used as a negative control in each of the assays.  

After appropriate incubation the samples were centrifuged at 13,500 rpm for 3 

min. The supernatant was then subjected to MALDI-TOF analysis as in Section 2.2.3.2 

(MALDI-TOF MS analysis of the hydrolysis assays). 

 

 

2.2.3.2 MALDI-TOF MS analysis of the hydrolysis assays 
 

MALDI-TOF analysis was performed on a Microflex LT instrument (Brüker 

Daltonics GmbH). Firstly, with FlexControl 3.4 software and secondarily with MALDI 

Biotyper Compass version 4.1.40 (MBT-STAR-BL) software (Bruker Daltonik GmbH). 

The former software was used for all antibiotics, the latter only for ceftazidime and 

cefotaxime. The spectra were recorded in the linear positive mode at a nitrogen laser 

frequency of 60 Hz, with a low mass range from 100 Da to 1,000 Da. For each 

spectrum, 240 laser shots were collected and analyzed (6×40 laser shots from 

different positions of the target spot).  An ‘antibiotic standard’ MBT STAR-ACS (Bruker 

Daltonik GmbH) consisting of reference spectra of bradykinin (1-7) [M+H]+ (757.39 

Da),  bradykinin (1-5) [M+H]+ (573.31 Da), Lys-Lys-Lys [M+H]+ (403.30 Da), and Ser-

His [M+H] (243.10 Da) was used for automated calibration.  
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2.2.3.3 Data analysis 

FlexAnalysis version 3.4 software (Bruker Daltonik GmbH) was used for manual 

analysis of the peak profiles for all antibiotics. Spectra were smoothed (SavitzkyGolay; 

width, 0.2 m/z; cycles 1 algorithm) and the baseline subtracted (TopHat algorithm). 

Only peaks corresponding to the antibiotic were labelled.  

Automated analysis was performed using commercial Bruker’s MBL STAR-BL 

software for ceftazidime and cefotaxime only, and the prototype MBT STAR-BL 

hosted on http://mbtprot.bdal.de/MSBL for all antybiotics tested. 

Review of the peak patterns for the native and hydrolysed forms of the different 

cephalosporins led to characteristic profiles for β-lactamase producing and non-

producing strains. Changes in the peak intensity ratios within a spectrum allowed 

quantitative evaluation of hydrolysis measured as logarithm RQ (resistance quotient; 

rate of hydrolysis).  

Isolates were classified as negative for cephalosporin hydrolysing β-lactamases 

and potentialy susceptible if the peak intensity distributions corresponding to the 

native (non-hydrolysed) cephalosporins and were similar to those for the negative 

control. Isolates with cephalosporin-hydrolysing β-lactamases were classified as 

potentialy resistant if the intensities of peaks corresponding to the hydrolysed 

cephalosporin were similar to those for the positive control. Isolates showing an 

intensity distribution between the negative and positive controls were called ‘slow 

hydrolyses’. 

 

2.2.3.4 Detection of cephalosporin-hydrolysing activity directly from urine and 
cultivated bacteria 

 

Assays were performed with final concentration of the following cephalosporins: 

ceftazidime (0.25 mg/mL), cefotaxime (0.5 mg/mL), cefpodoxime (0.25 mg/mL), 

cefepime (0.5 mg/mL), and ceftriaxone (0.5 mg/mL). The concentrated stocks were 

dissolved in 10 mM ammonium hydrogen citrate, pH 7.5 (Sigma-Aldrich).  

Assays (Section 2.2.3.5) were performed with 91 infected clinical urines from the 

Microbiology Department of the NNUH, and on the isolates recovered from these 

specimens. Samples were selected based on phenotypic testing results in order to 
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investigate the detection of β-lactamase producing Enterobacteriaceae particularly 

those with extended-spectrum β-lactamase enzymes (ESBLs) and AmpC β-

lactamases. 

 Forty-three urines of the total 91 samples were selected as Enterobacteriaceae 

producing extended-spectrum β-lactamase enzymes (ESBLs) and twenty-two were 

AmpC β-lactamase producers based on the NNUH laboratory disc results showing 

synergy between cefpodoxime with clavulanate as a ESBL inhibitor and/or cloxacillin 

as a AmpC inhibitor. Twenty-six isolates were full susceptible to 3rd generation 

cephalosporins. Multi-drug resistant E. coli strain H141480453, which produced TEM-

1, NDM4, OXA-181, CTX-M-15 and CMY-2 β-lactamases was used as a positive control 

for assays with cefotaxime, cefepime, ceftriaxone, and cefpodoxime, and E. coli strain 

J53 with TEM-10 enzyme as a positive control with ceftazidime. The AmpC 

derepressed strain Enterobacter cloacae 684 (Yang et al., 1988) was used as an AmpC 

control. E. coli recovered from clinical urine and fully susceptible to penicillins, and 

cephalosporins was used as a negative control, tested in parallel.  

The presence of β-lactamase genes was confirmed by Illumina genomic 

sequencing for 51 of the 91 specimens including all the isolates with ESBL 

phenotypes; penicillins and cephalosporins resistances were sought by phenotypic 

profile for all samples, as in Section 2.2.3.6. 

 

2.2.3.5 Sample preparation for MALDI-TOF hydrolysis assay 

Clinical urines (1-1.5 mL) were centrifuged at 300 g for 2 min to deplete human 

cells. The supernatant was collected, re-centrifuged at 12,300 g for 5 min, and the 

resulting bacterial pellet washed in 300 µL of molecular grade water, and then re-

centrifuged at 12,300 g for 3 min. Sufficiant washed bacterial pellet from urines or 

fresh overnight bacterial isolate growth on the agar to fill a 1 µL inoculation loop was 

re-suspended in 50 µL of the antibiotic solution and incubated at 37oC shaking at 900 

rpm for 2 hours (except ceftazidime, 4 hours). Subsequently, the samples were 

centrifuged at 12,300 g for 3 min, and then two 1 µL replicate volumes were spotted 

onto the polished steel MALDI-TOF target plate, dried at room temperature and 
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overlaid with MALDI matrix (10 mg/ml of cyano-4- hydroxy-cinnamic acid [HCCA] in 

50% acetonitrile – 0.1% trifluoroacetic acid (Brüker Daltonik). 

Positive and negative controls and antibiotic solution without bacteria were run 

in parallel with used for each assays. Data analysis was performed as described in 

Section 2.2.3.2 and 2.2.3.3. 

 

2.2.3.6 Phenotypic characterization of uropathogens 

Bacteria from the clinical urines were cultivated on the BD CHROM agar 

Orientation Medium and CLED agar plates (Becton Dickinson), incubated at 37oC 

overnight. Species identification was performed based on the colouration of growth 

(see Section 1.8.6) and MALDI-TOF mass spectroscopy (see Section 2.2). 

In vitro susceptibility testing was primarily performed by the BSAC disc diffusion 

method using commercial discs from Oxoid (Table 6). Extended-spectrum β-

lactamase and AmpC phenotypes were detected using the MastdiscsTM D68C AmpC 

& ESBL Detection Set (Mast Group, Bootle, UK) and combination disc diffusion test 

(CDT) with an additional cefoxitin (FOX) disc. Mast’s ESBL and AmpC Set (D68C) 

contains four discs: (A) cefpodoxime 10 µg, (B) cefpodoxime 10 µg + ESBL inhibitor 

(clavulanate), (C) cefpodoxime 10 µg + AmpC inhibitor (cloxacillin) and (D) 

cefpodoxime 10 µg + both ESBL and AmpC inhibitors. Interpretation was performed 

according to the manufacturer’s instructions. Further investigations utilized the 

Mastdiscs D63C Set (Mast Group) which includes cefepime (30 µg) and cefepime with 

clavulanic acid (30 µg  + 10 µg) for ESBL confirmation in isolates with chromosomal 

AmpC, and D69C Set (Mast Group) which includes three discs: (A) cefpodoxime 10 µg 

+ AmpC inducer, (B) cefpodoxime 10 µg + AmpC inducer + ESBL inhibitor, and (C) 

cefpodoxime 10 µg + AmpC inducer + ESBL inhibitor + AmpC inhibitor for detection 

plasmid-mediated and chromosomal AmpC, whether inducible or derepressed.  

All susceptibility test were done using fresh overnight cultures of isolates 

recovered from clinical urines, with controls.  
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Table 6. Antibiotic susceptibility discs used for susceptibility testing. 

 

 

 

 

 

 

 

 

 

 

2.2.3.7 Library preparation and Illumina genomic sequencing of ESBL-and AmpC-
producing isolates cultivated from urines 

 

Fifty-one of the cultivated isolates (41 containing putative ESBL producers and 

10 putative AmpC producers) recovered from clinical urines were genomically 

sequenced on the MiSeq system (Illumina, Cambridge, United Kingdom). Single 

colonies from CLED plates (Oxoid) were inoculated in 10 mL amount of LB broth 

(Sigma-Aldrich) at 37oC overnight. Then 500 µL of culture at a density between 108 - 

109  cfu/mL, were centrifuged at 12 300 g for 5 minutes. The resulting bacterial pellet 

was re-suspended in 200 µL of lysis buffer (Roche), 25 µL proteinase K (20 mg/mL) 

(Roche), 4 µL RNase A (100 mg/mL) (Qiagen), and 171 µL PBS (phosphate-buffered 

saline, Sigma-Aldrich), and incubated at 65°C for 20 minutes. Bacterial DNA was 

extracted using a MagNA Pure Compact Nucleic Acid Isolation kit (Roche), which is 

based on magnetic bead technology, using the DNA Bacteria v3_2 protocol. The total 

volume of extracted DNA was 50 μL. The quality and quantity of purified DNA was 

assessed using the Qubit® dsDNA Broad Range (BR) Assay Kit at the Qubit® 3.0 

Antibiotic susceptibility discs Disc content 

Amoxicillin  

Co-amoxiclav  

Cefpodoxime  

Cephalexin  

Ceftazidime  

Cefuroxime  

Cefotaxime  

Cefepime  

Cefoxitin  

Piperacillin/tazobactam 

30 µg 

20 µg + 10 µg 

10 µg 

30 µg 

30 µg 

30 µg 

30 µg 

30 µg 

30 µg 

75 µg + 10 µg 
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Fluorometer (Life Technologies, Paisley, UK), and NanoDrop 2000 (Thermo Scientific, 

UK). The input DNA for library preparation was 1 ng in total.  

A library was prepared using the Nextera XT DNA Library Preparation Kit v3 

(Illumina), following the manufacturer’s protocol.  Firstly, genomic DNA was 

tagmented using Nextera transposome and then tagged with adapter sequences. The 

tagmented DNA was amplified using a Nextera XT v2 Index Kit set D (Illumina) with 

Index 1 (N718, 720-724, 726-729) and Index 2 (S513, 515-518, 520-522) adapters for 

cluster formation. To clean and remove short library fragments of the 

amplified/tagmented DNA, AMPure XP beads were used in a 3:2 ratio PCR product: 

volume beads. Freshly diluted 80% ethanol was used for washing, and DNA was 

eluted in 52.5 µL of the Resuspention Buffer provided by Illumina. In order to assess 

average fragment size 1 µL of undiluted library was run on the 2200 TapeStation 

(Agilent Technologies, Santa Clara, USA) using Genomic DNA ScreenTape assay and 

reagents (Agilent Technologies). The quantity of DNA was measured using a Qubit® 

dsDNA High Sensitivity (HS) Assay Kit (Life Technologies). Library normalization was 

performed manually based on the average DNA fragment size and the DNA 

concentration was adjusted to 4 nM/µL. Subsequently 5 µL of the individual 

normalized 4nM library was pooled in one tube. Then 5 µL of pooled library was 

denatured with 5 µL of 0.2 M NaOH and 990 µL of prechilled hybridization buffer 

(HT1) were added, resulting in a 20 pM denatured library which was later diluted to 

10 pM. PhixX control (20 pM) provided by Illumina was prepared according to the 

manufacture’s protocol, and 594 µL of denatured library together with 6 µL Phix 

control were uploaded to the sequencing flow cell (MiSeq Reagent Kit v3, Illumina) 

and paired-end sequenced for 2 x 300 cycles.  

 

2.2.3.8 β-Lactamase gene identification in cultivated isolates  

Bacterial identification and β-lactamase profiling from Illumina sequences were 

performed with Illumina Basespace using Kraken Metagenomics version 1.0.0 

software and SRST2 version 0.1.5 software respectively. Both applications used 

Illumina data in fastq format as an input, which were then uploaded into Basespace.  
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Species identification were BLAST searched against the MiniKraken 20141208 

database. The output was presented as a report and visualized in Krona chart, which 

included the percentage and number of reads covered by the clade rooted at the 

NCBI taxonomy ID. β-Lactamase genes were sought on the SRST2 (Short Reads 

Sequencing Typing) using  ARG-Annot database  (Antibiotic Resistance Gene 

Annotation) (Gupta et al., 2014) and the scripts supplied with the application. Briefly, 

fastq reads were aligned to reference sequence using bowtie2 (version 2.2.4) and 

each alignment processed using SAMtools (0.1.18) to generate a mpileup file. Parsed 

mpileup file were used to determinate percent coverage, divergence and mismatches 

to calculate a score for each possible allele with > 90% identity.  

 

2.3 Multiplex tandem PCR (MT-PCR) for detection of 

bacterial resistance genes in infected urines and isolates 
 

Multiplex, tandem PCR (MT-PCR) was performed using three sequentially-

developed commercial assays: (i) Easy-Plex (8-Plex), (ii) High-Plex (16-Plex), (iii) Easy-

Plex (24-Plex) (all AusDiagnostics Pty. Ltd., Sydney, Australia).  The technology of 

these assays was based on two PCR steps allowing the detection of multiple targets 

in one sample using nested primer pairs. The first step involves pre-amplification of 

multiple targets using specific primers and processes the PCR for only 15 cycles to 

minimize competition between individual amplicons. The amplified product are then 

diluted into reaction tubes containing ‘bacterial resistance gene-specific’ nested 

primers, and used as a template in the second real-time PCR step. Step one was 

performed in the Easy-Plex liquid-handling system (AusDiagnostics Pty. Ltd.) (Figure 

18) for pre-amplification, and then samples were automatically diluted and 

transfered into the step 2 reaction tubes, which were then manually transferred into 

the real-time PCR instrument (Easy-Plex or High-Plex) provided by AusDiagnostic 

(Figure 19). Amplification was tracked in real-time, with the product melting 

temperature (Tm) determined to confirm product identity. 

Data analysis was performed automatically using the integrated Easy-Plex Result 

software (AusDiagnostics) which compared the melting temperature, purity and 
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quantity of the product against predetermined, expected threshold values. 

Quantitative analysis of the product was performed by comparison with an internal 

control (SPIKE) containing ∼ 10,000 copies of a synthetic oligonucleotide template 

with a corresponding primer set. This internal standard acted also as a control to 

confirm that there was no sample-mediated inhibition of the PCR.  

The following reagents and plastic were used in all assays: (i) Medium Mastermix 

(step 1), (ii) Low Mastermix (step 2), (iii) water and oil tubes (for covering PCR 

mixtures) placed onto reagent block (see Figure 18), (iv) strip tube containing step 1 

multiplexed primers placed onto thermal cycler and 96-dilution plate. Variations 

involved using reaction tubes in the different formats containing the lyophilized step 

2 primers e.g. a 72 well rotor-disc for 8-Plex assay to test a maximum of 9 

samples/run; 384 well-plates for the 16-Plex assay with a maximum 24 samples/run; 

3 x 8-tube strips for 24-Plex with a maximum 4 samples/run. 

Samples (isolates and clinical urines) included in the multiplex tandem PCR 

assays were selected based on phenotypic testing results or sequencing, with the 

latter approach aiming to find all antibiotic resistance genes in the particular assays.   

 

 

       Figure 18. The Easy-Plex™ liquid-handling system with setup processor deck.  
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   Figure 19. The instruments used to perform multiplex-tandem real-time PCR.               
Legend: The Easy-Plex™ liquid-handling system on the left and real-
time PCR  instrument (High-Plex) on the right. 

 

  

2.3.1 Easy-Plex (8-Plex) assay for antibiotic resistance gene detection 

The Easy-Plex UTI assay was developed to seek 8 antibiotic resistance genes 

(Table 7). Three multiplex, tandem PCR assays were run, each using bacteria in four 

different formats: (i) UTI 1- DNA extracted as below from reference bacterial strains 

(n=6) and one clinical urine; (ii) UTI 2- Pure cultures from reference isolates taken 

directly from plates, re-suspended in water and denaturated by heating at 95oC for 4 

minutes (n=7); (iii) UTI 3- urine spiked with reference strains to a final density 108-109 

cfu/mL (n=5), (iv) UTI 4- clinical urines from the NNUH (n=2).  

For the UTI 1 method pure colonies from overnight CLED plate were re-

suspended into 200 µL of lysis buffer (Roche), 180 µL of PBS (Sigma-Aldrich) and 20 

μL of proteinase K (20 mg/mL) (Roche). The mixture was incubated for 10 min at 65°C. 

Bacterial DNA was subsequently extracted using the MagNA Pure Compact Nucleic 

Acid Isolation Kit (Roche) using the DNA Bacteria v3_2 protocol. The total volume of 

extracted DNA was 50 μL and the quantity of DNA was assessed according to Qubit 

(Life Technologies).  
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Gene identifications were compared with sequencing results from PHE, except 

for the two clinical urines where the phenotypic comparison was susceptibility testing 

based on the BSAC disc diffusion methodology at the NNUH. 

Table 7. Target genes sought in the 8-Plex assay. 

 Target Genes Enzyme name Resistances conferred 

1. dfrA1  

Dihydrofolate 

reductase 

DHFR 

 

Trimethoprim 2. dfrA5/A14 

3. dfrA12 

4. dfrA7/A17 

5. aac(6’)-Ib 

(including: Ic, Ig, Iy,Iq II, IIc) 

Acetyltransferase 

AAC(6’)-I 

Aminoglycoside 

(amikacin, tobramycin) 

6. aadA 

(including: aadA1/A2/A3) 

Adenyltransferase 

ANT(3’’)-I 

Aminoglycoside 

(streptomycin) 

7. gyrA1 

(including gyrA1/S, 

gyrA1/R) 

Gyrase  

Fluoroquinolone 

8. KPparC Topoisomerase IV 

 SPIKE 

Internal Control 

  

 

2.3.2 High-Plex (16-Plex) assay for antibiotic resistance genes 

detection 
 

The High-Plex UTI panel sought 16 antibiotic resistance genes (Table 8). Assays 

were performed on 74 infected urines from the NNUH, and 35 cultivated isolates 

from PHE and NNUH, without DNA extraction. Human cells were removed from 

clinical urines (1-1.5 mL) by centrifugation at 300 g for 2 min and then bacterial pellets 

were collected by 5 min centrifugation at 12,500 g. Cultivated isolates together with 

bacterial pellet from urines were re-suspended in 300 µL of water and denaturated 

by heat at 95oC for 4 minutes. The resulting suspensions were diluted 10x in water, 

and then 10 µL was used as a template for the High-Plex system. Depending on the 

organism, results were compared with Illumina sequencing performed at PHE or 
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MinION sequencing as described in Section 2.4, real-time SybrGreen PCR (Section 

2.3.6), or phenotypic susceptibility testing (BSAC methodology). 

 

Table 8. Target genes sought in the 16-Plex assay. 

 Target Gene Alleles sought (AusDiagnostics data) 

β-Lactamases 

1. blaTEM including: 1, 3, 10, 104-106, 71, 76-84, 138, 143, 150, 155 

2. blaSHV including: 1, 2, 5,11, 12, 25, 26, 38, 56 

3. blaCTX-M group 1 including: 1, 3, 15, 28, 29, 32, 36, 58, 79, 103 

4. blaCTX-M group 9 including: 9, 13, 14, 24, 27, 38 

5. blaCMY including: 2, 4, 16, 31, 73, combined with assay to detect 

CMY-1 

6. blaOXA-1 including: 1, A1, 4, 30 

7. blaOXA-48 Including 48, 163, 162, 181, 204, 244, 245, 247, 370, 405 

8. blaKPC including: 1, 2, 3 

9. blaNDM including: 1, 2, 3, 4, 5, 6,7, 8 

10. blaVIM including: 1, 2, 3 

Trimethoprim resistance determinants 

11. dfr including: A1, A5/A14 

12. dfr including: A12,A7/ A17 

Aminoglycoside resistance determinants 

13. aac(6’)-Ib including: Ic, Ig, Iy,Iq II, IIc, and aac(6’)-Ib-cr 

14. aadA including: aadA1, aadA2, aadA3 

Fluoroquinolone resistance mutations 

15. gyrA1 including: gyrA1/S, gyrA1/R 

16. KPparC  

 Pan-bacterial I/D  

 SPIKE 

(Internal control) 
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2.3.3 Easy-Plex (24-Plex) assay for antibiotic resistance gene detection 

and bacterial genus identification 

 

The High-Plex UTI panel was designed to seek 24 target genes, including the 16 

represented in the 16-Plex assay (Table 8). In addition the aminoglycoside resistance 

panel was expanded to seek four further genes (aadB, aacC1, aacC2, aacC3) 

commonly responsible for gentamicin and/or tobramycin resistance. Additional 

targets were added to identify non Enterobacteriaceae bacteria to genus level (pan-

Enterococcus, pan-Streptococcus, pan- Staphylococcus, pan- Pseudomonas). 

The assay was performed directly on 23 samples (16 infected clinical urines and 

7 bacterial isolates including 4 reference isolates from PHE). The template for the 

Easy-Plex assay was prepared similarly as for the 16-Plex assay. Firstly, human cells 

were removed from clinical urine (1.5 mL) by centrifugation at 300 g for 2 min. 

Bacterial pellets were then collected through 5 min centrifugation at 12,500 g and re-

suspended in water (100 µL-1 mL) before being denaturated by heating at 95oC for 4 

minutes. Isolates from fresh overnight cultures were similarly re-suspended and 

denaturated. The resulting suspensions were diluted 10x in water and then 10 µL was 

used as a template for the Easy-Plex system. 

Data analysis from the 24-Plex assay was performed on the EasyPlex Result 

software version 1.6.4 provided by AusDiagnostics and updated with an algorithm to 

guide antibiotic choice for treatment. Interpretations and advice were predicated 

upon the guide presented in Table 9. Example outputs were e.g.:  

(i) "No OXA-48, No KPC, No VIM/NDM, No CMY-1, No CTX-M group 1, No CTX-M 

group 9, No TEM, No SHV, No OXA 1"; "Patient may respond to oral Ampicillin or 

amoxicillin or oral cephalexin, only if E. coli or P. mirabilis were detected". 

(ii) "No dfrA1/A5, No dfrA12/A17"; "Patient may respond to oral trimethoprim". 

Results were compared with Illumina sequencing at PHE and UEA as described in 

Section 2.4 (for cultivated isolates), real-time SybrGreen PCR (Section 2.3.6) and 

phenotypic susceptibility testing. 
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Table 9. AusDiagnostics algorithm to aid result interpretation and to guide therapy with the 24-Plex software. 

(A) Treatment options vs. β-lactamase producing Enterobacteriaceae with classical penicillinases, AmpC and ESBLs enzymes.  

First line treatment for  

community-acquired UTI 

(uncomplicated UTI) 

Gene detected Comments 

blaTEM blaSHV blaCTX-M gr1 blaCTX-M gr9 blaCMY 

Ampicillin or Amoxicillin R R R R R Mechanism is generally associated with resistance to this 
agent 

Cephalexin P P R R R Mechanism MAY confer resistance depending on level of 
expression, particular enzyme variant, of other strain 
characteristics.  Base use (or not) on phenotypic results and 
local resistance patterns 

Mechanism is generally associated with resistance to this 
agent 

Trimethoprim1 P P P P P Mechanism does not confer resistance to this agent 

Nitrofurantoin2 S S S S S Mechanism does not confer resistance to this agent 

Fosfomycin3 S S S S S Mechanism does not confer resistance to this agent 

Pivmecillinam S P P P S Mechanism does not confer resistance to this agent 

Mechanism MAY confer resistance depending on level of 
expression, particular enzyme variant, of other strain 
characteristics.  Base use (or not) on phenotypic results and 
local resistance patterns 

Amoxicillin-clavulanic acid4 P P P P R Mechanism MAY confer resistance depending on level of 
expression, particular enzyme variant, of other strain 
characteristics.  Base use (or not) on phenotypic results and 
local resistance patterns 

Mechanism is generally associated with resistance to this 
agent 

Ciprofloxacin5 P P P P P Mechanism does not confer resistance to this agent 
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Second line treatment for 

hospital-acquired UTI 

(complicated UTI) 

 

blaTEM 

 

blaSHV 

 

blaCTX-M gr1 

 

blaCTX-M gr9 

 

blaCMY 

Comments 

3rd generation cephalosporin  P P R R R Mechanism MAY confer resistance depending on level of 
expression, particular enzyme variant, of other strain 
characteristics.  Base use (or not) on phenotypic results and 
local resistance patterns 

Mechanism is generally associated with resistance to this 
agent 

Piperacillin/Tazobactam P P P P R Mechanism MAY confer resistance depending on level of 
expression, particular enzyme variant, of other strain 
characteristics.  Base use (or not) on phenotypic results and 
local resistance patterns 

Mechanism is generally associated with resistance to this 
agent 

Gentamicin P P P P P Mechanism does not confer resistance to this agent 

Tobramycin P P P P P Mechanism does not confer resistance to this agent 

Amikacin P P P P P Mechanism does not confer resistance to this agent 

Carbapenem  S S S S S Mechanism does not confer resistance to this agent 

Colistin6 P P P P P Mechanism does not confer resistance to this agent 
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(B) Treatment options vs. β-lactamase genes producing in Enterobacteriaceae with classical penicillinases and carbapenemases.  

First line treatment for 

Community-acquired UTI 

(uncomplicated UTI) 

Gene detected Comments 

blaOXA-1 blaOXA-48 blaKPC blaVIM blaNDM 

Ampicillin or Amoxicillin R R R R R Mechanism is generally associated with resistance to this 
agent 

Cephalexin P R R R R Mechanism does not confer resistance to this agent 

Mechanism is generally associated with resistance to this 
agent 

Trimethoprim1 P P P P P Great majority of the carbapenemase strains (OXA-48, KPC, 
VIM, NDM) are multi-resistant. Treatment mostly bases on 
the susceptibility test results.  

Mechanism does not confer resistance to this agent 

Nitrofurantoin2 P P P P P Great majority of the carbapenemase strains (OXA-48, KPC, 
VIM, NDM) are multi-resistant. Treatment based on the 
susceptibility test results.  

Mechanism does not confer resistance to this agent 

Fosfomycin P P P P P Great majority of the carbapenemase strains (OXA-48, KPC, 
VIM, NDM) are multi-resistant. Treatment based on the 
susceptibility test results.  

Mechanism does not confer resistance to this agent 

Pivmecillinam  P R R R R Mechanism does not confer resistance to this agent 

Mechanism is generally associated with resistance to this 
agent 

Amoxicillin-clavulanic acid4 R R R R R Mechanism is generally associated with resistance to this 
agent 

Ciprofloxacin5 P P P P P Great majority of the carbapenemase strains (OXA-48, KPC, 
VIM, NDM) are multi-resistant. Treatment based on the 
susceptibility test results.  

Mechanism does not confer resistance to this agent 
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Second line treatment for 

hospital-acquired UTI 

(complicated UTI) 

 

blaOXA-1 

 

blaOXA-48 

 

blaKPC 

 

blaVIM 

 

blaNDM 

 

Comments 

3rd generation cephalosporin  P P R R R Great majority of the carbapenemase strains (OXA-48, KPC, 
VIM, NDM) are multi-resistant. Treatment based on the 
susceptibility test results.  

Mechanism does not confer resistance to this agent 

Mechanism is generally associated with resistance to this 
agent 

Piperacillin/Tazobactam P R R R R Great majority of the carbapenemase strains (OXA-48, KPC, 
VIM, NDM) are multi-resistant. Treatment based on the 
susceptibility test results. 

Mechanism MAY confer resistance depending on level of 
expression, particular enzyme variant, of other strain 
characteristics.  Base use (or not) on phenotypic results and 
local resistance patterns 

Mechanism is generally associated with resistance to this 
agent 

Gentamicin P P P P R Great majority of the carbapenemase strains (OXA-48, KPC, 
VIM, NDM) are multi-resistant. Treatment based on the 
susceptibility test results.  

Mechanism does not confer resistance to this agent 

 
 
 

Mechanism is generally associated with resistance to this 
agent 

Tobramycin P P P P R Great majority of the carbapenemase strains (OXA-48, KPC, 
VIM, NDM) are multi-resistant. Treatment based on the 
susceptibility test results.  

Mechanism does not confer resistance to this agent 

Mechanism is generally associated with resistance to this 
agent 
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Second line treatment for 

hospital-acquired UTI 

(complicated UTI) 

 

blaOXA-1 
 

blaOXA-48 
 

blaKPC 
 

blaVIM 
 

blaNDM 
 

Comments 

Amikacin P P P P R Great majority of the carbapenemase strains (OXA-48, KPC, 
VIM, NDM) are multi-resistant. Treatment based on the 
susceptibility test results.  

Mechanism does not confer resistance to this agent 

Mechanism is generally associated with resistance to this 
agent 

Carbapenem  P R R R R Mechanism MAY confer resistance depending on level of 
expression, particular enzyme variant, of other strain 
characteristics.  Base use (or not) on phenotypic results and 
local resistance patterns 

Mechanism is generally associated with resistance to this 
agent 

Colistin6 S S S S S Mechanism does not confer resistance to this agent 
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(C) Treatment options vs. aminoglycoside and trimethoprim genes detected in Enterobacteriaceae  

First line treatment for 

Community-acquired UTI 

(uncomplicated UTI) 

Gene detected Comments 

 

aac(6’)-1b 

 

aadA1/A2/A3 

 

dfrA1/A5/A12/A17 

Ampicillin or Amoxicillin P P P Mechanism does not confer resistance to this agent 

Cephalexin P P P Mechanism does not confer resistance to this agent 

Trimethoprim1  P   P  R Mechanism does not confer resistance to this agent 

Mechanism is generally associated with resistance to this agent 

Nitrofurantoin2 S S S Mechanism does not confer resistance to this agent 

Fosfomycin3 S S S Mechanism does not confer resistance to this agent 

Pivmecillinam S S S Mechanism does not confer resistance to this agent 

Amoxicillin-clavulanic acid4 P P P Mechanism does not confer resistance to this agent 

Ciprofloxacin R P  P Mechanism MAY confer resistance depending on level of 
expression, particular enzyme variant, of other strain 
characteristics.  Base use (or not) on phenotypic results and local 
resistance patterns 

Mechanism does not confer resistance to this agent 

Second line treatment for 

hospital-acquired UTI 

(complicated UTI) 

 

aac(6’)-1b 

 

aadA1 

 

dfrA1/A5/A12/A17 

 

Comments 

3rd generation cephalosporin P P P Mechanism does not confer resistance to this agent 

Piperacillin/Tazobactam P P P Mechanism does not confer resistance to this agent 

Gentamicin P P P Mechanism does not confer resistance to this agent 

Tobramycin R P  P Mechanism is generally associated with resistance to this agent 

Mechanism does not confer resistance to this agent 

Amikacin R P P Mechanism is generally associated with resistance to this agent 

Mechanism does not confer resistance to this agent 

Carbapenem S S S Mechanism does not confer resistance to this agent 

Colistin7 S S S Mechanism does not confer resistance to this agent 
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Legend: 

R-    Resistance likely to be conferred by gene found  

P-    Resistance may be conferred by gene found, depending on level of expression 

S-    Not compromised by gene found 

1 
dfrA1/A5/A12/A17 genes encode the dihydrofolate reductases most often responsible for trimethoprim resistance; if they are absent, assess trimethoprim 

treatment based on the susceptibility test results. Inherent resistance in Pseudomonas spp.  

2Appropriate only for uncomplicated lower UTI caused by Enterobacteriaceae.  

Inherent resistance in Proteeae (Proteus spp., Morganella spp., Providenicia spp.) 
3 Oral formulation appropriate only for uncomplicated lower UTI caused by Enterobacteriaceae. 

Not suitable (as an oral agent) for pyelonephritis or severe urinary infection due to low systemic levels.  
4 Not active vs. Citrobacter freundii, Enterobacter spp., Serratia spp., Morganella spp., Providenicia spp., Pseudomonas aeruginosa. 

5 Resistance is unlikely when the melting temp of the ‘Enterobacteriaceae’ gene = 83.5oC and that for gyr A1/S = 86-87oC as this implies ciprofloxacin-

susceptible E. coli. For other coliform species base treatment on phenotypic susceptibility test results and local epidemiology. 
6 Reserve for use against multi-drug resistant Gram-negative bacteria. 

  Not suitable for the infection caused by Proteeae (Proteus spp., Morganella spp., Providenicia spp.)
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2.3.4 Phenotypic susceptibility characterisation of uropathogens 

Reference isolates from PHE and those recovered from clinical urines were 

grown on CLED media (Becton Dickinson) at 37oC overnight. Species were identified 

on MALDI-TOF. In vitro susceptibility testing was performed according to the BSAC 

disc diffusion method using commercially available disc types from Oxoid (Table 4). 

 

2.3.5 Genomic sequences for antibiotic resistance genes identification 

Bacterial DNA from cultivated isolates (n=12) was used as a template to evaluate 

the 8-Plex assay. These organisms had been previously sequenced by Illumina 

methodology at PHE as described in Section 2.4.8. Bacterial DNA from 19 out of 35 

cultivated isolates used in the 16-Plex performance and 8 cultivated isolates run at 

24-Plex assay also were sequenced either (by myself) on MinION or Illumina at PHE 

see Section 2.4  or on Illumina (by myself) at UEA as presented in Section 2.2.3.7.   

 

2.3.6 Real time SybrGreen PCR for antibiotic resistance genes 

detection 
 

Real time SybrGreen PCR, with specific primers was used to detect genes for 

classical penicillinases or their ESBL variants (blaTEM, blaOXA-1, blaSHV), 

cephalosporinases (blaCMY,) and extended-spectrum β-lactamases (blaCTX-M gr-1, blaCTX-

M gr-9,) to compare results from the 16-and 24-Plex assays.  

Primers were designed using Primer3Plus software (http://primer3plus.com) 

and are listed in Table 10. Real-time PCR was performed using the LightCycler 480 

(Roche) with a final volume of 20 µL. Each reaction contained 2x Sybr Green I 

mastermix, 10 pM primer forward (F) and reverse (R) and water. A single colony from 

the overnight culture was resuspnded in 100 µL of water, denaturated at 95°C for 4 

min and used as a template (2 µL). The PCR programme consisted of an initial 

denaturation step at 95°C for 5 min, followed by 35 cycles of DNA denaturation at 

95°C for 20 s, primer annealing at 60°C for 20 s, and primer extension at 72°C for 30 
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s. After the last cycle, the melting curve analysis was followed by denaturation at 

95°C, then cooling to 72°C. Fluorescence signals were collected at 530 nm wavelength 

continuously from 72°C to 99°C at 0.2°C per second. 

 

Table 10. Primers sequenced used for SybrGreen assay. 

Primers Primers sequence 

(5’-3’) 

GenBank Product 

size (bp) 

Allels detected 

TEM_F CAGCGGTAAGATCCTTGAGAG KU376497.1 326 1, 3, 10, 104-

106, 71, 76-84, 

138, 143, 150, 

155 

TEM_R GAGTTACATGATCCCCCATGTT 

SHV_F CGCCTGTGTATTATCTCCCTGT EU586041.1 316 1,2, 11, 25, 26, 

38, 56 SHV_R CAAGGTGTTTTTCGCTGACC 

CMY-F GAGTTACGAAGAGGCAATGACC GQ351345.1 310 2, 4, 16, 31, 73 

CMY_R CCAGCCTAATCCCTGGTACATA 

OXA1_F AGACGTGGATGCAATTTTCTGT J02967.2 319 1, A1, 4, 30 

OXA1_R GCACCAGTTTTCCCATACAGTT 

CTX-M 

gr1_F 

GCAAAAACTTGCCGAATTAGAG AJ549244.1 320 1, 3, 15, 28, 29, 

32, 36, 58, 79, 

103 CTX-M 

gr1_R 

GCTTATTCATCGCCACGTTATC 

CTX-M 

gr9_F 

CTTTCCAATGTGCAGTACCAGT AF252623.2 320 9, 13, 14, 24, 27, 

38 

CTX-M 

gr9_R 

CGGTATTCAGCGTAGGTTCAG 
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2.4 MinION Nanopore sequencing  
 

Specimens tested by MinION nanopore sequencing were selected based on 

culture results, with a bias towards multiply resistant strains to test the ability to 

detect various antibiotic resistance genes.  

For this purpose ten heavily infected (>107 cfu/mL) clinical urines from the 

Microbiology Department of the NNUH were tested. Additionally to seek a diversity 

of antibiotic resistance genes, four uninfected urines from a healthy volunteer were 

spiked with 108 cfu/mL of multi-drug resistant E. coli strain H141480453, which 

produced NDM-4 and OXA-181 carbapenemases, CTX-M-15 extended-spectrum β-

lactamase and CMY-2 AmpC β-lactamase or with the E. coli strain recovered from 

Clinical Urine 6. 

 

2.4.1 Sample preparation for MinION Nanopore sequencing  

In order to obtain the maximum recovery of bacterial DNA from urine and 

minimize contamination with human DNA methodology was refined progressively 

during the project.  In the final, optimised procedure clinical urine (4-10 mL) was 

centrifuged at 2,000 rpm (300 g) for 2 min to remove human cells. The supernatant 

was collected and re-centrifuged at 13,500 rpm for 5 min. The resulting bacterial 

pellet was re-suspended in 1 mL of PBS (Sigma-Aldrich), and treated with the MolYsis 

Basic 5 Kit (MolYsis Life Science, Bremen, Germany), as described in the 

manufacture’s instructions to lyse residual human cells and remove their DNA. Then, 

280 μL of lysis buffer and 20 μL of proteinase K (20 mg/mL) (Roche) were added to 

lyse the bacteria, and the final mixture was incubated for 10 min at 65°C. Bacterial 

DNA was subsequently extracted using the MagNA Pure Compact Nucleic Acid 

Isolation Kit (Roche) with the DNA Bacteria v3_2 protocol. The total volume of 

extracted DNA was 50 μL. 

Methodology evolved in the course of the study (see Table 11), and the MinION 

system itself was also refined. Early variations of the method were: (i) the initial 

centrifugation was omitted and no human DNA depletion step was performed for 
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Clinical Urine 1; and (ii) the NEBNext® Microbiome DNA Enrichment Kit (New England 

BioLabs, Hitchin, UK) was used to bind and remove double-stranded methylated 

human DNA following the manufacture’s procedure, with 380 µL of lysis buffer 

added, for Clinical Urines 2-4. 

To spike urines, 1 mL of overnight broth culture (109 cfu/mL) was added to 9 mL of 

uninfected midstream donor urine, 4 mL of which was then used for DNA extraction, 

always with the final version of the sample preparation methodology. 

The quality and concentration of the recovered DNA was assessed using a Qubit® 

2.0 Fluorometer (Life Technologies) and 2200 TapeStation (Agilent Technologies); 

DNA concentrations >15 mg/L were considered acceptable (i.e. the minimum starting 

material for sequencing was 750 ng). 

 

2.4.2 MinION library preparation with SQK-MAP-002-005 Nanopore 

Sequencing Kit 
 

To generate a library with an average fragment size of 8 kb, DNA (750 ng –-2 µg) 

was fragmented into a G-tube (Covaris, Brighton, UK) and centrifuged at 7,200 rpm 

(3600 g) for 1 minute before inverting the tube and centrifuging again with the same 

conditions. The sample was additionally pulse-centrifuged at 4,000 g if the liquid had 

not completely passed through the ruby orifice. The library preparation procedure 

was refined during the study. Variations, in earlier library preparation experiments 

are presented in Table 11. In particular: (i) Kit SQK-MAP-002 was used for Clinical 

Urines 1-4, following the protocol described by (Quick et al., 2014); (ii) Kit SQK-MAP-

003 was used with Clinical Urines 5-6 and for Run 1 with urine spiked with E. coli 

H141480453, again following the protocol described by (Quick et al., 2014); (iii) Kit 

SQK-MAP-004 and the procedure of (Urban et al., 2015) was used with Clinical Urine 

7 and urine spiked with the E. coli isolate recovered from Clinical Urine 6, (iv) Kit SQK-

MAP-005 was used with Clinical Urines 8-10 and  second run of urine spiked with E. 

coli H141480453, following the method of (Ip et al., 2015). After fragmentation a 

PreCR repair step (New England BioLabs, Hitchin, UK), aiming to repair damaged 

template DNA, was performed following the manufacturer’s protocol for Clinical 
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Urines 5-10, and three ‘spike urines’, two of them with E. coli strain H141480453 and 

one with the E. coli recovered from Clinical Urine 6.   

The reaction product (100 μL) was cleaned with 1 x Agencourt AMPure XP Beads 

(Beckman Coulter, High Wycombe, UK) at a ratio of 1 part beads: 1 part reaction 

mixture. These mixtures were incubated on a magnetic rack (Invitrogen MagnaRack) 

for 3 min and washed twice in 200 μL of freshly prepared 70% ethanol while still on 

the magnet, and then eluted into 81 μL of 10 mM Tris-HCl pH 8.5. An end-repair step 

was then performed using the NEBNext® End Repair Module (NEB) according to 

manufacturer’s instruction and the resulting blunt-ended DNA (100 μL) was cleaned 

using 1 x Agencourt AMPure XP Beads, and eluted in 26 μL of 10 mM Tris-HCl pH 8.5.  

To prevent concatamer formation during library preparation, 3’-dA DNA tailing was 

then performed using the NEBNext dA-Tailing Module (NEB), as described in the 

producer’s instructions. For the samples that were run with Genomic DNA 

Sequencing Kit SQK-MAP-005 only (CUs 8-10, and the second run of urine spiked with 

E. coli H141480453) the reaction product (30 μL) was cleaned with 1 x Agencourt 

AMPure XP Beads. 

The Genomic DNA Sequencing Kit (Oxford Nanopore Technologies, Oxford, UK) 

was used to generate a MinION sequencing library. Briefly, adenylated DNA and 

Blunt/TA ligase master mix (T4 DNA ligase, New England Biomolecular) were added 

to the reagents from Genomic DNA Sequencing Kit and the reaction was left for 10 

minutes at room temperature. AMPure XP Beads (SQK-MAP002 - 003) or His-Tag 

Dynabeads (SQK-MAP004 - 005) (Life Technology, Paisley, UK) were then used to 

clean the adapter-ligated DNA and eluted in 26 μL of Elution Buffer (Oxford 

Nanopore). After each clean-up step 1 μL volumes of eluted sample were used to 

quantify DNA on a Qubit® 2.0 Fluorometer (Life Technologies). 
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Table 11. Early versions of MinION library preparation procedure. 

 CUs 1-4 CUs 5-6, SU Run 1 CU 7, SCU 6 CUs 8-10, SU Run 2 

Step SQK-MAP002 SQK-MAP003 SQK-MAP004 SQK-MAP005 

1 Fragmentation 

 using g-Tube 
7,200 rpm-1 min 

Fragmentation  
using g-Tube 

7,200 rpm -1 min 

Fragmentation  
using g-Tube 

7,200 rpm-1 min 

Fragmentation 

 using g-Tube 
7,200 rpm-1 min 

2 PreCR was not 
performed 

PreCR  
37°C-30 min 

PreCR  
37°C-30 min 

PreCR  
 37°C-30 min 

3 Clean-up was not 
performed 

Clean-up  
using Agencourt 

AMPure XP Beads 
Elution in 80 µL of 
molecular grade 

water 

Clean-up  
using Agencourt 

AMPure XP Beads 
Elution in 80 µL of 

10 mM Tris-HCl  
pH 8.5 

Clean-up  
using Agencourt 

AMPure XP Beads 
Elution in 80 µL of  

10 mM Tris-HCl 
 pH 8.5 

4 End-repair 

Room temp-  
30 min 

End-repair 

Room temp-  
30 min 

End-repair 

Room temp-  
30 min 

End-repair 

Room temp-  
20 min 

5 Clean-up  
using Agencourt 

AMPure XP 
Beads 

Elution in 25 µL 
of molecular 
grade water 

Clean-up 
 using Agencourt 
AMPure XP Beads 
Elution in 25 µL of 
molecular grade 

water  

Clean-up  
using Agencourt 

AMPure XP Beads 
Elution in 25 µL of 

10 mM Tris-HCl 
 pH 8.5 

Clean-up  
using Agencourt 

AMPure XP Beads 
Elution in 25 µL of  

10 mM Tris-HCl  
pH 8.5 

6 dA-tailing 

37°C-30 min 
dA-tailing  

37°C- 30 min 
dA-tailing 

37°C- 30 min 
dA-tailing 

37°C- 10 min 

7 Clean-up was not 
performed 

Clean-up was not 
performed 

Clean-up was not 
performed 

Clean-up  
using Agencourt 

AMPure XP Beads 
Elution in 30 µL of 
 10 mM Tris-HCl 

 pH 8.5 

8 Adapter Ligation 

 
Adapter Ligation 

containing tether 
and  hairpin motor 

Adapter Ligation 

containing tether 
and hairpin motor 

Adapter Ligation 

containing tether 
and hairpin motor 

9 Clean-up 
 using Agencourt 

AMPure XP 
Beads 

Elution in 25 µL 
of Elution Buffer 
provided by ONT 

Clean-up 
 using Agencourt 
AMPure XP Beads 
with bovine serum 
albumin (BSA- 50 

mg/mL) 
Elution in 25 µL of 

Elution Buffer 
provided by ONT 
containing tether 

Clean-up  
using His-Tag 
Dynabeads 

Elution in 25 µL of 
Elution Buffer 

provided by ONT 
containing tether 

Clean-up  
using His-Tag 
Dynabeads 

Elution in 25 µL of 
Elution Buffer 

provided by ONT 
containing tether 

10 Tether 

attachment 

Room temp- 
 10 min 

Tether attachment 
was not performed 

Tether 
attachment was 
not performed 

Tether attachment 
was not performed 
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 CUs 1-4 CUs 5-6, SU Run 1 CU 7, SCU 6 CUs 8-10, SU Run 2 

Step SQK-MAP002 SQK-MAP003 SQK-MAP004 SQK-MAP005 

11 Hairpin motor 

attachment 

Room temp-  
overnight 
incubation 

Hairpin motor 
attachment was 
not performed 

 

Hairpin motor 
attachment was 
not performed 

 

Hairpin motor 
attachment was 
not performed 

 

12 Flow cell 

preparation 

Platform QC run 
Run twice with 

150 µL of EP 
Buffer (provided 
by ONT) – 10 min 

Flow cell 

preparation 

Platform QC run 
Run twice with 147 
µL of EP Buffer  and 

3 µL of Fuel Mix 
(provided by ONT) 

Flow cell 

preparation 

Platform QC run 
Run twice with 

147 µL of EP 
Buffer and 3 µL of 

Fuel Mix 
(provided by 

ONT) 

Flow cell 

preparation 

Platform QC run 
Run twice 75 µL of 
Running Buffer, 66 
µL water and 3 µL 

of Fuel Mix  
(provided by ONT) 

13 Loading Pre-
sequencing mix 

Loading Pre-
sequencing mix 

Loading Pre-
sequencing mix 

Loading Pre-
sequencing mix 

 

2.4.3 MinION Library Preparation with SQK-MAP-006 Nanopore 

Sequencing Kit 
 

Fragmentation was performed as described in Section 2.3.2 for SQK-MAP-002-

005.  After fragmentation, repair was done for 15 min at 20oC with the NEBNext FFPE 

DNA Repair Mix (NEB), used according to the manufacturer’s instructions. The 

reaction product (62 μL) was cleaned as previously described (Section 2.3.2) with 1 x 

Agencourt AMPure XP Beads. DNA was eluted into 46 μL of 10 mM Tris-HCl pH 8.5. 

End Repair/dA-tailing using a NEBNext Ultra II End Repair/dA-tailing Kit (NEB) was 

performed at 20°C for 5 minutes and 65°C for 5 min. The reaction product (60 μL) was 

cleaned again. Adapter ligation and the tethering step were done using Genomic DNA 

Sequencing Kit SQK-MAP-006 following the manufacturer’s procedure. Genomic DNA 

Sequencing Kits (Oxford Nanopore Technologies) were next used to generate a 

MinION sequencing library. With the final version of this kit (SQK-MAP-006), used for 

Run 3 of urine spiked with E. coli H141480453 adenylated DNA and Blunt/TA ligase 

master mix (T4 DNA ligase, NEB) were used to ligate the hairpin adapter and tether 

(provided with kit) to the dA- tailed DNA. The reaction was left for 10 min at room 

temperature. Dynabeads® MyOne™ Streptavidin C1 (Life Technology) were then used 

to clean the adapter-ligated DNA, which was subsequently eluted in 26 μL of Elution 
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Buffer (Oxford Nanopore Technologies). A QC (Quality Control) run was performed 

by twice uploading 500 µL of Running Buffer, Fuel Mix and water mixture into the 

sample port. 

2.4.4 MinION library preparation using ‘Rapid Sequencing Kit’ 

The MinION Rapid Sequencing Kit (ONT), with a 15-minute library preparation 

procedure was used for Spiked Urine Run 4, the final assay performed by MinION. 

Instead of shearing in a Covaris g-TUBE, genomic DNA was fragmented using the 

transposase enzyme, which simultaneously attached adapters to the free ends. Y-

adapters were then added, but no hairpin adapters. When DNA passed through the 

pore, only one strand of the duplex was sequenced (1-D reads).  

The procedure consists of two steps: tagmentation and ligation. To perform 

tagmentation 10 μL of DNA (200 ng) was added to 10 μL of FRM reagent (provided by 

Oxford Nanopore) and incubated at 30 °C for 1 min and at 75 °C for 1 min. 

Subsequently, 1 μL of RAD reagent (provided by Oxford Nanopore) was added to the 

tagmented DNA and mixed with 1 μL of Blunt/TA Ligase Master Mix (T4 DNA Ligase, 

NEB). The sample was then incubated for 5 min at room temperature before loading 

into the flow cell (5 µL sample, 75 µL Running Buffer, 66 µL nuclease-free water, and 

4 µL Fuel Mix).  

2.4.5 MinION Sequencing  

MinION sequencing was variously performed using R7.0 and R7.3 Chemistry 

(Oxford Nanopore Technology), with the former used for Clinical Urines 1-4 and the 

latter for Clinical Urines 5-10 and all spiked urines. A QC run was firstly performed to 

assess the flow cell’s number of active pores as described in Table 11 (step 12). After 

10 min, this was followed by Pre-Sequencing Library Preparation mix diluted in EP 

Buffer/Running Buffer, Fuel Mix and water (Oxford Nanopore Technologies) and, 

finally, by 150 μL of Sequencing Mix.   Sequencing was run for 7.5 - 48 h. Oxford 

Nanopore Technologies’ MinKNOW software was used to collect raw electric signal 

data, which were base-called using the Metrichor™ Agent software (MinKNOW™ 

version 0.45.2.6 (R7.0) or MinKNOW™ version 2.34.3 (R7.3). 
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2.4.6 BLAST and CARD alignment for pathogen identification and 

resistance gene detection from clinical urine samples and urine 

spiked with E. coli H141480453 Run 1, 2, and 4 

 

Identification of species and resistance genes routinely utilised BLAST search and 

the CARD (Comprehensive Antibiotic Resistance Database) database (McArthur et al., 

2013). MinION data were extracted, in fasta format, from raw HDF5 files using 

Poretools (Loman & Quinlan, 2014). Read statistics were collected via Biopython and 

visualised graphically using R software (Watson et al., 2015). To identify the pathogen 

species, BLAST non-redundant databases were built for ‘proteobacteria’, ‘firmicutes’ 

and ‘human’. Single top hits from each of these separate database aliases were 

identified in a parallel megablast process. Taxa was distinguished using the in-house 

script blast_separate_taxa.pl, and taxonomy was assigned using 

blast_taxonomy_report.pl (Kumar et al., 2013) with some modifications as described 

at https://hithub.com/LCrossman. 

