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Shiga toxin 2 translocation across intestinal epithelium is
linked to virulence of Shiga toxin-producing Escherichia coli in
humans

Seav-Ly Tran,1,2† Claire Jenkins,3 Val�erie Livrelli4,5 and Stephanie Schüller1,2,*

Abstract

Shiga toxin-producing Escherichia coli (STEC) are characterized by the release of potent Shiga toxins (Stx), which are

associated with severe intestinal and renal disease. Although all STEC strains produce Stx, only a few serotypes cause

infection in humans. To determine which virulence traits in vitro are linked to human disease in vivo, 13 Stx2a-producing

STEC strains of seropathotype (SPT) A or B (associated with severe human intestinal disease and outbreaks) and 6 strains of

SPT D or E (rarely or not linked to human disease) were evaluated in a microaerobic human colonic epithelial infection

model. All SPT strains demonstrated similar growth, colonization of polarized T84 colon carcinoma cells and Stx release into

the medium. In contrast, Stx translocation across the T84 cell monolayer was significantly lower in SPT group DE compared

to SPT group AB strains. Further experiments showed that Stx penetration occurred via a transcellular pathway and was

independent of bacterial type III secretion and attaching and effacing lesion formation. These results suggest that the extent

of Stx transcytosis across the gut epithelium may represent an important indicator of STEC pathogenicity for humans.

INTRODUCTION

Shiga toxin-producing E. coli (STEC) are major foodborne
pathogens in the developed world and cause around 1000
reported infections per year in the UK [1, 2]. Apart from
gastroenteritis, persons infected with STEC can develop
haemorrhagic colitis and haemolytic uraemic syndrome
(HUS), a severe systemic disease associated with renal fail-
ure and neurological damage [3, 4]. STEC have their natural
reservoir in the gastrointestinal tract of ruminants, particu-
larly cattle. Therefore, most infections are linked to con-
sumption of undercooked beef, contaminated fresh produce
or direct contact with ruminant animals [5].

STEC strains can have many different serotypes, but some
are more closely associated with disease than others. In
2003, Karmali and colleagues introduced a graded classifica-
tion system of five seropathotypes (SPTs A to E) based on
the association of serotypes with human intestinal disease,
outbreaks and HUS [6]. In this system, SPT A comprises
serotype O157 :H7, which is most commonly associated

with human disease, followed by SPT B, which includes
non-O157 STEC linked to outbreaks and HUS (e.g. O26,
O45, O103, O111, O121 and O145 – also known as the ‘big
six’). On the other end of the spectrum, SPT D and E are
rarely or never found in humans and do not cause severe
disease [6].

In accordance with STEC pathogenesis, SPT A and B strains
generally harbour the locus of enterocyte effacement (LEE)
pathogenicity island, which encodes a type III secretion sys-
tem (T3SS), the outer-membrane protein intimin, the trans-
located intimin receptor (Tir) and associated effector
proteins [7]. After establishing initial contact with human
intestinal epithelium via fimbriae, pili or flagella, STEC
express a filamentous T3SS and inject their own receptor
Tir into the host cell, where it becomes inserted in the cyto-
plasmic membrane [8, 9]. Subsequent binding of intimin to
Tir allows STEC to adhere tightly to the epithelium by
forming an attaching and effacing lesion [10]. In addition to
Tir, other bacterial effector proteins are injected into the
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host cell, and these induce epithelial permeability and
changes in ion absorption and inflammation, and subse-
quently lead to the development of diarrhoea [11]. In addi-
tion to the T3SS, STEC pathogenicity is dependent on the
production of Shiga toxins (Stx), which are required for the
development of HUS. Stx are highly cytotoxic to cells
expressing globotriaosylceramide (Gb3) on their surface,
such as the microvasculature in the intestine, kidney and
brain [12]. STEC can express Stx1 or Stx2, which are anti-
genically different [13]. These can be further divided into
several subtypes, of which Stx2a has been most strongly
associated with HUS [14, 15]. To cause systemic disease, Stx
must penetrate the intestinal epithelium, which does not
express Gb3 [16, 17]. How this happens during STEC infec-
tion remains unknown, but in vitro studies using human
intestinal epithelial cell lines have demonstrated both para-
cellular and transcellular Stx transport [18–20].

