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Abstract— Recognizing RGB images from RGB-D data is a
promising application, which significantly reduces the cost while
can still retain high recognition rates. However, existing methods
still suffer from the domain shifting problem due to conventional
surveillance cameras and depth sensors are using different
mechanisms. In this paper, we aim to simultaneously solve the
above two challenges: 1) how to take advantage of the additional
depth information in the source domain? 2) how to reduce
the data distribution mismatch between the source and target
domains? We propose a novel method called adaptive visual-
depth embedding (aVDE), which learns the compact shared latent
space between two representations of labeled RGB and depth
modalities in the source domain first. Then the shared latent
space can help the transfer of the depth information to the
unlabeled target dataset. At last, aVDE models two separate
learning strategies for domain adaptation (feature matching and
instance reweighting) in a unified optimization problem, which
matches features and reweights instances jointly across the shared
latent space and the projected target domain for an adaptive
classifier. We test our method on five pairs of data sets for
object recognition and scene classification, the results of which
demonstrates the effectiveness of our proposed method.

Index Terms—RGB-D data,
categorization.

domain adaptation, visual

I. INTRODUCTION

UE to the recent developments in low-cost RGB-D

sensors, e.g., the Microsoft Kinect, using additional depth
information to boost the performance of recognition and clas-
sification tasks has received an increasing interest through out
the computer vision community [1]-[3]. Particularly, the prob-
lem of recognizing RGB images captured by conventional sur-
veillance cameras through leveraging a set of labeled RGB-D
data has been presented in [4]-[6]. This new task is considered
as an unsupervised domain adaptation (UDA) problem, which
aims to take advantage of the additional depth information
in the source domain and reduce the data distribution mis-
match between the source and target domains simultaneously.
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Fig. 1.  The outline of the proposed method. We have RGB and depth
features in the source domain, and RGB features in the target domain. Our
main idea aims to find a shared latent space so that the shared parts between
RGB and depth images can be preserved. Our aVDE can automatically adapt
to the target latent space so as to further correct the classification errors.
Examples from three classes are used to show the difference between the
original decision boundaries and the new decision boundaries which are
obtained by matching and reweighting.

The training data in UDA consists of labeled RGB-D source
data and unlabeled RGB target examples [7]. It is different
from traditional classification problems which often assume
that the labeled training data comes from the same distribution
as that of the test data. In realistic scenarios, the source and
target domains follow different distributions, especially when
images are acquired from different cameras, or in various
conditions. The classifier which is trained on the previous
dataset would fail to classify the following dataset correctly
without adaptation.

To this end, there are two challenges in our task: 1) How to
address the domain shifting problem between the source and
target domains? 2) How to effectively explore the additional
depth information to boost the performance further? A very
fruitful line of work has been focusing on solving domain
adaptation problem, where labeled target data is not needed,
yielding excellent results [8]-[10]. However, none of them
can incorporate depth information. On the other hand, many
methods using the additional depth information have been
proposed for classification tasks as well [11], [12]. However,
these methods take the unrealistic assumption that the training
and testing data are from the same domain.
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Fig. 2. Samples from the shared latent space and the projected target domain. (a) Shared latent space; (b) Projected target domain; (c) Shared latent space

after feature matching; (d) Projected target domain after feature matching. The domain distance is still large after feature matching. (e) Further instance
reweighting on shared latent space. The irrelevant shared latent space instances (shown as unfilled markers) are now down-weighted to further reduce the

domain difference.

In this paper, we aim to solve above two challenges
simultaneously by a novel RGB-D UDA method, referred to
as adaptive Visual-Depth Embedding (aVDE). The motiva-
tion behind our aVDE is as follows: depth images contain
useful discriminative information, which shows a different
feature distribution compared to the corresponding RGB image
domain. To enhance the discriminative capability of the origi-
nal learning system, joint learning is considered through com-
bining depth information and RGB data into one model. The
pipeline of our idea is described in Fig. 1. In the visual-depth
embedding step, we capture the shared latent bases and indi-
vidual subspaces between two representations of labeled RGB
and depth modalities in the source domain first. We utilize
the advantages of Nonnegative Matrix Factorization (NMF)
[13]-[15] for the discovery of the shared components between
RGB and depth images. In addition, since NMF cannot dis-
cover the intrinsic geometrical and discriminating structure of
the data space, to preserve as much of the significant structure
of the original RGB-D data as possible, we solve this problem
from the probability distribution perspective, i.e. to minimize
the Jensen-Shannon divergence (JSD) between the probability
distributions in RGB and depth spaces. Then we transfer the
knowledge of depth information to the target dataset through
an orthogonal projection to align the data in the shared latent
feature space with the target domain. In the adaptive embed-
ding step, we minimize the nonparametric Maximum Mean
Discrepancy (MMD) in an infinite dimensional reproducing
kernel Hilbert space (RKHS) [16] for feature matching, and
minimize the {» j-norm structured sparsity penalty [17] on
the shared latent space instances for instance reweighting.
We match features and reweight instances jointly across the
shared latent space and the projected target domain in a
principled dimensionality reduction procedure for an adaptive
classifier. Feature matching can discover a shared feature
representation through the combination of the distribution
difference reduction and the important properties of input
data preservation (see Fig. 2 (c) (d)). However, when the
domain difference is substantially large, some shared latent
space instances are still not relevant to the projected target
instances even in the feature-matching subspace. Therefore,
we introduce instance reweighting which can minimize the
distribution difference through reweighting the shared latent
data (see Fig. 2 (e)). Comprehensive experiments for object
recognition and scene classification on five pairs of real-world

datasets show that our aVDE can significantly outperform
state-of-the-art methods.

To summarize, our main contributions are:

i) We propose a novel UDA method which can effectively
leverage depth information to recognize RGB images. The tar-
get domain does not contain the additional depth information.

ii) aVDE can learn compact shared space uncovering the
latent semantics and simultaneously preserve the joint proba-
bility distribution of data in the source domain, then transfers
the knowledge of depth information to the target dataset.

iii) Through matching features and reweighting instances
jointly across domains, a bridge between the shared latent
space and the projected target domain can be built.

The rest of this paper is organized in the following
way. Section 2 reviews related work on domain adaptation.
In Section 3, The proposed adaptive Visual-Depth Embedding
method is illustrated. The experimental setup, results and
analysis on aVDE for several domain adaptation based vision
tasks are shown in Section 4. Finally, the conclusion is given
in Section 5.

