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Abstract：To avoid damage to the pore structure of metal foam, a laser cutting process 

for efficiently and directly cutting metal foam into regular shapes is proposed. After 

analyzing the proposed laser cutting process, its effects when applied to three different 

types of metal material (copper, ferroalloy, and nickel) and two levels of pore density, 

namely 90 and 110 pores per inch (PPI), were investigated. The results show that 

metal foam with a good surface quality can be obtained without damaging the pore 

structure by using the proposed laser cutting process. Of the three metal types 

considered, the highest material removal rate (MRR) and material oxidation rate 

(MOR) were observed for ferroalloy foam. Of the two pore densities, metal foam of 

90 PPI showed a larger material removal rate than metal foam of 110 PPI. The MRR 

and MOR increased with an increase in the laser output power and decrease in the 

scanning speed. Using a central composite experimental design method, optimized 

processing parameters of 26 W laser output power and 475 mm/s scanning speed were 

adopted to cut the metal foam with a high pore density.  
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1 Introduction 

During the last three decades, different types of metal foam with a high pore 

density and three-dimensional pore structure have been developed using different 

manufacturing methods. The many outstanding properties of metal foam, such as its 

low density, high gas permeability, high specific surface area, good energy absorption 

characteristics, and high thermal conductivity, make it an attractive material for use in 

various industrial applications. Some types of metal foam, including copper foam, 

ferroalloy foam, nickel foam, and aluminum foam, are fabricated at a large scale with 

different characteristics. For example, copper foam has high thermal conductivity, 

which can be used as a thermally conductive material [1]. Ferroalloy foam has a high 

impact resistance and good energy absorbing characteristics, and has been used in the 

transportation industry as a damping material [2]. Nickel foam has good 

electromagnetic shielding properties, and has been used as an electromagnetic 

shielding material [3]. These metal foam types are considered preferred materials for 

catalyst supports because their highly specific surface area provides more 

opportunities for contact with gas or liquids as catalysts in a microreactor. 

Microreactors with metal foam as a catalyst support have also been studied, such as in 

the steam reforming of methanol [4], mass-transfer characterization, and catalyst 

loading method [5, 6]. In addition, metal foam can be used as a type of bio-material, 

and its various 3D porous surfaces or structures that are able to be created can 

enhance the biological fixation on orthopedic implants [7].  

Based on the pore structure, metal foam can be divided into two types: 
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closed-cell [8] and open-cell [9] types. For closed-cell metal foam, the pores are not 

connected to each other. However, each pore is connected with each other in open-cell 

metal foam. The typical porosity of metal foam with an open cell ranges from 80% to 

90%. Furthermore, the cell size of metal foam is commonly given in pores per linear 

inch (PPI), which are typically used to characterize the porosity [10]. Metal foam 

have been developed using different manufacturing methods, the most common of 

which is a foaming method [11]. Other fabrication methods of metal foam are also 

used, including the metallurgy process [12, 13], deposition [14], and permeation [15]. 

A large number of studies have been conducted on the development and establishment 

of fabrication processes to produce metal foam at low cost. However, owing to its 

wide range of applications, extensive requirements for metal foam with a regular 

shape and accurate size are necessary. The greatest challenge to generating metal 

foam is the follow-up process used to control the cell structure. A traditional cutting 

method can cause a pore collapse, plastic deformation, and/or interface stripping, 

which limit a high degree of freedom in the engineering design and prospective 

application of the metal foam [16]. 