Resistance genes were identified by alignment of the MinION reads to the CARD 

database using LAST, with parameters optimised for low accuracy and long matches 

(Kiełbasa et al., 2011; Frith et al., 2010b; Frith et al., 2010a). Some sequences in CARD 

contain resistance-gene-flanking regions, which can lead to false positive resistance 

results, therefore matches were verified to ensure that reads were not exclusively 

mapping to flanking regions by direct visualization in Artemis (Sanger) and by 

examination of the coordinates.  Consensus sequences were produced based upon 

the CARD database reference sequences using the MinION read alignments by 

Samtools 0.1.19, the Samtools mpileup workflow, bcftools, vcfutils.pl and vcf2fq, 

ultimately generating indexed Bam files (Li et al., 2009).  

BLASTn (BLAST v 2.2.30+) top hits were identified, using consensus sequences, 

against the CARD database, seeking >80% identity over the full length of a gene. In 

addition, reciprocal BLAST best-hits were identified between the consensus 

sequences and the CARD database.  The resulting output data were parsed and sorted 

with a final report generated by a Python script. 
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2.4.7 WIMP and ARMA alignment for pathogen identification and 

resistance gene detection from urine spiked with E. coli 

H141480453 Run 3 
 

Oxford Nanopore Technologies’ WIMP and ARMA applications were released 

toward the end of this study, and were tested for Spiked Urine Run 3 with E. coli 

H141480453. 

‘What’s in my pot?’ (WIMP) ( Juul et al. 2015) software on the Metrichor platform 

identifies the microbial species in real-time, using a reference database and Kraken 

11 (Juul et al., 2015). The Antimicrobial Resistance Mapping Application (ARMA, 

Metrichor) (ONT) is a bioinformatics application from Metrichor Ltd. that allows real-

time detection of antibiotic resistance genes from either a mixed or single-species 

sample of microbes. The application first runs standard 2-D Basecalling from Oxford 

Nanopore Technologies and then uses the LAST program to align the base-called 

reads against the CARD database.  The antibiotic-resistance ontology (ARO) within 

CARD describes how the genes are related to antibiotic resistance phenotypes. 

 

2.4.8 Illumina library preparation of cultivated isolates recovered from 

clinical urines, and E. coli H141480453 
 

This work was done externally and two methods were used to sequence DNA 

from cultivated bacteria from clinical urine samples, according to whether work was 

done at PHE or Brunel University.   

At PHE’s Genomic Services Unit, genomic DNA was prepared using a GeneJET 

Genomic DNA Purification Kit (Thermo Fisher Scientific, Waltham, USA) and 

sequenced on a HiSeq instrument (Illumina) in Rapid Run mode, using the TruSeq 

Rapid PE Cluster v2 kit and TruSeq Rapid SBS v2 kits (200 cycles) (Turton et al., 2015). 

Library preparation was with Nextera XT DNA sample preparation kits (Illumina), 

following the manufacturer’s protocol.   

At Brunel University, extracted bacterial DNA was quantified using Quant-iT™ 

PicoGreen® dsDNA Kits (Life Technology, Paisley, UK) and a FLUOstar OPTIMA plate 
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scanner (BMG Labtech, Ortenberg, Germany) used according to the manufacturers’ 

specifications. DNA (300 ng) was fragmented using an Episonic (Epigentek, New York, 

USA) system. Libraries were constructed using the NEBNext Ultra DNA Sample Prep 

Master Mix Kit (NEB) with minor modifications and a custom automated protocol on 

a Biomek FX (Beckman Coulter, High Wycombe, UK). Ligation was performed using 

Illumina Adapters (Multiplexing Sample Preparation Oliogonucleotide Kit) and ligated 

libraries were size-selected using Agencourt AMPure XP Beads (Beckman). Samples 

were sequenced on the 150-base paired-end Illumina HiSeq 2000 platform. 

 

2.4.9 CARD alignment for resistance gene detection from cultivated 

bacteria 
 

The presence of resistance determinants from Illumina sequence reads was 

determined with ‘Genefinder’, an in-house Public Health England algorithm that uses 

bowtie2 (http://bowtie-bio.sourceforge.net/bowtie2) to map the reads to a local 

database of antimicrobial resistance genes and Samtools version 0.1.18 

(http://samtools.sourceforge.net) to generate an mpileup file. The script than parses 

the mpileup file to define the presence of any reference sequence from the database 

based on read coverage and nucleotide identity with a threshold of > 90% identity 

over the full length of the sequence. 

 

2.4.10 Phenotypic characterisation of uropathogens 
 

Bacteria were grown from the urines by standard methodology (PHE, 2016d) and 

identified by MALDI-TOF mass spectroscopy (Brüker Daltonik GmbH). Minimum 

inhibitory concentrations (MICs) of antibiotics were determined at Public Health 

England by British Society for Antimicrobial Chemotherapy agar dilution testing with 

results categorised according to the breakpoints of the European Committee on 

Antimicrobial Susceptibility Testing (http://www.eucast.org). Susceptibility testing 

was also performed at the UEA by the BSAC disc diffusion method using discs from 

Oxoid, with BSAC breakpoints (http://bsac.org.uk). 
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Chapter 3Chapter 3Chapter 3Chapter 3    

RESULTSRESULTSRESULTSRESULTS    
 

3.1 Epidemiology of UTI specimens at the NNUH 
 

AIMS: 

• To describe and understand the local epidemiology and the antimicrobial 

resistance profiles of urinary tract infection and pathogens at the NNUH.  

• To provide understanding of the background to which any rapid diagnostic 

would need to be applied. 

 

3.1.1 Demographic 
 

Analyses were performed for all urine specimens submitted to the Microbiology 

Department of the NNUH for two one-month periods (July 2014 n= 9558 urines; 

November 2014 n= 8991 urines). The source patients’ characteristics are described 

in Table 12. There was no information available in the laboratory database on 

whether the submitted urine samples came from patients with upper vs. lower UTIs 

or complicated vs. uncomplicated infections. Calculations for statistics analysis are 

presented in details in tables in Appendix A.  

Urine samples were categorized as negative when the Iris screening indicated 

WBC or bacteria below the standard thresholds (see Figure 15 in Section 2.1). Urines 

found positive by Iris, and all urines from the following locations (delivery suites, 

antenatal, children’s wards and neonatal units, ITU and haematology wards or from 

patients aged < 16 years) were cultured and categorized as (i) negative (no bacterial 

growth), (ii) positive (heavy bacterial growth) or (iii) heavy mixed (> 2 pathogens), 

implying contamination rather that infection.  

The number of samples submitted in July was slightly higher than in November 

supporting the view of the seasonality of UTI (Figure 20). Although the proportions 
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found negative by Iris screening, and after culture examination were similar in the 

two months, a Chi-square test suggested significant difference (p < 0.05) in the 

distribution of results between different categories between the July and November 

data.  

 

Table 12. Characteristics of UTI patients. 
 

Patients’ characteristics July 2014 

 (n=9558) 

November 2016  

(n=8991) 

Female 6429 6090 

Male 3121 2895 

Unrecorded 8 6 

Locations 

General Practice (GP) 6371 6201 
NNUH Hospital Inpatients (H_IN) 1427 1210 
NNUH Hospital Outpatients 541 282 
Other Hospitals (OH)1 159 172 
Admissions Units (AU) 
- Accident & Emergency    (A&E) 
- Acute Medical Unit (AMU) 
- Assessment Unit (AssU) 
- Surgical Admissions Unit (AU) 

1060 
406 
347 
56 

251 
 

1126 
                   338 
                   494 

70 
224 

Specimen types 
Bag Urine (BAG) 9 4 
Catheter-Stream Urine (CSU) 658 680 
Genital (GENI) 1 0 
Mid-Stream Urine (MSU) 7961 7446 
Supra-Pubic Aspirate (SPUB) 1 1 
‘Unclassified’ Urine (UU) 928 860 

 

 

 

 

1 Norwich Community Hospital, Benjamin Court Hospital (Norfolk Community Health and Care NHS 

in Cromer), Colman Hospital (Norfolk Community Health and Care NHS Trust in Norwich), Cranmer 

House Residential Care in Fafenham, Dereham Hospital ((Norfolk Community Health and Care NHS), 

Little Plumstead Hospital in Norwich, Ogden Court Community Hospital in Wymondham, Kelling 

Hospital ((Norfolk Community Health and Care NHS in Cromer in Holt), Priscilla Bacon Lodge in 

Norwich, H.M Prison Bure in Norwich, Cromer Hospital (Norfolk Community Health and Care NHS). 
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     Figure 20. The proportion of urine samples submitted to the Microbiology 
 Department of the NNUH in the two study months (July, November 
2014). 

 

 

In both months the largest proportion of urine examinations were performed for 

GP patients (> 65%), and the number of urines submitted by GPs was slightly higher 

in July, although the proportion was lower (p < 0.05). The proportion of urines from 

hospital inpatients and outpatients were significantly higher in July, as established by 

testing changes in the proportion (p < 0.05), while for Admission Units, the proportion 

was slightly higher in November than in July (p < 0.05), which may reflect winter 

pressure for admitted patients in the aged group > 85 years (Figure 21). The 

proportion of urines from ‘other hospitals’ (i.e. not the NNUH itself) was essentially 

the same (p > 0.05) in both months. 
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     Figure 21. The proportion of urines submitted by location.  

 

In both months women accounted for 67% of the urines. For both genders, the 

highest numbers of urine examinations were performed for the elderly population 

(66-85 year). For men the number of urine samples increased progressively with age, 

whereas for women there were two peaks, one in the age range 16-45 years, and 

the second in the age range 66-85 year (Figure 22). 

   Figure 22. Total numbers of urines by gender and age group. 
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For each location type, the number of urines negative by Iris (blue bar Figure 23), 

negative by culture (red bar Figure 23), positive by culture (green bar Figure 23), and 

giving heavy mixed growth (violet bar Figure 23) were similar in two months.  Negative 

urines- grouping those found negative by Iris together with those negative by culture- 

were the largest group, with this dominance greatest in those settings (i.e. Hospital 

In- and Outpatients, Admisstion Unit), where urines are cultured routinely (Figure 24, 

25).   GP samples had the highest proportion (28.3% for both months) of positive 

cultures from age 46 up to 85 in both months (Figures 26). Strategies for submitting 

samples for examination from GP patients remain unknown, and probably vary 

among individual GPs. 

   Figure 23. Total numbers of urines submitted by location. 

 

 

Figure 24. Total numbers of Hospital Inpatients urines submitted by age group.  
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Figure 25. Total numbers of Admission Unit urines submitted by age group. 

 

          

        Figure 26. Total numbers of General Practice urines submitted by age group. 

 

 

Overall, for both months > 67% of positive cultures in all age groups were from 

GP patients. The proportion of positive culture for Hospital Inpatients and Admission 

Unit grew slowly with the age, with the highest rates seen in 66-85 y and > 85 y age 

groups (Figure 27). 
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Figure 27. Culture positive urines by age group and location. 

 

 

3.1.2 Microorganisms cultured 
 

The most commonly-isolated pathogen was E. coli (68%) in both July and 

November. In rank order the next most frequent isolates were “Coliforms” that gave 

blue colonies on chromogenic agar (i.e. Klebsiella spp.; Enterobacter spp.; Citrobacter 

spp., and Serratia spp.) (July- 14.9%; November- 13.8%), then Enterococcus spp. 

(5.7%; 4.7%), Proteeae (4.1%; 5.2%), and P. aeruginosa (3.2%; 4.6%). Other Gram-

positive bacteria besides i.e. enterococci accounted for small minorities- coagulase-

negative staphylococci, except S. saprophiticus, and Group B Streptococcus each 

represented 1%,  S. aureus 0.7% in both months, S. saprophiticus (July- 0.5%; 

November- 1%) and ‘others’ (0.1% both months) (Figure 28). Although the 

percentage prevalence of different pathogens was similar between the two months, 

differences in proportion, if we exclude ‘others’ reached significance (p < 0.05).

 

 <15y 16y-45y 46y-65y 66y-85y >85y 

 July  
(n=107) 

Nov 
(n=115) 

July  
(n=363) 

Nov 
(n=340) 

July  
(n=419) 

Nov 
(n=365) 

July  
(n=419) 

Nov 
(n=365) 

July  
(n=419) 

Nov 
(n=365) 

GP 78.5% 81.7% 79.6% 87.1% 81.4% 83.8% 75% 75% 67.4% 69.9% 

H_IN 0 4.3% 8.3% 5% 7.2% 7.4% 11.6% 10% 15.3% 14.8% 

H_OUT 7.5% 6.2% 3% 3.2% 4.3% 2.5% 4.55 2.6% 2.4% 1.3% 

OH 0 0 0.8% 0.9% 1.4% 0.8% 1.9% 3.3% 5% 6% 

AU 14% 7.8% 8.3% 3.8% 5.7% 5.5% 7% 9.1 9.8% 12% 
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                       Figure 28. Proportion of different pathogens isolated from urines. 

* Citrobacter spp., Enterobacter spp., Klebsiella spp., Serratia spp.; ** Morganella morganii, Providencia spp.,  

Proteus spp.; ***Aeroccocus viridans, Stenotrophomonas maltophilia, other Streptococcus spp.
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E.coli remained predominant in all age groups in both months. The number of 

Pseudomonas spp. and Proteeae was the highest in the elderly group (Figure 29). 

Among Gram-positive bacteria, Enterococus spp. were seen mostly in the young (≤ 15 

years old) and elderly (≥ 66 years old) populations. Most S. saprophyticus were 

isolated from the 16-45 year age group in both seasons but in November, the number 

was twice as high compared to July (Figure 30). 

 Although the numbers of Gram-negative and Gram-positive uropathogens 

isolated were similar for female and male populations in both months, a chi-squere 

test showed significance differences in the pathogen distribution for women 

between the July and November periods (p < 0.05). S. saprophyticus was found in the 

female population only (Figures 31, 32).   

 

     Figure 29. Gram-negative bacterial isolates by patient’s age. 

*Citrobacter spp., Enterobacter spp., Klebsiella spp., Serratia spp.;  
** Morganella morganii, Providencia spp., Proteus spp. 
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  Figure 30. Gram-positive bacterial isolates by patient’s age. 

          *** Aeroccocus viridans and other Streptococcus spp. 

 

 

 

   Figure 31. Gram-negative bacterial isolates by gender. 

                     * Citrobacter spp., Enterobacter spp., Klebsiella spp., Serratia spp.;  

                  ** Morganella morganii, Providencia spp., Proteus spp. 
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    Figure 32. Gram-positive bacterial isolates by gender. 

                     *** Aeroccocus viridans and other Streptococcus spp. 

 

 

3.1.3 Urine sample types 

 

In both months, the most common specimen type collected from the patients 

were mid-stream urines (MSU) (83%). Bag urines (BAG) and catheter-stream urines 

(CSU) were small minorities (collectively ~7%) (Table 12). The remaining 10% were 

mostly ‘unclassified’ urines (UU). Unsurprisingly, the percentage of insignificant heavy 

mixed bacterial growth in BAG/CAT samples was twice as high as among MSU samples 

(Figure 33). Although E. coli predominant in all samples type in both months, 

Pseudomonas spp. and other Coliform species represented much higher proportion 

in the BAG and CAT specimens than in MSU (Figure 34). 
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  Figure 34. Percentage prevalence of different organisms by sample type. 

       * Citrobacter spp., Enterobacter spp., Klebsiella spp., Serratia spp. 

                  ** Morganella morganii, Providencia spp., Proteus spp.  

 

 

    Figure 33. Microbiology results by sample type. 
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3.1.4 Resistance rates among urine isolates 
 

In both months, the resistance rates among E. coli were highest for amoxicillin 

and trimethoprim for all locations.  In July the resistance rates for amoxicillin 

exceeded 50% for GP patients, Hospital Inpatients, Hospital Outpatients (50.6%, 

54.5%, 56.5%) respectively, while for Admission Unit and ‘other hospitals’ the rates 

were 45.8% and 45.8%, respectively. In November the amoxicillin resistance rate for 

GP urines was 49% compared with 61.3% for Hospital Inpatients, 52.9% for Admission 

Unit and 57.1% for ‘other hospitals’, but only 33.3% for Hospital Outpatients.  

The resistance rate for E. coli to trimethoprim exceeded 30% in both July and 

November for GP (32.8%, 33.8%), Hospital Inpatients (44.9%, 34.7) and the Admission 

Unit (33.9%, 36.4%). For Hospital Outpatients isolates the trimethoprim resistance 

rate was two-fold lower in November than in July (17.9% vs. 35.5%) whilst for ‘other 

hospitals’ the trimethoprim resistant rate was higher in November than in July (40.5% 

vs. 25%). These show sharp fluctuation, probably arising by chance of initial empirical 

policy, which may vary in efficiently across short periods.  

Resistance rates for 3rd generation cephalosporins (cefpodoxime, ceftriaxone) 

were in a range 2-13% for all locations in both months (Figure 35).  

Although among E. coli the proportions of isolates resistant to amoxicillin and 

trimethoprim varied in different locations between the two months the differences 

in the proportion were not statistically significant (p > 0.05), except for amoxicillin in 

hospital outpatients (p < 0.05). 
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Figure 35. Percentage antibiotic resistance rates among E. coli by location. 

July (E. coli n=1637): GP (n=1266); H_IN (n=167); H_OUT (n=62); AU (n=118); other hospitals (n=24) 

November (E. coli n=1565): GP (n=1239); H_IN (n=124); H_OUT (n=39); AU (n=121); others hospital (n=42) 
Legend and content of discs used for testing: AMX- amoxicillin (10 µg); AUG- co-amoxiclav (20 + 10 µg); CPD- cefpodoxime (10 
µg); CTR- ceftriaxone (30 µg); GEN- gentamicin (10 µg); NIT- nitrofurantoin (200 µg), PTZ- piperacillin/tazobactam (75+10 µg), and 
TRM- trimethoprim (2.5 µg).
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The trimethoprim resistance rate for other coliform species (Citrobacter spp., 

Enterobacter spp., Klebsiella spp., and Serratia spp.) was < 30% for both months, 

except for Admission Unit in July (34.6%) although the number of patients were small. 

Larger proportion of these species were resistant to nitrofurantoin compared to E. 

coli, probably reflecting inherent resistance in some of these species. In both months 

the resistance rates for 3rd generation cephalosporins (cefpodoxime, ceftriaxone) in 

the other coliform groups was around 10-15%, except for Hospital Inpatients in July, 

where the rate exceeded 25% (Figure 36). 
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      Figure 36. Percentage antibiotic resistance for other coliform species*, excluding E. coli, by location. 

                        *Citrobacter spp., Enterobacter spp., Klebsiella spp., and Serratia spp. 

                         July (Coliform species n=356): GP (n=272); H_IN (n=33); H_OUT (n=16); AU (n=26); other hospitals (n=9) 

                         November (Coliform species n=318): GP (n=231); H_IN (n=36); H_OUT (n=3); AU (n=34); other hospitals (n=14) 

                         Abbreviations as for Figure 35. 
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In both months, the majority of Pseudomonas spp. isolates were susceptible to 

gentamicin and piperacillin/tazobactam. For Proteeae the data showed 20% 

resistance to amoxicillin, and approximately 40% resistance to trimethoprim for both 

months (Table 13). This may reflect natural resistance to amoxicillin in Morganella 

morganii, Proteus vulgaris or Providencia spp. or acquired resistance in Proteus 

mirabilis. Antibiotic resistance rates for other isolated bacterial species are presented 

in Table 13. All Enterococcus spp., Streptococcus gr B and S. saprophyticus isolates 

were susceptible for amoxicillin, co-amoxiclav and nitrofurantoin in July whereas 

resistant isolates were seen in the November. The high overall amoxicillin 

susceptibility rate suggests that E. faecalis predominated among Enterococcus spp.; 

the small but raised proportion with resistance to amoxicillin and nitrofurantoin 

suggests a small minority of E. faecium isolated in November. 
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Table 13. Numbers of Proteeae and non-Enterobacteriaceae bacterial species 
isolated and their resistance to antibiotics. 

 

Pathogens Month 

(total) 

AMX AUG CPD CRO GEN NIT PTZ TMP 

 

Enterococcus 
spp. 

July 
(n=137) 

0 0 - - - 1 - - 

Nov  
(n=107) 

10 9 - - - 5 - - 

 
Proteeae 

July  
(n=98) 

24 7 2 9 4 971 0 35 

Nov  
(n=119) 

27 7 1 7 1 1181 0 40 

Pseudomonas 
spp. 

July 
 (n=76) 

- - - - 1 - 1 - 

Nov 
 (n=105) 

- - - - 1 - 0 - 

CoNegStaph 
(excluding S. 

saprophyticus) 

July  
(n=26) 

14 5 - - - - - - 

Nov 
 (n=21) 

16 7 - - - - - - 

Streptococcus  
gr B 

July  
(n=24) 

0 0 - - - 0 - - 

Nov  
(n=25) 

0 0 - - - 1 - - 

S. aureus July 
 (n=17) 

10 1 - - - - - - 

Nov 
 (n=15) 

8 2 - - - - - - 

S. saprophyticus July  
(n=11) 

0 0 - - - 0 - - 

Nov 
 (n=23) 

12 8 - - - 0 - - 

1 Proteeae are inherently resistant to nitrofurantoin. 

Abbreviations as for Figure 35. 
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3.2 Matrix-Assisted Laser-Desorption/Ionization Time of 

Flight Mass Spectrometry (MALDI-TOF MS) 
 

AIMS: 

• To evaluate mass spectrometry for bacterial identification directly from 

clinical urine samples, without culture.  

• To detect hydrolysis of cephalosporins by bacteria harvested directly from 

urines, again without culture. 

 

3.2.1 Identification of bacteria directly from urine 
 

3.2.1.1 Optimisation of the sample preparation procedure for pathogen 

identification by MALDI-TOF 

 

The main objective of this section was to optimize the sample preparation for 

rapid identification of pathogens directly from urine samples. To achieve this, several 

factors were evaluated including: (i) the duration and speed of the first centrifugation 

step used to remove human cells, (ii) the instrument detection limit, (iii) the effects 

of boric acid, antibiotics, chemical reagents which may be present in, or added to 

urines being processed, (iv) the presence of two bacterial species  in the urine.  

 

Retention of bacterial cells during removal of human cells 

Two millilitre volumes of urine spiked with bacteria with a count of 3.2 x 108  cfu/mL 

(E. coli), 4.2 x 108 cfu/mL (K. pneumoniae), 2.9 x 108 cfu/mL (P. mirabilis), 3.5 x 108 

cfu/mL (P. aeruginosa), 1.14 x 108 cfu/mL (E. faecalis) and 4.2 x 108 cfu/mL (S. aureus) 

were analysed to optimise the duration and speed of the first centrifugation step, 

which aimed to pellet human cells but not bacteria. The following combinations of 

parameters were tested, all of which are accepted as being able to pellet human cells 

(Ferreira et al., 2010). 
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a) 2000 rpm-30 sec; b) 2000 rpm-2 min; c) 2000 rpm-5 min; d) 3000 rpm-2 min; 

 e) 3000 rpm-5 min; f) 4000 rpm-2 min; g) 4000 rpm-5 min; h) 5000 rpm-2 min; 

 i) 5000 rm-5 min. 

The number of bacteria remaining in the supernatant decreased progressively as the 

centrifugation speed and duration increased, leading to >80% loss of bacteria.  

Optimal conditions were assessed to be 2000 rpm (300 g) for 2 min for both Gram-

negative and Gram-positive bacteria. The results are presented in Figure 37. 

 

   Figure 37. Number of Gram-negative and Gram-positive bacteria remaining in 
the supernatant after different first centrifugation steps. 

    

Detection limit 

Detection limits were determined using ten-fold dilutions of urines spiked with 

bacterial counts 1.53 x 109 cfu/mL (E. coli), 3.1 x 109 cfu/mL (K. pneumoniae), 5.44 x 

109 cfu/mL (P. mirabilis), 1.88 x 109 cfu/mL (P. aeruginosa), 6.5 x 109 cfu/mL (E. 

faecalis) and 0.35 x 108 cfu/mL (S. aureus). Ordinary a MALDI-TOF score of >2.0 is 

required for species identification and a score of >1.7 for genus identification. To 

increase the number of species and genus identification directly on urine lower scores 

(>1.200 for genus) were accepted. Results are shown in Table 14. MALDI-TOF scores 

>2.00 were reliable obtained with bacterial counts >107 cfu/mL, but if scores >1.200 

were accepted bacteria was reliable identified with density in the 105-106 range.  
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Table 14. Detection limit of the MALDI-TOF for uropathogens. 

 

Pathogen 

 

Colony count 

by overnight 

culture (o/n)  

MALDI-TOF scores  

Dilutions of culture 

o/n 10-1 10-2 10-3 

 

10-4 

 

10-5 

 

E. coli 1.53 x 109 
cfu/mL 

2.350 2.498 2.265 1.416 1.425 NPF 

K. pneumonia 3.10 x 109 

cfu/mL 
2.427 2.517 2.423 1.671 1.410 NPF 

P. mirabilis 5.44 x 109 
cfu/mL 

2.344 2.400 2.267 1.310 1.527 NPF 

P. aeruginosa 1.88 x 109 
cfu/mL 

2.484 2.448 2.218 1.515 NPF NPF 

E. faecalis 6.50 x 109 
cfu/mL 

2.512 2.445 2.156 1.248 1.308 NPF 

S. aureus 0.35 x 108 
cfu/mL 

2.427 2.336 2.140 1.306 1.341 NPF 

Legend: NPF- no peak found. Based on Brüker’s criteria a score >2.00 indicates 
species identification; 1.700-1.999 indicates genus level; <1.699 unreliable 
identification. Nevertheless experience indicated that results were reproductible and 
reliable obtained down to a score of 1.200.  

 

Effect of boric acid on MALDI-TOF score 

The effect of boric acid (1-2%) in the container was tested using urine spiked with 

bacterial counts 3.2 x 108 cfu/mL (E. coli), 7.0 x 108 cfu/mL (K. pneumoniae), 4.6 x 108 

cfu/mL (P. mirabilis), 3.5 x 108 cfu/mL (P. aeruginosa), 1.14 x 108 cfu/mL (E. faecalis) 

and 4.3 x 108 cfu/mL (S. aureus). MALDI-TOF analysis was performed during up to 7 

days storage in the fridge (4-8°C) of urine in the containers with and without boric 

acid using both the MALDI-TOF extraction procedure with formic acid/acetonitrile 

and by direct spotting of the washed bacterial pellet onto the target plate (see Figure 

16 Section 2.2).  

The presence of boric acid in the container did not interfere with MALDI-TOF 

analysis and did not affect the MALDI-TOF scores for common UTI pathogens. For 

Gram-negative bacteria, a score > 2.00, with no significant drop-off over time, was 

achieved by both the direct spot and by extraction over all seven days of analysis 

(Figures 38, 39, 40, 41). Likewise for Gram-positive bacteria (Figures 42, 43), the 

scores did not decline over time regardless of the presence of boric acid; however the 
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extraction step was critical to provide genus identification with a score > 2.000, 

especially when the analysis was delayed beyond 24 hours.  

 

      Figure 38. The effect of boric acid on MALDI-TOF scores for E. coli in urine. 

 

 

 

 

 

 

 

 

 

 

    

    Figure 39. The effect of boric acid on MALDI-TOF scores for K. pneumoniae in 
urine. 
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      Figure 40. The effect of boric acid on MALDI-TOF scores for P. mirabilis in urine. 

 

 

 

 

 

 

 

 

 

 

 

    Figure 41. The effect of boric acid on MALDI-TOF scores for P. aeruginosa in urine.  
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      Figure 42. The effect of boric acid on MALDI-TOF scores for E. faecalis in urine. 

 

     Figure 43. The effect of boric acid on MALDI-TOF scores for S. aureus in urine. 

 

Effect of antibiotics on MALDI-TOF score  

The effect of antibiotics on MALDI-TOF scores was investigated using urine in boric 

acid containers spiked with bacterial densities as follows 2.9 x 108 cfu/mL for E. coli, 

4.5 x 108 cfu/mL for P. aeruginosa, 3.4 x 108 cfu/mL for E. faecalis, and 2.1 x 108 cfu/mL 

for S. aureus. The presence of boric acid had already been shown not to affect MADLI-

TOF scores over time.  
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The presence of antibiotics in urine (ciprofloxacin-100 mg/L, trimethoprim-200 

mg/L and trimethoprim/sulfamethoxazole- 100 mg/L+500 mg/L) did not interfere 

with MALDI-TOF analysis, and did not affect the MALDI-TOF score over time. For E. 

coli and P. aeruginosa, MALDI-TOF scores were >2.00 for both the direct spot and 

extraction methods during up to 6 days of storage in the fridge (4-8°C)  (Figures 44, 

45) regardless of the presence of these antibiotics. For E. faecalis and S. aureus scores 

also remained unchanged over time; again however the extraction step was 

necessary to ensure scores >2.00 (Figures 46, 47), especially when the analysis was 

delayed beyond 24 hours. 

        

      Figure 44. The effect of antibiotics on MALDI-TOF scores for E. coli in urine. 

 

     Figure 45. The effect of antibiotics on MALDI-TOF scores for P. aeruginosa in 
urine. 
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    Figure 46. The effect of antibiotics on MALDI-TOF scores for E. faecalis in urine. 
No peaks were found for the TMP and TMP/SMX on day 1 and day 2, 
respectively by the direct spot indicating processing failures.  

 

 

 

 

   Figure 47. The effect of antibiotics on MALDI-TOF scores for S. aureus in urine.        

There was a test failure with the extraction method on the day 6 
with ciprofloxacin.  
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Presence of two microorganisms in urine specimens 

Mixtures of pairs of organisms were prepared by adding different ratios of urines 

spiked with bacterial densities: 0.26 x 109 cfu/mL; 0.33 x 109 cfu/mL; 0.5 x 108 cfu/mL; 

0.15 x 109 cfu/mL of E. coli; P. aeruginosa; E. faecalis and S. aureus, respectively. Two-

millilitre volumes of each mixture were analysed on the MALDI-TOF using the 

protocol presented in Figure 16 (see section 2.2). Result for urine specimens 

containing two microorganisms are shown in Table 15.  When two specimens were 

present in similar proportion (e.g. 0.8 : 1 for an E. coli and P. aeruginosa mixture or  1 

: 0.38 for an E. coli and E. faecalis mixture) both species were simultaneously 

recognized; at more extreme ratios (e.g 1:8) only the predominant bacterial was 

detected.  

Table 15. MALDI-TOF analysis with mixed bacteria populations. 

  Ratio 

(volume) 

Ratio count 

 

Species 

detected 1 

Species  

detected 2 

E. coli: P.aeruginosa 10:1 7.9 : 1 E.coli - 

 

 

 

 

 

 

 

 

4:1 3.2 : 1 E. coli - 

3:1 2.4    :  1 E. coli - 

2:1 1.6 : 1 E. coli P. aeruginosa 

1:1 0.8 : 1 E. coli P. aeruginosa 

1:2 1 :2.5 E. coli P. aeruginosa 

1:3 1 : 3.8 E.coli P. aeruginosa 

1:4 1 : 5.1 E. coli P. aeruginosa 

1:10 1 :12.7 - P. aeruginosa 

E. coli: E. faecalis 10:1 52 : 1 E. coli - 

 

 

 

 

 

 

 

 

4:1 20.8 : 1 E. coli - 

3:1 15.6 : 1 E. coli - 

2:1 10.4 : 1 E. coli - 

1:1 5.2 : 1 E. coli E. faecalis 

1:2 1 : 0.38 E. coli E. faecalis 

1:3 1 : 0.6 E.coli E. faecalis 

1:4 1 : 0.8 E. coli E. faecalis 

1:10 1 : 1.9 E. coli E. faecalis 

E. faecalis: S. aureus 10:1 3.3 : 1 E. faecalis S. aureus 

 

 

 

 

 

 

 

 

4:1 1.3 : 1 E. faecalis S. aureus 

3:1 1 : 1 E. faecalis S. aureus 

2:1 0.67 : 1 E. faecalis S. aureus 

1:1 0.33 : 1 E. faecalis S. aureus 

1:2 1 : 6 E. faecalis S. aureus 

1:3 1 : 9 - S. aureus 

1:4 1 : 12 - S. aureus 

 1:10 1 : 30 - S. aureus 
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Effect of chemical reagents on MALDI-TOF  

None of the chemical reagents added aiming to remove human cells (listed in the 

Table 5 Section 2.2.1) improved the results of MALDI-TOF analysis, with the exception 

of 1% SDS. Addition of 1% SDS increased the scores on MALDI-TOF for Gram-negative 

and Gram-positive bacteria, as presented in Figure 48. The use of lysozyme (1 mg/mL) 

together with 1% SDS further improved identification scores (> 1.5) for Gram-positive 

bacteria as shown in Figure 49.  

 

 

 

     Figure 48. The effect of SDS (1%) on MALDI-TOF scores using the extraction 
method for Gram-negative and Gram-positive bacteria directly on 
urine specimens. 
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         Figure 49. The effect of SDS (1%) and lysozyme on MALDI-TOF scores using   
the extraction method for Gram-positive bacteria directly on urine 
specimens. 

 

 

3.2.2 In-use performance of rapid identification of pathogens directly 

from clinical urines by MALDI-TOF 

 

The optimised assay (see Figure 17 Section 2.2.2) was performed on 150 clinical 

urines. These comprised 129 mid-stream urines and 21 catheter-stream urines from 

66 in- and 82 out- patients. The patient and sample characteristics were described in 

Table 16. 

MALDI-TOF detected pathogens in 81 out of the 96 (84.3%) culture-positive 

samples (Table 17), identifying the same pathogen as culture in 69 cases (71.8%) 

(Table 18). Discrepancies were found between MALDI-TOF and conventional 

identification for the other 12 of these 81 (81 minus 69) culture-positive urines (Table 

19). 

 MALDI-TOF did not identify bacteria in 15 out of the 96 culture-positive urines 

(Table 20); 8 out of these 15 failures related to low bacterial counts (< 105 cfu/mL), 3 

to mixed bacterial growth (>2 species), 2 failures were with urines containing 
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particularly high numbers of WBCs or RBCs (> 10 000/µL) which might interfere with 

MALDI-TOF analysis, the last 2 failures remain unexplained.  

MALDI-TOF also detected organisms in 8 out of the 27 culture-negative urines, in 

four cases detecting microorganisms (e.g. Actinobacillus schaalii, Gardnerella 

vaginalis, Peptoniphilus harei) unable to grow in routine media for urines (see Table 

20) and in the other four bacteria found (E. coli and E. faecalis) that should have 

grown on routine media, but may have been recorded as insignificant growth (< 20 

colonies/plate) or have been inhibited by antibiotics in the urine. 

 In 16 out of 27 urines that gave heavy mixed bacterial growth on culture, MALDI-

TOF identified bacteria (Table 21) with 8 cases where two organisms were identified 

simultaneously.  

The sensitivity of the technique was 84.4%; specificity was 70.0% but increased 

to 100% if the 8 organisms identified by MALDI-TOF from culture-negative urines 

were taken as true positives. Identification agreement was 70%. Overall, MALDI-TOF 

recognized 89 samples (59%) with mono-microbial infection and 16 (10%) with poly-

microbial mixtures; (Table 17) these latter were categorized as mixed bacterial 

growth on culture, without species identification. 
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Table 16. Characteristics of the patients and their urine specimens used for MALDI-
TOF identification assay. 

 

Table 17. Agreement between culture and MALDI-TOF. 

 

Gender Number of patients 

(n=150) 

Age  

(years) 

Female 91 1-94 (mean 61) 

Male 59 6-97 ( mean 74) 

 

 Number of MSU Number of CSU Total  

+ve culture 

-ve culture 

Mixed 

78 
27 
24 

18 
0 
3 

96 
27 
27 

Total 129 21 150 

Number of human 

cell (x 106/L) 

Number of urines 

with WBC 

Number of urines 

with RBC 

Number of urines 

with epithelial 

cells 

0-100  53 124 141 
100-500 44 14 19 
500-1000 13 6 0 
1000-2000 13 2 0 
2000-5000 14 1 0 
5000-10 000 7 1 0 
10 000-55 000 6 2 0 

Taking culture +ve as reference  

‘gold standard’ 
Taking MALDI-TOF as true positive  

 Culture  

-ve 

Culture 

+ve 
Total 

Culture 

 -ve 

Culture 

+ve 
Total 

MALDI-TOF +ve 8 81 89 0 81 81 

MALDI-TOF -ve 19 15 34 27 15 42 

Totals 27 96 123 27 96 123 

Sensitivity 

 

84.4% 
 

84.4% 
 Specificity 70% 100% 

 

 

Mono-microbial 

infection found 

by MALDI-TOF 

Poly-microbial 

mixtures found by 

MALDI-TOF 

MALDI-

TOF  

+ve/-ve 

results 

+ve culture 

(n=96) 

 

73 
 
 

8 
 
 

81/15 
 
 -ve culture 

(n=27) 

8 0 
8/19 

Mixed culture 

(n=27) 

8 8 16/11 
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Table 18. Identification agreement between culture and MALDI-TOF. 

 

* As based on Chrom ID culture: split as Citrobacter spp., Enterobacter spp., Klebsiella 

spp. only by MALDI-TOF. 

** As based on Chrom ID culture: split as Morganella morganii, Proteus mirabilis, 

Providencia stuartii by MALDI-TOF. 

 

 

 

 

 

Pathogens Culture total MALDI-TOF total I/D agreement 

Escherichia coli 22 25 17 

Pseudomonas 

aeruginosa 

16 14 13 

Enterococcus 

faecalis/faecium 
15 14 12 

Other Coliform species 
Citrobacter freundii 

Citrobacter koseri 

Enterobacter cloacae 

Klebsiella pneumoniae 

Klebsiella oxytoca 

13* 
 

10 
1 
1 
3 
4 
1 

9 

Proteeae  
Proteus mirabilis 

Providencia stuartii 

Morganella morganii 

11** 8 
6 
1 
1 

8 

Streptococcus spp.  
(Group B) 

8 5 5 

Staphylococcus aureus 4 5 3 

Staphylococcus 

saprophiticus 
2 2 1 

Candida albicans 1 1 1 

Coag-Neg Staph 3 1 0 

Streptococcus spp.  
(Group A) 

1 2 0 

Acinobacillus schaalii 0 4 0 

Clostridium spp. 0 1 0 

Gardnerella vaginalis 0 2 0 

Lactobacillus spp. 0 2 0 

Peptoniphilus harei 0 1 0 

SUM 96 97 69 
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Table 19. Disagreements between positive culture and MALDI-TOF bacterial 
identification. 

 

*Citrobacter spp., Enterobacter spp., Klebsiella spp.  

**Morganella morganii, Providencia stuartii, Proteus mirabilis 

 

Table 20. Summary of MALDI-TOF disagreements. 

 

 

 

Urine Found by Culture Found by MALDI-TOF 

Gram-negative bacteria able to grow on standard media 

1 E. coli  E. aerogenes  
2 Other Coliform species * E. coli  

3 Other Coliform species * E. coli  

4 Proteeae** P. aeruginosa  

5 S. saprophyticus  E. coli  

 Gram-positive bacteria able to grow on standard media 

6 Coag-Neg Staph  S. aureus  
7 Enterococcus spp.  S. epidermidis 

8 Coag-Neg Staph  S. saprophyticus  
9 Other coliform species  Clostridium spp.  

 Bacteria difficult to cultivate 

10 Coag-Neg Staph  Acinobacullum schallii  
11 P. aeruginosa  Acinobacullum schalii  

12 P. aeruginosa  Acinobacullum schalii  

MALDI -TOF -ve versus +ve culture (n=15) 

Bacterial count below detection limit (<105 /mL) 
Heavy-mixed bacterial growth on culture 
High number of RBCs or WBCs (>10 000/µl) 
Unknown reason 

8 
3 
2 
2 

MALDI-TOF +ve versus -ve culture (n=8) 

Aerobic bacteria able to grow on standard medium 

E. coli (n=3) 
E. faecalis (n=1) 

Anaerobic bacteria difficult to cultivate 

Gardnerella vaginalis (n=2) 
Acinobaculum schalii (n=1) 
Peptoniphilus harei (n=1) 
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Table 21. Organisms detected in mixed cultures by MALDI-TOF. 

 

Single organisms 

found(n=8) 

Two organisms found (n=8) 

E. coli (n=3) E. coli + Citrobacter amalonaticus 
K. oxytoca E. coli + Citrobacter farmeri 
P. mirabilis Enterobacter kobei + Enterobacter asburiae 
E. faecalis K. pneumoniae + E. coli 
Lactobacillus jensenii (n=2) K. oxytoca + Roultella ornithicolytica 
 Streptococcus dysgalactiae + S. marcescens 
 Streptococcus castoreus + Lactobacillus jensenii 
 E. faecalis + Enterobacter spp. 

Mixed cultures means more than 2 bacteria growth on the plate by clinical laboratory, 
which did not identify the organisms in these circumstances.  

 

3.2.3 Detection of β-lactamase activity directly from urine by MALDI-

TOF 
 

The main objective of this section was to detect hydrolysis of cephalosporins 

directly from urines infected by cephalosporin-resistant bacteria, without culture. 

 

3.2.3.1 Optimising detection of cephalosporin-hydrolysing activity 

We sought to optimise sample preparation to detect hydrolysis of 

cephalosporins by ESBLs and AmpC producers directly from clinical urines. For this 

purpose it was first necessary to show that cephalosporins were stable in a buffer 

solution suitable for MALDI-TOF analysis and then to assess the best conditions to 

detect hydrolysis.  

Antibiotic solution buffer 

Among three tested buffer solutions (10 mM ammonium phosphate pH 7.2, 10 mM 

ammonium bicarbonate pH 8-9 and 10 mM ammonium hydrogen citrate pH 7.2) only 

ammonium hydrogen citrate allowed both stable and long-term storage of 

cefotaxime and ceftazidime stock concentration and examination of the hydrolysis  

of these antibiotics by MALDI-TOF.  
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Incubation time 

MALDI-TOF generally could detect hydrolysis if cultivated isolates were suspended in 

cephalosporin solution in ammonium hydrogen citrate and incubated for 30 minutes 

(cefotaxime 0.5 mg/mL and ceftazidime 0.25 mg/mL), one hour (cefepime 0.5 

mg/mL) and 1.5 hours (cefpodoxime 0.25 mg/mL, ceftriaxone 0.5 mg/mL) when using 

E. coli strain H141480453 harbouring CTX-M-15, NDM-4 and OXA-181 β-lactamases 

or E. coli strain J53 producing TEM-10 β-lactamase (only ceftazidime) at 37oC with 

shaking at 900 rpm. 

The exception was that the E. coli H141480453 positive control found to give an 

implausible results for ceftazidime perhabs because its enzymes are kinetically 

inefficient for this cephalosporin (Nordmann et al., 2009). 

Although hydrolysis was detectable within 30 min we allowed for strains with low 

levels of enzyme, by adopting a standard 2-hour incubation for all antibiotics except 

ceftazidime where this was extended to 4 hours. The results for all tested 

cephalosporins with incubation for different time period is presented in Figures 50, 

51, 52, 53 and 54. 
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Figure 50. Optimization of incubation time for cefepime using the prototype MBT 
STAR-BL hydrolysis assay. 

Legend:  NC_FEP_1.5_h- β-lactamase -ve control incubated for 1.5 h with cefepime 
 PC_FEP_1.5_h- CTX-M-15 +ve control incubated for 1.5 h with cefepime 
 Pure AB_FEP_1.5_h- cefepime in buffer, incubated for 1.5 h  
 e.g. here ’30 , 1, 1.5, 2, 2.5, 3, 3,5, 4_h’ means incubated for 30 min, 1h, 1.5h,  
2h, 2.5h, 3h, 3.5h, 4h.  
logRQ (logarithm RQ)- resistance quotient. 

                 Boxes show the range of peak intensities collected from 800 laser shots  
from different positions of the target spot with the thick mid bar the  

mean. 

Review of the peak patterns for the non-hydrolysed and the hydrolysed forms of the 
different cephalosporins led to different of characteristic profiles for β-lactamase producing 
and non-producing strains. Changes in the peak intensity ratios within a spectrum allowed 
quantitative evaluation of hydrolysis, measured as logarithm RQ (resistance quotient). 

Isolates were classified as negative (below green threshold) if the peak intensity 
distributions corresponding to the non-hydrolysed cephalosporins and were similar to those 
for the negative control. Isolates were classified as positive (above red threshold) if the 
intensity of peaks corresponding to the hydrolysed cephalosporin were similar to those for 
the positive control. Isolates showing an intensity distribution between the negative and 
positive controls were called ‘slow hydrolysers’. 
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   Figure 51. Optimization of incubation time for cefpodoxime using the prototype 
MBT STAR-BL hydrolysis assay. 

Legend:  NC_CPD_1.5_h- β-lactamase -ve control incubated for 1.5 h with cefpodoxime 
 PC_CPD_1.5_h- CTX-M-15 +ve incubated for 1.5 h with cefpodoxime 
 Pure AB_CPD_1.5_h- cefpodoxime in buffer, incubated for 1.5 h  
e.g. here ‘30, 1, 1.5, 2, 2.5, 3, 3,5, 4_h’ means incubated for 30 min, 1h, 1.5h,  
2h, 2.5h, 3h, 3.5h, 4h’. 
logRQ (logarithm RQ)- resistance quotient. 

Interpretation of results was as for Figure 50. 

 

Figure 52. Optimization of incubation time for ceftriaxone using the prototype  
MBT STAR-BL hydrolysis assay. 

Legend:  NC_CRO_1.5_h- β-lactamase -ve control incubated for 1.5 h with ceftriaxone 
 PC_CRO_1.5_h- CTX-M-15 +ve control incubated for 1.5 h with ceftriaxone 
 Pure AB_CRO_1.5_h- ceftriaxone in buffer, incubated for 1.5 h  
e.g. here ‘30, 1, 1.5, 2, 2.5, 3, 3,5, 4_h’ means incubated for 30 min, 1h, 1.5h, 2h, 2.5h, 
 3h, 3.5h, 4h’; logRQ (logarithm RQ)- resistance quotient. 
Interpretation of results was as for Figure 50. 
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 Figure 53. Optimization of incubation time for ceftazidime using Brüker’s  
commercial MBT STAR-BL hydrolysis software. 

Legend:  neg. control- β-lactamase -ve control for ceftazidime. 
pos. control- TEM-10 +ve control for ceftazidime. 

PC_30- TEM-10 +ve control for ceftazidime, incubated for 30 min 
 NC_30- β-lactamase -ve control for ceftazidime, incubated for 30 min 
 Pure AB_30- ceftazidime in buffer, incubated for 30 min                                                  
e.g. here ‘30, 1, 1.5, 2, 2.5, 3, 3,5, 4_h’ means incubated for 30 min, 1h, 1.5h,  
2h, 2.5h, 3h, 3.5h, 4h’. 
normalized logRQ (logarithm RQ)- resistance quotient. 

Isolates were classified as negative (blue and below the blue line) if the peak intensity 
distributions corresponding to the non-hydrolysed cephalosporins and were similar to 
those for the negative control.  

Isolates were classified as positive (orange and above the orange line) if the intensity of 
peaks corresponding to the hydrolysed cephalosporin were similar to those for the 
positive control.  

Isolates showing an intensity distribution between the negative and positive controls were 
called ‘slow hydrolysers’. 
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   Figure 54. Optimization of incubation time for cefotaxime using commercial  
MBT STAR-BL Bruker’s hydrolysis software. 

Legend:  neg. control- β-lactamase -ve control for cefotaxime, incubated for 30 min 
pos. control- CTX-M-15 +ve control for cefotaxime, incubated for 30 min 
 PC_30- CTX-M-15 +ve control for cefotaxime, incubated for 30 min 
 NC_30- β-lactamase -ve control for cefotaxime, incubated for 30 min 
 Pure AB_30- cefotaxime in buffer, incubated for 30 min                                                     
e.g. here ’30, 1, 1.5, 2, 2.5, 3, 3,5, 4_h’ means incubated for 30 min, 1h, 
1.5h,  
2h, 2.5h, 3h, 3.5h, 4h’. 
normalized logRQ (logarithm RQ)- resistance quotient calculation.  

   Interpretation of results was as for Figure 53. 
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3.2.3.2 Spectra of native and hydrolysed cephalosporins  

MALDI-TOF was used to detect cephalosporinase activity in infected urines.  

β-Lactamases hydrolyse the β-lactam ring of penicillin and cephalosporin antibiotics. 

Mass spectrometry detects molecules based on their molecular mass and it would be 

predicted that hydrolysis would correspond to disappearance of native peak patterns 

and the appearance of peaks corresponding to the hydrolysed forms of the 

cephalosporins. This might be exploited to distinguish rapidly β-lactamase-producing 

and -non-producing strains.  

 

Cefepime 

Analysis of cefepime in buffer or after incubation for 2 hours with a β-lactamase-

negative control susceptible to cefepime, showed the presence of a peak [M + H]+ at 

481.43 Da. This value corresponds to the native cefepime molecule (480.56 g/mol). 

When cefepime was incubated with the CTX-M-15 positive control for 2 hours this 

peak disappeared. A second peak [M-Z1 +H]+  at 396 Da was also detected with native 

cefepime and retained during incubation with the β-lactamase -ve control but 

likewise disappeared during incubation with CTX-M-15 producer that was presented 

in Figure 55.  

    Figure 55. Mass spectra for native cefepime and cefepime incubated for 2 hours  
with β-lactamase- positive and -negative controls.  

                     - indicates peaks lost during incubation with CTX-M-15 

                     - indicates peaks associated with native cefepime 

                                                           
1 1-methyl-pyrrolidin group, belonging to the cefepime structure. 
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Ceftriaxone 

A peak of the expected molecular mass (554.58 g/mol) was seen for the native 

ceftriaxone in buffer and when it was incubated for 2 hours with the β-lactamase- 

negative control at [M + H]+ 555.29 Da and 556.22 Da, respectively, but it was lost 

after 2 hours incubation with the β-lactamase-positive (CTX-M-15) control. Other 

peaks, at [M-X2+H]+ 396 Da, [M+Na]+ 577 Da and 621 Da also were lost during 

incubation with CTX-M-15 but retained with the native ceftriaxone in buffer and 

when the antibiotic was incubated with ceftriaxone -susceptible bacteria (see Figure 

56).    

 

 

 

 

    Figure 56. Mass spectra for native ceftriaxone and ceftriaxone incubated for  
2 hours with β-lactamase-positive and -negative controls.  

                     - indicates peaks lost during incubation with CTX-M-15 

                     - indicates peaks associated with native ceftriaxone 

 

Cefpodoxime 

Native cefpodoxime (427.46 g/mol) gave peaks at [M + H]+  428.49 Da. These peak 

remained when cefpodoxime was incubated with the β-lactamase-negative control 

but they were lost with the CTX-M-15 β-lactamase-positive control (see Figure 57).  

