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PSEUDO-EXPONENTIAL MAPS, VARIANTS, AND

QUASIMINIMALITY

MARTIN BAYS AND JONATHAN KIRBY

Abstract. We give a construction of quasiminimal fields equipped with pseudo-
analytic maps, generalising Zilber’s pseudo-exponential function. In particular
we construct pseudo-exponential maps of simple abelian varieties, including
pseudo-℘-functions for elliptic curves. We show that the complex field with
the corresponding analytic function is isomorphic to the pseudo-analytic ver-
sion if and only the appropriate version of Schanuel’s conjecture is true and the

corresponding version of the strong exponential-algebraic closedness property
holds. Moreover, we relativize the construction to build a model over a fairly
arbitrary countable subfield and deduce that the complex exponential field
is quasiminimal if it is exponentially-algebraically closed. This property asks
only that the graph of exponentiation have non-trivial intersection with certain
algebraic varieties but does not require genericity of these points. Furthermore
Schanuel’s conjecture is not required as a condition for quasiminimality.
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1. Introduction

1.1. Exponential fields. The field C of complex numbers is well-known to be
strongly minimal, that is, any subset of C definable in the ring language is either
finite or cofinite. Consequently the model theory of C is very tame: there is a very
well-understood behaviour of the models (one model of each uncountable cardinal-
ity, known as uncountable categoricity) and of the definable sets (they have finite
Morley rank and we can understand them geometrically in terms of algebraic vari-
eties). The other most important mathematical field, the field R of real numbers,
is o-minimal which means that although the class of models is not well-behaved
(not classifiable) there is a very good geometric understanding of the definable sets
(they are the semialgebraic sets). Remarkably, Wilkie showed that when the real
exponential function ex is adjoined, the structure Rexp is still o-minimal [Wil96].
Adjoining the complex exponential function ez to C gives the structure Cexp which
cannot be well-behaved in terms of the class of models or the definable sets because
it interprets the ring Z. However, Zilber suggested that in the model Cexp itself,
the influence of Z might only extend to the countable subsets of C. He made the
following conjecture.

Conjecture 1.1 (Zilber’s weak quasiminimality conjecture). The complex expo-
nential field Cexp = 〈C; +, ·, exp〉 is quasiminimal, that is, every subset of C defin-
able in Cexp is either countable or co-countable.

A slightly stronger version of the conjecture which avoids reference to definable
sets is that every automorphism-invariant subset is countable or co-countable. As
far as we are aware, all known approaches to the conjecture would give this stronger
result anyway. If the conjecture is true then the solution sets of exponential polyno-
mial equations, which we can call complex exponential varieties, would be expected
to have good geometric properties similar to those of algebraic varieties, provided
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we avoid some exceptional cases like Z. If the conjecture is false, another possibility
is that R is definable as a subset of C. The field R with Z as a definable subset is
so-called second-order arithmetic, and the definable sets are extremely wild, with
no geometric properties in general.

As one approach to his conjecture, Zilber [Zil00], [Zil05b] showed how to con-
struct a quasiminimal exponential field we call B using a variant of Hrushovski’s
predimension method from [Hru93]. He called B a pseudo-exponential field with
the idea that the exponential map is a pseudo-analytic function.

Zilber’s approach was to prove that a certain list of axioms ECFSK,CCP in the
infinitary logic Lω1,ω(Q) behaves in an analogous way to a strongly minimal first-
order theory. In particular, all its models are quasiminimal and it is uncountably
categorical.

Theorem 1.2. Up to isomorphism there is exactly one model of the axioms ECFSK,CCP

of each uncountable cardinality, and it is quasiminimal.

This theorem appears in [Zil05b]. Some gaps in the proof were filled in the
unpublished note [BK13], which this paper supersedes. In this paper we give a
new construction of B and hence a complete proof of Theorem 1.2. The theorem
suggests a stronger form of the quasiminimality conjecture which evidently implies
Conjecture 1.1.

Conjecture 1.3 (Strong quasiminimality conjecture). Cexp is isomorphic to the
unique model B of ECFSK,CCP of cardinality continuum.

The axioms in ECFSK,CCP will be explained in Section 8, but briefly there are
two algebraic axioms which are obviously true in Cexp and then three more axioms:
Schanuel’s conjecture, strong exponential-algebraic closedness, and the countable
closure property. Schanuel’s conjecture is a conjecture of transcendental number
theory which can be seen as saying that certain systems of exponential polynomial
equations do not have solutions. Strong exponential-algebraic closedness roughly
says that a system of equation has solutions (even generic over any given finite
set) unless that would contradict Schanuel’s conjecture. The countable closure
property says roughly that such systems of equations which are balanced, in the
sense of having the same number of equations as variables, have only countably
many solutions. Zilber proved the countable closure property for Cexp, so we have
the following reformulation.

Theorem 1.4. Conjecture 1.3 is true if and only if Schanuel’s conjecture is true
and Cexp is strongly exponentially-algebraically closed.

Theorems 1.2 and 1.4 together imply that if Cexp satisfies Schanuel’s conjec-
ture and is strongly exponentially-algebraically closed then it is quasiminimal.
Schanuel’s conjecture is considered out of reach, since even the very simple conse-
quence that the numbers e and π are algebraically independent is unknown. Proving
strong exponential-algebraic closedness involves finding solutions of certain systems
of equations and then showing they are generic, the latter step usually done using
Schanuel’s conjecture. A weaker condition is exponential-algebraic closedness which
requires the same systems of equations to have solutions, but says nothing about
their genericity. We are able to remove the dependence on Schanuel’s conjecture
completely from Conjecture 1.1.

Theorem 1.5. If Cexp is exponentially-algebraically closed then it is quasiminimal.

