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Abstract
One view of working memory posits that maintaining a series of events requires their sequential and equal mnemonic
replay. Another view is that the content of working memory maintenance is prioritized by attention. We decoded the
dynamics for retaining a sequence of items using magnetoencephalography, wherein participants encoded sequences
of three stimuli depicting a face, a manufactured object, or a natural item and maintained them in working memory for
5000 ms. Memory for sequence position and stimulus details were probed at the end of the maintenance period.
Decoding of brain activity revealed that one of the three stimuli dominated maintenance independent of its sequence
position or category; and memory was enhanced for the selectively replayed stimulus. Analysis of event-related
responses during the encoding of the sequence showed that the selectively replayed stimuli were determined by the
degree of attention at encoding. The selectively replayed stimuli had the weakest initial encoding indexed by weaker
visual attention signals at encoding. These findings do not rule out sequential mnemonic replay but reveal that attention
influences the content of working memory maintenance by prioritizing replay of weakly encoded events. We propose
that the prioritization of weakly encoded stimuli protects them from interference during the maintenance period,
whereas the more strongly encoded stimuli can be retrieved from long-term memory at the end of the delay period.
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Introduction
Working memory is conceptualized as a mechanism to

actively maintain and manipulate information (Baddeley,

1992). It is considered to consist of multiple layers, includ-
ing long-term memory and a maintenance buffer , which is
also known as the focus of attention during maintenance
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Significance Statement

Here we show how information of a sequence of events is prioritized in the working memory maintenance
buffer in humans. Participants retained three consecutive visual stimuli, and we decoded the content of
working memory maintenance using multivariate pattern classification and magnetoencephalography. We
observed that the least attended events during encoding dominated the content of working memory
immediately following off-line retention. In essence, the brain selectively and intelligently amplifies the least
encoded memory item to maximize recall fidelity, instead of equally rehearsing the whole sequence. Our
findings shift the functional role of working memory from a faculty that “works with memory” to one that
“works for memory” by actively selecting which encoded items need to be enhanced to be remembered.
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(Oberauer, 2002; Baddeley, 2010) that interacts with long-
term memory. Working memory maintenance is associ-
ated with a reactivation of information in nonhuman
primates (Miller et al., 1993; Lee et al., 2005; Woloszyn
and Sheinberg, 2009) and in humans (Lepsien and Nobre,
2007; Harrison and Tong, 2009; Fuentemilla et al., 2010).
Here we investigated the representational content of
maintaining a sequence of multiple stimuli in working
memory. To decode representational content, we used
multivariate pattern analysis of magnetoencephalography
(MEG) recordings (Jafarpour et al., 2013; Cichy et al.,
2014).

We addressed two hypotheses. The first hypothesis
was that stimuli are maintained in a circular and repetitive
structure. This hypothesis was motivated by the temporal
coding model of working memory maintenance, which
proposes that the replay mechanism conserves the tem-
poral order in which stimuli were encountered (Lisman,
2010; Jensen et al., 2014). Thus, the sequence of 1-2-3
circularly rehearses as 1-2-3-1-2-3-1-2-3-etc. Such a dy-
namic has been reported in the medial temporal lobe of
rodents (Jensen and Lisman, 1996) and in the nonhuman
primate prefrontal cortex (Siegel et al., 2009). Support for
the temporal coding model also comes from a recent
human MEG study (Heusser et al., 2016). In that study,
fitting the temporal coding model to whole-brain the MEG
data source localized evidence for the model in the human
hippocampus (Heusser et al., 2016). However, the trial-
by-trial activity of the prefrontal cortex of a nonhuman
primate supports a dynamic coding model of working
memory, rather than the temporal coding model (Lund-
qvist et al., 2016). The dynamic coding model suggests
that items are maintained in an “activity silent state” and
that replay is guided by attention (Stokes, 2015; Myers
et al., 2017). Attention at encoding could thus prioritize
the content of working memory such that working mem-
ory maintenance is dominated by a selected stimulus
rather than the full to-be-memorized sequence. For in-
stance, it would be more resource effective to prioritize
the less privileged stimuli at encoding to be replayed in
working memory (Zokaei et al., 2014; Stokes, 2015; Rose
et al., 2016).

Here we used the whole-brain MEG data to decode the
content of working memory. Our experiment was a mod-
ified version of the Sternberg task, where a sequence of
three visual stimuli had to be retained. Objects from three
distinct visual categories [faces (Fs), manufactured ob-
jects, and natural items] were presented successively (the

stimulus set contained samples of the same items from
different perspectives; Fig. 1B) followed by a 5000 ms
delay period. After the delay, a probe queried stimulus
identity (detail test) and a second probe queried the se-
quence of the three items (first-, second-, or third-order
test; Fig. 1).