 

 

 

                                                           
2 Triazine-ylthiol group, belonging to the cefotaxime structure. 
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Figure 57. Mass spectra for native cefpodoxime and cefpodoxime incubated  
for 2 hours with β-lactamase-positive and -negative controls.  

                     - indicates peak lost during incubation with CTX-M-15 

                     - indicates peak associated with native cefpodoxime 

 

Cefotaxime 

In the case of cefotaxime (455.47 g/mol) peaks at [M + H]+  456.35 Da and [M + Na]+  

478 Da were seen and retained during incubation with the β-lactamase-negative 

control. These peaks were lost during incubation with the β-lactamase-positive (CTX-

M-15) control, as presented in Figure 58. 

 

 

 

 

 

Figure 58. Mass spectra for native cefotaxime and cefotaxime incubated for  
2 hours with β-lactamase-positive and -negative controls.  

                     - indicates peaks lost during incubation with CTX-M-15 
                     - indicates peaks associated with native cefotaxime 

 



141 | P a g e  
 

Ceftazidime 

Mass spectrometry of native caftazidime (546.58 g/mol) detected two peaks at [M + 

H]+ 547 Da and [M-Y3+ H]+ 468.89 Da that were retained during incubation with the 

β-lactamase-negative control, but were lost during incubation with a TEM-10 β-

lactamase-positive control. Incubation with the latter enzyme was also associated 

with the appearance of two peaks at 461.63 Da and 152 Da as shown in Figure 59. 

 

 

 

 

 

Figure 59. Mass spectra for native ceftazidime and ceftazidime incubated for  
4 hours with β-lactamase-positive and -negative controls.  

                     - indicates peaks lost during incubation with TEM-10 

                     - indicates peaks associated with native ceftazidime

 

Non-cephalosporin-related peaks 

Peaks associated with the HCCA (α-cyano-4-hydroxy-cinnamic acid) matrix ([M + 

H]+ 189.17 Da) and  ([2M + H]+  379.02 Da) were seen when cephalosporin was 

incubated with hydrolytic and non-hydrolytic isolates and with the cephalosporins 

in buffer with peaks at 190 Da and 379 Da (Figure 55, 56, 57, 58, 59). Other peaks 

at: 172, 207, 212, 234, 304, 326, 332, 445, 656 Da (Table 22) were seen also with 

pure cephalosporins in buffer and with the susceptible and resistant controls 

added, probably indicating the presence of other components in the matrix. Two 

‘small’ peaks at 227 Da and 250 Da were present only when bacteria, whether 

                                                           
3 Pyridine group, belonging to the ceftazidime structure. 
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cephalosporin-hydrolysing or not were added; these probably arose from bacterial 

components. 

Table 22. Peaks visable after incubation of cephalosporins with β-lactamase-positive, 
and -negative controls and for native cephalosporins in buffer. 

 

Legend: PC1- β-lactamase-positive control (CTX-M-15), PC2- β-lactamase-positive 
control (TEM-10), NC- β-lactamase-negative control, PA- pure antibiotic;                                       

+ peak detected, - peak invisible,          - peak seen for native cephalosporin 
in buffer and when incubated with the β-lactamase-negative control but lost 
when the cephalosporin as incubated with the β-lactamase-positive control. 

 

 

 

Mass range 

(Da) 

FEP CRO CPD CTX CAZ 

 PC1 NC PA PC1 NC PA PC1 NC PA PC1 NC PA PC2 NC PA 

152-153       - + -    + + - 

172-172.50 + + + + + + + + + + + + + + + 

190-190.50 + + + + + + + + + + + + + + + 

207-207.50 + + + + + + + + + + + + + + + 

212-212-50 + + + + + + + + + + + + + + + 

227-228.50 + + - + + - + + - + + - + + - 

234-234.50 + + + + + + + + + + + + + + + 

250-250.50 + + - + + - + + - + + - + + - 

304-305 + + + + + + + + + + + + + + + 

326-327 + + + + + + + + + + + + + + + 

332-333 + + + + + + + + + + + + + + + 

367-368.50    + + +          

379-380.50 + + + + + + + + + + + + + + + 

396-398 - + + - + + + + +       

413-414          + + +    

425-426          + + +    

428-429       - + +       

445-445.50 + + + + + + + + + + + + + + + 

456-457          - + +    

461-462             + + - 

468-469             - + + 

478-479          - + +    

481-481.50 - + +             

547-548             - + + 

554-555    - + +          

577-578    - + +          

621-622    - + +          

656-657 + + + + + + + + + + + + + + + 
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3.2.3.3 Detection of cephalosporin-hydrolysing activity directly from urine and 
cultivated bacteria 

 

The purpose of this study was to detect cephalosporin hydrolysis, as reflected in 

the loss of the peaks highlighted orange in Tables 22 when cultivated bacteria or 

those harvested from clinical urines were incubated with native cephalosporins. 

 Decreased susceptibility to cephalosporins in Enterobacteriaceae is mostly due 

to ESBL production but can also involve plasmid-mediated AmpC, overproduction of 

the chromosomal AmpC β-lactamase or metallo and KPC enzymes. All these enzymes 

cause hydrolysis and phenotypic resistance to 3rd and (except AmpC), 4rd generation 

cephalosporins.  

Assays were performed on 91 urines and the 91 bacterial isolates cultured from 

these urines (see Table 23). Forty-three out of the 91 were ESBL producers based on 

phenotypic testing performed by the NNUH clinical laboratory, including E. coli (n=40) 

and K. pneumoniae (n=3); 22 were high-level AmpC β-lactamase producers 

compromising C. freundii (n=1), C. braakii (n=1), E. cloacae (n=2), E. aerogenes (n=4), 

E. coli (n=12), K. pneumoniae (n=1) and S. marcescens (n=1); finally 26 isolates were 

E. coli that were fully susceptible to cephalosporins (Table 23).  

Cephalosporin-hydrolysis results in term of peak profile were reviewed for all 

tested urines and their bacterial isolates in two ways (i) in relation to phenotypic 

susceptibility data for each of the cephalosporins (Table 24, 25, 26) and (ii) in relation 

to β-lactamase genes found by sequencing (Table 33). Calculations for sensitivity and 

specificity for each of the cephalosporin assays are presented in detail in the 

Appendix B. Detection of cephalosporin hydrolysis was based on the analysis by 

automated and manual softwares (see Sections 2.2.3.2 and 2.2.3.3) vs. phenotypic 

results. Results with all urines tested directly are presented in Table 27 and those 

from the cultivated isolates in Table 28. Table 29, separately details ESBL producers 

and Table 30 AmpC producers. 
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Table 23. Number of urines collected from clinical laboratory for cephalosporin-
hydrolysis assay by MALDI-TOF and sequencing. 

 

Cefepime assay 

Cefepime hydrolysis was detected for 39 out of the 50 urines containing cefepime- 

resistant bacteria (Table 27); 38 of these had ESBLs and one had an AmpC enzyme 

and gave an intermediate zone in a disc test (Tables 29, 30). No hydrolysis was found 

for 39 urines; 35 containing bacteria with phenotypic susceptibility to cefepime and 

4 resistant (3 of these latter were AmpC producers with zones of 11-24 mm vs. a 

resistant breakpoint ≤ 26 mm based on BSAC criteria) (Tables 27, 29, 30). Slow 

hydrolysis was detected for 11 urines; 2 of these containing bacteria with ESBLs and 

8 had an AmpC enzyme (Tables 27, 30). The assay gave unreliable results for 2 urines 

containing bacteria with ESBL enzyme based on disagreements between the peak 

profiles acquired by the two softwares (Tables 27, 29). The sensitivity and specificity 

of the assay in relation to cefepime was 91% and 87% taking intermediate zones as 

resistant (Table 27). 

Assays with the cultivated isolates gave higher sensitivity (98%), but lower 

specificity (69-71%) compared with urines (Table 28). Hydrolysis was detected in 49 

(42 ESBLs producers, 7 AmpC producers) out of the 50 cefepime-resistant isolates 

Yielding ESBL-producers by phenotypic testing  according to the D68C test 43 

No. of these ESBL isolates sequenced 41 

No. confirmed to have ESBLs by sequencing 38 

No. not sequenced 2 

No. with no ESBL not found by sequencing  3 

Yielding AmpC producers by phenotypic testing  according to the D68C test 22 

No. of these AmpC isolates sequenced 10 

No. with plasmid AmpC found by sequencing 4 

Sequenced Enterobacter spp./Citrobacter spp. inferred from phenotype to 
have derepressed chromosomal AmpC 

6 

No. not sequenced 12 

No of fully susceptible urines collected from clinical laboratory 26 

Total  91 
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(Tables 28, 29, 30). Five further isolates produced AmpC enzymes gave also positive 

results though they had susceptible (n=4) and intermediate phenotypic profiles (n=1) 

(Tables 28, 30). No hydrolysis was seen for 28 isolates and 27 of these had susceptible 

phenotypic profiles.  Slow-hydrolysis was found for seven cefepime-susceptible 

isolates; 6 of these had an AmpC enzyme. No reliable results were obtained for two 

cefepime susceptible isolates, which were classified as cefepime-hydrolysing by 

automated software but with a visible peak [M + H] + retained  at 480.50 Da as 

examined by manual software (Table 28). 

 

Ceftriaxone assay 

Hydrolysis was found for 40 out of the 54 urines containing ceftriaxone-resistant 

bacteria including 39/43 ESBL producers (Tables 27, 29). No hydrolysis was detected 

for 47 urines: these compromised 30 out of the 31 urines containing bacteria with 

ceftriaxone-susceptible profiles, 5 intermediate isolates and 12 that were resistant 

(10 of these were AmpC producers) (Tables 27, 30). Slow-hydrolysis was detected for 

one urine containing bacteria with ESBL profile. No reliable result was found for one 

ESBL- positive urine, where manual data analysis suggested loss of the ceftriaxone 

peak and agreed with phenotypic resistance, but the assay was classified as negative 

by the automated software analyses (Tables 27, 29). The assay failed for two AmpC-

positive urines where no peaks were identified (Tables 27, 30). Overall, the 

ceftriaxone assay showed high specificity (100%), but low sensitivity (70.7-77.4%) 

(Table 27). 

Ceftriaxone hydrolysis assays with cultivated isolates showed slightly higher 

sensitivity at 83.3-88.9%, than with urine assay and 100% specificity, taking six 

intermediate isolates as resistant.  Hydrolysis was detected for 45 out of the 54 

ceftriaxone-resistant isolates and one intermediate (included 42/43 ESBLs producers) 

(Tables 28, 29). No hydrolysis was found with 41 isolates of which 31 were ceftriaxone 

susceptible, four were intermediate and six were ceftriaxone-resistant with these 

including five producing AmpC β-lactamases. Slow-hydrolysis was detected for five 

isolates with AmpC enzyme (Tables 28, 30).  
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Cefpodoxime assay 

Using urines directly, hydrolysis was detected with 45 out of the 65 urines containing 

bacteria resistant to cefpodoxime; 39 of these producers had ESBL and 6 AmpC 

(Tables 27, 29, 30). No hydrolysis was found for 35 urines, including 25 that had 

cefpodoxime-susceptible bacteria and 10 cefpodoxime-resistant; 8 of these latter 10 

had AmpC enzymes (Tables 27, 30). Slow-hydrolysis was seen for 9 urines containing 

bacteria with cefpodoxime resistance (7 AmpC and 2 ESBLs). The assay failed for 2 

urines (Tables 27, 29, 30).  

Using isolates, hydrolysis was detected with 56 out of the 65 cefpodoxime-

resistant isolates; 42 of these had ESBLs and 14 had AmpC (Tables 28, 29, 30). No 

hydrolysis was found for 24 isolates, in agreement with their phenotypic profiles and 

for 3 resistant isolates, all of them producing AmpC enzyme.  Slow hydrolysis was 

seen for 5 isolates producing AmpC, one isolate producing ESBL and one isolate with 

susceptible profile (Tables 28, 30).  Sensitivity using urines and isolates was 84.4% 

and 95.4%, respectively. Specificity was 100% for urines and slightly lower at 96 % for 

cultivated isolates (Table 28). 

 

Ceftazidime assay  

Hydrolysis was detected with 27 out of the 61 urines containing bacteria resistant to 

ceftazidime. These 27 urines contained ESBL producers (Tables 27, 29). No hydrolysis 

was found with 21 urines out of the 30 containing bacteria susceptible to ceftazidime 

but also for 30 out of the 61 urines containing bacteria resistant to ceftazidime (13 

ESBL producers and 17 with AmpC). Slow-hydrolysis was detected for 3 urines 

containing bacteria with phenotypic resistance and one with susceptible profile. The 

assay failed for nine urines. Sensitivity of the assay was low (49.2%) although 

specificity was higher (91.3%) (Table 27). 

Using cultivated bacteria, ceftazidime hydrolysis was detected with 47 out of the 

61 ceftazidime-resistant isolates; 39 of these were ESBL producers and 8 were AmpC 
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producers (Tables 28, 29, 30). No hydrolysis was detected for 40 isolates, including 

29 that had a ceftazidime-susceptible phenotype and 11 were resistant; 8 out of 

these latter 11 produced AmpC β-lactamase enzymes, and gave zones 14-22 mm 

(Tables 28, 30). Slow hydrolysis was found for four isolate; 3 of these with phenotypic 

resistance to ceftazidime. Sensitivity and specificity of the isolate assay was higher 

than for urines (82%, 96.7%, respectively).  

 

Cefotaxime assay 

Hydrolysis was found with 39 out of the 60 urines containing bacteria resistant to 

cefotaxime including 39 with ESBL producers (Tables 27, 29). No hydrolysis was 

detected for 25 out of the 29 urines containing bacteria susceptible to cefotaxime 

and 12 containing bacteria resistant to cefotaxime, including all AmpC producers 

(Tables 27, 30). Slow hydrolysis was seen for 13 urines containing bacteria producing 

ESBLs (n=3) and AmpC (n=8). No reliable results were found for 2 urines. The 

sensitivity of the assay was in a range 79.7.3%-80.3% and specificity was in a range 

83.3%-89.3% (Table 27). 

Hydrolysis was detected with 47 out of the 60 cultured isolates resistant to 

cefotaxime; 40 of these produced ESBLs and 7 had AmpC (Tables 28, 29, 30). No 

hydrolysis was seen for 28 isolates that were ceftazidime susceptible with agreement 

to their susceptibility test results, also for 6 AmpC producers and one ESBL producer 

resistant to cefotaxime (Tables 28, 30). No reliable results were obtained for 4 

isolates. Slow hydrolysis was seen for five AmpC producers. Sensitivity of the assay 

with isolates was higher than for urines (87.5%-87.9%) and specificity was in a range 

90.3-96.7% (Table 28). 
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Overall, both urines containing ESBL producers and cultivated ESBL isolates from 

these urines typically achieved full hydrolysis for all 5 cephalosporins tested (25/43 

for urines; 36/43 for isolates with most of the remainder hydrolysing 4 

cephalosporins) whereas hydrolysis for AmpC producers was unreliably detected for 

both urines and isolates (see Tables 24, 25, 30). Bacteria with cephalosporin-

susceptible phenotypic profiles did not show full hydrolysis for any cephalosporins, 

however slow hydrolysis was seen for seven cephalosporins using both urines (n=4) 

and isolates (n=3).  

Cephalosporin hydrolysis assays showed similar results for ESBL producers using 

both bacterial isolates and urines (Table 29). Using urines hydrolysis was detected in 

over 90% tests for all cephalosporins (39/43 ESBL producers) except ceftazidime, 

where hydrolysis was seen with 62.8% (27/43 ESBL producers). Using the 

corresponding isolates hydrolysis was detected in 91%-98% of tests for all 

cephalosporins (see Tables 25, 29). Hydrolysis was less reliably detected with AmpC 

producers, reflecting slow hydrolysis. Assays using urines containing bacteria 

producing AmpC enzyme did not reliably detect hydrolysis for any cephalosporin 

except cefpodoxime in where it was detected for 6 out of 22 cefpodoxime-resistant 

cases. Using isolates hydrolysis was detected for 14/22 AmpC producers (Tables 25, 

30). 

 The overall cephalosporins sensitivity of the assays for ESBL producers from 

urines and their cultivated isolates was 91.4% and 98.1%, respectively whereas for 

AmpC producers sensitivity was significantly lower for both urines and bacterial 

isolates (32.4% and 69.7%, respectively) (see Tables 29, 30 and B6, B7 Appendix B).  
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Table 24. Numbers of cephalosporins hydrolysed by urines and corresponding 
isolates in relation to isolate phenotypes and genotypes. 

 

 

 

 

 

 

 

 

 

 

 

 

Number of urines or isolates achieving full hydrolysis of indicated number of 

cephalosporins 

No. cephalosporins  5 4 3 2 1 0 

Urines tested directly 

Containing sequenced ESBL producers (n=38) 22 11 1 1 0 3 

Containing unsequenced ESBL producers (n=2) 1 1 0 0 0 0 

Containing  ESBL producers not confirmed by 
sequencing (n=3) 

2 1 0 0 0 0 

Containing sequenced isolates with plasmid 
AmpC (n=4) 

0 0 0 1 2 1 

Containing sequenced AmpC derepressed 
Enterobacter/Citrobacter (n=6) 

0 0 0 0 2 4 

Containing unsequenced AmpC isolates (n=12) 0 0 0 0 2 10 

Urines containing cephalosporin-susceptible 
bacteria (n=26) 

0 0 0 0 0 26 

Isolates cultured from urines 

Sequenced ESBL producers (n=38) 32 4 2 0 0 0 

Unsequenced ESBL producers (n=2) 1 1 0 0 0 0 

ESBL producers not confirmed by sequencing 
(n=3) 

3 0 0 0 0 0 

Sequenced isolates with plasmid AmpC (n=4) 0 0 2 0 2 0 

Sequenced AmpC derepressed 
Enterobacter/Citrobacter (n=6) 

1 1 1 1 1 1 

Unsequenced AmpC isolates (n=12) 0 1 4 1 3 3 

Cephalosporin-susceptible bacteria (n=26) 0 0 0 0 0 26 
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Table 25. Total number of urines and isolates cultured from these urines achieving 
full hydrolysis for particular cephalosporins.  

 

 

 

 

 

 

 

 Number of urines or isolates achieving full 

hydrolysis 

FEP CRO CPD CAZ CTX 

Urines containing sequenced ESBL 
producers (n=38) 

33 34 34 24 34 

Sequenced isolates producining ESBL 
(n=38) 

37 37 38 35 35 

Urines containing unsequenced ESBL 
producers (n=2) 

2 2 2 1 2 

Unsequenced isolates producining ESBL 
(n=2) 

2 2 1 2 2 

Urines containing ESBL producers not 
confirmed by sequencing (n=3) 

3 3 3 2 3 

Isolates producing ESBL not confirmed by 
sequencing (n=3) 

3 3 3 2 3 

Urines containing sequenced plasmid 
AmpC producers (n=4) 

0 1 3 0 0 

Sequenced isolates with plasmid AmpC 
(n=4) 

4 0 2 2 0 

Urines containing sequenced AmpC 
derepressed Enterobacter/Citrobacter 
(n=6) 

0 0 2 0 0 

Sequenced isolates with AmpC 
derepressed Enterobacter/Citrobacter 
(n=6) 

4 1 4 3 3 

Urines containing unsequenced AmpC 
(n=12) 

1 0 1 0 0 

Unsequenced isolates producing AmpC 
(n=12) 

4 2 8 3 4 

Urines containing unsequenced 
cephalosporin-susceptible bacteria (n=26) 

0 0 0 0 0 

Unsequenced isolates susceptible to 
cephalosporin (n=26) 

0 0 0 0 0 
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Table 26. Cephalosporin hydrolysis assays by MALDI-TOF versus phenotypic 
susceptibility testing.  

 

 

No Species & 

Mechanism 

Methods FEP CRO CPD CAZ CTX 

1 E. coli 
FS 

Disc diffusion S S S S S 
Hydrolysis- urine NH NH NH NR NH 
Hydrolysis- isolate NH NH NH NH NH 

2 E. coli 
FS 

Disc diffusion S S S S S 
Hydrolysis- urine NH NH NH NR NH 
Hydrolysis- isolate NH NH NH NH NH 

3 E. coli 
FS 

Disc diffusion S S S S S 
Hydrolysis- urine NH NH NH NR NH 
Hydrolysis- isolate NH NH NH NH NH 

4 E. coli 
FS 

Disc diffusion S S S S S 
Hydrolysis- urine NH NH NH NR NH 
Hydrolysis- isolate NH NH NH NH NH 

5 E. coli 
FS 

Disc diffusion S S S S S 
Hydrolysis- urine NH NH NH NR NH 
Hydrolysis- isolate NH NH NH NH NH 

6 E. coli 
ESBL 

Disc diffusion R (14) R R R R 
Hydrolysis- urine H H H NR H 
Hydrolysis- isolate H H H H H 

7 E. coli 
ESBL 

Disc diffusion 
R (23) R (15) R R (19) R (14) 

Hydrolysis- urine H H H NH H 
Hydrolysis- isolate H H H NH H 

8 E. coli 
FS 

 

Disc diffusion S S S S S 
Hydrolysis- urine NH NH NR NH NH 
Hydrolysis- isolate NH NH NH NH NH 

9 E. coli 
FS 

 

Disc diffusion S S S S S 
Hydrolysis- urine NH NH NH NR NH 
Hydrolysis- isolate NH NH NH SH NH 

10 E. coli 
FS 

 

Disc diffusion S S S S S 
Hydrolysis- urine SH NH NH NR NH 
Hydrolysis- isolate SH NH SH NH NH 

11 E. coli  
ESBL 

Disc diffusion R (16) R R R (13) R 
Hydrolysis- urine H NRR H NR H 
Hydrolysis- isolate H H H H H 

12 E. coli  
ESBL 

Disc diffusion R R R R R 
Hydrolysis- urine H H H H H 
Hydrolysis- isolate H H H H H 

13 E. coli  
ESBL 

 

Disc diffusion R R R R (12) R 
Hydrolysis- urine H H H NH H 
Hydrolysis- isolate H H H H H 



152 | P a g e  
 

No Species & 

Mechanism 

Methods FEP CRO CPD CAZ CTX 

14 E. coli  
ESBL 

Disc diffusion R (13) R R R (16) R 
Hydrolysis- urine H H H NH H 
Hydrolysis- isolate H H H H H 

15 E. coli  
Ceph-Res but no 

 ESBL/AmpC1 

Disc diffusion R (19) R R R (12) R 
Hydrolysis- urine H H H NH H 
Hydrolysis- isolate H H H NH H 

16 E. coli  
FS 

Disc diffusion S S S S S 
Hydrolysis- urine NH NH NH NH NH 
Hydrolysis- isolate NH NH NH NH NH 

17 E. coli  
ESBL 

Disc diffusion R R R R (12) R 
Hydrolysis- urine H H H NH H 
Hydrolysis- isolate H H H H H 

18 E. coli  
ESBL 

Disc diffusion R R R R R 
Hydrolysis- urine H H H H H 
Hydrolysis- isolate H H H H H 

19 E. coli  
FS 

Disc diffusion S S S S S 
Hydrolysis- urine NH NH NH NH SH 
Hydrolysis- isolate NH NH NH NH NH 

20 E. coli 
FS 

Disc diffusion S S S S S 
Hydrolysis- urine NH NH NH NH SH 
Hydrolysis- isolate NH NH NH NH NH 

21 E. coli  
ESBL 

Disc diffusion R R R R (11) R 
Hydrolysis- urine H H H H H 
Hydrolysis- isolate NH H H H NRR 

22 E. coli  
FS 

Disc diffusion S S S S S 
Hydrolysis- urine NH NH NH NH NH 
Hydrolysis- isolate NH NH NH NH NH 

23 E. coli  
ESBL 

Disc diffusion R (15) R R R (11) R 
Hydrolysis- urine H H H NH H 
Hydrolysis- isolate H H H H NH 

24 E. coli  
ESBL 

Disc diffusion R (15) R R R (10) R 
Hydrolysis- urine H H H NH H 
Hydrolysis- isolate H H H H H 

25 E. coli FS 
 

Disc diffusion S S S S S 
Hydrolysis- urine NH NH NH NH NH 
Hydrolysis- isolate NH NH NH NH NH 

26 E. coli  
ESBL 

 

Disc diffusion R (13) R R R R 
Hydrolysis- urine H H H H H 
Hydrolysis- isolate H H H H NRR 

27 E. coli  
ESBL 

 

Disc diffusion R R R R R 
Hydrolysis- urine H H NH NH SH 
Hydrolysis- isolate H H H H H 

28 E. coli  
ESBL 

 
 
 

Disc diffusion R R R R R 
Hydrolysis- urine H H H H H 
Hydrolysis- isolate H 

 
 

H H H H 
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No Species & 

Mechanism 

Methods FEP CRO CPD CAZ CTX 

29 E. coli  
ESBL 

 

Disc diffusion R (13) R R R R 
Hydrolysis- urine H H H H H 
Hydrolysis- isolate H H H H H 

30 E. coli  
FS 

 

Disc diffusion S S S S S 
Hydrolysis- urine NH NH NH NH NH 
Hydrolysis- isolate NH NH NH NH NH 

31 E. coli  
ESBL 

 

Disc diffusion R R R R (13) R 
Hydrolysis- urine H H H H H 
Hydrolysis- isolate H H H H H 

32 E. coli  
ESBL 

 

Disc diffusion R R R R (14) R 
Hydrolysis- urine H H H H H 
Hydrolysis- isolate H NH H NH H 

33 E. coli  
ESBL 

 

Disc diffusion R R R R R 
Hydrolysis- urine SH H H H H 
Hydrolysis- isolate H H H H H 

34 E. coli  
ESBL 

 

Disc diffusion R R R R R 
Hydrolysis- urine H H H H H 
Hydrolysis- isolate H H H H H 

35 E. coli  
ESBL 

 

Disc diffusion R R R R R 
Hydrolysis- urine H H H H H 
Hydrolysis- isolate H H H H H 

36 E. coli  
ESBL 

 

Disc diffusion R (15) R R R (10) R 
Hydrolysis- urine H H H H H 
Hydrolysis- isolate H H H H H 

37 E. coli  
ESBL 

 

Disc diffusion R R R R (12) R 
Hydrolysis- urine NRR H H H H 
Hydrolysis- isolate H H H H H 

38 E. coli  
ESBL 

 

Disc diffusion R R R R (12) R 
Hydrolysis- urine H H H H H 
Hydrolysis- isolate H H SH H H 

39 E. coli  
ESBL 

 

Disc diffusion R R R R (20) R 
Hydrolysis- urine SH NH NH NH NRR 
Hydrolysis- isolate H H H H H 

40 E. coli  
FS 

 

Disc diffusion S S S S S 
Hydrolysis- urine NH NH NH NH NRR 
Hydrolysis- isolate NH NH NH NH NH 

41 E. coli  
FS 

 

Disc diffusion S S S S S 
Hydrolysis- urine NH NH NH NH NH 
Hydrolysis- isolate NH NH NH NH NH 

42 E. coli  
FS 

 

Disc diffusion S S S S S 
Hydrolysis- urine NH NH NH NH NH 
Hydrolysis- isolate NH NH NRR NH NH 

43 E. coli  
FS 

 
 
 

Disc diffusion S S S S S 
Hydrolysis- urine NH NH NH SH NH 
Hydrolysis- isolate NH NH NH NH NH 
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No Species & 

Mechanism 

Methods FEP CRO CPD CAZ CTX 

44 E. coli  
ESBL 

 

Disc diffusion R R R R R 
Hydrolysis- urine H H H H H 
Hydrolysis- isolate H H H H H 

45 
 
 
 

E. coli  
ESBL 

 
 

Disc diffusion R R R R (14) R 
Hydrolysis- urine H H H H H 
Hydrolysis- isolate 

 

H H H H H 
 

46 E. coli  
Ceph-Res but no 

ESBL/AmpC1 

Disc diffusion R R R R R 
Hydrolysis- urine H H H H H 
Hydrolysis- isolate H H H H H 

47 K. pneumoniae 
ESBL 

 

Disc diffusion R (15) R R R (10) R 
Hydrolysis- urine H H H H H 
Hydrolysis- isolate H H H H H 

48 E. coli  
FS 

 

Disc diffusion S S S S S 
Hydrolysis- urine NH NH NH NH NH 
Hydrolysis- isolate NH NH NH NH NH 

49 K. pneumoniae 

ESBL 
 

Disc diffusion R (15) R R R (11) R 
Hydrolysis- urine H H H H H 
Hydrolysis- isolate H H H H H 

50 E. coli  
ESBL 

 

Disc diffusion R (15) R R R (18) R 
Hydrolysis- urine H H H NH H 
Hydrolysis- isolate H H H H H 

51 E. coli  
ESBL 

 

Disc diffusion R R R R R 
Hydrolysis- urine H H H SH H 
Hydrolysis- isolate H H H H H 

52 E. coli  
Ceph-Res but no 

ESBL/AmpC1 

Disc diffusion R (14) R R R (20) R 
Hydrolysis- urine H H H H H 
Hydrolysis- isolate H H H H H 

53 E. coli  
FS 

 

Disc diffusion S S S S S 
Hydrolysis- urine NH NH NH NH NH 
Hydrolysis- isolate NRR NH NH NH NH 

54 E. coli  
FS 

 

Disc diffusion S S S S S 
Hydrolysis- urine NH NH NH NH NH 
Hydrolysis- isolate NRR NH NH NH NH 

55 E. coli  
ESBL 

 

Disc diffusion R R R R (12) R 
Hydrolysis- urine H H H H H 
Hydrolysis- isolate H H H H H 

56 E. coli  
ESBL 

 

Disc diffusion R (15) R R R R 
Hydrolysis- urine H H H H H 
Hydrolysis- isolate H H H H H 

57 E. coli  
ESBL 

 

Disc diffusion R (17) R R R R 
Hydrolysis- urine H H H H H 
Hydrolysis- isolate H H H H H 

58 E. coli  
ESBL 

 

Disc diffusion R (19) R R R (18) R 
Hydrolysis- urine NRR SH SH NH SH 
Hydrolysis- isolate H H H H H 
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No Species & 

Mechanism 

Methods FEP CRO CPD CAZ CTX 

59 E. coli 
ESBL 

Disc diffusion R (18) R R R (19) R 
Hydrolysis- urine H H H H H 
Hydrolysis- isolate H H H H H 

60 E. coli  
ESBL 

 

Disc diffusion R (18) R R R (10) R 
Hydrolysis- urine H H H H H 
Hydrolysis- isolate H H H H H 

61 E. coli  
ESBL 

 

Disc diffusion R (20) R R R R 
Hydrolysis- urine H H H SH H 
Hydrolysis- isolate H H H H H 

62 E. coli  
FS 

 

Disc diffusion S S S S S 
Hydrolysis- urine NH NH NH NH NH 
Hydrolysis- isolate NH NH NH NH NH 

63 E. coli  
FS 

 

Disc diffusion S S S S S 
Hydrolysis- urine NH NH NH NH NH 
Hydrolysis- isolate NH NH NH NH NH 

64 C. frundii 
AmpC 

 

Disc diffusion S S R S S 
Hydrolysis- urine NH NH NH NH NH 
Hydrolysis- isolate NH NH NH NH NH 

65 E. cloacae 
AmpC 

 

Disc diffusion R (11) R R R R 
Hydrolysis- urine NH NH SH NH NH 
Hydrolysis- isolate NH NH H H H 

66 E. coli  
ESBL 

 

Disc diffusion R R R R R 
Hydrolysis- urine H H H H H 
Hydrolysis- isolate H H H H H 

67 E. coli  
AmpC 

Disc diffusion S S R S S 
Hydrolysis- urine SH NH SH SH NH 
Hydrolysis- isolate NH NH NH NH NH 

68 E. coli  
ESBL 

Disc diffusion R R R R R 
Hydrolysis- urine NH NH SH NH SH 
Hydrolysis- isolate H H H H H 

69 E. coli  
ESBL 

Disc diffusion R (21) R R R (21) R 
Hydrolysis- urine H H H NH H 
Hydrolysis- isolate H H H H H 

70 C. braaki 

AmpC 
Disc diffusion S R R R R 
Hydrolysis- urine NH NH NRR NH NH 
Hydrolysis- isolate SH NH H H H 

71 E. coli  
FS 

Disc diffusion S S S S S 
Hydrolysis- urine NH NH NH NH NH 
Hydrolysis- isolate NH NH NH NH NH 

72 E. coli  
FS 

Disc diffusion S S S S S 
Hydrolysis- urine NH NH NH NH NH 
Hydrolysis- isolate NH NH NH NH NH 

73 S. marcescens 
AmpC 

 
 

 

Disc diffusion S S R S S 
Hydrolysis- urine SH NH H NH SH 
Hydrolysis- isolate NH NH H NH SH 
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No Species & 

Mechanism 

Methods FEP CRO CPD CAZ CTX 

74 K. pneumonia 

AmpC 

Disc diffusion S I (24) R (14) S I (24)  
Hydrolysis- urine NH NH NH NH SH 
Hydrolysis- isolate SH SH NH NH SH 

75 
 
 

E. coli  
AmpC 

Disc diffusion I (28) I (25) R (11) R (21) R (22) 
Hydrolysis- urine H NH SH NH SH 
Hydrolysis- isolate H H SH H SH 

76 E. coli  
AmpC 

Disc diffusion S (30) I (24) R R (20) R (20) 
Hydrolysis- urine NH NH SH NH NH 
Hydrolysis- isolate SH NH H SH NH 

77 E. coli  
AmpC 

Disc diffusion S (30) S (28) R R (19) R (20) 
Hydrolysis- urine NH NH NH NH NH 
Hydrolysis- isolate SH NH H NH NH 

78 E. coli  
AmpC 

Disc diffusion R (24) R R R R 
Hydrolysis- urine SH NH H SH SH 
Hydrolysis- isolate H SH H H NRR 

79 E. coli  
FS 

Disc diffusion S S S S S 
Hydrolysis- urine NH NH NH NH NH 
Hydrolysis- isolate NH NH NH NH NH 

80 E. aerogenes 
AmpC 

Disc diffusion S R (20) R R (19) R (18) 
Hydrolysis- urine NH NH NH NH NH 
Hydrolysis- isolate SH H H H H 

81 E. coli  
AmpC 

Disc diffusion S (30) S (30) R (11) R (20) I (24) 
Hydrolysis- urine SH NR NH NH SH 
Hydrolysis- isolate SH NH H H SH 

82 E. coli  
AmpC 

Disc diffusion S (30) I (25) R R (17) R (22) 
Hydrolysis- urine NH NH NH NH NH 
Hydrolysis- isolate H NH H NH H 

83 E. coli  
AmpC 

Disc diffusion S (30) I (25) R R (17) R (21) 
Hydrolysis- urine NH NH NH NH NH 
Hydrolysis- isolate H NH H NH H 

84 E. coli  
AmpC 

Disc diffusion S (30) I (24) R R (11) R (21) 
Hydrolysis- urine NH NR NR NH NH 
Hydrolysis- isolate H NH H SH H 

85 E. coli  
AmpC 

Disc diffusion R (20) R R R R 
Hydrolysis- urine NH NH H NH NH 
Hydrolysis- isolate H NH H H NH 

86 E. aerogenes 
AmpC 

Disc diffusion R (25) R (12) R R R 
Hydrolysis- urine NH NH NH NH NH 
Hydrolysis- isolate H H H H H 

87 E. cloacae 
AmpC 

Disc diffusion S R R R R 
Hydrolysis- urine NH NH H NH SH 
Hydrolysis- isolate H NH H NH NH 

88 E. aerogenes 
AmpC 

 
 

Disc diffusion S (30) R (17) R R (16) R (17) 
Hydrolysis- urine  SH NH SH NH NH 
Hydrolysis- isolate NH NH SH NH NH 
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No Species & 

Mechanism 
Methods FEP CRO CPD CAZ CTX 

89 E. coli  
AmpC 

Disc diffusion R (18) R R R R 
Hydrolysis- urine SH H H NH NH 
Hydrolysis- isolate H NH SH NH NH 

90 E. aerogenes 
AmpC 

 

Disc diffusion R (25) R R R R 

Hydrolysis- urine SH NH H NH SH 
Hydrolysis- isolate H SH SH NH NRR 

91 E. coli  
AmpC 

Disc diffusion R (26) R R R (14) R (14) 
Hydrolysis- urine SH NH SH NH SH 
Hydrolysis- isolate H SH SH NH SH 

Legend: R- resistant; S- susceptible; H- hydrolysed; NH- no hydrolysed; SH-slow 
hydrolysis;  NR- no result; NRR-no reliable result;           - agreement between 
hydrolysis using urine and isolate vs. phenotypic results;            - disagreement 
between hydrolysis using urine and isolate vs. phenotypic results;           - 
disagreement between hydrolysis  using urine and isolate. 
1 Cephalosporin resistance and ESBL/AmpC producers were detected using 
a phenotypic test (D68C ESBL & AmpC Detection Discs Set). 

 

 

 

Table 27. Detection of cephalosporin hydrolysis by MALDI-TOF for all urines tested 
directly.  

Urine  

(n=91) 
MALDI-TOF 

BSAC Disc Diffusion Results 

R (50) I (1) S (40) Total 

no zone 

(22) 

zone 

(28) 

Cefepime 

Hydrolysis detected 18 20 1 - 39 

No hydrolysis detected 1 3 - 35 39 

Slow hydrolysis* 2 4 - 5 11 

No reliable result** 11 12 - - 2 

Total 22 28 1 40 91 

Sensitivity 91.7%4 91.8%3 

Specificity 85.4%4 87.5%3 

 
R (54) I (6) S (31) Total 

no zone 

(50) 

zone 

 (4) 

Ceftriaxone 

Hydrolysis detected 39 1 - - 40 

No hydrolysis detected 9 3 5 30 47 

Slow hydrolysis* 1 - - - 1 

No reliable result** 11 - - - 1 

No result - - 1 1 2 

Total 50 4 6 31 91 

Sensitivity 77.4%4 70.7%3 

Specificity 100% 
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Urine  

(n=91) 
MALDI-TOF 

BSAC Disc Diffusion Results 

R (65) I (0) S (26) Total 

no zone 

(62) 

zone 

(3) 

 
 
 
 

Cefpodoxime 

 
 
 

Hydrolysis detected 45 - - - 45 

No hydrolysis detected 8 2 - 25 35 

Slow hydrolysis* 8 1 - - 9 

No result 1 - - 1 2 

Total 62 3 - 26 91 

Sensitivity 84.4% 

Specificity 100% 

 
R (61) I (0) S(30) Total 

no zone 

(26) 

zone 

(35) 

Ceftazidime 

Hydrolysis detected 14 13 - - 27 

No hydrolysis detected 9 21 - 21 51 

Slow hydrolysis* 2 0 - 2 4 

No result 1 1 - 7 9 

Total 26 35 - 30 91 

Sensitivity 49.2% 

Specificity 
 

91.3% 

 
 
 

R (60) I (2) S (29) Total 

no zone 

(50) 

zone 

(10) 

Cefotaxime 

Hydrolysis detected 38 1 - - 39 

No hydrolysis detected 5 7 - 25 37 

Slow hydrolysis* 6 2 2 3 13 

No reliable result** 12 - - 12 2 

Total 50 10 2 29 91 

Sensitivity 79.7%4 80.3%3 

Specificity 83.3%4 89.3%3 

Legend: R- resistant; no zone- high level resistance; zone- low-level resistance with 

zones in a range 10-22 mm; S- susceptible, I- intermediate; *Slow hydrolysis- 

specimens with intensity distribution between not hydrolysed and 

hydrolysed, **No reliable results- discrepancy  between categorisation from 

automated software (MBT-STAR-BL or its prototype) and raw peak profile 

provided by FlexAnalysis software (1not hydrolysed vs. cephalosporin peak 

invisible, 2hydrolysed vs. cephalosporin peak visible). Sensitivity and 

specificity were calculated using the online clinical calculator (see Tables in 

Appendix B). 

3specimens with intermediate zones classified as resistant 
4specimens with intermediate zones classified as suseptible 
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Table 28. Detection of cephalosporin hydrolysis by MALDI-TOF for isolates 
cultivated from urines. 

Cultivated 

Isolate (n=91) 
MALDI-TOF 

BSAC Disc Diffusion Results 

R (50) I (1) S (40) Totals 

no zone 

(22) 

zone 

 (28) 

Cefepime 

Hydrolysis detected 21 28 1 4 54 

No hydrolysis 
detected 

1 - - 27 28 

Slow hydrolysis* - - - 7 7 

No reliable result** - - - 22 2 

Total 22 28 1 40 91 

Sensitivity 98% 

Specificity 69.2%4 71.1%3 

 
R (54) I (6) S (31) Total 

no zone 

(50) 

zone 

 (4) 

 
Ceftriaxone 

Hydrolysis detected 41 3 1 - 45 

No hydrolysis 
detected 

5 1 4 31 41 

Slow hydrolysis* 4 - 1 - 5 

Total 50 4 5 31 91 

Sensitivity 88.9%4 83.3%3 

Specificity 94.6%4 100%3 

 

R (65) I (0) S (26) Total 

no zone 

 (62) 

zone 

 (3) 

Cefpodoxime 

Hydrolysis detected 55 1 - - 56 

No hydrolysis 
detected 

2 1 - 24 27 

Slow hydrolysis* 5 1 - 1 7 

No reliable result** - - - 11 1 

Total 62 3 - 26 91 

Sensitivity 95.4% 

Specificity 96% 

Ceftazidime 

 
R (61) I (0) S (30) Total 

no zone 

(26) 

zone 

(35) 

Hydrolysis detected 22 25 - - 47 

No hydrolysis 
detected 

3 8 - 29 40 

Slow hydrolysis* 1 2 - 1 4 

Total 26 35 - 30 91 

Sensitivity 82% 

Specificity 
 

96.7% 
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Cultivated 

Isolate (n=91) 
MALDI-TOF BSAC Disc Diffusion Results 

Cefotaxime 

 
R (60) I (2) S (29) Total 

no zone 

(50) 

zone 

(10) 

Hydrolysis deteced 42 5 - - 47 

No hydrolysis 
detected 

4 3 - 28 35 

Slow hydrolysis* - 2 2 1 5 

No reliable result** 41,2 - - - 4 

Total 50 10 2 29 91 

Sensitivity 87.5%4 87.9%3 

Specificity 90.3%4 96.7%3 

Abbreviations and features as for Table 27. 
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Table 29.  Cephalosporin-hydrolysis for ESBL producers from urines and the 
bacterial isolates cultivated from them. 

ESBL 

(n=43) 

 

MALDI-TOF Urine Cultivated isolates 

BSAC Disc Diffusion Method 

R (43) R (43) 

no zone 

(22) 

zone  

(21) 

no zone 

(22) 

zone 

(21) 

 
 

Cefepime 

Hydrolysis detected 18 20 21 21 

No hydrolysis detected 1 - 1 - 

Slow hydrolysis* 2 - - - 

No reliable result** 11 12 - - 

Total 22 21 22 21 

 
 

Ceftriaxone 

 
no zone 

(42) 

zone  

(1) 

no zone 

(42) 

zone  

 (1) 

Hydrolysis detected 38 1 41 1 

No hydrolysis detected 2 - 1 - 

Slow hydrolysis* 1 - - - 

No reliable result** 11 - - - 

Total 42 1 42 1 

 

 

Cefpodoxime 

 no zone 

(43) 

zone  

(0) 

no zone 

(43) 

zone  

(0) 

Hydrolysis detected 39 - 42 - 

No hydrolysis detected 2 - - - 

Slow hydrolysis* 2 - 1 - 

Total 43 - 43 - 

 
 

Ceftazidime 

 
no zone 

(18) 

zone (25) no zone 

(18) 

zone 

(25) 

Hydrolysis detected 14 13 17 22 

No hydrolysis detected 2 11 - 3 

Slow hydrolysis* 1 - 1 - 

No result 1 1 - - 

Total 18 25 18 25 

Cefotaxime 

 
no zone 

(42) 

zone  

(1) 

no zone 

(42) 

zone  

(1) 

Hydrolysis detected 38 1 40 - 

No hydrolysis detected - - - 1 

Slow hydrolysis* 3 - - - 

No reliable result** 12 - 21 - 

Total 42 1 42 1 

 

ESBL assay Urines Isolates 

Sensitivity  91.4% 98.1% 

Abbreviations and features as for Table 27. 
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Table 30. Cephalosporin hydrolysis for AmpC β-lactamase producers from urines 
and bacterial isolates cultivated from them. 

AmpC (n=22) MALDI-TOF Urine Cultivated isolates 

BSAC Disc Diffusion Method 

R (7) S/I 

(15) 

R (7) S/I 

(15) no zone 

(0) 

zone 

 (7) 

no zone 

(0) 

zone 

(7) 

 
 

Cefepime 

Hydrolysis 
detected 

- - 1 - 7 5 

No hydrolysis 
detected 

- 3 10 - - 4 

Slow hydrolysis* - 4 4 - - 6 

Total - 7 15 - 7 15 

 
 
 
 
 

Ceftriaxone 

 

R (11) S/I 

(11) 

R (11) S/I 

(11) no zone 

(8) 

zone 

(3) 

no zone 

(8) 

zone 

(3) 

Hydrolysis 
detected 

1 - - - 2 1 

No hydrolysis 
detected 

7 3 9 4 1 9 

Slow hydrolysis* - - - 4 - 1 

No result - - 2 - - - 

Total 8 3 11 8 3 11 

 

 

 

 

 

 

Cefpodoxime 

 

R (22) S/I 

(0) 

R (22) S/I 

(0) no zone 

(19) 

zone 

(3) 

no zone 

(19) 

zone 

(3) 

Hydrolysis 
detected 

6 - - 13 1 - 

No hydrolysis 
detected 

6 2 - 2 1 - 

Slow hydrolysis* 6 1 - 4 1 - 

No result 1 - - - - - 

Total 19 3 - 19 3 - 

 

 

 

Ceftazidime 

 

R (18) S/I 

(4) 

R (18) S/I 

(4) no zone 

(8) 

zone 

(10) 

no zone 

(8) 

zone 

(10) 

Hydrolysis 
detected 

- - - 5 3 - 

No hydrolysis 
detected 

7 10 3 3 5 4 

Slow hydrolysis* 1 - 1 - 2 - 

No result - - - - - - 

Total 
 
 

 

8 10 4 8 10 4 
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AmpC (n=22) MALDI-TOF Urine Cultivated isolates 

BSAC Disc Diffusion Method 

Cefotaxime 

 

R (17) S/I 

(5) 

R (17) S/I 

(5) no zone 

(8) 

zone 

(9) 

no zone 

(8) 

zone 

(9) 

Hydrolysis 
detected 

- - - 3 4 - 

No hydrolysis 
detected 

5 7 2 3 3 2 

Slow hydrolysis* 3 2 3 - 2 3 

No reliable 
result** 

- - - 2 - - 

Total 8 9 5 8 9 5 

 

AmpC assay Urines Isolates 

Sensitivity 32.4% 69.7% 

Abbreviations and features as for Table 27. 



164 | P a g e  
 

3.2.2.4 Cephalosporin hydrolysis by MALDI-TOF versus ESBL and AmpC gene 

detection by sequencing  
 

The main purpose of this study was to compare β-lactamase gene profiles found by 

sequencing with cephalosporin hydrolysis assays using MALDI-TOF. For this purpose 51 

out of the 91 bacterial isolates used in MALDI-TOF hydrolysis assays were sequenced to 

identify β-lactamase genes. These 51 isolates were selected on the basis of phenotypic 

resistance profiles. These included 41 ESBL producers (38 E. coli and 3 K. pneumoniae) 

and 10 AmpC producers comprising E. coli (n=4), E. aerogenes (n=3), E. cloacae (n=2) 

and C. braakii (n=1) (see Table 23). The full β-lactamase profiles for all these sequenced 

isolates are presented in Table 33. 

Putative ESBL producers 

ESBL genes were found in 38/41 isolates with ESBL phenotypes (see Table 31 and 33). 

These mostly comprised: blaCTX-M  types, specifically: 2 blaCTX-M -3, 4 blaCTX-M -9, 2 blaCTX-M -

14, 26 blaCTX-M -15 and 4 blaCTX-M -27. In addition, blaSHV-27  was identified in the three K. 

pneumoniae isolates. Hydrolysis of all five tested cephalosporins was detected for 32 

out of these 38 isolates with blaCTX-M genes, whilst one E. coli with blaCTX-M -15 failed to 

hydrolyse ceftazidime and another failed to hydrolyse cefotaxime; two further E. coli 

with ESBLs, one with blaCTX-M -15 did not showed hydrolysis for cefepime and cefotaxime 

and one with blaCTX-M -27 failed to hydrolyse ceftriaxone and ceftazidime. Slow hydrolysis 

was seen for one E. coli with blaCTX-M -15 for ceftazidime only. All K. pneumoniae isolates 

with blaSHV-27 together with blaCTX-M-15 showed hydrolysis for all cephalosporins tested 

(Table 24, 25, 31 and 33). 

Hydrolysis of 4 or 5 cephalosporins tested was noted for the 3 isolates identified 

phenotypically as ESBL producers but no ESBL gene was found (see Table 31 and 33).  

These 3 isolates probably lost ESBL during storage, after the MALDI-TOF assay but before 

sequencing.  
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            Table 31. Number of cephalosporins hydrolysed for isolates with ESBLs phenotypes and ESBLs confirmed by sequencing. 

  

 

Legend:   a Hydrolysis was not detected for cefepime or cefotaxime (one isolate each); b hydrolysis was not detected for cefepime  

                   and cefotaxime, c hydrolysis was not detected for ceftriaxone and ceftazidime. 

 ESBL genes present  ESBL 
phenotype 

but not 
confirmed by 

sequncing 

No of cephalosporins 
with hydrolysis 
detected 

blaCTX-M-3 
group 1 

(n=2) 

blaCTX-M-15 
group 1 
(n=26) 

blaCTX-M-27 
group 9 

(n=4) 

blaCTX-M-9 
group 9 

(n=4) 

blaCTX-M-14 
group 9 

(n=2) 

blaCTX-M-15 
plus blaSHV-27 

0 - - - - - - - 

1 - - - - - - - 

2 - - - - - - - 

3 - 1b 1c - - - - 

4 - 2a - - - - 1 

5 2 23 3 4 2 3 2 
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Putative AmpC producers 

Seven isolates, including four E. coli (no 44, 45, 49, 51), two Enterobacter spp. (no 40, 

50) and one Citrobacter braakii (no 43) with phenotypes suggesting hyperproduced 

AmpC were sequenced (see Table 33). These isolates were resistant to cefoxitin and 

cefpodoxime, with much greater resistance to ceftazidime, cefotaxime and 

ceftriaxone than for cefepime. We also included two Enterobacter spp. (no 47 and 

48) resistant only to cefpodoxime and cefoxitin and Klebsiella oxytoca (no 46) which 

was initially resistant to all cephalosporins tested (Table 33). Enterobacter spp. (no 

47 and 48) initially tested more widely resistant to cephalosporins by disc diffusion 

suggesting AmpC derepressed mutants, probably contained subpopulations, perhaps 

later overgrown, of AmpC inducible strain. Table 32 shows the cephalosporin 

hydrolysis for sequenced AmpC β-lactamase producers. 

Sequencing detected plasmid-mediated ampC genes blaCMY-42 (no 44), blaCMY-33 

(no 45), blaCMY-2 (no 51) and blaCMY-44 (no 49) in the four E. coli. Two of these (no 44, 

45) hydrolysed ceftazidime; all hydrolysed cefpodoxime, although two showed slow 

hydrolysis (no 49, 51), two (strains no 44, 51) showed slow hydrolysis for ceftriaxone 

and only one (strain no 51) slow hydrolysed cefotaxime. Surprisingly all 4 isolates 

hydrolysed cefepime.  