1.2. A more general construction: Γ-fields. Our construction is more general
and we can use it to construct also a pseudo-analytic version of the Weierstrass
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℘-functions, the exponential maps of simple abelian varieties, and more gener-
ally other pseudo-analytic subgroups of the product of two commutative algebraic
groups. For example, we prove an analogous form of Theorems 1.2 and 1.4 for
℘-functions. The list of axioms ℘CFSK,CCP(E) and the other notions used in the
statement of the theorem will be explained in section 9.3 of the paper.

Theorem 1.6. Given an elliptic curve E over a number field K0 ⊆ C, the list
℘CFSK,CCP(E) of axioms is uncountably categorical and every model is quasi-
minimal. Furthermore, if ℘ is the Weierstrass function associated to E(C), so
expE = [℘ : ℘′ : 1] : C → E(C) is the exponential map of E(C), then C℘ :=
〈C; +, ·, expE〉 |= ℘CFSK,CCP(E) if and only if the analogue of Schanuel’s conjec-
ture for ℘ holds and C℘ is strongly ℘-algebraically closed.

In the most general form, we consider what we call Γ-fields, which are fields
F of characteristic zero equipped with a subgroup Γ(F ) of a product G1(F ) ×
G2(F ) where G1 and G2 are commutative algebraic groups. The complete def-
inition is given in section 3.1, where we also explain how the examples we con-
sider fit into cases (EXP), generalizing the exponential and Weierstrass ℘-functions
above, (COR), generalizing analytic correspondences between non-isogenous elliptic
curves, and (DEQ), generalizing the solution sets of certain differential equations.

Hrushovski used Fräıssé’s amalgamation method which produces countable struc-
tures. Zilber wanted uncountable structures so he instead framed his constructions
in terms of existentially closed models within a certain category. He gave a frame-
work of quasiminimal excellent classes [Zil05a], building on Shelah’s notion of an
excellent Lω1,ω-sentence [She83], to prove the uniqueness of the uncountable mod-
els. The second author showed [Kir10b] that the quasiminimal excellence conditions
can be checked just on the countable models, and with Hart, Hyttinen and Kesälä
we proved in [BH2K214] that the most complicated of the conditions to check, excel-
lence, follows from the other conditions. So in this paper we recast the construction
in 4 stages.

1. We start with a suitable base Γ-field Fbase, and describe a category C(Fbase) of
so-called strong extensions of Fbase.

2. We apply a suitable version of Fräıssé’s amalgamation theorem to the category
to produce a countable model M(Fbase).

3. We check that M(Fbase) satisfies the conditions to be part of a quasiminimal
class, and deduce there is a unique model of cardinality continuum we denote
by M(Fbase).

4. We give the axioms ΓCFCCP(Fbase) describing the class.

As a more general form of Theorem 1.2 we prove:

Theorem 1.7. Given an essentially finitary Γ-field Fbase of type (EXP), (COR),
or (DEQ), the list of axioms ΓCFCCP(Fbase) is uncountably categorical and every
model is quasiminimal.

Our notion of Γ-fields is algebraic and not every example is related to an analytic
prototype. However cases (EXP) and (COR) do have many analytic examples, given
in Definitions 3.1 and 3.2. We call these analytic Γ-fields. For these we are able
to prove the countable closure property, extending Zilber’s result for Cexp and the
equivalent result in [JKS16] for ℘-functions.

Theorem 1.8. Let CΓ be an analytic Γ-field. Then CΓ satisfies the countable
closure property.

One of the key ideas of this paper is that the amalgamation construction is done
over a base Γ-field Fbase, and that everything is done relative to that base. Pushing
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this idea further, we can also work over a base which is closed with respect to
the quasiminimal pregeometry on the model Fbase. This involves modifying the
amalgamation construction so we only consider extensions of Fbase in which Fbase

remains closed with respect to the pregeometry. This idea comes from differential
fields, where the base would be the field of constants and one often wants to consider
differential field extensions with no new constants. One advantage of this approach
for us is that Ax’s versions of Schanuel’s conjecture then apply to say that Schanuel’s
conjecture is true relative to the base in the analytic Γ-fields.

In the paper [KZ14] it was shown that, assuming the Conjecture on Intersec-
tions with Tori (CIT, also known as the multiplicative Zilber-Pink conjecture),
any exponential field satisfying Schanuel’s conjecture and exponential-algebraic
closedness is actually strongly exponentially-algebraically closed. In this paper
we are able to adapt that idea to show unconditionally that the difference be-
tween Γ-closedness and strong Γ-closedness (the analogues of exponential-algebraic
closedness and strong exponential-algebraic closedness) disappears if we consider
the generic version, meaning relative to a closed base. Instead of the CIT we use
a theorem which we call the horizontal semiabelian weak Zilber-Pink, a theorem
about intersections of families of algebraic varieties with cosets of algebraic sub-
groups of semiabelian varieties. This method allows us to prove Theorem 1.5 and
a more general version:

Theorem 1.9. Let CΓ be an analytic Γ-field. If CΓ is Γ-closed then it is quasi-
minimal.

1.3. An overview of the paper. In section 2 we explain our conventions on view-
ing algebraic varieties and their profinite covers in a model-theoretic way. We also
explain the relationship between subgroups and endomorphisms of the commutative
algebraic groups we study.

In section 3 we define our Γ-fields and their finitely generated extensions. We
prove that finitely generated extensions of suitable (so-called essentially finitary)
Γ-fields are determined by good bases, and that these good bases exist and are
determined by finite data from a countable range of possibilities. This is the key
step in proving the form of ℵ0-stability which is essential for the existence of quasi-
minimal models. The main tool here is Kummer theory over torsion for abelian
varieties.