Pattern classifiers were trained on categorical represen-
tations of visual stimuli in brief time bins (20 ms) during
encoding (Carlson et al., 2013; Jafarpour et al., 2014). The
classifiers labeled the ongoing signal during retention (R) and
intertrial interval (ITI) periods for control. According to the
output of the classifiers [face, banana (B), chair (C), or “none”
(N) for no replay], a Markov chain matrix of transitions be-
tween replayed stimuli and none was constructed (Fig. 2).
With three stimuli, we could test for the direction of replay
(i.e. 1-2-3 vs 3-2-1). A Markov chain matrix of transitions
quantified the directional replay of sequences. The proba-
bility of transition from state 1-2, 2-3, and 3-1 would be
higher than the probability of transition from state 1-3, 3-2,
and 2-1 if there is a forward replay and the reverse pattern
would be observed for backward replay.

A support vector machine algorithm was used for de-
coding the (pairwise) categorical information at �20 to
500 ms from onset of the visual stimuli during encoding.
Note that the categorical representation and item-specific
representation overlaps in our case, because we used
only one sample from a category in this study (Fig. 1B).
We trained the classifiers on the amplitude of the broad-
band event-related single-trial MEG signals and tested
using a cross-validation method during encoding. We
applied the classifiers with best performances to decod-
ing during the maintenance interval. To determine the
degree of attention during encoding, we analyzed early
event-related fields (ERFs) to each stimulus.

The sequential mnemonic replay hypothesis would pre-
dict decoding sequence information or at least an equal
probability of decoding for all three encoded stimuli dur-
ing maintenance. In contrast, an attentional prioritization
account would predict that the degree of stimulus replay
during the maintenance period would be dependent on
the size of early ERFs at encoding.

Materials and Methods
Participants

Sixteen right-handed, healthy adults with normal or
corrected-to-normal vision participated in this experiment [8
females; average age, 24 years (SD � 2)]. The MEG data
from two participants were not included in the analysis, as
their MEG signals were too noisy and were rejected as
artifacts (for details, see below). All participants gave written
informed consent and were compensated financially for their
participation. The University of London Research Ethics
Committee for Human-Based Research approved the study.

Experimental design
We used a combination of a delay-match-to-sample

and Sternberg tasks. The experiment consisted of six
runs, and each run consisted of 27 trials. Participants had
an optional 5 min break between runs. Each trial con-
tained a sequential presentation of three stimuli, a reten-
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tion period, and two probe tests. A trial started with a
fixation (intertrial interval) period for 4000 ms. Then a
random sequence of three stimuli appeared sequentially
for 500 ms, with a 500 ms gap between stimuli. A 5000 ms
retention period followed the presentation of the third
item. Finally, a probe stimulus was presented to test for
item memory (delay-match-to-sample), where subjects
were required to select “same” if the exact stimulus (cat-
egory and perspective) was shown in the sequence and
“different” otherwise (the perspective was different). Ran-
domly, in half of the trials, the correct answer was “same”.
For the following question, subjects were required to
answer “1, 2, or 3” according to the position of the probe
in the sequence (Fig. 1A).

The stimuli were images from three visual categories for
which previous multivariate decoding research indicated
the following distinct spatial cortical representations
(Kriegeskorte et al., 2008): a face, a fruit, and a manufac-
tured object (Fig. 1B). Images were from three different
perspectives (front-on, 60° to the left, and 60° to the right)
shown upright on a white background, extending �6° of a
horizontal and vertical visual angle (face images were
downloaded from Faces stimulus images Tarrlab, Center

for the Neural Basis of Cognition and Department of
Psychology, Carnegie Mellon University, Pittsburgh, PA;
http://www.tarrlab.org/). Subjects were familiarized with
the stimuli outside the MEG scanner, and they also per-
formed the experiment with feedback outside the scanner
to ensure that they understood the experiment properly.
There was no feedback given during the experiment in-
side the MEG scanner. In six runs each with 27 trials
(altogether, there were 162 trials), we tested all possible
sequential combinations of three stimuli. All of the possi-
ble combinations of three stimuli are 162 sequences: six
combinations of sequences of three categorical stimuli,
and three perspectives of each stimulus category (� 6 �
3 � 3 � 3). We presented the trials randomly, and each
trial was seen once.

