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Slender liquid jets that have a curved trajectory have been examined in a range of papers
using a method introduced in Wallwork et al. (2000, 2002) and Decent et al. (2002),
for jets that emerge from an orifice on the surface of a rotating cylindrical container,
successfully comparing computational results to measurements arising from laboratory
experiments. Wallwork et al. (2000, 2002) and Decent et al. (2002) based their analysis
on the slenderness of the jet, and neglected the torsion of the centreline of the jet which
is valid since in most situations examined the torsion is zero or small. Shikhmurzaev &
Sisoev (2017) used differential geometry and incorporated the torsion. This paper shows
these two methods produce identical results at leading-order when the torsion is zero or
when the torsion is O(1), in an asymptotic framework based upon the slenderness of the
jet, and shows that the method of Wallwork et al. (2000, 2002) and Decent et al. (2002)
is accurate for parameters corresponding to scenarios previously examined and also when
the torsion is O(1). It is shown that the method of Shikhmurzaev & Sisoev (2017) should
be used when the torsion is asymptotically large or when the jet is not slender.

Key words:

1. Mathematical approaches and approximations

Curved liquid jets arise in a variety of industrial and manufacturing problems including
propulsion systems for liquid jets in cross flow (Ng et al. (2008)) and in agricultural sprays
(Wong et al. (2004)). In recent years curved jets have found renewed interest in the
production of nanofibres from centrifugal spinning (e.g. Noroozi et al. (2017), Zhmayev
et al. (2015), Valipouri et al. (2015) and Riahi (2017)) which themselves have numerous
applications in air filtration, optical sensors and tissue engineering to name just a few. A
variety of careful studies of steady and time-dependent flows for curved liquid jets have
been carried out by numerous groups, showing a wide variety of rich flow behaviours.
Important studies include Entov & Yarin (1984), Ribe (2004), Ribe et al. (2006), Panda
et al. (2008), Marheineke & Wegener (2009), Arne et al. (2010), Gramlich & Piesche
(2012) and Marheineke et al. (2016). There are other computational approaches which
provide valuable descriptions of jet flows, particularly the lattice Boltzmann method,
exemplified by Falcucci et al. (2010a,b, 2011a,b, 2013).
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One commonly studied application is when slender curved jets arise from a circular
orifice on the outer surface of a rapidly rotating cylindrical container (where the axis of the
rotating cylinder is vertical). The trajectory of the resulting liquid jet that emerges from
the orifice follows the beginning of a spiral pathway that travels away from the rotating
drum. Due to surface tension driven instability these jets rapidly break-up into droplets.
This is often called prilling in industrial processes. This problem has been studied in a
series of papers where the trajectory of the curved jets, their linear instability, nonlinear
effects, and droplet break-up mechanisms were able to be examined computationally and
the results compared successfully to experimental results across a range of physical and
rheological parameters e.g. Wallwork (2002), Wallwork et al. (2000, 2002), Decent et al.
(2002), Părău et al. (2006, 2007), Uddin et al. (2006, 2008a) and Gurney et al. (2010).

Wallwork et al. (2002) (henceforth labelled as W02) and Decent et al. (2002) (hence-
forth labelled as D02) introduced a multiple scales methodology to examine the unsteady
dynamics of this slender curved jet as it breaks up into droplets. (W02 included rotation
but neglected gravity in the model, while D02 included gravity and rotation.) One of
these multiple scales is the arclength s, measured along the centreline of the curved
jet, which is non-dimensionalised with respect to the radius of the rotating cylindrical
container s0. This lengthscale is much greater than the lengthscale s̄ associated with
the radius of the resulting droplet size or the wavelength of linear unstable waves that
propagate along the jet and cause the jet to rupture. The method of multiple scales is
used to examine linear instabilities so that s = εs̄, where ε = a/s0 is a small parameter
and a is the radius of the orifice from which the jet emerges on the side of the rapidly
rotating container. The resulting analysis assumes that a ≪ s0 and that the jet breaks
up sufficiently far from the orifice such that the physical break-up length of the jet is
much greater than the radius of the orifice a i.e. the asymptotic analysis assumes that
the jets are slender and the jet ruptures when s = O (1). The experimental observations
of W02, Wong et al. (2004), Partridge et al. (2005) and Hawkins et al. (2010) confirm
that these simplifying assumptions are a reasonable starting point in order to describe
the physical problem.