 Recently, there have been a few studies focusing on electrical discharge 

machining (EDM) for the cutting of metal foam. For example, Scott et al. [17] used 

EDM to cut both Fe-Cr-Al alloy foam and 316 stainless steel foam, and investigated 

the effects of the feeding speed and spark on-time ratio on the material removal rate 

(MRR). Their results show that the MRR is positively correlated with the feed speed 

and discharge duration, and is inversely related to the discharge cycle. Alexander et al. 
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[18] investigated the influence of the mesostructured parameters of aluminum foam 

on the EDM process. The results show that very fast feed speeds can be achieved 

through good flushing conditions and a low relative density of the material. Extensive 

experiments using EDM were conducted on solid stainless steel and porous stainless 

steel with different pore sizes [19]. MRR and the tool wear ratio were used to evaluate 

the machining performance of micro EDM. The relationship between the pore size 

and machining performance of EDM was revealed experimentally and through a 

numerical analysis. In summary, we found that EDM can effectively cut metal foam 

without causing a collapse or fracture of the pore structure, and can reduce the surface 

roughness by adjusting the processing parameters. However, the cutting speed of 

EDM is relatively slow and the cost is quite high. Moreover, a cooling liquid should 

be added for the machining process of EDM, in which the pores are easily blocked 

with residual impurities, which are difficult to clean. 

From the above research results, we can see that a new cutting technology for 

metal foam urgently needs to be developed to meet the demands of different 

applications. In this study, a new direct laser cutting technology is proposed to rapidly 

cut metal foam of different materials and PPI. The direct laser cutting mechanism for 

metal foam is analyzed, and the effects of the laser processing parameters such as the 

laser output power and scanning speed on the MRR and the material oxidation rate 

(MOR), are further discussed. Finally, a central composite design (CCD) experiment 

conducted to optimize the laser processing parameters is described. 
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2 Experimental Methods and Devices 

Two levels of experiments were conducted to study the direct laser cutting 

process of metal foam: a single factor experiment and an experiment based on the 

CCD method. The influences of the laser output power and scanning speed on the 

MRR and MOR were investigated using a single factor experiment. The optimized 

laser processing parameters for metal foam were obtained using CCD.  

Single factor experiment. The specific processing and testing process of metal 

foam are as follows: First, the metal foam was completely cut using a laser, and a 

series of rectangular metal foam shapes were obtained with a size of 30 mm × 15 mm 

× 3 mm. The topography of the cutting section of the metal foam was analyzed using 

a scanning electron microscope (SEM), and compared to traditional machining 

(milling process using a lathe). Second, three processing times (5, 10, and 15 s) were 

preset for the different metal foam. Using various laser cutting parameters, different 

kerfs were fabricated on the surface of the metal foam. The depths of the kerfs were 

then measured to calculate the MRR of the metal foam. Finally, the cutting sections of 

the metal foam were analyzed using energy dispersive spectroscopy (EDS) to 

determine the MOR. A schematic of the cutting and detection process of metal foam is 

shown in Fig. 1. Using the same laser cutting parameters, the average oxygen mole 

ratio of three regions of the metal foam was considered as the MOR. In this paper, the 

MRR is defined as the processing depth of the kerfs per unit of time, which can be 

used to estimate the cut-off time of the metal foam. The MOR is defined as the 

file:///E:/é�·ç��é�³ä¹�/Youdao/Dict/6.3.69.8341/resultui/frame/javascript:void(0);
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difference in oxygen mole ratio before and after processing, which can be calculated 

through the following equations: 

T

D
RM                                 (1) 

 bao -CCR                              (2) 

where D is the depth of the kerf, T is the laser processing time, and Ca and Cb are the 

oxygen mole ratios of foam metal after and before the laser processing, respectively. 

Controller

Controller head

Reference surface

Working table Laser cut marks Foam metal

Cutting section

Electron microscope

SEM
Region 1

Region 3

Region 2

(1) Completely cut (2) Cutting by time (3)Electron microscopy detect

Focusing lens

Fiber Laser

Fig. 1 Schematic of cutting and detection process of metal foam 

Laser processing devices. The system is composed of a fiber laser, scanning 

galvanometer, focusing lens, computer-controlled system, power equipment, and 

worktable. In this study, a prototype pulsed fiber laser (IPG, No. 