II. RELATED WORK

In the literature, only a few work focus on recognizing RGB
images from RGB-D data. Our algorithm is mostly related to
the methods in [5] and [6]. Reference [6] which uses cross-
domain dictionary learning over both RGB and depth images
in the training step and then spanned the intra-class diversities
to maximize the inter-class distances while minimizing the
intra-class distances. Since some labels in the test domain
are used, it is a semi-supervised domain adaptation problem.
In contrast, our domain adaption is completely unsupervised,
just like Multi-view to single-view (DA_M2S) adaptation [5]
attempts to seek an optimal projection matrix to map samples
from two different domains into a common feature space,
in which no label of the test domain is used.

Our work is also related to unsupervised domain adaptation
methods. Transfer Component Analysis (TCA) [18] tries to
learn some transfer components across domains in a Repro-
ducing Kernel Hilbert Space (RKHS) through Maximum Mean
Discrepancy (MMD), which only takes advantage of feature
matching but ignores the advantages of instance reweighting.
Sampling Geodesic Flow (SGF) [19] creates intermediate
representations of data between two domains through view-
ing the generative subspaces created from these domains as



TABLE I
NOTATIONS AND DESCRIPTIONS

Notation Description Notation Description
Ds, Dy Source/target domain Pp, Projected target domain
A, B RGB/depth modality X Input data matrix
14 Shared data space K Kernel matrix
Pa, Pp Probability distributions M Adaptation matrix
P Orthogonal projection A MMD matrix
A Connection matrix G Diagonal sub-gradient matrix
D Number of bases k Subspace bases
n, 1 Regularization parameter Z Subspace embedding

points on the Grassmann manifold, and then obtains subspaces
which can provide a description of the underlying domain
shift. Landmark (LMK) [20] exploits a subset of source
domain that is most similar to the target domain. Besides,
there still exist some approaches that use NMF to achieve
domain adaptation. Transfer Nonnegative Matrix Factorization
(TNMF) in [21] minimizes the distribution divergence between
labeled and unlabeled images, and incorporates this criterion
into the objective function of NMF to construct new robust
representations. TNMF is a semi-supervised transfer learning
approach. Unsupervised Nonnegative Embedding (UNE) [22]
generates a non-negative embedding for the source and target
tasks as a shared feature space of two aligned sets of their cor-
responding non-negative basis vectors for a prototype matrix.
However, although NMF on DA has been proposed, our aVDE
is significantly different from these methods. i) The methods
using NMF to achieve domain adaptation are not applicable
to our problem: recognizing RGB images from RGB-D data.
Both of them focus on RGB source domain and RGB target
domain, which is a completely different task. ii) Our NMF-
related equations are designed for visual-depth embedding, not
for domain adaptation. iii) Conventional NMF is widely known
to be not robust to data distribution discrepancy. To preserve as
much of the significant structure of the original RGB-D data
as possible and balance the difference of data distributions
between the RGB and depth modalities, we consider Jensen-
Shanon divergence in addition. These methods perform poorly
on RGB-D scenarios. We provide the extensive comparison to
these methods in our experiments, from which we demonstrate
the advantages of our method.

III. ADAPTIVE VISUAL-DEPTH EMBEDDING
A. Notations

In this paper, we denote a vector by a lowercase letter in
bold. The transpose of a vector or a matrix is denoted by
the superscript 7. We define / as an identity matrix. Besides,
Table I shows the list of frequently used notations.

Problem (Adaptive Visual-Depth Embedding): Given two
labeled modalities A and B in the source domain D, with label
set ¥ = [y1,---,yn,] and an unlabeled target domain D;.
To find the shared component space V and the projected
target domain Pp, under the different marginal probability
distribution and conditional probability distribution, then learn
a new feature space to reduce the domain distance by feature
matching and instance reweighting across V and Pp,.

B. Shared Component Problem Formulation

We use A and B to define the two modalities in the source
domain D with dimensions and sample sizes M; x Ns and
My x N respectively: A = [a1,---,an,] € RQ/I&XNS and
B = [by,---,by,] € R%XNS. NMF is used to find two

. . - . M] X Dl Dl XNS
nonnegative matrices from A: U € R and Vi € R,

and two nonnegative matrices from B: W € RI2™™?

Ve ]RE(Z)XN“ with full rank whose product can approximately
represent the original matrix A and B, i.e., A ~ UV; and
B ~ WV,. In practice, we set D; < min(M, Ns) and D> <
min(M;, Ny). NMF aims to achieve the minimization of the
following objective functions

and

Loyyr =IIA=UW|? st U, V>0, (1)
LB e =1B—WWa|?, st W,V2>0, 2)
where || - || is the Frobenius norm. The matrix V| and V>

obtained in NMF are regarded as the low-dimensional repre-
sentations while the matrix U and W denote the basis matrixes.

To learn fully shared spaces between RGB and depth modal-
ities, the basic idea is to find suitable M basis vectors for U
and M, basis vectors for W via a shared coefficient matrix V.
To learn the required shared space, we jointly optimize a
convex combination of two constrained least squares problems:
Vi=WV, =V e RQ(;( N5 The resulted objective function is:

min A — UV|?+A|B—WV|?, st.UW, V>0 (3
where parameter A is given to balance the importance of the
two terms. In our paper, since RGB information and depth data
are assumed equally important, for simplicity, we set 1 = 1.
The training model is used to identify the latent shared bases
determined via both RGB and depth data. Such jointed NMF
can preserve shared components that make the model leads to
a high-level representation V of the training RGB-D images
in the bases space.

C. Data Distribution Divergency Reduction

NMF can learn a parts-based representation. Theoretically,
it is expected that the shared data space V given by our
NMF-based shared structure learning algorithm can obtain
locality structure from the original data spaces A and B.
However, NMF cannot discover the intrinsic geometrical and
discriminating structure of the data space, which is important
for our recognition task. Therefore, to preserve as much of the
significant structure of the original RGB-D data as possible,
we hope the latent space can also balance the difference of data
distribution between the RGB and depth modalities. We con-
sider this problem from probability distribution aspect. Let
P4 and Pp be the probability distributions in space A and B.
We aim to find the joint probability distribution in the shared
space Q that can be shared by P4 and Pp as much as possible.
In this paper, we simply assume RGB and depth are equally
important, i.e., we hope the probability distribution Q in the
latent space V can be Q = %(PA + Pp). We can then minimize
the Jensen-Shannon divergence (JSD) between P4 and Pp so



that their structural difference can be mutually mitigated:
1 1
JSD(Pal|Pp) = EKL(PAHQ) + EKL(PBHQ), (4)

where K L(.||.) estimates the Kullback-Leibler divergence
between the joint probability distributions. N N

P4 and Pp can be denoted as point-wise from pX and pg.
Q can be represented as g;j. The pairwise similarities in the
original data space p'; and pj are defined as:

ij exp (—lla’ —a’|?/2(c})?)