In our previous work, we investigated the effect of oxygen
on STEC pathogenesis by using a vertical diffusion chamber
(VDC) and showed that low oxygen levels similar to those
in the colon promote bacterial colonization and Stx transcy-
tosis across polarized human intestinal epithelial cells [20,
21]. In this study, we investigated whether the potential of
STEC to cause severe disease in humans was associated with
certain virulence traits in vitro. To this aim, we selected 13
Stx2a-expressing STEC strains from SPT A and B (high
association with human disease) and 6 strains from SPT D
and E (low/no association with human disease) and evalu-
ated bacterial growth, epithelial colonization and barrier
function, and Stx production and translocation in a micro-
aerobic human intestinal VDC infection model.

METHODS

Bacterial strains

The STEC wild-type strains used in this study are listed in
Table 1 and have been classified into seropathotypes accord-
ing to the system described by Karmali and colleagues [6].
For each strain, Stx type and presence of the LEE was deter-
mined by PCR and colony blot hybridization as described
previously [22–25]. The EDL933 deletion mutants in eae
and espA were kindly provided by Gr�egory Jubelin (INRA,
Clermont-Ferrand, France) and Carlos Guzm�an (Helmholtz
Centre for Infection Research, Braunschweig, Germany),
respectively, and have been described previously [26, 27].
Bacteria were grown standing in Luria–Bertani (LB) broth
overnight at 37

�

C. Strain EDL933 Deae was selected with
kanamycin (50 µgml�1). Bacteria were spun down before
infection and suspended in serum-free culture medium.

Cell culture

Human T84 colon carcinoma cells (ATCC CCL-248) were
cultured in Dulbecco’s modified Eagle’s medium/F-12 mix-
ture supplemented with 10% foetal calf serum (FCS; Sigma)
and used between passages 42 and 65. For vertical diffusion
chamber experiments, 5�105T84 cells/cm2 were seeded on
collagen-coated Snapwell filter inserts (12mm diameter,

0.4 µm pore; Corning Costar). Cells were differentiated for
12–18 days until transepithelial electrical resistance (TEER)
reached 1000 to 2500
 � cm2. TEER was monitored using
an EndOhm chamber and EVOM resistance meter (WPI).
African Green monkey kidney Vero cells (ECACC
84113001) were cultured in Dulbecco’s modified Eagle’s
medium supplemented with 10% FCS. All cells were grown
at 37

�

C in a 5% CO2 atmosphere.

Microaerobic infection in a vertical diffusion
chamber

VDC experiments were performed as described previously
[20, 21]. Briefly, polarized T84 cells were infected with
5�105 to 5�106 bacteria on the apical side. Apical chambers
were perfused with an anaerobic gas mixture (90%N2,
5 %H2, 5 % CO2), while basal compartments were kept
under aerobic conditions (5% CO2 in air). The oxygen con-
centrations in apical compartments reached 1.4–1.7% of
atmospheric pressure, as determined with an ISO2 dissolved
oxygen meter (WPI). Incubations were performed for 5 h.

Stx quantification by Vero cell cytotoxicity assay

Bacteria were removed from apical and basal media by cen-
trifugation (apical media only) and subsequent filter sterili-
zation. Apical samples were diluted 1 : 15, and basal samples
were concentrated 25-fold with Amicon Ultra centrifugal
filter units (Millipore). Stx concentrations were determined
by Vero cell cytotoxicity assay [20]. Briefly, 50 µl of sample
or diluted purified Stx2a as standard (0.01–1000 ngml�1;
Anne Kane, Tufts Medical Center, Boston, USA) were
pipetted into a 96-well cell culture plate. Samples were
tested in duplicate and standards in triplicate wells. Vero
cells were added to each sample (2�104 cells in 100 µl) and
plates were incubated for 72 h at 37

�

C in a 5% CO2 atmo-
sphere. Cells were washed with PBS, fixed in 3.7% formal-
dehyde in PBS and stained with 0.1% (w/v) crystal violet in
10% ethanol for 20min. After elution of the dye in 50%
ethanol, crystal violet staining was quantified by optical
density at 595 nm (Benchmark Plus, Bio Rad). Stx sample
concentrations were calculated from Stx standard curves
using Microplate Manager 5.2.1 software (Bio Rad). When
comparing Stx release between strains, Stx concentrations
were adjusted according to the optical density at 600 nm
(OD600) of the apical media to account for differences in
bacterial growth. Stx translocation was calculated as follows:
(Stx concentration in basal medium/Stx concentration in
apical medium)�100 and expressed as a percentage.