YLP-1-100-20-20-CN, Germany) was used as the fabrication laser. The laser was set 

to produce 100 ns pulses with a 1064 nm central emission wavelength at a repetition 

rate of 20 kHz. The specifications of the characteristic parameters of the fiber laser 

system used are given in Table 1. The pulse energy (Epulse) and peak power (Ppeak) can 

be calculated as [20] 

file:///E:/é�·ç��é�³ä¹�/Youdao/Dict/6.3.69.8341/resultui/frame/javascript:void(0);
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repetition

average

pulse
F

P
E                         (3) 

durationrepetition

average

peak 
TF

P
P                        (4) 

where Paverage is the output power given by the laser source at a fixed frequency, 

Frepetion is the repetition rate, and Tduration is the pulse duration. 

Metal foam as a processed material was fixed to the worktable and a linear motor 

was used to move the laser head in the z-direction, allowing the laser beam to be 

focused on the surface of the sample materials by setting the focal length. Metal foam 

materials with 3 mm thickness and two different PPI (90 and110) were used, namely, 

copper foam, ferroalloy foam, and nickel foam, the specific chemical compositions of 

which are shown in Table 2. The preset width of the cut was 0.01 mm, and an optical 

image of the direct laser cutting process is shown in Fig. 2. 

Table 1 Specifications of characteristic parameters of the fiber laser system applied [21] 

Characteristic Parameter range Process conditions Unit  

Wavelength 

Beam quality(M2) 

Incident beam diameter 

Focused diameter 

Laser output power 

Scanning speed 

Repetition rate 

Nominal average output power 

Pulse duration 

1055-1070 

<1.1 

6-9 

24.3-37.3 

0-30 

0-1000 

20-200 

19-21 

90-120 

1064 

1 

7 

31.5 

20-30 

200-800 

20 

20 

100 

nm 

/ 

mm 

um 

W 

mm/s 

KHz 

W 

ns 

 

Table 2 Pore size and chemical composition of foam metals 

Materials Pore size (mm) Chemical compositions (molar ratio) 

Copper foam 

ferroalloy foam 

nickel foam 

0.2-0.4 

0.2-0.4 

0.2-0.4 

 Cu: 86.93%   O: 4.74%   C: 8.32% 

 Fe: 84.35%    O: 2.87%   C: 12.78% 

 Ni: 87.25%    O: 3.17%  C: 9.58% 

file:///E:/é�·ç��é�³ä¹�/Youdao/Dict/6.3.69.8341/resultui/frame/javascript:void(0);
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Fig. 2 Optical image of laser direct cutting process of metal foam  

Central composite experiment design (CCD). The scanning speed and laser 

output power are independent variables, and the MRR and MOR are the targets. 

Regression equations can be established through the CCD to obtain the optimal 

parameters. The control factors and their levels are listed in Table 3. These 

experiments can be divided into three types: two level experiments of the axial points 

, experiments of asterisk , and zero horizontal experiments of the center , as 

shown in Fig. 3.  

Table 3 Parameters of central composite experimental design 

Symbols Factors Level 1 Level 2 

P 

S 

Laser output power 

Scanning speed 

20 w 

200 mm/s 

30 w 

800 mm/s 

file:///E:/é�·ç��é�³ä¹�/Youdao/Dict/6.3.69.8341/resultui/frame/javascript:void(0);
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(20w，800mm/s )

(20w，200mm/s)

(20w，500mm/s)

(30w，500mm/s)

(30w，200mm/s)

(30w，800mm/s)

(25w，200mm/s)

(25w，800mm/s)

(25w，500mm/s)

P

S

 

Fig. 3 Schematic of the central composite experimental design 

3 Results and Discussion 

3.1 Laser cutting process of metal foam 

A schematic of the laser cutting process of metal foam is shown in Fig. 4. The 

laser cutting process of metal foam has the following three stages. In the initial stage 

of the cutting process, when the laser starts to radiate the surface of the metal foam, 

the majority of laser energy is absorbed by the foam. Later, the surface temperature of 

the metal foam increases quickly but the walls are not molten or gasified. As time 

goes on, the temperature reaches the melting point of the metal foam, and the walls of 

the metal foam begin to melt. A molten pool is formed in the area radiated by the laser. 