A= P kN2 ° (5)
D k2l €XP (—llax — alI>/2(c%)?)

ij _ eXp (—=Ib" = b/ [1?/2(c%)?) ©)

B Y exp (— b — byl2/2(c5)2)’

where the conditional probability px means the similarity
between data points a’ and a’/, and plé means the similarity
between data points b’ and b/, where a/ and b’/ are picked
in proportion to their probability density under a Gaussian
centered at a’ and b’ respectively. aﬁ and a§ are the variances
of the Gaussian distribution which is centered on data point
a' and b’ respectively. Each data point a’ or b’ makes a
significant contribution to the cost function. In the shared
space, using the probability distribution that is heavy tailed,
the joint probabilities g;; can be defined as:

I+ v —vjII»H~!
Zk#z(l + v — 1) 7!

We set p'i " pi %% and g;; to zero for only significant points
needed to model pa1rw1se snmlarities Meanwhile, it has the
characteristics that pA = pA pB = pg and g;; = qj; for
Vi, j. Since the definition in Eq. (7) is an infinite mixture
of Gaussians which does not have an exponential, it is much
faster to evaluate the density of a point than a single Gaussian.
This representation also makes the mapped points invariant to
the changes in the scale for the embedded points that are far
apart. Thus, the cost function based on JSD can effectively
measure the significance of the data distribution.
We use g;; to jointly model pX and pg:

1 y y y
JSD = —ZZpX log p{ — p'{ log gij

+ = ZZp logp

Therefore, with this regularlzation, through combining the
data structure preserving part in Eq. (8) and the shared
structure technique in Eq. (3), we minimize the following
objective function:

qij = (7

—pTloggi. (8

Umﬂl}n |A — UV|| +||B — WV|| +nJSD,

s.t. U W,V >0, )
where A e RMixNs B ¢ RM2xNs y ¢ RDXNs,
A, B, U W,V > 0, U € RI*D W ¢ RM2xD_ and

controls the smoothness of the new representation.
The shared space data only from NMF-based shared
structure algorithm is not effective and meaningful for real

world applications. Therefore, we introduce JSD to preserve
the structure of the original RGB-D data which can obtain
better results.

D. Optimization

Let the Lagrangian of our problem be:

L=|A—UV|>+|B-WV|*>+nJSD

+tr(@UTY + tr(OWT) +1tr(PVT), (10)

where matrices @, ® and ¥ are three Lagrangian multiplier
matrices. In order to make the derivation clearer, #JSD is
simply denoted as G. We define two auxiliary variables d;;
and Z as follows:

dij = |lvi —vjl and Z =D (1+dg)~".
k£l
There is a need to note that if v; changes, the only pairwise
distances that change are d;; and d ;. Therefore, the gradient
of function G with respect to v; can be given by

(1)

N

oG oG
ooy W,
J

12
5Vi - 5dij ( )

—Vj).

Then W can be calculated by Kullback-Leibler divergence

in Eq. (8)

oG HZ(P W) 1 a(+dp)™) 10z

odi; = PO\ quz ™ ady Zadi; |
(13)

. a((1+d)~h
Since T

and Zk;&l pki = 1, the gradient function can be simplified as

is nonzero if and only if k =i and [ = j,

oG
od;j

Eq. (14) can be substituted into Eq. (12). Therefore, the gra-
dient of the Kullback-Leibler divergence between P and Q is

2gi))(1 +d7)". (14)

= n(pA + pB

— =2y Z(pA + P —2q) Vi = v+ vi = v )"

le
(15)

Since we have the gradient of G in Eq. (15), we make the
gradients of £ be zeros to minimize Oy:

oL
v = 2UTA+UTUV —WTB+WTwy)
0G
— +¥Y =0, 16
+6V + (16)
— =2(-AV +UVV )4+ D =0, (17)
oU
oL
— =2(-BWI +wvvh)+e=0. (18)
ow
In addition, we also have KKT conditions: ®;;U;; = 0,

O;;W; = 0 and ¥;;V;; = 0, Vi, j. Then multiplying V;;,



Uij and W;; in the corresponding positions on both sides of
Egs. (16), (17) and (18) respectively, we obtain

oG
(2(—UTA+UTUV—WTB +wiwv) + a_) Vij =0,
Vi ij

(19)
2(-AVT v uvvThy,u; =0, (20)
2=V +wvvT),w; =o0. (21)
Note that
N ik ik
(E) _ an (Pl + Py —2qj0)(V; — Vi)
avj i k=1 1 + ||Vj - Vk||2 ;

N o,k ik
_ 27]2 (ph + py —2q;0)(Vij — Vi)
P 14 [lv; — vl .

The multiplicative update rules of bases of both W and U
for any i and j are obtained:

vy < AV (22)
(BVT);;

Wi < ——— W, 23

ij (WVVT)ij ij ( )

The update rule of the shared space preserving coefficient
matrix V between RGB and depth data spaces is:
Vi < (UTA)ij + WTB)ij + Y
Y UTUV) i+ (WTWY) 4T

Vij, (24)

ik, jk
WPy )WVik+241 Vi
L+[vj—vel? ?

N
where for simplicity, we let Y = 7 > L
k=1

- TH[Iv, —vi 1%

All the elements in U, W and V can be guaranteed that
they are nonnegative from the allocation. It proves that the
objective function is monotonically non-increasing after each
update of U, W or V. The proof of convergence about U, W
and V follows similar lines in [23]-[25].

After U, W and V are converged, we can obtain the
shared structure representation by a linear projection matrix.
Since our algorithm is NMF-based, a direct projection from
the target domain to the shared space does not exist for
data embedding. Therefore, inspired by [26], linear regression
is used to compute our projection matrix. It is equivalent
to find a rotation to align the data in the current feature
space with another, which is a classic Orthogonal Procrustes
problem [27]. Through solving this problem, we can make the
projection orthogonal:

N jk o Jjk
(PA +Py )Vij"l‘ijkvik
F=n2
k=1

rr%n IPA=V|, st.PIP=1, (25)
where P is the orthogonal projection for target domain.
According to [28], the advantages on using orthogonal pro-
jection can be summarized as: 1) The orthogonal projection
can preserve the Euclidean distance between points; 2) The
orthogonal projection can distribute the variance more evenly
across the dimensions; 3) The orthogonal projection can
learn maximally uncorrelated dimensions, which leads more

compact representations. For the optimal solution, we firstly
use the singular value decomposition algorithm to decompose
the matrix: ATV = QX ST. Then we calculate P = SAQT,
where A is a connection matrix as A = [I,0] € RP*M and
0 indicates all zeros matrix. Once we obtain the orthogonal
projection P, RGB data in the target domain 4 € RM1*! can
be projected into the latent space:

Vi = Pﬁ (26)

E. Adaptive Embedding

Although our above Visual-Depth Embedding (VDE) can
correct the noise by projecting RGB into the shared space,
the domain shifting problem remains unsolved. In the follow-
ing, we propose an adaptive strategy to make VDE adaptive
to target domain RGB data. In aVDE, we define the target
domain as D; = [aj,--- ,an,]. The projected target domain
is defined as Pp, = [Va,, - ,Vay ] € RDP*Nt  The shared
component space is V = [vy,---,Vy,] € RDx*N;,

The model proposed above learns the relationship between
RGB data space and shared bases, and the shared bases
are determined via both RGB data space and depth data
space in the source domain. Since exploring feature matching
and instance reweighting independently may not be effective
enough when the domain difference is substantially large,
we match features and reweight instances jointly across the
latent shared space V and the new space projected from the
target domain to the shared space in a principled dimension-
ality reduction procedure for an accurate classifier. If we only
consider matching the feature distributions based on MMD
minimization, it is not good enough for domain adaptation.
This strategy only matches the first- and high-order statistics,
and the distribution matching is far from perfect. When the
domain difference is large, there will still exist some shared
latent space instances that are not relevant to the projected
target instances even in the feature matching subspace. There-
fore, combining feature matching and instance reweighting
procedures should be considered to handle this difficult setting.
But it is difficult to reweight source instances when we
match the feature distributions in the infinite dimensional
RKHS simultaneously. In this step, we impose the {> j-norm
structured sparsity regularizer on the transformation matrix
for Kernel PCA M, which can introduce row-sparsity to the
transformation matrix.

We first mix projected target data with the source
data, on which we perform Principal Component Analy-
sis (PCA) for data reconstruction. Let X = [x(,---,X,] =
[Vi, = VN, Vag, oo, Vay | € RP*" as the input data matrix,
and H =1 — %1 as the centering matrix, where n = Ny + N,
and 1 indicates all ones matrix, then the covariance matrix
can be computed as XHX’. PCA can find an orthogonal
transformation matrix 7 € RP>*k where k is the subspace
bases such that embedded data variance is maximized

max r(TTXHXTT). (27)
TTT=]
Above optimization problem can be efficiently solved
by eigen-decomposition XHXTT = TQ, where



Q = diag(wy, - - - , wx) € RF¥F are the k largest eigenvalues.
Then we find the optimal k-dimensional representation by
Z=lz1, - ,2,]=TTX.

To work in the RKHS H, consider kernel mapping
p:x — ¢(x), or p(X) = [p(x1),---,p(X,)], and kernel
matrix K = ¢(X)Tp(X) € R™". We utilize the Representer
theorem 7 = w(X)M to kernelize PCA as
tr(MTKHKT M),

max (28)

MTM=1I
where M € R"* is the transformation matrix for Kernel PCA.
We also call M an adaptation matrix. The subspace embedding
becomes Z = MTK.

Then we adopt the empirical MMD [18] as the nonpara-
metric distance measure for comparing distributions based
on the RKHS. Through k-dimensional embeddings extracted
by Kernel-PCA, MMD computes the distance between the
empirical expectations of shared component source and target
data:

LN | NN 2
FZM%—V > MTkj| =tr(M"KAKT M),
S sl P j=Ny+1 "

(29)

where A is the MMD matrix and can be computed as

1
5 Xi, Xj € %
N Ng
1
Ajj = NN, Xi,xj € Pp, (30)
————, otherwise
N, Ny

Through minimizing Eq. (29) such that Eq. (28) is maximized,
the first-order and high-order statistics of feature distributions
are matched in the new representation Z = MT K.

To impose the {7 j-norm structured sparsity regularizer on
the transformation matrix M, we introduce row-sparsity to
the transformation matrix, which is able to facilitate adaptive
instance reweighting essentially. Our target is to reweight
source instances by their relevance to the target instances. The
instance reweighting regularizer can be defined as

| Myll2.1 + 1M 1|5, 31)

where My := M.y, . is the transformation matrix correspond-
ing to the source instances, and M; := My, 4+1.n,: 1S the
transformation matrix corresponding to the target instances.
Through minimizing Eq. (31), Eq. (27) is maximized, and the
source instances which are relevant to the target instances are
reweighted adaptively with greater importance in the repre-
sentation Z = MT K. On the contrary, the source instances
which are irrelevant to the target instances are adaptively
reweighted with less importance in Z = MT K. Therefore,
aVDE can be robust to the domain difference which is
caused by the irrelevant instances. Note that the Frobenius

norm: [|M|lp = /30, [mf[3. The €3 1-norm: M1 =

> [m]|2. Therefore, by combining Eq. (29) and Eq. (31)

into Eq. (28), the optimization problem is defined as
tr(MTKAKTM) + u (1M 21 + | M),
(32)

min
MTXHXT M=I

where pu is the regularization parameter to trade off feature
matching and instance reweighting, M, := M.y, . is the trans-
formation matrix corresponding to the source instances, and
M; = Mp, 1., is the transformation matrix corresponding
to the target instances, n = Ny + N;. In addition, M € Rrxk,
M, € RNs*k and M, € R¥*k In aVDE, when i — 0, aVDE
optimization problem degenerates. When ¢ — oo, the joint
feature matching and instance reweighting is not performed.
Therefore, we set ¢ = 1.

To impose the ¢> j-norm structured sparsity regularizer on
the transformation matrix M, we introduce row-sparsity to
the transformation matrix, which is able to facilitate adaptive
instance reweighting essentially. Our target is to reweight
source instances by their relevance to the target instances.
Through minimizing Eq. (31), Eq. (28) is maximized, and the
source instances which are relevant to the target instances are
reweighted adaptively with greater importance in the new rep-
resentation Z = MT K. On the contrary, the source instances
which are irrelevant to the target instances are adaptively
reweighted with less importance in Z = MT K. Therefore,
aVDE can be robust to the domain difference which is caused
by the irrelevant instances.

Since Q = diag(wy, -+ -, wr) € RF* is denoted as the
Lagrange multiplier, through deriving the Lagrange function
of problem Eq. (32) as

& = tr(M"KAKTM) + IMyllo,1 + 1M, 1%

+r((I — MTKAKTM)Q). (33)
Let % = 0, we obtain generalized eigendecomposition
(KAKT +G)M = KHKTMQ. (34)

Gisa diagonal sub-gradient matrix with ith element equal to

1 .
m, X € V, m' 75 0
= m
Gii = 0, xieV, m =0 (35)
1, Xi EPD,

The optimal adaptation matrix M is then reduced to solve
Eq. (34) for the k smallest eigenvectors. An adaR]tive classifier
f can be obtained by training on {MTk;, yi};,Z,. The con-
vergence analysis of our adaptive embedding is similar to the
methods in [29] and [30]. Finally, Algorithm 1 provides the
details on aVDE. Since labeled and unlabeled data are sampled
from different distributions that results in impossibly tuning
the optimal parameters using cross validation, following [31],
nearest neighbor classifier (NN) which does not require tuning
cross-validation parameters is chosen as the base classifier.