MEG recordings and data preprocessing
MEG data were recorded with a 274-channel CTF

Omega whole-head gradiometer system (VSM MedTech)
with a 600 Hz sampling rate with an on-line bandpass filter
from 0.1 to 200 Hz. The head position inside the system
was tracked via head localizer coils attached to the nasion
and 1cm anterior to the left and right preauricular points.

Figure 1. Working memory experimental paradigm. A, Three stimuli were presented sequentially, each for 500 ms and with a 500 ms
gap between them. There was a 5000 ms retention period in between the presentation of the third stimulus and memory probe tests.
The memory probe tests entailed a “same” or “different” judgment and a temporal order decision. A 4000 ms intertrial interval
preceded the next trial. The R period is shown in blue, and the ITI is shown in red. B, The stimuli were used in this experiment as
follows a B, an F, and a C from three points of view, 60° to the left, front on, 60° to the right.
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Participants sat upright, and the stimuli were back-
projected onto a screen 1 m in front of them.

MEG data were preprocessed using SPM12b (Well-
come Trust Center for Neuroimaging, London, www.fil.io-
n.ucl.ac.uk/spm) package and analyzed using MATLAB
R2009b software (MathWorks). We filtered out the main
noise (50 Hz) from a continuous signal using a fifth-order
Butterworth filter. We cropped the MEG data during en-
coding to epochs from �100 to 500 ms from the stimuli
onset. We discarded any epoch with field magnitudes
�1.5e-11 tesla in any channel, because it contained arti-
facts. Two subjects had too many trials with such artifacts
and were removed from further analysis.

Decoding the category of visual stimuli during
encoding

A support vector machine (SVM) with a linear kernel
(Vapnik, 2000), implemented in MATLAB statistics soft-
ware, was used to classify the signal elicited by the onset
of the visual stimuli. Twenty-six classifiers were adopted
at �20 to 500 ms from stimulus onset during encoding.
The sampling rate of the signal was 600 Hz. The signal
was windowed in time bins of 20 ms (13 time points in
each time bin), centered at �10, 10, 30, 50, 70, 90, 110,
130, 150, 170, 190, 210, 230, 250, 270, 290, 310, 330,
350, 370, 390, 410, 430, 450, 470, and 490 ms. The
single-trial input to the SVM classifiers was the broadband
amplitude at each time point and each channel (13 � 274
� 3562 features) for every stimulus. The features were
normalized before training, and the scale was used to
normalize features in testing data. We used a two-tailed t
test with a threshold of 0.05 for the feature reduction.

We trained three pairwise classifiers to decode the
stimulus category at each time bin during encoding, irre-
spective of presentation order or perspective: face versus
banana (F vs B), face versus chair (F vs C), and banana
versus chair (B vs C). We identified the time bins with
reliable category stimulus classification and trained the
classifiers on 90% of randomly selected samples from
each category and tested them on 10% of left-out sam-
ples from each category (i.e. 10-fold cross-validation). We
selected an equal number of trials from each category for
training and testing.

We examined the classification performance at the
group level. To test the accuracy of each classifier against
chance (i.e., 50%), we used a one-sample t test with a
correction for multiple comparisons [familywise error
(FWE)] using random field theory (RFT) implemented in
SPM (Kilner et al., 2005; Litvak et al., 2011). As is standard
in neuroimaging, we made inferences using a cluster-level
threshold. The RFT procedure adjusts the p value statis-
tics that are functions of the number of time points (clas-
sification repetition). Such adjustment is similar to a
Bonferroni correction. However, a Bonferroni correction is
suitable for datasets that are independent at each repe-
tition (or data point). Here the data from adjacent time
points is not independent, and RFT is more suitable for
multiple comparison correction (Kilner et al., 2005; Jafar-
pour et al., 2014).

Decoding the category of visual stimuli during delay
periods

The most accurate classifiers from encoding were used
to decode the replay during maintenance (the delay pe-
riod between encoding and testing) and during the ITIs

Figure 2. Schema of the multivariate pattern analysis using SVM. A, The state of neural activity during delay periods (R period or ITI) was
decoded at each time bin, using three pairwise classifiers. A conservative threshold of d� (depicted in red) was used to reject
representations that were close to the boundary and categorize them as N (the shaded area). B, A schematic example of decoded states
during a delay period. C, The discrete time Markov chain model of state transition extracted from the schematic sequence in B.
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(Fig. 2). For the delay period, we restricted analysis to the
1000–4000 ms after the offset of the last stimulus in
the sequence (150 time bins were tested) to exclude the
event-related activity elicited by offset of the last stimulus.
We selected the 3000 ms before the onset of the first
stimulus in the sequence (again including 150 time bins)
for testing the ITIs.