Stx quantification by ELISA

Stx2 in apical supernatants was quantified using a sandwich
ELISA as described previously [28] with the following mod-
ifications. Microtitre plates were coated with rabbit poly-
clonal anti-Stx2 (rb204, 1 : 5000; kindly provided by Anne
Kane, Tufts Medical Center, Boston, USA) and Stx2 was
detected using mouse monoclonal antibody NR-846
(1 : 2500; Biodefense and Emerging Infections Research
Resources Repository, NIAID, NIH, USA).
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Quantification of STEC colonization

Snapwell inserts were removed from the VDC and washed
twice in sterile PBS to remove non-adherent bacteria. After
lysis of cell monolayers in 1% Triton X-100 in PBS for
20min, serial dilutions were prepared and plated out on LB
agar plates. Plates were incubated at 37

�

C overnight and
colony-forming units were counted.

Statistics

Statistical analysis was performed using GraphPad Prism
software (version 6). Student’s unpaired t-test was used to
determine differences between two groups. One-way
ANOVA with Tukey’s or Dunnett’s multiple comparisons
test was used to analyse differences between multiple
groups. A P-value of <0.05 was considered significant.
The data are shown as means±standard errors of
the mean.

RESULTS

Growth and colonization of polarized T84 cells by
STEC strains of different SPTs

To determine whether higher virulence of SPT AB versus
DE strains was related to better growth and colonization of
human intestinal epithelium, infections of polarized T84
cells were carried out in a microaerobic VDC system for 5 h
(Fig. 1). Growth of non-adherent bacteria was determined
by measuring the OD600 of apical media, whereas coloniza-
tion of polarized epithelia was quantified by plating out

Table 1. STEC strains used in this study

SPT Code Designation Serotype Origin* Stx LEE Reference/source†

A A H122900261 O157 :H7 H 2a + PHE

A B H122280235 O157 :H7 H 2a + PHE

A C H121800418 O157 :H7 H 2a + PHE

A D H093740759 O157 :H7 H 2a, 2c + PHE

A E H122800318 O157 :H7 H 2a + PHE

A F H121800416 O157 :H7 H 2a + PHE

A G Walla-1 O157 :H7 H 2a + [39]

A H EDL933 O157 :H7 H 1a, 2a + [40]

A I H071840336 O157 :H7 H 2a, 2c + PHE

B J E135309 O26 : H11 H 2a + PHE

B K H103540554 O145 : H28 H 2a + PHE

B L H10466046701 O26 : H11 H 2a + PHE

B M H12316062601 O26 : H11 H 2a + PHE

D N NV283 O6 :H+ B 2a � M2iSH

D O NV303 O77 :H18 B 2a � M2iSH

D P NV196 O116 : H21 B 2a � M2iSH

E Q NV282 O96 : H19 B 2a � M2iSH

E R E154625 O2 :H21 B 2a � PHE

E S E150972 O2 :H26 B 2a � PHE

*Human (H) or bovine (B) origin.

†PHE, Public Health England, London, UK; M2iSH, ‘Microbes, Intestin, Inflammation et Susceptibilit�e de l’Hôte’, USC-INRA 2018, Clermont-Ferrand,

France.

Fig. 1. Schematic representation of vertical diffusion chamber. Polar-

ized T84 cells grown on Snapwell filters were inserted between two

half-chambers and infected apically with STEC. Apical chambers were

maintained under microaerobic conditions, whereas basal compart-

ments were kept under aerobic conditions.
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serial dilutions of cell lysates and counting c.f.u.s. As shown
in Fig. 2(a, b), all strains showed similar growth during
incubation in the VDC. In contrast, the colonization of
polarized T84 cells differed among strains, with large varia-
tions within both SPT groups (Fig. 2c). No significant differ-
ences were detected between SPT groups AB and DE
(Fig. 2d).