F. Computational Complexity Analysis

The computational complexity of aVDE consists of three
parts. We compare the cost of the basic NMF algorithm in [23]
and our shared component part in Eq. (3). For an M| x N



Algorithm 1 adaptive Visual-Depth Embedding (aVDE)

Input:

The source domain D: A € RM*N and B € RM2xN . the
target domain D;; number of bases D; the subspace bases
k; the regularization parameter #; ground truth Y in source
domain;.

Output: The basis matrix U, W, adaptation matrix M,
embedding Z, adaptive classifier f.

1: Initialize U, W and V with uniformly distributed random
values between 0 and 1.

2: repeat

3: Compute the basis matrixes U and W and the shared
structure representation matrix V via Egs. (22), (23) and
(24), respectively;

4: until convergence

5: SVD decomposes the matrix A7V to obtain QX S7 and
calculate P = SQQT

6: The shared component embedded representation of the
coming target domain data vz € RP*! is defined in
Eq. (26).

7: Compute MMD matrix A by Eq. (30), and kernel matrix K
by K;j < K(x;,x;) where K(-,-) is a predefined kernel.
Set A < A/|AllF.G < I

8: repeat Solve Eq. (34) and choose the k smallest eigenvec-
tors to construct the adaptation matrix M, and Z < M TK.
Update G by Eq. (35);

9: until convergence

10: Obtain an adaptive
(M7 ki, yi}e,.

classifier

f by training on

matrix A and an M> x N matrix B, assuming that the shared
latent space dimensionality for decomposition of A and B is
D, then computational complexity for the shared component
part per iteration is O(max{M|N D, M N D}). The basic NMF
algorithm in [23] applied for A and B separately will have
complexity of O(M{ND) and O(M, N D) respectively. This
shows that the first part of aVDE has the same complexity as
the basic NMF. The second part is the computation of matrices
P4, Pp and Q which has the complexity O(2N” D). The last
part is adaptive embedding procedure whose complexity is
O(kn* + mn?). Therefore, the total computational complexity
of aVDE is: O(max{M{ND, My ND}t; + 2N?>D + t,kn* +
mnz), where #; is the number of iterations when learning
shared source space V, i.e., from Line 1 to Line 4. 1, is the
number of iterations when learning adaptive classifier f, i.e.,
from Line 5 to Line 9.

IV. EXPERIMENTS AND RESULTS

In this section, we evaluate the effectiveness of our aVDE
for object recognition and scene classification on five pairs of
datasets (see Table II). Fig. 3 shows some example images
of these five pairs of datasets. Since the images in source and
target domains are from different kinds of cameras and various
conditions, the domain difference between source and target
is large. The details of the datasets, experimental settings,
relevant experimental results, important parameter analysis

TABLE 11
STATISTICS OF THE BENCHMARK IMAGE DATASETS

Dataset Type # Examples  # Features  # Classes
Object— Caltech-256  Object  2059/1131  1000/4096 10
Object— ImageNet Object 1805/968 1000/4096 10
B3DO— Caltech-256  Object 1129/776 1000/4096 8
B3DO— ImageNet Object 1135/789 1000/4096 8
NYU vI— Scene-15 Scene 907/930 1000/4096 4
RGB-D B3DO

]
@ A
Object ' E . = F .
e bl | ™

Caltech-256 ImageNet
Object &>
target domain t 3, @ Q ‘@ l;

Scene E
source domain |

T

Fig. 3.  Some example images from our selected datasets: RGB-D, B3DO,
Caltech-256, ImageNet, NYU and Scene-15.

Scene
target domain

and algorithm analysis are shown in the rest of this section.
All experiments are performed using Matlab 2014a on a
server configured with a 16-core processor and 500G of RAM
running the Linux OS.

A. Datasets

1) Object Recognition:

1. Object— Caltech-256: We choose the RGB-D Object
dataset [32] as the source domain and the Caltech-256
dataset [33] as the target domain for object recognition.
RGB-D Object dataset contains 51 categories about 300
everyday objects. The Caltech-256 dataset only contains color
images. They share ten common categories: “ball”, “calcu-
lator”, “cereal box”, “coffee mug”, “flashlight”, “keyboard”,
“light bulb”, “mushroom”, “soda can” and “tomato”. Since
the RGB-D Object dataset is recorded as video sequences,
we uniformly choose images with an interval of two seconds
for each category resulting in 2059 training samples in the
source domain. Note that each RGB image corresponds to a
depth image. The 1131 RGB images from ten categories in the
Caltech-256 dataset are used as the target domain to evaluate
the performance of our aVDE.

2. Object—ImageNet: We choose the RGB-D Object
dataset as the source domain and the ImageNet dataset [34]
as the target domain. ImageNet contains more than 100, 000
categories, which is organized according to the WordNet
hierarchy. The ImageNet dataset only contains color images.
We select ten common categories of RGB-D and ImageNet
datasets, “apple”, “banana”, “coffee mug”, “keyboard”, “soda
can”, “water bottle”, “plate”, “calculator”, “cereal box” and
“light bulb” to demonstrate our aVDE. Finally, we have 1805
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RGB-D training image pairs in the source domain and 968
RGB images in the target domain.

3. B3DO— Caltech-256: We choose the B3DO dataset [35]
as the source domain and the Caltech-256 dataset as the target
domain. B3DO dataset contains 849 RGB images with its
corresponding depth images. We apply the provided bounding
boxes to crop the objects from these images. We randomly
choose eight objects which are shared by B3DO and Caltech-
256 dataset. The eight common categories are “bottle”, “can”,
“cup”, “keyboard”, “monitor”, “mouse”, “phone” and “spoon”.
We have 1129 training image pairs and 776 RGB images in
the target domain.

4. B3DO—ImageNet: The B3DO dataset is chosen as the
source domain, while ImageNet dataset is the target domain.
The common eight categories between these two datasets
are used, “bottle”, “cup”, “keyboard”, “monitor”’, “mouse”,
“phone”, “plate”, “spoon” - are used to evaluate our aVDE.
We obtain 1135 RGB-D image pairs in the source domain and
789 RGB images in the target domain.