When the laser radiation period is further increased, the surfaces of the metal foam are 

gasified and plasma of a higher ionization is formed. The removal capability is greatly 

enhanced. In this way, the surface of the metal foam is successfully cut, as shown in 

Fig. 4(a). During the middle stage of the cutting process, with an increasing depth of 
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the kerf, the removal efficiency is decreased because of the shielding of the laser 

beam. However, metal foam made using a foaming method has a porous structure, 

low density, impurities, and a rough surface. These characteristics give the metal foam 

a stronger laser absorption rate [22] and transmittance [23] than solid metal. 

Consistent with solid metal, the kerf surface of metal foam is affected by the laser 

cutting process, which is mainly reflected in the pits, wave stripes, and falling 

particles on the surface of the kerf [24, 25], as shown in Fig. 4(b). As the processing 

continues, the metal foam can be cut off during the final stage of the cutting process, 

as shown in Fig. 4(c). A kerf with a trapezoid shape can be obtained. 

 

Falling particles Pits Wave stripes 

(a) Initial stage of cutting 

 

(b) Middle stage of cutting (c) Final stage of cutting 

Metal pool 

Gaseous metal 

Plasma 

Laser beam T °C 

 

Fig.4 Schematic of laser cutting process of metal foam 
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The SEM images of the kerf of metal foam using the proposed laser cutting 

process are shown in Fig. 5. Two fracture forms were found during the laser cutting 

process of metal foam. In one, the laser irradiates the wall of a single pore cell, 

destroying the cell; however, this does not affect the structure of the remaining pore 

cells, as shown in Fig. 5(a). In the other, the laser irradiates the middle walls of two 

pore cells. A kerf is created on the wall between the two pore cells and does not affect 

the other walls of the pore cells, ensuring the integrity of the pores, as shown in Fig. 

5(c). A kerf with a trapezoid shape can be observed in Fig. 5(d). Furthermore, the 

width of the kerf is 24.5 μm, which is wider than the preset width. This can be 

attributed to the laser with high energy causing a thermal expansion of the metal foam. 

In addition, metal foam has a low density, with a structure that is not as tight as solid 

metal, and it is therefore more likely to burst when heated [26]. From Fig. 5(e), some 

tiny holes appear on the kerf surface of the metal foam. The reason for this may be 

attributed to the metal foam being made from foam technology and certain impurities. 

Bubbles are created through a physicochemical reaction of these impurities during the 

laser cutting process [27]. 

file:///E:/é�·ç��é�³ä¹�/Youdao/Dict/6.3.69.8341/resultui/frame/javascript:void(0);
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24.5um

Holes

Kerfs

Cell2

Cell1

Kerfs

The single cell

a b c

de

Fig.5 SEM images of a kerf in metal foam using a laser cutting process: (a) kerf passing through a 

single cell, (b) shape of the kerf with 35X magnification, (c) kerf created on the wall between two 

cells, (d) shape of the kerf with 2000X magnification, and (e) the surface of the kerf.  

3.2 Cutting sections and appearance of metal foams 

SEM images of cut sections of metal foam using different methods are shown in 

Fig. 6. From Fig. 6(a), the unprocessed metal foam exhibits a clear porous structure 

with a uniform distribution. The pore cells have a variety of shapes that are dominated 

by polygons [28]. A section cut using traditional machining is shown in Fig. 6(b). 

When the tool is fed from the upper surface to the bottom surface of the metal foam, 

the walls of the pore cells easily bend or break, and pore structures are destroyed 

owing to the mechanical stress of the tool. Next, when the cutting tool approaches the 

worktable, the pore cell walls and pore structure of the metal foam are collapsed and 

glued together, blocking the pores. With the laser cutting process, the pore shape 

maintains the original polygon and the structure is nearly unchanged. 
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The difference is that there are some smooth sections on the laser cut surface of the 

cell walls, as shown in Fig. 6(c)—6(e). 