In section 4 we introduce the predimension notion and use it to define which
extensions of Γ-fields are strong. We also use it to define a pregeometry on Γ-fields.
Then we show that there is a unique full-closure of an essentially finitary Γ-field,
and classify the strong finitely generated extensions of Γ-fields and of full Γ-fields.
This completes stage 1 of the construction as described above.

Section 5 covers stage 2 of the construction. We recall a category-theoretic ver-
sion of Fräıssé’s amalgamation theorem which is suitably general for us. Then,
starting with a suitable base Γ-field Fbase, we consider the category C(Fbase) of
strong extensions of Fbase and apply the amalgamation theorem to get a count-
able Fräıssé limit M(Fbase). We also consider a variant amalgamating only the Γ-
algebraic extensions and another variant where we consider only extensions which
are purely Γ-transcendental over Fbase.

In section 6 we show that the Fräıssé limit models we have produced are quasi-
minimal pregeometry structures, and hence give rise to uncountably categorical
classes. In this way we get the uncountable models, in particular the model
M(Fbase) of cardinality continuum. This is stage 3.

In section 7 we give a classification of the finitely generated strong extensions
of Γ-fields, and in section 8 we use that to give axiomatizations of our models and
prove Theorem 1.7. This completes stage 4.
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In section 9 we consider specific instances of our Γ-fields including pseudo-
exponentiation, pseudo Weierstrass ℘-functions, and others, and prove Theorem 1.2
and half of Theorem 1.6.

In section 10 we compare our models to the complex analytic prototypes. For
Weierstrass ℘-function we relate the Schanuel property to the André-Grothendieck
conjecture on the periods of 1-motives, using work of Bertolin, finishing the proof
of Theorem 1.6. We briefly discuss the literature on steps towards proving the
strong Γ-closedness and Γ-closedness properties for analytic Γ-fields. Then we prove
Theorem 1.8.

In section 11 we consider Γ-fields which may not be Γ-closed but are generically
so. These are the Γ-fields produced by the variant construction in which the base
Fbase remains closed with respect to the pregeometry. We state and prove the
horizontal semiabelian weak Zilber-Pink, and then prove Theorems 1.5 and 1.9.

Acknowledgements. Some of this work was carried out in the Max Planck Insti-
tute for Mathematics, Bonn during the programme on Model Theory and Appli-
cations, Spring 2012. Further work was carried out at the Mathematical Sciences
Research Institute, Berkeley, during the programme on Model Theory, Arithmetic
Geometry and Number Theory, Spring 2014, which was supported by the NSF un-
der Grant No. 0932078 000. Our thanks to both institutions for their support and
hospitality. We would like to thank Boris Zilber and Misha Gavrilovich for useful
discussions. Particular thanks are due to Juan Diego Caycedo, whose suggestions
on building a pseudo-℘-function were part of the initial foundations of this project,
and who further contributed to the project in its earlier stages.

2. Algebraic background

2.1. Algebraic varieties and groups. We will use the standard model-theoretic
foundations for algebraic varieties and algebraic groups, as described by Pillay
[Pil98], roughly following Weil. In particular, we will work in the theory ACF0

with parameters for a field K0. Any variety V is considered as a definable set,
and using elimination of imaginaries it is in definable bijection with a constructible
subset of affine space. We always assume we have chosen such a bijection, although
we will not mention it explicitly. Given any field extension F of K0, we write V (F )
for the points of V all of whose coordinates lie in F . In this way, V is a functor
from the category of field extensions of its field of definition to the category of
sets. Similarly, given any subset A ⊆ V (F ), we can form the subfield of F which is
generated by (the co-ordinates of) the points in A.

In the same way, a commutative algebraic groupG, defined overK0, is considered
as a functor from the category of field extensions of K0 to the category of abelian
groups. If G is an algebraic O-module, that is, the ring O acts on G via regular
endomorphisms, defined overK0, we can also consider it as a functor to the category
of O-modules.

Ga denotes the additive group, Ga(F ) = 〈F ; +〉, and Gm denotes the multiplica-
tive group, Gm(F ) = 〈F×; ·〉.

An algebraic group is connected if it has no proper finite index algebraic sub-
groups. The connected component Go of an algebraic group G is the largest con-
nected algebraic subgroup.

We write G[m] for the m-torsion subgroup of an algebraic group G.
If G is a commutative algebraic group over a field of characteristic 0, we write

LG for the (commutative) Lie algebra of G, the tangent space at the identity

considered as an algebraic group. So LG ∼= G
dim(G)
a . If θ : G → G′ is an algebraic

group homomorphism, then Lθ : LG → LG′ is the derivative at the identity.
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For algebraic groups over C, these definitions agree with the usual definitions for
complex Lie groups.

2.2. Subgroups and endomorphisms. Any connected algebraic subgroup H of
a power Gn

m of the multiplicative group can be defined by a system of monomial
equations, H = ker(M) for some integer square matrix M ∈ Matn(Z) acting mul-
tiplicatively. Then LH ≤ LGn

m = Gn
a is the kernel of the same matrix acting

additively.
As we observe in the following lemma, the picture is almost the same when we

replace Gm with an abelian variety G and Z with its endomorphism ring End(G):
up to finite index, subgroups are defined by O-linear equations, namely those which
define the corresponding Lie subalgebra. With a few self-contained exceptions, this
lemma is essentially all we will use of the theory of abelian varieties.

Lemma 2.1. Suppose G is Gm or an abelian variety over a field of characteristic
0, and O = End(G) is its endomorphism ring. Then

(i) any connected algebraic subgroup H ≤ Gn is the connected component of the
kernel of an endomorphism η ∈ End(Gn) ∼= Matn(O),

H = ker(η)o;

(ii) LH ≤ LGn is then the kernel of Lη ∈ End(LGn).