2) Scene Classification: For scene classification, we select
the NYU Depth v1 dataset [36] as the source domain and
the Scene-15 dataset [37] as the target domain. NYU Depth
vl dataset consists of video sequences from many indoor
scenes. Scene-15 dataset contains only RGB images. We use
the same four categories of NYU Depth vl and Scene-15
datasets, “bedroom”, “kitchen”, “living room” and “office”
to demonstrate our proposed algorithm. Finally, we have 907
RGB-D training image pairs in the source domain and 930
RGB images in the target domain to evaluate the performance
of aVDE.

B. The Selected Methods and Settings

In our experiment, for a comprehensive and fair compar-
ison, we select following five categories as the baselines
including: 1) Naive Approach: SVM_A and 1-Nearest Neigh-
bor Classifier which are trained by the RGB features in
the source domain without considering the domain adapta-
tion and the depth information compensation; 2) Multi-view
Learning: Kernelisation of Canonical Correlation Analysis
(KCCA) [38] and SVM2K [39] which use the two-view
data in the source domain for training; 3) Learning Using
Privileged Information: SVM+ [40] and Rank Transfer
(RT) [41] which use the additional depth features in the
source domain as privileged information; 4) Unsupervised
Domain Adaptation: Kernel Mean Matching (KMM) [8],
Domain Adaptation Machine (DAM) [42], Sampling Geodesic
Flow (SGF) [19], TCA [18], Landmark (LMK) [20], Subspace
Alignment (SA) [43], Geodesic Flow Kernel (GFK) [31], UNE
[22] and Domain Invariant Projection (DIP) [44] which use the
visual features from both domains for training the classifiers,
and then predict target data based on the visual features.
5) Using Privileged Information and Unsupervised Domain
Adaptation: Domain Adaptation from Multi-view to Single-
view (DA-M2S) which uses the additional depth features in the
source domain as privileged information and reduces the data
distribution mismatch between the source and target domains.

We take the factor of feature performance into considera-
tion, and then choose shallow features and deep features to

evaluate aVDE respectively. For shallow features, we extract
Gradient kernel descriptors (KDES) features and LBP KDES
features [11] which are successful in RGB-D object dataset
from each pair of RGB/depth images. The vocabulary size
is set as 1000. Three level of pyramids (1 x 1, 2 x 2,
3 x 3) are used. For deep features, we choose ImageNet-CNN
features [45] which are learned from the pre-trained Caffe
model [46] on image classification dataset (i.e. ImageNet) for
object classification, and the Places-CNN [47] scene features
which are learned from the pre-trained Caffe model on scene
classification dataset (i.e. Places dataset) for scene classifica-
tion. Both of these two kinds of models obtain great success
for object and scene classification respectively. In addition,
according to Object—ImageNet and B3DO— ImageNet, since
the features are obtained by fine-tuning on ImageNet and
the study includes experiments on the imageNet dataset,
the experimental results on these two pairs of datasets will
perform a little higher. We add some experiments based on
CNN features which are not fine-tuned. In this case, we extract
features directly on the fully connected layer (fc7) in the
ImageNet trained network, which follows the strategy in [48].
More specifically, the CNN model is considered as a feature
extractor in the added experiments. The feature dimension
after CNN is 4096. Note that the depth image is encoded as
HHA image as in [49] before extracting the features.

From Eq. (9) and algorithm 1, the size of matrices U €
RMixD 'y e RM2xD apnd vV e RP*Ns should be predefined.
Mi, My and Ny are known when the data is given. However,
the value of number of latent bases D is difficult to be
pre-determined. In aVDE, an improper D will result in the
limitation of identification of latent topics or the increase of
possibility of overfitting. In order to investigate the effects
of D, we choose different number of bases, e.g., 40, 60,
80, 100, 120 and 140. We also explore the sensitivity of the
parameter # in Eq. (9) on the performance of aVDE. We set
the parameter # by searching € {0, 1/8,1/4,1/2,1,2,4, 8}.
Besides, the subspace bases k is also related. We analyze
the behavior of aVDE by searching k£ € {10, 20, ---, 100}.
We limit the maximum number of #; with 1000, and let
tp = 10 in aVDE learning phase.

C. Experimental Results

We evaluate all selected methods by strictly choosing the
parameters according to their original papers, and then report
the best results of each method. The experimental results
of aVDE compared with the 16 baseline methods discussed
before on the two pairs of source and target domains are
reported in Table III. In Table III, the first column is the
number corresponding to the category of the selected methods,
the second column indicates method names, the third and
forth columns, the fifth and sixth columns, the seventh and
eighth columns, the ninth and tenth columns present the
recognition results when the RGB-D object dataset or B3DO
dataset is used as the source domain and the Caltech-256
dataset or ImageNet dataset is used as the target domain,
and the eleventh and twelfth columns give recognition rate
when the NYU Depth vl is used as the source domain and



TABLE III

ACCURACIES (%) FOR OBJECT RECOGNITION AND SCENE CLASSIFICATION WITH SHALLOW AND DEEP FEATURES
(BOLD NUMBERS INDICATE THE BEST RESULTS)

Object — Object — B3DO — B3DO — NYU vl—

Methods Caltec{l-256N . ImagIeNet - Caltec;l-256N . Imag;:Net - Scene-}l)i’)
mageNe mageNe mageNe mageNe aces
KDES | XN | KDES | TN | KDES | XN | KDES | UEGNT | KDES |
1 SVM_A 18.21 47.21 26.65 51.76 24.61 47.81 21.80 46.13 17.42 49.46
1-NN 18.30 48.36 27.27 55.79 27.58 50.00 22.31 49.18 19.78 50.75
N KCCA 18.39 49.60 34.61 52.69 28.22 51.29 21.63 49.56 19.68 53.33
SVM2K 20.79 51.72 33.57 54.34 27.84 51.68 23.70 51.33 21.61 53.23
3 SVM+ 18.57 48.63 29.86 60.23 25.52 58.63 26.87 47.28 19.46 51.94
RT 17.15 46.51 23.66 49.79 20.23 46.78 19.65 44.49 16.77 49.03
KMM 18.13 47.21 25.21 58.78 23.71 54.51 20.28 48.16 17.53 49.57
DAM 18.21 49.60 25.41 57.85 24.87 55.28 23.70 49.30 17.10 49.25
SGF 19.27 50.04 37.81 64.88 27.32 61.63 29.28 49.94 19.25 55.27
TCA 25.11 56.23 33.47 68.08 28.98 64.69 26.87 55.26 22.04 59.03
4 LMK 19.45 52.34 35.23 69.32 33.76 63.79 30.04 51.71 25.81 54.73
SA 21.13 54.64 36.57 70.35 34.54 54.77 25.48 56.27 27.42 62.69
GFK 18.48 51.02 41.63 68.70 41.24 61.21 30.16 50.57 24.19 53.23
UNE 24.76 56.23 42.25 71.90 40.72 64.56 29.78 53.23 26.34 59.68
DIP 25.46 57.38 41.63 69.21 40.21 60.57 29.91 57.67 25.48 58.60
5 | DA-M2S 30.06 61.54 43.49 75.31 46.26 68.81 32.70 64.26 31.08 64.52
[ aVDE [ 3575 [ 7018 [ 5021 | 80.06 [ 4626 | 6972 [ 3460 | 6857 [ 3398 [ 69.46

TABLE IV

the Scene-15 dataset is used as the target domain. We test
the shallow and deep features on both of these five pairs of
datasets. In addition, we also illustrate some samples with
highest recognition accuracies from selected datasets in Fig. 4.

