Mortality after bypass surgery versus stenting for coronary artery disease: an individual patient-data pooled analysis of 11,518 patients from 11 randomized trials

Stuart J. Head, MD PhD; Milan Milojevic, MD, MSc; Joost Daemen, MD PhD; Jung-Min Ahn, MD; Professor Eric Boersma, PhD; Evald H. Christiansen, MD PhD; Professor Michael J. Domanski, MD PhD; Michael E. Farkouh, MD PhD; Professor Marcus Flather, MD PhD; Valentin Fuster, MD, PhD; Grigoris Papageorgiou, MSc; Niels R. Holm, MD; Professor Mark A. Hlatky, MD; Whady A. Hueb, MD; Masoor Kamalesh, MD; Young-Hak Kim, MD; Timo Mäkikallio, MD; Professor Friedrich W. Mohr, MD PhD; Seung-Jung Park, MD; Alfredo E. Rodriguez, MD PhD; Joseph F. Sabik III, MD; Rodney H. Stables, MD; Gregg W. Stone, MD; Professor Patrick W. Serruys, MD PhD; Professor A. Pieter Kappetein, MD PhD

1Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
2Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
3Department of Cardiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
4Department of Cardiology, Aarhus University Hospital, Skejby, Aarhus, Denmark
5Icahn School of Medicine at Mount Sinai, New York, NY, USA
6Peter Munk Cardiac Centre and the Heart and Stroke Richard Lewar Centre, University of Toronto, Toronto, Ontario, Canada
7Department of Cardiology, University of East Anglia and Norfolk and Norwich University Hospital, Norwich, UK
8Department of Biostatistics, Erasmus University Medical Center, Rotterdam, The Netherlands
9Stanford University School of Medicine, Stanford, CA, USA
10Heart Institute, University of Säo Paulo Medical School, São Paulo, Brazil
11Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
12Department of Cardiology, Oulu University Hospital, Oulu, Finland
13Department of Cardiac Surgery, Herzcentrum Universitätsklinikum Leipzig, Leipzig, Germany
14Cardiac Unit, Otamendi Hospital, Buenos Aires, Argentina
15Department of Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio
16Institute of Cardiovascular Medicine and Science, Liverpool Heart and Chest Hospital, Liverpool, UK
17Columbia University Medical Center and the Center for Clinical Trials, Cardiovascular Research Foundation, New York, New York
18Imperial College London, London, UK

Running title: Mortality after CABG vs. PCI

Abstract word count: 419

Manuscript word count: 4097

Correspondence to:
Stuart J. Head, MD PhD
Erasmus University Medical Center, Department of Cardiothoracic Surgery
3000 CA Rotterdam, The Netherlands
Tel.: +31 10 70 35784, Fax.: +31 10 70 33993
Email: s.head@erasmusmc.nl
ABSTRACT

Background: Numerous randomized trials have compared coronary artery bypass grafting (CABG) and percutaneous coronary intervention (PCI) for patients with multivessel (MVD) or left main (LM) coronary artery disease. No studies have been powered to detect a difference in mortality.

Methods: We performed a collaborative individual patient-data, pooled analysis of 11 randomized clinical trials comparing CABG with PCI using stents, in which a Heart Team selected patients with estimated clinical equipoise between CABG and PCI; ERACI II (n=450), ARTS (n=1205), MASS II (n=408), SoS (n=988), SYNTAX (n=1800), PRECOMBAT (n=600), FREEDOM (n=1900), VA CARDS (n=198), BEST (n=880), NOBLE (n=1184) and EXCEL (n=1905). Mortality rates up to 5 years were estimated using Kaplan-Meier curves, with comparisons between PCI and CABG performed in a random-effects Cox proportional hazards model stratified by trial. Consistency of treatment effect was explored in subgroup analyses according to baseline clinical and anatomical characteristics.

Findings: A total of 11,518 patients were randomly assigned to PCI (n=5753) or CABG (n=5765). Mean SYNTAX score was 26·0 ± 9·5, with 1798 patients (22·1%) having a SYNTAX score ≥33. Over a mean follow-up of 3·8 ± 1·4 years, 976 deaths occurred. Five-year all-cause mortality was 11·2% (539 deaths) after PCI and 9·2% (437 deaths) after CABG (HR=1·20, 95% CI 1·06-1·37; P=0·0038). All-cause mortality was significantly different in patients with MVD (PCI: 11·5% versus CABG: 8·9%; HR=1·28, 95% CI 1·09-1·49; P=0·0019) but not in patients with LM disease (PCI: 10·7% versus CABG: 10·5%; HR=1·07, 95% CI 0·87-1·33; P=0·52). In patients with MVD, mortality was significantly higher with PCI versus CABG in diabetics (15·5% versus 10·0%, P=0·0004) but not in non-diabetics.
(8.7% versus 8.0%, P=0.49). Moreover, the difference between PCI and CABG in patients with MVD showed a stepwise increase from SYNTAX score 0-22 (P=0.59) to 23-32 (P=0.0129) to ≥33 (P=0.0094). In patients with LM disease, comparable outcomes were not significantly influenced by the presence of diabetes or increasing SYNTAX scores.

Interpretation: In this individual patient-data, pooled analysis of 11 randomized trials in which a Heart Team selected patients, five-year mortality was significantly higher after PCI than CABG in patients with MVD, specifically in those with diabetes and higher coronary complexity. There were no significant differences in 5-year mortality between PCI and CABG in patients with LM disease, regardless of diabetes and SYNTAX score. Longer follow-up is needed to better define mortality differences.

Keywords: Coronary artery bypass grafting; CABG; Percutaneous coronary intervention; PCI; Stenting; Left main; Multivessel; Survival; Mortality
Numerous randomized trials have compared coronary artery bypass grafting (CABG) and percutaneous coronary intervention (PCI) using either balloon angioplasty, bare-metal stents (BMS) or drug-eluting stents (DES) for the treatment of multivessel (MVD) or left main (LM) coronary artery disease.1-3 No individual trial has convincingly demonstrated a significant difference in all-cause mortality between the revascularization strategies. Hlatky and colleagues performed a pooled individual patient-data analysis of ten randomized trials including 7812 patients who underwent CABG with PCI using balloon angioplasty or BMS and reported five-year mortality to be 8.4\% after CABG and 10.0\% after PCI (P=0.12).1 More contemporary trials comparing CABG versus PCI using DES have reported similar mortality rates. Despite the large number of clinical trials, all were underpowered to detect a difference in all-cause mortality. The objective of the present study was to overcome this limitation by pooling individual patient-data from all randomized trials comparing CABG with PCI using contemporary techniques (e.g. stents for PCI) to examine their comparative effects on long-term all-cause mortality in all patients, and separately in patients with MVD and LM disease.

METHODS

Reporting of this individual patient-data, pooled analysis concurs with specific PRISMA guidelines.4 This study is not registered and no protocol has been published.

Study Selection and Data Collection

A literature search of the MEDLINE, EMBASE, and Cochrane databases was performed on July 19, 2017 using the following keywords: "coronary artery bypass
“grafting”, “percutaneous coronary intervention”, “stent”, and “random*”. Two researchers (SJH and MM) independently identified randomized trials comparing CABG and PCI with the following characteristics: (i) patients were randomly assigned to undergo CABG or PCI treatment, (ii) patients had multivessel and/or left main coronary artery disease, (iii) patients did not present with an acute myocardial infarction (MI); (iv) PCI was performed using stents (BMS or DES) and not balloon angioplasty, and (v) more than one-year follow-up for all-cause mortality was available (Appendix 1). Abstracts from meetings were not considered, nor were unpublished trials. Reference lists from potentially relevant literature were checked to ensure no studies were missed.

From the 19 trials that were identified from the literature search, four trials were excluded because patients did not have multivessel or LM disease, one trial was excluded because only 54% of patients received a stent, and two trials were excluded because follow-up was only available up to one year (Appendix 1).

Principal investigators of the remaining 12 trials were contacted to obtain individual patient data for a pooled analysis. One trial was unable to provide the data (n=105).5 and investigators from the other 11 trials provided data in a standardized spreadsheet for the current pooled analysis: ERACI II6, ARTS7, MASS-II8, SoS9, SYNTAX10, PRÉCOMBAT11, FREEDOM12, VA CARDS (Cooperative studies program [CSP] study #557)13, BEST14, NOBLE15, and EXCEL16. Data were cross-checked against the publication of the primary endpoint and long-term follow-up publications. Several minor inconsistencies were resolved by contacting trial principal investigators. Baseline and procedural characteristics of individual trials are presented in the Appendix 2, with information of missing data for specific characteristics. Core laboratory assessed SYNTAX scores were available from 6 trials and a total of 8138 patients (CABG: n=4057, PCI: n=4081).
The quality of individual trials was assessed using the Cochrane Collaboration's tool for assessing risk of bias. All trials were considered to have a high quality according to the criteria, despite not being able to blind investigators and patients (Appendix 3).

Local Medical Ethics Committees approved each trial at the time of study execution, and all patients provided written informed consent.