Proof. (i) By Poincaré’s complete reducibility theorem [Mum70, p173], there ex-
ists an algebraic subgroup H ′ such that the summation map Σ : H×H ′ → Gn

is an isogeny, that is, a surjective homomorphism with finite kernel. Let m
be the exponent of the kernel of Σ. Then θ(Σ(h, h′)) := (mh,mh′) defines an
isogeny θ : Gn → H × H ′. Let π2 : H ×H ′ → H ′ be the projection. Then
(π2 ◦θ ◦Σ)(h, h′) = mh′, so ker(π2 ◦θ)o = (Σ(H×H ′[m]))o = (H+H ′[m])o =
H .

(ii) Since H ⊆ ker(η), the derivative Lη of η at 0 vanishes on LH , so LH 6

ker(Lη). Also ker(Lη) = L ker(η), so we have

dim(ker(Lη)) = dim(L ker(η))

= dim(ker(η)) since 0 is a smooth point

= dimH since H has finite index in ker(η)

= dimLH again since 0 is a smooth point.

So LH has finite index in ker(Lη), but ker(Lη) 6 LGn which is torsion-free,
so ker(Lη) is connected, so LH = ker(Lη).

�

2.3. Division points and the profinite cover.

Definition 2.2. Let G be a commutative group and let a ∈ G. A division point
of a in G is any b ∈ G such that, for some m ∈ N+, mb = a.

A division sequence for a in G is a sequence (am)m∈N+ in G such that a1 = a
and for all m,n ∈ N+ we have nanm = am.

If (am)m∈N+ is a division sequence for a in G we can define a group homomor-
phism θ : Q → G by θ( r

m
) = ram for r ∈ Z and m ∈ N+. This gives a bijective

correspondence between division sequences for a in G and group homomorphisms
θ : Q → G such that θ(1) = a.

Definition 2.3. The profinite cover Ĝ of a commutative group G is the group of
all homomorphisms Q → G, with the group structure defined pointwise in G. We

write ρG : Ĝ→ G for the evaluation homomorphism given by ρG(θ) = θ(1).
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Thus the set of division sequences for a in G is in bijective correspondence with

ρ−1
G (a), and we think of elements of Ĝ both as homomorphisms from Q and as

division sequences.

The group Ĝ itself is divisible and torsion-free. The image of ρG is the subgroup
of divisible points of G, and ρG is injective if and only if G is torsion-free. In
general, ker(ρG) is a profinite group built from the torsion of G (in fact it is, the
product over primes l of the l-adic Tate modules of G).

For an element a ∈ G, we will often use the notation â for a chosen element of

Ĝ such that ρG(â) = a. Of course â is determined by a only when ρG is injective,
that is, when G is torsion-free.

If f : G → H is a group homomorphism, we can lift it to a homomorphism

f̂ : Ĝ → Ĥ defined by θ 7→ f ◦ θ. In particular, if G ⊆ H is a subgroup then

Ĝ is naturally a subgroup of Ĥ . (In category-theoretic language, ̂ is a covariant

representable functor and in fact ρG : Ĝ → G is the universal arrow from the
category of divisible, torsion-free abelian groups into G.)

When G is a commutative algebraic group we think of Ĝ also as a functor, so

we write Ĝ(F ) rather than Ĝ(F ) for the group of division sequences of the group
G(F ).

Model-theoretically we think of Ĝ as the set of division sequences from G, which
is a set of infinite tuples satisfying the divisibility conditions. It can be seen as an
inverse limit of definable sets, sometimes called a pro-definable set [Kam07].

Remark 2.4. Suppose that G is a Lie group, for example the complex points of a
complex algebraic group, and exp : LG→ G is the exponential map. For a ∈ LG,
the sequence (exp(a/m))m∈N+ is a division sequence in G. In fact, the division
sequences which arise this way are precisely those which converge topologically to
the identity of G [BHP14, Remark 2.20].

3. Γ-fields

3.1. Γ-fields. In this section we describe the analytic examples we are studying
and give the definition of a Γ-field which is intended to capture and generalize the
model-theoretic algebra of the examples.

Definition 3.1 (Analytic Γ-fields of type (EXP)). The graph of the usual complex
exponential function is a subgroup of Ga(C) × Gm(C). Similarly, if A(C) is a
complex abelian variety (or more generally any commutative complex algebraic
group) of dimension d, then the graph Γ of the exponential map of A is a subgroup
of LA(C)× A(C). Here LA(C) is the Lie algebra of A and we can identify it with
the group Gd

a(C). In this paper we will only consider the cases when A is Gm or
A is a simple abelian variety of dimension d. We combine these by saying A is a
simple semiabelian variety.

We write O for the ring End(A) of algebraic endomorphisms of A. In many
cases O = Z, but sometimes, for example if A is an elliptic curve with complex
multiplication, then O properly extends Z. Any η ∈ O acts on LA as the derivative
dη, a linear map. Thus O naturally acts on LA(C) as a subring of GLd(C), and Γ
is an O-submodule of LA(C)×A(C).

In the case where A is an elliptic curve E, embedded in projective space P2 in the
usual way via its Weierstrass equation, then the exponential map of E(C) is written
in homogeneous coordinates as z 7→ (℘(z) : ℘′(z) : 1), where ℘ is the Weierstrass
℘-function associated with E.