The outputs of the three pairwise classifiers were class
labels (F, B, or C), and the distance between unknown
activity and classification decision boundaries. We deter-
mined the decoded labels according to these outputs in
two steps. First, we selected the class label (among three
classifier outputs) that had the largest distance to deci-
sion boundaries. Second, we used a threshold to identify
unknown activities that were too close to the classification
boundaries. We rejected these decoded classes and la-
beled them as N.

A threshold was used to reject a percentage of classi-
fication outputs during the retention period. For example,
if the classifier performance was reliable 80% of the time,
we rejected 20% of the labels of the decoded time bins
during retention. We applied the same conservative
threshold on decoded output during ITIs. Following those
steps, four possible labels resulted from the classifiers: F,
B, C, or N (for rejected classifications; Fig. 2).

Two parameters were studied to quantify the differ-
ences in the decoding during the R period and the ITI on
a trial-by-trial level. The first parameter was the number of
consecutive time bins decoded as the same item (i.e., a
decoding epoch). We compared the length of the de-
coded epoch between the R period and the ITI. We
trusted that the decoded items were replayed only when
the memory benefited from the decoding (see the analysis
on the effect of active maintenance on behavioral re-
sponses).

The second parameter was the dynamics of replay
extracted by the Markov chain. We treated the classifiers
outcomes as a state and counted the number of visits to
the states and transitions among them during the R period
and the ITI. We then extracted the probabilities of transi-
tions for each subject and compared them between the
retention periods and intertrial intervals at the group level
using a two-sided Wilcoxon rank sum test.

The directionality of replay was tested using a two-
sided Wilcoxon rank sum test. We performed the follow-
ing comparisons:

Probability of forward replay with the probability of back-
ward replay. Assuming an independent probability of re-
play of each stimulus, the forward replay was the multiple
of probability of transitions from the first stimulus to the
second stimulus, from the second stimulus to the third
stimulus, and from the third stimulus to the first stimulus.
Backward replay was the multiple of probability of transi-
tions from the third stimulus to the second stimulus, from
the second stimulus to the first stimulus, and from the first
stimulus to the third stimulus.
Probability of transitions from the first stimulus to the
second stimulus with probability of transitions from the
first stimulus to the third stimulus.

Probability of transitions from the second stimulus to the
first stimulus with probability of transitions from the sec-
ond stimulus to the third stimulus.
Probability of transitions from the third stimulus to the first
stimulus with probability of transitions from the third stim-
ulus to the second stimulus.

Effect of active maintenance on behavioral
responses

We applied a linear mixed-effects model to evaluate the
effect of the length of a predominantly replayed epoch on
the behavioral performance and response time across
subjects. In each trial and for each probe (in both detail
and order tests), we took the number of consecutive time
bins that the probe was replayed as a fixed variable and
the subject number as a random variable. The effect of
replay on behavior was visualized by grouping the probes
according to whether or not they replayed during reten-
tion period and if replayed, whether the replay epoch was
long (�1100 ms; see Fig. 4) or short. We grouped the hit
rate and response time accordingly. We studied the nor-
malized behavioral performances and effect of active
maintenance on behavior at the group level using ANOVA
and paired-samples t test for post hoc tests, implemented
in IBM SPSS Statistics version 23.

Event-related field predicting predominant replay
We investigated whether ERFs during stimulus presenta-

tion predicted maintenance. During maintenance, one stim-
ulus was predominantly replayed. We grouped an event-
related response according to its replay during the retention
period: if the stimulus was predominantly maintained during
retention interval (PM) or not (non-PM). We studied the
event-related field using SPM12b, and ERF signals were
baseline corrected based on the averaged amplitude in the
whole epoch and low-pass filtered at 20 Hz.

The significant effects were then source localized sep-
arately (an early effect peaked at 125 ms, and a later effect
peaked at 278 ms). We cropped the signal to a 50–200 ms
epoch to localize the first effect (115–135 ms), and
cropped the signal to a 200–350 ms epoch to localize the
latter effect (270–300 ms). ERFs were source localized
using 8192 vertices over the cortical surface in MNI
space, a single shell as a forward model, and multivariate
sparse priors (Friston et al., 2008). The individual source-
localized activity was then examined in a group-level
statistical analysis (Henson et al., 2007).