Outcomes and Follow-up

To allow a consistent definition of follow-up time among trials, the duration of follow-up was calculated from the procedure. If patients died before the procedure, the time from randomization to death was used to calculate the duration of follow-up. All-cause mortality was the primary endpoint of this study, with analyses planned in all patients, and separately in patients with MVD and LM disease. Planned analyses were also performed for trials using BMS, all DES, and for first-generation DES and newer-generation DES. First-generation DES were paclitaxel-eluting stents or sirolimus-eluting stents. Newer-generation DES were everolimus-eluting stents, zotarolimus-eluting stents, and biolimus-eluting stents. The VA CARDS trial was excluded from the separate analysis of first-generation and newer-generation DES, because a mix of first-generation and newer-generation DES was used. We furthermore pre-specified subgroup analyses according to the following baseline characteristics: sex, age, body mass index, hypertension, hyperlipidemia, diabetes mellitus, peripheral vascular disease, previous MI, left ventricular ejection fraction, and lesion complexity as defined by the SYNTAX score. Post-hoc subgroup analyses were performed according to SYNTAX score tertiles in the overall groups of patients with or without diabetes.

In all trials, a Clinical Events Committee (CEC) adjudicated the events.
Statistical Analysis

All analyses were performed according to intention-to-treat, with patients stratified according to the procedure assigned to by randomization. Individual patient baseline, procedural, and outcome data were pooled. Continuous variables were expressed as mean ± standard deviation and compared using t-tests, and discrete data were presented as frequencies and compared using chi-square tests. We pooled data from all 11 trials to provide unadjusted Kaplan-Meier estimates of all-cause mortality in overall and landmark analyses at 30 days, five years, and between 31 days and five years. Comparisons between PCI and CABG were performed using Cox proportional hazards models stratified by trial, using a gamma frailty term to account for heterogeneity between trials. In this model, each trial is considered as an individual study and the random-effects model establishes a single hazard ratio (HR). Frailties are unobserved factors, distributed as γ random variables with a mean of 1 and variance θ. Hence, the variance of the frailty terms represents heterogeneity in baseline risk among trials. The statistical significance of the variance parameter was assessed using the likelihood ratio test. The proportionality assumption was tested for the overall analysis and was not violated (P=0.12). Nevertheless, visual inspection of the Kaplan-Meier curves suggests a time-dependent variance in the HR of PCI versus CABG, and therefore time-dependent models were also performed. Subgroup analyses according to baseline clinical, procedural and anatomical characteristics were performed using the same Cox models. A two-sided P<0.05 was considered to indicate statistical significance; adjusting for multiplicity was not performed. All statistical analyses were performed using SPSS software version 21 (IBM Corporation, Armonk, NY, USA) or R software version 3.2.4 (Institute for Statistics and Mathematics of WU, Wien, Austria).
Role of Source Funding and Trial Sponsors

This current study was performed without funding, although individual trials were sponsored (see the end of the manuscript).

A team consisting of three epidemiologists and statisticians (M.M, E.B, and G.P) performed the statistical analyses. The decision to submit the manuscript for publication was made together by the principal investigators of the individual trials. Sponsors of the individual trials were involved with data collection in the individual trials, but uninvolved in performance of the analyses, interpretation of the data, or drafting of the manuscript.

RESULTS

Study Population and Procedures

The 11 trials randomly assigned 11,518 patients to CABG (n=5765) or PCI (n=5753). Four trials were performed with BMS (n=3051), four trials with first-generation DES (n=4498), and three trials with newer-generation DES (n=3969). PCI was performed with BMS in 26.6%, with first-generation DES in 39.2%, and with newer-generation DES in 34.2% of patients (Table 1). Data from individual trials are presented in the Appendix 2, including information on actual treatments performed (Appendix 4).

Patients had a mean age of 63.6 ± 9.8 years and 23.8% were female (Table 1). Diabetes was present in 38.1% of patients, and 12.4% were on insulin treatment. Unstable angina was present in 34.4% of patients and 27.7% had a prior MI, although only 1.0% had a left ventricular ejection fraction <30%. Three-vessel disease was present in 60.2% of patients, and 38.9% had significant LM disease. The mean SYNTAX score was 26.0 ± 9.5, with 1798 patients (22.1%) having a SYNTAX score ≥33.

Surgery was performed with a left internal mammary artery in 96.2% of patients, with bilateral internal mammary arteries in 18.7%. Procedures were performed off-pump in
27.5% of patients. In 73.4% of patients DES were used during PCI, with 53.4% of those being first-generation DES and 46.6% being newer-generation DES.

Patients were discharged with aspirin after CABG and PCI in 95.5% and 97.3%, respectively, and 44.0% and 95.1% with dual antiplatelet therapy, respectively (P<0.0001 for both analyses). Other secondary prevention was also higher at discharge after PCI than after CABG (Table 1).

The mean duration of follow-up was 3.8 ± 1.4 years.

Mortality in all patients

A total of 976 deaths occurred during follow-up. Five-year all-cause mortality was 11.2% (539 deaths) after PCI and 9.2% (437 deaths) after CABG (HR=1.20, 95% CI 1.06–1.37; P=0.0038) (Figure 1; Table 2). At 30-day follow-up, mortality occurred in 76 patients (1.3%) after PCI and in 78 patients (1.4%) after CABG (HR=0.97, 95% CI 0.71–1.33; P=0.84). In a landmark analysis, mortality between 31 days and 5 years occurred in 463 patients (10.0%) following PCI and in 359 patients (8.0%) following CABG (HR=1.26, 95% CI 1.09–1.44; P=0.0009). A time-dependent model showed that the hazard of mortality was comparable between PCI and CABG during the first year of follow-up (HR=0.97, 95% CI 0.80–1.19; P=0.80), but was in favour of CABG beyond one-year follow-up (HR=1.39, 95% CI 1.17–1.62; P<0.0001) (Appendix 5). The estimate of the frailty parameter for heterogeneity was significant (θ=0.39, P<0.0001).

Patients randomized in trials in which DES were used were significantly older, had more comorbidities, and more complex coronary disease than patients randomized in trials in which BMS were used (Table 3). Particularly, in DES versus BMS trials, diabetes was present in 45.4% versus 17.8%, respectively, LM disease was present in 52.5% versus 1.0%, respectively, and three-vessel disease in 70.6% versus 41.9% (P<0.0001 for all).

Five-year mortality in BMS trials (n=3051) was 8.7% (131 deaths) after PCI and 8.2% (125 deaths) after CABG (HR=1.05, 95% CI 0.82–1.34; P=0.72). In DES trials (n=8467),
5-year mortality was 12.4% (408 deaths) after PCI with DES and 10.0% (312 deaths)
after CABG (HR=1.27, 95% CI 1.09-1.47; P=0.0022). The interaction for CABG versus
PCI with BMS or DES was not significant (P for interaction = 0.53). Although there were
significant differences in clinical and anatomical characteristics between trials using
first-generation DES and those using newer-generation DES (Table 3), the difference in
5-year mortality between PCI and CABG was consistent when analyzing the 4300
patients enrolled in trials using first-generation DES (PCI: 13.2% (254 deaths) versus
CABG: 11.1% (201 deaths); P=0.0391) and the 3969 patients enrolled in trials using
newer-generation DES (PCI: 10.3% (136 deaths) versus CABG: 7.9% (106 deaths);
P=0.0684) (P for interaction = 0.78).
In subgroup analyses, the difference in mortality was consistent according to most
baseline characteristics (Figure 2; Table 2). Diabetes was the only baseline
characteristic for which a significant treatment interaction was present (P for
interaction = 0.0077). In patients with diabetes there was a higher mortality with PCI
compared with CABG (15.7% versus 10.7%, respectively; HR=1.44, 95% CI 1.20-1.74;
P=0.0001), whereas mortality was comparable in patients without diabetes (PCI 8.7%
versus CABG 8.4%; HR=1.02, 95% CI 0.86-1.21; P=0.81) (Figures 2 and 3B). Of note,
although the interaction was not significant, the mortality benefit of CABG over PCI
tended to be progressively greater with increasing SYNTAX scores (Table 2). Similar
trends were found in subgroups of patients with or without diabetes (Appendix 6).

Multivessel disease
Among patients with multivessel disease randomized to PCI (n=3520) versus CABG
(n=3520), there were 644 deaths during a mean of 4.1 ± 1.4 years follow-up. The 5-year
rate of all-cause mortality was higher after PCI: 11.5% (365 deaths) versus 8.9% (279
deaths) after CABG (HR=1.28, 95% CI 1.09-1.49; P=0.0019) (Figure 3D; Table 2).
Results of time-dependent models are provided in the Appendix 5; similar as for the
In overall patient cohort, the benefit of CABG in MVD was particularly present with longer follow-up.

In patients with multivessel disease, mortality was 15·5% after PCI versus 10·0% after CABG, in the 3266 patients with diabetes (HR=1·48, 95% CI 1·19-1·84; P=0·0004), and 8·7% after PCI versus 8·0% after CABG, in the 3774 patients without diabetes (HR=1·08, 95% 0·86-1·36; P=0·49) (P for interaction = 0·0453) (Table 2).

The mortality benefit of CABG over PCI was greater with increasing SYNTAX scores in patients with multivessel disease. The respective mortality rates after PCI and CABG were 10·5% versus 8·4% in 1381 patients with a SYNTAX score of 0-22 (HR=1·11, 95% CI 0·77-1·62, P=0·57), 14·0% versus 9·5% in 1599 patients with a SYNTAX score of 23-32 (HR=1·50, 95% CI 1·09-2·08; P=0·0129), and 19·2% versus 11·2% in 820 patients with a SYNTAX score of ≥33 (HR=1·70, 95% CI 1·13-2·55; P=0·0094) (P for interaction = 0·32) (Table 2).