In order to deploy this multiple scales methodology to examine unstable linear waves
travelling down the jet, it is first necessary to determine a steady solution for the curved
jet which can be perturbed by the addition of these growing unstable linear waves. This
involves the determination of steady trajectory equations that describe the curved slender
jet in a steady state. It is these steady trajectory equations which are the main focus of
this paper.

In W02 and D02, the coordinate used to describe these trajectory equations is the
arclength s measured along the centreline of the steady jet. In any cross-section of the
jet, W02 and D02 also used plane polar coordinates in the radial and azimuthal directions
(n, ϕ). W02 and D02 used base vectors es, en, eϕ (defined in Wallwork (2002) and D02),
where en, eϕ lie in the cross-section of the jet. On the centreline es is tangential to
the centreline and en, eϕ are perpendicular to the centreline, and this set of vectors are
orthogonal unit vectors on the jet’s centreline. The base vectors are shown in Figure 1.
This coordinate system is inspired by the multiple scales inherent in the unsteady flow
description of the jet, since on the short lengthscale s̄ the coordinate system is locally
cylindrically polar at leading-order in ε, and it gradually bends on the long lengthscale
s.

It was pointed out in Entov & Yarin (1984) that the base vectors at points away
from the jet’s axis are not orthogonal if the centreline of the curved jet has non-zero
torsion. When gravity is neglected in the model, so that the centreline of the jet lies in a
horizontal plane and thus the torsion of the jet’s centreline is zero (as in W02, Partridge
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Figure 1. Diagram showing the base vectors in the jet. On the jet’s centreline (dashed line),
es is always tangential to the centreline and en, eϕ are perpendicular to the centreline, and this
set of vectors are orthogonal unit vectors along all of the jet’s centreline. The diagram shows an
example of the vector es that is tangential to the jet’s centreline at a point at the far end of the
portion of the jet shown in the diagram. However, these base vectors are not always orthogonal
unit vectors at points away from the jet’s axis, and such a situation is illustrated within the
square box, which shows the base vectors at a point inside the jet and away from the jet’s
centreline. SS17 shows that the direction of es can deviate away from the direction described
in W02 and D02 at points away from the centreline, and this deviation is shown by the dotted
vector which illustrates es as determined in SS17. The deviation between the es vector described
by W02/D02 (vector shown by a solid-line arrow and labelled es) and the es vector derived by
SS17 (vector shown by a dotted-line arrow) is exaggerated in the Figure to aid visibility.

et al. (2005), Părău et al. (2006, 2007), Uddin et al. (2006, 2008a,b, 2009), Decent et al.
(2009), Gurney et al. (2010), Hawkins et al. (2010), Uddin & Decent (2012)) then the
base vectors will remain exactly orthogonal throughout the jet. However, when gravity is
included in the model, as in D02, then the jet’s centreline falls out of the horizontal plane
and has non-zero torsion. W02 and D02 treated the base vectors as though they were
orthogonal unit vectors throughout the flow, which means that W02 and D02 provides
an approximate methodology based on assuming that any terms neglected as a result will
be insignificant given the asymptotic ordering because the jet is asymptotically slender.
However, es, en, eϕ are approximately orthogonal unit vectors when they are close to the
jet’s centreline even if the torsion is non-zero, and thus the approach adopted in W02 and
D02 is an approximation that appears to be reasonable because the jet is asymptotically
slender and the flow always remains asymptotically close to the centreline in W02, D02
and subsequent papers.