Results
Pattern classifiers performance

We calculated the accuracies of three pairwise classi-
fiers by averaging the classification accuracies over vali-
dation folds and paired categories. The results indicated
that all classifiers performed at a better than chance level
(50%) from �100 to 500 ms after the onset of the stimuli
(from �10 to 490 ms tested time bins). F versus C clas-
sification performance was above chance from 90 ms
after stimulus onset, with the highest performance of 80%
at 170 ms (t(13) � 14.76, p � 0.001, FWE corrected). The
performance for the B versus C classifier was also signif-
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icant from 90 ms, with the best performance of 75% at
190 ms (t(13) � 14.61, FWE corrected p � 0.001). F versus
B classification was significant from 110 ms, with 80%
performance at 170 ms (t(13) � 12.35, p � 0.001, FWE
corrected; Fig. 3).

Replay of one stimulus category dominates during
retention

The 170 ms classifiers had the highest performance
during encoding (the averaged cross-validated accuracy,
over all three pairwise classifiers, was 78%). Thus, we
selected the 170 ms classifiers for decoding within two
time windows where maintenance may occur: the R in-
terval itself and the ITI for control. Each period contained
151 time bins. Overall, we decoded �330,000 time bins.

The distributions of assigned category labels to each
time bin were different during the R period and ITI (Fig. 4).
During the R period, the decoded adjacent time bins were
most frequently from the same category (Fig. 4A, an
example from a representative subject). We refer to these
adjacent time bins with the same decoded categories as
a replay “epoch”: it quantifies the length of time staying in
the same state. The lengths of all epochs (multiple per a
delay period) were then calculated, and the histogram of
epoch lengths during the R period and ITI were compared
in the four length bins: 20–140, 160–400, 420–1100, and
1200–3000 ms (note that a unit time bin was 20 ms). We
observed shorter replay epochs during the ITI than the R
period (20–140 ms: p � 0.001), and longer replay epochs
during the R period than the ITI (420–1100 ms, p � 0.007;
1200–3000 ms, p � 0.001; Fig. 4B).

The analysis was repeated after introducing the null
category (N) for no replays. We introduced a threshold for
rejecting the classifier outputs that were close to classifi-
cation decision boundaries. We labeled those rejected
classifier outputs as null. For measuring the threshold, we
first extracted the probability distribution of the distance
to the classification boundaries (d) obtained from the R
and the ITI periods (Fig. 4C). The applied classifier was

accurate 78% of the time. We then selected a conserva-
tive threshold (d� � 2.49) to reject 22% of outputs of the
classifiers decoding the patterns during the retention pe-
riod that were closest to the classification boundaries
(they were the 22% that were most ambiguous). The same
threshold rejected 94% of the decoded patterns during ITI
period. We labeled these rejected time bins as N for null.

After applying the threshold, the overall number of re-
plays of 170 ms representations (F, B, and C) was higher
during the R period (5422, SD � 1061) than in the ITI (92,
SD � 149; p � 0.001), and the number of Ns (rejected
bins) was higher during the ITI (12,657, SD � 2961) than
during the R period (3058, SD � 1669; p � 0.001). Fur-
thermore, the decoded epochs were longer during the R
period than during the ITI (in all four length bins, p �
0.001; Fig. 4D), meaning that the replayed stimuli per-
sisted over a longer time during the R period. These
results indicated that during the retention period one stim-
ulus was PM. There was no significant interaction be-
tween stimulus category and order and the predominant
stimuli (F(4,52) � 0.603, p � 0.662) and no main effects of
order (F(2,26) � 0.747, p � 0.484) or stimulus category
(F(2,26) � 0.701, p � 0.505; Fig. 4E). At a group level, the
length of replay epochs for the predominantly maintained
category was shorter than 160 ms in 25% (SD � 11.2) of
trials, between 160 and 400 ms in 18.7% (SD � 4.5) of trials,
between 420 and 1100 ms in 15.1% (SD � 3.8) of trials, and
larger than 1100 ms in 41.3% (SD � 14) of trials.