Left main disease

Among patients with LM disease randomized to PCI (n=2233) versus CABG (n=2245), there were 322 deaths during a mean of 3·4 ± 1·4 years follow-up. The 5-year rate of all-cause mortality was comparable with 10·7% (174 deaths) after PCI and 10·5% (158 deaths) after CABG (HR=1·07, 95% CI 0·87-1·33; P=0·52) (Figure 3C; Table 2). Results of time-dependent models are provided in the Appendix 5; in contrast to the overall cohort and MVD subgroup, the benefit of CABG was not seen with longer follow-up. In subgroup analysis according to diabetes in patients with LM disease, there was no significant interaction in the treatment effect (P for interaction = 0·13). In 1120 patients with diabetes mortality was 16·5% after PCI versus 13·4% after CABG (HR=1·34, 95% CI 0·93-1·91; P=0·11) and 8·8% after PCI versus 9·6% after CABG in 3358 patients without diabetes (HR=0·94, 95% CI 0·72-1·23; P=0·65) (Table 2).
Analyses according to SYNTAX score in patients with LM disease revealed that there were no differences in mortality among PCI and CABG in any of the groups: 8·1% versus 8·3% among 1737 patients with a SYNTAX score of 0-22 (HR=0·91, 95% CI 0·60-1·36, P=0·64), 10·8% versus 12·7% among 1623 patients with a SYNTAX score of 23-32 (HR=0·92, 95% CI 0·65-1·30; P=0·65), and 15·0% versus 12·4% among 978 patients with a SYNTAX score of ≥33 (HR=1·39, 95% CI 0·94-2·06; P=0·1006) (P for interaction = 0·38) (Table 2).

DISCUSSION

This collaborative analysis of individual patient data from 11 randomized trials is the first large-scale analysis of data comparing CABG and PCI performed using stents. In a total of 11,518 randomly assigned patients, the 5-year mortality rate was significantly higher after PCI than after CABG. However, this difference was not consistent among subgroups. Specifically, the mortality benefit of CABG over PCI was seen only in patients with multivessel disease and diabetes. Conversely, there were no significant differences in mortality between CABG and PCI in patients without diabetes who had multivessel disease, or in all patients with left main disease (with or without diabetes). Coronary lesion complexity was an important effect modifier, particularly in patients with multivessel disease.

The difference between CABG and PCI using stents is a topic of debate that is fueled each time stent design is enhanced. Due to these improvements, randomized trials comparing CABG and PCI have increasingly included higher-risk patients with more complex disease, such as three-vessel or left main disease. This is also reflected in our data wherein 5-year all-cause mortality in both the CABG and PCI cohorts was higher in contemporary trials with DES versus earlier trials in which BMS were used.

It is important to acknowledge that in these trials, both an interventional cardiologist and a cardiac surgeon had to assume clinical equipoise between PCI and CABG for
patients to be randomized. Such a Heart Team concept has received more emphasis over
the recent years to determine the best revascularization strategy for individual
patients. Some patients were not eligible for inclusion in the selected randomized
trials due to coronary lesion complexity too severe to be treated by PCI or an operative
risk deemed to high to undergo CABG. The results of this analysis therefore do not
correspond to the entire population of patients with coronary artery disease that
require revascularization.

The mortality benefit of CABG versus PCI in the overall group was retained over a
variety of patient baseline characteristics. However, the presence of diabetes remained
as an important factor, as demonstrated in previous analyses. The benefit of CABG in
patients with diabetes may be attributed to more effective revascularization of diffuse,
complex coronary disease. This is consistent with the findings of the subgroup analyses
according to SYNTAX score. In the total cohort, there was a step-wise increase in the
difference between CABG and PCI with higher SYNTAX scores. Other studies have
identified sex as an effect modifier, but we were unable to confirm a significant
treatment-by-sex interaction for 5-year mortality.

Patients with multivessel disease have lower mortality with CABG, as shown in the
SYNTAX trial that compared CABG with PCI with first-generation DES. The BEST trial
in which second-generation, everolimus-eluting stents were used to treat multivessel
disease also found that CABG was associated with lower rates of major adverse cardiac
or cerebrovascular events, driven by a reduced rate of MI and repeat
revascularization. However, both trials failed to show a survival benefit for either
treatment. Large real-world registries that applied propensity matching of CABG versus
PCI with DES for multivessel disease have attempted to find such differences with larger
sample sizes. The ASCERT study, the largest such analysis, reported an adjusted 4-
year mortality of 16.4% for CABG and 20.8% for PCI among a cohort of patients aged 65
years or older, which was consistent in multiple subgroups. Notably, a similar pattern
of the survival curves of CABG versus PCI is observed when comparing those of the real-world ASCERT study in which patients were treated with first-generation DES and that of the current analysis: PCI shows a benefit within the first year of follow-up but with longer follow-up there is a larger benefit with CABG. We were able to show that this reversal of the hazard resulted in a significant benefit of CABG over PCI at a mean of 4-1 years, which may potentially become larger with prolonged follow-up as the hazard ratio was more in favour of CABG at later follow-up in time-varying models.

Among patients with LM disease randomized in the SYNTAX trial, comparable 5-year mortality between CABG and paclitaxel-eluting, first-generation DES was noted. Two major trials have since focused on finding the optimal revascularization strategy for LM disease and have recently reported conflicting outcomes of CABG versus PCI. The EXCEL trial reported non-inferiority of PCI versus CABG after 3 years, while the NOBLE trial did not demonstrate non-inferiority of PCI versus CABG at 5 years. The differences in timing and composition of the primary endpoints make a comparison of these trials difficult and can presumably explain the apparent difference in results. Three-year individual endpoints in the NOBLE trial were later confirmed to be remarkably similar to EXCEL. In the current pooled analysis of data from 4 different trials, mortality in patients with LM disease was similar after CABG and PCI at 5-year follow-up. The mortality comparison was consistent in a subgroup analysis according to diabetes, unlike the analysis of all patients and those with multivessel disease, although this may be due to smaller sample size in the diabetic subgroup of LM patients. Coronary complexity by SYNTAX score did not show to impact the mortality comparison, although patients with a high SYNTAX score were relatively underrepresented due to specific inclusion criteria (e.g. in the EXCEL trial) and a Heart Team preference for CABG. Therefore, the degree of complexity should still be important to consider when proposing a specific treatment for individual patients with LM disease. Patients with a complex LM lesion and additional three-vessel disease with a high SYNTAX score may
still benefit from CABG in terms of mortality, as well as MI and repeat revascularization, while patients with a non-complex LM lesion and one or two-vessel disease may be excellent candidates for PCI. Clinical guidelines have not been revised since the release of the EXCEL and NOBLE trial data. Based on the current data of comparable mortality, the indication for PCI with contemporary DES may be broadened to patients with more complex LM disease (e.g. intermediate SYNTAX scores). However, since only 978 patients in the present LM cohort had high SYNTAX scores, additional data is required before PCI can be routinely recommended in patients with complex LM disease. Longer follow-up is essential to better define differences in survival between CABG and PCI, as landmark analyses from the EXCEL trial showed that the hazard of mortality after CABG and PCI was different according to the period of follow-up and may show a benefit of CABG with longer follow-up.\(^{16}\)

The major strength of the current analysis is that we were able to find clinically relevant differences in all-cause mortality between CABG and PCI due to the collaboration of the principal investigators from 11 high-quality randomized trials, allowing pooled data to provide sufficient power to examine an outcome that occurs relatively infrequently. Indeed, all-cause mortality is considered to be the most clinically important and least biased endpoint, which is another strength of this analysis. Having individual patient data also facilitated formation of Kaplan-Meier curves so the temporal relationships of mortality could be examined, and analysis of outcomes in important subgroups, which in the present study were highly informative.

Nevertheless, several limitations should also be considered. First, all the included trials randomized patients with estimated clinical equipoise between CABG and PCI. These trials had specific inclusion and exclusion criteria, and many patients were excluded because CABG or PCI was thought to be the preferred revascularization strategy based on the age, risk profile, or coronary complexity.\(^{19}\) This resulted in a population with only 22.1% having a SYNTAX score ≥ 33. Second, these inclusion and exclusion criteria have
resulted in significant variance in the baseline characteristics of the patients from different trials, as shown by our assessment of frailty. Third, besides mortality, other outcome measures that impact morbidity and quality of life, such as MI, stroke, and repeat revascularization, are also important for the patient and should be taken into account by the Heart Team when deciding on the best revascularization option for each individual patient. In the current era of exponentially growing health care costs and the need to reduce expenses, the cost-effectiveness of PCI and CABG should furthermore be evaluated. Fourth, the mean patient age was 63.6 years, and the mean follow-up was 3·8 years. Considering the life expectancy of patients, this follow-up is still relatively short to determine the full impact of revascularization method on survival, especially considering the diverging or converging Kaplan-Meier curves in specific subgroups.