Shikhmurzaev & Sisoev (2017) (henceforth labelled as SS17) has provided a mathe-
matically formal framework for these curved jets, using differential geometry to tackle
the problem rigorously, even when the centreline has non-zero torsion, and provides a
rigorous framework for the treatment of the base vectors. This included showing that at
points away from the centreline the direction of es can deviate away from that described
in W02 and D02, since W02/D02 forced es to be parallel to the centreline at points away
from the centreline while SS17 does not force a direction on es but instead calculates it
using differential geometry. Also SS17 showed that the length of the base vectors can vary
away from the centreline. Consequently SS17 extends the applicability of the coordinate
system into situations when the jet is not slender, and determines additional terms (not
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found in W02 and D02) which we show here are asymptotically small when the jet is
slender.

This paper considers the above two approaches and compares the resulting steady
models for a slender curved inviscid liquid jet, considering the cases when the curved jet’s
centreline has zero torsion and when it has non-zero torsion. In both cases this paper
shows that the two approaches produce identical results at leading-order using slender
jet asymptotic expansions (and so any terms neglected as a result of approximations are
shown here to only appear at higher-order in the resulting asymptotic expansions). This
paper demonstrates that the approximate methodology of W02 and D02 is useful and
produces results to an acceptable level of approximation for slender curved liquid jets even
when the jet’s centreline has non-zero torsion. Given the ease of use of the approximate
method, when compared to the rigorous approach of SS17, it provides a useful toolkit
for tackling complex problems. This paper goes on to consider some asymptotic limits to
understand when it is possible to use the approximate method and when it is necessary
to use the rigorous method of SS17. This is important because the method of W02
(for centrelines with zero torsion) has been shown in a number of papers to be able to
be implemented into situations where the liquid has complex rheology, has surfactants
added, where temperature changes are incorporated, and where compound liquid jets are
considered, in situations that incorporate linear instability and nonlinear mechanisms,
and this has all been enabled because the method is straight-forward to use. If those
complex applications are to be tackled in the future for situations where the centreline
has non-zero torsion then it is necessary to understand whether D02 can be used as an
accurate approximate methodology, and it is the primary result of this paper that this is
in fact the case, thus opening out the future application of D02 into complex industrial
problems for non-zero torsion as new applications arise.

2. Slender jets

In W02 and D02, a Cartesian coordinate system x′, y′, z′ is used that rotates with
the container where the y′-axis is vertical and pointing upwards and the x′ − z′ plane is
horizontal, with the positive x′-axis pointing away from the cylinder in a direction normal
to the surface of the cylinder and the z′-axis is tangential to the cylinder’s surface. The
origin of this coordinate system is located at the centre of the orifice from which the jet
emerges on the surface of the rotating cylinder. The cylinder rotates about its central
axis in an anti-clockwise direction when viewed from above. In non-dimensional terms,
the radius of the rotating cylinder is 1 (i.e. lengths are non-dimensionalised with respect
to s0).

In SS17, a Cartesian coordinate system x, y, z is used, that is considered here to rotate
with the container, where the z-axis is vertical and pointing upwards and the x − y
plane is horizontal. The origin of this coordinate system is located on the axis of the
rotating cylinder. For the two formulations to be equivalent, the centre of the orifice on
the surface of the rotating cylinder is defined here to be at x = 1, y = z = 0 in the
formulation of SS17, so that the x-axis also points through the centre of the orifice away
from the rotating container’s surface. The cylinder also rotates about its central axis in
an anti-clockwise direction when viewed from above. Both Cartesian coordinate systems
are right-handed.

In the formulations of W02 and D02, the centreline of the jet is described by non-
dimensional functions XWa (s), YWa (s), ZWa (s) which describe the position of the jet’s
centreline with respect to x′, y′, z′. The steady centreline of the jet is then described
by the curve x′ = XWa(s), y

′ = YWa(s) and z′ = ZWa(s). The leading-order steady jet
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(XWa, YWa, ZWa)
in x′y′z′-coordinates