We call all of these examples analytic Γ-fields of type (EXP).
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Definition 3.2 (Analytic Γ-fields of type (COR)). The exponential map of a com-
plex elliptic curve factors through Gm(C), giving an analytic map θ : Gm(C) →
E(C). More generally there are analytic correspondences between semiabelian
varieties. We take G1 and G2 both to be simple complex semiabelian varieties
of the same dimension d, and assume G1 and G2 are not isogenous. Suppose
End(G1) and End(G2) are both isomorphic to a ring O, and furthermore there
is a C-vector space isomorphism ψ : LG1 → LG2 which respects the actions of
O. We choose such a ψ and take Γ to be the image of the graph of ψ under
expG1×G2

: LG1(C) × LG2(C) → G1(C) × G2(C). Then Γ is an O-submodule of
G1(C)×G2(C), and a complex Lie-subgroup. The graph of the map θ is an example
of such a Γ, but more generally Γ will not be the graph of a function.

We call these examples analytic Γ-fields of type (COR). By an analytic Γ-field
we mean one of type (EXP) or type (COR).

Definition 3.3 (Differential equation examples). If f(t) is a holomorphic function
in a neighbourhood of 0 ∈ C, then the pair (x, y) = (f(t), exp(f(t))) satisfies the

differential equation Dx = Dy
y
, where D = d

dt . We can consider the set Γ of solu-

tions of the differential equation not just in a field of functions but in a differentially
closed field F . Then Γ is a subgroup of Ga(F ) ×Gm(F ). The paper [Kir09] stud-
ies this situation for the differential equations satisfied by the exponential maps of
semiabelian varieties S. While these S do not have to be simple, they do have to
be defined over the constant field C of F . In these cases the group Γ is quite closely
related to the graph of the exponential map and can be analysed via a similar
amalgamation construction.

We capture all of these three types of examples in the notion of a Γ-field. We
next give the assumptions we will use on the algebraic groups, and then define
Γ-fields. The assumptions we make are not the most general possible, but they are
what we will use throughout this paper.

Definition 3.4 (Conventions forK0, G2, O, and kO). We takeK0 to be a countable
field of characteristic 0, which must be a number field except in case (DEQ) below.
Let G2 be a simple semiabelian variety defined over K0.

We write O for the ring End(G2) of algebraic (that is, regular) group endomor-
phisms of G2 and assume that they are also all defined over K0. Let kO denote the
ring Q⊗Z O.

Remarks 3.5. The ring O has no zero divisors because G2 is simple. So O embeds
in kO. If O = Z then kO is just Q. Every non-zero algebraic group endomorphism
of a simple abelian variety is an isogeny, so becomes invertible in kO. Hence kO is
a division ring, and the O-torsion of any O-module is exactly the Z-torsion.

Definition 3.6 (Conventions for G1, G, and the torsion). We consider two cases
for the choice of G1, corresponding to the above analytic examples.

Case (EXP): We take G1 = Gd
a, where d = dimG2. We identify G1 with

the Lie algebra LG2, that is, the tangent space at the identity of G2. As in
the analytic case, this identification makes G1 into an algebraic O-module,
that is, an O-module in which every element of O acts as a regular map.

Case (COR): G1 is also a simple semiabelian variety defined over K0, and
with all its algebraic endomorphisms defined over K0. We assume G1 is
not isogenous to G2, but End(G1) ∼= O and we choose an isomorphism, so
G1 ×G2 becomes an algebraic O-module over K0.

Let G = G1×G2, and write πi : G→ Gi for the projection maps of the product,
for i = 1, 2. We will write the groups G1, G2 and G additively.
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For i = 1, 2 the torsion of Gi is contained in Gi(K
alg
0 ), and hence is bounded. We

write Tori for the torsion of Gi(F ) for any F such that G(F ) contains Tor(G(Kalg
0 )).

The torsion of G(F ) is written Tor(G). It is equal to (Tor1 ×Tor2) ∩G(F ).

Remarks 3.7. Note that for any algebraically closed field F extending K0 the
groups Gi(F ) and G(F ) are divisible O-modules. Furthermore, G(F )/Tor(G) is
divisible and torsion-free, and hence is a kO-vector space.

Definition 3.8 (Γ-fields). A Γ-field (with respect to the O-module G) is a field
extension A of K0 equipped with a divisible O-submodule Γ(A) of G(A) such that

(1) A is generated as a field by Γ(A).
(2) The projection πi(Γ(A)) in Gi(A) contains Tori for i = 1, 2.

We write Γi(A) for the projections πi(Γ(A)). The Γ-field A is full if, in addition,
A is algebraically closed and the projections Γi(A) are equal to Gi(A).

The kernels of a Γ-field A are defined to be

ker1(A) := {x ∈ G1(A) | (x, 0) ∈ Γ(A)} ,

ker2(A) := {y ∈ G2(A) | (0, y) ∈ Γ(A)} .

When A is full and ker2(A) is trivial, Γ(A) will be the graph of a surjective O-
module homomorphism from G1(F ) to G2(F ) with kernel ker1(F ) as in the analytic
examples of type (EXP). However the case (EXP) for our Γ-fields is more general.

The most difficult part of this paper uses the Kummer theory of semiabelian vari-
eties over number fields. This is not needed for the differential equations examples,
or more generally in the following variant.

Definition 3.9 (Case (DEQ)). A Γ-field in case (DEQ) is the same as above
except that we require the full torsion group Tor(G) to be contained in Γ(A), and
we relax the assumption that K0 is a number field so it can be any countable field
of characteristic 0.

Definition 3.10 (Extensions of Γ-fields). An extension of a Γ-field A is a Γ-field
B together with an inclusion of fields A ⊆ B over K0 such that Γ(A) ⊆ Γ(B). We
also say that A is a Γ-subfield of B. We say an extension A ⊆ B preserves the
kernels, and that A and B have the same kernels, if keri(A) = keri(B), for i = 1, 2.

In this paper, we will only consider extensions of Γ-fields which preserve the
kernels.