Fifth, definitions of patient characteristics may have slightly differed between trials, which may have impacted the results of the subgroup analyses. Sixth, we were unable to include data from the LE MANS trial, although it is very unlikely that inclusion of these 105 patients with LM disease would significantly alter the results, and thus the outcomes of this study are robust with respect to the available evidence.

CONCLUSIONS

In this individual patient-data, pooled analysis from 11 trials in which a Heart Team randomized 11,518 patients with estimated clinical equipoise between PCI and CABG, 5-year mortality was significantly lower after CABG as compared with PCI. The benefit was demonstrated only in patients with multivessel disease and diabetes, but not in patients with multivessel disease without diabetes. Nor was there a benefit of CABG or PCI in patients with LM disease. Coronary lesion complexity is an important factor to consider when choosing the appropriate revascularization strategy, especially in patients with multivessel disease. Longer follow-up is needed to better define mortality
differences. These results may not be applicable to patients excluded from randomized trials for various reasons (e.g. coronary complexity or procedural risk).

RESEARCH IN CONTEXT

Evidence before this study

A literature search of the MEDLINE, EMBASE, and Cochrane databases was performed on July 19, 2017 to identify randomized clinical trials comparing coronary artery bypass grafting and percutaneous coronary intervention with stents using the following keywords: "coronary artery bypass grafting", "percutaneous coronary intervention", "stent", and "random*", with the following characteristics: (i) patients had multivessel and/or left main coronary artery disease, (ii) patients did not present with an acute myocardial infarction (MI); (iii) PCI was performed using stents (BMS or DES) and not balloon angioplasty, and (iv) more than one-year follow-up for all-cause mortality was available. We identified 12 high-quality trials, none of which found a significant difference in all-cause mortality between PCI and CABG at 3-10 year follow-up. Separate meta-analyses of randomized clinical trials that included patients with multivessel disease or with left main disease showed no significant differences in all-cause mortality between PCI and CABG. Meta-analyses did show that patients with diabetes have a benefit with CABG over PCI as opposed to patients without diabetes where no difference was found, although this has been contradicted in other pooled analyses.

Added value of this study

This study is the largest analysis of patients randomly assigned to PCI with stents or CABG. It shows for the first time, to the best of our knowledge, that all-cause mortality is significantly lower with CABG than with PCI in an overall randomized population of patients with multivessel or left main disease. However, because of the use of individual patient data, important subgroups are identified that have a survival benefit from CABG,
which are patients with multivessel disease and diabetes, and high coronary lesion complexity. Patients with left main disease and lower coronary lesion complexity have comparable survival with PCI and CABG.

Implications of all the available evidence

Some patients have specific indications for PCI or CABG because of too high coronary complexity for PCI or too high operative risk for CABG. In patients with estimated clinical equipoise as determined by a Heart Team, it is crucial to consider the presence of multivessel or left main disease, the coronary complexity as determined by the SYNTAX score, and the presence of diabetes, as these are important effect modifiers in terms of PCI versus CABG and should impact the decisions for coronary revascularization in daily practice. However, longer follow-up of randomized trials is required to better define mortality differences in overall patients and specific subgroups.
This current study was performed without funding.

Individual trials did receive sponsoring: SoS (Boston Scientific Corp., Guidant ACS, and Medtronic); MASS-II (Zerbini Foundation, São Paulo, Brazil); ERACI II (Cook Inc.); ARTS (Cordis); SYNTAX (Boston Scientific Corp.); PRECOMBAT (Cardiovascular Research Foundation [Seoul, Korea], Cordis, Johnson and Johnson, and a grant [0412-CR02-0704-0001] from Health 21 R&D Project, Ministry of Health and Welfare, South Korea); VA CARDS (VA Cooperative Studies Program); FREEDOM (Supported by grants [U01 01HL071988 and 01HL092989] from the NHLBI, Cordis, Johnson & Johnson, Boston Scientific Corp., Eli Lilly, Sanofi-Aventis, and Bristol-Myers Squibb); BEST (CardioVascular Research Foundation, Abbott Vascular, and a grant [HI10C2020] from the Korea Healthcare Technology Research and Development Project, Ministry for Health and Welfare Affairs, South Korea); EXCEL (Abbott Vascular); NOBLE (Biosensors, Aarhus University Hospital, and participating sites).

AUTHOR CONTRIBUTIONS

Study design: SJH, MM, JD, MF, MAH, PWS, APK

Literature search: SJH, MM

Data collection: SJH, JD, JMA, EHC, MJD, MEF, VF, NRH, WAH, MK, YHK, TK, FWM, SJP, AER, JFS, RHS, GWS, PWS, APK

Data analysis: SJH, MM, GP, EB

Figures: MM

Data interpretation: SJH, MM, JD, MF, MAH, EB, APK

Drafting of the manuscript: SJH

All authors provided a critical revision of the manuscript and approved the final version.
REFERENCES

TABLES

Table 1. Baseline, procedural, and discharge data of randomized cohorts.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>PCI (n=5753)</th>
<th>CABG (n=5765)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>63.6 ± 9.8 (5753)</td>
<td>63.7 ± 9.9 (5765)</td>
<td>0.72</td>
</tr>
<tr>
<td>Female sex</td>
<td>23.9% (1373/5753)</td>
<td>23.8% (1371/5765)</td>
<td>0.91</td>
</tr>
<tr>
<td>BMI >30 kg/m²</td>
<td>28.1% (1548/5506)</td>
<td>28.3% (1558/5511)</td>
<td>0.82</td>
</tr>
<tr>
<td>Smoking current</td>
<td>22.3% (1274/5701)</td>
<td>22.3% (1273/5703)</td>
<td>0.97</td>
</tr>
<tr>
<td>Diabetes</td>
<td>38.5% (2215/5753)</td>
<td>37.7% (2171/5765)</td>
<td>0.35</td>
</tr>
<tr>
<td>Insulin treated</td>
<td>23.9% (1373/5753)</td>
<td>23.8% (1371/5765)</td>
<td>0.91</td>
</tr>
<tr>
<td>BMI >30 kg/m²</td>
<td>0.9% (49/5303)</td>
<td>1.0% (54/5430)</td>
<td>0.71</td>
</tr>
<tr>
<td>Peripheral vascular disease</td>
<td>8.2% (424/5158)</td>
<td>8.5% (440/5164)</td>
<td>0.58</td>
</tr>
<tr>
<td>Carotid artery disease</td>
<td>7.8% (161/2072)</td>
<td>8.1% (168/2074)</td>
<td>0.69</td>
</tr>
<tr>
<td>Previous TIA or CVA</td>
<td>5.4% (218/4052)</td>
<td>6.2% (253/4054)</td>
<td>0.0977</td>
</tr>
<tr>
<td>Previous MI</td>
<td>28.0% (1438/5138)</td>
<td>27.5% (1417/5156)</td>
<td>0.57</td>
</tr>
<tr>
<td>Moderate LVEF (30-49%)</td>
<td>15.2% (807/5303)</td>
<td>14.3% (779/5430)</td>
<td>0.20</td>
</tr>
<tr>
<td>Poor LVEF (<30%)</td>
<td>0.9% (49/5303)</td>
<td>1.0% (54/5430)</td>
<td>0.0112</td>
</tr>
<tr>
<td>Unstable angina pectoris</td>
<td>34.6% (1786/5158)</td>
<td>34.2% (1767/5160)</td>
<td>0.68</td>
</tr>
<tr>
<td>Three-vessel disease</td>
<td>58.6% (2460/4201)</td>
<td>61.8% (2594/4197)</td>
<td>0.0627</td>
</tr>
<tr>
<td>Left main disease</td>
<td>38.8% (2233/5753)</td>
<td>38.9% (2245/5765)</td>
<td>0.89</td>
</tr>
<tr>
<td>SYNTAX score</td>
<td>26.0 ± 9.3 (4081)</td>
<td>26.0 ± 9.8 (4057)</td>
<td>0.91</td>
</tr>
<tr>
<td>0-22</td>
<td>37.6 (1533/4081)</td>
<td>39.1 (1585/4057)</td>
<td>0.16</td>
</tr>
<tr>
<td>23-32</td>
<td>41.1 (1677/4081)</td>
<td>38.1 (1545/4057)</td>
<td>0.0053</td>
</tr>
<tr>
<td>≥33</td>
<td>21.3 (871/4081)</td>
<td>22.8 (927/4057)</td>
<td>0.10</td>
</tr>
<tr>
<td>PCI – stents*</td>
<td>100% (5610/5610)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BMS</td>
<td>26.6% (1490/5610)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DES</td>
<td>73.4% (4120/5610)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>First-generation DES</td>
<td>39.2% (2199/5610)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Newer-generation DES</td>
<td>34.2% (1920/5610)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PCI – number of stents</td>
<td>3.1 ± 2.0 (4935)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CABG – LIMA use</td>
<td>-</td>
<td>96.2% (4574/4753)</td>
<td>-</td>
</tr>
<tr>
<td>CABG – BIMA use</td>
<td>-</td>
<td>18.7% (771/4122)</td>
<td>-</td>
</tr>
<tr>
<td>CABG – off-pump</td>
<td>-</td>
<td>27.5% (1085/3945)</td>
<td>-</td>
</tr>
<tr>
<td>Aspirin at discharge</td>
<td>97.3% (4487/4612)</td>
<td>95.5% (3814/3994)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Thienopyridine at discharge</td>
<td>96.7% (4479/4630)</td>
<td>45.1% (1815/4026)</td>
<td><0.0001</td>
</tr>
<tr>
<td>DAPT at discharge</td>
<td>95.1% (4384/4612)</td>
<td>44.0% (1759/3994)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Statin at discharge</td>
<td>88.1% (3052/3464)</td>
<td>84.0% (2843/3384)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Beta-blocker at discharge</td>
<td>79.1% (2741/3464)</td>
<td>76.2% (2557/3356)</td>
<td>0.0040</td>
</tr>
<tr>
<td>Treatment</td>
<td>Discharge</td>
<td>p Value</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>ACEi or ARB at discharge</td>
<td>63.7% (2205/3464)</td>
<td>46.9% (1588/3383)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Calcium-channel blocker at discharge</td>
<td>27.7% (959/3463)</td>
<td>21.8% (736/3383)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