(XSh, YSh, ZSh) =
(XWa + 1,−ZWa, YWa)
in xyz-coordinates
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g
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Figure 2. Comparison of the coordinate systems used in W02/D02 and SS17. The dotted curved
line represents the jet’s centreline for a liquid jet that emerges from the side of the rotating
cylindrical container. The coordinate system of W02/D02 is x′, y′, z′ and the coordinate system
of SS17 is x, y, z. A point on the jet’s centreline is shown that has coordinates x′ = XWa,
y′ = YWa, z′ = ZWa in W02/D02 and also x = XSh, y = YSh, z = ZSh in SS17. The
transformation between these coordinates is also shown for this point on the centreline. Both
sets of Cartesian coordinates move with the rotating container, and the container rotates about
its vertical axis in an anti-clockwise direction.

speed is denoted in W02 and D02 by u0(s) and the leading-order steady jet radius (which
describes the location of the free-surface) is denoted by R0(s).

In the formulation of SS17, the centreline of the jet is described by x = XSh(s),
y = YSh(s) and z = ZSh(s) and the jet speed is denoted by uξ,0(s). (Since the Cartesian
axes in W02/D02 and SS17 are aligned differently, we distinguish the position of the jet’s
centreline (X,Y, Z) between the two formulations by writing subscripts “Wa” and “Sh”
on those variables corresponding to W02/D02 and SS17 respectively. Also note that SS17
denotes the arclength using ξ instead of s, so that ξ = s in comparing W02/D02 and SS17,
though we use s as the arclength throughout this paper.) To transform between the two
Cartesian systems note that XSh = XWa+1 so that the centre of the orifice is in the same
place in both formulations (this is a translation of the origin in the Cartesian coordinate
system between the two formulations). Also YSh + ZWa = 0 so that the direction of the
Cartesian axes are aligned in the horizontal plane and ZSh = YWa so that the vertical
axes are aligned. These coordinate systems are shown in Figure 2.

The Rossby, Froude and Weber numbers are Rb = U/ (s0Ω), Fr = U/ (s0g)
1/2

and
We = ρU2a/σ respectively, where U is the exit speed of the jet at the orifice, Ω is the rate
of rotation of the container, ρ is the liquid’s density, σ is the surface tension of the liquid
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and g is the acceleration due to gravity. The problem was examined in the inviscid case in
W02 and D02 using a slender jet asymptotic expansion. The resulting non-dimensional
trajectory equations derived in W02 and D02 are shown in the first column in Table
1, where dashes on functions of s denote differentiation with respect to s. In W02/D02
these equations are solved subject to the non-dimensionalised initial conditions (at the
orifice) of X ′

Wa = R0 = u0 = 1 and XWa = YWa = Y ′
Wa = ZWa = Z ′

Wa = 0 at s = 0.
The second column in Table 1 shows the leading-order trajectory equations from SS17.

W02 and D02 determined the equation in the first row of Table 1 using the non-
dimensionalised Euler’s equation in the downstream direction combined with the normal
stress boundary condition. The equation in the second row arises from the continuity
equation and the kinematic boundary condition. The next two equations in Table 1
arise in W02 and D02 from Euler’s equations in the radial and azimuthal directions in
any cross-section of the jet combined with the normal stress boundary condition. The
equation in the fifth row arises from the geometrical definition of the arclength s.

The following two subsections show that the equations in the two columns of Table 1
are identical both when gravity is included and when it is neglected.

2.1. Trajectory equations including gravity

D02 included gravity in the formulation, so that the centreline of the jet is a curve in
three-dimensional space and the Froude number Fr = O(1). The trajectory equations in
Table 1 arising from D02 and SS17 are identical, as is now shown, though this appears
not to have been noticed in SS17.