From Table III, we observe that our method outperforms
all other baseline methods, sometimes by a large margin.
It demonstrates the effectiveness of our method by exploring
additional depth images in the source domain and reducing
the domain distribution mismatch between the source and
target domains. Generally, the domain difference between
source and target in scene classification (e.g. NYU vl—
Scene-15) tasks is larger than the domain difference between
source and target in object recognition (e.g. Object— Caltech-
256) tasks. From the results of the selected five pairs of
datasets for object recognition and scene classification, we can
see that not only the accuracy in object recognition has
a significant improvement, but also the accuracy in scene
classification increases dramatically, which demonstrates the
effectiveness of our proposed method in the condition of a
larger domain difference. From the results, we find that RT
performs the worst possibly because it is based on Rank SVM
which is designed for ranking task rather than classification
task. SVM_A and 1-NN which do not consider the depth
information and domain discrepancy perform poorly. KCCA,
SVM2K and SVM+- obtain better performance generally when
compared with SVM_A and 1-NN by utilizing the additional
depth features. However, these three methods do not reduce the
distribution mismatch between the source and target domains.
The domain adaptation methods as KMM and DAM perform
in a general way or even worse than SVM_A and 1-NN, which
maybe because both approaches are unsuitable in this appli-
cation. SGF, TCA, LMK, SA, GFK, UNE and DIP perform
better than other nonadaptation methods, which reveals that
considering the domain mismatch across domains is useful.
Our proposed aVDE also outperforms DA-M2S which uses
privileged information and unsupervised domain adaptation

ACCURACIES (%) FOR OBJECT—IMAGENET AND B3DO—IMAGENET
WITH IMAGENET-CNN FEATURES WHICH ARE NOT FINE-TUNED
(BOLD NUMBERS INDICATE THE BEST RESULTS)

Object — B3DO —
ImageNet ImageNet

Methods ImageNet-CNN ImageNet-CNN
(w/o fine-tuning)  (w/o fine-tuning)

1 SVM_A 32.75 27.76

1-NN 34.19 29.28

N KCCA 38.64 29.78

SVM2K 37.19 30.16

3 SVM+ 41.32 28.14

RT 33.88 26.36

KMM 42.67 30.54

DAM 41.63 28.39

SGF 44.83 29.15

TCA 45.25 34.47

4 LMK 46.07 35.74

SA 50.21 39.29

GFK 49.28 34.35

UNE 51.34 37.77

DIP 52.79 38.02

5 DA-M2S 55.27 40.81

aVDE 59.92 44.36

as well. It is possible because the domain mismatch between
our shared latent space and the projected target domain is less
than the domain mismatch in DA-M2S.

Additionally, from the comparison of shallow and deep
features, we can observe that all deep features have higher
classification performances than shallow features. For exam-
ple, the accuracy of our aVDE method on Object— Caltech-
256 classification task increases from 35.75% to 70.18%,
which indicates that the deep features can effectively remove
the domain bias. It is possible because deep learning mod-
els (i.e. ImageNet model and Places model) are pre-trained
by abundant images which are from different datasets and
webs. Note that the proposed method still outperforms other
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Fig. 4.

Example images with highest accuracy results from five selected dataset pairs. (a) tomato, shallow features accuracy = 70.31%, deep features

accuracy = 92.86% (b) cereal box, shallow features accuracy = 80.27%, deep features accuracy = 93.77% (c) keyboard, shallow features accuracy = 77.62%,
deep features accuracy = 86.57% (d) bottle, shallow features accuracy = 71.29%, deep features accuracy = 85.94% (e) bedroom, shallow features

accuracy = 69.78%, deep features accuracy = 89.66%.
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Fig. 5.

methods with deep features. Furthermore, the added exper-
iments based on CNN features which are not fine-tuned
are reported in Table IV. From Table III and Table IV,
we can observe that the performance of the CNN features
which are not fine-tuned is worse than that of the fine-tuned
ImageNet-CNN features on the two cases: Object— ImageNet
and B3DO—ImageNet. On the other hand, the CNN features
which are not fine-tuned perform better than the selected
shallow features. The result comparison among the selected
methods shows a similar rule with the shallow features and
fine-tuned CNN features generally. There is a need to note that

Parameter sensitivity analysis on the considered datasets with the shallow and deep features.

aVDE still outperforms the selected methods in the condition
of the CNN features without fine-tuning.

D. Parameter Sensitivity Analysis

In the proposed aVDE, two parameters D and # are
involved for model tuning. We demonstrate the accuracies
with different values of D from {40, 60, 80, 100, 120, 140}
and different values of #z from {0,1/8,1/4,1/2,1,2,4,8}
on five pairs of datasets with the shallow and deep
features in Fig. 5. From Fig. 5, we can find that with
the increase of number of bases, the performance of aVDE



TABLE V

COMPARISON OF ACCURACIES (%) BETWEEN aVDE AND TWO SPECIAL CASES

Object — Object — B3DO — B3DO — NYU vl—
Caltech-256 ImageNet Caltech-256 ImageNet Scene-15
ImageNet ImageNet ImageNet ImageNet Places
KDES -CNN KDES -CNN KDES .CNN KDES -CNN KDES | _ CNN
aVE 27.67 59.15 41.53 69.01 39.18 63.92 29.91 57.16 27.31 62.04
VDE 22.81 53.58 35.23 60.95 35.95 62.89 26.74 52.85 23.76 55.70
aVDE | 35.75 70.18 50.21 80.06 46.26 69.72 34.60 68.57 33.98 69.46

Shallow features.

Deep features

—&— ObjectCaltech-256)
et

Shallow features
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—B— Opject--imageNet

= B3DO-Caltech-256|
£300--ImageNet

NYU vi-Scene-15

Accuracy (%)

Fig. 6. Parameter k sensitivity analysis on the considered datasets with the
shallow and deep features. Dashed lines show the best baseline results.