*Data only for patients who were randomized to PCI and indeed underwent PCI. The type of DES used was not available for one patient enrolled in the VA CARDS trial. Values are present as mean ± SD or n/N (%). PCI, percutaneous coronary intervention; CABG, coronary artery bypass grafting; ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blocker; BMI, body mass index; BMS = bare-metal stent; TIA, transitory ischemic attack; CVA, cerebrovascular attack; MI, myocardial infarction; LVEF, left ventricular ejection fraction; DES, drug-eluting stents; LIMA, left internal mammary artery; BIMA, bilateral internal mammary artery; DAPT, dual antiplatelet therapy.
Table 2. Five-year mortality outcomes in all patients and according to multivessel or left main disease

<table>
<thead>
<tr>
<th></th>
<th>All patients</th>
<th>Multivessel disease</th>
<th>Left main disease</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CABG (n=5765)</td>
<td>PCI (n=5753)</td>
<td>CABG (n=3520)</td>
</tr>
<tr>
<td>Overall mortality</td>
<td>9.2% (437/5765)</td>
<td>11.2% (539/5753)</td>
<td>8.9% (279/3520)</td>
</tr>
<tr>
<td>Diabetes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>10.7% (185/2171)</td>
<td>15.7% (278/2215)</td>
<td>10.0% (134/1622)</td>
</tr>
<tr>
<td>No</td>
<td>8.4% (252/3594)</td>
<td>8.7% (261/3538)</td>
<td>8.0% (145/1898)</td>
</tr>
<tr>
<td>SYNTAX score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-22</td>
<td>8.1% (100/1585)</td>
<td>8.8% (105/1533)</td>
<td>8.4% (51/691)</td>
</tr>
<tr>
<td>23-32</td>
<td>10.9% (122/1545)</td>
<td>12.4% (163/1677)</td>
<td>9.5% (59/775)</td>
</tr>
<tr>
<td>≥33</td>
<td>11.6% (83/9276)</td>
<td>16.5% (117/871)</td>
<td>10.9% (38/423)</td>
</tr>
</tbody>
</table>

Percentages are from unadjusted Kaplan-Meier estimates; the number of events is provided between brackets. Hazard ratios with confidence intervals and p-values are from random-effects Cox proportional hazards models stratified by trial. CABG, coronary artery bypass grafting; PCI, percutaneous coronary intervention; P_int = P for interaction.
Table 3. Differences in patient characteristics among BMS and DES trials.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>BMS (n=3051)</th>
<th>All DES (n=8467)</th>
<th>P-Value</th>
<th>First-generation DES (n=4300)</th>
<th>Newer-generation DES (n=3969)</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>60·8 ± 10·1 (3051)</td>
<td>64·7 ± 9·6 (8467)</td>
<td><0·0001</td>
<td>63·8 ± 9·5 (4300)</td>
<td>65·7 ± 9·6 (3969)</td>
<td><0·0001</td>
</tr>
<tr>
<td>Female sex</td>
<td>23·2% (707/3051)</td>
<td>24·1% (2037/8467)</td>
<td>0·32</td>
<td>25·3% (1087/4300)</td>
<td>23·9% (948/3969)</td>
<td>0·14</td>
</tr>
<tr>
<td>BMI >30 kg/m²</td>
<td>22·3% (578/2593)</td>
<td>30·0% (8424/2528)</td>
<td><0·0001</td>
<td>32·4% (1388/4290)</td>
<td>25·6% (1010/3939)</td>
<td><0·0001</td>
</tr>
<tr>
<td>Smoking current</td>
<td>27·5% (843/3049)</td>
<td>20·4% (1704/8355)</td>
<td><0·0001</td>
<td>19·6% (833/4260)</td>
<td>21·2% (827/3900)</td>
<td>0·0642</td>
</tr>
<tr>
<td>Diabetes</td>
<td>17·8% (543/3051)</td>
<td>45·4% (3843/8467)</td>
<td><0·0001</td>
<td>59·2% (2544/4300)</td>
<td>27·7% (1101/3969)</td>
<td><0·0001</td>
</tr>
<tr>
<td>Insulin treated</td>
<td>3·4% (48/1396)</td>
<td>14·1% (1001/7083)</td>
<td><0·0001</td>
<td>19·0% (818/4299)</td>
<td>6·6% (185/2784)</td>
<td><0·0001</td>
</tr>
<tr>
<td>Hypertension</td>
<td>51·1% (1558/3051)</td>
<td>73·9% (6235/8436)</td>
<td><0·0001</td>
<td>76·5% (3278/4287)</td>
<td>70·1% (2770/3954)</td>
<td><0·0001</td>
</tr>
<tr>
<td>Hypercholesterolemia</td>
<td>58·3% (1776/3047)</td>
<td>72·1% (6068/8414)</td>
<td><0·0001</td>
<td>75·4% (3230/4285)</td>
<td>69·2% (2727/3938)</td>
<td><0·0001</td>
</tr>
<tr>
<td>Peripheral vascular disease</td>
<td>7·6% (233)</td>
<td>8·7% (631/7271)</td>
<td>0·0813</td>
<td>9·2% (396/4300)</td>
<td>7·5% (208/2776)</td>
<td>0·0116</td>
</tr>
<tr>
<td>Carotid artery disease</td>
<td>5·6% (25/450)</td>
<td>8·2% (304/3696)</td>
<td>0·0479</td>
<td>8·2% (148/1800)</td>
<td>8·2% (156/1896)</td>
<td>0·99</td>
</tr>
<tr>
<td>Previous TIA or CVA</td>
<td>3·3% (47/1438)</td>
<td>6·4% (424/6668)</td>
<td><0·0001</td>
<td>5·8% (215/3688)</td>
<td>6·8% (189/2782)</td>
<td>0·11</td>
</tr>
<tr>
<td>Previous MI</td>
<td>42·1% (1285/1766)</td>
<td>21·7% (1570/7243)</td>
<td><0·0001</td>
<td>25·8% (1105/4280)</td>
<td>13·9% (384/2768)</td>
<td><0·0001</td>
</tr>
<tr>
<td>Moderate LVEF (30-49%)</td>
<td>16·1% (442/2746)</td>
<td>14·3% (1144/7987)</td>
<td>0·0239</td>
<td>15·7% (668/4242)</td>
<td>11·9% (425/3568)</td>
<td><0·0001</td>
</tr>
<tr>
<td>Poor LVEF (<30%)</td>
<td>0·1% (4/2746)</td>
<td>1·2% (99/7987)</td>
<td><0·0001</td>
<td>1·6% (66/4242)</td>
<td>0·6% (21/3568)</td>
<td><0·0001</td>
</tr>
<tr>
<td>Unstable angina pectoris</td>
<td>41·2% (850/2063)</td>
<td>32·7% (2703/8255)</td>
<td><0·0001</td>
<td>31·8% (1369/4287)</td>
<td>33·7% (1334/3955)</td>
<td>0·0672</td>
</tr>
<tr>
<td>Three-vessel disease</td>
<td>41·9% (1280/3051)</td>
<td>70·6% (3774/5348)</td>
<td><0·0001</td>
<td>69·4% (2976/4287)</td>
<td>77·2% (679/3969)</td>
<td><0·0001</td>
</tr>
<tr>
<td>Left main disease</td>
<td>1·0% (29/3051)</td>
<td>52·5% (4449/8467)</td>
<td><0·0001</td>
<td>30·5% (1313/4300)</td>
<td>79·0% (3136/3969)</td>
<td><0·0001</td>
</tr>
<tr>
<td>Mean follow-up (years)</td>
<td>4·7 ± 1·0 (2795)</td>
<td>3·5 ± 1·4 (7726)</td>
<td><0·0001</td>
<td>4·0 ± 1·4 (3830)</td>
<td>3·1 ± 1·2 (3723)</td>
<td><0·0001</td>
</tr>
</tbody>
</table>

BMI, body mass index; BMS, bare-metal stents; TIA, transitory ischemic attack; CVA, cerebrovascular attack; MI, myocardial infarction; LVEF, left ventricular ejection fraction; DES, drug-eluting stents
FIGURE LEGENDS

Figure 1. Mortality after coronary artery bypass grafting versus percutaneous coronary intervention during 5-year of follow-up. Kaplan-Meier estimates are from the overall pooled patient population. The hazard ratio (HR) with confidence intervals is derived from a Cox proportional hazards random-effects model stratified by trial. CABG, coronary artery bypass grafting; PCI, percutaneous coronary intervention.