(a) Unprocessed (b) Traditional machining

(c) Laser processing (d) Appearance single cell (e) Microstructure of section

Smooth
sections

Structures of cells

Walls collap se

And Pores block

Cracked walls and

Destroyed poresPolygonal cells

 

Fig.6 SEM images of cut section of unprocessed metal foam, and using traditional machining and 

laser cutting 

Fig.7 shows SEM images of the cutting depths of copper foam cut with different 

laser output powers of 20, 25, and 30, a scanning speed of 500 mm/s, and a pulse 

frequency of 20 kHz. It was found that the cutting depth and kerf width increase with 

the increase in laser output power. Fig. 8 shows SEM images of the cutting depths, 

which vary with the scanning speed, using a 30 W laser output power and a pulse 

frequency of 20 kHz. The cutting depth and kerf width were increased with the 

decrease in the scanning speed. This is attributed to the increase in the cutting time 

used to enhance the material removability with a lower scanning speed. Meanwhile, 

the longer stay time of the thermal and the influence of thermal region can lead to a 
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more obvious increase in the kerf width [29]. 

(a)30W-500mm/s-20KHz (b)25W-500mm/s-20KHz (c)20W-500mm/s-20KHz

Fig. 7 SEM images of cutting depth of copper foam with different laser output powers 

(a)30W-200mm/s-20KHz (b)30W-500mm/s-20KHz (c)30W-800mm/s-20KHz

    Fig. 8 SEM images of cutting sections of copper foam with different scanning speeds  

 The various appearances of copper foam cut using different laser output powers 

and scanning speeds are shown in Fig. 9. With an increase in laser output power and a 

decrease in scanning speed, the laser cutting process improves the cutting depth for 

copper foam, although such improvement will gradually decrease. Adversely, it 

causes a greater heating effect and wider kerf, which increase the MRR and MOR. 

Thus, the selection of reasonable processing parameters is critical when cutting metal 

foam. 
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Top

Bottom

Lateral

(a)20W-800mm/s-20KHz (b)25W-500mm/s-20KHz (c)30W-200mm/s-20KHz
 

Fig.9 Varying appearances of copper foam with different laser output powers and scanning speeds 

3.3 Effects of processing parameters on material removal rate 

Fig. 10 shows the MRR of metal foam using different processing parameters. For 

metal foam with different materials, the largest MRR was obtained for ferroalloy 

foam, and the smallest was obtained for copper foam. Thus, we determined that 

ferroalloy foam is easy to cut. This is attributed to the absorbance of the different 

materials. The absorbance of copper is the lowest during the laser cutting process, 

whereas that of ferroalloy metal is the highest. A lower MRR was obtained with a 

lower absorbance [30]. Moreover, copper foam has higher thermal conductivity, 

which makes the material difficult to remove [31]. Hence, the copper foam exhibited 

file:///E:/é�·ç��é�³ä¹�/Youdao/Dict/6.3.69.8341/resultui/frame/javascript:void(0);
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the lowest MRR. For metal foam with different porosities, the MRR of metal foam 

with 90 PPI was slightly higher than that of metal foam with 110 PPI. The main 

reason for this may be that a lower extinction coefficient and higher transmittance of 

the metal foam with 90 PPI were obtained owing to the fewer pores present [24]. For 

different processing parameters, the MRR of different metal foams was increased with 

an increase in the laser output power, as shown in Figs. 10(a) and 10(c). However, the 

MRR of different metal foams is increased with a decrease in scanning speed, as 

shown in Figs. 10(b) and 10(d). This is because the material can absorb more energy 

with a higher laser output power and lower scanning speed during the laser cutting 

process, and the cutting ability of metal foam is enhanced, thereby increasing the 