There are two free non-dimensional constants in SS17 which need to be chosen here
as Q1 = 1 and Q2 = 1/Rb2 − 2/We − 1. The jet speed functions are chosen to
be identical in both formulations so that uξ,0 = u0. Firstly it can be seen that the
equations in columns 1 and 2 in Table 1 are identical for both of the top two rows
using R2

0u0 = 1. (To show this, it is necessary to differentiate R2
0u0 = 1 with respect

to s and rearrange. This also gives the above mentioned formulae for Q1 and Q2 by
comparing the equations in columns 1 and 2, and this choice for Q1 and Q2 corresponds
to ensuring that the initial conditions at the orifice are satisfied.) Next, by substituting
the transformations between (XWa, YWa, ZWa) and (XSh, YSh, ZSh) into the equations
in the third row of Table 1, it can be seen that the two equations in the third row are
the same since −Y ′′

Wa

(
X ′2

Wa + Z ′2
Wa

)
+ Y ′

Wa (X
′
WaX

′′
Wa + Z ′

WaZ
′′
Wa) can be rearranged

into −Y ′′
Wa because X ′

WaX
′′
Wa + Y ′

WaY
′′
Wa + Z ′

WaZ
′′
Wa = 0 (from differentiating X ′

Wa
2
+

Y ′
Wa

2
+Z ′

Wa
2
= 1). Finally, it is straight-forward to see that the equations in the fourth

and fifth rows of Table 1 are identical in each column. Therefore, the equations in the
two columns in Table 1 are identical.

2.2. Trajectory equations without gravity

In the situation where rotation is sufficiently great that gravity can be neglected in the
problem, then the jet does not fall before breaking up into droplets and this situation
was examined in W02. The equations for W02 are shown in the first column of Table
1 for YWa = 0 (so that the jet’s centreline does not fall out of the plane y′ = 0) and
Fr = ∞. (Note that the steady trajectory equations in W02 are written in a slightly
different form to those shown in the first column of Table 1 for YWa = 0 and Fr = ∞,
though it is straight-forward to rearrange the equations from the first column of Table 1
into the form shown in W02.) The equivalent trajectory equations from SS17 are shown
in the second column of Table 1 for ZSh = 0 and Fr = ∞.

Since this is just a special case of when gravity is included, the equations in the two
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Table 1. Comparison of the steady trajectory equations between W02/D02 and SS17. The
equations in these two columns are shown in this paper to be identical using the transformations
uξ,0 = u0, XSh = XWa + 1, YSh + ZWa = 0 and ZSh = YWa.

W02 and D02 SS17

u2
0 = 1− 2YWaFr−2 u2

ξ,0 + 2We−1Q1
−1/2uξ,0

1/2

+Rb−2
(
X2

Wa + 2XWa + Z2
Wa

)
−Rb−2

(
X2

Sh + Y 2
Sh

)
+2We−1

(
1−R0

−1
)

+2ZShFr−2 +Q2 = 0

R0
′ (u2

0 + 1/ (2WeR0)
)
= R2

0uξ,0 = 1

1
2
R0Y

′
Wa/Fr2

− 1
2
R0 ((XWa + 1)X ′

Wa + ZWaZ
′
Wa) /Rb2

(Z′
WaX

′′
Wa −X ′

WaZ
′′
Wa)Fr−2 Fr−2 (X ′

ShY
′′
Sh − Y ′

ShX
′′
Sh)

+ZWa (Y
′
WaX

′′
Wa − Y ′′

WaX
′
Wa)Rb−2 +2Rb−1uξ,0X

′
Sh (Z′

ShX
′′
Sh −X ′

ShZ
′′
Sh)

+(XWa + 1) (Y ′′
WaZ

′
Wa − Z′′

WaY
′
Wa)Rb−2 −2Rb−1uξ,0Y

′
Sh (Y ′

ShZ
′′
Sh − Z′

ShY
′′
Sh)

−2Y ′′
Wau0Rb−1 = 0 −Rb−2XSh (Y ′

ShZ
′′
Sh − Z′

ShY
′′
Sh)

−Rb−2YSh (Z′
ShX

′′
Sh −X ′

ShZ
′′
Sh) = 0

(
u2
0 −We−1R−1

0

) (
X ′′2

Wa + Y ′′2
Wa + Z′′2

Wa

) (
u2
ξ,0 − uξ,0

1/2We−1Q1
−1/2

)
= −Y ′′

WaFr−2 ×
(
X ′′

Sh
2
+ Y ′′

Sh
2
+ Z′′

Sh
2
)