Figure 2. Mortality after coronary artery bypass grafting versus percutaneous coronary intervention during 5-year follow-up in subgroup analyses according to baseline and procedural characteristics. Kaplan-Meier estimates are from the overall pooled patient population. Hazard ratios (HRs) with confidence intervals (CIs) are derived from Cox proportional hazards random-effects models stratified by trial. HR, hazard ratio; CI, confidence interval.

Figure 3. Mortality after coronary artery bypass grafting versus percutaneous coronary intervention during 5-year follow-up of patients with and without diabetes mellitus (A and B), and with left main or multivessel disease (C and D). Kaplan-Meier estimates are from the overall pooled patient population. Hazard ratios (HRs) with confidence intervals (CIs) are derived from Cox proportional hazards random-effects models stratified by trial. CABG, coronary artery bypass grafting; DM, diabetes mellitus; LM, left main disease; MVD, multivessel disease; PCI, percutaneous coronary intervention.
Figure 1. Mortality after coronary artery bypass grafting versus percutaneous coronary intervention during 5-year of follow-up. Kaplan-Meier estimates are from the overall pooled patient population. The hazard ratio (HR) with confidence intervals is derived from a Cox proportional hazards random-effects model stratified by trial. CABG, coronary artery bypass grafting; PCI, percutaneous coronary intervention.
Figure 2. Mortality after coronary artery bypass grafting versus percutaneous coronary intervention during 5-year follow-up in subgroup analyses according to baseline and procedural characteristics. Kaplan-Meier estimates are from the overall pooled patient population. Hazard ratios (HRs) with confidence intervals (CIs) are derived from Cox proportional hazards random-effects models stratified by trial. HR, hazard ratio; CI, confidence interval.
Figure 3. Mortality after coronary artery bypass grafting versus percutaneous coronary intervention during 5-year follow-up of patients with and without diabetes mellitus (A and B), and with left main or multivessel disease (C and D). Kaplan-Meier estimates are from the overall pooled patient population. Hazard ratios (HRs) with confidence intervals (CIs) are derived from Cox proportional hazards random-effects models stratified by trial. CABG, coronary artery bypass grafting; DM, diabetes mellitus; LM, left main disease; MVD, multivessel disease; PCI, percutaneous coronary intervention.
APPENDICES

APPENDIX 1. Study selection flow-chart

MEDLINE (n=823) EMBASE (n=709) Cochrane (n=315)

19 trials

Excluded trials (n=7)
- Non-LM SVD: SIMA trial\(^1\), Diegeler et al\(^3\), Thiele et al\(^4\), Drenth et al\(^5\), and Hong et al\(^6\)
- No 100% stent use: AWESOME trial\(^7\)
- Only 1-year follow-up: Boudriot et al\(^8\), and CARDia trial\(^9\)

Investigators contacted (n=12 trials)

Excluded trial (n=1)
- Unable to provide data: LE MANS trial\(^2\)