MRR. 
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Fig. 10 Variation in material removal rate of metal foam using different processing parameters 
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3.4 Effects of processing parameters on material oxidation rate 

Figs. 11 and 12 show the material oxidation rate of various types of metal foam 

with 110 PPI using different laser output powers and scanning speeds. On the whole, 

the ferroalloy foam exhibited the highest MOR, followed by copper foam and nickel 

foam. It could be that the ferroalloy foam was more easily oxidized at high 

temperature than the other metal foams. However, some stable metal oxide films are 

produced during the oxidization process of nickel foam, which can inhibit the nickel 

foam surface from being oxidized further. Thus, the MOR of nickel foam is the lowest. 

For the different processing parameters, the MOR of different metal foams was 

increased with an increase in the laser output power and decrease in the scanning 

speed, which can be attributed to the temperature increase and extended time of the 

thermal effects occurring from such changes. In addition, we found that the MOR for 

90 PPI is almost as high as for 110 PPI when applying the same type of materials and 

laser process parameters. Thus, the MOR is not clearly affected by the PPI of the 

metal foam.  
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Fig. 11 MOR of 110 PPI metal foam using different laser output powers 
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Fig. 12 MOR of 110 PPI metal foam using different scanning speeds 

4 Optimization for processing parameters 

4.1 Regression equation 

It is assumed that there are m experiment factors, which are independent 

variables xj, where j = 1, 2, 3...m, and the experiment targets are set to yn. The general 

form of the quadratic regression equation can be expressed as follows: 

)(1,...3,2,1y 2

11

jj0 kjmkxbxxbxbb j

m

j

jjj

jk

kkj

m

j

n  



       (5) 

In this experiment, m is 2. 

Based on the above method, copper foam of 110 PPI was selected as the sample 

material for the laser cutting process. The optimization method of the other metal 

foam types is similar to the one described here. Based on the CCD, nine experiments 

were carried out. The MRR and MOR are the experimental targets, which are 

represented by y1 and y2, respectively. The experimental results are shown in Table 4. 
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Table 4 Experimental results of central composite experimental design 

Experiments Material removal rate (um/s) Material oxidation rate (%) 

Numbers Symbols y1 y2 

1 P-1S-1 65 21.67 

2 P-1S1 55 17.61 

3 P1S-1 156 45.28 

4 P1S1 102 26.42 

5 P0S-1 117 35.83 

6 P0S1 81 23.54 

7 P1S0 134 36.83 

8 P-1S0 62 21.59 

9 P0S0 108 29.63 

The quadratic regression equations can be established based on the results of the 

CCD experiments, and the parameters of Eq. (5) can be calculated using the 

following: 
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
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-                       (9) 

where N is the total number of experiments, and  is the average value of nine 

experimental results. 

Thus, the quadratic regression equations of MRR and MOR can be expressed as 

y
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follows: 

22

1 059000.025333.033007.0-0.1870323.3333306.481ˆ SPPSSPy     (10) 

22

2 100001.0-0.05733-0.00247-0.052755.68866-68.9593ˆ SPPSSPy      (11) 

Statistical Analysis. 3D surface plots of MRR and MOR can be established by 

combining regression Eqs. (10) and (11), as shown in Fig. 13. The MRR increases 

with an increment in the laser output power and a decrement in the scanning speed. 

The same variation was also observed for the MOR. Therefore, the single optimum 

condition is the one that provides a higher MRR with an improved MOR. 

Summarizing the results from Fig. 13, it was found that the laser output power has a 

more significant effect on the MRR, and the scanning speed has a more significant 

effect on the MOR.  

Analysis of variance (ANOVA) results for the MRR and MOR are shown in 

Table 5. A statistical analysis of each response was conducted for a 95% confidence 

level, where the R2 of each response is 97%, which indicates that these models have 

a high level of statistical significance and a good degree of fitting. From Table 5 

(MRR), the p-values for all factors are smaller than 0.05 except for the last one, S2. 