In the case of E. cloacae (no 40) sequencing flagged blaACT-14, which can be 

plasmid mediated ampC but is more likely chromosomal variant previously found in 

Enterobacter avian isolates (Literak et al., 2014). 

In the remaining isolates (E. cloacae, two E. aerogenes and C. braaki) sequencing 

was not prove helpful, as what matters in the expression of chromosomal AmpC 

rather than it is presence. The reference database was designed to seek mutations 

rather than cause chromosomal upregulation of ampC genes. 

Curiously, sequencing detected blaOXY-2 gene in isolate (no 46) suggesting it was K. 

oxytoca though MALDI-TOF identified E. aerogenes and sequencing data indicated 

25% identity to E. aerogenes reference genome suggesting the presence of 

heterogenous population.   
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Table 32. Number of cephalosporins hydrolysed for sequenced isolates producing 
AmpC β-lactamases. 

 

 AmpC producers  

No of 
cephalosporins 
with hydrolysis 
detected* 

E.coli  
plasmid AmpC 

Isolates no 44, 45, 
49, 51 
(n=4) 

 

E. cloacae/ 

E. aerogenes/C. brakkii 
derepressed AmpC  

Isolates nr: 40, 43, 50 
(n=3) 

Heterogenous 
population 

Isolates nr: 46, 47, 
48 

(n=3) 
 

0 - - - 

1 - - 1 

2 1 - 1 

3 1 1 - 

4 2 1 - 

5 - 1 1 
*Table contains data for cephalosporins with full and slow hydrolysis.
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Table 33. Cephalosporin hydrolysis results versus phenotypic and sequence profile for all sequenced bacterial isolates.  

 

Strain 

No. 
ID Mechanism Methods 

Penicillins Cephalosporin 

AMO AUG TZP CAZ CTX CPD CRO FEP CL CXM FOX 

 
1 E. coli ESBL 

Disc Diffusion R S S R R R R R (14) R R - 

Hydrolysis - H H H H H - - - 

Sequencing - CTX-M-15 

 
2 E. coli ESBL 

Disc Diffusion R R S R (19) R (14) R R (15) R (23) R R - 

Hydrolysis - NH H H H H - - - 

Sequencing OXA-1 CTX-M-15 

 
3 E. coli ESBL 

Disc Diffusion R S S R (13) R R R R (16) R R - 

Hydrolysis - H H H H H - - - 

Sequencing - CTX-M-27 (gr 9) 

 
4 E. coli ESBL 

Disc Diffusion R R S R (12) R R R R R R - 

Hydrolysis - H H H H H - - - 

Sequencing OXA-1 CTX-M-15  

5 
 

E. coli ESBL 

Disc Diffusion R R S R R R R R R R - 

Hydrolysis - H H H H H - - - 

     Sequencing OXA-1 CTX-M-15 

 
 
 
 

6 
 
 
 

 

 

E. coli 

 
 

ESBL 

Disc Diffusion R R S R (12) R R R R  R R - 

Hydrolysis - H  H H H H - - - 

Sequencing 
TEM-33 

 (2br-inhibitor resistant) 
CTX-M-9 
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Strain 

No. 
ID Mechanism Methods 

Penicillins Cephalosporin 

AMO AUG TZP CAZ CTX CPD CRO FEP CL CXM FOX 

 
7 E. coli ESBL 

Disc Diffusion R S S R (16) R R R R (13) R R - 

Hydrolysis - H H H H H - - - 

Sequencing TEM-198* CTX-M-14 

 
 

8 
E. coli 

Ceph-Res but 
no ESBL/ 

AmpC  

Disc Diffusion R S S R (12) R R R R (19) R R - 

Hydrolysis - NH H H H H - - - 

Sequencing TEM-186  
(2b-broad spectrum) 

- 

 
9 E. coli ESBL 

Disc Diffusion R R S R R R R R R R - 

Hydrolysis - H H H H H - - - 

Sequencing OXA-1 CTX-M-15 

 
10 E. coli ESBL 

Disc Diffusion R R S R (11) R R R R R R - 

Hydrolysis - H NRR H H NH - - - 

Sequencing OXA-1 CTX-M-15 

 
11 E. coli ESBL 

Disc Diffusion R R S R (10) R R R R (15) R R - 

Hydrolysis - H H H H H - - - 

Sequencing OXA-1 CTX-M-15 

 

12 E. coli ESBL 

Disc Diffusion R R S R (11) R R R R (15) R R - 

Hydrolysis -- H NH H H H - - - 

Sequencing OXA-1 CTX-M-15 

 
13 E. coli ESBL 

Disc Diffusion R S S R R R R R (13) R R - 

Hydrolysis - H NRR H H H - - - 

Sequencing - CTX-M-15 

 

14 
 

 

E. coli ESBL 

Disc Diffusion R S S R R R R R R R - 

Hydrolysis - H H H H H - - - 

Sequencing TEM-34  
(2br-inhibitor resistant) CTX-M-15 
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Strain 

No. 
ID Mechanism Methods 

Penicillins Cephalosporin 

AMO AUG TZP CAZ CTX CPD CRO FEP CL CXM FOX 

 
15 

 
 

 

E. coli 

 
ESBL 

Disc Diffusion R R S R R R R R R R - 

Hydrolysis  H H H H H - - - 

Sequencing TEM-198*, OXA-1 CTX-M-15 

 
16 

K. 

pneumoniae 
ESBL 

Disc Diffusion R R S R R R R R (13) R R - 

Hydrolysis  H H H H H - - - 

Sequencing TEM-198*, OXA-1 CTX-M-15, SHV-27 (2be- extended spectrum) 

 

17 E. coli ESBL 

Disc Diffusion R S S R (14) R R R R R R - 

Hydrolysis - NH H H NH H - - - 

Sequencing TEM-198* CTX-M-27 (gr 9) 

 

18 E. coli ESBL 

Disc Diffusion R S S R (10) R R R R (15) R R - 

Hydrolysis - H H H H H - - - 

Sequencing - CTX-M-27 (gr-9) 

 

19 E. coli ESBL 

Disc Diffusion R R S R R R R R R R - 

Hydrolysis - H H H H H - - - 

Sequencing - CTX-M-15 

 

20 E. coli ESBL 

Disc Diffusion R S S R(13) R R R R R R - 

Hydrolysis - H H H H H - - - 

Sequencing TEM-198* CTX-M-15 

 
21 E. coli ESBL 

Disc Diffusion R R S R (12) R R R R R R - 

Hydrolysis  H H H H H - - - 

Sequencing TEM-198* CTX-M-9 (gr-9) 

 

 
22 

 
 

E. coli ESBL 

Disc Diffusion R R S R R R R R R R - 

Hydrolysis - H H H H H - - - 

 
Sequencing OXA-1 CTX-M-15 
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Strain 

No. 
ID Mechanism Methods 

Penicillins Cephalosporin 

AMO AUG TZP CAZ CTX CPD CRO FEP CL CXM FOX 

 

23 E. coli ESBL 

Disc Diffusion R R S R R R R R R R - 

Hydrolysis - H H H H H - - - 

Sequencing TEM-198*, OXA-1 CTX-M-15 

 
24 E. coli ESBL 

Disc Diffusion R S S R (20) R R R R R R - 

Hydrolysis  H H H H H - - - 

Sequencing TEM-150* CTX-M-15 

 

25 E. coli ESBL 

Disc Diffusion R S S R R R R R R R - 

Hydrolysis - H H H H H - - - 

Sequencing - CTX-M-15 

 

26 E. coli ESBL 

Disc Diffusion R S S R (14) R R R R R R - 

Hydrolysis - H H H H H - - - 

Sequencing TEM-198* CTX-M-9 (gr-9) 

 

   27 E. coli 

Ceph-Res but 
no ESBL/ 

AmpC 

Disc Diffusion R S S R R R R R R R - 

Hydrolysis  H H H H H - - - 

Sequencing TEM-198* - 

 

28 
K. 

pneumoniae 
ESBL 

Disc Diffusion R R S R (10) R R R R (15) R R - 

Hydrolysis - H H H H H - - - 

Sequencing TEM-148*, OXA-1 CTX-M-15, SHV-27  (2be- extended spectrum) 

 

29 E. coli ESBL 

Disc Diffusion R S S R (18) R R R R (15) R R - 

Hydrolysis - H H H H H - - - 

Sequencing TEM-105* CTX-M-14 

 

 
 

30 
 

 

K. 

pneumoniae 

 
ESBL 

Disc Diffusion R R S R (11) R R R R (15) R R - 

Hydrolysis - H H H H H - - - 

 
Sequencing 

      
      TEM-198*, OXA-1 

 
 
 

CTX-M-15, SHV-27 (2be- extended spectrum) 
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Strain 

No. 
ID Mechanism Methods 

Penicillins Cephalosporin 

AMO AUG TZP CAZ CTX CPD CRO FEP CL CXM FOX 

 

31 
E. coli ESBL 

Disc Diffusion R R S R R R R R R R - 

Hydrolysis - SH H H H H - - - 

 
Sequencing 

OXA-1 
CTX-M-15 

 

 
32 

E. coli 

Ceph-Res but 
no ESBL/ 

AmpC 

Disc Diffusion R S S R (20) R R R R (14) R R - 

Hydrolysis - H H H H H - - - 

Sequencing - - 

 
33 E. coli ESBL 

Disc Diffusion R R S R R R R R (17) R R  

Hydrolysis - H H H H H - - - 

Sequencing OXA-1 CTX-M-15 

 

34 E. coli ESBL 

Disc Diffusion R S S R (12) R R R R R R  

Hydrolysis - H H H H H - - - 

Sequencing - CTX-M-3 

 

35 E. coli ESBL 

Disc Diffusion R R S R R R R R (15) R R - 

Hydrolysis - H H H H H - - - 

Sequencing OXA-1 CTX-M-15 

 

36 E. coli ESBL 

Disc Diffusion R S S R (18) R R R R (19) R R - 

Hydrolysis - H H H H H - - - 

Sequencing TEM-198* CTX-M-9 

 

37 E. coli ESBL 

Disc Diffusion R S S R (19) R R R R (18) R R - 

Hydrolysis - H H H H H - - - 

Sequencing - CTX-M-9 

 

38 E. coli ESBL 

Disc Diffusion R S S R (10) R R R R (18) R R - 

Hydrolysis - H H H H H - - - 

Sequencing - CTX-M-3 

 

39 E. coli ESBL 

Disc Diffusion R R S R R R R R (20) R R - 

Hydrolysis - H H H H H - - - 

Sequencing OXA-1 CTX-M-15 
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Strain 

No. 
ID Mechanism Methods 

Penicillins Cephalosporin 

AMO AUG TZP CAZ CTX CPD CRO FEP CL CXM FOX 

40 
Enterobacter 

cloacae 
AmpC 

Disc Diffusion R R R R R R R R (11) R R - 

E-test (mg/L) - 256 >256 - >32 8 - - >256 

Hydrolysis - H H H NH NH - - - 

Sequencing - ACT-14 

 

41 E. coli ESBL 

Disc Diffusion R R S R R R R R R R - 

Hydrolysis - H H H H H - - - 

Sequencing OXA-1 CTX-M-15 

 
 

42 
E. coli ESBL 

Disc Diffusion R S S R R R R R R R - 

Hydrolysis  H H H H H - - - 

Sequencing TEM-76  
(2br- inhibitor resistant) 

 
CTX-M-15 

 

43 
 

Citrobacter 

braakii 

 
AmpC 

Disc Diffusion R R S R R R R S (30) R R R 

E-test (mg/L) - >256 64 - >32 0.75 - - >256 

MALDI-TOF - H H H NH SH - -  

Sequencing - - 

 

44 
 

E. coli 
 

Plasmid AmpC 
Disc Diffusion R R S R R R R R (24) R R R 

E-test (mg/L) - 64 64 - >32 0.75 - - >256 

MALDI-TOF - H NRR H SH H - -  

Sequencing TEM-122  
(2br- inhibitor resistant) 

 
CMY-42 

 

45 
 

E. coli 
 

Plasmid AmpC 
Disc Diffusion R R R R R R R R (20) R R R 

E-test (mg/L) - 64 64 - >32 2 - - >256 

MALDI-TOF - H NH H NH H - -  

Sequencing - CMY-33 

46 K. oxytoca AmpC Disc Diffusion R R S R R R R (12) R (25) R R R 

E-test (mg/L) - 0.06 0.06 - 0.094 0.047 - - 2 

Hydrolysis - H H H H H - -  

Sequencing OXY-2  
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Strain 

No. 
ID Mechanism Methods 

Penicillins Cephalosporin 

AMO AUG TZP CAZ CTX CPD CRO FEP CL CXM FOX 

 

47 
 

Enterobacter 

cloacae 

 
AmpC 

Disc Diffusion R R S R R R R  S (30) R R R 

E-test (mg/L) - 0.5 0.25 - 0.38 0.064 - - >256 

Hydrolysis - NH NH H NH H - -  

Sequencing - - 

 

48 
 

Enterobacter 

aerogenes 

 
AmpC 

Disc Diffusion R R S R (16) R (17) R R (17)  S (30) R R R 

E-test (mg/L) - 0.5 0.12 - 0.125 0.094 - - >256 

Hydrolysis - NH NH SH NH NH - -  

Sequencing - - 

 
49 

 
E. coli 

 
Plasmid AmpC 

Disc Diffusion R R R R R R R  R (18) R R R 

E-test (mg/L)  >256 >256 - >32 - - - >256 

MALDI-TOF  NH NH SH NH H - -  

Sequencing  CMY-44 

50  

Enterobacter 

aerogenes 

 
AmpC 

Disc Diffusion R R S R R R R  R (25) R R R 

E-test (mg/L) - 16 16 - 8 0.25 - - 6 

Hydrolysis - NH NRR SH SH H - - - 

Sequencing - - 

 

51 
 

E. coli 
 

Plasmid AmpC 
Disc Diffusion R R S R (14 R (14) R R  R (26) R R R 

E-test (mg/L) - 32 32 - 16 1 - - >256 

Hydrolysis - NH SH SH SH H - - - 

Sequencing TEM-198 CMY-2 

Phenotypic method based on the BSAC guideline. Sequencing profiles (ESBL and ampC genes) were found with identity >90%. Other AmpC 
variants probably of chromosomal origin were detected at cut off < 90%. 

Legend:  R- resistant, S- susceptible, H- hydrolysis, NH- no hydrolysis,  NRR   - no reliable results,              - disagreement between phenotypic results and 

hydrolysis assays,            - disagreement between disc diffusion test and E-test, SH-slow hydrolysis 



175 | P a g e  
 

3.3 Multiplex tandem PCR (MT-PCR) for detection of 

bacterial resistance genes in infected urines and isolates 
 

AIMS: 

 

• To develop and evaluate a test to detect the commonest antibiotic 

resistance genes among uropathogenic Enterobacteriaceae.  

 

The intention was to develop an assay that could be used, together with MALDI-

TOF for pathogen identification to give a comprehensive and rapid evaluation of the 

pathogen’s resistances for high-risk urosepsis patients.  

Three successive iterations of the MT-PCR test were designed: (i) the Easy-Plex 

8-Plex assay to detect 8 antibiotic resistance genes including the four commonest 

trimethoprim resistance determinants (dfrA1, A5/A14, A7/A17, A12), two 

aminoglycoside genes (aadA1/A2/A3 and aac(6’)-Ib) conferring streptomycin and 

tobramycin resistance respectively, and two fluoroquinolone related genes (gyrA and 

KPparC) (see Table 7 Section 2.3.1); (ii) the High-Plex 16-Plex assay to identify 16 

resistance genes including the eight targets represented previously and additional 

targets for β-lactamase genes, specifically: ESBLs (blaCTX-M-15, blaCTX-M-9), AmpC 

(blaCMY), penicillinases (blaTEM, blaSHV, blaOXA-1), carbapenemases (blaOXA-48, blaKPC, 

blaNDM, blaVIM), and (iii) the Easy-Plex 24-Plex assay to detect 24 target genes including 

the 16 targets from the previous assay and additional targets to seek four further 

aminoglycoside genes (aadB, aacC1, aacC2, aacC3) responsible for gentamicin and/or 

tobramycin resistance; four additional targets were also included to identify non 

Enterobacteriaceae to genus level. 
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3.3.1 Easy-Plex (8-Plex) assay for antibiotic resistance gene detection 

A total of 21 samples in three PCR assays were tested using reference strains 

from PHE and three clinical urines in four different formats: (i) extracted DNA (n=7), 

(ii) pure bacterial colonies taken from culture plates (n=7), (iii) urine spiked with 

known organism (n=5), and (iv) clinical urines (n=2) (see section 2.3.1). The results 

were compared with phenotypic susceptibility testing based on the BSAC 

methodology and sequencing, which was performed for the reference strains only 

(see Table 34).  

Trimethoprim genes (dfrA1 or A5/A14 or A7/A17 or A12) were found in all 21 

irrespective of format (DNA, cultivated isolates, urine spiked or clinical urines) tested 

samples, congruent with an observed phenotypic trimethoprim resistance. 

Sequencing data (available for 18 samples) confirmed the presence of the dfr genes 

found by the Easy-Plex assay.    

The aminoglycoside gene aadA (aadA1/A2/A3) encoding an adenyltransferase 

was found in 8 out of the 21 analysed samples. These include 5 out of 14 

streptomycin-resistant isolates, and 3 out of 7 streptomycin-susceptible isolates. 

Sequencing confirmed 7 out these 8 aadA1/A2/A3 PCR positive variants. 

Disagreements here may be explained by the frequent presence of other genes or 

mutations conferring streptomycin resistance, and by a strain having but not 

expressing aadA. 

The assay found aac(6')-Ib, encoding an aminoglycoside 6'-N-acetyltransferase, 

in 14 out of 21 examined samples, agreed with tobramycin resistance and 

sequencing (for the 18 cases where data were available).  

Either fluoroquinolone gyr A1/S or A1/R products were detected in all E. coli 

(n=14) whilst gyr KlebR/S and KPparC products were obtained for all K. pneumoniae 

(n=7). Variation in melting temperature was seen for the E. coli gyr/A1 product: this 

was in a range 85-86oC (mean 85.5 oC) for E. coli with ciprofloxacin-resistance but 

86-87oC (mean 86.5 oC) for ciprofloxacin-susceptible E. coli; for Klebsiella the Tm was 

in a range 88-89oC (mean 88.5 oC) irrespective of ciprofloxacin resistance or 

susceptibility. The test thus allowed discrimination between ciprofloxacin-

susceptible and -resistant E. coli, but not for Klebsiella spp.  
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Table 34. Comparison between Easy-Plex (8-Plex) assay and reference methods. 

 

Reference 

methods 
(phenotypic 
testing 
and/or 
sequencing) 

PCR assay 

+ve results 

PCR assay 

-ve results 

Trimethoprim (n=21) 

dfrA1 
dfrA5/ 

A14 

dfrA7/ 

17 
dfrA12 dfrA1 

dfrA5/A

14 

dfrA7/ 

17 
dfrA12 

Gene 
sequenced 
& Trim R 

 
3 

 
5 

 
7 

 
3 

 
0 

 
0 

 
0 

 
0 

Trim R* 1 1 1 0 0 0 0 0 

Trim S 0 0 0 0 0 0 0 0 

 Aminoglycoside (n=21) 

aadA1/A2/A3 aadA1/A2/A3 

Gene 
sequenced 
& Strep R 

 
4 

 
0 

Strep R* 1 9 

Gene 
sequenced 
& Strep S 

 
3 

 
0 
 

Strep S* 0 4 

 aac(6’)-Ib aac(6’)-Ib 

Gene 
sequenced 
& Tobra R 

 
13 

 
0 

Tobra R* 1 0 

Gene 
sequenced 
& Tobra S 

 
0 

 
5 

Tobra S* 0 2 

 Fluoroquinolone (n=21) 

 E. coli gyrA1/R E. coli gyrA1/S K. pneumoniae  

Kleb R/S 

K. pneumoniae 

KPparC 

Cipro R 10 0 6 6 

Cipro S 0 4 1 1 

Legend: R- resistant, S- sensitive, * phenotypic data available only, not sequence.
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3.3.2 High-Plex (16-Plex) assay for antibiotic resistance genes 

detection 
 

The assay was performed directly on 74 clinical urines from the NNUH and 35 

cultivated isolates, without DNA extraction. The isolates were from PHE and NNUH. 

Performance was similar regardless of whether urines or cultured bacteria were used.  

Resistance genes were confirmed on the basis of (i) a high number of molecules 

(> 1000 copies) in the 2nd PCR step, (ii) a cycle threshold (CT) < 20 in the 2nd PCR step, 

(iii) a correct melting temperature for the amplified gene (Tm). Output reads for a 

representative urine, tested directly without culture, are shown in Figure 60. The 

High-Plex results were compared with phenotypic susceptibility data, sequencing and 

real-time PCR on isolated bacteria, according to the particular resistance, as 

presented in Tables 35 and 36. Sensitivity and specificity was calculated using the 

online calculator and results are presented in Table C in the Appendix C. Although 

positive and negative predictive values were also calculated we concentrated on 

sensitivity and specificity as fundamentally identifying how well a test identifies 

samples with positive and negative results rather than assessing probabilities, which 

are likely to be affective by the original sample selection.  

 

3.3.2.1 Tests directly on urines 

 

Identification of β-lactamase genes directly from clinical urines was in a good 

agreement with real-time PCR. Thus, when used directly on urines, the assay 

detected following extended-spectrum β-lactamases (24 blaCTX-M gp 1, 13 blaCTX-M gp 9), 

AmpC (9 blaCMY), and penicillinases (33 blaTEM, 6 blaSHV, 8 blaOXA-1) with 95.3% - 100% 

specificity and 100% sensitivity.  

Trimethoprim determinants (dfrA1/A5/A7/A12) were found in 39 out of the 41 

urines containing isolates resistant to trimethoprim, with sensitivity calculated as 

92.7% and specificity 97%.  

Among aminoglycoside determinants aac(6')-Ib encoding 6'-N-acetyltransferase, 

was identified in 9 urines compared with 8 urines containing bacteria resistant to 

tobramycin with 100% sensitivity and 98.5% specificity. It is inferred that the gene 
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probably was not expressed in one case. aadA (aadA1, aadA2, aadA3), encoding 

streptomycin adenyltransferases was detected in 9 out of 24 urines containing 

bacteria resistant to streptomycin, but also in 8 out of 50 urines containing bacteria 

susceptible to streptomycin with the lowest sensitivity 37.5%, and specificity 86%. 

This lack of concordance, similar as seen in the 8-Plex assay, implies (i) the frequent 

presence of other unsought genes or mutations causing streptomycin resistance (e.g. 

aadA5 or strA/strB), and (ii) variable expression of aadA gene cassettes within 

integrons, where this gene commonly exists and its expression may vary with 

distance from the promotor.  

 

3.3.2.2 Cultivated isolates 

 

Detection of β-lactamase genes by the Easy-Plex in cultivated isolates perfectly 

agreed with reference molecular methods giving 100% sensitivity and specificity. 

Enzymes found included: ESBLs (18 blaCTX-M gp 1, 4 blaCTX-M gp 9), AmpC (7 blaCMY), 

penicillinases (24 blaTEM, 16 blaSHV, 18 blaOXA-1) and carbapenemases (7 blaOXA-48, 5 

blaKPC, 10 blaNDM, 1 blaVIM) genes, all in perfect agreement to reference real-time PCR 

and sequencing. 

Trimethoprim determinants (dfrA1/A5/A7/A12) were identified in 30 out of 32 

trimethoprim-resistant isolates with near identical sensitivity and specificity (93.7%, 

100%) to that found when urines were tested directly. It Is likely that the two isolates 

with negative results had other rare dfr variants. 

aac(6’)-Ib was found in 22 out of the 24 isolates with phenotypic tobramycin 

resistance. The sensitivity was lower compared with urines (100% vs. 91.7%) and 

specificity was 100%. aadA determinants were detected in 10 out of 18 streptomycin-

resistant isolates and in 6 out of 17 streptomycin-susceptible isolates; once again, 

these mis-matches were similar to those seen for urines, with  sensitivity 55.7% and 

specificity 64.7%.  

The High-Plex UTI assay was designed primarily to detect antibiotic resistance 

genes; however review of the melting temperature for the ‘Enterobacteriaceae’ gene 

together with the melting temperature for gyr product potentially enabled 

identification to genus level (see Figure 66). Further identification to species level was 
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performed on MALDI-TOF using pure colony growth on agar plates. Among 109 

examined pathogens there were 66 E. coli, 20 K. pneumoniae and 19 other 

Enterobacteriaceae species including: C. freundii (n=3), E. aerogenes (n=10), S. 

marcenscens (n=3), K. oxytoca (n=2) and Proteus spp. (n=1), also one Acinetobacter 

spp., and three Pseudomonas spp.  

The fluoroquinolone gyr A1/R gene was identified in 25 out of 28 E. coli- 

containing urines, and in 9 out of the 10 E. coli cultured clinical isolates with 

ciprofloxacin-resistance, whereas gyr A1/S was found in 22 urines containing 

ciprofloxacin-susceptible E. coli and in 6 E. coli isolates susceptible to ciprofloxacin, 

and also in 3 urines and 1 isolate with ciprofloxacin-resistant E. coli. The gyr Kleb R/S 

product was detected in all 15 K. pneumoniae isolates and all 5 K. pneumonia- 

containing urines; resistant and susceptible profiles were not discriminated. The 

three gyr types: gyr A1/R, A1/S and Kleb R/S were variously identified in 19 urines 

and isolates belonging to other Enterobacteriaceae species, and in 4 urines and 

isolates containing non-fermenters, always with little or no discrimination between 

ciprofloxacin susceptible or resistant organisms.  

The KPparC gene was found in 21 urines and 17 isolates comprising 2/3 

Citrobacter spp., 9/10 Enterobacter spp., 2/2 K. oxytoca, 20/20 K. pneumoniae, 3/3 

Serratia spp., and in the single Proteus spp. and Acinetobacter whereas no signal was 

seen for any of the 66 E. coli and 3 Pseudomonas spp. There was no differentiate in 

Tm between amplification products susceptible and resistant isolates.  

In summary, fluoroquinolone -susceptible and -resistant E. coli, but not other 

Gram-negative bacteria were distinguished by the melting temperatures of the 

amplification products from the gyr genes (gyrA1/R or gyrA1/S) (Table 36, Figure 61) 

using both urines and cultivated isolates. Time from specimen to results was c. 3.5 

hours.  
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   Figure 60. High-Plex UTI assay using clinical urine containing K. pneumoniae. 
(A) Melting temperature curves, (B) Cycle curves, (C) Antibiotic. 
resistance genes. 

 

 

 

 

Colour Gene Call Number 
[copies of 

molecules] 

Tm [°C] CT 

 pan-TEM + 2,032,360 81.67 7.83 

 pan-SHV + 1,190,321 88.18 8.66 

 CTX-M gr 1 + 4,175,992 80.84 6.71 

 CTX-M gr 9     

 pan-CMY     

 OXA-1     

 OXA-48     

 dfrA + (dfrA5) 36,268 86.09 14.1 

 dfrA + (dfrA17) 35,502 81.22 14.14 

 aminoglycosides     

 KPC     

 VIM/NDM     

 gyrA1 + (Kleb 
R/S) 

5,854,436 88.71 6.18 

 KPparC + 2,907,402 88.82 7.27 

 Enterobacteriaceae + 10,423,897 84.39 5.28 

 SPIKE + 10,000 81.8 16.11 

(A) 

(B) 

(C) 
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Figure 61. Melting ranges for gyr and 'Enterobacteriaceae' genes in the High-Plex 
UTI assay as an aid to genus identification. 

 
 Table 35. Sensitivity and specificity of High-Plex UTI assay.  

 

 

 

 

Resistance Gene 

Target 

Clinical urines (n=74) Isolates (n=35) 

β-Lactamase genes  vs. molecular reference genes detection by real-time PCR 

 High-
Plex 

assay 

Reference 
method 

Sensitivity & 
Specificity 

High-
Plex 

assay 

Reference 
method 

Sensitivity & 
Specificity 

blaTEM 33 31 100%; 95.3% 24 24 100%; 100% 

blaSHV 6 6 100%; 100% 16 16 100%; 100% 

blaCTX-M gr1 24 23 100%; 98% 18 18 100%; 100% 

blaCTX-M gr9 13 13 100%; 100% 4 4 100%; 100% 

blaCMY 9 9 100%; 100% 7 7 100%; 100% 

blaOXA-1 8 8 100%; 100% 18 18 100%; 100% 

blaOXA-48/181/244 - - - 7 7 100%; 100% 

blaKPC - - - 5 5 100%; 100% 

blaNDM - - - 10 10 100%; 100% 

blaVIM - - - 1 1 100%; 100% 

Trimethoprim gene  vs. phenotypic trimethoprim  resistance 

dfrA1/A5/A7/A12 39 41 92.7%; 
97% 

30 32 93.7%; 100% 

Aminoglycoside genes  vs. phenotypic  tobramycin  and streptomycin resistance 

aac(6')-Ib 9 8 100%; 
98.5% 

22 24 91.7%; 100% 

aadA1/A2/A3 9 24 37.5%; 
86% 

10 18 55.7%; 64.7% 



183 | P a g e  
 

Table 36. Detection of gyrase identification by the High-Plex UTI assay in relation to 
bacterial species. 

  

 Legend: R- resistant, S- susceprible, U-urine, I- isolate.* Acinetobacter spp. (n=1), 

Pseudomonas spp. (n=3); ** Citrobacter freundii (n=3), Enterobacter 

aerogenes (n=10), Serratia marcenscens (n=3), Klebsiella oxytoca (n=2), 

Proteus spp. (n=1).

 Fluoroquinolone genes 

Pathogens (n=109) gyrA1/R gyrA1/S gyr KlebR/S KPparC 

 

Cipro R 
 

Cipro S 
 

Cipro R 
 

Cipro S 
 

Cipro R 
 

Cipro S 

 
U I U I U I U I U I U I 

E. coli  

(n=66) 
25 9 - - 3 1 22 6 - - - - - 

K. pneumoniae  
(n=20) 

- - - - - - - - 4 13 1 2 20 

Non-
Enterobacteriaceae 

(n=4)* 
  1       1 2  2 

 
Other 

Enterobacteriaceae 
species 

(n=19)** 

1  4 1 1  8 3   1  16 
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3.3.3 Easy-Plex (24-Plex) assay for antibiotic resistance gene detection 

and bacterial genus identification 
 

The 24-Plex assay was designed to seek further common aminoglycoside 

resistance genes in Enterobacteriaceae, responsible for tobramycin or/and 

gentamicin resistance. The expanded panel included the aminoglycoside 

determinants aac(3)-I (aacC1) encoding AAC(3)-I enzyme for gentamicin resistance, 

aac(3)-II (a and d variants), aac(3)-III, and ant(2”)-I (aadB) encoding AAC(3)-II, AAC(3)-

III, and ANT(2”)-I enzymes conferring resistance to both gentamicin and tobramycin. 

A total of 23 samples were run. These include 16 infected clinical urines and 7 

bacterial isolates. Resistance genes were confirmed on the basis of (i) a high number 

of molecules (>550 copies of molecules) in the 2nd PCR step, (ii) a cycle threshold (CT) 

≤ 21 in the 2nd PCR step, (iii) a correct melting temperature for the gene product (Tm).  

Results were variously compared with reference methods: (i) sequencing using the 

Illumina platform, performed for isolates only, (ii) real time PCR with SyberGreen to 

seek ESBL genes and (iii) disc diffusion susceptibility testing by BSAC methodology. A 

comparison between the 24-Plex assay and reference methods is presented in Table 

37. 

Among 23 tested specimens, Easy-Plex detected 12 E. coli and 11 K. pneumoniae 

agreeing with culture and MALDI-TOF results both for directly tested urines and 

cultured isolates. Specifically, the melting temperature for the ‘Enterobacteriaceae’ 

target, together with the melting temperature for the gyr product enabled 

differentiation of E. coli and K. pneumoniae. In 14 out of 16 directly-tested urines the 

Easy-Plex additionally detected 6 enterococci and streptococci. 

 

3.3.3.1 Directly tested urines 

Among the 16 infected clinical urines the assay found genes for extended-

spectrum β-lactamases (11 blaCTX-M gp 1, 3 blaCTX-M gp 9) and penicillinases (11 blaTEM, 6 

blaSHV, 8 blaOXA-1). In general, there was a good agreement to molecular reference 

methods, but two cases of each blaTEM, blaCTX-M gp-1 and blaOXA-1 were additionally 

found among the urines, not confirmed by real-time PCR.  
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Trimethoprim determinants (dfrA1/A5/A7/A12) were detected in 10 out of 13 

urines containing bacteria resistant to trimethoprim. Negative results were obtained 

for 3 urines with trimethoprim resistant bacteria; 2 out of these 3 failures 

nonetheless gave weak signals for dfrA5/A14 (concentration < 230; CT value >22, 

signal present but poor amplification); the remaining urine was negative by the PCR 

assay for all acquired dfr genes sought, suggesting the presence of some rarer or 

novel trimethoprim resistance determinant. 

Overall, 12/14 urines contained bacteria resistant to tobramycin and all these 

bacteria were also gentamicin-resistant. Three out of these 14 urines contained 

bacteria that had more than one aminoglycoside resistance gene whilst 5 had only 

one aminoglycoside gene and 6 were negative by the Easy-Plex, although weak 

signals were seen for aac(6')-Ib (n=4), aac3’-II (aacC2) (n=5), and aac3’-I (aacC1) 

genes (n=1) in several of these. All the positive results found by Easy-Plex agreed with 

phenotypic susceptibility testing.  

In term of specific genes, aac(6')-Ib was found in 5 out of the 12 urines containing 

bacteria resistant to tobramycin; 4 out of the 7 negatives also gave a weak signal 

(concentration in a range 100-435; CT value >22). aadB was detected in one urine and 

aac3’-II (aacC2) in 5 urines containing bacteria resistant to both gentamicin and 

tobramycin. aac(3')-I (aacC1) and aac(3')-III (aacC3) genes were not found by Easy-

Plex in any of the urines, except that a weak signal (concentration 86; CT value >24) 

was seen for aac3’-I in one urine containing bacteria resistant to gentamicin and 

tobramycin.  

The final aminoglycoside determinant aadA, conferring streptomycin resistance, 

was found in one out of 7 urines containing bacteria resistant to streptomycin. This 

lack of concordance, noted already for earlier iterations of the test, indicates the 

presence of other genes or mutations responsible for streptomycin resistance but not 

sought in this panel (particularly strA/strB or mutations). 
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3.3.3.2 Testing of cultured isolates 
 

The identification of β-lactamase genes in cultured clinical isolates mostly agreed 

with reference molecular methods, except for blaTEM where MT-PCR assay detected 

2 additional cases. Thus, the following β-lactamase genes were found: ESBLs (6 blaCTX-

M gp 1, 1 blaCTX-M gp 9), ampC (3 blaCMY), penicillinases (9 blaTEM, 4 blaSHV, 6 blaOXA-1), and 

carbapenemases (1 blaOXA-48, 1 blaKPC, 2 blaNDM, 1 blaVIM). 

Trimethoprim (dfrA1/A5/A7/A12) genes were found in 6 out of 8 isolates with 

phenotypic trimethoprim resistance; 2 negatives gave weak signal for dfrA5/A14 

(concentration < 230; CT value >22) and sequencing confirmed the presence of dfrA14 

gene in both these 2 isolates. Sequencing also found two trimethoprim determinants 

in two other isolates (dfrA1 and dfrA14; dfrA17 and dfrA12) but Easy-Plex detected 

only one dfr gene in each sample (dfrA14 and dfrA12, respectively). 

In total, 8 out of 9 isolates were tobramycin and gentamicin resistant. Seven out 

of these 8 resistant isolates had more than one aminoglycoside resistance gene, and 

the remaining one gave a weak signal for aac3’-II (aacC2). aac(6')-Ib was found in 6 

out of 8 tobramycin-resistant isolates, congruent also with sequencing;  aadB was 

identified in 2 isolates associated with both gentamicin and tobramycin resistance, 

also agreeing with sequencing data; aac3’-II (aacC2) was detected in 6/8 isolates with 

phenotypic tobramycin and gentamicin resistance, again perfectly agreed with 

sequencine data. Two other isolates that were gentamicin and tobramycin resistant 

gave weak signals (concentration 61 and 72; CT value >24), also confirmed by 

sequencing. aac(3')-I (aacC1) and aac(3')-III (aacC3) genes were never found by the 

Easy-Plex assay, although sequencing detected aac3’-I type b and aac3’-I type e in 

two isolates: one with phenotypic resistance to gentamicin and tobramycin, the other 

susceptible to these antibiotics. The later result suggests that aac3’-I was not 

expressed in this case. Similar as for urine aadA was detected in one out of 5 

streptomycin-resistant isolates implying the presence of other genes or mutations 

associated with streptomycin resistance in the remaining four. 

The gyr A1/R gene was identified in 7/14 urines containing ciprofloxacin resistant  

E. coli and in 3/9 resistant E. coli isolates whereas gyr A1/S was found in one E. coli -

containing urine and one E. coli isolate with phenotypic ciprofloxacin resistance. The 
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gyr Kleb R/S was detected in 6 urines containing 5 ciprofloxacin-resistant and one 

ciprofloxacin-susceptible K. pneumoniae and in 5 isolates containing 4 ciprofloxacin-

resistant and one ciprofloxacin-susceptible K. pneumoniae. The KPparC gene was 

found in 10/11 K. pneumoniae specimens (6 urines and 4 isolates) and never in E. coli.  

 Overall, the 24-Plex assay was less discriminatory than the 16-Plex assay in 

detecting antibiotic resistance genes. Several of the gene targets e.g aac(6')-Ib, aac3’-

II or dfrA5/A14 often showed weak signals for several isolates or infected urines, 

below the cut off value applied, but with the presence of the genes confirmed by 

sequencing. Timeframe from specimen to results was shorten than 16-Plex assay at 

c. 2 h. 
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 Table 37. Comparison between 24-Plex assay and reference method. 
 
(A) Antibiotic resistance gene detection 

 

Resistance Gene 

Target 

Clinical urines (n=14) Isolates (n=9) 

β-Lactamase genes  vs. reference (gene detection by PCR or sequencing) 

 High-Plex 
assay 

Reference 
method 

High-Plex 
assay 

Reference 
method 

blaTEM 11 9 9 7 

blaSHV 6 6 4 4 

blaCTX-M gr1 11 9 6 6 

blaCTX-M gr9 3 3 1 1 

blaCMY 0 0 3 3 

blaOXA-1 8 6 6 6 

blaOXA-48/181/244 0 0 1 1 

blaKPC 0 0 1 1 

blaNDM 0 0 2 2 

blaVIM 0 0 1 1 

Trimethoprim gene  vs. phenotypic trimethoprim  
resistance 

Trimethoprim gene  vs. 
phenotypic trimethoprim  
resistance and sequencing 

dfr genes (pooled 

samples) 

including: 
dfrA1,  

dfrA5/A14,  

dfrA7/A17,  

dfrA12 

10 
 
 

3 
4 
5 
0 

13 6 
 
 

0 
2 
3 
1 

8 
 
 

1 
4 
4 
1 

Aminoglycoside gene  vs. streptomycin resistance Aminoglycoside gene  vs. 
streptomycin resistance and 
sequencing  

aadA1/A2/A3 1 7 1 5 

Aminoglycoside gene  vs. tobramycin resistance Aminoglycoside gene  vs. 
tobramycin resistance and 
sequencing 

aac(6')-Ib 5 12 6 8 

Aminoglycoside genes  vs. tobramycin and 
gentamicin resistance 

Aminoglycoside genes  vs. 
tobramycin and gentamicin 
resistance and sequencing 

aadB, aac3’-I,  

aac3’-II,  aac3’-III 

(pooled samples) 

including: 
aadB 

aac3’-I 

aac3’-II 

aac3’-III 

5 
 
 
 

1 
0 
5 
0 

14 7 
 
 
 

2 
0 
6 
0 

8 
 
 
 

2 
2 
8 
0 
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(B) Pathogens and gyrase I/D 

 
 

3.3.3.3 Translating gene results to treatment guidelines 
 

An attempt was made to translate Easy-Plex results to antibiotic choices using 

the algorithm shown in Table 9 in Section 2.3.3.   

Figure 62 (A) and (B) present the output reads with suggested ‘diagnosis’.  

Sample one contains E. coli producing ESBL with blaCTX-M gr1 detected. blaTEM was 

also found but would not further expand resistance in the presence of a CTX-M gr1 

enzyme. The pathogen was resistant to ciprofloxacin as inferred by the presence of 

gyrA1/R. Because dfr sought genes were not detected congruent with trimethoprim- 

susceptible profile, the software suggested to use of trimethoprim. 

Specimen two again contain E. coli. Again, the Easy-Plex detected the extended-

spectrum β-lactamase gene blaCTX-M gr1 and blaTEM penicillinase gene. In contrast to 

the first sample, PCR detected dfrA1 indicating resistance to trimethoprim with 

agreement to phenotypic profile and gyrA1/S, indicating susceptibility to 

ciprofloxacin, also congruent with phenotypic profile. The assay also found aadA1, 

implying streptomycin resistance, however this agent is rarely used in the treatment 

of UTIs. None of the other aminoglycoside-modified enzyme genes were found 

indicating likely susceptibility to tobramycin, gentamicin and amikacin also confirmed 

by phenotypic method; therefore the software suggested that the patient may 

respond to gentamicin.  

In both cases the Easy-Plex detected the presence of additional targets e.g. 

enterococcus or streptococcus or dfrA17 gene (example B), but the number of 

molecules (‘concentration’) was below the threshold value (>550 copies of 

 Fluoroquinolone genes 

Pathogens (n=23) gyrA1/R gyrA1/S gyr KlebR/S KPparC 

E. coli  

(n=12) 

Cipro 
R 

Cipro 
S 

Cipro 
R 

Cipro 
S 

Cipro 
R 

Cipro 
S 0 

10 0 2 0 0 0 

K. pneumoniae  
(n=11) 

0 0 0 0 9 2 10 
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molecules). As above (Section 3.3.3) we believe that some of these are likely to be 

true positive. 

The software was desinged to interpret the results from the 24-Plex assay. However, 

in several cases we observed that it suggested an antibiotic e.g. gentamicin even 

though a gene conferring resistance to this antibiotic was found. Therefore   the 

software needs to be improved to better guide and indicate treatment choices. 

Nonetheless, it is a first step to translating molecular results into clinical information 

to guide treatment. 

 

 

Figure 62. Output reads for 24-Plex assay provided by prototype software. 

 

 

 
 

 

(A) (B) 
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3.4 MinION Nanopore sequencing  
 

AIMS 

• To evaluate MinION nanopore sequencing for pathogen identification 

and antibiotic resistance gene detection directly from clinical urines. 

 

3.4.1 MinION results and performance improvement 

Fifteen MinION runs were performed: 10 for culture-positive clinical urines, four 

using urine spiked with multi-resistant E. coli H141480453 and one for urine spiked 

with E. coli recovered from Clinical Urine 6 (Table 38). The first four runs, with Clinical 

Urines 1-4 and R7.0 chemistry flow cells, gave unsatisfactory results, failing even to 

deliver pathogen identification. These failures reflected inadequate human DNA 

depletion (CU1), poor quality of flow cells (CU2 and CU4) and low yields of bacterial 

DNA, caused by DNA degradation as a result of freezing. Thereafter, further 

development in the sample and library preparation procedure, together with new 

flow cells using R7.3 chemistry, led to progressive improvement in the quality and 

quantity of the sequence yields. This is illustrated in Figure 63, showing analysis based 

on 6 hours of sequencing. Data on the quality and quantity of bacterial DNA extracted 

from Clinical Urines 4-10, and all spiked urines, are presented in Figure D1 (Appendix 

D). 

From Clinical Urine 5 (CU5) onwards, MinION sequencing produced 22968-

141511 reads per run (counted as the total number of 1-D template reads, 1-D 

complement reads, and 2-D template + complement reads) with a mean read-length, 

varying with the run, in the range 2827-5419 bp. Between 6536-34330 reads 

compromised 2-D sequencing reads, of which 2518-22405 were classified as a "Pass 

2-D reads," with a mean read-length of 3452 to 6076 bp, and a maximum length of 

46213 bp (urine spiked with E. coli from Clinical Urine 6). The total number of reads 

classified as “Fail 2-D reads” per run was in the range 3749-9776, with a mean read-

length of 2467-5421 bp. The manufacture claimed that single-read identity to 
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reference sequences improved from 70% to 85% during the course of these studies. 

Runs with R7.3 chemistry were processed for 7.5 to 48h (Table 38). 

Successive runs with urine spiked with E. coli H141480453 illustrate significant 

improvement in coverage depth during the first 6 hours of sequencing, as presented 

in Figure 64. The first improvement, between Run 1 in 10/2014 and Run 2 in 05/2015 

was in yield and depth of coverage. The second improvement, from Run 2 to Run 3, 

was achieved using WIMP and ARMA software for real-time analysis of sequence 

data, reducing the total processing time from specimen submission and library 

preparation to resistance gene profile in 7.5 h. The final improvement, from Run 3 to 

Run 4, was achieved using the Rapid Library Preparation Kit, identifying resistance 

gene in a timeframe similar to PCR (< 4 hours); however this run generated only 1-D 

reads that could not be analysed with automated WIMP/ARMA software, and had to 

be processed manually against the BLAST/CARD databases, as illustrated in Figure 65.
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Table 38. Clinical and spiked urines subjected to MinION sequencing in chronological order. 

Sample and date 
Flow cell 

chemistry 

Sequencing 

time (h) 

Total number 

of reads 

Mean 

readlength 

(bp) 

Number  

of 2-D reads 

Number  

of 2-D 'pass' 

reads 

Mean 

readlength  

of 2-D 'pass' 

(bp) 

Total number 

of 2-D 'fail' 

reads 

Mean 

readlength 

of 2-D 'fail' 

(bp) 

CU1 
09-07-2014 

R7.0 24 12295 3647 1645 0 0 0 0 

CU2 
12-07-2014 

R7.0 24 8299 2859 621 0 0 0 0 

CU3 
04-09-2014 

R7.0 No results 

CU4 
09-09-2014 

R7.0 21 3829 1728 184 0 0 0 0 

Urine spiked 
with 
E. coli 

H141480453 run 
1; 06-11-2014 

R7.3 30 45652 2827 15216 10109 (66%) 4103 5107 3880 

CU5 
16-01-2015 

R7.3 25.5 22968 3292 8191 2518 (26.5%) 3980 5673 3491 

CU6 
24-01-2015 

R7.3 23 57289 4700 15932 12183 (48%) 5510 3749 4848 

CU7 
05-02-2015 

R7.3 17.5 76499 4473 17050 10137 (18.8%) 5414 9776 4447 

CU8 
02-03-2015 

R7.3 33 86294 4664 20799 13798 (36%) 5324 7001 4221 



194 | P a g e  
 

Sample and date 
Flow cell 

chemistry 
Sequencing 

time (h) 
Total number 

of reads 

Mean 

readlength 

(bp) 

Number  

of 2-D reads 

Number  

of 2-D 'pass' 

reads 

Mean 

readlength  

of 2-D 'pass' 

(bp) 

Total number 

of 2-D 'fail' 

reads 

Mean 

readlength 

of 2-D 'fail' 

(bp) 

Urine spiked 
with  
E. coli from CU6 
09-03-2015 

R7.3 14 56394 5419 13206 7678 (27.9%) 6076 5528 5421 

CU9 
30-03-2015 

R7.3 26 28 767 4 926 6536 4376 (29%) 5741 2160 4572 

Urine spiked 
with 
E. coli 
H141480453 run 
2; 04-05-2015 

R7.3 48 138 720 4 424 33589 17123 (27.7%) 5013 16466 4040 

CU10 
16-05-2015 

R7.3 35 141 511 3 107 34330 15074 (23%) 3452 19256 2908 

Urine spiked 
with 
E. coli 
H141480453 run 
3; 23-10-2015 

R7.3 7.5 97961 4308 28787 22405 (77%) 4416 6382 2467 

Urine spiked 
with 
E. coli 
H141480453 run 
4; 26-01-2016 

R7.3 29 21441 2043 - - - - - 
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Figure 63. Improvement of MinION sequencing performance and yields over 6h      

of sequencing run time. 

     Legend:  SU Spiked urine; CU clinical urine; SCU spiked clinical urine.                
Runs are shown in chronological order (see Table 34).  

 

 

 

Figure 64. Timeline of coverage depth for successive runs with urine spiked with     
E. coli strain H141480453. 

Run 4 cannot be included because it generated only 1-D 
reads, which are not suitable for automated ARMA 
software.  
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   Figure 65. Timeframe of MinION sequencing with the 15-min library preparation       

kit used in Spiked Urine Run 4. 
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3.4.2 Bacterial identification 
 

MinION analysis against BLAST and CARD databases was performed on  

2-D sequence reads from the "pass" folder, containing only high quality data, for CUs 

5, 6 and 7 and for the spiked urines, except Run 3 with E. coli H141480453, where 

WIMP/AMRA software was used (Figures 66, 67). For CUs 8, 9 and 10 we combined 

sequence reads from "pass" and "fail" folders to assess variation in quality between 

individual reads, again using BLAST and CARD. In context "fail" means "lower quality 

reads"; nevertheless, as we found here, these data remained useable. 

 In all cases, MinION correctly identified the pathogen present-variously E. coli, 

Klebsiella pneumoniae or Enterobacter cloacae (Table 39). Alignment to 

corresponding proteobacterial genomes exceeded 95%, except for CUs 8 and 10, at 

93% and 90.3%, respectively. Alignment to human reads, which were discarded, was 

in the range 1.6-12.3%. Breadth of coverage was from 82.6-100%, being least for CU 

5 (2.71x)- the first sample analysed successfully, and greatest, at 21.55x and 22.84x, 

for urine spiked with E. coli H141480453 (Run 2) and for CU 8, respectively (Table 39).  

When in-built WIMP software was used, for Run 3 with urine spiked with E. coli 

H141480453, the organism was correctly identified within 15 min of real-time 

analysis. Outputs from this mode of analysis are illustrated in Figure 66 and 67.  

An overview of Illumina sequencing data for the organisms grown from CUs 5-10 

is presented in Table 40. The number of contigs was in a range 139-459 with 

maximum readlengths of 434525-1540822 bp and minimum readlength of 92 bp for 

all Clinical Urines. Alignments to Proteabacterial genomes was in a range 90.3-100%.  

Species identification was in perfect agreement with both MALDI-TOF and MinION 

sequencing directly from the urine. 

Alignments to all Proteobacterial genomes from MinION and Illumina sequencing 

for Clinical Urines 5-10 and spiked urines with E.coli from Clinical Urine 6 and with E. 

coli H141480453 Run 1 and Run 2 are presented in Table D 1 in Appendix D. 
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     Figure 66. Output of the Metrichor WIMP application report for pathogen    
identification in MinION sequencing. 

(A) NCBI Taxonomy: identifies the pathogens, in this case E. coli. 

(B) Sample composition: shows the relative proportion of reads 
from the species found in sample and calculated confidence 
level. 

(C) Selection: gives more details on the individual segment of 
sequence reads selected in the Sample composition section.  

(D) Taxonomic linkage: contains details of the taxonomic 
classification for the individual organisms reported in the 
section B above.

(A) 

(B) (C) 

(D) 
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(A) 

(B) 

(C) 
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Figure 67. Output of the ARMA application for antibiotic resistance gene 
detection in MinION sequencing. 