Remarks 3.11 (Γ-fields as model-theoretic structures).

(1) Model-theoretically, we consider a Γ-field as a structure in the 1-sorted first-
order language LΓ = 〈+, ·,−,Γ, (ca)a∈K0〉, where Γ is a relation symbol of
appropriate arity to denote a subset of the groupG, and we have parameters
for the field K0. Later we will also be adding parameters for a base Γ-field
Fbase.

(2) However, our notion of Γ-field extension corresponds to an injective LΓ-
homomorphism, not necessarily an LΓ-embedding. Specifically, it is not
necessary in an extension A →֒ B of Γ-fields that Γ(B) ∩ G(A) = Γ(A),
although in most cases we will consider later that will be true.

(3) Although we use the 1-sorted language with the sort being that of the
underlying field, we will also refer to elements of Γ as being from the sort
Γ, rather than from the definable set Γ. Model theorists used to working
with Leq will see there is no important difference.
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(4) By definition, the Γ-field A is determined by the submodule Γ(A) of G(F ).
Furthermore, an extension A →֒ B is determined by the inclusion of sub-
modules Γ(A) →֒ Γ(B). Thus, if F is a monster model of ACF0, the
category of Γ-fields is equivalent to the category of divisible O-submodules
of G(F ) (whose projections contain Tor1 and Tor2), with embeddings, in a
first-order language with relation symbols for all of the Zariski-closed sub-
sets of G(F ) which are defined overK0. This is more-or-less Zilber’s setting
in [Zil05b].

Remark 3.12. One might also consider the case that G1 and G2 are equal (or,
which comes to essentially the same thing, isogenous). Γ can then be considered as
the graph of a new (quasi)endomorphism of G1. The situation is complicated by
the need to consider the extension of the algebraic endomorphism ring generated by
Γ. Analytic examples include raising to a complex power on Gm, which is analysed
with a different setup in [Zil03] and [Zil11].

In an earlier draft of this paper we tried to incorporate this into our setup, and
in fact produced an example where Γ was the graph of a multivalued endomorphism

θ on Gm, lifting to a generic action of the ring Q[θ, θ−1] on the profinite cover Ĝm.
However this is subtly different from giving an action of the field Q(θ) which is
what occurs for complex powers.

While we expect that such Γ can be treated along the lines of this paper, much
as we expect that the simplicity assumption on the semiabelian variety could be
relaxed, these elaborations are left to future work.

3.2. Finitely generated extensions.

Definition 3.13. Let B be a Γ-field, and let {Aj | j ∈ J } be a set of Γ-subfields
of B, each with the same kernels as B. We define

∧
j∈J Aj to be the Γ-subfield A

of B such that Γ(A) =
⋂

j∈J Γ(Aj).

Lemma 3.14.
∧

j∈J Aj is a Γ-subfield of B.

The proof is straightforward, but we give the details because they show exactly
where all the hypotheses of the definitions are used.

Proof. Let A =
∧

j∈J Aj . Since Γ(A) is defined as the intersection of a set of O-

submodules of Γ(B), it is also an O-submodule of Γ(B). A is defined as the subfield
of B generated by the coordinates of the points in Γ(A), so Γ(A) is an O-submodule
of G(A).

If a ∈ ker1(B), then (a, 0) ∈ Γ(Aj) for all j ∈ J because ker1(Aj) = ker1(B), so
(a, 0) ∈ Γ(A). So ker1(A) = ker1(B) and similarly ker2(A) = ker2(B).

If a ∈ Tor1 = Tor1(B) then there is b ∈ G2(B) such that (a, b) ∈ Γ(B). Fur-
thermore for any b′ ∈ G2(B) we have (a, b′) ∈ Γ(B) if and only if b′ − b ∈ ker2(B).
For each j ∈ J , Aj is a Γ-subfield of B, so Γ1(Aj) contains Tor1(B), so there is
b′ such that (a, b′) ∈ Γ(Aj). But ker2(Aj) = ker2(B) by assumption, so we have
(a, b) ∈ Γ(Aj), and since this holds for all j we have (a, b) ∈ Γ(A). Thus Γ1(A)
contains Tor1(B), and similarly Γ2(A) contains Tor2(B).

In particular, Γ(A) contains all the torsion from Γ(B), so since it is the inter-
section of divisible O-submodules, it is itself divisible as an O-submodule of G(A).
Hence A is a Γ-subfield of B. �

Definition 3.15. Let B be a Γ-field and X ⊆ Γ(B) a subset. We say that

A =
∧

{A′, a Γ-subfield of B with the same kernels as B |X ⊆ Γ(A′)}

is the Γ-subfield generated by X , and write it as 〈X〉B or, more usually with the B
suppressed, as 〈X〉.
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We say A is a finitely generated Γ-field if Γ(A) is of finite rank as an O-module,
or equivalently as a Z-module. Equivalently, A is generated by a finite subset and
ker1(A) and ker2(A) are of finite rank.

Note that a finitely generated Γ-field will not usually be finitely generated as a
field, because we insist that Γ(A) is a divisible O-submodule.

If Y is a subset of Γ(A), we say that A is finitely generated over Y if there is a
finite subset X of Γ(A) such that A is the Γ-subfield of itself generated by X ∪ Y .
In particular, for Y a Γ-subfield of A, we have the notion of a finitely-generated
extension of Γ-fields. It is easy to see that an extension A →֒ B of Γ-fields is finitely
generated if and only if ldimkO

(Γ(B)/Γ(A)) is finite.