This shows that the laser output power and the scanning speed significantly affect 

both the MRR and the interaction P*S. In addition, the p-values for S are smaller than 

for P. This shows that the laser output power has a greater effect than the scanning 

speed for the MRR, which is consistent with the above conclusion. As indicated in 

Table 5 (MOR), the p-values for all factors are smaller than 0.05, and the p-value for 
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S is smaller than that for P. These results clearly show that the main parameter 

affecting the MOR is the scanning speed.  
       

 

(a) 3D surface plot of MMR                     (b) 3D surface plot of MOR 

 

Fig. 13 Material removal rate and material oxidation rate of 3D surface varying with 

different laser processing parameters 

Table 5 ANOVA results for material removal and material oxidation rates 

 Source t Stat p-value  Source t Stat p-value 

MRR MOR 

P 6.171664 0.008968 P 5.512937 0.011753 

S 6.018875 0.009191 S 6.322404 0.007999 

P*S -8.16538 0.003842 P*S -10.2289 0.001992 

P2 -3.32431 0.044909 P2 -2.79942 0.067886 

S2 -1.87338 0.157724 S2 -2.80193 0.067744 

Note: F=246.82,   R2=0.9975 Note: F=265.53,    R2=0.9977 

F0.01(6,2)=10.92,  t0.05(6)=1.943,  t0.1(6)=1.440 

Optimized parameters. For optimum efficiency, the MRR is expected to 

increase quickly with a slow increase in the MOR, and using contour plots of the 

MRR and MOR, as shown in Fig. 14. As Fig. 14(a) indicates, the MRR increases 

more efficiently with a laser output power of below 26 W. For example, when the 

laser output power increases from 22 to 26 W, the MRR increases from about 90 to 

130 mm/s. However, when the laser output power increases from 26 to 30 W, the 
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MRR increases from about 130 to 150 mm/s. It seems that the influence of the laser 

output power diminishes the softening effect above this point. Thus, the optimum 

laser output power is considered to be around 26 W. As shown in Fig. 14(b), the MOR 

decreases more efficiently with a scanning speed above 400 mm/s at a laser output 

power of 26 W. However, the MOR decreases slowly with a rapid drop in the MRR at 

a scanning speed of above 500 mm/s. Comparing the scanning speed of 200 to 500 

mm/s with that of 500 to 800 mm/s, the increase in the MRR declines by about 3-fold. 

Thus, the optimized parameters can be confirmed as an laser output power of around 

26 W and a scanning speed ranging from 400 to 500 mm/s. 

  

     (a) Contour plots of MRR                       (b) Contour plots of MOR  

Fig. 14 Contour plots of (a) MRR and (b) MOR with varying laser processing parameters 

4.2 Processing metal foam samples using optimized parameters 

The optimization parameters for the laser processing of metal foam are 

confirmed to be a laser output power of 26 W and a scanning speed of 475 mm/s. 

Copper foam of 110 PPI with a Ø40 mm diameter and 40 × 70 mm2 rectangular shape 

was selected as the processing sample. These metal foam samples with different 

shapes can be used in a methanol reforming hydrogen reactor as catalyst carriers [32, 

33]. Owing to the larger surfaces of these samples than those of the previous 

file:///E:/é�·ç��é�³ä¹�/Youdao/Dict/6.3.69.8341/resultui/frame/javascript:void(0);
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experimental samples, the kerf width was set to 0.1 mm. The appearance of the 

processed copper foam samples using the proposed laser cutting process and the 

optimized parameters are shown in Fig. 15. It was found that copper foam with a 

regular shape such as a circle or rectangle can be successfully cut using a short 

processing time (about 5 min) when applying the optimized parameters.  