No evidence for replay in sequential order
The difference between the pattern of replay during the R

period and the ITI was also detectable from the probability of
replay of each stimulus at time bin t � 1 given the replay of
a stimulus at time bin t (i.e., one-step, discrete-time Markov
chain transition matrix between replayed states). If at time t
a stimulus replays, most probably at time t � 1 the same
stimulus will replay (averaged probability of transition was
56.32%). Probabilities of transitions to the same state and
from N to each of the stimulus states were higher during the

Figure 3. Multivariate classification of stimulus categories: cross-validation performance, these plots show the mean classification
performance of 3 pairwise classifiers across the group: left, F vs B; middle, F vs C; and right, B vs C. The x-axis is the time from
stimulus (0 ms), and the y-axis is the classification performance in percentage. The error bars show the SEM. The gray area indicates
significant classification after correction for multiple comparisons.
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R period than during the ITI, and the probabilities of transi-
tions from any state to N were lower during the R period than
during the ITI. There was no difference between forward and
backward transitions (Fig. 5).

Enhanced memory recall for the dominantly replayed
stimuli

We then examined the behavioral performance for re-
played stimuli by fitting a linear mixed-effects model; that

Figure 4. Decoding maintained categories in the delay period. A, The plot shows a representative example (from one subject) of the
decoded R period and ITI before thresholding. The x-axis is the decoded time bins, and the y-axis is the trial number. B, The histogram of
length of replay epochs during the R period (in blue) and during the ITI (in red) before threshold: the x-axis shows the epoch length. The top
plot is the averaged epoch length from 20 to 3000 ms, and the bottom plot is the bar plot for bins of epoch lengths (20–140, 160–400,
420–1100, and 1200–3000 ms). Error bars show the SEM. The x-axis is length of the epoch of stimuli replay. C, The probability distribution
of distance from classification boundaries during the R period (blue) and ITI (red). d� shows the threshold for rejecting 22% of classification
outputs during retention. This threshold rejected 94% of classification outputs during ITI. D, The same histograms as in B but after applying
the threshold. E, The bar plots show the percentage of trials where the stimuli from the selected category (left plot) or order in the sequence
(right plot) was predominantly maintained. There was no significant effect of category or the order of stimuli.
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is, the length of (longest) consecutive replay of the probes
in each trial as a fixed variable and the subject identity as
a random variable. The results showed significant effects
of length of replay on the performance for detail test
(parameter estimate, 0.0001; t(2232) � 2.578, p � 0.01) and
on response time for the detail test (parameter estimate,
�0.63175; t(2232) � �2.115, p � 0.0345). The result was
not significant for the performance of order test (param-
eter estimate, �0.0001; t(2232) � 0.47757, p � 0.633) or
the response time of the order test (parameter estimate,
0.39498; t(2232) � 1.1955, p � 0.232).

We considered how long the longest replay epoch of
the probe was during the preceding retention interval. We
grouped the probes into the following three groups: those
with no replay [detail test, 72.1 probes (SD � 9.9); order
test, 73.6 probes (SD � 12.4)]; a short replay epoch
[�1100 ms; Fig. 4, first three bars); detail test, 64.1 probes
(SD � 16.8); order test, 64.4 probes (SD � 16.1)]; and a
long replay epoch [�1100 ms; Fig. 4, last bar; detail test,
23.8 probes (SD � 9.7); order test, 21.9 probes (SD �
8.9)]. We also tested the behavioral responses according
to how long the probe replayed during retention. The
effect of the length of replay epoch predicted accuracy in
the detail test (the first test the subjects performed after
the retention period; F(2,26) � 4.98, p � 0.015). The post
hoc test showed that the hit rate was higher for the probes
with long replay epochs than those with short replay epochs
(t(13) � 2.78, p � 0.016) or those not replayed (t(13) � 2.85,
p � 0.014; Fig. 6). We did not find any effect of replay on
detail test response time (F(2,26) � 1.89, p � 0.17), order test
response time (F(2,26) � 0.20, p � 0.82), or order test accu-
racy (F(2,26) � 0.12, p � 0.89).

Event-related activity during encoding predicts item
replay

ERFs during encoding were examined as a function of
which item was PM during the retention period. The ERFs
were preprocessed in exactly the same way as the signal

for pattern classification analysis and were low-pass fil-
tered at 20 Hz. The results revealed that PM and non-PM
stimuli during encoding evoked significantly different
ERFs at right temporal channels (peaked at 125 ms;
F(2,26) � 44.14, p � 0.001, FWE corrected) and left
temporal channels (peaked at 115 ms; F(2,26) � 39.25,
p � 0.001, FWE corrected; and later peaks at 453 ms;
F(2,26) � 23.06, p � 0.008; Fig. 7A,B), as well as at middle
frontal channels (peaked at 287 ms; F(2,26) � 32.49, p �
0.002, FWE corrected; Fig. 7C,D). The early ERF compo-
nent (peaking at 125 ms) was source localized to the
occipital temporal and the medial temporal cortices in
both the left and right hemispheres (Fig. 7E). The differ-
ence was significant in left occipital (F(1,13) � 36.51, p �
0.027, FWE corrected; Fig. 7E). The later ERF component,
which peaked at 287 ms, was source localized to three
brain regions, one on the left inferior temporal cortex
(F(1,13) � 21.85, p � 0.033, FWE corrected; Fig. 7F) and
two on the right inferior temporal cortex (F(1,13) � 20.44,
p � 0.036, FWE corrected; and F(1,13) � 19.03, p � 0.42,
FWE corrected; Fig. 7F).