Definition 3.16. The intersection of full Γ-subfields of B (with the same kernels
as B) is again a full Γ-subfield. Thus we can define a full Γ-field A to be finitely
generated as a full Γ-field if there is a finite subset X of A such that

A =
∧

{A′, a full Γ-subfield of A with the same kernels as A |X ⊆ Γ(A′)}

Likewise there is the notion of being finitely generated as a full Γ-field extension.

Except in trivial cases, a finitely generated full Γ-field will not be finitely gener-
ated as a Γ-field, and a finitely generated full Γ-field extension will not be finitely
generated as a Γ-field extension.

Definition 3.17. Recall that an O-submodule H of G is pure in G if whenever
x ∈ G and nx ∈ H for some n ∈ N+, then x ∈ H .

Lemma 3.18. If A is the Γ-subfield of B generated by X, then Γ(A) is the pure
O-submodule of Γ(B) generated by X ∪ π−1

1 (Tor1) ∪ π
−1
2 (Tor2).

Proof. This pure O-submodule together with the field it generates is a Γ-subfield
of B with the same kernels as B, so it suffices to see that it is contained in Γ(Aj)
for any Aj in the definition.

Γ(Aj) contains X by definition, and since πi(Γ(Aj)) = Tori and Aj has the same

kernels as B, it also contains π−1
i (Tori). Hence it also contains Tor(G)∩Γ(B). Since

it is divisible, it follows that it is pure in Γ(B). �

3.3. Good bases. Let A be a Γ-field, and B a finitely generated Γ-field extension
of A. So the linear dimension ldimkO

(Γ(B)/Γ(A)) is finite. Thus we can find a
basis for the extension, by which we mean a tuple b = (b1, . . . , bn) ∈ Γ(B)n of
minimal length n such that b ∪ Γ(A) generates Γ(B), or equivalently such that
b1 + Γ(A), . . . , bn + Γ(A) is a basis for the quotient kO-vector space Γ(B)/Γ(A).

We consider the locus Loc(b/A) of b, that is, the smallest Zariski-closed subset
of G, defined over A and containing b.

Definition 3.19. A basis b ∈ Γ(B)n for a finitely generated extension A →֒ B
of Γ-fields is good if the isomorphism type of the extension is determined up to
isomorphism by the locus Loc(b/A). That is, whenever B′ is another extension of
A which is generated by a basis b′ such that Loc(b′/A) = Loc(b/A) then there is an
isomorphism of Γ-fields B ∼= B′ fixing A pointwise, which takes b to b′.

Proposition 3.20. Suppose we are in case (DEQ), that is Tor(G) ⊆ Γ. Let A →֒ B
be a finitely generated extension of Γ-fields. Then every basis of the extension is
good.

Proof. Suppose b is a basis of B over A, and we have another extension B′ of A
with basis b′ such that Loc(b′/A) = Loc(b/A). There is a (not necessarily unique)
field isomorphism θ : B ∼= B′ over A which takes b to b′. Now for an element
c ∈ G(B) we have c ∈ Γ(B) if and only if there is m ∈ N such that mc is in the
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O-linear span of Γ(A) and b, because Γ(B) is divisible and contains all the torsion
of G. It follows that c ∈ Γ(B) if and only if θ(c) ∈ Γ(B′), so θ is an isomorphism
of Γ-field extensions. So b is a good basis. �

In the proof it is critical that Tor(G) ⊆ Γ since otherwise some division points of
the basis will be in Γ but others will not. In general we can specify an extension B

of A by specifying a choice of division sequence b̂ for a basis b, such that b̂ ∈ Γ̂(B).

Definition 3.21. A Γ-field is essentially finitary if it is finitely generated or if it
is a finitely generated extension of a countable full Γ-field.

Proposition 3.22 (Existence of good bases).
Let A be an essentially finitary Γ-field, and let B be a finitely generated Γ-field
extension of A (with the same kernels as A). Let b be a basis for the extension.
Then there is m ∈ N+ such that any mth division point of b in Γ(B) is a good basis.
Furthermore in case (DEQ) we may take m = 1, so every basis is good, and we
may even remove the assumption that A is essentially finitary.

The bulk of the proof is contained in the following Kummer-theoretic results.

Definition 3.23. For a commutative algebraic group H we write T̂ (H) for the

kernel of the map ρH : Ĥ → H . So T̂ (H) is the group of division sequences of the
identity of H (which is the product over primes l of the l-adic Tate modules Tl(H)
of H , hence the notation).

Proposition 3.24. Let H = A × Gr
m be the product of an abelian variety and an

algebraic torus.
Suppose that A is defined over a number field K0, and moreover that every en-

domorphism of A is also defined over K0.
Let D be either Tor(H) or H(L) for an algebraically closed field extension L of

K0 and let K be a finitely generated field extension of K0(D).
Let a ∈ H(K) and suppose that a is free in H over D, that is, in no coset H ′+γ

for a proper algebraic subgroup H ′ of H and γ ∈ D.

Let â = (am)m∈N+ be a division sequence for a in Ĥ(Kalg) and consider the

Kummer map ξa : Gal(Kalg/K) → T̂ (H) given by

ξa(σ) = (σ(am)− am)m∈N+ .

Then ξa does not depend on the choice of division sequence â, so is well-defined,

and the image of ξa is of finite index in T̂ (H).

Remark 3.25. For the groups T̂ (H) which occur in this theorem, the finite in-
dex subgroups are precisely those which are open in the profinite topology, so the

conclusion of the proposition is that ξa(Gal(Kalg/K)) is open in T̂ (H).

Proof of Proposition 3.24. It is straightforward that ξa is well-defined.

First supposeD = Tor(H) andK is a finite extension ofK0(D) - so by increasing
K0, we may assume K = K0(D).

The result then follows from Kummer theory for abelian varieties. For the case
H = A, we refer to [Ber11, Theorem 5.2], and for the generalization to H = A×Gn

m

we refer to [BHP14, Proposition A.9].