(a) Circle sample (b) Rectanglar sample

 

(a) circle sample                (b) rectangle sample 

Fig. 15 Appearance of processed copper foam samples using proposed laser cutting process and 

optimized parameters 

5 Conclusions 

A laser cutting process was used to efficiently and directly cut metal foam into 

regular shapes. After the laser cutting process of metal foam was analyzed, the effects 

of the different materials and PPI on the cutting process were investigated in detail. 

The main conclusions are as follows: 

(1) Metal foam made of copper, ferroalloy, or nickel can be effectively formed into 

regular shapes using the proposed direct laser cutting process. The laser cutting 

method can produce a good cutting section without distortion, bending, or collapse of 

the pore structure.  
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(2) Of the three types of foam, the highest MRR and MOR were observed for 

ferroalloy foam. Of the two different PPI considered, metal foam of 90 PPI showed a 

much larger MRR than that of 110 PPI. The MRR and MOR were increased with an 

increase in laser output power and decrease in scanning speed.  

(3) The laser cutting parameters were optimized using the CCD method. When a laser 

output power of 26 W and a scanning speed of 475 mm/s were selected, copper foam 

with a good cutting section and a regular shape was obtained.  
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Figure captions 

Fig. 1 Schematic of cutting and detection process of metal foam 

Fig. 2 Optical image of laser direct cutting process of metal foam 

Fig. 3 Schematic of the central composite experimental design 

Fig. 4 Schematic of laser cutting process of metal foam: (a) initial stage of cutting, (b) 

middle stage of cutting, and (c) final stage of cutting 

Fig. 5 SEM images of a kerf in metal foam using a laser cutting process: (a) kerf 

passing through a single cell, (b) shape of the kerf with 35X magnification, (c) kerf 

created on the wall between two cells, (d) shape of the kerf with 2000X magnification, 

and (e) the surface of the kerf  

Fig. 6 SEM images of cut section of unprocessed metal foam, and using traditional 

machining and laser cutting: (a) unprocessed, (b) traditional machining, (c) laser 

processing, (d) appearance of a single cell, and (e) microstructure of a section 

Fig. 7 SEM images of cutting depth of copper foam with different laser output powers: 

30 W, 500 mm/s, 20 KHz, (b) 25 W, 500 mm/s, 20 KHz, (c) 20 W, 500 mm/s, 20 KHz 

Fig. 8 SEM images of cutting sections of copper foam with different scanning speeds: 

(a) 30 W, 200 mm/s, 20 KHz, (b) 30 W, 500 mm/s, 20 KHz, (c) 30 W, 800 mm/s,  

20KHz 

Fig. 9 Varying appearances of copper foam with different laser output powers and 

scanning speeds: (a) 20 W, 800 mm/s, 20 KHz, (b) 25 W, 500 mm/s, 20 KHz, (c) 30 W, 

200 mm/s, 20 KHz 

Fig. 10 Variation in material removal rate of metal foam using different processing 
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parameters: (a) MRR with 90 PPI varying with laser out power, (b) MRR with 90 PPI 

varying with scanning speed, (c) MRR with 110 PPI varying with laser out power, and 

(d) MRR with 110 PPI  

varying with scanning speed 

Fig. 11 MOR of 110 PPI metal foam using different laser output powers 

Fig. 12 MOR of 110 PPI metal foam using different scanning speeds 

Fig. 13 Material removal rate and material oxidation rate of 3D surface varying with 

different laser processing parameters: (a) 3D surface plot of MMR, (b) 3D surface 

plot of MOR 

Fig. 14 Contour plots of (a) MRR and (b) MOR with varying laser processing 

parameters 

Fig. 15 Appearance of processed copper foam samples using proposed laser cutting 

process and optimized parameters: (a) circle sample, (b) rectangle sample 
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Table captions 

Table 1 Specifications of characteristic parameters of the fiber laser system applied 

Table 2 Pore size and chemical composition of foam metals 

Table 3 Parameters of central composite experimental design 

Table 4 Experimental results of central composite experimental design 

Table 5 ANOVA results for material removal and material oxidation rates 