Discussion
Using MEG, we decoded the working memory content

while individuals maintained the sequence and the visual
details of three distinct stimuli. Our results revealed that
one of the three stimuli dominated the content of working
memory. The predominantly maintained item benefited
memory performance, akin to the behavioral effect of
retaining an item on the focus of attention (Lepsien and
Nobre, 2007; Lepsien et al., 2011; Gazzaley and Nobre,
2012; Tan et al., 2014). The item selected for preferential
replay was not predicted by the identity or the sequence
position (Fig. 4E). Instead, the predominantly maintained
stimulus was selected based on the lowest amount atten-
tion related ERF amplitude during encoding (Fig. 7).

Our strict criterion for the existence of a sequential
replay was the probability of sequential transitions in a
discrete-time (one-step) Markov chain transition matrix
(Fig. 5). Accordingly, we did not find directional replay;
namely, any differences between the forward replay (1, 2,
and then 3) or backward replay (3, 2, and then 1; Fig. 5).
In addition to this strict criterion, we tested a direct pre-
diction of the temporal coding model. The temporal cod-

Figure 5. Difference in the averaged probability of state transi-
tion matrix is reflected by the thickness of the arrows. The
probabilities of all transitions were different between the R peri-
ods and ITIs. Red arrows show the transitions that occurred
more often during the ITI than the R period, and blue arrows
show the opposite situation. There was no difference between
the probabilities of forward (1-2-3) and backward (3-2-1) transi-
tions.

Figure 6. Effect of replay of 170 ms representation on WM
performance. A, B, The detail test (A) and for the order test (B)
show the hit rate (%) with respect to whether the stimuli were not
replayed (none), were replayed for a short duration (shorter than
1100 ms), or replayed for a long duration (longer than 1100 ms).
Error bars show the SEM. �p � 0.05.

New Research 8 of 11

July/August 2017, 4(4) e0171-17.2017 eNeuro.org



ing model predicts that all three memoranda would be
decoded with equal probability during maintenance. This
criterion was also not fulfilled (Fig. 6). These null findings
have to be interpreted with caution because the spatio-
temporal resolution of our methodology may not be sen-
sitive to sequential replay and direct intracranial recording
may be required to provide further evidence for or against
these models. Furthermore, sequential replay may be
recruited with higher working memory load than that used
in the current study (Heusser et al., 2016).

We observed that one stimulus dominated during the
retention (Fig. 4). The identity of this stimulus varied from
trial to trial. As noted, the category or the order of se-

quence did not determine what stimulus would replay
(Fig. 4E). Instead, it was the amplitude of the ERFs at 125
ms from stimulus onset during encoding that predicted
what stimulus would replay (Fig. 7). The early effect was
source localized to left extrastriate cortex (Fig. 7), and this
spatiotemporal pattern corresponds closely to the well
known effect of attention to a visual stimulus during en-
coding (Heinze et al., 1990; Luck et al., 1990; Okazaki
et al., 2008; Rutman et al., 2010). Attention to a visual
stimulus elicits an enhanced event-related component in
the occipital cortices (Hopf et al., 2000). Specifically, al-
locating attention to visual stimuli increases the magni-
tude of event-related EEG and MEG amplitude at �100