Included trials (n=11)
- ERACI II (n=450)
- ARTS (n=1205)
- MASS-II (n=408)
- SoS (n=988)
- SYNTAX (n=1800)
- PRECOMBAT (n=600)
- FREEDOM (n=1900)
- VA CARDS (n=198)
- BEST (n=880)
- NOBLE (n=1184)
- EXCEL (n=1905)
APPENDIX 2. Baseline and procedural characteristics in individual trials.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>ERACI II (n=450)</th>
<th>ARTS (n=1205)</th>
<th>MASS-II (n=408)</th>
<th>SoS (n=988)</th>
<th>SYNTAX (n=1800)</th>
<th>PRECOMBAT (n=600)</th>
<th>FREEDOM (n=1900)</th>
<th>VA CARDS (n=198)</th>
<th>BEST (n=880)</th>
<th>NOBLE (n=1184)</th>
<th>EXCEL (n=1905)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study location</td>
<td>Argentina</td>
<td>Europe, South America, Australasia</td>
<td>Brazil</td>
<td>Europe, Canada</td>
<td>Europe, US</td>
<td>Korea</td>
<td>North America, South America, Europe, India, Australasia</td>
<td>US</td>
<td>Asia</td>
<td>Europe</td>
<td>North America, South America, Europe, India, Australasia</td>
</tr>
<tr>
<td>Heart team composition</td>
<td>"Clinical cardiologist, interventionalist, cardiac surgeon"</td>
<td>"Interventionalist and cardiac surgeon"</td>
<td>"Interventionalist and cardiac surgeon"</td>
<td>"Interventionalist and cardiac surgeon"</td>
<td>"Physicians and surgeons"</td>
<td>Not explicitly reported</td>
<td>"Interventionalist and cardiothoracic surgeon"</td>
<td>"Physicians and surgeons"</td>
<td>"Interventionalist and cardiac surgeon"</td>
<td>"Interventionalist and cardiac surgeon"</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>60.7 ± 10.2</td>
<td>60.6 ± 10.8</td>
<td>59.8 ± 9.0</td>
<td>61.4 ± 9.3</td>
<td>65.1 ± 9.7</td>
<td>62.2 ± 9.7</td>
<td>62.1 ± 9.1</td>
<td>62.4 ± 7.2</td>
<td>64.5 ± 9.4</td>
<td>66.2 ± 9.7</td>
<td>65.9 ± 9.6</td>
</tr>
<tr>
<td>Female sex</td>
<td>21% (93/450)</td>
<td>23% (283/1205)</td>
<td>31% (125/408)</td>
<td>21% (206/988)</td>
<td>22% (402/1800)</td>
<td>24% (141/600)</td>
<td>29% (544/1900)</td>
<td>1% (2/198)</td>
<td>29% (251/880)</td>
<td>22% (141/600)</td>
<td>23% (441/1905)</td>
</tr>
<tr>
<td>BMI >30 kg/m²</td>
<td>NA</td>
<td>22% (260/1203)</td>
<td>25% (100/408)</td>
<td>22% (220/982)</td>
<td>32% (579/1799)</td>
<td>3% (20/595)</td>
<td>42% (709/1896)</td>
<td>68% (132/195)</td>
<td>4% (35/880)</td>
<td>29% (336/1155)</td>
<td>34% (639/1904)</td>
</tr>
<tr>
<td>Smoking current</td>
<td>52% (233/540)</td>
<td>27% (323/1203)</td>
<td>33% (134/408)</td>
<td>15% (149/988)</td>
<td>21% (363/1760)</td>
<td>29% (172/600)</td>
<td>16% (298/1990)</td>
<td>25% (48/195)</td>
<td>20% (177/880)</td>
<td>24% (235/1170)</td>
<td>24% (415/1850)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>17% (78/450)</td>
<td>17% (208/1205)</td>
<td>29% (115/408)</td>
<td>14% (142/988)</td>
<td>25% (452/1800)</td>
<td>32% (192/600)</td>
<td>100% (190/1900)</td>
<td>100% (198/198)</td>
<td>100% (363/880)</td>
<td>41% (184/1184)</td>
<td>29% (554/1905)</td>
</tr>
<tr>
<td>Insulin treated</td>
<td>NA</td>
<td>5% (20/408)</td>
<td>3% (28/988)</td>
<td>10% (182/1800)</td>
<td>3% (19/600)</td>
<td>32% (615/1900)</td>
<td>NA</td>
<td>4% (38/880)</td>
<td>NA</td>
<td>8% (147/1895)</td>
<td>8% (147/1895)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>71% (318/450)</td>
<td>45% (540/1205)</td>
<td>62% (253/408)</td>
<td>45% (447/988)</td>
<td>75% (1349/1787)</td>
<td>53% (317/600)</td>
<td>85% (1612/1900)</td>
<td>96% (591/880)</td>
<td>67% (775/1182)</td>
<td>66% (1404/1892)</td>
<td>74% (1404/1892)</td>
</tr>
<tr>
<td>Hypercholesterolemia</td>
<td>61% (275/450)</td>
<td>58% (694/1201)</td>
<td>73% (298/408)</td>
<td>52% (509/988)</td>
<td>78% (1391/1785)</td>
<td>41% (247/600)</td>
<td>84% (1592/1900)</td>
<td>58% (461/880)</td>
<td>52% (946/1813)</td>
<td>80% (1320/1875)</td>
<td>70% (1320/1875)</td>
</tr>
<tr>
<td>Peripheral vascular disease</td>
<td>23% (103/450)</td>
<td>5% (64/1205)</td>
<td>0% (0/408)</td>
<td>7% (66/988)</td>
<td>10% (177/1800)</td>
<td>4% (22/600)</td>
<td>10% (197/1900)</td>
<td>14% (27/195)</td>
<td>3% (27/880)</td>
<td>9% (181/1986)</td>
<td>9% (181/1986)</td>
</tr>
<tr>
<td>Carotid artery</td>
<td>6% (25/450)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>8% (NA)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0%</td>
</tr>
<tr>
<td>disease</td>
<td>(148/1800)</td>
<td>(156/1896)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous TIA/stroke</td>
<td>2% (10/450)</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NA</td>
<td>4% (37/988)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8% (150/1788)</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3% (65/1900)</td>
<td>10% (20/198)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8% (70/879)</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6% (119/1903)</td>
<td></td>
</tr>
<tr>
<td>Previous MI</td>
<td>28% (126/450)</td>
<td>43% (520/1205)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>47% (191/408)</td>
<td>45% (448/988)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>33% (585/1780)</td>
<td>6% (33/567)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26% (487/1900)</td>
<td>42% (81/195)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4% (54/880)</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6% (330/1888)</td>
<td></td>
</tr>
<tr>
<td>Moderate VEF (30-49%)</td>
<td>20% (88/446)</td>
<td>17% (189/1121)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4% (16/408)</td>
<td>19% (149/771)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5% (313/1800)</td>
<td>7% (26/542)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5% (329/1900)</td>
<td>12% (51/177)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12% (90/744)</td>
<td>12% (120/1020)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor LVEF (<30%)</td>
<td>0% (0/446)</td>
<td>0% (0/1121)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1% (0/408)</td>
<td>2% (34/1800)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1% (4/771)</td>
<td>7% (5/542)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1% (27/1900)</td>
<td>1% (12/177)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1% (5/744)</td>
<td></td>
</tr>
<tr>
<td>Unstable angina pectoris</td>
<td>92% (412/450)</td>
<td>36% (438/1205)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0% (0/408)</td>
<td>0% (0/988)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29% (513/1800)</td>
<td>45% (272/600)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>31% (584/1900)</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NA</td>
<td>44% (384/880)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17% (206/1183)</td>
<td>39% (744/1892)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of lesions</td>
<td>2.6 ± 0.6</td>
<td>2.8 ± 1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.8 ± 0.8</td>
<td>2.8 ± 1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0 ± 1.7</td>
<td>2.6 ± 1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.0 ± 1.0</td>
<td>6.0 ± 1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.4 ± 1.2</td>
<td>1.7 ± 1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Three-vessel disease</td>
<td>49% (220/450)</td>
<td>33% (403/1205)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>58% (238/408)</td>
<td>42% (419/988)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>61% (1095/1800)</td>
<td>51% (308/600)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>83.4% (1573/1887)</td>
<td>66% (120/181)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>77% (679/880)</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left main disease</td>
<td>5% (21/450)</td>
<td>0.1% (1/1205)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0% (0/408)</td>
<td>1% (7/988)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>39% (705/1800)</td>
<td>100% (600/600)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100% (9/1900)</td>
<td>0% (0/198)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5% (47/880)</td>
<td>100% (118/1184)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100% (1905/1905)</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYNTAX score</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28.7 ± 11.4</td>
<td>25.1 ± 10.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26.2 ± 8.6</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24.8 ± 7.7</td>
<td>22.4 ± 7.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26.5 ± 9.3</td>
<td></td>
</tr>
<tr>
<td>PCI – DES used</td>
<td>0% (0/222)</td>
<td>0% (0/593)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0% (0/205)</td>
<td>0% (0/488)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100% (885/885)</td>
<td>100% (276/276)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100% (939/939)</td>
<td>99% (92/93)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100% (413/413)</td>
<td>100% (580/580)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100% (935/935)</td>
<td></td>
</tr>
<tr>
<td>DES type</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paclitaxel</td>
<td>Sirolimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paclitaxel and Sirolimus</td>
<td>Mixed paclitaxel, sirolimus, everolimus, zotarolimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Everolimus</td>
<td>Majority Biolimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Everolimus</td>
<td></td>
</tr>
<tr>
<td>PCI – number of stents</td>
<td>1.4 ± 0.6</td>
<td>1.2 ± 0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.6 ± 1.4</td>
<td>4.6 ± 2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.7 ± 1.4</td>
<td>4.1 ± 1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.4 ± 1.4</td>
<td>2.2 ± 1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.4 ± 1.5</td>
<td></td>
</tr>
<tr>
<td>CABG – LIMA use</td>
<td>95% (198/209)</td>
<td>95% (188/198)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>93% (450/485)</td>
<td>97% (827/854)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>94% (233/248)</td>
<td>94% (843/893)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100% (382/382)</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>96% (545/565)</td>
<td>99% (908/923)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CABG – BIMA use</td>
<td>0.5% (1/209)</td>
<td>32% (65/203)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10% (50/485)</td>
<td>28% (236/854)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12% (110/893)</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NA</td>
<td>8% (44/549)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29% (265/923)</td>
<td></td>
</tr>
<tr>
<td>CABG – off-pump</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15% (128/854)</td>
<td>63% (155/248)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18% (165/893)</td>
<td>32% (26/82)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>66% (252/382)</td>
<td>16% (88/564)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>94% (271/293)</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete revascularization</td>
<td>68% (303/448)</td>
<td>82% (992/1205)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>57% (224/408)</td>
<td>70% (693/988)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60% (1043/1741)</td>
<td>69% (416/600)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>90% (1701/1900)</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>61% (518/855)</td>
<td>94% (543/577)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspirin at discharge</td>
<td>100% (450/450)</td>
<td>98% (391/397)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>98% (1633/1766)</td>
<td>98% (593/600)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>98% (1826/1867)</td>
<td>97% (172/176)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>93% (852/880)</td>
<td>98% (539/580)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>98% (1823/1867)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>53% (238/450)</td>
<td>NA</td>
<td>48% (194/408)</td>
<td>NA</td>
<td>59% (1037/1766)</td>
<td>94% (565/600)</td>
<td>62% (1158/1867)</td>
<td>55% (96/176)</td>
<td>93% (818/880)</td>
<td>97% (566/580)</td>
<td>66% (1227/1867)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------</td>
<td>----</td>
<td>---------------</td>
<td>----</td>
<td>-----------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Thienopyridine at discharge</td>
<td>53% (238/450)</td>
<td>NA</td>
<td>47% (187/397)</td>
<td>NA</td>
<td>56% (987/1766)</td>
<td>93% (560/600)</td>
<td>81% (1513/1867)</td>
<td>54% (94/176)</td>
<td>92% (806/880)</td>
<td>92% (532/580)</td>
<td>65% (1204/1867)</td>
</tr>
<tr>
<td>DAPT at discharge</td>
<td></td>
<td>NA</td>
<td></td>
<td>NA</td>
<td>56% (1425/1766)</td>
<td>88% (431/592)</td>
<td>83% (1566/1770)</td>
<td>NA</td>
<td>83% (733/880)</td>
<td>NA</td>
<td>95% (1740/1840)</td>
</tr>
<tr>
<td>Statin at discharge</td>
<td></td>
<td>NA</td>
<td></td>
<td>NA</td>
<td>80% (1412/1766)</td>
<td>51% (303/592)</td>
<td>83% (1477/1770)</td>
<td>NA</td>
<td>56% (489/880)</td>
<td>NA</td>
<td>89% (1617/1812)</td>
</tr>
<tr>
<td>Beta-blocker at</td>
<td></td>
<td>NA</td>
<td></td>
<td>NA</td>
<td>80% (1042/1766)</td>
<td>33% (198/592)</td>
<td>75% (1334/1770)</td>
<td>NA</td>
<td>35% (307/880)</td>
<td>NA</td>
<td>50% (912/1839)</td>
</tr>
<tr>
<td>discharge</td>
<td></td>
<td>NA</td>
<td></td>
<td>NA</td>
<td>59% (391/1766)</td>
<td>54% (320/592)</td>
<td>23% (405/1770)</td>
<td>NA</td>
<td>52% (459/880)</td>
<td>NA</td>
<td>7% (120/1838)</td>
</tr>
<tr>
<td>ACEI or ARB at discharge</td>
<td></td>
<td>NA</td>
<td></td>
<td>NA</td>
<td>22% (391/1766)</td>
<td>54% (320/592)</td>
<td>23% (405/1770)</td>
<td>NA</td>
<td>52% (459/880)</td>
<td>NA</td>
<td>7% (120/1838)</td>
</tr>
<tr>
<td>Calcium-channel blocker at discharge</td>
<td></td>
</tr>
<tr>
<td>Mean follow-up (years)</td>
<td>4.7 ± 1.1</td>
<td>4.8 ± 0.9</td>
<td>4.5 ± 1.3</td>
<td>4.7 ± 0.9</td>
<td>4.4 ± 1.4</td>
<td>4.7 ± 1.0</td>
<td>3.5 ± 1.4</td>
<td>1.4 ± 0.9</td>
<td>4.0 ± 1.3</td>
<td>3.2 ± 1.5</td>
<td>2.6 ± 0.7</td>
</tr>
</tbody>
</table>

*Data are available only for the PCI group.

†In the VA CARDS trial, the cut-off for a moderate LVEF was 35-55%.

Values are present as mean ± SD or n/N (%). NA, not available; ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blocker; PCI, percutaneous coronary intervention; CABG, coronary artery bypass grafting; BMI, body mass index; TIA, transitory ischemic attack; CVA, cerebrovascular attack; MI, myocardial infarction; LVEF, left ventricular ejection fraction; DES, drug-eluting stents; LIMA, left internal mammary artery; BIMA, bilateral internal mammary artery; DAPT, dual antiplatelet therapy
APPENDIX 3. Assessment of risk of bias in individual trials.