(A) Alignments per Antibiotic-Resistance Ontology (ARO): number of 
sequence reads with identity to genes associated with resistance 
to an antibiotic class. 

(B) Alignments per ARO Molecule: mean quality score of MinION 
sequence reads versus alignment accuracy. 

(C) Alignments per ARO Name: number of sequence reads associated 
with identified genes. 

(D) Alignments per ARO Gene: gives more details on the coverage  

and accuracy of the gene matches to reference sequences.  

 

 

 

 

 

 

(D) 
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Table 39. Pathogen identification using MinION sequencing for 6 clinical and spiked urines.  

 
Clinical  
Urine 5 

Clinical  
Urine  6 

Urine 
spiked with 
E. coli from 

CU6 

Clinical  
Urine  7 

Clinical  
Urine 8 

Clinical  
Urine 9 

Clinical  
Urine  10 

Urine  
spiked with 

E. coli 
H14148045

3 Run 1 

Urine  
spiked with 

E. coli 
H14148045

3 Run 2 

Urine  
spiked with 

E. coli 
H14148045

3 Run 3 

Reads used 2-D pass only 
2-D pass 

only 
2-D pass 

only 
2-D pass 

only 
2-D pass 
and fail 

2-D pass 
and fail 

2-D pass  
and fail 

2-D pass 
only 

2-D pass 
only 

2-D pass 
only 

% non-human 
DNA reads 
matching 
Gram-negative 
bacteria 

76% 86% 83% 84% 81% 95% 85% 98% 89% - 

% DNA reads 
matching 
human 

6.6% 8.5% 8.5% 8.1% 12.3% 1.7% 9.7% 1.6% 4.2% - 

Best species 
match to 
MinION 
sequence data 

K. 
pneumoniae 

CG43 

E. coli 
JJ1886 

E. coli  
JJ1886 

E. coli  
PMV-1 

E. coli  
536 

E. cloacae 
NCTC 9394 

K. 
pneumoniae 

CG43 

E. coli 
APEC O78 

E. coli 
KP-12 

E. coli 
APEC O78 

Best species 
match to 
Illumina 
sequence data 

K. 
pneumoniae 
MGH 78578 

E. coli 
JJ1886 

E. coli 
JJ1886 

E. coli 
IHE3034 

E. coli  
536 

E. cloacae 
NCTC 9394 

K. 
pneumoniae   
MGH 78578 

E. coli  
ST410 

E. coli  
ST410 

E. coli  
ST410 

 
% Breadth of 
coverage to best 
match organism 
 
  

82.57% 99.59% 100% 92.19% 99.9% 86.25% 96.70% 95.13% 96.13% - 
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Clinical  
Urine 5 

Clinical  
Urine  6 

Urine spiked 
with E. coli 
from CU6 

Clinical  
Urine  7 

Clinical  
Urine 8 

Clinical  
Urine 9 

Clinical  
Urine  10 

Urine  spiked 
with E. coli 
H141480453 

Run 1 

Urine  spiked 
with E. coli 
H141480453 

Run 2 

Urine  
spiked with 

E. coli 
H14148045

3 Run 3 
Average depth 
of coverage  
versus best 
match organism 

2.71 x 15.65 x 10.58 x 10.77 x 22.84 x 9.16 x 17.61 x 7.25 x 21.55 x 21.51 x 

Run time (h)  25.5 23 14 17.5 36 26 35 30 48 7.5 

CUs 1-4 are omitted as failures; limited data are shown in Table 22.  

% non-human DNA reads matching Gram-negative bacteria and human genome were not calculated for Run 3 as the analysis was performed 
on automated WIMP and ARMA softwares. 
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Table 40. Overview of Illumina sequencing data for isolats grown from CUs 5-10. 

 

 

 

3.4.3 Resistance gene profiles for clinical urines 

Acquired resistance genes were readily detectable in MinION outputs. 

Agreements to antibiogram and Illumina data for pathogen gene detection from 

Clinical Urines 5-10 and the spiked urines are summarized in Tables 41 and 42, 

respectively, and are detailed below. Agreements were generally good; among 55 

acquired resistance genes detected by Illumina sequencing of cultivated bacteria, 51 

were found by MinION directly from the urines; with 3 of 4 exceptions being in CU5, 

where coverage was the poorest. Limitations were: (i) MinION often flagged multiple 

gene variants (e.g. of blaTEM, blaAmpC, blaNDM, blaCTX-M) whereas Illumina definitively 

identified specific alleles, (ii) chromosomal gyrA and parC mutations associated with 

fluoroquinolone resistance were unreliably detectable from MinION data whereas 

they were detected by Illumina sequencing and (iii) plasmid and chromosomal ampC 

 CU5 CU6 CU7 CU8 CU9 CU10 

Number of 

contigs 
139 232 197 459 171 167 

Maximum 

readlength (bp) 
1540833 654079 473756 557964 434512 461969 

Minimum 

readlength (bp) 
92 92 92 92 92 92 

Mean 

readlength 
39356 23809 26142 11541 27757 33692 

Total bp 5470490 5523757 5149942 5297370 4746408 5626501 

Percentage of 

Proteobacterial 

contigs 

100% 100% 100% 99.3% 98.9% 90.3% 

Total hits to 

Proteobacterial 

genome 

2361 
(92.7%) 

3926 
(94.4%) 

4397 
(93.2%) 

 
4511 

(85.9%) 
 

5585 
(96.5%) 

2709 
(94.2%) 

Total hits to 

Firmicutes 

genome 

156 
(6.1%) 

176 
(4.2%) 

249 
(5.3%) 

696 
(13.3%) 

176 
(3%) 

153 
(5.3%) 

Total hits to 

human genome 

29 
(1.2%) 

58 
(1.4%) 

72 
(1.5%) 

 
44 

(0.8%) 
 

27 
(0.5%) 

15 
(0.5%) 
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were not discriminated and nor could the mode of ampC expression (basal, inducible 

or derepressed) be inferred.  

Table 41 lists the acquired resistance genes found by MinION sequencing in the 

clinical urines in relation to Illumina results for the cultivated isolates and MICs by 

BSAC agar dilution. Relationships in these data are expanded in Section 3.4.4 below. 

Table 42 compares all MinION runs 1-4 and Illumina data for urines spiked with E. coli 

H141480453 in respect of acquired resistance genes only.  

Table 42 shows a list of supplementary “resistance-related genes” found by 

MinION and Illumina sequencing. These are largely chromosomal genes associated 

with e.g. multidrug efflux pumps or outer membrane permeability (e.g.  mdt, ompF, 

acr, tolC). They are present in all bacteria of these species and whether or not they 

relate to resistance depends on the level of expression. Relationships are notoriously 

complex. For example, overexpression of multidrug efflux pumps can arise either via 

mutations in their repressor genes or by activation of the global transcriptional 

regulators.  We did not seek single nucleotide polymorphisms possibly affecting these 

function, owing to the low accuracy of MinION reads and the complexity of the 

interaction between different pumps and pump complements.   

 

3.4.4 Agreement to phenotype and Illumina sequencing for Clinical 

urines 
 

In this section the resistance genes found by MinION sequencing in CUs 5-10 are 

compared with the phenotypes of the isolates grown from these urines, and the 

resistance genes found in the organisms by Illumina sequencing (Table 41).  In 

general, these datasets agreed well. 
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Clinical Urine 5 (K. pneumoniae) 

MinION sequencing detected the extended-spectrum β-lactamase (ESBL) gene blaCTX-

M-15. This gene was also found by Illumina sequencing of the cultivated strain, which 

had an ESBL phenotype, with strong cephalosporin-clavulanate synergy. Both 

sequencing methods found blaOXA-1, encoding an inhibitor-resistant penicillinase, 

congruent with the observed resistance to amoxicillin-clavulanate. Also in 

agreement, both methods found dfrA14, explaining observed trimethoprim 

resistance. MinION sequencing identified blaSHV-32 whilst Illumina found blaSHV-27 

variant encoding ESBL and blaLEN-12 (the blaSHV- related) chromosomal β-lactamase 

genes K. pneumonia, along with blaTEM-1 a penicillinase that would not further expand 

resistance in the presence of CTX-M-15. MinION did not find this blaTEM-1 gene.  

The strain was highly resistant to gentamicin and tobramycin, probably explained 

by presence of aacC2. It also had an aac(6’)-Ib-cr gene, encoding a tobramycin- and 

amikacin-modifying enzyme, detected by both Illumina and MinION sequencing. The 

low amikacin MIC (2 mg/L) does not conflict with this: EUCAST advocates that isolates 

with aac(6’)-Ib should be reported amikacin non-susceptible irrespective of MICs, as 

the enzyme inactivates amikacin. The presence of genes strA (detected by both 

methods) and strB (found only by Illumina) potentially explained observed 

streptomycin resistance. 

 Both MinION and Illumina sequencing detected qnrB, encoding a protein that 

protects DNA gyrase from fluoroquinolones. This protective protein only has a small 

effect on MIC, as does the aac(6’)-Ib-cr gene also found by both sequencing 

approaches. Taken together, these findings agreed with the low-level ciprofloxacin 

resistance observed (2 mg/L). Chromosomal mutations in gyrA and parC as are 

usually associated with high-level resistance-were not detected by either sequencing 

method.  

A sulphonamide gene (sul2) was found by both approaches while fosA gene, 

encoding fosfomycin resistance, was detected by Illumina only; phenotypic resistance 

to both sulphonamides and fosfomycin were not tested.  
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Clinical Urine 6 (E. coli) 

In the case of Clinical Urine 6, infected with E. coli, MinION sequencing found blaCTX-

M-15 and blaOXA-1, with these genes also detected by Illumina sequencing and 

congruent with the phenotype, which implied ESBL production and included 

amoxicillin-clavulanate resistance a pattern typical of OXA-1, an inhibitor-resistant 

penicillinase.  Both sequencing methods also indicated blaTEM-1, a classical and 

extremely common penicillinase. Several plasmid- mediated ampC genes (blaCMY, 

blaACC-4, blaMIR-9, blaDHA-22) were detected by MinION sequencing whereas Illumina 

indicated only blaCMY-113 and blaMIR-14, albeit with identity below the 90% threshold. It 

is likely that all these ampC calls really corresponded to E. coli chromosomal ampC, 

as the cefoxitin MIC for the isolate was only 8 mg/L, whereas cefoxitin MICs for E. coli 

with acquired plasmid AmpC enzymes are mostly >64 mg/L (PHE data on file).  

MinION sequencing found aacC2 and aac(6’)-Ib-cr, both confirmed by Illumina 

sequencing and in agreement with resistance to gentamicin and tobramycin and a 

raised amikacin MIC, though this remained in the clinically susceptible range (4 

mg/mL). Both sequencing approaches also detected a streptomycin 

adenyltransferase (aadA5) determinant, but the organism was susceptible to 

streptomycin, implying that this was not expressed.  

Detection of dfrA17 by MinION sequencing was in agreement both with the 

Illumina result and with phenotypic resistance to trimethoprim. Detection of aac(6’)-

Ib-cr by both sequencing methods agreed with ciprofloxacin non-susceptibility, 

however the high MICs of ciprofloxacin (>8mg/mL) was more likely explained the 

presence of gyrA/parC mutations, which were found by Illumina sequencing but 

missed by MinION. 

Both sequencing methods detected an acquired sulphonamide gene (sul1) but, as 

with CU5 and its isolate, phenotypic resistance to sulphonamides was not tested. 
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Clinical Urine 7 (E. coli) 

Clinical Urine 7 again contained E. coli. MinION sequencing detected the ESBL gene 

blaCTX-M-15, confirmed also by Illumina sequencing and agreeing with an ESBL 

phenotype. blaOXA was absent and the isolate was more susceptible than those from 

CUs 5 and 6 to penicillin β-lactamase inhibitor combinations. Both methods identified 

the penicillinase gene blaTEM-1.  

Phenotypic resistance to streptomycin agreed with detection of genes encoding 

nucleotydyltransferase variant aadA1 and phosphotransferases (strA and strB) by 

both sequencing approaches also aadA3, which differs by several nucleotides from 

aadA1, by MinION only. Phenotypic resistance to trimethoprim agreed with 

detection of a dfrA1 gene by both techniques.  

An ampC gene (blaACT-24) was flagged by MinION, but not confirmed by Illumina 

sequencing. As with CU5, the low level cefoxitin MIC (4 mg/L) contraindicated 

plasmid ampC, and the MinION result probably reflected miscalling of chromosomal 

ampC.  The ciprofloxacin MIC (0.25 mg/L) was slightly raised, and a single mutation 

in gyrA (83:S-L) was detected by Illumina only. Both sequencing approaches detected 

an acquired tetracycline gene tet(A), but phenotypic resistance to tetracycline was 

not tested, and EUCAST anyway has no breakpoints for Enterobacteriaceae in the 

case of this agent.  

 

Clinical Urines 8 (E. coli) and 9 (E. cloacae) 

The E. coli from CU8 was resistant to ampicillin, amoxicillin-clavulanate and cefoxitin 

(MICs, 16-64 mg/L), with diminished susceptibility to cefotaxime (MIC 1 mg/L). 

Cefotaxime-cloxacillin synergy implied AmpC activity, as did the strongly raised 

cefoxitin MIC (>64 mg/L). MinION flagged several acquired ampC genes (blaCMY, 

blaACC-4, blaMIR-4, blaDHA-6, blaFOX-4) but these were not confirmed by Illumina 

sequencing and this combined with the relatively low MIC of cefotaxime, mean that 

upregulation of chromosomal ampC is the more likely mechanism (in PHE’s 

experience MICs of cefoxitin for E. coli with plasmid AmpC are usually ≥8 mg/mL). No 

genes were found for quinolone resistance, aminoglycoside-modifying enzymes and 
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trimethoprim dihydrofolate reductase resistance, which perfectly agreed with 

phenotypic susceptibility profile. 

CU9 contained E. cloacae, with a cefotaxime MIC of 2 mg/L, reduced to 0.125 

mg/L by cloxacillin, implying partial derepression of ampC, the commonest mode of 

oxyimino-cephalosporin resistance in this species. MinION flagged multiple acquired 

ampC genes (blaCMY, blaACT-18, 24) and Illumina flagged blaACT-24, all probably reflecting 

misidentification of chromosomal Enterobacter ampC.  No other acquired genes were 

found in either urine or isolate, agreeing with general susceptibility. MinION and 

Illumina also found fosA2, encoding a fosfamycin modifying enzyme, however 

fosfomycin susceptibility was not tested.  

 

Clinical Urine 10 (K. pneumoniae) 

Clinical Urine 10 was infected with a K. pneumoniae strain. MinION and Illumina 

sequencing detected blaCTX-M-15 and blaOXA-1, agreeing with an ESBL phenotype and 

amoxicillin-clavulanate resistance. Both sequencing approaches also found blaTEM-1 

and blaSHV; Illumina identified the specific allele (blaSHV-28), whilst MinION flagged 

multiple blaSHV variants. Resistance to gentamicin, tobramycin and amikacin (8-32 

mg/L) corresponded to detection of aac(6’)-Ib-cr and aacC2 by both methods, with 

aacA4 additionally found by MinION, perhaps owing to the lower identity cut off 

(80%) used with MinION compared to 90% for Illumina. Resistance to streptomycin 

agreed with detection of strA and strB by both methods and aadA3 by MinION only. 

The plasmid-mediated quinolone resistance gene qnrB was identified by both 

methods along with aac(6’)-Ib-cr, but high-level ciprofloxacin resistance (>8 mg/L) 

more likely reflected gyrA and parC mutations, found only by Illumina. Trimethoprim 

resistance agreed with detection of dfrA14 by both techniques. Illumina again found 

fosA2 gene, however fosfomycin susceptibility testing was not performed.  
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Spiked urines 

Agreements between Illumina data and the four MinION sequencing runs using urine 

spiked with E.coli H141480453, which produced NDM-4 and OXA-181 

carbapenemases, are summarized in Table 42.  This organism was extremely drug 

resistant, with MICs >32 mg/L for ampicillin, amoxicillin-clavulanate, piperacillin-

tazobactam, temocillin, cefotaxime, ceftazidime, cefepime, aztreonam, imipenem, 

meropenem, ertapenem, amikacin, gentamicin, tobramycin, ciprofloxacin, 

tetracycline, and trimethoprim, with  susceptibility only to tigecycline (MIC 0.25 

mg/L) and colistin (1 mg/L). Synergy was seen between EDTA and imipenem, 

reflecting metallo-β-lactamase inhibition, but not between cephalosporins and 

clavulanate or cloxacillin.  

The four sets of MinION data, directly from spiked urine, closely matched 

Illumina sequencing for the cultivated isolate. Thus, the β-lactamase genes, blaTEM, 

blaCTX-M-group-1, blaOXA, blaNDM and blaCMY were consistently identified, though with 

MinION flagging multiple matches within these families whereas Illumina identified 

precise alleles.  Among aminoglycoside resistance determinants, rmtB, encoding a 

16S rRNA methyltransferase, was consistently found by Illumina and MinION, as were 

aacC2, aac(6’)-Ib-cr and strA/B; Illumina found all three of aadA2, aadA3 and aadA5 

as did MinION run 3, with MinION runs 1 and 2 flagging only one or two of these. The 

genes aadA2 and aadA3 are closely related whilst aadA5 differs considerably.  

Trimethoprim resistance correlated with the presence of dfrA12 and dfrA17, 

found both by Illumina and on all MinION runs except run 1, which had least 

coverage. Again, aac(6’)-Ib-cr and qnrS variants were consistently flagged by both 

MinION and Illumina but are unlikely to have been the major contributors to the high 

level fluoroquinolone resistance (MIC >8 mg/mL), which is more likely explained by 

mutations in chromosomal gyrA and parC, which were reliable detected by Illumina 

only. The organism was sulphonamide resistant, and Illumina detected sul1, while all 

MinION runs found both sul1 and sul2. Phenotypic tetracycline resistance agreed 

with Illumina sequencing, which found tet (A) and its regulator tet(R), though these 

were only detected in MinION Run 3. A catB3 gene, congruent with chloramphenicol 

resistance was found by all MinION runs but not by Illumina, probably because, as 
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shown by review, this only had 69% homology to classical catB3 well below the 90% 

thresholg used for Illumina.  

 

3.4.5 Timeframe to detect genes 
 

One hour of sequencing delivered 0.2x, 3.75x, and 6.96x coverage depth in spiked 

urine MinION Runs 1, 2 and 3, respectively (see Figure 64). To assess whether one 

hour was sufficient to detect all acquired resistance genes we reanalysed the MinION 

reads from these three spiked urine runs with E. coli H141480453 on the ARMA 

software and those of Run 4 with BLAST/CARD (its 1-D reads were unsuitable for 

ARMA). All the acquired resistance genes ultimately identified in runs 2, 3 and 4 were 

detectable within the first hour of sequencing, except for blaCMY in run 2, and strB in 

run 4. An ampC gene (blaLAT-1), was additionally identified in Run 4 (see Table 42). The 

lower coverage achieved at 1h for MinION run 1 (one of the first successful 

experiments) was insufficient to reliably detect blaCMY, aadA2, aadA3, aac(6’)-Ib-cr, 

strB and dfrA12 with high accuracy.  

 

3.4.6 MinION sequencing for the same isolate from clinical urine and 

spiked urine 
 

MinION sequencing of spiked urine with the E. coli isolate from Clinical Urine 6 

detected the same acquired resistance genes found by Illumina sequencing of the 

cultivated isolate and MinION sequencing directly from CU6 (see Section 3.4.4) 

confirming that any bacteria and resistance genes in the urinary tract of the healthy 

urine-donor did not distort the results.
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Table 41. Genes found by MinION sequencing for 6 Clinical Urines compared with antibiotic MICs and Illumina sequencing for cultivated isolates. 

Urine and 
species Methoda 

Penicillins and 
inhibitor 

combinations 
Cephalosporins, monobactams and inhibitor combinations Fluoro-

quinolones Aminoglycosides Antifolate 

 
Sulfonamide 

& 
Tetracycline 

  AMP AUG PTZ CTX CTX-
CLOX 

CTX-
CLAV 

CAZ CAZ-
CLAV 

CPM CPM-
CLAV 

FOX AZT CIP AMK TOB GEN STR TMP SUL & TET 

CU5 
 

K. 
pneumoniae 

MICs >64 16 8 128 64 ≤0.06 16 0.25 8 ≤0.06 4 16 2 2 16 32 R R - 

MinION blaOXA-1 blaCTX-M-15, blaSHV-32 
qnrB 

aac(6’)-Ib-cr 
aac(6’)-Ib-cr, aacC2, 

strA 
dfrA14 sul2 

 
Illumina 

 
blaTEM-1, blaOXA-1 blaCTX-M-15, blaSHV-27, blaLEN-12 

qnrB 
aac(6’)-Ib-cr 

aac(6’)-Ib-cr, aacC2, 
strA, strB 

dfrA14 sul2 

CU6 
 

E. coli 

MICs >64 16 4 128 32 ≤0.06 16 0.25 8 ≤0.06 8 32 >8 4 16 16 S R - 

MinION blaTEM (mv*), blaOXA-1 
blaCTX-M  gp1 (15),ampC(blaCMY mv*,  blaACC-4,  blaMIR-9,  

blaDHA-22) 
aac(6')-Ib-

cr 
aac(6’)-Ib-cr, 
aacC2,aadA5 

dfrA17 sul1 

 
Illumina 

 
blaTEM-1, blaOXA-1 blaCTX-M-15 

gyrAb  
(83:SL; 
87:D-N),  

parCb 
(80:S-I; 
84:E-V), 

aac(6')-Ib-
cr 

aac(6’)-Ib-cr, 
aacC2,aadA5 

dfrA17 sul1 

 
 
 
 

CU7 
 

E. coli 
 
 

 

MICs >64 8 2 128 32 ≤0.06 8 0.12 4 ≤0.06 4 16 0.25 2 1 0.5 R R - 

MinION blaTEM (mv*) blaCTX-M  gr1,ampC (blaACT-24)  
aadA1, aadA3, strA, 

strB 
dfrA1 tetA/B/D/M 

llumina blaTEM-1 blaCTX-M-15 
gyrAb 

(83:S-L) 
aadA1, strA, strB dfrA1 

 
tetA/R/D 
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Urine and 
species Methoda 

Penicillins 
and inhibitor 
combinations 

Cephalosporins, monobactams and inhibitor combinations Fluoro-
quinolones Aminoglycosides Antifolate 

Sulfonamide 
& 

Tetracycline 

  AMP AUG PTZ CTX CTX-
CLOX 

CTX-
CLAV CAZ CAZ-

CLAV CPM CPM-
CLAV FOX AZT CIP AMK TOB GEN STR TMP SUL & TET 

CU8 
 

E. coli 

MICs 64 32 4 1 ≤0.12 0.25 0.5 0.5 ≤0.12 0.12 >64 0.25 ≤0.12 1 0.5 0.5 S S 
 

MinION  ampC(blaCMY mv*, blaACC-4, blaMIR-4, blaDHA-6, blaFOX4)    
 

 
Illumina 

 
     

 

CU9 
 

E. cloacae 

MICs >64 64 4 2 ≤0.12 2 1 1 ≤0.12 0.12 >64 0.25 ≤0.12 1 0.5 0.5 S S  

MinION  ampC (blaCMY mv*,blaACT-18, 24)    
 

 
Illumina 

 
 ampC (blaACT-24)    

 

CU10 
K. 

pneumoniae 

MICs >64 32 >64 >256 256 0.125 128 1 64 ≤0.06 16 >64 >8 8 >32 >32 R R  

MinION blaTEM (mv*), blaOXA-1 blaCTX-M  gr1,  blaSHV (mv*), 
aac(6')-Ib-
cr, qnrB 

aac(6')-Ib-cr, aacA4, 
aacC2, aadA3, strA, 

strB 
dfrA14 

 

 
Illumina 

 
blaTEM-1, blaOXA-1 blaCTX-M-15, blaSHV-28, blaLEN-12 

gyrAb 
(83:S-I), 
parCb  

(80:S-I), 
aac(6')-Ib-

cr, 
qnrB 

aac(6')-Ib-cr, aacC2, 
strA, strB 

 
dfrA14 

 

Legend: AMP, ampicillin; AUG, amoxicillin-clavulanic acid; AZT, aztreonam; PTZ, piperacillin-tazobactam; CTX, cefotaxime; CTX-CLAV, cefotaxime-clavulanic acid, CAZ, ceftazidime; CAZ-CLAV, 
ceftazidime-clavulanic acid; CPM, cefepime; CPM-CLAV, cefepime-clavulanic acid; FOX, cefoxitin; CIP, ciprofloxacin; AMP, amikacin, TOB- tobramycin; GEN, gentamicin; STREP, streptomycin; 
TRIM, trimethoprim. All β-lactamase inhibitors were used at 4 mg/L. Red (R): resistant; Yellow (I): intermediate; Green(S): susceptible based on EUCAST criteria; Orange: acquired genes found 
only by Illumina; Blue: acquired gene families detected only by MinION; *mv: multiple (>5) different gene variants of this family were flagged.  

a MICs are expressed as mg/L; MinION results are for the urine, tested directly; Illumina results are for the cultivated bacteria. Only relevant genes are listed.  
b gyrA and parC were found in all clinical samples by both sequencing methods, they are only detailed when mutations were detected. 
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Table 42. Acquired resistance genes identified during four MinION runs for urine 
spiked with E. coli H141480453, compared with Illumina sequencing of the 
cultivated organism. 

 

 

Legend: a β-Lactamase gene variant detected; e.g. here '1' means blaTEM-1; 
b mv- 

multiple variants (> 5) flagged; Grey: additional acquired genes detected 
only by MinION, perhaps reflecting the lower (80% vs. 90%) identity 
threshold. Acquired resistance genes in MinION runs 1, 2 and 4 were sought 
using BLAST and CARD searches, whereas in run 3 they were sought using 
ARMA software. 

Genes Illumina 
MinION run 1 
BLAST/CARD 

 (run time 
= 30 h) 

 
MinION run 2 
BLAST/CARD 

(run time 
= 48 h) 

MinION run 3 
ARMA 

 (run time= 1 h) 

 
MinION run 4 
BLAST/CARD 

 (run time= 1 h) 

                                                                                                                                                β-Lactamase genes     

blaTEM 1a 1, mvb 1, mvb 1, mvb 1, mvb 

blaCTX-M group-1 (15) 
group-1 (1, 3, 
15, 52, 114) 

group-1 (15, 
mvb) 

mvb not including 
blaCTX-M-15 

mvb not including 
blaCTX-M-15 

blaOXA 1, 181 31 (=1,30), 181 
2, 7, 30, 232 

(=181) 
1, 181, mvb 181, mvb not 

including blaOXA-1 

blaNDM 4 4, 6, 7 4, 5, 7, 12, 13 1 mvb 

blaCMY 2 34, 45, 111 mvb mvb not including 
blaCMY-2 

mvb not including 
blaCMY-2 

others - - - - blaLAT-1 

                                                        Aminoglycoside resistance genes  

aacC aacC2 aacC2 aacC2 aacC2 aacC2, aacC8 

aadA2, 

aadA3, 

aadA5 

aadA2, 

aadA3, 

aadA5 

aadA2, aadA3 aadA5 
aadA2, aadA3, 

aadA5, mvb 

mvb not including 
aadA2,A3, A5  

rmtB rmtB rmtB rmtB rmtB rmtA 

aac(6’)-

Ib-cr 
aac(6’)-Ib-cr aac(6’)-Ib-cr aac(6’)-Ib-cr aac(6’)-Ib-cr aac(6’)-Ib 

strA/B strA/B strA/B strA/B strA/B strA 

                                                       Quinolone  resistance genes  

qnr qnrS1 qnrS3 qnrS3, qnrS7 qnrS1 qnrS 

aac(6')-

Ib-cr 
aac(6')-Ib-cr aac(6')-Ib-cr aac(6')-Ib-cr aac(6')-Ib-cr aac(6')-Ib 

                                                              Trimethoprim  resistance genes  

dfrA 
dfrA-12, dfrA-

17 
not detected 

dfrA-12, dfrA-

17 
dfrA-12, dfrA-17 

dfrA7 (A17) , A12, 

A21, A22 

Others  

cat not detected catB3 catB3 catB3 catB3/B6 

sul sul1 sul1, sul2 sul1, sul2 sul1, sul2 sul1, sul2 

tet tetA, tetR tetA, tetB, tetC tetE tetA, tetR tetA, tetR 



214 | P a g e  
 

Table 43. Additional genes mostly chromosomal potentially related to resistance 
found by MinION sequencing directly from clinical urines and Illumina 
sequencing of cultivated isolates. 

 

Protein name Gene detected 

Urine 5 

MinION Illumina 

β-Subunit of bacterial  RNA 
polymerase 

rpoB rpoB 

Dihydropteroate synthase folP - 

Elongation factor EF-Tu2 tufB tufB 

Multidrug resistance protein mdtF - 

DNA-binding transcriptional 
regulator 

cpxR - 

Multidrug resistance protein D emrD emrD 

Outer membrane channel protein tolC - 

Outer membrane protein ompF - 

Assembly protein asmA - 

Multidrug efflux system protein acrA/B/D acrR 

Protein Urine 6 

MinION Illumina 

β-Subunit of bacterial  RNA 
polymerase 

rpoB rpoB 

Dihydropteroate synthase folP folP 

Macrolide 2'-phosphotransferase* mphA mphA 

Multidrug efflux system protein mdfA - 

Elongation factor EF-Tu2 tufB - 

Multidrug resistance protein  emrA/B/E/R/Y emrE/K/A/R/B/Y 

Multidrug resistance transporter 
protein 

mdtA/C/ 

D/E/L/F/G/H/K 

mdtL/E/M/H/G/K/

C/F/O/D/B/A 

DNA-binding transcriptional 
regulator 

cpxA/R cpxR/A 

Multidrug efflux system protein yjiO - 

Outer membrane protein ompF ompF 

Outer membrane channel protein tolC - 

Assembly protein asmA - 

Transcriptional regulator protein soxR soxR 

Multiple antibiotic resistance 
protein 

marA marA/R 

Transcriptional regulator protein crp crp 

Transcriptional regulator protein gadX gadX 

Sensory histidine kinase protein phoQ/P phoQ/P 

Transcriptional response 
regulatory protein 
 

envR, Z envR 
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Protein name Gene detected 

Urine 6 

MinION Illumina 

Transcriptional response 
regulatory protein 

baeR, baeS baeR 

Sensory histidine kinase protein  evgS evgA/S 

Undecaprenyl pyrophosphate 
phosphatase protein 

uppP  

Bifunctional polymyxin resistance 
protein 

yfbG yfbG 

DNA-binding transcriptional dual 
regulator H-NS 

hns - 

Undecaprenyl pyrophosphate 
phosphatase 

bacA - 

Aminoglycoside/multidrug efflux 
system 

acrB/D/F/E acre/F/D 

Protein Urine 7 

MinION Illumina 

β-Subunit of bacterial  RNA 
polymerase  

rpoB rpoB 

Dihydropteroate synthase folP folP 

Macrolide 2'-phosphotransferase* mph(A) mph(A) 

Elongation factor EF-Tu2 tufB - 

Multidrug efflux system protein mdfA - 

Multidrug resistance protein emrE/K/Y emrE/K/A/R/B/Y 

Multidrug resistance transporter 
protein 

mdtA/B/C/D/E/F/G/

K/L/M/H 

mdtL/E/M/H/G/K/

C/F/O/D/A/B 

Multidrug resistance protein B ECs3548 - 

Multidrug resistance transporter 
protein 

omp36, ompF ompF 

Outer membrane channel protein asmA  

Cytoplasmic membrane lipoprotein acrF/E acrF/D 

Outer membrane channel protein tolC tolC 

DNA-binding transcriptional dual 
regulator 

soxS/R soxR 

DNA-binding transcriptional 
regulator SoxS 

ECs5044 - 

DNA-binding transcriptional dual 
regulator 

marA marR/A 

DNA-binding response regulator in 
two-component regulatory system 
with PhoQ 

phoP/Q phoQ/P 

DNA-binding transcriptional dual 
regulator 

crp crp 

DNA-binding transcriptional dual 
regulator 

gadX gadX 

ATP-binding cassette (ABC) protein Lsa(C) - 
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Protein name Gene detected 

Urine 7 

MinION Illumina 

Sensory histidine kinase in two-
component regulatory system with 
CpxR. 

cpxA/R cpxR/A 

Sensory histidine kinase in two-
component regulatory system with 
OmpR. 

envR/Z envR 

Sensory histidine kinase in two-
component regulatory system with 
BaeR.  

baeS/R baeS/R 

Sensory histidine kinase in two-
component regulatory system with 
EvgA. 

evgS evgA/S 

Undecaprenyl-diphosphatase uppP - 

Bifunctional polymyxin resistance 
protein ArnA 

yfbG - 

Aminoglycoside/multidrug efflux 
system 

acrB/D acrE 

Protein Urine 8 

MinION Illumina 

β-Subunit of bacterial  RNA 
polymerase  

rpoB rpoB 

Macrolide 2'-phosphotransferase* mph(A)  

Elongation factor EF-Tu2 tufP  

Multidrug resistance protein emrA/B/K/Y emrE/K/A/R/B/Y 

Multidrug resistance transporter 
protein 

mdtA/B/C/D/E/F/G/

K/L/H 

mdtL/E/H/G/K/C/ 

F/O/D/P/B/A 

Multidrug resistance transporter 
protein 

ompF ompF 

Aminoglycoside/multidrug efflux 
system 

acrE /D acrE /F/D 

Outer membrane channel protein tolC tolC 

DNA-binding transcriptional dual 
regulator 

soxR soxR 

DNA-binding transcriptional dual 
regulator 

marA marR/A 

DNA-binding response regulator in 
two-component regulatory system 
with PhoQ 

phoQ/P phoQ/P 

DNA-binding transcriptional dual 
regulator 

crp crp 

DNA-binding transcriptional dual 
regulator 

gadX gadX 
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Protein name Gene detected 

Urine 8 

MinION Illumina 

Sensory histidine kinase in two-
component regulatory system with 
CpxR. 

cpxA/R cpxR/A 

Sensory histidine kinase in two-
component regulatory system with 
OmpR. 

envR/Z envR 

Sensory histidine kinase in two-
component regulatory system with 
BaeR. 

baeS/R baeR 

Sensory histidine kinase in two-
component regulatory system with 
EvgA. 

evgA/S evgA/S 

Bifunctional polymyxin resistance 
protein ArnA 

yfbG - 

DNA-binding protein H-NS hns - 

Protein Urine 9 

MinION Illumina 

β-Subunit of bacterial  RNA 
polymerase  

rpoB rpoB 

Multidrug resistance protein mdtB/C - 

Multidrug resistance protein emrB/D/R - 

Sensory histidine kinase in two-
component regulatory system with 
BaeR. 

baeR - 

Multidrug resistance transporter 
protein 

ompF - 

Sensory histidine kinase in two-
component regulatory system with 
CpxR. 

cpxR, cpxA - 

DNA-binding response regulator in 
two-component regulatory system 
with PhoQ 

phoQ - 

Aminoglycoside/multidrug efflux 
system 

acrD - 

Protein Urine 10 

MinION Illumina 

β-subunit of bacterial  RNA 
polymerase  

- rpoB 

Multidrug resistance protein emrD - 

Multidrug efflux system protein mdfA - 

Aminoglycoside/multidrug efflux 
system 

acrR acrR 

Legend: *Plasmid-or integron-mediated but affecting agent with little anti-Gram-
negative activity.
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Chapter 4Chapter 4Chapter 4Chapter 4    

DICSUSSIONDICSUSSIONDICSUSSIONDICSUSSION    
 

Culture-based methods take c. 24-72 h to identify bacteria and to determinate 

which antibiotics can be used for definitive treatment. During this period patients 

receive empirical antibiotics, but these might be inadequate or disproportionate. 

Fast, precise identification of bacteria and their resistances has the potential to 

resolve this situation, ensuring that (i) appropriate treatment can be prescribed at an 

early stage and (ii) our diminishing antibiotic reserves are better managed. 

The main purpose of this study was to develop and evaluate rapid diagnostics to 

identify pathogens and resistances directly from urine samples for high-risk urosepsis 

patients. Urine was investigated because UTIs are the source of many septic episodes, 

especially with E. coli, which is now the commonest agent of bacteraemia in the UK. 

Moreover, urine is a relatively ‘easy’ specimen to test because the collection process 

is not invasive, and infected urine contains high numbers of bacteria compared to 

other biological samples such as blood, tissues, cerebrospinal fluid, where bacteria 

are hugely outnumbered by human cells, making analysis more difficult. Unlike 

respiratory secretions, urines rarely contain large numbers of commensal flora. 

Methodologies developed for urine coupled with human cell depletion nevertheless 

may transfer to other specimens and provide a swifter microbiological analyses in 

urgent cases than currently possible. 

There are several methods that could potentially be used to accelerate 

diagnostics. In our study we evaluated two approaches: (i) MALDI-TOF for bacterial 

identification and β-lactamase differentiation combined with multiplex tandem real-

time PCR for antibiotic resistance gene detection, and (ii) MinION sequencing to 

simultaneously identify both pathogens and their resistances.  

In the first approach pathogen identification from urine could alternatively be 

performed by PCR, as evaluated in some studies (Lehmann et al., 2011, Cybulski et 

al., 2013). PCR has greater sensitivity (3-100 cfu/mL) (Lehmann et al., 2011) than mass 

spectrometry (>105 cfu/mL) but is limited to detecting those species sought by the 



219 | P a g e  
 

primers or probes, whereas MALDI-TOF can identify the full range of pathogens.  On 

this basis, we preferred mass spectrometry for bacterial identification and optimized 

a procedure for sample preparation directly from urine.  

Multiplex-tandem PCR was preferred over other PCR methodologies to seek 

common resistance genes among Enterobacteriaceae because (i) it seeks to establish 

conditions whereby amplicons of interest are first enriched by limited PCR and then 

amplified, whereas simpler multiplex PCR creates condition where less-efficiently 

amplied targets may be missed. Three different interations of the PCR assay were 

explored.  

In the second approach, the sequencing-based nanopore technology aimed to 

provide a comprehensive method to identify bacteria and their acquired resistance 

genes in a timeframe similar (or even faster) than the MALDI-TOF/PCR approach. 

Although Ion-Torrent sequencing has been used directly from urine (Hasman et al., 

2014), this is slower and more laborious than the nanopore method explored here. 

As background, an understanding of the local epidemiology of UTI is very 

important. Consequently, an epidemiological surveillance of urinary pathogens was 

performed. 

Different urine samples and numbers of urine samples were used for evaluation 

of each of the approaches. Sample collection reflected a deliberate strategy aiming 

to seeing to represent (i) pathogen diversity, (ii) β-lactamase producing strains and 

(iii) various antibiotic resistance genes. Cost factors caused that fewer sample could 

be analyzed by MinION, MALDI-TOF and PCR. Throughout, the aim was to 

demonstrate proof of concept with appropriate sample selection, not to directly 

compare (with the same sample) the performance of the difference approaches 

considered. 

 

4.1 Epidemiological study 

The literature suggests that approximately 60-80% of urine samples sent to 

clinical laboratories in Europe for UTI analysis are negative for infection (Pieretti et 

al., 2010; Falbo et al., 2012; De Rosa et al., 2010). This view was supported by our 
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epidemiological study, where 61.6% (July) and 59.3% (November) of all submitted 

urines were negative for infection based on automated microscopy screening (Iris) or 

culture analysis. High numbers of negative results may reflect i) routine screening of 

pregnant women and/or patients with vaginal symptoms, seeking to rule out UTIs, 

(ii) routine culture on urines from children, neonates, patients in ITU and high-risk 

groups such as patients with immunodeficiency or those receiving chemotherapy or 

corticosteroids, iii) infections caused by fastidious pathogens difficult to cultivate on 

standard medium, iv) patients with small numbers of bacteria that do not meet the 

criteria for significant infection (>105 cfu/mL) or v) UTI being present but antibiotic 

therapy being implemented before culture was performed, preventing recovery of 

the bacteria.  

One of the major challenges of analysis is the poor linkage of microbiology and 

clinical data. Here, as in many studies, there was no information on the laboratory 

system on whether the submitted urine specimens came from patients with 

symptomatic upper or lower UTIs, asymptomatic bacteriuria, recurrent UTIs, and/or 

whether they were routine screens. The use (or not) of point-of-care tests e.g. 

dipsticks in clinical settings and by GPs was also unknown and there were no data on 

whether or not empirical antibiotic therapy had been implemented based on clinical 

symptoms. 

The recent PHE ESPAUR report noted that nationally 52.4% of positive urine 

cultures were from general practices in 2014 (PHE, 2016a). In our study, most (>67%) 

of all the positive urine cultures were from GP patients in all age group. Negative 

cultures dominated in more specialized locations i.e. Hospital In- and Out- patients, 

Admission Units, probably reflecting greater routine screening of new patients and 

monitoring of treatment in these care settings. The number of positive urine cultures 

for these latter units grew slowly with the age group. The reason for this increase 

might be associated with screening elderly admission with non-specific symptoms or 

screening catheterize patients in order to prevent complicated UTIs. 
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4.1.1 Aetiology of UTIs 
 

It is generally accepted that the incidence of urinary infection varies with sex, age 

and the presence of underlying genitourinary abnormalities. Women are more prone 

to UTI than men; this is associated with the anatomy of urinary system, where the 

female urethra is much shorter and closer to the anus. This sex distribution was 

confirmed in our study: in both months 67% of all submitted urines were from 

women. Age is the second factor that has an impact on the risk of developing UTI. 

Unsurprisingly, for both genders, the highest numbers of urine examinations were 

performed for the elderly group, aged 66-85 years, who also accounted for the 

highest proportion of positives. There are many factors highlighted in the 

introduction (see Section 1.4) that tend to increase the risk of complicated UTIs in 

elderly populations, although uncomplicated UTIs, especially cystitis, mostly occur in 

the community among women aged <50 years old.  

UTIs also occur in hospitals, and a Pan-European study reported a general 

incidence of hospital-acquired UTIs at 10.65 per 1000 patient bed days (Bouza et al., 

2001) to which must be added patients who are admitted with a complicated or 

ascending UTI. In the UK, these latter patients would ordinarily have urine taken in 

the Admission Unit or Accident and Emergency. Although the prevalence of 

nosocomial-acquired UTIs varies widely between countries and hospitals, one study 

performed by Bjerklund Johansen et al. (2007) suggests an overall prevalence of 

hospital-acquired UTIs of around 10% in Europe and 14% in Asia (Bjerklund Johansen 

et al., 2007). In our study, approximately 14% of the urines submitted for examination 

were from Hospital In-patients in both months with the proportion of urines 

submitted for Admission Units was slightly higher in November (12.5%) than in July 

(11.1%).  The differences between the two months might reflect general “winter 

pressure” with non-specific signs and symptoms of infections in November. Although 

most “winter pressure” patients have more admissions because of respiratory tract 

infection, urines are likely to be taken to exclude alternative origins of infection.  
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4.1.2 Epidemiology of UTIs 
 

The ARESC study (Antimicrobial Resistance Epidemiological Survey on Cystitis) 

carried out in nine European countries reported that E. coli was responsible for 76.7% 

of uncomplicated UTIs, ranging from 68.1% in Austria to 83.8% in France (Schito et 

al., 2009). Similar proportions of E. coli were found here- 68% in both July and 

November. Overall, E. coli predominant in all age ranges, and in all location types. 

Distributions of other etiological agents causing UTIs were similar to found by other 

studies (Farrell et al., 2003; Linhares, 2013; Lu et al., 2012). 

 

4.1.3 Antibiotic resistance  
 

Among E. coli, resistance rates to antibiotics used to treat UTIs vary widely 

between continents, countries, and also between community and hospital-acquired 

urinary infections. A UK study of the antimicrobial susceptibility of E. coli from 

primary and secondary care showed the highest rates of resistance to trimethoprim 

(range: 30.3% to 41.8%) and ampicillin/amoxicillin (range: 55%-57.7%) (PHW, 2016;  

HPS, 2016; PHE, 2016a). In our study we observed similarly high resistance rates to 

these agents, through with significant fluctuations according to time and locations 

for both antibiotics e.g. 54.3% resistance in July vs. 61.3% resistance in November for 

amoxicillin, and 45% in July vs. 34.7% in November for trimethoprim in Hospital 

Inpatients, and 35.5% resisiance in July vs. 17.9% resistance in November for 

trimethoprim in Hospital Outpatients.  This may indicate seasonal fluctuation in 

strains or chance, but does suggest that the appropriateness of prescribing may 

fluctuate. 

The high resistance rates for trimethoprim in the UK led to review of treatment 

guidelines for UTIs in 2014 and to substitution of nitrofurantoin for trimethoprim as 

the first line empirical therapy for uncomplicated cystitis. This new recommendation 

caused trimethoprim use to fall by 14.5% between 2014/15 (PHE, 2016a). Although 

the nitrofurantoin reststance rate remained stable at 3-5% for E. coli -and slighly 

higher, at 10-20%, for other coliform species- in both community and nosocomial-



223 | P a g e  
 

acquired UTIs in the UK in the years 2005-2014, trimethoprim remains a better oral 

agent against susceptible strains than nitrofurantoin for several reasons: 

Firstly, trimethoprim can be used to treat both cystitis and incipient ascending 

infection, if the pathogen is susceptible, whilst nitrofurantoin attains low 

concentration in renal tissue and the bloodstream and therefore is inactive for 

incipient pyelonephritis or bacteraemia (Oplinger & Andrews, 2013).  

Secondly, effective antibiotic therapy takes 3 days for trimethoprim, compared 

to 5-7 days of nitrofurantoin (Gupta et al., 2011). 

Thirdly, in the absence of acquired resistance, trimethoprim is active against both 

Enterobacteriaceae and Gram-positive bacteria, though its use for enteroccocal UTIs 

is controversial as enterococci, despite low MICs (Gordon et al., 2003; Hoban et al., 

2003) may be resistant because these bacteria can absorb and use the exogenous 

folic acid present in urine (Wisell et al., 2008). Trimethoprim is more active against 

UTIs caused by Staphylococcus spp. and Streptococcus spp. whilst nitrofurantoin may 

not be effective in the alkaline urine produced by urease-producing bacteria e.g. S. 

saprophyticus. 

Fourthly, some bacteria e.g. Proteus spp., Morganella morganii, Providencia spp. 

and Serratia spp. are inherent resistant to nitrofurantoin (Livermore et al., 2001).  

Fifthly,  trimethoprim is mostly well-tolerated by patients of all ages whilst the 

use of nitrofurantoin in moderate renal impairment or in long-term/repeated courses 

may be associated with pulmonary toxicity (Williams & Triller, 2006). 

Lastly, nitrofurantoin requires good renal function to achieve adequate 

concentration in the urine and is only acceptable if eGFR is >45 mL/min, whereas 

there is no such need for trimethoprim (MHRA, 2014) 

Treatment of upper UTIs eg. pyelonephritis in the community is a challenge, as 

most oral drugs suitable for cystitis such as nitrofurantoin, pivmecillinam and 

fosfomycin are ineffective. The growing spread of Enterobacteriaceae producing β-

lactamases including ESBLs (mostly CTX-M-15 in E. coli ST131) or mutationally 

derepressed of AmpC types in e.g. Enterobacter spp. and Citrobacter freundii (Meier 



224 | P a g e  
 

et al., 2011) in the community or nosocomial UTIs complicates treatmens. Most ESBL 

producers are resistant against many agents i.e. trimethoprim, quinolones, oral 

cephalosporins and more variably, co-amoxiclav (Pallett & Hand, 2010). In this case 

patients require hospitalization for intravenous carbapenems, 

piperacilin/tazobactam (contingent on susceptibility data) and aminoglycosides, 

again contingent on susceptibility data, even when they ordinarily could be managed 

in the community.  New combination of cephalosporins with β-lactamase inhibitors: 

i.e. ceftazidime/avibactam and  ceftolozane/tazobactam have proved to be active 

against Enterobacteriaceae producing ESBLs including TEM, SHV, CTX-M types,  also 

AmpC producers in the case of ceftazidime/avibactam (Coleman et al., 2014; Flamm 

et al., 2014; Sader et al., 2015; Wagenlehner et al., 2015; Liscio et al., 2015), however 

they are expensive, meaning that swift recognizion of those cases that retain 

susceptibility to older agents might be advantages both in term of consuming broad 

spectrum antibiotics but also cost-effective. 

 

4.1.4 Seasonal variations in UTIs 

Seasonal variations in urinary infection rates for Gram-negative bacteria have not 

been widely investigated or described in literature. However, several studies stress 

that bloodstream infection rates for E. coli, E. cloacae and K. pneumoniae increase 

significantly during the summer period (Chazan et al., 2011; Anderson, 1983; Al-

Hasan et al., 2009; Eber et al., 2011), and for E. coli at least, most of these 

bacteraemia are secondary to UTIs.  Seasonal variations for UTIs and contingent 

bacteraemia might be associated with several factors: (i) meteorological parameters 

(high temperature, humidity) modulating host vulnerability e.g. via dehydratation 

and sweating, (Falagas et al., 2009), (ii) environmental factors (water and food 

contamination), (iii) seasonal fluctuation in host immune function (Freeman et al., 

2009) or  (iv) seasonal changes in bacterial virulence strain prevalence and antibiotic 

resistances (Freeman et al., 2009).  

Higher temperatures during the summer may promote the growth of bacteria 

colonizing the skin and indwelling devices e.g. catheters; also there may be increased 
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contamination of food and water sources with pathogenic E. coli during the summer 

(Perencevich et al., 2008; Alcorn et al., 2013). Hot weather may also induce 

dehydration, leading to decreased diuresis, more concentrated urine and less 

frequent voiding. It might also lead to moisture in the perineum, facilitating bacterial 

transfer from the rectum to the urethra (Anderson, 1983). Some authors are more 

skeptical and Deeny et al. (2015) suggested that meteorological factors i.e. higher 

temperatures and humidity during summer period rarely have an impact on seasonal 

infections in the UK, especially in the (colder) north of England (Deeny et al., 2015). 

A high incidence of community-acquired UTIs in women, caused by E. coli, could 

also be explained by increased sexual activity during the summer months (Freeman 

et al., 2009).  

In our epidemiological study we did not analyze the patient comorbidities on the 

seasonality of UTIs. However, we observed a slight increases in emergency admission 

of patients aged >65y in November, boosting the number of positive cultures.  

E. coli strains vary widely in their propensity to cause disease.  

Enterotoxigenic and enterohemorrhagic E. coli strains causing diarrhoea seldom 

achieve asymptomatic gut colonization whilst E. coli strains causing extraintestinal 

infections (ExPEC) colonize the intestinal tract, and have virulence genes  adapting 

them to do so (Johnson, 2003). Certain ExPEC clonal groups i.g. ST73, ST131, ST95,  

ST69, ST12 account for a large and growing proportion of E. coli UTIs in humans 

(Giedraitienė et al., 2017; Rogers et al., 2011; Johnson et al., 2009; Day et al., 2016).  