Figure 7. ERFs during encoding differentiate between PM stimuli in working memory and non-PM stimuli. A, The plots graph the
F-statistics in channel by time topography, focusing on the significant clusters at 125 ms from the stimuli onset. The bottom plot
shows the channel by channel topography of the effect (x-axis is from left to right, and y-axis is from posterior to anterior). The top
plots are channel by time. The x-axis on the left plot shows channels from left to right, and the x-axis on the right plot shows the
channels from anterior to posterior. The peaks are highlighted with shapes in A to D. B, The top plot is for the effect that peaked at
125 ms (p � 0.001) in a left lateral channel, and the bottom plot is for the ERF effect at 453 ms (p � 0.008) in a right lateral channel.
The plots show the ERF effects in the peak of significant clusters, which are highlighted by shapes (A and B). The dashed boxes show
the timing of the effects. C, The plots graph the F-statistics in channel by time (the same as in A), focusing on the significant effect
that peaked at 287 ms (p � 0.002). The effect is highlighted by a diamond shape in C and D. D, The plot shows the ERF effect at
287 ms from the stimuli onset in middle frontal channels. E, The ERF effect at 125 ms (A and B) was source localized in the bilateral
occipital cortex. F, The ERF effect at 287 ms (C and D) was source localized in the posterior inferior temporal areas. A to D, Dotted
line shows the onset of the stimuli at encoding.
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ms after the onset of visual stimulus relative to less at-
tended stimuli (Hillyard and Anllo-Vento, 1998; Downing,
2000). Thus, stimuli that dominated replay during the
retention interval were those that had received the least
early attention allocation during encoding. This early re-
duced attention effect on the weakest encoded event was
followed by a reduced amplitude event-related response
at 287 ms that source localized to posterior inferior tem-
poral regions. This indicates that the diminished early
visual attention was followed by weaker representations
in downstream visual areas.

Our findings are compatible with longstanding research
on how attention can influence the content of working
memory. Multiple items in working memory are not all in
the same representational state during retention due to
attention allocation (Zokaei et al., 2014; Myers et al.,
2017). Rather, brain stimulation or experimental instruc-
tions to maintain a prompted stimulus (i.e., retro-cue pro-
cedure) manipulates the content of retention (Lewis-
Peacock and Postle, 2012; Zokaei et al., 2014; Rose et al.,
2016). Retro-cuing shifts the prompted stimulus into “the
focus of attention.” In our experiment, we did not use
retro-cues or brain simulation; instead, all three visual
items were task relevant. This procedure allowed us to
uncover an uninstructed prioritization of working memory
content that was dependent on the degree of early atten-
tion.

Our observation that one item can dominate the main-
tenance period is compatible with recent neurophysiolog-
ical data from the prefrontal cortex (PFC) of nonhuman
primates. These effects of replay on behavior suggest that
only the item in the focus of attention is actively replayed
in working memory, while the representation of other
stimuli are in an “active-silent” state (Sandberg et al.,
2003; Stokes, 2015). The active-silent state is proposed to
be a form of synaptic level retention where single-unit
activity drops to baseline levels after an initial firing burst
(Mongillo et al., 2008; Stokes, 2015; Lundqvist et al.,
2016).

An intriguing question raised by our data is how the
weakly encoded stimuli are prioritized for maintenance.
Since prioritization was independent of sequence posi-
tion, it could have occurred only after all three stimuli were
encountered. A parsimonious scenario is that mainte-
nance prioritization occurs at the beginning of the delay
period (perhaps in the PFC; Lundqvist et al., 2016) and
involves the retrieval of information. One possibility is that
the prioritized stimulus required more search or retrieval
effort during the delay. Such a process could have been
supported by prefrontal mechanisms allowing monitoring
(Barbey et al., 2013; Szczepanski and Knight, 2014) and
inhibitory control (Knight et al., 1999; Barceló et al., 2000;
Aron et al., 2004) reducing interference (LaRocque et al.,
2014; Zokaei et al., 2014) from strongly encoded stimuli.
This potential mechanism would compensate for capacity
limitations of working memory (Luck and Vogel, 1997;
Awh et al., 2006; Bays and Husain, 2008; Bays et al.,
2009) and would be more resource effective by prioritizing
the less privileged stimuli at encoding in the maintenance
buffer. In essence, the subjects enhanced the replay of

poorly attended stimuli to improve subsequent perfor-
mance. Whether more strongly attended (higher-amplitude
early ERFs) stimuli were encoded into and retrieved from
long-term memory or whether they were in an active-silent
state (Stokes, 2015; Lundqvist et al., 2016) remains an open
question. Another option is that items were sequentially
replayed but when the signal for the weakly attended item
was amplified, this masked the decoding of other items.

In summary, we decoded the dynamic replay of the con-
tent of visual working memory with high temporal resolution
using MEG. The results revealed that the representation of
visual categorical information of the least attended stimuli
during encoding was preferentially replayed during reten-
tion. These findings reveal that working memory mainte-
nance intelligently prioritizes the weakest attended and
encoded task-relevant stimuli, enhancing the fidelity of
memory recall.
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