<table>
<thead>
<tr>
<th>Trial</th>
<th>Random sequence generation</th>
<th>Allocation concealment</th>
<th>Blinding patients and personnel</th>
<th>Blinding outcome assessment</th>
<th>Incomplete outcome data</th>
<th>Selective reporting</th>
<th>Other Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERACI II</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>ARTS</td>
<td>?</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>MASS-II</td>
<td>?</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>SoS</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>SYNTAX</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>PRECOMBAT</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>FREEDOM</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>VA CARDS</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>BEST</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>NOBLE</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>EXCEL</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

The assessment of "Random sequence generation" was rated "?" for the ARTS and MASS-II trials because it was not specified exactly how randomization took place.

The assessment of "Allocation concealment" was rated standard as "-" for all trials because patients had to be informed on the allocated procedure, since these trials evaluate interventional procedures. The assessment of "Blinding of patients and personnel" was rated standard as "-" for all trials because the two interventional procedures evaluated are inherently different and patients cannot be blinded. The assessment of "Blinding of outcome assessment" was rated standard as "+" for all trials as no bias can be introduced for the endpoint of all-cause mortality, and thus blinding is irrelevant; yet still a clinical events committee reviewed all events. The assessment of "Incomplete outcome data" was "-" for the SYNTAX trial because >10% of patients after CABG were lost to follow-up, while this rate was only 3.5% after PCI. The assessment of "Selective reporting" was rated "+" for all trials because all trials reported all-cause mortality. The assessment of "Other bias" was rated as "-" in the RECOMBAT, VA CARDS, and BEST trials because a relatively high percentage (>10%) of patients did not receive the allocated treatment because of cross over or no interventional treatment.
APPENDIX 4. Information on randomization and actual treatments performed.
APPENDIX 5. Time-dependent models of PCI versus CABG

<table>
<thead>
<tr>
<th>Patient group</th>
<th>First hazard</th>
<th></th>
<th></th>
<th>Frailty term (θ)</th>
<th>P for heterogeneity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time interval</td>
<td>HR [95% CI]</td>
<td>Time interval</td>
<td>HR [95% CI]</td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>All</td>
<td>0-365 days</td>
<td>0.97 [0.80-1.19]</td>
<td>365-1825 days</td>
<td>1.38 [1.17-1.62]</td>
</tr>
<tr>
<td>Diabetes</td>
<td>0-280 days</td>
<td>1.05 [0.78-1.42]</td>
<td>280-1825 days</td>
<td>1.76 [1.38-2.24]</td>
<td>0.11</td>
</tr>
<tr>
<td>No diabetes</td>
<td>0-280 days</td>
<td>0.84 [0.62-1.15]</td>
<td>280-1825 days</td>
<td>1.12 [0.90-1.37]</td>
<td>0.0880</td>
</tr>
<tr>
<td>SYNTAX score 0-22</td>
<td>0-470 days</td>
<td>0.63 [0.41-0.99]</td>
<td>470-1825 days</td>
<td>1.40 [0.97-2.01]</td>
<td>0.0454</td>
</tr>
<tr>
<td>SYNTAX score 23-32</td>
<td>0-470 days</td>
<td>1.03 [0.72-1.46]</td>
<td>280-1825 days</td>
<td>1.36 [0.99-1.87]</td>
<td>0.0657</td>
</tr>
<tr>
<td>SYNTAX score ≥33</td>
<td>0-470 days</td>
<td>1.83 [1.18-2.82]</td>
<td>280-1825 days</td>
<td>1.34 [0.93-1.95]</td>
<td>0.0191</td>
</tr>
<tr>
<td>Bare-metal stent</td>
<td>0-730 days</td>
<td>0.90 [0.64-1.27]</td>
<td>730-1825 days</td>
<td>1.22 [0.86-1.73]</td>
<td>0.16</td>
</tr>
<tr>
<td>Drug-eluting stent</td>
<td>0-500 days</td>
<td>1.08 [0.87-1.34]</td>
<td>500-1825 days</td>
<td>1.45 [1.18-1.77]</td>
<td>0.36</td>
</tr>
<tr>
<td>First-generation drug-eluting stent</td>
<td>0-730 days</td>
<td>1.12 [0.87-1.45]</td>
<td>730-1825 days</td>
<td>1.31 [1.01-1.73]</td>
<td>0.23</td>
</tr>
<tr>
<td>Newer-generation drug-eluting stent</td>
<td>0-180 days</td>
<td>0.68 [0.43-1.10]</td>
<td>180-1825 days</td>
<td>1.65 [1.21-2.25]</td>
<td>0.13</td>
</tr>
<tr>
<td>MVD</td>
<td>All</td>
<td>0-280 days</td>
<td>0.99 [0.76-1.29]</td>
<td>280-1825 days</td>
<td>1.46 [1.20-1.77]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0-280 days</td>
<td>280-1825 days</td>
<td>0-16</td>
<td><0-0001</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>------------</td>
<td>---------------</td>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>Diabetes</td>
<td></td>
<td>0-370 days</td>
<td>370-1825 days</td>
<td>0-16</td>
<td><0-0001</td>
</tr>
<tr>
<td>No diabetes</td>
<td></td>
<td>0-600 days</td>
<td>600-1825 days</td>
<td>0-16</td>
<td><0-0001</td>
</tr>
<tr>
<td>SYNTAX score 0-22</td>
<td></td>
<td>0-600 days</td>
<td>600-1825 days</td>
<td>0-16</td>
<td><0-0001</td>
</tr>
<tr>
<td>SYNTAX score 23-32</td>
<td></td>
<td>0-600 days</td>
<td>600-1825 days</td>
<td>0-16</td>
<td><0-0001</td>
</tr>
<tr>
<td>SYNTAX score ≥33</td>
<td></td>
<td>0-600 days</td>
<td>600-1825 days</td>
<td>0-16</td>
<td><0-0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0-730 days</td>
<td>730-1825 days</td>
<td>0-16</td>
<td><0-0001</td>
</tr>
<tr>
<td>DM</td>
<td></td>
<td>0-570 days</td>
<td>570-1825 days</td>
<td>0-16</td>
<td><0-0001</td>
</tr>
<tr>
<td>SYNTAX score 0-22</td>
<td></td>
<td>0-570 days</td>
<td>570-1825 days</td>
<td>0-16</td>
<td><0-0001</td>
</tr>
<tr>
<td>SYNTAX score 23-32</td>
<td></td>
<td>0-570 days</td>
<td>570-1825 days</td>
<td>0-16</td>
<td><0-0001</td>
</tr>
<tr>
<td>SYNTAX score ≥33</td>
<td></td>
<td>0-570 days</td>
<td>570-1825 days</td>
<td>0-16</td>
<td><0-0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0-730 days</td>
<td>730-1825 days</td>
<td>0-16</td>
<td><0-0001</td>
</tr>
<tr>
<td>SYNTAX score 0-22</td>
<td></td>
<td>0-730 days</td>
<td>730-1825 days</td>
<td>0-16</td>
<td><0-0001</td>
</tr>
<tr>
<td>SYNTAX score 23-32</td>
<td></td>
<td>0-730 days</td>
<td>730-1825 days</td>
<td>0-16</td>
<td><0-0001</td>
</tr>
<tr>
<td>SYNTAX score ≥33</td>
<td></td>
<td>0-730 days</td>
<td>730-1825 days</td>
<td>0-16</td>
<td><0-0001</td>
</tr>
<tr>
<td>NO DM</td>
<td>SYNTAX score</td>
<td>0-730 days</td>
<td>730-1825 days</td>
<td>730-1825 days</td>
<td>0-730 days</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td>---------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>0-22</td>
<td>0.91 [0.52-1.59]</td>
<td>0.99 [0.55-1.79]</td>
<td><0.0001</td>
<td>0.0193</td>
</tr>
<tr>
<td></td>
<td>23-32</td>
<td>0.54 [0.34-1.21]</td>
<td>730-1825 days</td>
<td>730-1825 days</td>
<td>0.0193</td>
</tr>
<tr>
<td></td>
<td>≥33</td>
<td>1.00 [1.00-3.23]</td>
<td>1.00 [0.58-1.73]</td>
<td>0.0089</td>
<td>0.0884</td>
</tr>
</tbody>
</table>

Results of time-dependent models provide a hazard ratio for a first time interval and a second interval with the duration of this interval being dependent on when the hazard changes, which can be different according to the patient cohort. CI, confidence interval; DM, diabetes mellitus; HR, hazard ratio.
APPENDIX 6. Five-year outcomes within groups with and without diabetes according to SYNTAX score tertiles.

<table>
<thead>
<tr>
<th>SYNTAX score</th>
<th>Diabetes</th>
<th>No diabetes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PCI (n=1819)</td>
<td>CABG (n=1782)</td>
</tr>
<tr>
<td>0-22</td>
<td>13.0% (58/622)</td>
<td>9.8% (53/655)</td>
</tr>
<tr>
<td>23-32</td>
<td>15.1% (101/814)</td>
<td>12.5% (67/723)</td>
</tr>
<tr>
<td>≥33</td>
<td>20.0% (63/383)</td>
<td>12.3% (38/404)</td>
</tr>
</tbody>
</table>

Kaplan-Meier estimates are from the overall pooled patient population. Hazard ratios (HRs) with confidence intervals (CIs) are derived from Cox proportional hazards random-effects models stratified by trial.
APPENDIX 7. Supplementary references in the appendix.