Association of SPT with Stx production and
translocation

We further investigated the correlation of SPT with Stx
production during infection. Stx release into the apical
medium was quantified by Vero cell cytotoxicity assay
(Fig. 3a, b, Table S1, available in the online version of this
article). Similar to colonization, Stx production was vari-
able among SPT strains and, taken together, there was no
significant difference between SPT groups AB and DE
(Fig. 3a, b). Stx concentrations in apical media were also
determined by ELISA for a selected set of samples, and
the results showed that both detection methods
exhibited a similar trend for all strains, but the Vero cell
assay demonstrated a greater dynamic range compared to

ELISA (Fig. S1). In addition to Stx release, we evaluated
Stx penetration across the epithelial cell layer by quantify-
ing Stx levels in basal compartments. This was performed
by Vero cell assay, as ELISA was not sensitive enough.
Whereas the SPT A and B strains demonstrated variable
levels of Stx in basal media, the levels were consistently
low in the SPT D and E strains (Fig. 3c, d, Table S1). The
calculation of Stx penetration relative to amounts of toxin
released into apical media indicated significantly lower
percentages of translocated Stx during infection with SPT
group DE vs group AB strains (Fig. 3e, f). As Stx can pen-
etrate the epithelium paracellularly or transcellularly, we
also determined epithelial barrier function by measuring
the TEER of the T84 monolayers before and after infec-
tion. Non-infected epithelia were included as controls.
Whereas none of the strains significantly disrupted epithe-
lial barrier function, infection with strain I (SPT A)
resulted in increased monolayer resistance versus the non-
infected control (Fig. 3g). Overall, the strains of SPT
groups AB and DE did not significantly differ in affecting
epithelial permeability (Fig. 3h).

Fig. 2. Growth and colonization of STEC SPT strains during VDC infection. T84 cells were infected with SPT strains for 5 h. (a, b)

Growth of non-adherent bacteria was determined by OD600. (c, d) Adherent bacteria were quantified by plating out serial dilutions of

cell lysates and counting c.f.u.s. Colonization is expressed as percentage of cell-associated bacteria relative to the inoculum. Results

are shown for individual strains (a, c) and for SPT groups AB and DE combined (b, d). n=5 in triplicate.
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Fig. 3. SPT Stx2 release and translocation across the epithelial monolayer. T84 cells were infected with SPT strains for 5 h or left

non-infected (�). Stx2 concentrations in apical and basal media were determined by Vero cell assay. (a, b) Stx2 levels in apical media

were normalized to an OD600 of 1.0. (c, d) Stx2 levels in basal media. (e, f) Stx2 translocation is expressed as percentage of apical Stx

recovered in basal compartments. (g, h) TEER after infection is expressed relative to TEER before infection. Results are shown for indi-

vidual strains (a, c, e, g) and for SPT groups AB and DE combined (b, d, f, h). n=5 in triplicate. **, P<0.01 vs SPT AB; ***, P<0.001 vs non-

infected control.
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Influence of type III secretion and intimin on Stx
translocation

As all strains of SPT group AB, but not those of group DE,
contain the LEE and therefore express the T3SS and intimin,
we investigated whether any of these factors were responsi-
ble for enhanced Stx translocation by SPT group AB versus
DE. VDC infections were performed with SPT A strain
EDL933 and isogenic deletion mutants in eae (intimin) and
espA (T3SS translocation filament). As shown in Fig. 4, no
significant differences in bacterial growth, colonization, epi-
thelial permeability, Stx production and translocation were
observed in infections with the mutants versus the wild-type
strain.

DISCUSSION

STEC are defined by the production of Shiga toxins, but this
alone is not sufficient to cause human disease. Epidemiolog-
ical studies have linked certain serotypes to human pathoge-
nicity, and this is the basis for the SPT classification
introduced by Karmali and colleagues [6]. While all of the
SPT AB strains used in this study are human clinical iso-
lates, all of the SPT DE strains are of bovine origin due to
their rare association with human disease. Therefore, their
potential virulence in humans can only be inferred based on
epidemiological trends. In an attempt to define what makes
STEC pathogenic, SPT strains have been analysed for their
virulence gene profiles, and eae encoding intimin as part of
the LEE has been identified as a strong virulence indicator
[6]. Furthermore, genes for putative adhesins, toxB and
efa1, were associated with SPT A and B, while long polar
fimbriae (lpfAO157/OI-141 and lpfAO157/OI-154) were more fre-
quently found in SPT A [29]. Despite genotypic differences
in adhesins between SPTs, we did not detect any significant

difference in the colonization of polarized T84 cells by SPT
AB and SPT DE strains. This agrees with a previous study
showing poor correlation of SPT and in vitro adherence to
HEp-2 and HCT-8 cell lines. The colonization levels were
generally low and SPT B showed the highest binding, but
some SPT DE strains also adhered well [30]. Given the pres-
ence of the LEE and intimin gene in SPT AB but not SPT
DE strains, this is surprising. However, we demonstrated
earlier that STEC O157 : H7 do not translocate Tir into
polarized T84 cells and that binding occurs independently
of intimin in this cell model [10]. This is also confirmed in
this study, where an O157 intimin mutant showed similar
colonization to the corresponding wild-type strain.