In analyzing the seasonality of urinary infections it would be useful to determine 

whether or not the climatic and/or environmental factors influence the occurrence 

only of primary uncomplicated UTI but also complicated and ascending UTIs (which 

might explain the summer peak of bacteraemia). One study in South Korea showed 

that acute pyelonephritis occurs more commonly during the summer season in all 

age groups (Ki et al., 2004). Taking into account that (i) the majority of hospital-

acquired UTIs in the UK are associated with long-term catheters, and (ii) the catheter-

UTIs account for 8% of all nosocomial bacteraemias (SMCAPG, 2014) it would be 

interesting also to perform a study of prevalence of catheter-acquired UTIs and 

contingent bacteraemias in the summer and winter periods and link these to possible 

contributory factors.  
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We observed a slightly greater number of urine samples submitted for 

examination in July (n=9558) than in November (n=8991), again supporting the view 

of seasonality of UTI. Anderson (1983) also noted a higher number of GP submissions 

in the summer period (Anderson, 1983). However, a caution is that our 

epidemiological surveillance was performed in one year, and for only two months. To 

fully test the seasonality of UTIs in Norfolk the study needs to be repeated analyzing 

the data for a minimum of two years. Explaining seasonal variations of UTI could 

guide infection prevention interventions.  

 

4.1.5 Pathogen distribution and patients group 

Although the overall proportions of pathogens isolated was similar between the 

two months studied, we observed differences in the pathogen distribution for female 

population only, between July and November period. Ipe et al (2013) also found that 

some bacteria disproportionately affect different patient populations, particularly in 

continuously asymptomatic bacteriuria. For example, E. coli was less prevalent 

among healthy men and patients with indwelling catheters whilst Enterococcus spp. 

were cultured from almost a quarter of bacteriuric healthy men, but only 3–4% of 

bacteriuric pregnant women (Ipe et al., 2013). In our study we observed that some 

pathogens more frequently isolated in particular age groups of women than men.  

One example is S. saprophyticus, which was detected more often in the female 

population aged 16-45 than in men, as also found in another study (Jordan et al., 

1980). This pathogen also occurred twice as often in November than in July. Finally 

group B streptococci was mostly seen in women in the age groups 16-45y and 45-

65y, similar to the situation in other studies (Edwards & Baker, 2005).  

Enterococcus spp. were the second commonest pathogens after E. coli among 

the female population aged <15 y for both months. Although there was a paucity of 

clinical details, this might be associated with anatomical abnormalities, recurrences 

caused by inappropriate empiric antibiotic therapy, renal scarring, and vesicoureteral 

reflux (Bitsori et al., 2005; Marcus et al., 2012). We also noted that Enterococcus spp. 

were isolated more frequently in July than in November in adults and elderly 

populations (46-65y and 66-85y) for both genders. Staphyloccocus aureus rarely 
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cause bacteriuria in healthy adults (Al Mohajer & Darouiche, 2012), agreeing with our 

results (<0.7%); however this pathogen is relatively more prevalent among pregnant 

women (Imade et al., 2010), diabetic patients (Nicolle, 2006), and community-

dwelling elderly men (Woodford et al., 2011).  

Among Gram-negative species Pseudomonas spp. and Proteeae were the third 

and fourth most frequent pathogens isolated from elderly populations for both 

genders; again these species are linked to indwelling catheters and 

instrumentalisation (Hooton et al., 2010; Nicolle, 2014; Nicolle, 2012).  

 

4.1.6 Empirical treatment  

Understanding local resistance rates in both GP and hospital settings is critical to 

deciding when to change guideline recomendations for empirical therapy, including 

in UTIs. The risks of treatment failure evidently are important to the choice of 

treatment options.  A threshold of 20% resistance in uncomplicated UTIs and a lower 

cut off 5-10% resistance in complicated UTIs could be used as an indicator to change 

empirical treatment. 

 Monitoring of antibiotic use and the spread of resistances in the communities 

and hospitals is necessary for effective antimicrobial stewardship. In 2014 the 

majority of antibiotics in England were prescribed for GP patients (74%) followed by 

hospital in-patients (11%) and hospital out-patients (7%) (PHE, 2016a). Different 

studies report discordant results for the relationship between antibiotic use and 

antibiotic resistance in urinary E. coli (Bartoloni et al., 2004; Colgan et al., 2008). 

Nevertheless a strong relationship between increases in trimethoprim prescription 

rates resistance was showed by (Vellinga et al., 2012; Metlay et al., 2003).  

In the UK, national prescribing data are available only at general practice level 

(Donnan et al., 2004). However, the relation between antibiotic resistance and 

individual patients’ level should be taken into account when antibiotic therapy is 

adjusted. Donnan et al. (2004) showed that resistance to trimethoprim was 

significantly associated with patients’ age, gender and -critically- individual level 

exposure to trimethoprim, and other antibiotics. Steinke et al. (2001) stressed that 
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trimethoprim resistance was independently associated with exposure not only to 

trimethoprim but also other antibiotics e.g. ciprofloxacin (Steinke et al., 2001). 

Previous travel and migrations from the countries where resistance rate is high i.e. 

Middle East, south Asia, is also a risk factor for acquired multidrug resistant bacteria 

(Hassing et al., 2015). One study in Birmingham showed significant difference 

between carriage CTX-M-15 E. coli producing strain in those with European group 

(8.1%) vs. Middle East/South Asian (22.8%) (Wickramasinghe et al., 2012). These 

observations underscore the overall challenge for empiric antibiotic therapy and how 

risk of inadequate therapy can vary among individuals and groups. 

4.1.7 Where rapid diagnostic might help 
 

The present survey indicates several places and settings where a rapid diagnostic 

might be useful. 

Firstly, trimethoprim has been largely abandoned in UTIs owing to high 

resistance rates. Nonetheless, approximately 65% of Enterobacteriaceae responsible 

for UTIs remains susceptible to trimethoprim. Knowing that E. coli predominant in 

community and hospital acquired UTIs, resistance rates for trimethoprim is high but 

trimethoprim is a better agent for UTIs than nitrofurantoin. It is potentially valuable 

to develop and implement rapid and automated point-of-care methods for 

simultaneously E. coli and trimethoprim-resistance profiling in the community. Much 

the same points could be made in the case of qluoroquinolones. Such a test may 

improve prognosis, management of UTIs and might also save patient hospitalizations 

and diminishing the use of antibiotics i.e. IV carbapenems or piperacillin/tazobactam 

that might better be reserved to treat severe infections, whether or not of urinary 

orgin.  

Secondly, since the number of emergency admission for complicated UTI for the 

population aged >66 years old increased by 100% in the period 2003-2012 in the UK 

(PHE, 2015), and the number of bloodstream infections due to E. coli (which mostly  

have a urinary origin) has been increasing year on year with an estimated mortality 

rate 18.2% (Deeny et al., 2015) this indicates a potential location (i.e. Acute Medical 
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Units) and patients with suspected bacteremia where a rapid diagnostic might 

usefully be implemented. 

Given the importance of E. coli in UTIs and, among these importance the global 

spread of clonal group ST131, which is often more resistant than other STs (Day et 

al., 2016), indicates it might be beneficial to rapidly seek ST131 in urine samples, e.g. 

by a specific PCR. 

In all these cases the swift detection of pathogen and resistance has the potential 

to guide early therapy, long before culture results would ordinarly be obtained.  

Thirdly, short-term fluctuations in susceptibility rates, as seen here for 

amoxicillin and trimethoprim in both months for Hospital Inpatients and Outpatients, 

show the weakness to particular units of empitical therapy guidelines whose 

appropriateness likewise may vary from month to month. It should also be stress that 

the higher the resistance rate, the more likely it is that any empirical therapy will 

prove inappropriate. In context the resistance rates for Enterobacteriaceae and non-

fermenters Pseudomonas spp. isolated from UTIs in the East Anglia are generally 

lower than in North Western England and in London. Understanding the local 

epidemiology and resistance rates may help to identify particular locations and 

patient group where rapid diagnostics- whether broad-based or specifically seeking 

trimethoprim resistance might usefully be implemented.  

 

4.2 Rapid bacterial identification directly from urine 
samples using MALDI-TOF 

 

MALDI-TOF has been widely adopted as a rapid and powerful diagnostic tool in 

clinical microbiology laboratories. In comparison with conventional methods, e.g. 

biochemical tests, microscopy and culture, MALDI-TOF significantly shortens the time 

required for identification. Numerous studies have described the power of MALDI-

TOF for bacterial and fungal identification to species level using colonies taken from 

culture plates. Identifications are obtained in few minutes without a long sample 

preparation procedure (Bizzini et al., 2010; Marklein et al., 2009; Wang et al., 2014a).  

MALDI-TOF has also been successfully used for direct identification without sub-
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culture from the growth in blood culture bottles, and directly from urine (Hong et al., 

2014; Ferreira et al., 2011; Ferreira et al., 2010; Rossello et al., 2014; Wang et al., 

2013b; Haiko et al., 2016).  Recently, other applications have been described, 

focusing on the detection of antibiotic resistance mechanisms (Jung et al., 2014; 

Hrabák et al., 2014; Oviaño et al., 2014; Wang et al., 2013a). 

The first group to use MALDI-TOF directly on urine was Ferreira et al. (2010). 

They analyzed 260 urine specimens detected as potentially infected by a flow 

cytometry screening device (UF-1000i, bioMérieux). The samples were processed in 

parallel by culture. Correct identifications were obtained, at species and genus levels, 

for 79.2% and 80% of isolates, respectively by MALDI-TOF. The hugely dominant 

specimen was E. coli- accounting for 94.2% of all isolates (Ferreira et al., 2010). 

 In our study the agreement between MALDI-TOF and conventional culture was 

slightly lower, at 71.8%. This may partly be because 44% of the positive urines had 

high (>105) numbers of WBC/mL, which may make analysis more difficult. Another 

key differences from Ferreira is that E. coli was only present in 25 out of the 96 

culture-positive urines. This low proportion of E. coli reflected a deliberate strategy 

of sample collection, seeking to represent pathogen diversity rather than the 

dominance of E. coli presented in the epidemiological study. Importantly, we 

represented Gram-negative as well as Gram-positive bacteria, and these are harder 

to lyse owing to a more robust cell wall, thus presently a greater challenge.  

MALDI-TOF identified different species for 12/81 urines compared with culture 

performed at the clinical laboratory, however the same isolates from direct 

identification were re-identified on MALDI-TOF from these cultivated urines 

indicating that these urines may contain mix population of bacteria with overgrowth 

of the second species between initial culture and sub-culture during mass 

spectrometry analysis, or that original identification were in error. 

The sample preparation method directly from urine for MALDI-TOF was originally 

described by Ferreira et al. (Ferreira et al., 2010) and has been adopted or slightly 

modified by others including (Wang et al., 2013b; Rossello et al., 2014; Hong et al., 

2014) as well as in this study. This procedure consists of a slow centrifugation step to 

pellet human cells (2,000 g for 30 sec) then a faster centrifugation step to collect the 

bacteria (15,500 g for 5 min), followed by washing and protein extraction. Sánchez-
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Juanes et al. (2014) incorporated the step of processing the urine samples using 10% 

SDS (Sánchez-Juanes et al., 2014).  In our study, and in order to remove the highest 

number of human cells, we found it useful to increase the duration of the first 

centrifugation to 2 min at 2,000 rpm (300g) and then treated the bacterial pellet with 

1% SDS and lysozyme, which improved detection and identification for Gram-positive 

bacteria. We found that these modification led to much higher MALDI-TOF scores, 

and greater accuracy in the identification of Gram-negative and Gram-positive 

pathogens from urines with high numbers of human cells. 

The major limitations of MALDI-TOF for urine analysis nevertheless is the 

diagnostic threshold of 105 cfu/mL and the challenge of identification in mixed 

cultures. Direct MALDI-TOF failed for 15/96 infected urines mainly due to counts 

below the detection limit (<105 cfu/mL).  In the study by (Schubert et al., 2011), where 

analysis was performed on growth from blood culture bottles, at least one isolate 

was correctly identified in mixed cultures; in our study both bacterial species were 

correctly identified in 16/27 mixed urines.  

In general better scores for identification were achieved for Gram-negative bacilli 

than Gram-positive cocci. This difference may reflect the thicker peptidoglycan cell 

wall of Gram-positive bacteria (De Carolis et al., 2014). The thinner cell walls of Gram-

negative bacilli are more easily lysed and intracellular proteins more easily released 

for detection. 

A potential advantage of MALDI-TOF over conventional urine microbiology is that 

it can detect urogenital pathogens not able to grow on standard media for urinary 

infections e.g. Acinobaculum schalii or Gardnerella vaginalis; both these species were 

encountered in the present study.  

Identification by MALDI-TOF is more precise than with chromogenic agars which 

do not distinguish between e.g. Klebsiella spp., Enterobacter spp. or Citrobacter spp. 

which are “lumped” as ‘coliforms’, nor among species from the Proteeae family. This 

is important as e.g. Klebsiella spp. are usually sensitive to co-amoxiclav whereas 

Enterobacter spp. or Serratia spp. are resistant. Another example is that Proteus 

mirabilis generally is susceptible to co-amoxiclav and gentamicin whilst Providencia 

spp. and Morganella morganii mostly are resistant. Many laboratories in the UK do 

not identify uropathogens to species level and so cannot readily draw this infections 
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on susceptibility (Chin et al., 2016). A recent survey of laboratory methods in England 

carried out in 63 laboratories showed that 80% used chromogenic agar to identify E. 

coli, and that only 15% used MALDI-TOF (on cultures, not directly) for further 

differentiation (A. MacGowan, unpublished results). 

Although the current sample preparation is not automated the present study 

shows that MADLI-TOF could be used to deliver the organism’s identity within < 1 

hour in urgent cases e.g. urosepsis. If combined with resistance genes identification 

using PCR, or detection of antibiotic resistance mechanisms also on MALDI-TOF, it 

could significantly increase the patient’s likelihood of receiving early targeted 

appropriate therapy.  

 

4.3 Detection of β-lactamase activity directly from urine 
samples and their cultivated isolates from MALDI-TOF 

 

Among Enterobacteriaceae, most resistance to β-lactam antibiotics is conferred 

by production of β-lactamase enzymes. AmpC, ESBLs and carbapenemases all play 

important roles in the resistance to modern β-lactams. Recently  MALDI-TOF has been 

shown to be able to differentiate β-lactamases within 1-4 hours from cultivated 

isolates of various species (Jung et al., 2014; Jung et al., 2016; Sparbier et al., 2012; 

Lasserre et al., 2015), also directly from urines (Oviaño et al., 2017) and from the early 

growth harvested from blood cultures (Oviaño et al., 2014; Ghebremedhin et al., 

2016; Carvalhaes et al., 2014). These approaches are based on the monitoring of 

hydrolysis of the central β-lactam ring of the antibiotic during incubation with the 

bacteria. Disappearance of the mass peak for the native β-lactam and possible 

appearance of a new peak corresponding to the hydrolysed form indicates hydrolysis 

and predicts resistance.   

Most studies have focused on the detection of carbapenemases (Oviaño et al., 

2017; Hoyos-Mallecot et al., 2014b; Sakarikou et al., 2017) because (i) of the high 

profile of these enzymes, which undermine the utility of “last resort” carbapenem 

antibiotics against multi-drug resistant Gram-negative bacteria, and (ii) of the 

worldwide spread of carbapenem-resistant Enterobacteriaceae (Logan & Weinstein, 

2017; Kim et al., 2017; Findlay et al., 2017). However for practical purposes it might 
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be better to seek ESBLs, as these are commoner than carbapenemases in UTIs and 

have more straightforward treatment implications (avoid cephalosporins, and owing 

to frequently linked resistance-fluoroquinolones). Detection of ESBLs has a great 

potential impact on the antimicrobial therapy because cephalosporins are safe and 

effective agents to treat UTIs so long as these enzymes are absent. Swift identification 

of patients appropriate for cephalosporin therapy might reduce carbapenem use. We 

therefore evaluated the utility of MALDI-TOF to detect cephalosporin hydrolysis in 

infected urines and in the isolates cultivated from them. For this purpose we tested 

ESBL-and AmpC-producing Enterobacteriaceae resistant to 3rd and 4th generation 

cephalosporins. These included cefotaxime, ceftazidime and cefpodoxime, which are 

widely recommended for phenotypic ESBL screening, also cefepime, which is more 

stable to AmpC enzymes, and ceftriaxone.  

 

4.3.1 Peak pattern for native and hydrolysed cephalosporins  

The first study aiming to detect hydrolysis of different β-lactam antibiotics using 

MALDI-TOF was reported by (Sparbier et al., 2012). They tested clinical isolates of E. 

coli producing ESBLs and carbapenemase-producing and non-producing K. 

pneumoniae strains with sodium/or potassium salts of ampicillin, piperacillin, 

ceftazidime, cefotaxime, ertapenem, meropenem, and imipenem. They then 

analysed the peak profile of the different degradation products and showed that each 

antibiotic gave its own unique peak profile. Hydrolysis resulted in the disappearance 

of the native peak pattern of all tested antibiotics. These data were supported by our 

study, where each of the cephalosporins tested had a different peak profile, which 

was altered by incubation with the β-lactamase positive (CTX-M-15 or TEM-10) 

controls but not by the β-lactamase-negative controls.  

The applicability of the MALDI-TOF-based hydrolysis assays using cefotaxime and 

ceftazidime has been previously described by (Sparbier et al., 2012; Oviaño et al., 

2014; Li et al., 2014), but no data were generated for cefepime, cefpodoxime and 

ceftriaxone. 

Analysis of native cephalosporins and these incubated with susceptible bacteria 

revealed the mass spectrum peaks at 481 Da for cefepime, 428.58 Da for 
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cefpodoxime, 554.58 Da for ceftriaxone, 456 Da for cefotaxime and 547 Da for 

ceftazidime, all of which were lost during incubation with resistant isolates. Direct 

hydrolysis products (with a mass shift +18 Da) or decarboxilated hydrolysed products 

(mass shift of -44 Da) were not observed for any cephalosporin and it is likely that 

complex fragmentations occur.  

We also detected the cephalosporin group structure peaks at 396-398 Da for 

cefepime and ceftriaxone and two peaks at 577.15 Da and 621.73 Da for ceftriaxone 

only.  Analysis of native cefotaxime and ceftazidime showed also peaks at 478 Da for 

cefotaxime and 468 Da for ceftazidime-possibly reflecting elimination of pyridine 

ring. All of these peaks were lost during incubation with the positive controls without 

appearance of simple hydrolysis products, again suggesting fragmentations.  

 

4.3.2 Detection of cephalosporin-hydrolysing activity 

Although EUCAST and CLSI guidelines now recommend reporting susceptibility 

testing results based on phenotypic behaviour only without editing of categorical 

results (EUCAST, 2017; CLSI, 2013) distinguishing cephalosporin-resistant strains with 

AmpC and ESBL enzymes is important epidemiologically and to select adequate 

antibiotic therapy. In reviewing the cephalosporin-hydrolysis results in relation to 

phenotypic susceptibility data and genotypes, we observed good agreement for ESBL 

producers but less so for AmpC hyperproducing strains. Cephalosporin-susceptible 

isolates almost always gave no hydrolysis of any cephalosporins.  

Almost all ESBL producers hydrolysed 4 or 5 of the cephalosporins tested. On this 

basis, a reasonable method to swiftly detection of ESBL producing 

Enterobacteriaceae would be to set up a panel of 3rd and 4th generation 

cephalosporins, and if hydrolysis of any four or more cephalosporins is detected then 

to rule out the use of all cephalosporins for treatment. Even if EUCAST and CLSI 

recommendations to report resistances as ‘found’ for ESBL producers are accepted, 

it should be stressed that most ESBL producers are resistant to cephalosporins.  

Jung et al. (2014) previously demonstrated 100% sensitivity in the detection of 

class A β-lactamase producers among Enterobacteriaceae using cefotaxime from 
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positive blood culture (Jung et al., 2014). Another study that showed good accuracy 

in distinguishing cefotaxime-resistant and cefotaxime-susceptible E. coli strains, also 

from positive blood cultures, was presented by (Foschi et al., 2016). Although the 

authors did not characterize the cefotaxime-resistance mechanism the sensitivity of 

the assay was 94.7%. Oviaño et al. (2014) analysed hydrolysis products based on the 

disappearance of native mass peaks of cefotaxime and ceftazidime alone and in 

combination with clavulanic acid. The study achieved 99% sensitivity for the 

detection of ESBL producing bacteria from positive blood cultures (Oviaño et al., 

2014). Here we achieved sensitivity for ESBL detection at 91.4% directly from urines, 

and 98.1% for the isolates grown from them.  

The assay was much less reliable for detecting AmpC activity in urines or their 

isolates. This no doubt reflects the slow hydrolytic activity of AmpC enzymes for 

oxyimino-cephalosporins e.g. cefotaxime, ceftazidime and ceftriaxone (low Vmax 

value) although their affinity is high (low Km values) (Jacoby, 2009; Livermore, 1987). 

Only 1/22 urine containing AmpC producers gave detectable full hydrolysis for two 

cephalosporins and 6/22 urines containing AmpC producers gave hydrolysis for one 

cephalosporin, for the remaining 15/22 urines slow hydrolysis or no hydrolysis were 

seen for the cephalosporins tested. Whilst using the corresponding isolates, 

hydrolysis was detected for at least one cephalosporin with 18/22 organisms, though 

only 1/22 gave demonstrable full hydrolysis all 5 cephalosporins. Overall the 

sensitivity of the assay for AmpC producers was low- 32.4% directly from urines and 

69.7% for bacterial isolates. Another study also demonstrated lower detection of 

sensitivity for AmpC producers than ESBL producers (83% vs. 99%) from positive 

blood culture; similarly as in our study no hydrolysis was observed for ceftazidime 

and cefotaxime for strains carrying blaCMY-2 (Oviaño et al., 2014). 

The total hands-on time directly from infected urines to a hydrolysis profile was 

2.5 h, including sample preparation and MALDI-TOF analysis for most cephalosporins 

except ceftazidime when a longer incubation was needed (4.5 h). All cephalosporins 

could be analysed on the same MALDI-TOF target plate, together with direct 

pathogen identification from the urine specimen, giving a total turnaround time <5 

h. The assay could measure 1-6 samples/target plate with no additional cost. 
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Although the initial costs of mass spectrometry purchase (and the service cost) are 

relatively high, the cost per sample of bacterial identification and hydrolysis testing 

remain low compared with molecular techniques. A similar algorithm has already 

been applied for carbapenemases by (Oviaño et al., 2016; Oviaño et al., 2017). These 

authors used MALDI-TOF for identification of Gram-negative bacilli directly from 

urine using a commercial Sepsityper kit (Brüker) to detect carbapenem-hydrolysing 

isolates using imipenem as a substrate. The assay showed 100% sensitivity and 

specificity for detecting carbapenemase activity including OXA-48 producers within 

90 min from sample reception. 

 Rapid detection of ESBL producers from urine by MALDI-TOF might be used to 

guide therapy especially in urgent cases. For example temocillin or carbapenems 

might be preferred over cephalosporins, co-amoxiclav or ciprofloxacin, to which most 

ESBLs producers are resistant. Although this approach could accelerate adaptation of 

definitive therapy there are five major limitations that have to be overcome:  

 

Firstly, unreliable detection of hydrolysis of AmpC producers. Hyperproduction 

of AmpC can arise as a result of mutational derepression of chromosomal enzymes in 

e.g.  Enterobacter spp. (Sanders & Sanders, 1992; Livermore, 2008) or when AmpC 

types become plasmid-encoded and are acquired (Philippon et al., 2002; Hanson, 

2003). The former is commoner and the risk is predictable from species identification 

or local epidemiology (with a high risk for Enterobacter spp.). To detect cases it might 

also be useful to explore adding first-generation cephalosporins (e.g. cefazolin and 

cephalothin) that are good substrates for AmpC β-lactamases (Jacoby, 2009) to the 

test panel.  

Secondly, the methods cannot detect secondary resistance mechanism, such as 

alterations in outer membranes or efflux pumps which together with the presence of 

ESBL and AmpC enzymes can engender resistance to ertapenem (Livermore et al., 

2012). More generally, the MALDI-TOF hydrolysis assay needs to be further validated 

for “impermeable” E. coli.   

Thirdly, a high input volume (1.5 mL urine/antibiotic) is required, with a bacterial 

density >105 cfu/mL.  
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Fourthly, the manual sample preparation procedure may be too laborious for 

clinical laboratories. It might be possible to minimize hands-on time by developing a 

simple kit, as proposed for MALDI-TOF-based carbapenemase detection (Oviaño et 

al., 2016) 

Lastly, the automated analysis software should be standardized with an option 

to review peak patterns in order to minimize the risk of analytical discrepancies. In 

our study we analyzed the data using commercial automated MBT-STAR-BL software 

for ceftazidime and cefotaxime and the MBT-STAR-BL prototype for the remaining 

cephalosporins. Additionally, we compared the raw peak profile of hydrolysed and 

non-hydrolysed cehpalosporins using manual FlexControl software. We noticed 

discrepancies between automated software and manual analysis for 5/91 urines and 

7/91 cultivated isolates. To resolve these we found it useful to review both raw peak 

profiles and logRQ values obtained from automated analysis. In one study ClinPro 

Tools software (Li et al., 2014) was used to review changes in a mass spectra and 

establish a mathematical model to distinguish between ESBL-producing and 

nonproducing bacteria automatically, avoiding the problem of standardization of 

assay evaluation (Li et al., 2014), and this may provide an alternative route to 

resolution of the issue. 

Overall, the hydrolysis assay is a promising approach for rapid detection of ESBL 

producers among Enterobacteriaceae directly in urine samples. Together with direct 

pathogen identification, and possibly PCR to seek other antibiotic resistances, it could 

facilitate the implementation of targeted therapy for urosepsis patients.  

 

4.4 Multiplex PCR for detection of bacterial resistance genes 

Although MALDI-TOF can detect β-lactamase activity it remains a challenge to 

detect other resistance mechanisms, and particularly those where an antibiotic is not 

degraded or clinically modified by bacterial enzymes e.g. changes in DNA gyrase, 

porins or efflux pumps. Several attempts have been made to establish detection tests 

for methicillin-resistant Staphylococcus aureus (Edwards-Jones et al., 2000), 

vancomycin-resistant enterococci (Griffin et al., 2012) and resistance against 

aminoglycosides by measuring the acetyltransferase activity of aac(6’)-Ib-cr in 
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Enterobacteriaceae (Burckhardt, 2013; Oviaño et al., 2017; Pardo et al., 2016) using 

MALDI-TOF. However, the reproducibility of these approaches is insufficient for 

routine use in a clinical laboratory.  

PCR-based methods may be better, thorough they are specific for the particular 

genes sought. They have been employed to seek antibiotic resistances to a variety of 

Gram-positive (Wang et al., 2016; Chung et al., 2016; Okolie et al., 2015) and Gram-

negative bacteria (Moran et al., 2017; Singh et al., 2016; Lau et al., 2015; Ogutu et al., 

2015). Chavada and Maley (2015) previously evaluated the utility of multiplex 

tandem PCR, as used here, for detecting 12 different β-lactamase genes. These 

included plasmid AmpC, ESBLs and carbapenemases in Gram-negative strains 

(Chavada & Maley, 2015).The authors argued that, with some improvement, the MT-

PCR assay could be used in clinical laboratories.  

We sought to use multiplex, tandem PCR for resistance genes profiling directly 

from urine specimens and cultivated isolates. For this purpose we evaluated three 

multiplex tandem PCR assays seeking common resistance genes among 

Enterobacteriaceae. The first assay sought 8 resistance genes including four 

internationally widespread trimethoprim determinants (dfrA1, dfrA5/14, dfrA7/A17 

and dfrA12), two aminoglycoside genes (aadA1/A2/A3 and aac(6’)-Ib) and also gyr 

and parC, where mutations can confer resistance against fluoroquinolone. The 

rationale was that fluoroquinolone (e.g. ciprofloxacin) and trimethoprim are widely 

used for treatment UTIs. The second assay was expanded to seek also β-lactamase 

genes including classical penicillinases (blaTEM, blaSHV), β-lactamase inhibitor 

combination (blaOXA-1), AmpC (blaCMY), ESBLs (blaCTX-M gp 1, blaCTX-M gp 9) and 

carbapenemases (blaOXA-48, blaKPC, blaNDM, blaVIM).  Lupo et al. (2013) showed that 

these are the commonest β-lactamases in the Enterobacteriaceae worldwide, and 

these genes should be targeted for the development of non-phenotypic tests for a 

rapid detection of β-lactam resistance antibiotics (Lupo et al., 2013). Besides these β-

lactamase targets the 16-Plex MT-PCR assay then aimed to (a) detect a broader range 

of resistance genes common in Gram-negative bacteria than the 8-Plex assay plus (b) 

to distinguish ‘Enterobacteriaceae’ to genus level by different melting temperatures 

for an unspecified gene amplification product. The third 24-Plex assay was expanded 

to seek further genes for aminoglycoside-modifying enzymes including aadB, aacC1, 
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aacC2 and aacC3. These all confer gentamicin and/or tobramycin resistance. In total, 

the assay aimed to detect the commonest antibiotic resistance genes in 

Enterobacteriaceae including four targets to identify non-Enterobacteriaceae to 

group level (pan-Enterococcus, pan-Streptococcus, pan-Staphylococcus, pan- 

Pseudomonas).  

 

4.4.1 Trimethoprim resistance determinants  

Trimethoprim affects bacterial folic acid synthesis, by inhibitioning the enzyme 

dihydrofolate reductase (DHFR) (Huovinen, 2001). There are several trimethoprim 

resistance mechanism including mutations in the promoter region or in the 

dihydrofolate reductase gene (dfr itself), but the most common mechanism is 

acquisition of the trimethoprim-resistant dfr gene through mobile genetic elements 

including plasmids and transposons, which led to rapid spread of trimethoprim 

resistance among Enterobacteriaceae. At present there are more than 30 different 

dfr genes (White & Rawlinson, 2001; Seputiené et al., 2010) associated with class 1 

and 2 integrons harbouring dfr gene cassettes.  

There have been a few studies of the distributions of underlying trimethoprim 

resistance genes in Europe and other continents (Blahna et al., 2006; Grape et al., 

2007a; Seputiené et al., 2010; Lee et al., 2001; Yu et al., 2004). The results of these 

confirm that dfrA1, dfrA5, dfrA7, dfrA12, dfr14 and dfrA17 are the commonest 

trimethoprim determinants in general accounted for 75-86% of trimethoprim 

resistance (Grape et al., 2007a). All were included in our MT-PCR assays.  

Most epidemiology surveillance showed that dfr1 and dfrA17 are the commonest 

acquired dfr genes found in uropathogenic E. coli (Blahna et al., 2006; Lee et al., 2001, 

Yu et al., 2004; Brolund et al., 2010; Towner et al., 1994). The view was supported by 

our study, where dfrA7/A17 predominated among all trimethoprim-resistant E. coli 

specimens, accounted of 33% in the 8-Plex and 24-Plex and 43% in the 16-Plex assays. 

There is a paucity of published data regarding the prevalence of dfr genes in K. 

pneumoniae. Surprisingly in the 16-Plex assay, we observed that dfrA5/A14 

dominated in K. pneumoniae, similar as in one study (Brolund et al., 2010) performed 
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in Sweden. The lowest prevalence was observed for dfrA12 and dfrA1 determinans in 

all three assays.  

None of the dfr alleles sought were found in 5/73 samples with trimethoprim-

resistance in 16-Plex assay. This may indicate the presence of other dfr determinants 

undetected in this panel. Seputiené et al., (2010) showed that dfrA8 was as common 

as dfrA5 isolated from urine in Lithuania. In the report from South Africa again dfrA8 

was frequent isolated among the Gram-negative commensal faecal flora (Adrian et 

al., 1995). In Brazil, dfrA25 was isolated from urine sample, from Salmonella agona 

(Agersø et al., 2006). In other studies dfrB2, dfr24 and dfrA26  were found in E. coli 

isolates (Grape et al., 2007b; Dworniczek, 2007) while the dfr9 allele was found in 

veterinary isolates in Sweden and has also been isolated from patients with UTIs 

(Jansson et al., 1992).  

No dfr genes were found in 5/21 urines and/or isolates containing bacteria 

resistant to trimethoprim in the 24-Plex assay. Nonetheless in 4 out of these samples, 

a weak signal was observed, suggesting that the gene was present but weakly 

amplified. In the remaining one sample, 24-Plex assay did not found any of the sought 

dfr genes indicating that other dfr alleles may be present, similar as in the 16-Plex 

assay.  

The overall performance for detection of dfr genes, conferring trimethoprim 

resistance, was more reliable in the 8-Plex and 16-Plex assyas than the 24-Plex, 

demonstrating good agreement vs. phenotypic testing in both urines and isolates; as 

noted ealier we believe that technical improvement of the 24-Plex assay is needed.  

 

4.4.2 Aminoglycoside resistance determinants 

The spread of plasmid-encoded aminoglycoside modifying enzymes and 16S 

rRNA methyltransferases (ArmA, Rmt and NpmA) are the main factors contributing 

to increase resistance to aminoglycosides (Ma et al., 2009; Jana & Deb, 2006). The 

commonest genes for aminoglycoside-modifying enzymes in E. coli are aac(6’)-Ib, 

targeted in all three assays, aac(3)-II (alternative name aacC2) and ant(2″)-I (aadB) 

both included in the 24-Plex, aac(6′)-I (aacA1), ant(3″)-I (aadA) and aph(3′)-II (aphA-
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2) (Xiao & Hu, 2012; Shaw et al., 1993). Based on PHE records (data not published) 

we also included aac(3)-I and aac(3)-III, which are frequent isolated in the UK, in the 

24-Plex assay.  

All MT-PCR assays sought aac(6′)-Ib which is associated with tobramycin 

resistance, and its cr variant conferring low-level resistance to ciprofloxacin (Robicsek 

et al.,2006; Strahilevitz, et al., 2009), though there were not distunguish. In principle 

such discrimination might be achieved on the MT-PCR system. Guillard et al. (2013) 

combined SybrGreen real-time PCR with pyrosequening to detect aac(6’)-Ib and 

aac(6’)-Ib-cr by their different melting temperatures. Nevertheless, the results 

showed melting peaks very close to each other at 87.89 °C and at 87.71 °C, which may 

be difficult to resolve on the real-time instrument with lower sensitivity (Guillard et 

al., 2013). In reality though, these aspects are of little impact as most samples 

containing E. coli with detected aac(6’)-Ib anyway correspond to A1/R gyrase type, 

predicting mutational resistance to fluoroquinolones. 

The detection of aac(6’)-Ib was reliable in 8- and 16-Plex assays, but lower in the 

in 24-Plex where 6/20 samples with tobramycin resistance profile gave weak signals, 

below the threshold value applied (concentration >550 copies of molecules, CT ≤21), 

suggesting that the gene was present but probably poor amplified. Similar problems 

were seen for aac(3) variants, though it is also possible that issue here reflected 

diversity within the aac(3)-I family, where types b and e were not included in the 24-

plex assay were also seen  but they were identified by sequencing. 

In one previous study aac(6’)-Ib-cr was included in a multiplex PCR panel seeking 

eight plasmid-mediated quinolone-resistance determinants in the UK (Ciesielczuk et 

al., 2013). The authors showed that high prevalence of aac(6’)-Ib-cr in E. coli strains, 

isolated from patients with bacteraemia and UTIs was associated with ESBLs mostly 

CTX-M-15, as did others (Deepak et al., 2009; Amin & Wareham, 2009) . This probably 

reflects E. coli ST131 accounting for most E. coli in the UK and being resistant to all 

these agents. Although the 8-Plex assay did not seek β-lactamase genes this linkage 

may be useful to rule out also cephalosporins (for aac(6’)-Ib-positive results) in the 

treatment of UTIs if clinical laboratories that decide to apply 8-Plex assay in routine 

practice. 
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Hu et al. (2013) developed a GeXP analyzer-based multiplex PCR  to detect seven 

aminoglycoside-resistance genes including five aminoglycoside modifying enzymes 

genes (aac(3)-II, aac(6′)-Ib, aac(6′)-II, ant(3″)-I and aph(3′)-VI) and two 16S rRNA 

methyltransferase genes (armA and rmtB) (Hu et al., 2013). The authors showed that 

ant(3″)-I, aac(3)-II and armA predominated in Enterobacteriaceae clinical isolates in 

China while in our study aac(6’)-Ib and aac(3)-II were the most prevalent types 

though the latter was sought only in the 24-Plex. Similar results were also found in 

studies in Norway (Lindemann et al., 2012; Haldorsen et al., 2014), whilist Ho et al. 

(2010) demonstrated that 84.1% of gentamicin-resistant E. coli isolated from patients 

with UTIs in Hong Kong were positive for aac(3)-II (Ho et al., 2010). An other study 

showed that mutations in aac(6’)-Ib affects the activity towards amikacin (Shmara et 

al., 2001). None of the present isolates with aac(6’)-Ib in all tested assays expressed 

phenotypic resistance to amikacin. Nonetheless the use of amikacin in this case for 

the UTIs treatment is controversial where AAC(6’) is present as the drug is a substrate 

for inactivation. EUCAST recommends to report amikacin as intermediate in 

Enterobacteriaceae if the strains is tobramycin- intermediate or resistant and 

gentamicin susceptible. 

Poor predictive power was found for aadA1/A2/A3 tests in all three MT-PCR 

assays. These aadA1/A2/A3 was detected in both streptomycin-resistant and -

susceptible bacteria impying (i) the presence of other determinants (e.g. strA/strB 

and aadA5), not sought in these assays (Sundin, 2002) and (ii) the presence of 

unexpressed aadA genes. Batchelor et al. (2008) found aadA1 and aadA4 in several 

streptomycin-susceptible E. coli isolates suggesting that the gene was not expressed 

(Batchelor et al., 2008). Other example of potential gene silencing was demonstrated 

in (Enne et al., 2006). Sunde & Norström, (2005) demonstrated that strA/strB genes 

are involved in high-level streptomycin resistance whereas aadA gene more often 

confers low-level streptomycin resistance. In practical terms this matters as there are 

no CLSI and EUCAST-defined streptomycin breakpoints, although resistance is often 

demarcated by an MIC of ≥64 mg/L (Dudley et al., 2013) but (Tyson et al., 2015) 

showed that the value often not reacted by isolates carrying aadA genes. Additionaly, 

streptomycin is not ordinarily used in UTIs. On these bases the simplest answer would 
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be to remover aadA target from the assay. These would have little or no clinical 

impact and would remove an unreliable panel. 

 

4.4.3 β- Lactamase resistance genes 

Although selective agars can be used to seek ESBL producers and those with 

other key β-lactamase types, these require overnight incubation and has lower 

sensitivity than PCR-based methods (Naas et al., 2011; Singh et al., 2012). The use of 

multiplex PCR or real-time PCR (commercial or in-house) for the detection of β-

lactamase genes in Enterobacteriaceae has been evaluated in many studies (Singh et 

al., 2016; Poirel et al., 2011; Ogutu et al., 2015; Nijhuis et al., 2012; Lau et al., 2015), 

but none of these assay was applied directly to clinical urines as here.  

Singh et al. (2016) developed a multiplex real-time PCR assay for the detection 

of 10 β-lactamase genes including ESBL, AmpC and carbapenemase using, as here, 

melting curve analysis (Singh et al., 2016). The diversity of allelic variants for all 

sought β-lactam genes were much higher than in our study. However the common 

blaCTX-M-9 group genes (blaCTX-M-9, blaCTX-M-14, blaCTX-M-16, blaCTX-M-24) were not included in 

the panel while all of these genes, excluding blaCTX-M-16 were sought in our MT-PCR β-

lactamase tests in the 16-and 24-Plex assays. Findlay et al. (2015) compared three 

commercial kits (Check-Direct CPE kit (Check-Points, Netherlands), the Eazyplex® 

SuperBug CPE kit (Amplex, Germany), the Xpert® Carba-R kit (Cepheid, CA))   for 

carbapenemase detection (see Section 1.8.8.1). The authors concluded that all these 

kits can reliable detect clinically significant carbapenemases (Findlay et al., 2015). 

Similarly, here the β-lactamase panel in the 16- and -24-Plex assays gave reliable 

results in detecting carbapenemase genes directly in clinical urines and cultured 

isolates. 

The accuracy of detection of β-lactamase genes by the 16- and 24-Plex assays 

directly from urine was comparable with the studies by Chavada and Maley (2015) 

and Willemsen et al. (2014). In the former study the authors used the same 

technology as here- multiplex tandem PCR-to detect 12 β-lactamase genes including 

ESBLs, AmpC and carbapenemases in cultivated Gram-negative isolates, achieving 
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sensitivity of 95% and specificity of 96.7% (Chavada & Maley, 2015). Willemsen et al. 

(2014) evaluated commercial real-time PCR (Check-MDR ESBL PCR) for detection 

three ESBL β-lactamase targets (blaCTX-M-like, blaTEM-ESBL like, blaSHV-ESBL) where ESBL and 

non-ESBL variants of blaTEM and blaSHV were distinguishable. The study showed 98.9% 

sensitivity and 100% specificity against a reference microarray assay (Willemsen et 

al., 2014). In all these cases pure cultures were used, not clinical urines as here. 

Although our panel could not differentiate ESBL and non-ESBL variants of blaTEM and 

blaSHV, both assays showed 100% sensitivity for clinical urines and cultivated isolates. 

The specificity was higher for the 16-Plex than 24-Plex (95.3% vs. 60% for clinical 

urines) underscoring technical issues with the latter.  

 

4.4.4 Quinolone resistance genes 

High-level quinolone resistance in Enterobacteriaceae occurs mainly due to 

mutations within the Quinolone Resistance-Determinaning Regions (QRDR) of gyrA 

or parC (Shigemura et al., 2012). The commonest mutations are Ser83 and Asp87 in 

gyrA and Ser80 and Glu84 in parC (Nakano et al., 2013; Bansal & Tandon, 2011; 

Friedman et al., 2001; Park et al., 2017). Low-level resistance or reduced susceptibility 

to quiolone is associated with plasmid mediated quinolone-resistance (PMQR) 

mechanisms e.g. Qnr proteins, aac(6’)-Ib-cr (Robicsek et al., 2006; Jacoby et al., 

2009); mutations of genes (QepA, OqxAB) regulating the expression of efflux pumps 

and alterations that decrease the permeability of the bacterial cell wall (Périchon et 

al., 2007; Strahilevitz et al., 2009), Efflux pump up-regulates are more important  in 

P. aeruginosa than in Enterobacteriaceae.  

Here, MT-PCR predicted the ciprofloxacin-resistance based on gyrA melting 

temperature product. Because it is commercial kit the specific mutations sought in 

quinolone genes are unknown. gyrA/R was found in most E. coli tested with 

ciprofloxacin-resistance in all three assays, whereas quinolone resistance in other 

species could not be predicted from the test results. 

Nakano et al. (2013) previously developed a rapid assay to detect gyrA and parC 

mutations by PCR-RFLP in E. coli, K. pneumoniae, E. cloacae and Salmonella spp. 
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within 3 h (Nakano et al., 2013), however the use of this method in clinical practice is 

impractical due to possible sample contamination during the sample processing and 

low throughput. In an other study multiplex allele specific PCR was used to detect 

‘hot spot’ mutations in fluoroquinolone-resistant E. coli isolates. Depending on the 

mutations sought the sensitivity of the method was in a range 93.33%-100%, and 

specificity 98.48%-100% (Onseedaeng & Ratthawongjirakul, 2016). In our study the 

sensitivity was in the range 83.3%-100% and specificity 100% for the detection of 

gyrA mutations for in E. coli. The major limitation of the panel is inability to distinguish 

the fluoroqionolone-resistance other than in E. coli, thus limit treatment guidance for 

UTIs caused by other coliform species.  

 

4.4.5 Limitation of the study  
 

In conclusion, all three AusDiagnostics assays rapidly identified resistance genes 

in infected urines, cultivated isolates, or with bacterial DNA. Use with urines could 

potentially guide early therapy. Potential advantages of these assays are (i) being fully 

automated, (ii) working direct on urine, without culture and DNA extraction, (iii) a 

rapid turnaround time (2-3h), (iv) low reagent cost (£12-15 sample/run), (v) easy-to-

handle interpretation software. The 8-Plex assay was set up in a format of a 72-tube 

ring to test 9 samples and the 16-Plex as a 384-well plate to run 24 samples. Although 

both these latter assays allowed more specimens to be run, the reagents and 

consumables could not be separated for individual (or smaller number of) samples, 

whereas the 24-plex assay is set up in a format of 3x8-well strip, allowing 1-4 samples 

to analysed per run. 

 A major limitation in our study was the number of specimens tested in the 24-

Plex assay (n=23), and the limited sequencing undertaken on these samples to 

confirm MT-PCR results. This assay also needs to be review because it gave several 

weak results (e.g. with aac(6’)-Ib or aac(3’) ) probably related to manufacture.  

Several further limitations remain to be solved.  
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Firstly, the inability to detect rarer resistance determinants e.g. to trimethoprim 

or novel, uncharacterized mechanisms of resistance, for which the genetic 

determinant is unknown. The absence of the limited number of common targets 

sought cannot exclude the possible presence of other genes conferring resistance to 

relevant antibiotics. For example, in the 16- and 24-Plex assays six samples contained 

bacteria resistant to trimethoprim, but no sought trimethoprim determinants were 

found using either assays, suggesting the presence of rarer dfr genes, as disscussed 

above (Section 4.4.1). The other observed example is aadA1/A2/A3, conferring 

resistance to streptomycin. Here the detection of the resistance gene did not always 

correlate with phenotypic resistance. A susceptible profile, despite detection of 

aadA, might be associated with poor expression of the gene, silencing or inactivation. 

On the other hand negative results by MT-PCR and a resistant phenotype probably 

indicates the presence of other genes associated with streptomycin resistance e.g. 

strA/strB. 

Secondly, phenotypic resistance to cephalosporins and carbapenems among 

Enterobacteriaceae may depend not only on the presence of the β-lactam genes, but 

on their level of expression plus decreased outer membrane permeability and/or 

increased efflux (Woodford et al., 2007) or mutations effecting the expression of 

chromosomal AmpC (Livermore, 2008). The development of techniques that rely on 

the measurement of gene transcripts (mRNA levels) instead of the presence of a gene 

might provide a potential solutions to these problem. 

Thirdly, detection of fluoroqionolone resistance mutations was possible only in 

E. coli, and the inability to distinguish ESBL and non-ESBL variants of blaTEM and blaSHV 

precludes advice on cephalosporin use in treatment where there are found, though 

it should be added that TEM and SHV ESBLs are rare in E. coli with CTX-M types grossly 

predominated (Ryoo et al., 2005; Calbo et al., 2006) 

Fourthly, as with all molecular methods, multiplex-tandem real-time PCR does 

not provide MIC values, which are the basis of pharmacodynamically guiding 

antimicrobial therapy. 

Fifthly, although the 24-Plex assay contained targets to identify Pseudomonas 

spp., Enterococcus spp., Streptococcus spp., and Staphylococcus spp. no resistance 
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genes for Gram-positive bacteria were included in the assay and most resistance in 

P. aeruginosa is mutational, not via gene acquisition, making it difficult to detect by 

PCR. Deletion of the identification targets and extending the list of resistance 

determinants for Gram-negative bacteria might be more useful, for example by 

addition of gyr tests for distinguishing ciprofloxacin-resistant and -susceptible 

coliforms other than E. coli, detection of ant(4’)-I, ant(4’)-II and aph(3’)-VI genes 

conferring amikacin resistance, detection of 16S rRNA methyltranserases ArmA and 

RmtB/C, which confer high-level resistance to all standard aminoglycosides (Hidalgo 

et al., 2013) or to detect clonal groups among E. coli ST69, ST73, ST12, ST95 and 

especially ST131, which is much more often multi-drug resistant than the other STs . 

Such a panel could allow not only identication of resistance genotypes but could also 

be useful for epidemiology and infection control purposes. 

Sixthly, the cut-off criteria need to be optimized in order to minimalize the risk 

of false positive/negative results. In our study the analysis was performed on the 

basis of (i) a high product concentration (>1000 copies in the 16-Plex assay and >550 

in the 24-Plex assay, both in the 2nd PCR step), (ii) a cycle curve (CT) < 20 and < 21 in 

the 2nd PCR step for the 16- and 24-Plex assays respectively, (iii) a correct melting 

temperature for the amplified genes (Tm). These cut-off value precluded several ‘false 

positive results’; however we probably missed several weak positive results for 

aac(6')-Ib, aac3’-I and dfrA5/A14 potentially in the 24-Plex assay. Weak positives may 

be associated with (i) poor gene amplification or (ii) low bacterial counts in urines 

tested.  

Lastly, the early version of interpretation software with an option to guide 

antibiotic choices for targeted therapy needs to be improved by developing 

appropriate algorithms to rule out antibiotic if a gene is present. Several times the 

software called that patient may respond to gentamicin even though aminoglycoside 

determinants conferring gentamicin resistance were present.  

In summery, the designs of the 8-,16-,24-Plex assays were based on the local and 

UK epidemiology and antibiotic resistances. The resistance targets were limited to 

the commonest resistance determinants in Enterobacteriaceae. Although, there are 

some challenges to overcome we remain optimistic that these assays will be widely 
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useful in clinical laboratories. Together with MALDI-TOF identification assay they 

could accelerate the initiation of definitive therapy for urosepsis patients. Using a 

combinated approches give a total turnaround time from urine submission to the 

clinical laboratory to pathogen and resistance gene identification of c. <3 h, compared 

with 24-48 h by standard phenotypic methods.   

 

4.5 Nanopore sequencing- a step forward in pathogen 
identification and antibiotic resistance genes profiling 

 

Whilst MALDI-TOF technology, together with multiplex PCR, could provide fast 

and complex diagnostics for urosepsis patients, fundamental issues remain. PCR can 

seek only a limited number of targets and thereby can predict a resistance, but cannot 

exclude it. In principle, new sequencing approaches, such as MinION could deliver 

rapid and much more comprehensive diagnostics for high-risk urosepsis patients.  

MinION nanopore technology was released in 2014. Since then, the developer 

(ONT) has claimed major improvements in miniaturization and automation of the 

equipment, also modernization of applications and software to facilitate results 

analysis when the system is employed in microbiology practice. Nevertheless, the use 

of this device directly on clinical samples was not previously described. Our study 

showed that it gives the possibility not only to identify the organism, but also to 

detect the key resistance genes, directly in urine in a time frame similar (or even 

faster) to the combined MALDI-TOF/PCR approach (i.e. <5 hours).   

We tested either (i) clinical urines with a high number of bacteria vs. human cells 

and limited commensal flora or (ii) urines spiked with a multi-drug resistant E. coli 

isolate. Hasman et al. (2014) previously applied Ion Torrent sequencing to urine, 

finding identical resistance genes as in the cultivated pathogens but, with a 24-h  

turnaround (Hasman et al., 2014), their method only modestly accelerated 

conventional workflows. The utility of metagenomic sequencing, using the Illumina 

platform, directly on clinical samples was also explored in other studies (Brown et al., 

2015; Christiansen et al., 2014); nonetheless sequencing for clinical purposes must 
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be both rapid and accurate if the results are lead to improved individual patient care 

or public health investigation and Illumina based sequencing cannot meet these 

criteria whereas Nanopore potentially do so. Preliminary experiments showed that 

the MinION technology could be useful in diagnostic microbiology to identify 

microorganisms, predict resistances in cultivated bacteria (Kilianski et al., 2015; Wang 

et al., 2014b; Bradley et al., 2015; Quick et al., 2016; Judge et al., 2015) and to track 

microorganism outbreaks (Quick et al., 2015; Gardy et al., 2015). Recently Votintseva 

et al (2017) demonstrated the utility of MinION sequencing in rapid (<8 h) 

identification of M. bovis BCG strain and susceptibility using ‘sputum spiked’ with the 

cultured strain (Votintseva et al., 2017). 

The potential advantages of the MinION over other sequencing platforms are 

presented in Section 1.8.8.3. The technology remained active under development 

whilst these studies were undertaken and continues to be improved. 