+Rb−2 ((XWa + 1)X ′′
Wa + ZWaZ

′′
Wa) +2uξ,0Rb−1(X ′

ShY
′′
Sh − Y ′

ShX
′′
Sh)

+2u0Rb−1 (X ′
WaZ

′′
Wa − Z′

WaX
′′
Wa) −Rb−2 (XShX

′′
Sh + YShY

′′
Sh)

+Z′′
ShFr−2 = 0

X ′
Wa

2
+ Y ′

Wa
2
+ Z′

Wa
2
= 1 X ′

Sh
2
+ Y ′

Sh
2
+ Z′

Sh
2
= 1

columns of Table 1 are again identical even when YWa = ZSh = 0 and Fr = ∞ using
the same arguments as in the previous subsection. The methodologies of W02/D02 and
SS17 therefore produce identical results for the trajectory of a slender curved jet at
leading-order when gravity is included (D02) and when it is not (W02).
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2.3. Comparison of other equations and other models for slender jets

In W02 and D02, the steady jet’s radius from the centreline (i.e. the location of
the undisturbed free-surface) is perturbed by a small linear travelling wave using the
asymptotic expansion for the jet radius R0 (s) + δR̃ (s̄, s, t̄) + ... where δ is a small
parameter used to linearise the instability equations and t̄ is a multiple-timescale defined
in W02. Using this in SS17, W02 and D02, all three papers show that the curvature of
the free-surface is equal to

1

R0
− δ

(
∂2R̃

∂s̄2
+

R̃

R2
0

)
+ ... (2.1)

even when the torsion of the centreline is non-zero. Likewise, Euler’s equations, the
continuity equation, and the normal stress and the kinematic boundary conditions are
the same at leading-order (at leading-order the jet is steady) and at O (δ) in W02 and
SS17 (for YWa = 0 and Fr = ∞) when the torsion is zero, and are also identical at
leading-order and at O (δ) in D02 and SS17 (for Fr = O (1)) when the torsion is not
equal to zero.

W02 and D02 go on to examine the linear instability of the jet in each case. The
instability equations can be shown to be identical at leading-order to those produced
by applying the same multiple-scales method of W02/D02 to SS17. That is because the
instability arises on the short lengthscale s̄.

The case examined in this paper is inviscid, but note that Wallwork (2002) and Decent
et al. (2009) show that including viscosity does not change the trajectory equations from
those determined in the inviscid case based upon a scaling where the Ohnesorge number
Oh = µ/

√
σaρ = O (1) and where µ is the dynamic viscosity of the liquid. The viscosity

appears at leading-order in the equations for the unstable linear waves that propagate
along the jet. The instability equations based upon W02 and D02 will again be the same
as those based upon SS17 at leading-order when incorporating viscosity and the stress
tensor. Subsequent papers such as Părău et al. (2006, 2007) and Uddin et al. (2006,
2008a) went on to examine the inclusion of nonlinear effects and additional physical
effects such as surfactants and non-Newtonian liquid viscosity. Once again, in all of these
situations at leading-order the two formulations will produce identical equations in both
steady and unsteady cases. (Break-up and other complex unsteady phenomena can be
significantly influenced by viscosity and the stress tensor e.g. Părău et al. (2007), Uddin
et al. (2006) and Falcucci et al. (2013).)

3. Discussion

From Entov & Yarin (1984), the coordinate system of W02/D02 is orthogonal every-
where when the torsion κ2 of the centreline is equal to zero. From SS17, κ2 = P/Q
where

P = X ′
Sh (Y

′′
ShZ

′′′
Sh − Z ′′

ShY
′′′
Sh) + Y ′

Sh (Z
′′
ShX

′′′
Sh −X ′′

ShZ
′′′
Sh)

+Z ′
Sh (X

′′
ShY

′′′
Sh − Y ′′

ShX
′′′
Sh) (3.1)

and

Q = (Y ′
ShZ

′′
Sh − Z ′

ShY
′′
Sh)

2
+ (Z ′

ShX
′′
Sh −X ′

ShZ
′′
Sh)

2
+ (X ′

ShY
′′
Sh − Y ′

ShX
′′
Sh)

2
. (3.2)

In papers where gravity is neglected in the formulation, such as in W02, Părău et al.
(2006, 2007) and Uddin et al. (2006, 2008a), then Fr = ∞ and ZSh = YWa = 0, so that
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κ2 = 0 and the coordinate system used is orthogonal. When gravity is included, in D02,
then κ2 ̸= 0 and the coordinate system is not orthogonal.