(with # € {0,1/8,1/4,1/2,1,2,4,8}) becomes better and
better until around 100 bases in general. Only B3DO —
Caltech-256 (deep features) and NYU vl — Scene-15 (deep
features) achieve the highest points when # = 1/2 and
D = 120, and other cases reach the best points when # = 1/2
and D = 100. In addition, when # is zero, the accuracies are
lowest which indicates that learning without this regularization
leads to poor performance. Therefore, we can conclude that
the regularization term is important for our algorithm.

We also run aVDE with different values of k.
We plot classification accuracies with different values of
k € {10,20, ---, 100} in Fig. 6. From Fig. 6, we can find that
when k is small, data reconstruction is accurate in general.
Therefore, when comparing with the baseline methods, we set
k = 20.

E. Convergence Analysis

We evaluate the convergence property of aVDE by experi-
ment. Fig. 7(a) shows that the classification accuracy increases
steadily with more iterations and converges within only 10
iterations. Fig. 7(b) shows that the objective function values
decrease rapidly at the first few iterations and become stable
after about 6 iterations. Both of them show that aVDE con-
verges in a couple of iterations. Therefore, we can draw a
conclusion that aVDE is convergent.

F. Analysis on aVDE

We explore two special cases of our aVDE for a better
understanding of our algorithm.

Casel: We do not consider depth information, which is
denoted as aVE. We remove |[B — WV|? in Eq. (3) and
KL(Pg||Q) in Eq. (4) which result in the minimization of

Accuracy (%)
Accuracy (%)

N &

5
#iterations

Shallow features

Deep features

i B3DO--ImageNet
NYU vi-Scene-15

Objective
Objective

5 5
#iterations #iterations

(b)

Fig. 7. Convergence study for aVDE on the considered datasets with
the shallow and deep features. Dashed lines show the best baseline results.
(a) accuracy w.r.t. #iterations. (b) objective w.r.t. #iterations.
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Fig. 8. Some example images from RGB-D face dataset EURECOM and
RGB dataset Labeled Faces in the Wild-a (LFW-a).

Target Domain
RGB LFW-a

another objective function as:
Ig/li‘l/l IA-UV|*+ gKL(PAHQ), s.t. U,V >0. (36)

Case2: We do not consider domain adaptation, which is
denoted as VDE. We directly use the V which is acquired
from Eq. (24) to build a NN classifier. Then the embed-
ded representation of the coming RGB target domain data
a € RM 1 can be obtained as v; by Eq. (26).

From Table V, we can find that the results of the special
cases are worse than aVDE, which shows it is beneficial to
exploit the additional depth features and domain adaptation
for learning an adaptive classifier. Moreover, in Case 1,
since depth features in the source domain contain additional



TABLE VI

ACCURACIES (%) FOR GENDER RECOGNITION (BOLD NUMBERS INDICATE THE BEST RESULTS). RGB-D FACE DATASET EURECOM IS CHOSEN AS
THE SOURCE DOMAIN, AND THE RGB DATASET LABELED FACES IN THE WILD-A (LFW-A) IS CHOSEN AS THE TARGET DOMAIN

SVM_A 1-NN KCCA SVM2K KMM DAM SGF TCA

LMK SA GFK UNE DIP

DA-M2S aVE VDE aVDE

64.22 64.53
+1.6 +1.82

63.60
+1.34

67.33
+1.92

64.25 63.91 67.22 65.24
+1.43 +1.57 +1.38 +0.88

65.02
+1.55

67.38
+1.39

66.78
+1.73

67.83
+1.24

64.84
+4.80

68.44 66.84 64.72 70.46
+1.44 +1.64 +1.51 +1.37

information about shapes and depth, the RGB data in the target
domain are projected into the latent space obtained in the
visual-depth embedding step, which can help the correction of
the noise and make the projected target domain take advantage
of the shape and depth information from the source domain.
The additional depth features in the source domain can be
considered as privileged information for learning the final
adaptive classifier. In Case 1, it shows that the performance
decreases by 5% to 10% when depth information is not
considered.

G. Extension to Gender Recognition

We also extent our aVDE to gender recognition task. In our
experiment, the RGB-D face dataset EURECOM [50] is cho-
sen as the source domain, and the RGB dataset Labeled Faces
in the Wild-a (LFW-a) [51] is chosen as the target domain.
Fig. 8 shows some example images from these two datasets.
The EURECOM dataset contains 728 pairs of RGB-D images
from 196 females and 532 males. The LFW-a dataset only
contains color images with 13144 images from 2960 females
and 10184 males. Following the experimental setup in [5],
we use the Gradient-LBP features [4] to represent the RGB
and depth images for both of the source and target domains in
the same way. In addition, 196 male images from EURECOM
dataset are randomly sampled to balance the training sam-
ples, since male images are much more than female images.
3000 samples are randomly sampled from the target samples
for the baseline. According to aVDE, we select the set of
parameters which reach the best points in most of the cases for
object and scene classification tasks: 7 = 1/2, D = 100 and
k = 20. At last, the mean recognition accuracy and the stan-
dard deviation are calculated from ten rounds of experiments.

The experimental results of aVDE compared with the base-
line methods are reported in Table VI. From Table VI, we can
obtain the similar observations as in the object and scene
classifications. Our aVDE still outperforms all other baseline
methods in gender recognition with a margin from around 2%
to 7%, which illustrates the effectiveness of our method again.
From the results, SVM_A and 1-NN still perform poorly, since
both of them do not consider the depth information and domain
discrepancy. SVM2K shows better performance than SVM_A
and 1-NN by utilizing the additional depth information. SGF,
TCA, LMK, SA, GFK, UNE and DIP perform better than
some other nonadaptation methods. aVDE also outperforms
DA-M2S which uses privileged information and unsupervised
domain adaptation. Moreover, two special cases of our aVDE
(aVE and VDE) are also explored in gender recognition.
The better performance of aVDE illustrates the benefit to
take advantage of the additional depth features and domain
adaptation for an adaptive classifier.

V. CONCLUSION

In this paper, we have proposed a novel method aVDE
which can utilize the additional depth information in the
source domain and simultaneously reduce the domain mis-
match between the source and target domains. The latent
shared space is identified in Visual-Depth embedding. Aiming
to alleviate the mismatch between data distributions, aVDE
matches features and reweights instances jointly across the
shared latent space and the projected target domain in a
principled dimensionality reduction procedure. On five real-
world image datasets, the experimental results illustrate that
the proposed method significantly outperforms the state-of-
the-art methods.
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