The manufacturer's improvements in quality of the flow cells, together with 

refinements in our sample preparation, led to significant increases in sequence yields 

and 2-D sequencing reads through the course of these studies. Briefly, experiments 

with Clinical Urines 1-4 failed even to identify the pathogen, while later experiments 

sucesfully identified both the species and its resistance genes directly from urine. The 

first attempts of using MinION sequencing on isolated microorganisms by other 

research groups were also unsuccessful. Mikheyev and Tin (2014) reported high error 

rates, with only 10% reads from 36h of sequencing of lambda phage mapping to the 

reference genome (Mikheyev & Tin, 2014) while Quick et al. (2014) concluded that 

bioinformatics streaming algorithms for individual analysis needed to be developed 

(Quick et al., 2014). In our study preliminary experiment with CU1, without human 

cell depletion, showed a large proportion of human reads, and correspondingly low 

bacterial sequence yield. Subsequently we enriched bacterial DNA, initially by 

NEBNext® Microbiome DNA Enrichment kit (CUs 2-4), which still gave unsatisfactory 

results due to the low concentration of bacterial DNA obtained. From CU5, we 

adopted a combination of differential centrifugations to remove most human cells, 

together with MolYsis to lyse the remaining human cells and to achieve maximum 

recovery of bacterial DNA. This allowed us to identify pathogens with high accuracy 
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to reference genomes (>90%), and to detect the same families of acquired resistance 

genes as found by Illumina, with good agreement to resistance phenotypes.  

Several systems incorporating real-time analysis of MinION data have been 

developed recently (Quick et al., 2015; Greninger et al., 2015). In our study most 

sequence analysis was post-run, using BLAST and CARD databases applied via manual 

bioinformatics pipelines. However, in the final part of these studies using the latest 

version of flow cell (SQK-MAP-006) with Spiked Urine run 3, we applied Metrichor 

WIMP and ARMA softwares in order to automate and accelerate analysis. This 

allowed us to identify the pathogen in 15 min and profile its acquired resistance genes 

in 1h, during which time c. 32 MB of 2-D sequencing data were generated, with 

almost 7x depth of coverage (57 MB of 2-D data with 11.37x depth were available 

after 2h). Cao et al. (2016) utilized a different framework for analysis of MinION data; 

their pipeline included various streaming algorithms for pathogen identification 

which could be achieved within 30 min of sequencing using only 500 reads with initial 

resistance gene detection within 2h (Cao et al., 2016). Bradley et a.l (2015) used a de-

Bruijn graph approach to identify antibiotic resistance genes for Staphylococcus 

aureus and Mycobacterium tuberculosis from 8h of MinION sequencing run (Bradley 

et al., 2015). Neither of these approaches gave advantages of speed over the 

WIMP/ARMA approach, through both were swifter than the manual BLAST/CARD 

strategy. 

To predict the likehood of detecting all acquired antibiotic resistance genes, the 

size of the bacterial genome needs to be considered. Based on Lander and 

Waterman's (Lander & Waterman, 1988) equation, we calculated that statistically 

6.96x depth should cover 99.905% of the E. coli genome (4.6 MB), leaving little risk 

of missing an acquired resistance gene. This prediction extends to K. pneumoniae and 

Enterobacter cloacae as they have a similar genome size to E. coli (5.3 MB for K. 

pneumoniae and 4.8 MB for Enterobacter cloacae). In the case of P. aeruginosa, 

which has larger genome (6.3 MB), 6.96x depth would cover only 99.873% marginally 

increasing the risk of missing some acquired genes. 

MinION sequencing error rates were an early concern, but are diminishing as the 

technology has been refined with >95% base calling accuracy now achievable (Szalay 
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& Golovchenko, 2015). Recent R9.4 pore chemistry also has improved the read 

accuracy and coverage depth (Jansen  et al., 2017); yields might also be further 

increased to 230Mb/hour (Miten et al., 2017). On the bases of these improvements 

we suggest that MinION sequencing of clinical urines is already potentially more 

efficient and effective than achieved here on the technology available in 2014-16.  

MinION sequencing, as done here, including DNA extraction and sample 

transport (2.5h), library preparation (3h), and sequencing (1h) combined with the 

simultaneous data analysis (i.e. WIMP/ARMA) approximated to a 7-8 h turnaround, 

equating to one dosage interval for a 'typical' q8h antibiotic. Further improvement, 

with the use of the 15-min library preparation kit, as with Spiked urine run 4 

potentially reduced this turnaround to c. 4-5h (though WIMP/ARMA could not be 

used with the 1-D reads generated with this kit). Further development of the 

automated sample processor VolTRAX (ONT) will allow acceleration of the DNA 

extraction and library preparation, standardization of the procedure and thereby 

minimizing the risk of human mistakes. Such modification will facilitate 

implementation of MinION technology in clinical settings, allowing ealier refinement 

of antibiotic therapy than now.  

Although this approach has great potential compared with other sequencing 

platforms and molecular methods there are several limitations which have to be 

overcome. 

Firstly, in our study we used urine with “significant” bacteriuria (>108 cfu/L or 

>105 cfu/mL) to deliver the 1 µg of input DNA required for library preparation. 

Complicated UTIs can occur with much lower bacterial counts (102- 104 cfu/mL) 

though counts are usually high in serious urosepsis. The use of the Rapid Low-Input 

Kit (ONT) reducing the DNA requirement from 1 µg to 10 ng (ONT) for library 

preparation may address this issue, though this was not tested.  

Secondly, the MinION technology is adjusted to test only one urine (specimen) 

per flow cell. Although, this is convenient and flexible, allowing sequencing 

straightaway when samples arrive to the laboratory, it is expensive (£400-720/flow 

cell with R7.3 chemistry plus c. £120 reagent cost/sample). However, taking into 
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account the facts (i) we might save a day’s hospitalization (which costs £400) 

(Department of Health, 2015) or (ii) avoid using expensive antibiotic therapy (e.g. 

ceftazidime-avibactam £275 per day) (Mosley et al., 2016), individual testing might 

be an appropriate solution for some high-risk patients. Alternatively, Oxford 

Nanopore have introduced four solutions: (i) the GridION X5, as a compact benchtop 

system design to analyse and run up to five MinION flow cells individually or 

concurrently, (ii) the PromethION, a high-throughput sequencing platform that 

allows docking of 48 flow cells, (iii) a PCR-free rapid barcoding sequencing kit to pool 

and run up to 12 samples on each flow cell, and (iv) the MinION MkI model based on 

‘pay-as-you-go’, allowing 3h of sequencing with an estimated cost of £210, 

generating 3 GB of data in ‘fast mode’ software, while sequencing by the MinION MkII 

model sequencing will cost £17/hour, generating 5 GB of data (ONT, 2015). Such 

approaches could greatly reduce the cost per sample but would necessitate sample 

batching, extending the wait for results. The MALDI-TOF/PCR approach would 

continue to have a significantly lower cost and assuming resolution of the 24-Plex 

assays’, greater flexibility.   

Additionally, Oxford nanopore have developed a new smaller-than-current 

SmidgION sequencing device which would allow data analysis even via a mobile 

phones. The principle is the same as MinION but greater portability will allow 

sequencing e.g. on the ward rather than only in the laboratory.  

Thirdly, at present identification is limited to acquired resistance genes, mostly 

carried by mobile genetic elements (or transferred to the chromosome from these) 

as also found by (Judge et al., 2015). It remains a challenge to identify mutational 

changes conferring resistance via alterations in permeability, efflux pump expression 

target sensitivity. Thus, chromosomal gyrA and parC genes were found in all bacterial 

sequences from clinical urines but the read accuracy of MinION was insufficient for 

reliable calling of mutations generating high-level fluoroquinolone resistance, 

whereas these could be identified by Illumina sequencing. Likewise, allelic variants 

within β-lactamase families (e.g. TEM and SHV) were poorly distinguished and 

MinION failed to detect mutations associated with ampC up-regulation, and could 

not discriminate acquired and plasmid-borne ampC. In this regard plasmid-encoded 
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AmpC enzymes almost always are copiously expressed and have clear resistance 

association, whereas the implications of chromosomal AmpC depends on level of 

expression. In E. coli this is determined by promoter and attenuator mechanisms 

(Honoré et al., 1986) whereas in species with inducible chromosomal AmpC e.g. E. 

cloacae or C. freundii, expression depends on mutations in regulatory genes 

(principally ampR and ampD). The plasmid-encoded types are derived from the 

chromosomal-encoded ampC genes of other Enterobacteriaceae. As an example, 

CMY-2 is originally from Citrobacter freundii whilst MIR-1 is from Enterobacter 

cloacae (Bauernfeind et al., 1996). Plasmid types are liable to be miscalled when the 

species with the corresponding chromosomal enzyme is tested. 

MinION frequently flagged multiple alleles (e.g. of blaTEM, blaSHV, blaCTX-M, blaNDM) 

when Illumina indicated single types. Differenting blaNDM or blaCTX-M variants is 

unimportant, as all their alleles have similar resistance implications. However, SNPs 

in blaTEM, blaSHV, blaGES determine hydrolytic spectrum and inhibitor vulnerability, 

thereby indicating whether a therapy is appropriate or not.  Currently, distinguishing 

these closely related β-lactamase variants, and predicting AmpC expression, is 

challenging for MinION technology owing to low read accuracy. Although SNPs can 

be called using MinION data (Quick et al., 2016) the process is slow. Improvements 

also are needed in the bioinformatics pipeline and automated software to better 

discriminate among related resistance genes and polymorphisms or to indicate what 

is effectively duplicate calling of a single, impartially identified gene. In the future this 

may be achieved by using better chemistry (R9) that minimize the error rate and 

simultaneously generates yields with high accuracy reads that allow creating single 

consensus sequence. Alternatively, and more laboriously reads aligning to CARD or 

other antibiotic resistance genes databases could be isolated and polished to improve 

consensus accuracy, facilitating precise identification.  

Fourthly, as in all molecular methods based on resistance gene detection, the 

presence of a gene may not correspond with phenotypic resistance due to poor 

expression, silencing or inactivation. For example MinION and Illumina found aadA5 

in CU6 but the E. coli isolate was streptomycin susceptible. Similar contradictions, 

particularly with aad genes were frequent observed in MT-PCR assays (above). 
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Likewise Tyson et al. (2015) previously noted poorer genotype-phenotype 

concordance for streptomycin that for other resistances (81.3% vs. 100%) (Tyson et 

al., 2015).  

Fifthly, optimising the MinION gene-match cut-off to only call ‘true positive’ 

results for resistance genes is challenging.  We used 90% for Illumina and (owing to 

lower base-calling accuracy), 80% for MinION. This lower cut-off may explain the 

larger number of misdetections of plasmid ampC and aminoglycoside determinants 

aadA3 and aacA4 by MinION in clinical urines, and the calling of catB3 gene in E. coli 

H141480453 by MinION but not Illumina. A technical aspect, independent of MinION, 

was occasional misdetection of resistance genes due to inclusion of flanking regions 

of integrons in CARD database (not shown). This could potentially lead to an over-

estimation of the occurrence of resistance genes in patient samples. Here it was 

countered by checking the reads mapped within genes but would better be resolved 

by stricter database curation. 

Lastly, implementation of WIMP and ARMA software definitely accelerated the 

data analysis, but for practical utilization, software is required to convert the 

genotypic profile into clinically relevant prediction of phenotypes to guide treatment 

option.  

All the clinical urines tested in this study were infected with single pathogens. 

Polymicrobial UTIs were not sought, though WIMP software can identify and 

differentiate multiple species in one sample (Juul et al., 2015). Distinguishing multiple 

strains with the same species is unlikely to be achieved, but all their resistance genes 

would be represented in the sequence data.  

The utility of metagenomic sequencing using isolates has been demonstrated in 

a diagnostic and public health microbiology (Köser et al., 2012; Harris et al., 2013; 

Köser et al., 2013), though a recent EUCAST subcommittee report took the view that 

WGS with inferred antibiotic susceptibility testing is insufficient to guide clinical 

decision making  (Ellington et al., 2017). Given the improvements achieved already in 

MinION technology and those likely in the near future we are optimistic that the 

technology can be enhanced to overcome the residual challenges. If so, MinION 
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profiling from urosepsis patients could allow beneficial refinement of antibiotic 

regimens within the first dosage interval after clinical diagnosis. It will also support 

molecular epidemiology surveillance and infection control to monitor the antibiotic 

resistance. 
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Chapter 5Chapter 5Chapter 5Chapter 5    

CONCLUSION AND FUTURE DIRECTIONSCONCLUSION AND FUTURE DIRECTIONSCONCLUSION AND FUTURE DIRECTIONSCONCLUSION AND FUTURE DIRECTIONS    
 

The UK 5-year Antimicrobial Resistance Strategy emphasized the role of point-

of-care diagnostics to identify where antimicrobials are required and to assess the 

appropriateness of the diagnosis and treatment (PHE, 2013). 

The present study aimed to evaluate new technologies for rapid detection of 

pathogens and their antibiotic resistances in urosepsis patients. For this purpose two 

potential approaches: (i) MALDI-TOF together with multiplex tandem PCR (or MALDI-

TOF based ESBL detection) and (ii) MinION nanopore sequencing, were investigated, 

optimized and applied. Neither technique has previously been used directly on urine 

samples in healthcare settings, except for limited investigation of direct pathogen 

identification from urine by MALDI-TOF.  

Both approaches proved to be able to deliver rapid pathogen and resistance 

profiling before the second dose of typical (i.e. every 8 h) antibiotic ordinarily would 

be given. Both methods have limitations and several improvements could be 

introduced. However, we believe that either could, in principle, be implemented into 

the diagnostic pathway in urgent urosepsis cases. Either system could be used to 

complement subsequent phenotypic testing, giving a swifter rule-out of antibiotics 

to which the bacteria were predicted to be resistant.  

Epidemiological surveillance here and elsewhere points the settings where these 

approaches might be justified, including (i) high-risk patients showing clinical signs 

and symptoms of urosepsis, particularly elderly (>65y) with complicated UTIs, with 

indwelling devices, and likely to have high rates of bacterial resistance owing to 

previous exposure to antibiotics or transfer from other countries/hospitals where 

resistance rates are high, and (ii) hospital units (EAU, CCC, ICU) where resistance rates 

are generally high, or where outbreaks are ongoing. 

By MALDI-TOF we demonstrated that (i) identification of uropathogen directly 

from urine is achievable, (ii) Enterobacteriaceae producing ESBLs can be detected by 
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MALDI-TOF based cephalosporin hydrolysis assays again directly from urine, and (iii) 

both these assays can be performed in parallel with a turnaround time of <5h. This 

approach might be especially useful for patients admitted to the hospital due to 

cUTIs.  

As an alternative to hydrolysis assays, three multiplex-tandem PCR were 

designed to seek common and important resistance genes in Enterobacteriaceae 

directly from urine samples. Each of the assays showed relatively good agreement 

between reference phenotypic and molecular methods. Implementation of the 

appropriate software to guide treatment options could facilitate interpretation and 

indicate clinically relevant information, especially for patients with a high risk of 

carrying resistant bacteria. The timeframe of the MT-PCR is <3 h.  

Combinations of the MALDI-TOF/MT-PCR methods could improve and accelerate 

current diagnostics for urosepsis patients. Both these assays are (i) easy-to-perform, 

use equipment that is familiar in the clinical laboratory (ii) fast, with overalll 

turnaround times <3 h, (iii) work directly on urine so as to minimize the delay caused 

by DNA extraction and culture, and (iv) are relatively cheap in terms of reagents and 

consumables purchases (£0.5-1.00/sample for MALDI TOF plus £12-15/sample for 

MT-PCR). Nevertheless these approaches require further validation and optimization 

in a routine laboratory setting, moreover, resistance investigation is not 

comprehensive. 

In the case of MinION, we demonstrated that the technology can offer a rapid 

and potentially comprehensive approach to identify pathogens and acquired 

resistances in urine samples, without culture. Although there are several limitations 

and challenges to overcome e.g. the cost of the reagents/flow cells, low throughput, 

it is the first sequencing-based technology that could be potentially implemented into 

clinical settings in the possibly near future. Along with cost reduction, improvements 

are needed in read accuracy and interpretative software (ARMA), particularly to 

better discriminate among related resistance genes and to reliably call single 

nucleotide polymorphisms. Development of analysis software that translate 

resistance genes into phenotypic profile is required in order to introduce nanopore 

sequencing into healthcare system.  
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Decisions whether, where and how to implement either of these two approaches 

in diagnostic practice requires understanding and knowledge of the whole process 

used in the current clinical settings along with precise cost modelling. Two scenarios 

are proposed for (i) the secondary care (hospitals) and (ii) the primary care (GPs and 

private clinics).  

 

5.1 Implementation of the rapid diagnostics in secondary 
care 

 

The models examined during this thesis are more appropriate to secondary care 

e.g. hospitals. Among the two evaluated approaches (MALDI-TOF/MT-PCR or 

MinION), MALDI-TOF/MT-PCR would be easier to adopt into hospital workflows 

because (i) it is less laborious, (ii) reagents and consumables costs are cheaper, and 

(iii) MALDI-TOF is already available and used for pathogen identification from the 

cultivated isolates, whilst multiplex PCR systems are increasingly used in virology and 

for carbapenemase detection from rectal swabs (to inform infection control). 

Nevertheless the more comprehensive analysis achieved using the MinION 

sequencing-based approach could represent the future of rapid diagnostics for 

urgent cases and might also be used for surveillance and outbreak investigation. 

 On the basis of my experience, a workable model would be that urine from 

suspected urosepsis patient needs to be flagged as for ‘urgent attention’ at the time 

of collection, then the ward should call to the clinical laboratory. Simultaneously the 

‘urgent workflow’ should be stressed on the form with a sticker when the sample is 

submitted to the clinical laboratory. The sample could then be processed urgently 

using MALDI-TOF/MT-PCR or MinION approach. This workflow is similar to the 

process traditionally used for CSF specimens where meningitis is suspected. Because 

many centralized UK microbiology laboratories now work in shifts it should be 

possible to use these methods to deliver a results in a timeframe of <5h, with findings 

released to clinicians on the same day.  

Key limitations that must be addressed before implementation in diagnostic 

workflow are: (i) instrumentation costs, (ii) staff pressure (lack of time for individual 

processing samples in understaffed departments), (iii) staff training to interpret 
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genotyping results, (iv) that the presence of a resistance determinant does not always 

correlate with phenotypic resistance, and (v) inability to identify novel or 

uncharacterized resistance mechanisms.  

Automating data interpretation using computerized support systems (discussed 

below) need also to be implemented to aid antibiotic choice. These should minimize 

the risk of human mistakes and support stewardship. In the study performed by (Paul 

et al., 2006) ‘computerized TREAT model’ was used to choice empirical treatment for 

UTIs. A randomized trial compared wards intervention using TREAT vs. antibiotic 

monitoring/prescribing without TREAT. This showed that the TREAT advice system 

prescribed appropriate empirical therapy significantly more frequently than 

physicians (70% versus 57%, P < 0.001) using fewer broad-spectrum antibiotics and 

halving physicians' antibiotic costs (Paul et al., 2006). A good ‘computerized support 

algorithm for empirical therapy should indicate the first-line treatment choice based 

on (i) patients results generated, (ii) local antimicrobial resistance rates, (iii) patients 

demography, (iv) history of previous medications and allergy, (v) underlying 

comorbidities and recent hospitalization and (vi) recent travels and migrations.  

Although our model supports targeted therapy, appropriate choice of empirical 

therapy would prevent treatment failure and resulting sides’ effect.   

 

5.2 Implementation of the point-of-care diagnostics in 
primary care  

 

In primary care settings, e.g. GP surgeries, there is a need to apply for point-of-

care tests that swiftly flag key resistances to antibiotics that ordinarily are used for 

treatment. Neither MALDI-TOF/PCR nor MinION is well adapted for use in a small, 

poorly-equipped medical centres. What rather would be useful is a simple system 

where urine is injected into e.g.  a cartridge or strip to confirm or rule out infection 

and to identify trimethoprim resistance in around 15 minutes.  

A new diagnostic introduced into GP workflow will need to fulfil basic 

expectations: (i) rapid turnarounds, (ii) being easy-to-use, (iii) having low cost and (iv) 

providing clinically relevant information.  
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By analogy a ‘test and treat’ service was implemented in some pharmacies in the 

UK and Republic of Ireland to seek streptococci group A in sore throat infections. The 

aim of the service, which utilizes an antigen detection test is to provide appropriate 

diagnosis and treatment, and thus to reduce unnecessary antibiotic usage in the case 

of viral infections. The results showed that two-thirds of examined patients did not 

need to visit their GP, whilst antibiotics were prescribed to under 10%, thereby saving 

the NHS ‘millions’ (Thornley et al., 2016; Little et al., 2013) (through the patients had 

to pay for the test at pharmacy).  

A similar model could be used for uncomplicated UTIs (i.e. cystitis) in the 

community. Trained pharmacy or non-medical surgery staff could assess the patients 

presenting conditions using a clinical scoring algorithm. Patients with two or more 

positive symptoms of i.e. dysuria, frequent urination, abdominal pain, discomfort 

during urination and cloudy, foul-smelling urine, but without symptoms of upper UTIs 

(e.g. fever, blood in urine, flank or back pain) would be referred for point-of-care 

examination of urine. This would then include (i) a dipstick test to detect pathological 

changes and the presence of bacteria and WBC based upon nitrites and leucocytes 

analysis, and (ii) rapid PCR to seek E. coli and detect common trimethoprim resistance 

determinants in order to assess appropriate first-line treatment. If a dfr gene, 

indicating resistance to trimethoprim, is found nitrofurantoin would be prescribed 

whilst if a dfr gene is not detected, trimethoprim would be recommended. Patients 

with a clinical symptoms but negative dipstick result would be referred for GP 

consultation. A refinement would be to specifically seek ST131 E. coli, which accounts 

for much of the multi-resistance seen.  

This scheme should avoid treatment failure, reduce inappropriate trimethoprim 

prescription and thus the spread of resistance to this agent. It would ensure that 

patients with bacteria susceptible to trimethoprim would still get this agent, which is 

superior to nitrofurantoin. Patient examination could take place in a private 

consultation room in a medical centre or pharmacy. The patient would pay for the 

test and antibiotics minimize the NHS costs, also ensuring that they were able to be 

seen immediately, rather than after the delay in getting a GP appointment.  
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This model would also need to ensure that patients with atypical or severe 

symptoms implying ascending infection i.e. fever, flank or back pain, shivering and 

chills, blood in urine, also patients from high-risk groups i.e. recurrent UTIs, children, 

pregnant women, diabetic, immunocompromised, cancer patients, travellers or 

imigrants from countries or regions with high resistance rates (e.g. South America, 

Asia, South Europe etc.) would be referral to visit their GP for further review. In this 

case, and based on the clinical details and medical history empirical treatment would 

be initiated simultaneously with urine sample collection, and sending to the clinical 

laboratory for culture or rapid PCR investigation e.g. for the combination of MALDI-

TOF/PCR explored here. 

 

5.3 Rapid point-of-care testing 

To specifically seek E. coli, particularly ST131 and trimethoprim dfr-mediated 

resistance in urine specimens’ in low technical settings such as GP surgeries, real-time 

LAMP (Loop-mediated isothermal AMPlification) detection system could be used. The 

technology is driven by the Amplex (Germany) and has proved to be effective and 

sensitive (Fernández-Soto et al., 2014; Britton et al., 2016). LAMP allows rapid cost-

effective amplification of DNA at a constant temperatures thus eliminating the need 

for an expensive thermo cycler. In contrast to conventional PCR the methodology 

uses 4-6 different primers specifically designed to recognize 6-8 distinct regions on 

the target genes. Sample preparation takes 2-5 min, without DNA extraction, and 

analysis is performed in a small, portable, specifically designed for outdoor use Genie 

II or III (Amplex, Germany). The company has already developed ready-to-use rapid 

lyophilised kits (Easyplex) in a format of 8-well strip i.e. to identify the common 

pathogens causing cerebrospinal (CSF) infections, C. difficille toxins and for the 

detection of genes to identify VRE, MRSA and carbapenemases within 20-30 min. 

Development of a basic trimethoprim resistance test to seek common dfr 

trimethoprim determinants in E. coli  within pharmacy (medical centre) consultation 

service thus seems feasible and would guide appropriate treatment. The total 

turnaround time should be no more than 1h. 
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Other example of rapid point-of-care tests would be GeneXpert II (Cepheid) and 

BioFire FilmArray (bioMerioux, France) both of which are based on the multiplex real-

time PCR technology. In contrast to AusDiagnostic system the total turnaround time 

might be shorten to c. 1-2 h (MT-PCR 2-3 h), analysis is performed in one instrument 

(MT-PCR requires liquid-handling robot and real time platform) and the instruments  

are much smaller. The reaction is performed in specific cartridges to which the clinical 

sample is loaded which minimize the risk of reagents contamination or missing. 

Interpretation of results is performed by the internal software, indicating only clinical 

relevant information.  

In principle a scheme involving point-of-care testing for rapid detection of E. coli 

and rule out of trimethoprim resistance in the community could (i) better guide 

treatment choice for UTIs, (ii) decrease the number of unnecessary urine submission 

by GPs to clinical laboratories for culture investigation, (iii) decrease the number of 

emergency admissions for treatment failures, thereby reducing cost of prolonged 

hospitalization,  (iv) reduce the spread of resistance at the community through better 

targeted therapy.   

 

5.4 Patients care vs. diagnostic cost 
 

The cost of an overnight stay in an NHS hospital varies according to location and 

the type of services needed. Generally, the average hospital day costs £400 plus £500 

for the operation and £250 for the consultation (Department of Health, 2015). The 

average total cost of a non-elective or elective inpatient, excluding excess bed days 

(which commonly arise owing to hospital acquired infections) is in a range £1,609-

£3,749 for an Accident and Emergency admission (Department of Health, 2016). In 

2013/14 the NHS spent £434 million for treating 184,000 hospital admissions for a 

urinary tract infection (The Medical Technology Group, 2015).  

The cost of antibiotic therapy depends on the choice of treatment. Oral antibiotic 

therapy is much cheaper than intravenous. For example the cost per unit of oral 

ciprofloxacin (10 x 500 mg tablets) is £1.02 vs. £22.85 for intravenous ciprofloxacin IV 

(400 mg vial) (NICE, 2016). 
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The cost of antibiotics required to treat nosocomial complicated UTIs varies from 

£42 for gentamicin IV to £1,407 for ceftolozane/tazobactam 1g/0.5g IV based upon 

for 7-day course (NICE, 2016). To this must be added the cost of patient’s 

investigation in term of equipment/reagents and staff costs. 

The costs of new models must be seek to better manage UTIs in both community and 

hospitals. The costs for a community consultation service is likely to be more than  for 

detection of group A streptococci where the patient pays £7.50 for the test and 

further £10 for antibiotics (Thornley et al., 2016). Here, we proposed three steps 

approach which include (i) detection of bacteria using urine dipstick, (ii) identification 

of ‘coliform’ particularly E. coli, and (iii) detection of trimethoprim resistance; both 

the latter steps would be performed by rapid PCR method (e.g. LAMP technology). 

The initial costs for LAMP heating device or heat block may be high (e.g. Genie II costs 

£9,000 distributed by OptiGene, or Genie III costs around £14,000 distributed by Pro-

Lab Diagnostics), however researchers who used this technology to detect Zika virus 

in human fluids (Chotiwan et al., 2017) said that the device may costs around £195 

(Colorado State University, 2017). The cost for consumables purchase for this 

technique may be similar to PCR (£10-20 sample/run, EasyPlex assay distributd by 

OptiGene) or even cheaper. Even if patient needs to pay £15-20 for the consultation 

service plus the cost of the antibiotic the benefits of the service are substantial. Only 

one hospitalization (for cUTI) per 100-200 patients must be allowed for the costs to 

roughly balance.   

In the case of patients with complicated UTIs admitted urgently to hospital, or 

patients with hospital-acquired UTIs who are at high risk of developing urospesis, 

MALDI-TOF/PCR or MinION sequencing appear valuable. Although the initial costs for 

the equipment, reagents and annual service are relatively high (for example mass 

spectrometry costs £125,000 plus £13,000 annually for the service), the cost per 

sample for bacterial identification and hydrolysis testing is low (£0.5-1.00). The MT-

PCR technique costs (£12-15 sample/run). The costs for the platforms purchase is 

around £40,000 (sample processor £14,280 plus Easy-Plex 96 £25,245, but analysis 

can be performed also using other real-time platforms e.g. LC480, Roche or Bio-rad).  

Nanopore sequencing currently is much more expensive (£520-840 sample/run) but 
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constant improvement of the technology should decrease this. Nonetheless the 

potential benefits are substantial and inclusive (i) reducing prolonged hospitalization 

and thereby diminishing healthcare costs (£400/day), (ii) prescribing appropriate 

(maybe cheaper) targeted antibiotics and minimizing the risk of treatment failure and 

its contingent costs (iii) decreased spread of multi-resistant organisms and of 

Clostridium difficile infections, with their long term costs and (iv) preserving limited 

treatment choices.  

Implementation of the point-of-care tests in primary care and rapid diagnostics 

methods in secondary care should achieve a public health gain. Both patients with 

uncomplicated UTIs and complicated UTIs will be better cared for, with a more 

appropriate and effective alternative for management of UTIs.  

The ultimate aim of these study was to improve both the clinical management of 

UTIs and antibiotic stewardship. If patients are treated more effectively at an early 

stage, this will diminish the number of complicated infections, bacteraemic episodes 

and the spreading resistances, along with their contingent personal, societal and 

financial costs. Moreover, where severe infection does arise, earlier information of 

the isolate’s resistances will guide treatment choices, ensuring that an effective 

narrow-spectrum antibiotic is given. In the short term these techniques will not 

replace the standard culture, at least currently, but even now they could definitely 

accelerate the diagnostic workflow for urosepsis patients for substantial benefits.  
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AppendixAppendixAppendixAppendix    AAAA    

Statistics analysis of Epidemiological data    
 

Table A 1. Testing the significance of the changes of urines submitted to the 

microbiology laboratory giving different types of results: July vs. 

November 2014. 

Table A 2. Testing differences in the proportions of results for all urines submitted 

to the microbiology laboratory by Chi-square test, July vs. November 

2014. 

Table A 3. Testing the significance of the changes in the proportions of urines 

submitted from different locations, July vs. November 2014. 

Table A 4. Testing the significance of the changes in the proportions of urines giving 

positive and negative results, July vs. November 2014. 

Table A 5. Testing differences in the proportion of different bacterial species, July 

vs. November 2014 by Chi-square test. 

Table A 6. Testing differences in the pathogen distribution by gender by Chi-square 

test, July vs. November, 2014. 

Table A 7. Testing significance of changes in the proportions of isolates resistant to 

amoxicillin and trimethoprim by location, July and November 2014.
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Table A 1. Testing the significance of the changes of urines submitted to the microbiology laboratory giving different types of results: July vs. 

November 2014. 

 

Significance level P < 0.05 

Results from the 
investigation 

July November p_tilda denom z critical1 critical2 p-value  

p1_hat p2_hat 

Iris screening negative 32.2% 31.6% 32% 0.006849455 0.881537787 -1.959963985 1.959963985 0.378026811 do not reject H0 

Negative culture 29.4% 27.7% 29% 0.006640528 2.546986617 -1.959963985 1.959963985 0.01086576 reject H0 

Positive culture 24.9% 25.6% 25% 0.006383389 -1.017958245 -1.959963985 1.959963985 0.3086978 do not reject H0 

Heavy mixed  
bacterial growth 

13.4% 15.0% 14% 0.005126557 -3.209437629 -1.959963985 1.959963985 0.001329949 reject H0 

H0 (null hypothesis): both proportions are the same (i.e. nothing changed over time). 
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Table A 2. Testing differences in the proportions of results for all urines submitted to the microbiology laboratory by Chi-square test, July vs. 

November 2014.  

 

 

 

 

 

 

 

 

 

Results from the investigation July (n=9558) November (n=8991) Total (n=18549) Predicted Frequencies 

Iris screening  3080 2843 5923 3052.026201 2870.973799 

Negative culture 2814 2495 5309 2735.641921 2573.358079 

Positive culture 2384 2301 4685 2414.104803 2270.895197 

Heavy mixed bacterial growth 1280 1352 2632 1356.227074 1275.772926 

p-value 0.002021461 

H0 (null hypothesis): independent; Reject H0; The distribution of results is not the same in July and in November. 
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Table A 3.Testing the significance of the changes in the proportions of urines submitted from different locations, July vs. November 2014. 

 

H0 (null hypothesis): both proportions are the same (i.e. nothing changed over time) 

1Proportion of samples.

Significance level: 0.05 

Location  July Nov p_tilda denom z critical1 critical2 p-value  
 p1_hat1 p2_hat1 

GP 67% 69% 68% 0.006865878 -3.368491117 -1.959963985 1.959963985 0.000755808 reject H0 

H_IN 15% 13% 14% 0.005130618 2.869048685 -1.959963985 1.959963985 0.004117084 reject H0 

H_OUT 6% 3% 4% 0.003025224 8.342225919 -1.959963985 1.959963985 0 reject H0 

OH 2% 2% 2% 0.001944986 -1.282765742 -1.959963985 1.959963985 0.199574159 do not reject H0 

AU 11% 13% 12% 0.004737059 -3.026030614 -1.959963985 1.959963985 0.002477872 reject H0 
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Table A 4. Testing the significance of the changes in the proportions of urines giving positive and negative results, July vs. November 2014.  

Significance level 0.05 

Location/results July Nov p_tilda denom z critical1 critical2  

p1_hat p2_hat 

GP 
Iris screening  31.5% 31.8% 0.31617881 0.008294786 -0.321310552 -1.959963985 1.959963985 Do not reject H0 
Negative culture 26.5% 24.9% 0.257556475 0.007800734 2.044108929 -1.959963985 1.959963985 Reject H0 
Positive culture 28.3% 28.3% 0.283089405 0.008036405 -0.02227781 -1.959963985 1.959963985 Do not reject H0 
Heavy mix bacterial growth 13.7% 15.0% 0.14317531 0.006248094 -2.096849652 -1.959963985 1.959963985 Reject H0 
 

Hospital Inpatients p1_hat p2_hat p_tilda denom z critical1 critical2  
Iris screening  29.8% 24.3% 0.272658324 0.017403196 3.15185808 -1.959963985 1.959963985 Reject H0 
Negative culture 39.2% 40.1% 0.396283656 0.019114808 -0.439176341 -1.959963985 1.959963985 Do not reject H0 
Positive culture 17.4% 17.0% 0.172544558 0.014766356 0.287410601 -1.959963985 1.959963985 Do not reject H0 
Heavy mix bacterial growth 13.5% 18.6% 0.158513462 0.01427273 -3.552343453 -1.959963985 1.959963985 Reject H0 
 

Hospital Outpatients p1_hat p2_hat p_tilda denom z critical1 critical2  
Iris screening   29.0% 21.3% 0.263669502 0.032362575 2.392806162 -1.959963985 1.959963985 Reject H0 
Negative culture 42.7% 38.3% 0.411907655 0.036149261 1.21740628 -1.959963985 1.959963985 Do not reject H0 
Positive culture 17.7% 21.6% 0.190765492 0.028857841 -1.346701179 -1.959963985 1.959963985 Do not reject H0 
Heavy mix bacterial growth 10.5% 18.8% 0.133657351 0.024992978 -3.304240875 -1.959963985 1.959963985 Reject H0 
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Location/results July Nov p_tilda denom z critical1 critical2  
p1_hat p2_hat 

Other Hospitals p1_hat p2_hat p_tilda denom z critical1 critical2  
Iris screening  22.6% 16.9% 0.196374622 0.043703952 1.322773801 -1.959963985 1.959963985 Do not reject H0 
Negative culture 13.2% 14.5% 0.13897281 0.038056125 -0.348783949 -1.959963985 1.959963985 Do not reject H0 
Positive culture 32.1% 39.5% 0.359516616 0.052791576 -1.412992861 -1.959963985 1.959963985 Do not reject H0 
Heavy mix bacterial growth 32.1% 29.1% 0.305135952 0.050657975 0.593332891 -1.959963985 1.959963985 Do not reject H0 
 

Admission Units p1_hat p2_hat p_tilda denom z critical1 critical2  

Iris screening  43.0% 43.6% 0.433211345 0.021206228 -0.27671866 -1.959963985 1.959963985 Do not reject H0 

Negative culture 29.3% 29.3% 0.293229643 0.019482561 0.016599576 -1.959963985 1.959963985 Do not reject H0 

Positive culture 17.5% 17.0% 0.17200366 0.016150501 0.303476878 -1.959963985 1.959963985 Do not reject H0 

Heavy mix bacierial growth 10.2% 10.1% 0.101555352 0.012927068 0.04977565 -1.959963985 1.959963985 Do not reject H0 
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Table A 5. Testing differences in the proportion of different bacterial species, July vs. November 2014 by Chi-square test. 

 

 

 

Pathogens Observed  Predicted 

July  (n=2384) November (n=2301) Total July  (n=2384) November (n=2301) 

E. coli 1637 1565 3202 1629.735897 1572.264103 

Other Coliform species 356 318 674 343.0487179 330.9512821 

Enterococcus spp 137 107 244 124.1897436 119.8102564 

Proteeae 98 119 217 110.4474359 106.5525641 

Pseudomonas spp 76 105 181 92.12435897 88.87564103 

CoNegStaph 26 21 47 23.92179487 23.07820513 

Streptococcus Group B 24 25 49 24.93974359 24.06025641 

S. aureus 17 15 32 16.28717949 15.71282051 

S. saprophyticus 11 23 34 17.30512821 16.69487179 

 2382 2298 4680   

p-value  
0.02495943 

H0: independent; Reject H0; The distribution of  the Gram-positive and Gram-negative isolates are not the same in July and in November (p < 0.05) 
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Table A 6. Testing differences in the pathogen distribution by gender by Chi-square test, July vs. November, 2014. 

 

 

 

 

 

Women Observed  Predicted 

Pathogens July  (n=1793) November (n=1769) Total July  (n=1793) November (n=1769) 

E. coli 1352 1308 2660 1338.966292 1321.033708 

Other Coliform species 237 227 464 233.5640449 230.4359551 

Pseudomonas spp. 27 50 77 38.75955056 38.24044944 

Proteeae  49 67 116 58.39101124 57.60898876 

Enterococcus spp. 71 57 128 64.43146067 63.56853933 

CoNegStaph 17 9 26 13.08764045 12.91235955 

S. aureus 7 6 13 6.543820225 6.456179775 

S. saprophyticus 11 23 34 17.11460674 16.88539326 

Streptococcus Group B 21 21 42 21.14157303 20.85842697 

 1792 1768 3560   

p-value 0.016251695 

H0: independent; Reject H0; The distributions of species/groups 
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Men Observed  Predicted 

Pathogens July  (n=591) November (n=532)  July  (n=591) November (n=532) 

E. coli 285 257 542 285.8526505 256.1473495 

Other Coliform species 119 91 210 110.754717 99.24528302 

Pseudomonas spp. 49 55 104 54.84995508 49.15004492 

Proteeae  49 52 101 53.26774483 47.73225517 

Enterococcus spp. 66 50 116 61.17879605 54.82120395 

CoNegStaph 9 12 21 11.0754717 9.924528302 

S. aureus 10 9 19 10.02066487 8.97933513 

 587 526 1113   

p-value 0.547034194 

H0: dependent; DO not reject H0; The distributions of  species/group 
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Table A 7. Testing significance of changes in the proportions of isolates resistant to amoxicillin and trimethoprim by location, July and 

November 2014. 

 

Significance 
level 

5% 

 Amoxicillin, proportion 
resistant p-tilda denom z crit1 crit2  

Location July Nov 

GP  0.506319115 0.489911219 0.498203593 0.019981062 0.821172411 -1.959963985 1.959963985 Do not reject H0 

H_IN  0.54491018 0.612903226 0.573883162 0.058621038 -1.15987448 -1.959963985 1.959963985 Do not reject H0 

H_OUT  0.564516129 0.333333333 0.475247525 0.102063326 2.265091723 -1.959963985 1.959963985 Reject H0 

AU  0.457627119 0.52892562 0.493723849 0.064684623 -1.10224808 -1.959963985 1.959963985 Do not reject H0 

OH 0.458333333 0.571428571 0.53030303 0.127706392 -0.88558792 -1.959963985 1.959963985 Do not reject H0 

         

 Trimethoprim, proportion 
resistant 

p-tilda denom z crit1 crit2  

Location July Nov 

GP  0.327804107 0.338175948 0.332934132 0.018832799 -0.550732832 -1.959963985 1.959963985 Do not reject H0 

H_IN  0.449101796 0.346774194 0.405498282 0.058203417 1.758103011 -1.959963985 1.959963985 Do not reject H0 

H_OUT  0.35483871 0.179487179 0.287128713 0.092464795 1.896413979 -1.959963985 1.959963985 Do not reject H0 

AU  0.338983051 0.363636364 0.351464435 0.061769325 -0.399119028 -1.959963985 1.959963985 Do not reject H0 

OH 0.25 0.404761905 0.348484848 0.121925884 -1.269311323 -1.959963985 1.959963985 Do not reject H0 
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Appendix BAppendix BAppendix BAppendix B    
 

Sensitivity and specificity for the cephalosporin hydrolysis 

assays by MALDI-TOF 

 
Table B 1. Sensitivity and specificity for urines containing bacteria (A) and cultivated 

isolates from these urines (B) incubated with cefepime in buffer. 

Table B 2.  Sensitivity and specificity for urines containing bacteria (A) and cultivated 

isolates from these urines (B) incubated with ceftriaxone in buffer. 

Table B 3.  Sensitivity and specificity for urines containing bacteria (A) and cultivated 

isolates from these urines (B) incubated with cefpodoxime in buffer. 

Table B 4. Sensitivity and specificity for urines containing bacteria (A) and cultivated 

isolates from these urines (B) incubated with ceftazidime in buffer. 

Table B 5. Sensitivity and specificity for urines containing bacteria (A) and cultivated 

isolates from these urines (B) incubated with ceftriaxone in buffer. 

Table B 6. Sensitivity and specificity for urines containing bacteria (A) and cultivated 

isolates from these urines (B) producing ESBLs for all tested 

cephalosporins. 

Table B 7. Sensitivity and specificity for urines containing β-lactamases bacteria (A) 

and cultivated isolates from these urines (B) producing AmpC, for all tested 

cephalosporins. 
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Table B 1.  Sensitivity and specificity for urines containing bacteria (A) and cultivated 
isolates from these urines (B) incubated with cefepime in buffer. 

Sensitivity and specificity were calculated in two ways: (i) urines or cultivated isolates with 

intermediate zone were treated as susceptible and (ii) urines or cultivated isolates with 

intermediate zone were treated as resistant. Samples achieving ‘slow hydrolysis’ were 

treated as hydrolysed.  

(A) Urines containing bacteria incubated with cefepime in buffer  
(Intermediate + Susceptible vs. Resistant) 

 

 

 

 

 

 

 

 

 

 

 

 

Values entered: 

 Conditions  

Cefepime S/I Cefepime R Totals 

Cefepime hydrolysed 6 44 50 

Cefepime not hydrolysed 35 4 39 

Totals 41 48 89 

 Estimated value 95% Confidence interval 

Lower limit Upper limit 

Prevalence 0.539326 0.430829 0.644395 

Sensitivity 0.916667 0.791284 0.972965 

Specificity 0.853659 0.701378 0.939071 

For any particular test results, the probability that it will be: 

Positive 0.561798 0.452767 0.665442 

Negative 0.438202 0.334558 0.527233 

For any particular positive test results, the probability that it is: 

True Positive   0.88 0.749973 0.950261 

False Positive 0.12 0.049739 0.250027 

For any particular negative test results, the probability that it is: 

True Negative 0.897436  0.748434 0.966626 

False Negative 0.102564 0.033374 0.251566 
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(A)   Urines containing bacteria incubated with cefepime in buffer  
(Intermediate + Resistant vs. Susceptible) 

 

(B) Cultivated isolates incubated with cefepime in buffer  
      (Intermediate + Susceptible vs. Resistant) 

 ‘ 

Values entered: 

 Conditions  

Cefepime S Cefepime R/I Totals 

Cefepime hydrolysed 5 45 50 

Cefepime not hydrolysed 35 4 39 

Totals 40 49 89 

 Estimated value 95% Confidence interval 

Lower limit Upper limit 

Prevalence 0.550562 0.441773 0.654944 

Sensitivity 0.918367 0.795162 0.973524 

Specificity 0.875 0.723966 0.953052 

For any particular test results, the probability that it will be: 

Positive 0.561798 0.3452767 0.665442 

Negative 0.438202  0.334558 0.547233 

For any particular positive test results, the probability that it is: 

True Positive 0.9 0.774088 0.962595 

False Positive 0.1 0.37405 0.225912 

For any particular negative test results, the probability that it is: 

True Negative 0.897436 0.748434 0.9626626 

False Negative 0.102564 0.033374 0.251566 

Values entered: 

 Conditions  

Cefepime S/I Cefepime R Totals 

Cefepime hydrolysed 12 49 61 

Cefepime not hydrolysed 27 1 28 

Totals 39 50 89 

 Estimated value 95% Confidence interval 

Lower limit Upper limit 

Prevalence 0.561798 0.451767 0.665442 

Sensitivity 0.98 0.879892 0.998955 

Specificity 0.692308 0.522727 0.82451 

For any particular test results, the probability that it will be: 

Positive 0.685393 0.577141 0.777431 

Negative 0.314607 0.222569 0.422859 

For any particular positive test results, the probability that it is: 

True Positive 0.803279 0.677811 0.889996 

False Positive 0.196721 0.110004 0.312189 

For any particular negative test results, the probability that it is: 

True Negative 0.964286 0.79761 0.998133 

False Negative 0.035714 0.001867 0.20239 
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(B) Cultivated isolates incubated with cefepime in buffer  
(Intermediate + Resistant vs. Susceptible) 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Values entered: 

 Conditions  

Cefepime S Cefepime R/I Totals 

Cefepime hydrolysed 11 50 61 

Cefepime not hydrolysed 27 1 28 

Totals 38 51 89 

 Estimated value 95% Confidence interval 

Lower limit Upper limit 

Prevalence 0.573034 0.463811 0.67589 

Sensitivity 0.980392 0.882072 0.998976 

Specificity 0.710526 0.538876 0. 84019 

For any particular test results, the probability that it will be: 

Positive 0.685393 0.577141 0.777431 

Negative 0.314607 0.222569 0.422859 

For any particular positive test results, the probability that it is: 

True Positive 0.819672 0.696049 0.902358 

False Positive 0.180328 0.097642 0.303951 

For any particular negative test results, the probability that it is: 

True Negative 0.964286 0.79761 0.998133 

False Negative 0.035714 0.001867 0.20239 
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Table B 2.  Sensitivity and specificity for urines containing bacteria (A) and cultivated 
isolates from these urines (B) incubated with ceftriaxone in buffer. 

Sensitivity and specificity were calculated in two ways: (i) urines or cultivated isolates with 

intermediate zone were treated as susceptible and (ii) urines or cultivated isolates with 

intermediate zone were treated as resistant. 

(A) Urines containing bacteria incubated with ceftriaxone in buffer  

(Intermediate + Susceptible vs. Resistant) 
 

 

 

 

 

 

 

 

 

 

 

 

 

Values entered: 

 Conditions  

Ceftriaxone S/I Ceftriaxone R Totals 

Ceftriaxone hydrolysed 0 41 41 

Ceftriaxone not hydrolysed 35 12 47 

Totals 35 53 88 

 Estimated value 95% Confidence interval 

Lower limit Upper limit 

Prevalence 0.602273 0.492138 0.703387 

Sensitivity 0.773585 0.634502 0.87274 

Specificity 1 0.876847   1 

For any particular test results, the probability that it will be: 

Positive 0.465909 0.359943 0.574879 

Negative 0.534091 0.425121 0.640057 

For any particular positive test results, the probability that it is: 

True Positive 1 0.893306 1 

False Positive 0 0 0.106694 

For any particular negative test results, the probability that it is: 

True Negative 0.7244681 0.593626 0.855761 

False Negative 0.255319 0.144239 0.406374 
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(A) Urines containing bacteria incubated with ceftriaxone in buffer  
(Intermediate + Resistant vs. Susceptible) 

 
 
(B) Cultivated isolates incubated with ceftriaxone in buffer  

(Intermediate + Susceptible vs. Resistant) 
 

Values entered: 

 Conditions  

Ceftriaxone S Ceftriaxone R/I Totals 

Ceftriaxone hydrolysed 0 41 41 

Ceftriaxone not hydrolysed 30 17 47 

Totals 30 58 88 

 Estimated value 95% Confidence interval 

Lower limit Upper limit 

Prevalence 0.659091 0.549455 0.754672 

Sensitivity 0.706897 0.570898 0.81537 

Specificity 1 0.85868 1 

For any particular test results, the probability that it will be: 

Positive 0.465909 0.359943 0.574879 

Negative 0.534091 0.425121 0.640057 

For any particular positive test results, the probability that it is: 

True Positive 1 0.893306 1 

False Positive 0 0 0.106694 

For any particular negative test results, the probability that it is: 

True Negative 0.638298 0.484781 0.769364 

False Negative 0.361702 0.230636 0.515219 

Values entered: 

 Conditions  

Ceftriaxone S/I Ceftriaxone R Totals 

Ceftriaxone hydrolysed 2 48 50 

Ceftriaxone not hydrolysed 35 6 41 

Totals 37 54 91 

 Estimated value 95% Confidence interval 

Lower limit Upper limit 

Prevalence 0.593407 0.485227 0.693616 

Sensitivity 0.888889 0.766852 0.954014 

Specificity 0.945946 0.804695 0.990582 

For any particular test results, the probability that it will be: 

Positive 0.549451 0.441922 0.652763 

Negative 0.450549 0.347237 0.558078 

For any particular positive test results, the probability that it is: 

True Positive 0.96 0.851412 0.993041 

False Positive 0.04 0.006959 0.148588 

For any particular negative test results, the probability that it is: 

True Negative 0.856659 0.701378 0.939071 

False Negative 0.146341 0.060929 0.298622 
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(B) Cultivated isolates incubated with ceftriaxone in buffer  
(Intermediate + Resistant vs. Susceptible) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Values entered: 

 Conditions  

Ceftriaxone S Ceftriaxone R/I Totals 

Ceftriaxone hydrolysed 0 50 50 

Ceftriaxone not hydrolysed 31 10 41 

Totals 32 59 91 

 Estimated 

value 

95% Confidence interval 

Lower limit Upper limit 

Prevalence 0.659341 0.551666 0.753395 

Sensitivity 0.833333 0.710209 0.912985 

Specificity 1 0.86273 1 

For any particular test results, the probability that it will be: 

Positive 0.549451 0.441922 0.652763 

Negative 0.450549 0.347237 0.558078 

For any particular positive test results, the probability that it is: 

True Positive 1 0.911125 1 

False Positive 0 0 0.088875 

For any particular negative test results, the probability that it is: 

True Negative 0.756098 0.593558 0.870922 

False Negative 0.243902 0.129078 0.406442 
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Table B 3.  Sensitivity and specificity for urines containing bacteria (A) and cultivated 
isolates from these urines (B) incubated with cefpodoxime in buffer. 

(A) Urines containing bacteria incubated with cefpodoxime in buffer. 

(B)    Cultivated isolates incubated with cefpodoxime in buffer. 