Also note that jets observed in experiments and industrial prilling often rapidly break-
up into droplets without falling significantly out of the horizontal plane, so that the
vertical coordinate ZSh = YWa ≈ 0 at the break-up point in observations, so that κ2 ̸= 0
but κ2 ≈ 0 along many jets in prilling. However, as more applications of curved jets
appear there will increasingly be demand to examine more complex situations.

Comparing D02 to SS17 it can be seen that when applying the slender jet asymptotic
expansions there are terms that are different in the two papers which are O (ε). The
equations agree at O (1) as has already been shown in this paper, but there are O (ε)
terms including ones proportional to κ2 in (5.2)-(5.4) in SS17 which are absent in D02. In
experiments such as those in W02, Wong et al. (2004), Partridge et al. (2005) and Hawkins
et al. (2010), ε ≈ 0.01. In the industrial applications such as prilling that have motivated
the work (e.g. see Wallwork (2002), W02) ε typically ranges from approximately 0.001 to
0.01. Any corrections to measurable quantities caused by using SS17 instead of D02 will be
of O (ε) even if κ2 = O (1). The main measurable outcome of the numerical simulations
that subsequently use the solution of the trajectory equations are the predictions of
the radius of droplets produced as a result of the surface tension driven instabilities.
The droplet radius typically observed in experiments and in industrial applications is of
the order of a few millimetres. Therefore the additional O (ϵ) terms derived by SS17 if
implemented into a numerical simulation would produce corrections to the droplet radius
of the order of at most 10−5m which would be too small to be easily measured in an
experiment (and other physical features neglected in the model such as air resistance
will be more important that these small O (ε) corrections). Furthermore, in the slender
nanofibre applications (Noroozi et al. (2017)) these additional O (ϵ) terms from SS17
would cause corrections at only approximately the atomic scale.

It is also worth considering what happens for very long liquid threads in situations when
the time-dependent instabilities are diminished so that the thread does not break-up due
to surface tension, enabling s to become very large. (The effects of surface tension would
need to be very small. Such very long threads have not been observed in the experiments
of W02 and subsequent papers but we can consider this scenario.) In the notation of
SS17, XSh = r0s

N cos
(
θ0s

M
)
+ ..., YSh = r0s

N sin
(
θ0s

M
)
+ ... and ZSh = −βs + ... as

s → ∞, where β > 0, N , M , r0 and θ0 are constants. Examining the richest asymptotic
balance available in the first equation listed in Table 1 gives that N = 1/2. Examining
the richest asymptotic balance available in the final equation listed in Table 1 gives that
M = 1/2. Therefore, the first equation listed in Table 1 gives that uξ,0 = V

√
s + ... for

s → ∞, where V 2 = 2β/Fr2 + r20/Rb2. The remaining equations in Table 1 give that
V 2θ20 = 4/Rb2, θ20 = 2βFr2/Rb2 and r20θ

2
0 + 4β2 = 4. Solving these equations gives that

β = −r20Fr2/
(
4Rb2

)
+
(
r40Fr4/

(
16Rb4

)
+ 1
)1/2

where r0 is a constant that is determined

through the flow. The above equations then give that κ2 = −2−1βθ0s
−1/2+ ... as s → ∞,

so that κ2 → 0 as s → ∞. So the coordinate system of D02 will tend towards becoming
orthogonal as s → ∞ for all parameter values.