In addition to colonization of the intestinal epithelium, Stx
production is required for causing disease. Previous studies
have demonstrated that stx2a and stx2d are more closely
associated with SPT AB than SPT DE [25]. Notably, we
identified far fewer Stx2a-expressing SPT DE than SPT AB
strains for this study, and only 2 Stx2a-positive isolates were
found amongst a collection of 49 Stx2-producing bovine
isolates at Public Health England. As Stx types and subtypes
demonstrate differences in cytotoxicity [13, 31], we aimed
to select strains expressing Stx2a only. EDL933 was included
as the O157 : H7 prototype strain, and this strain also pro-
duces Stx1a. However, previous studies in our group have
shown that Stx2a is the major toxin type released during
EDL933 infection, whereas Stx1a remains in the periplasm
[20]. SPT A strains D and I also produce Stx2c. As purified
Stx2a has been shown to be at least 25 times more toxic in
Vero cells than Stx2c [31], this is unlikely to considerably
influence total Stx production by these strains. In this study,
we did not detect any correlation between Stx2 release and
SPT group. Previous reports have shown higher Stx2

Fig. 4. STEC Stx2 translocation is not dependent on intimin or T3S. T84 cells were infected with SPT A wild-type strain EDL933 (WT)

or isogenic deletion mutants in intimin (Deae) or EspA (DespA) for 5 h. Bacterial growth, colonization, epithelial barrier function, Stx

release and translocation were determined as described in Fig 2 and 3. n=6 in triplicate.
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production by human- versus bovine-derived isolates [32,
33], but no SPT classification was performed in the first
study [33], whereas both human and bovine strains
belonged to SPT A and C in the second study [32]. In addi-
tion, Stx production was determined in LB broth cultures in
the absence of host cells. In contrast to Stx release, we
observed a significantly higher translocation of Stx2 across
the epithelial monolayer during infection with SPT AB ver-
sus SPT DE strains. As epithelial resistance was not com-
promised during infection, Stx is likely transported by a
transcellular rather than a paracellular pathway. Stx transcy-
tosis across polarized T84 cells can be mediated by macropi-
nocytosis or independent mechanisms and is enhanced by
STEC infection [20, 34]. Here, we demonstrate that Stx
translocation during infection with prototype strain
EDL933 does not require T3S or intimin, but this needs to
be confirmed for other SPT AB strains. There appear to be
other factors present in SPT AB but not SPT DE strains pro-
moting Stx penetration of intestinal epithelium. One candi-
date is the secreted serine protease EspP, which has been
shown to stimulate host actin remodelling and Stx macropi-
nocytosis [34]. While a similar frequency of espP was
detected in STEC isolated from humans, cases of severe dis-
ease and animals/food [14], a recent study showed an asso-
ciation of espP with 100% of SPT AB strains, but only 41%
of SPT DE strains [30]. In addition, the putative pathogenic-
ity islands OI-57, OI-71 and OI-122 harbouring genes for
non-LEE encoded T3S effectors (nle) appear to be more
prevalent in SPT A and B than in other SPTs [6, 35–37]. In
fact, the genes nleA, nleB, nleC, nleE, nleF, nleG, nleG2-1,
nleG2-3, nleG5-2, nleG6-2, nleG9, nleH1, nleH2 and ent/
espL2 were more prevalent in isolates associated with HUS
(SPT A–C) than in strains associated with only diarrhoea or
animals (SPT DE) [37]. Nle effector proteins have been
shown to inhibit host cell apoptosis and inflammatory
response [38], but no involvement in Stx uptake and trans-
port across the epithelium has been established yet.

In this study, we report an association between SPT and Stx
translocation across the intestinal epithelium, with higher
levels of Stx2a transcytosis being observed during infection
with STEC SPT group AB versus SPT group DE strains.
Future studies will focus on the underlying molecular mech-
anisms and genetic determinants and should lead to the
identification of genetic markers for highly virulent STEC
strains.
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