 

 

Values entered: 

 Conditions  

Cefpodoxime S Cefpodoxime R Totals 

Cefpodoxime hydrolysed 0 54 54 

Cefpodoxime not hydrolysed 25 10 35 

Totals 25 64 89 

 Estimated value 95% Confidence interval 

Lower limit Upper limit 

Prevalence 0.719101 0.612257 0.806751 

Sensitivity 0.84375 0.726762 0.918568 

Specificity 1 0.834227 1 

For any particular test results, the probability that it will be: 

Positive 0.606742 0.497247 0.706924 

Negative 0.393258 0.293076 0.502753 

For any particular positive test results, the probability that it is: 

True Positive 1 0.917265 1 

False Positive 0 0 0.082735 

For any particular negative test results, the probability that it is: 

True Negative 0.714286 0.534754 0.847631 

False Negative 0.285714 0.152369 0.465346 

Values entered: 

 Conditions  

Cefpodoxime S Cefpodoxime R Totals 

Cefpodoxime hydrolysed 1 62 63 

Cefpodoxime not hydrolysed 24 3 27 

Totals 25 65 88 

 Estimated value 95% Confidence interval 

Lower limit Upper limit 

Prevalence 0.722222 0.616196 0.808991 

Sensitivity 0.953846 0.862413 0.988004 

Specificity 0.96 0.77677 0.997908 

For any particular test results, the probability that it will be: 

Positive 0.7 0.592946 0.789742 

Negative 0.3 0.210258 0.407054 

For any particular positive test results, the probability that it is: 

True Positive 0.984127 0.903164 0.999171 

False Positive 0.015873 0.000829 0.096836 

For any particular negative test results, the probability that it is: 

True Negative 0.888889 0.697034 0.970854 

False Negative 0.111111 0.029144 0.302966 
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Table B 4. Sensitivity and specificity for urines containing bacteria (A) and cultivated 
isolates from these urines (B) incubated with ceftazidime in buffer. 

(A) Urines containing bacteria incubated with ceftazidime in buffer  

 

(B) Cultivated isolates incubated with ceftazidime in buffer 

 

Values entered: 

 Conditions  

Ceftazidime S Ceftazidime R Totals 

Ceftazidime hydrolysed 0 29 29 

Ceftazidime not hydrolysed 21 30 41 

Totals 21 59 82 

 Estimated value 95% Confidence interval 

Lower limit Upper limit 

Prevalence 0.719512 0.607736 0.8110444 

Sensitivity 0.491525 0.360532 0.623622 

Specificity 0.913043 0.704913 0.984784 

For any particular test results, the probability that it will be: 

Positive 0.378048 0.275277 0.492354 

Negative 0.621951 0.507646 0.724723 

For any particular positive test results, the probability that it is: 

True Positive 0.935484 0.77157 0.988746 

False Positive 0.064516 0.011254 0.22843 

For any particular negative test results, the probability that it is: 

True Negative 0.411765 0.278884 0.557871 

False Negative 0.588235 0.442129 0.721116 

Values entered: 

 Conditions  

Ceftazidime S Ceftazidime R Totals 

Ceftazidime hydrolysed 1 50 51 

Ceftazidime not hydrolysed 29 11 40 

Totals 30 61 91 

 Estimated value 95% Confidence interval 

Lower limit Upper limit 

Prevalence 0.67033 0.562922 0.763172 

Sensitivity 0.819672 0.696049 0.902358 

Specificity 0.966667 0.80947 0.998258 

For any particular test results, the probability that it will be: 

Positive 0.56044 0.452676 0.663048 

Negative 0.43956 0.336952 0.547324 

For any particular positive test results, the probability that it is: 

True Positive 0.980392 0.882072 0.998976 

False Positive 0.019608 0.001024 0.117928 

For any particular negative test results, the probability that it is: 

True Negative 0.725 0.55862 0.848584 

False Negative 0.275 0.151416 0.44138 
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Table B 5. Sensitivity and specificity for urines containing bacteria (A) and cultivated 
isolates from these urines (B) incubated with cefotaxime in buffer. 

Sensitivity and specificity were calculated in two ways: (i) urines or cultivated isolates with 

intermediate zone were treated as susceptible and (ii) urines or cultivated isolates with 

intermediate zone were treated as resistant. 

(A) Urines containing bacteria incubated with cefotaxime in buffer 

 (Intermediate + Susceptible vs. Resistant) 

 

Values entered: 

 Conditions  

Cefotaxime S/I Cefotaxime R Totals 

Cefotaxime hydrolysed 5 47 52 

Cefotaxime not hydrolysed 25 12 37 

Totals 30 59 89 

 Estimated value 95% Confidence interval 

Lower limit Upper limit 

Prevalence 0.662921 0.554034 0.757573 

Sensitivity 0.79661 0.667968 0.886137 

Specificity 0.833333 0.64549 0.936964 

For any particular test results, the probability that it will be: 

Positive 0.58427 0.474905 0.686286 

Negative 0.41573 0.313714 0.525095 

For any particular positive test results, the probability that it is: 

True Positive 0.903846 0.782011 0.964056 

False Positive 0.096154 0.035944 0.217989 

For any particular negative test results, the probability that it is: 

True Negative 0.675676 0.501055 0.814449 

False Negative 0.324324 0.185551 0.498945 
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(A) Urines containing bacteria incubated with cefotaxime in buffer 

 (Intermediate + Resistant vs. Susceptible) 

 

 

(B) Cultivated isolates incubated with cefotaxime in buffer 

 (Intermediate + Susceptible vs. Resistant) 

Values entered: 

 Conditions  

Cefotaxime S Cefotaxime R/I Totals 

Cefotaxime hydrolysed 3 49 52 

Cefotaxime not hydrolysed 25 12 37 

Totals 28 61 89 

 Estimated value 95% Confidence interval 

Lower limit Upper limit 

Prevalence 0.683393 0.577141 0.777431 

Sensitivity 0.803279 0.677811 0.889996 

Specificity 0.892857 0.7063 0.971912 

For any particular test results, the probability that it will be: 

Positive 0.58427 0.474905 0.686286 

Negative 0.41573 0.313714 0.525095 

For any particular positive test results, the probability that it is: 

True Positive 0.942308 0.830784 0.984981 

False Positive 0.057692 0.015011 0.169216 

For any particular negative test results, the probability that it is: 

True Negative 0.675676 0.501055 0.814449 

False Negative 0.324324 0.185551 0.498945 

Values entered: 

 Conditions  

Cefotaxime S/I Cefotaxime R Totals 

Cefotaxime hydrolysed 3 49 52 

Cefotaxime not hydrolysed 28 7 35 

Totals 31 56 87 

 Estimated value 95% Confidence interval 

Lower limit Upper limit 

Prevalence 0.643678 0.533097 0.74143 

Sensitivity 0.875 0.75314 0.944098 

Specificity 0.903226 0.730997 0.974668 

For any particular test results, the probability that it will be: 

Positive 0.597701 0.486925 0.699764 

Negative 0.402299 0.300236 0.513075 

For any particular positive test results, the probability that it is: 

True Positive 0.942308 0.830784 0.984981 

False Positive 0.057692 0.015019 0.169216 

For any particular negative test results, the probability that it is: 

True Negative 0.8 0.625358 0.909386 

False Negative 0.2 0.090614 0.374642 
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(B)     Cultivated isolates incubated with cefotaxime in buffer 

 (Intermediate + Resistant vs. Susceptible) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Values entered: 

 Conditions  

Cefotaxime S Cefotaxime R/I Totals 

Cefotaxime hydrolysed 1 51 52 

Cefotaxime not hydrolysed 28 7 35 

Totals 29 58 87 

 Estimated value 95% Confidence interval 

Lower limit Upper limit 

Prevalence 0.666667 0.556528 0.761911 

Sensitivity 0.87931 0.760922 0.946065 

Specificity 0.965517 0.803719 0.998197 

For any particular test results, the probability that it will be: 

Positive 0.597701 0.486925 0.699764 

Negative 0.402299 0.30236 0.513075 

For any particular positive test results, the probability that it is: 

True Positive 0.980769 0.884174 0.998995 

False Positive 0.019231 0.001005 0.115826 

For any particular negative test results, the probability that it is: 

True Negative 0.8 0.625358 0.909386 

False Negative 0.2 0.090614 0.374642 
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Table B 6. Sensitivity and specificity for urines containing bacteria (A) and cultivated 
isolates from these urines (B) producing ESBLs for all tested 
cephalosporins. 

(A) Urines containing bacteria producing ESBLs 

(B) Cultivated isolates producing ESBLs 

 

Values entered: 

 Conditions  

Urine S Urine R Totals 

Cephalosporin hydrolysed 0 191 191 

Cephalosporin not hydrolysed 0 18 18 

Totals 0 210 210 

 Estimated value 95% Confidence interval 

Lower limit Upper limit 

Prevalence 1 0.977503 1 

Sensitivity 0.913876 0.865181 0.946717 

Specificity - - - 

For any particular test results, the probability that it will be: 

Positive 0.913876 0.865181 0.946171 

Negative 0.086124 0.053283 0.134819 

For any particular positive test results, the probability that it is: 

True Positive 1 0.975425 1 

False Positive 0 0 0.0242575 

For any particular negative test results, the probability that it is: 

True Negative 0 0 0.218756 

False Negative 1 0.781244 1 

Values entered: 

 Conditions  

Isolates S Isolates R Totals 

Cephalosporin hydrolysed 0 207 207 

Cephalosporin not hydrolysed 0 4 4 

Totals 0 211 211 

 Estimated value 95% Confidence interval 

Lower limit Upper limit 

Prevalence 1 0.977712 1 

Sensitivity 0.981043 0.948985 0.99391 

Specificity - - - 

For any particular test results, the probability that it will be: 

Positive 0.981043 0.948985 0.99391 

Negative 0.018957 0.00609 0.051015 

For any particular positive test results, the probability that it is: 

True Positive 1 0.97729 1 

False Positive 0 0 0.02271 

For any particular negative test results, the probability that it is: 

True Negative 0 0 0.604226 

False Negative 1 0.395774 1 
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Table B 7.  Sensitivity and specificity for urines containing bacteria (A) and cultivated 
isolates from these urines (B) producing AmpC for all tested 
cephalosporins. 

(A) Urines containing bacteria producing AmpC β-lactamases 

(B) Cultivated isolates producing AmpC β-lactamases 

Values entered: 

 Conditions  

Urines S Urines R Totals 

Cephalosporin hydrolysed 0 24 24 

Cephalosporin not hydrolysed 0 50 50 

Totals 0 74 74 

 Estimated value 95% Confidence interval 

Lower limit Upper limit 

Prevalence 1 0.93851 1 

Sensitivity 0.324324 0.222763 0.444292 

Specificity - - - 

For any particular test results, the probability that it will be: 

Positive 0.324324 0.222763 0.444292 

Negative 0.675676 0.555708 0.777237 

For any particular positive test results, the probability that it is: 

True Positive 1 0.828285 1 

False Positive 0 0 0.171715 

For any particular negative test results, the probability that it is: 

True Negative 0 0 0.088875 

False Negative 1 0.911125 1 

Values entered: 

 Conditions  

Isolates S Isolates R Totals 

Cephalosporin hydrolysed 0 51 51 

Cephalosporin not hydrolysed 0 22 22 

Totals 0 73 73 

 Estimated value 95% Confidence interval 

Lower limit Upper limit 

Prevalence 1 0.93771 1 

Sensitivity 0.69863 0.578505 0.797641 

Specificity - - - 

For any particular test results, the probability that it will be: 

Positive 0.69863 0.578505 0.797641 

Negative 0.30137 0.202359 0.421495 

For any particular positive test results, the probability that it is: 

True Positive 1 0.912744 1 

False Positive 0 0 0.087256 

For any particular negative test results, the probability that it is: 

True Negative 0 0 0.184975 

False Negative 1 0.815025 1 
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Appendix CAppendix CAppendix CAppendix C    
 

Sensitivity and specificity for the 16-Plex assay 

 

Table C 1. Sensitivity and specificity for detection of blaTEM from urines (A) and 

cultivated isolates (B). 

Table C 2. Sensitivity and specificity for detection of blaSHV from urines (A) and 

cultivated isolates (B). 

Table C 3. Sensitivity and specificity for detection of blaCTX-Mgr1 from urines (A) and 

cultivated isolates (B). 

Table C 4. Sensitivity and specificity for detection of blaCTX-Mgr9 from urines (A) and 

cultivated isolates (B). 

Table C 5. Sensitivity and specificity for detection of blaCMY from urines (A) and 

cultivated isolates (B). 

Table C 6. Sensitivity and specificity for detection of blaOXA-1 from urines (A) and 

cultivated isolates (B). 

Table C 7. Sensitivity and specificity for detection of blaOXA-48 from cultivated isolates. 

Table C 8. Sensitivity and specificity for detection of blaKPC from cultivated isolates. 

Table C 9. Sensitivity and specificity for detection of blaNDM from cultivated isolates. 

Table C 10. Sensitivity and specificity for detection of dfrA1/A5/A7/A12 from urines 

(A) and cultivated isolates (B). 

Table C 11. Sensitivity and specificity for detection of aac(6')-Ib from urines (A) and 

cultivated isolates (B). 

Table C 12. Sensitivity and specificity for detection of aadA1/A2/A3 from cultivated 

isolates. 
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Table C 1. Sensitivity and specificity for detection of blaTEM from urines (A) and 
cultivated isolates (B). 

(A) blaTEM  found in urines 

(B) blaTEM  found in cultivated isolates 

Values entered: 

 Conditions  

rtPCR -ve rtPCR +ve Totals 

MT-PCR +ve 2 31 33 

MT-PCR -ve 41 0 42 

Totals 43 31 85 

 Estimated value 95% Confidence interval 

Lower limit Upper limit 

Prevalence 0.418919 0.307065 0.539245 

Sensitivity 1 0.86273 1 

Specificity 0.953488 0.82944 0.991903 

For any particular test results, the probability that it will be: 

Positive 0.445946 0.3319 0.565637 

Negative 0.554054 0.434363 0.6681 

For any particular positive test results, the probability that it is: 

True Positive 0.939394 0.783791 0.989433 

False Positive 0.060606 0.010567 0.216209 

For any particular negative test results, the probability that it is: 

True Negative 1 0.893306 1 

False Negative 1 1 0.106694 

Values entered: 

 Conditions  

rtPCR -ve rtPCR +ve Totals 

MT-PCR +ve 0 24 24 

MT-PCR -ve 11 0 11 

Totals 11 24 35 

 Estimated value 95% Confidence interval 

Lower limit Upper limit 

Prevalence 0.685714 0.505793 0.825686 

Sensitivity 1 0.828285 1 

Specificity 1 0.678553 1 

For any particular test results, the probability that it will be: 

Positive 0.685714 0.505793 0.825686 

Negative 0.314286 0.174314 0.494207 

For any particular positive test results, the probability that it is: 

True Positive 1 0.828285 1 

False Positive 0 0 0.171715 

For any particular negative test results, the probability that it is: 

True Negative 1 0.678553 1 

False Negative 0 0 0.321447 
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Table C 2. Sensitivity and specificity for detection of blaSHV from urines (A) and 
cultivated isolates (B). 

(A) blaSHV  found in urines 

 

(B) blaSHV  found in cultivated isolates 

 

Values entered: 

 Conditions  

rtPCR -ve rtPCR +ve Totals 

MT-PCR +ve 0 6 6 

MT-PCR -ve 68 0 68 

Totals 68 6 74 

 Estimated value 95% Confidence interval 

Lower limit Upper limit 

Prevalence 0.81081 0.033391 0.174267 

Sensitivity 1 0.516818 1 

Specificity 1 0.933377 1 

For any particular test results, the probability that it will be: 

Positive 0.081081 0.033391 0.174267 

Negative 0.918919 0.825733 0.966609 

For any particular positive test results, the probability that it is: 

True Positive 1 0.516818 1 

False Positive 0 0 0.483182 

For any particular negative test results, the probability that it is: 

True Negative 1 0.933377 1 

False Negative 0 0 0.066623 

Values entered: 

 Conditions  

rtPCR -ve rtPCR +ve Totals 

MT-PCR +ve 0 16 16 

MT-PCR -ve 19 0 19 

Totals 19 16 35 

 Estimated value 95% Confidence interval 

Lower limit Upper limit 

Prevalence 0.457143 0.292194 0.631265 

Sensitivity 1 0.759265 1 

Specificity 1 0.790795 1 

For any particular test results, the probability that it will be: 

Positive 0.457143 0.292194 0.631265 

Negative 0.542857 0.368735 0.7-7806 

For any particular positive test results, the probability that it is: 

True Positive 1 0.759265 1 

False Positive 0 0 0.240735 

For any particular negative test results, the probability that it is: 

True Negative 1 0.790795 1 

False Negative 0 0 0.209205 
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Table C 3. Sensitivity and specificity for detection of blaCTX-Mgr1 dfrom urines (A) and 
cultivated isolates (B). 

(A) blaCTX-Mgr1  found in urines 

 

(B) blaCTX-Mgr1 found in cultivated isolates 

Values entered: 

 Conditions  

rtPCR -ve rtPCR +ve Totals 

MT-PCR +ve 1 23 24 

MT-PCR -ve 50 0 50 

Totals 51 23 24 

 Estimated value 95% Confidence interval 

Lower limit Upper limit 

Prevalence 0.310811 0.211078 0.430378 

Sensitivity 1 0.821902 1 

Specificity 0.980392 0.882072 0.998976 

For any particular test results, the probability that it will be: 

Positive 0.324324 0.222763 0.444292 

Negative 0.675676 0.555708 0.777237 

For any particular positive test results, the probability that it is: 

True Positive 0.958333 0.768838 0.997821 

False Positive 0.041667 0.002179 0.231162 

For any particular negative test results, the probability that it is: 

True Negative 1 0.911125 1 

False Negative 0 0 0.088875 

Values entered: 

 Conditions  

rtPCR -ve rtPCR +ve Totals 

MT-PCR +ve 0 18 18 

MT-PCR -ve 17 0 17 

Totals 17 18 35 

 Estimated value 95% Confidence interval 

Lower limit Upper limit 

Prevalence 0.514286 0.342758 0.682757 

Sensitivity 1 0.781244 1 

Specificity 1 0.770779 1 

For any particular test results, the probability that it will be: 

Positive 0.514286 0.342758 0.682757 

Negative 0.485714 0.317243 0.657242 

For any particular positive test results, the probability that it is: 

True Positive 1 0.788244 1 

False Positive 0 0 0.318756 

For any particular negative test results, the probability that it is: 

True Negative 1 0.770779 1 

False Negative 0 0 0.229221 
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Table C 4. Sensitivity and specificity for detection of blaCTX-Mgr9 from urines (A) and 
cultivated isolates (B). 

(A) blaCTX-Mgr9  found in urines 

 

(B) blaCTX-Mgr9 found in cultivated isolates 

Values entered: 

 Conditions  

rtPCR -ve rtPCR +ve Totals 

MT-PCR +ve 0 13 13 

MT-PCR -ve 61 0 61 

Totals 61 13 74 

 Estimated value 95% Confidence interval 

Lower limit Upper limit 

Prevalence 0.175676 0.100435 0.285317 

Sensitivity 1 0.716557 1 

Specificity 1 0.92619 1 

For any particular test results, the probability that it will be: 

Positive 0.175676 0.100435 0.285317 

Negative 0.824324 0.714683 0.899565 

For any particular positive test results, the probability that it is: 

True Positive 1 0.716567 1 

False Positive 0 0 0.899565 

For any particular negative test results, the probability that it is: 

True Negative 1 0.92619 1 

False Negative 0 0 0.07381 

Values entered: 

 Conditions  

rtPCR -ve rtPCR +ve Totals 

MT-PCR +ve 0 4 4 

MT-PCR -ve 31 0 31 

Totals 31 4 35 

 Estimated value 95% Confidence interval 

Lower limit Upper limit 

Prevalence 0.114286 0.037256 0.176797 

Sensitivity 1 0.395774 1 

Specificity 1 0.86273 1 

For any particular test results, the probability that it will be: 

Positive 0.114286 0.037256 0.276797 

Negative 0.885714 0.723203 0.962744 

For any particular positive test results, the probability that it is: 

True Positive 1 0.395744 1 

False Positive 0 0 0.604226 

For any particular negative test results, the probability that it is: 

True Negative 1 0.86273 1 

False Negative 0 0 0.13727 
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Table C 5. Sensitivity and specificity for detection of blaCMY from urines (A) and 
cultivated isolates (B). 

(A) blaCMY  found in urines 

 

(B) blaCMY found in cultivated isolates 

 

Values entered: 

 Conditions  

rtPCR -ve rtPCR +ve Totals 

MT-PCR +ve 0 9 9 

MT-PCR -ve 65 0 65 

Totals 65 9 74 

 Estimated value 95% Confidence interval 

Lower limit Upper limit 

Prevalence 0.121622 0.060532 0.223258 

Sensitivity 1 0.628811 1 

Specificity 1 0.930476 1 

For any particular test results, the probability that it will be: 

Positive 0.121622 0.060532 0.223258 

Negative 0.878378 0.776742 0.939468 

For any particular positive test results, the probability that it is: 

True Positive 1 0.628811 1 

False Positive 0 0 0.371189 

For any particular negative test results, the probability that it is: 

True Negative 1 0.930476 1 

False Negative 0 0 0.069524 

Values entered: 

 Conditions  

rtPCR -ve rtPCR +ve Totals 

MT-PCR +ve 0 7 7 

MT-PCR -ve 28 0 28 

Totals 28 7 35 

 Estimated value 95% Confidence interval 

Lower limit Upper limit 

Prevalence 0.2 0.090614 0.374642 

Sensitivity 1 0.560935 1 

Specificity 1 0.848819 1 

For any particular test results, the probability that it will be: 

Positive 0.2 0.090614 0.374642 

Negative 0.8 0.625358 0.909386 

For any particular positive test results, the probability that it is: 

True Positive 1 0.560935 1 

False Positive 0 0 0.439065 

For any particular negative test results, the probability that it is: 

True Negative 1 0.849819 1 

False Negative 0 0 0.150181 
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Table C 6. Sensitivity and specificity for detection of blaOXA-1 from urines (A) and 
cultivated isolates (B). 

(A) blaOXA-1  found in urines 

 

(B) blaOXA-1 found in cultivated isolates 

Values entered: 

 Conditions  

rtPCR -ve rtPCR +ve Totals 

MT-PCR +ve 0 8 8 

MT-PCR -ve 66 0 66 

Totals 66 8 74 

 Estimated value 95% Confidence interval 

Lower limit Upper limit 

Prevalence 0.108108 0.051155 0.20721 

Sensitivity 1 0.597704 1 

Specificity 1 0.931471 1 

For any particular test results, the probability that it will be: 

Positive 0.108108 0.051155 0.20721 

Negative 0.891892 0.931471 1 

For any particular positive test results, the probability that it is: 

True Positive 1 0.597704 1 

False Positive 0 0 0.402296 

For any particular negative test results, the probability that it is: 

True Negative 1 0.931371 1 

False Negative 0 O 0.068529 

Values entered: 

 Conditions  

rtPCR -ve rtPCR +ve Totals 

MT-PCR +ve 0 19 19 

MT-PCR -ve 16 0 16 

Totals 16 19 35 

 Estimated value 95% Confidence interval 

Lower limit Upper limit 

Prevalence 0.542857 0.368735 0.707806 

Sensitivity 1 0.790795 1 

Specificity 1 0.759265 1 

For any particular test results, the probability that it will be: 

Positive 0.542857 0.368735 0.707806 

Negative 0.457143 0.292194 0.631265 

For any particular positive test results, the probability that it is: 

True Positive 1 0.790795 1 

False Positive 0 0 0.209205 

For any particular negative test results, the probability that it is: 

True Negative 1 0.759265 1 

False Negative 0 0 0.240735 
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Table C 7. Sensitivity and specificity for detection of blaOXA-48 from cultivated 
isolates. 

 

Table C 8. Sensitivity and specificity for detection of blaKPC from cultivated isolates. 

 

Values entered: 

 Conditions  

rtPCR -ve rtPCR +ve Totals 

MT-PCR +ve 0 7 7 

MT-PCR -ve 28 0 28 

Totals 28 7 35 

 Estimated value 95% Confidence interval 

Lower limit Upper limit 

Prevalence 0.2 0.090614 0.374642 

Sensitivity 1 0.560935 1 

Specificity 1 0.849819 1 

For any particular test results, the probability that it will be: 

Positive 0.2 0.090614 0.374642 

Negative 0.8 0.625358 0.909386 

For any particular positive test results, the probability that it is: 

True Positive 1 0.560935 1 

False Positive 0 0 0.439065 

For any particular negative test results, the probability that it is: 

True Negative 1 0.849819 1 

False Negative 0 0 0.150181 

Values entered: 

 Conditions  

rtPCR -ve rtPCR +ve Totals 

MT-PCR +ve 0 5 5 

MT-PCR -ve 30 0 30 

Totals 30 5 35 

 Estimated value 95% Confidence interval 

Lower limit Upper limit 

Prevalence 0.142857 0.053815 0.310421 

Sensitivity 1 0.462945 1 

Specificity 1 0.85868 1 

For any particular test results, the probability that it will be: 

Positive 0.142857 0.053815 0.310421 

Negative 0.857143 0.689579 0.946185 

For any particular positive test results, the probability that it is: 

True Positive 1 0.462945 1 

False Positive 0 0 0.537055 

For any particular negative test results, the probability that it is: 

True Negative 1 0.85868 1 

False Negative 0 0 0.14132 
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Table C 9. Sensitivity and specificity for detection of blaNDM from cultivated isolates. 

 

Table C 10. Sensitivity and specificity for detection of dfrA1/A5/A7/A12 from urines 
(A) and cultivated isolates (B). 

(A) dfrA1/A5/A7/A12  found in urines 

Values entered: 

 Conditions  

rtPCR -ve rtPCR +ve Totals 

MT-PCR +ve 0 10 10 

MT-PCR -ve 25 0 25 

Totals 25 10 35 

 Estimated value 95% Confidence interval 

Lower limit Upper limit 

Prevalence 0.285714 0.152369 0.465246 

Sensitivity 1 0.655464 1 

Specificity 1 0.834227 1 

For any particular test results, the probability that it will be: 

Positive 0.285714 0.152369 0.465246 

Negative 0.714286 0.534754 0.847631 

For any particular positive test results, the probability that it is: 

True Positive 1 0.655464 1 

False Positive 0 0 0.344536 

For any particular negative test results, the probability that it is: 

True Negative 1 0.834227 1 

False Negative 0 0 0.165773 

Values entered: 

 Conditions  

Trim S Trim R Totals 

MT-PCR +ve 1 38 39 

MT-PCR -ve 32 3 35 

Totals 33 41 74 

 Estimated value 95% Confidence interval 

Lower limit Upper limit 

Prevalence 0.554054 0.434363 0.6681 

Sensitivity 0.926829 0.789948 0.98091 

Specificity 0.969697 0.824868 0.998416 

For any particular test results, the probability that it will be: 

Positive 0.527027 0.408283 0.642948 

Negative 0.472973 0.357051 0.591717 

For any particular positive test results, the probability that it is: 

True Positive 0.974359 0.84924 0.99866 

False Positive 0.025641 0.00134 0.15076 

For any particular negative test results, the probability that it is: 

True Negative 0.914286 0.758136 0.977598 

False Negative 0.085714 0.022402 0.241864 
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(B) dfrA1/A5/A7/A12  found in isolates 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table C 11. Sensitivity and specificity for detection of aac(6')-Ib from urines (A) and 

cultivated isolates (B).  

(A) aac(6')-Ib found in urines 

 

 

 

 

 

 

 

 

 

 

 

 

 

Values entered: 

 Conditions  

Trim S Trim R Totals 

MT-PCR +ve 0 30 30 

MT-PCR -ve 3 2 5 

Totals 3 32 35 

 Estimated value 95% Confidence interval 

Lower limit Upper limit 

Prevalence 0.914286 0.758136 0.977598 

Sensitivity 0.9375 0.777848 0.9891 

Specificity 1 0.309989 1 

For any particular test results, the probability that it will be: 

Positive 0.857143 0.689579 0.946185 

Negative 0.142857 0.053815 0.310421 

For any particular positive test results, the probability that it is: 

True Positive 1 0.95868 1 

False Positive 0 0 0.14132 

For any particular negative test results, the probability that it is: 

True Negative 0.6 0.170424 0.927416 

False Negative 0.4 0.072584 0.829576 

Values entered: 

 Conditions  

Tobra S Tobra R Totals 

MT-PCR +ve 1 8 9 

MT-PCR -ve 65 0 65 

Totals 66 8 74 

 Estimated value 95% Confidence interval 

Lower limit Upper limit 

Prevalence 0.108108 0.051155 0.20721 

Sensitivity 1 0.597704 1 

Specificity 0.984848 0.907309 0.999209 

For any particular test results, the probability that it will be: 

Positive 0.121622 0.060532 0.223258 

Negative 0.878378 0.776742 0.939468 

For any particular positive test results, the probability that it is: 

True Positive 0.888889 0.506703 0.994172 

False Positive 0.111111 0.005828 0.493297 

For any particular negative test results, the probability that it is: 

True Negative 1 0.930476 1 

False Negative 0 0 0.069524 



330 | P a g e  
 

(B) aac(6')-Ib found in isolates 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table C 12. Sensitivity and specificity for detection of aadA1/A2/A3 from urines (A) 
and cultivated isolates (B). 

(A) aadA1/A2/A3 found in urines 

 

Values entered: 

 Conditions  

Tobra S Tobra R Totals 

MT-PCR +ve 0 22 22 

MT-PCR -ve 11 2 13 

Totals 11 24 35 

 Estimated value 95% Confidence interval 

Lower limit Upper limit 

Prevalence 0.685714 0.505793 0.825686 

Sensitivity 0.916667 0.715289 0.985433 

Specificity 1 0.678553 1 

For any particular test results, the probability that it will be: 

Positive 0.628571 0.449486 0.780077 

Negative 0.371429 0.219923 0.550514 

For any particular positive test results, the probability that it is: 

True Positive 1 0.815025 1 

False Positive 0 0 0.184975 

For any particular negative test results, the probability that it is: 

True Negative 0.846154 0.536625 0.971893 

False Negative 0.153846 0.027107 0.463375 

Values entered: 

 Conditions  

Strep S Strep R Totals 

MT-PCR +ve 7 9 16 

MT-PCR -ve 43 15 58 

Totals 50 24 74 

 Estimated value 95% Confidence interval 

Lower limit Upper limit 

Prevalence 0.324324 0.222763 0.444292 

Sensitivity 0.375 0.195502 0.592424 

Specificity 0.86 0.726437 0.93723 

For any particular test results, the probability that it will be: 

Positive 0.216216 0.132271 0.330116 

Negative 0.783784 0.669884 0.867729 

For any particular positive test results, the probability that it is: 

True Positive 0.5625 0.305543 0.792462 

False Positive 0.4375 0.207538 0.694457 

For any particular negative test results, the probability that it is: 

True Negative 0.741379 0.607066 0.843504 

False Negative 0.4375 0.207538 0.694457 



331 | P a g e  
 

(B) aadA1/A2/A3 found in isolates 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Values entered: 

 Conditions  

Strep S Strep R Totals 

MT-PCR +ve 6 10 16 

MT-PCR -ve 11 8 19 

Totals 17 18 45 

 Estimated value 95% Confidence interval 

Lower limit Upper limit 

Prevalence 0.514286 0.342758 0.682757 

Sensitivity 0.555556 0.31347 0.775952 

Specificity 0.647059 0.386204 0.847407 

For any particular test results, the probability that it will be: 

Positive 0.457143 0.292194 0.631265 

Negative 0.542857 0.368735 0.707806 

For any particular positive test results, the probability that it is: 

True Positive 0.625 0.358736 0.837163 

False Positive 0.375 0.162837 0.641241 

For any particular negative test results, the probability that it is: 

True Negative 0.578947 0.3396790 0.788793 

False Negative 0.421053 0.211207 0.660321 
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Appendix DAppendix DAppendix DAppendix D    
Quality and quantity of the extracted DNA from Clinical Urines 

1-10 and Spiked Urines used for the MinION sequencing 

 

Figure D 1. The quality and quantity of the depleted DNA using Tape Station gel 
analysis and Qubit for all sequences Clinical and Spiked Urines.  

Table D 1. Number of BLAST hits and contings that matched proteobacterial 

genomes for all sequenced Clinical and Spiked Urines using MinION and 

Illumina sequencing. 
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Figure D 1. The quality and quantity of the depleted DNA using Tape Station gel 
analysis and Qubit for all sequenced Clinical and Spiked Urines.  

Legend: SU Spiked Urine; CU Clinical Urine; SCU Spiked Clinical Urine; lines A1-ladder; 
B1- DNA extracted from urine according to the methodology described in Section 2.4. 
Samples CU1 and 2 were not run on the tape station; CU3- Lack of bands (48500bp) in 
the line B1 due to extraction from frozen urine. 

 (A)- CU4; (B)- SURun1; (C)- CU5; (D)- CU6; (E)- CU7; (F)- SCU6; (G)- CU8; (H)- CU9; (I)- 
CU10; (J)-SURun2; (K)- SURun3; (L)- SURun4.  
 
(A) Clinical Urine 4; DNA concentration= 8 ng/µl 

(B) Spiked Urine Run1; DNA concentration = 85.6 ng/µl 
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(C) Clinical Urine 5; DNA concentration = 35.5 ng/µl 

 

(D) Clinical Urine 6; DNA concentration = 8.12 ng/µl 
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(E)  Clinical Urine 7; DNA concentration= 42.6 ng/µl 

(F) Spiked Clinical Urine 6; DNA concentration= 104 ng/µl 

 

(G) Clinical Urine 8; DNA concentration= 62.22 ng/µl 
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(H) Clinical Urine 9; DNA concentration= 31.4 ng/µl 

 

(I) Clinical Urines 10; DNA concentration= 53.9 ng/µl 

(J) Spiked Urine Run 2; DNA concentration= 102 ng/µl 



337 | P a g e  
 

(K) Spiked Urine Run 3; DNA concentration= 67.8 ng/µl 

(L) Spiked Urine Run 4; DNA concentration= 61.2 ng/µl 
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Table D 1. Number of BLAST hits and contings that matched proteobacterial genomes 
for all sequenced Clinical and Spiked Urines using MinION and Illumina 
sequencing.  

 

Clinical urine 5 

MinION Illumina 

Hits Proteobacterial genomes Contigs Proteobacterial genomes 

1 Acetobacter pasteurianus 1 Enterobacter aerogenes 

1 Acinetobacter baumannii 1 Salmonella enterica 

1 Acinetobacter haemolyticus 1 Shigella flexneri 

1 Azoarcus sp. 1 uncultured Klebsiella 

1 Azospirillum lipoferum 2 Salmonella sp. 

1 Azotobacter vinelandii 4 Klebsiella oxytoca 

1 Brevundimonas subvibrioides 14 Escherichia coli 

1 Chromobacterium sp. 72 Klebsiella pneumoniae 

1 Delftia sp.  
 
 

1 Desulfarculus baarsii 

1 Desulfovibrio desulfuricans 

1 Edwardsiella tarda 

1 Enterobacter cloacae 

1 Enterobacter lignolyticus 

1 Ferrimonas balearica 

1 Helicobacter pylori 

1 Leptothrix cholodnii 

1 Methylibium petroleiphilum 

1 Pseudomonas mendocina 

1 Pseudomonas putida 

1 Pseudomonas sp. 

1 Rhizobium etli 

1 Saccharophagus degradans 

1 Salmonella bongori 

1 Sinorhizobium medicae 

1 Sinorhizobium meliloti 

1 Stenotrophomonas maltophilia 

1 Syntrophus aciditrophicus 

1 Thauera sp. 

1 Yersinia pestis 

2 Escherichia fergusonii 

2 Klebsiella variicola 

3 Raoultella ornithinolytica 

4 Salmonella enterica 

5 Escherichia coli 

6 Klebsiella oxytoca 

7 1 phylum 

7 Enterobacter aerogenes 

1881 Klebsiella pneumonia 
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Top Hits Supgroup Contigs Supgroup 

464 K. pneumoniae CG43 954 K. pneumoniae MGH 78578 

338 K. pneumoniae JM45 421 K. pneumoniae CG43 

266 K. pneumoniae MGH 78578 167 K. pneumoniae JM45 

Clinical urine 6 

MinION Illumina 

Hits Proteobacterial genomes Contigs Proteobacterial genomes 

1 Aeromonas caviae 1 Alteromonas macleodii 

1 Enterobacter hormaechei 1 Enterobacter cloacae 

1 Enterobacter lignolyticus 1 Shigella boydii 

1 Pantoea sp. 1 Shigella flexneri 

1 Vibrio cholerae 2 Salmonella enterica 

1 uncultured Enterobacteriaceae 2 Shigella sonnei 

1 uncultured Shigella 5 Klebsiella pneumoniae 

2 1 phylum 177 Escherichia coli 

2 Pectobacterium sp.  

2 Yersinia pestis 

3 Enterobacter sp. 

4 Citrobacter rodentium 

6 Shigella boydii 

6 Shigella dysenteriae 

10 Escherichia fergusonii 

11 Klebsiella oxytoca 

14 Enterobacter cloacae 

16 Shigella flexneri 

25 Shigella sonnei 

81 Klebsiella pneumoniae 

93 Salmonella enterica 

11697 Escherichia coli 

Top Hits  Supgroup Contigs Supgroup 

9495 Escherichia coli JJ1886 3319 Escherichia coli JJ1886 

281 Escherichia coli NA114 209 Escherichia coli SE15 DNA 

166 Escherichia coli UM146 49 Escherichia coli O111:H- 
str. 11128 

Clinical urine 7 

MinION Illumia 

Hits Proteobacterial genomes Contigs Proteobacterial genomes 

1 Acidithiobacillus ferrooxidans 1 Klebsiella oxytoca 

1 Acinetobacter baumannii 1 Providencia stuartii 

1 Acinetobacter baylyi 2 Shigella sonnei 

1 Aeromonas hydrophila 10 Salmonella enterica 

1 Alcanivorax dieselolei 11 Klebsiella pneumoniae 

1 Bradyrhizobium sp. 139 Escherichia coli 

1 Brenneria nigrifluens  

1 Candidatus Blochmannia 

1 Candidatus Legionella 

1 Citrobacter freundii 

1 Desulfocapsa sulfexigens 

1 Dickeya dadantii 

1 Gluconobacter oxydans 
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MinION 

Hits Proteobacterial genomes 

1 Haliangium ochraceum 

1 Histophilus somni 

1 Hyphomicrobium denitrificans 

1 Klebsiella variicola 

1 Nilaparvata lugens 

1 Ochrobactrum thiophenivorans 

1 Pantoea ananatis 

1 Pasteurella aerogenes 

1 Pseudomonas aeruginosa 

1 Pseudomonas fluorescens 

1 Pseudomonas putida 

1 Pseudovibrio sp. 

1 Psychrobacter sp. 

1 Salmonella bongori 

1 Shewanella oneidensis 

1 Sphingopyxis alaskensis 

1 Stenotrophomonas sp. 

1 Teredinibacter turnerae 

1 Tolumonas auensis 

1 Xanthobacter autotrophicus 

1 uncultured Desulfobacterium 

1 uncultured Enterobacteriaceae 

1 uncultured Shigella 

2 Haemophilus influenzae 

2 Moraxella catarrhalis 

2 Shigella sp. 

3 Citrobacter koseri 

3 Citrobacter rodentium 

3 Yersinia pestis 

4 Enterobacter hormaechei 

4 Proteus mirabilis 

5 Shigella dysenteriae 

7 Providencia stuartii 

8 Morganella morganii 

9 Klebsiella oxytoca 

12 Escherichia fergusonii 

18 Shigella boydii 

29 Shigella flexneri 

33 Shigella sonnei 

46 Klebsiella pneumoniae 

123 Salmonella enterica 

8166 Escherichia coli 

Top Hits Supgroup Contigs Supgroup 

1235 Escherichia coli PMV-1 main 
chromosome 

912 Escherichia coli IHE3034 

1166 Escherichia coli str. 'clone D i 
14' chromosome 
 

553 Escherichia coli LF82 
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Top Hits Supgroup Contigs Supgroup 

838 Escherichia coli O83:H1 str.NRG 
857C 

491 Escherichia coli str. 'clone D 
i14' 

Clinical urine 8 

MinION Illumina 

Hits Proteobacterial genomes Contigs Proteobacterial genomes 

1 Cronobacter sakazakii 1 Enterobacter aerogenes 

1 Delftia sp. 1 Klebsiella oxytoca 

1 Enterobacter lignolyticus 1 Marinomonas 

mediterranea 

1 Enterobacteriaceae bacterium 1 Pasteurella multocida 

1 Halomonas sp. 1 Pseudomonas aeruginosa 

1 Pasteurella multocida 1 Salmonella enterica 

1 Pelobacter propionicus 1 Yersinia enterocolitica 

1 Pseudomonas mendocina 1 uncultured 
proteobacterium 

1 Stenotrophomonas maltophilia 2 Enterobacter cloacae 

1 Stx2-converting phage 3 Klebsiella pneumoniae 

1 Thioalkalivibrio nitratireducens 3 uncultured gamma 

1 Thioalkalivibrio sp. 118 Escherichia coli 

1 secondary endosymbiont  

1 uncultured Shigella 

2 Citrobacter rodentium 

3 1 phylum 

3 Citrobacter koseri 

4 Pseudomonas aeruginosa 

7 Yersinia pestis 

9 Shigella boydii 

11 Enterobacter aerogenes 

14 Shigella dysenteriae 

25 Escherichia fergusonii 

29 Yersinia enterocolitica 

31 Shigella flexneri 

35 Shigella sonnei 

59 Klebsiella pneumoniae 

100 Salmonella enterica 

16698 Escherichia coli 

Top Hits Supgroup Contigs Supgroup 

10112 Escherichia coli 536 3691 Escherichia coli 536 

1110 Escherichia coli PMV-1 213 Escherichia coli JJ1886 

929 Escherichia coli str. 'clone D i14' 107 Escherichia coli str. 'clone D 
i14' 

Clinical urine 9 

MinION Illumina 

Hits Proteobacterial genomes Contigs Proteobacterial genomes 

1 Alicycliphilus denitrificans 1 Agrobacterium 

tumefaciens 

1 Delftia acidovorans 1 Citrobacter koseri 

1 Edwardsiella piscicida 1 Desulfomonile tiedjei 

1 Enterobacter cancerogenus 1 Enterobacteriaceae 



342 | P a g e  
 

bacterium 

MinION Illumina 

Hits Proteobacterial genomes Contigs Proteobacterial genomes 

1 Erwinia amylovora 1 Erwinia tasmaniensis 

1 Klebsiella sp. 1 Neorickettsia risticii 

1 Photobacterium profundum 1 Raoultella ornithinolytica 

1 Proteus vulgaris 1 Serratia marcescens 

1 Providencia stuartii 1 Shigella flexneri 

1 Serratia proteamaculans 1 endosymbiont of 

uncultured Klebsiella 1 uncultured Citrobacter 

2 Citrobacter koseri 1 Enterobacter asburiae 

2 Enterobacter lignolyticus 1 2Enterobacter sp. 

2 Pectobacterium carotovorum 4 Cronobacter sakazakii 

3 Cronobacter turicensis 4 Klebsiella pneumoniae 

3 Erwinia tasmaniensis 4 Salmonella enterica 

3 Pantoea agglomerans 8 Escherichia coli 

4 Citrobacter rodentium 52 Enterobacter cloacae 

4 Delftia sp.  
4 Klebsiella oxytoca 

4 Shigella flexneri 

4 Shigella sonnei 

5 Pseudomonas putida 

6 Enterobacteriaceae bacterium 

10 Serratia marcescens 

16 Enterobacter sp. 

17 Enterobacter hormaechei 

19 Enterobacter aerogenes 

30 Shimwellia blattae 

38 Cronobacter sakazakii 

38 Enterobacter asburiae 

74 Salmonella enterica 

94 Klebsiella pneumoniae 

95 Escherichia coli 

5070 Enterobacter cloacae 

Top Hits Supgroup Contigs Supgroup 

10302 Enterobacter cloacae NCTC 
9394 

2996 Enterobacter cloacae NCTC 
9394 

539 Enterobacter cloacae ENHKU01 1157 Enterobacter cloacae 
ENHKU01 

397 Enterobacter cloacae subsp. 
cloacae ATCC 13047 

772 Enterobacter cloacae 
subsp. cloacae ATCC 13047 

Clinical urine 10 

MinION Illumina 

Hits Proteobacterial genomes Contigs Proteobacterial genomes 

1 Alicycliphilus denitrificans 1 Enterobacter aerogenes 

1 Azotobacter vinelandii 1 Enterobacter cloacae 

1 Bibersteinia trehalosi 1 Klebsiella variicola 

1 Bordetella petrii 1 Shigella flexneri 

1 Bradyrhizobium sp. 2 Klebsiella oxytoca 

1 Brenneria salicis 3 Escherichia coli 
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MinION Illumina 

Hits Proteobacterial genomes Contigs Proteobacterial genomes 

1 Chromobacterium violaceum 134 Klebsiella pneumoniae 

1 Citrobacter freundii  

1 Citrobacter koseri 

1 Citrobacter sp. 

1 Cloning vector 

1 Desulfovibrio vulgaris 

1 Edwardsiella piscicida 

1 Erwinia amylovora 

1 Helicobacter pylori 

1 Hyphomicrobium denitrificans 

1 Oligotropha carboxidovorans 

1 Pantoea sp. 

1 Pectobacterium atrosepticum 

1 Pectobacterium carotovorum 

1 Photobacterium damselae 

1 Proteus vulgaris 

1 Providencia rettgeri 

1 Pseudomonas denitrificans 

1 Pseudomonas mendocina 

1 Pseudomonas resinovorans 

1 Pseudomonas stutzeri 

1 Pseudoxanthomonas spadix 

1 Psychrobacter sp. 

1 Rahnella sp. 

1 Ramlibacter tataouinensis 

1 Rhodopseudomonas palustris 

1 Serratia proteamaculans 

1 Shuttle vector 

1 Simiduia agarivorans 

1 Sphingobium sp. 

1 Tistrella mobilis 

1 Xanthomonas euvesicatoria 

1 Yersinia enterocolitica 

1 Yersinia sp. 

1 uncultured Enterobacter 

2 Acidovorax ebreus 

2 Aeromonas hydrophila 

2 Shimwellia blattae 

2 Vibrio cholerae 

2 Yersinia pestis 

3 Bordetella bronchiseptica 

3 Cronobacter turicensis 

3 Dickeya dadantii 

3 Edwardsiella tarda 

3 Enterobacter sp. 

3 Pseudomonas fluorescens 

3 Pseudomonas sp. 

3 Rahnella aquatilis 
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MinION 

Hits Proteobacterial genomes 

3 Saccharophagus degradans 

3 Salmonella bongori 

4 Acinetobacter baumannii 

4 Aeromonas caviae 

4 Serratia marcescens 

4 Shigella boydii 

4 Shigella dysenteriae 

4 Sodalis glossinidius 

4 uncultured Klebsiella 

5 Achromobacter xylosoxidans 

5 Enterobacter lignolyticus 

7 Enterobacter asburiae 

9 Citrobacter rodentium 

9 Enterobacter hormaechei 

9 Vibrio furnissii 

10 Klebsiella sp. 

12 Raoultella ornithinolytica 

20 Cronobacter sakazakii 

20 Pseudomonas aeruginosa 

21 Shigella flexneri 

33 Stenotrophomonas maltophilia 

34 Delftia acidovorans 

34 Klebsiella oxytoca 

37 Enterobacter cloacae 

52 Delftia sp. 

91 Enterobacter aerogenes 

132 Klebsiella variicola 

240 Salmonella enterica 

487 Pseudomonas putida 

949 Escherichia coli 

21349 Klebsiella pneumoniae 

Top Hits Supgroup Contigs Subgroup 

10549 Klebsiella pneumoniae CG43 650 Klebsiella pneumoniae 
MGH 78578 

7241 Klebsiella pneumoniae JM45 614 Klebsiella pneumoniae 
CG43 

6782 Klebsiella pneumoniae subsp. 
pneumoniae MGH 78578 

424 Klebsiella pneumoniae 
NTUH-K2044 

Spiked Clinical Urine 6 

MinION  

Hits Proteobacterial genomes 

1 Acinetobacter baumannii 

1 Citrobacter rodentium 

1 Enterobacter sp. 

1 Pseudomonas putida 

1 Yersinia pestis 

2 Escherichia sp. 

2 Shigella dysenteriae 
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3 Klebsiella oxytoca 

4 Shigella flexneri 

7 Escherichia fergusonii 

7 Shigella boydii 

9 Enterobacter cloacae 

16 Shigella sonnei 

30 Klebsiella pneumoniae 

46 Salmonella enterica 

7487 Escherichia coli 

Top Hits Supgroup  

5979 Escherichia coli JJ1886 

192 Escherichia coli NA114 

110 Escherichia coli SE15 

Spiked urine Run 1 

MinION  

Hits Proteobacterial genomes 

9 Citrobacter freundii 

13 Klebsiella oxytoca 

16 Shigella dysenteriae 

29 Shigella boydii 

45 Shigella flexneri 

60 Salmonella enterica 

74 Shigella sonnei 

224 Klebsiella pneumoniae 

6331 Escherichia coli 

Top Hits Supgroup  

3741 E. coli APEC O78 

485 E. coli LY180 

449 E. coli K-12 substr. MC4100 

160 E. coli O104:H4 

Spiked urine Run 2 

MinION  

Hits Proteobacterial genomes 

1 Acinetobacter lwoffii 

1 Acinetobacter nosocomialis 

1 Aeromonas hydrophila 

1 Azospirillum brasilense 

1 Chromobacterium violaceum 

1 Dickeya dadantii 

1 Enterobacter aerogenes 

1 Escherichia sp. 

1 Hahella chejuensis 

1 Herminiimonas arsenicoxydans 

1 Kluyvera georgiana 

1 Laribacter hongkongensis 

1 Methylobacillus sp. 

1 Methylomonas aminofaciens 

1 Pantoea ananatis 

1 Polaromonas sp. 

1 Providencia rettgeri 
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MinION 

Hits Proteobacterial genomes 

1 Pseudomonas migulae 

1 Rhizobium etli 

1 Shewanella sp. 

1 Shuttle vector 

1 Xanthomonas euvesicatoria 

1 uncultured Shigella 

2 Achromobacter xylosoxidans 

2 Aeromonas caviae 

2 Enterobacteria phage 

2 Erwinia amylovora 

2 Photobacterium damselae 

2 Raoultella planticola 

2 Serratia liquefaciens 

2 Shigella sp. 

2 Vibrio nigripulchritudo 

2 Yersinia pestis 

3 Enterobacter asburiae 

3 Enterobacter hormaechei 

3 Yersinia enterocolitica 

4 Enterobacter cloa 

4 Vibrio cholerae 

5 Escherichia fergusonii 

5 Stenotrophomonas maltophilia 

7 Citrobacter freundii 

7 Delftia acidovorans 

8 Citrobacter rodentium 

8 Pseudomonas aeruginosa 

9 Haemophilus influenzae 

11 Acinetobacter baumannii 

12 Delftia sp. 

12 Serratia marcescens 

15 Cronobacter sakazakii 

19 Klebsiella oxytoca 

126 Shigella dysenteriae 

190 Pseudomonas putida 

191 Salmonella enterica 

421 Klebsiella pneumoniae 

852 Shigella flexneri 

1418 Shigella boydii 

1925 Shigella sonnei 

11538 Escherichia coli 

Top Hits Supgroup  

6618 Escherichia coli str. K12 substr. 
W3110 DNA, 

6506 Escherichia coli APEC O78 
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