The equations can also be solved for s → 0. Using the notation of D02 and expanding
in powers of s, the equations in Table 1 and the initial conditions give that

XWa = s−
We2

(
Rb2 + 4Fr4

)
6Fr4Rb2 (1−We)

2 s
3 +O

(
s4
)
, (3.3)
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YWa =
We

2Fr2 (1−We)
s2 +

We3

Rb2Fr2 (1−We)
2
(2We+ 1)

s3 +O
(
s4
)
, (3.4)

ZWa =
We

Rb (We− 1)
s2 − 2We2

3Rb3 (1−We)
2 s

3 +O
(
s4
)
, (3.5)

R0 = 1− We

Rb2 (2We+ 1)
s+O

(
s2
)

(3.6)

and

u0 = 1 +
2We

Rb2 (2We+ 1)
s+O

(
s2
)
. (3.7)

(The singularity at We = 1 is well known e.g. Keller & Geer (1973), Baird & Davidson
(1962), Finnicum et al. (1993), Ramos (1996).) The transformations between D02 and
SS17, and (3.1) and (3.2), give as s → 0

κ2 = − 4WeFr2

Rb (2We+ 1) (Rb2 + 4Fr4)
+O (s) . (3.8)

This is O (1) for most parameters, though if Rb = O (ε) and Fr = O (1) (or e.g. if
Rb = O (ε) and Fr = O (ε)) then, for small s, κ2 = O

(
ε−1
)
so that the torsion is

asymptotically large. (Varying We cannot make κ2 asymptotically large if the other
parameters are O (1).) In this case the additional terms proportional to κ2 identified in
SS17 (which appear at O (ε) in the asymptotic expansions) may become leading-order.
Therefore, the scalings and approximations of D02 may break-down if κ2 = O

(
ε−1
)
.

Physically this corresponds to very high rotation rates in situations where gravity is also
important. When Rb = O (ε) then the rotation rate of the cylinder Ω would need to be
O (U/a) which is very high. For example, in the laboratory experiments carried out in
W02, rotation rates vary between 50 and 200 r.p.m., while We ranges from about 10 to
50, Rb ranges from about 2 to 5, and Fr ranges from about 2 to 3, so that κ2 is small
at s = 0 (from (3.8)). In contrast, if Rb was to be O (ε) in the experiments of W02 then
the rotation rate would need to have been around 10, 000 r.p.m. which is well beyond
the range of experiments carried out. (Note the variables in Table 1 vary rapidly close
to the orifice at s = 0 for Rb ≪ 1, as can be seen in (3.3) - (3.7), and there will be large
gradients in the solutions for Rb ≪ 1.)

D02 will also break-down if the jet is not slender e.g. W02 and Wong et al. (2004)
observed atomisation at the orifice in experiments for We → 0 when the jet ceases to
be slender. (However, jets do not always shrink to zero for small We: see Falcucci et al.
(2010b).)

4. Conclusions

In summary, the rigorous approach of SS17 has enabled the demonstration of the
validity of the slender jet approach developed in W02 and D02 and has also enabled
this detailed comparison between the two methodologies. It has been demonstrated that
SS17 does not change the results of W02, D02 and subsequent papers, since the extra
terms derived by SS17 are found to be asymptotically small in the case of slender curved
jets and produce physical corrections too small to be easily measured. Note κ2 is equal
to zero in most of these previous papers (W02, Partridge et al. (2005), Părău et al.
(2006, 2007), Uddin et al. (2006, 2008a,b, 2009), Decent et al. (2009), Gurney et al.
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(2010), Hawkins et al. (2010), Uddin & Decent (2012)) and so the coordinate system
used is orthogonal. Even when the torsion is non-zero and O (1) (as in D02) the model
of D02 remains accurate for a slender jet. The exception to this is when the torsion is
asymptotically large close to the orifice when the method of D02 appears to break-down.
Also if the jet is not slender then the formulation of W02/D02 is not likely to be accurate
(since W02/D02 assumes that the jet is slender). Otherwise, the approximations made
are accurate, and W02 and D02 describe the slender curved jet accurately in an easy to
use approximate framework. This paper opens out the future application of D02 when
κ2 = O (1) into a wider variety of scenarios.
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