Suppose now that D = H(L) where L is an algebraically closed field. In this
case, the result has a Galois-theoretic proof given as [BGH14, Section 3, Claim 2].
In the case that K = K0(D, a), the result follows directly from that claim; in
general, it follows on noting that

ξa(Gal(Kalg/K)) ∼= Gal(K(â)/K) ∼= Gal(K0(D, â)/K ∩K0(D, â)),
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and K ∩K0(D, â) is a finite extension of K0(D, a).
See also references in the introduction of [BGH14] for alternative proofs, and

[Ber11, Theorem 5.3] for an analytic proof.

Finally, suppose D = Tor(H) and K is a finitely generated extension of K0(D).
The result in this case follows from the first two cases. This can be seen model-

theoretically in the context of [BHP14] as a matter of transitivity of atomicity, but
we give here a direct argument.

Say B is the minimal algebraic subgroup of H such that, writing θ : H → H/B
for the quotient map, we have θ(a) ∈ (H/B)(Qalg). Let K ′ = K ∩ Qalg, so K
is a regular extension of K ′ and K ′ is a finite extension of K0(D). Consider the
following diagram

1 0

Gal(Kalg/Qalg(K))

❄
ξa

✲ T̂ (B)

❄

Gal(Kalg/K)

❄
ξa
✲ T̂ (H)

❄

Gal(Qalg/K ′)

❄
ξθ(a)
✲ T̂ (H/B)

❄

1
❄

0
❄

where the middle horizontal map is the Kummer map for a, the top map is its re-
striction, and the bottom map is the Kummer map for θ(a). The vertical sequences
are exact.

Say a ∈ aB +H(Qalg), where aB ∈ B. By minimality of B, we have that aB is
free in B over B(Qalg). Now the top map agrees with the Kummer map ξaB

in B,
and so by the second case above, the map has finite index image.

Now since a is free in H over Tor(H), we have that θ(a) is free in H/B over
Tor(H/B), so by the first case applied to H/B, the bottom map in the above
diagram also has finite index image.

It follows that the central map has finite index image, as required. �

Now we prove that good bases exist.

Proof of Proposition 3.22. Let b̂ ∈ Γ̂(B)n be a division sequence of the basis b and

write b̂ = (bm)m∈N+ . Then Γ(B) is precisely the O-linear span of Γ(A) and the

bm, so to specify B up to isomorphism it is enough to specify the ACF-type of b̂
over A. A is an essentially finitary Γ-field, so it is either finitely generated or a
finitely generated extension of a countable full Γ-field A0. In the former case, let
D = Tor(G) and and in the latter case let D = G(A0). For i = 1, 2, write bi = πi(b)
and Di = πi(D), and let ai be a kO-basis for πi(Γ(A)) over Di.

We consider the different cases in turn.

Case (EXP) Since the extensions are kernel-preserving, (a2, b2) is kO-linearly inde-

pendent over D2, and so is free in Gn+k
2 over D2.

So, by Proposition 3.24, ξa2,b2(Gal(K0(D, a, b)
alg/K0(D, a, b))) has

finite index in T̂ (Gn+k
2 ). In particular, its intersection with 0× T̂ (Gn

2 )
is of finite index.
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Since A is generated as a field by K0(D, a) and the division points
of a2, it follows that Ξ := ξb2(Gal(A(b)alg/A(b))) has finite index in

T̂ (Gn
2 ). So if m is the exponent of the finite quotient T̂ (Gn

2 )/Ξ, then

mT̂ (Gn
2 ) is a subgroup of Ξ.

Hence, if b′ is anmth division point of b we have ξb′2(Gal(A(b′)alg/A(b′))) =

T̂ (Gn
2 ). So all division sequences of b′ have the same ACF-type over

A(b′), and hence b′ is a good basis for B over A.
Case (COR) Again, since the extensions are kernel-preserving, (ai, bi) is free over

Di for i = 1, 2.
Since G1 and G2 are simple and non-isogenous, every algebraic

subgroup of Gk+n is of the form H1 ×H2 for Hi a subgroup of Gk+n
i ,

so it follows that (a, b) is free in Gk+n over D.
Since A is generated as a field by K0(D) and the division points of

a1 and of a2, we conclude as in case (EXP).
Case (DEQ) was covered in Proposition 3.20.

�

Corollary 3.26. If A is an essentially finitary Γ-field there are, up to isomorphism,
only countably many finitely generated kernel-preserving extensions of A.

Proof. Each extension B has a good basis b, and is determined by Loc(b/A). Since
A is countable there are only countably many algebraic varieties defined over it. �

4. Predimension and strong extensions

4.1. Predimension. We define a predimension function δ as follows.

Definition 4.1. Let A ⊆ B be Γ-fields. For any Γ-subfield X of B that is finitely
generated over A, let

δ(X/A) := trd(X/A)− d ldimkO
(Γ(X)/Γ(A))

where recall d = dimG1 = dimG2.
Note that sinceX is assumed to be finitely generated overA, the linear dimension

ldimkO
(Γ(X)/Γ(A)) is finite, and, since O acts by K0-definable functions and X

is the field generated by Γ(X), trd(X/A) is also finite. Hence the predimension is
well-defined.

As a convention, for any finite b ⊂ Γ(B), we set

δ(b/A) := δ(X/A),

where X = 〈Ab〉, the Γ-subfield of B generated by b ∪ A.

Note that δ(b/A) = trd(b/A)− d ldimkO
(b/Γ(A)).

Lemma 4.2. Let A ⊆ B be Γ-fields.

(1) (Finite character for δ)
If b ⊆ Γ(B) is finite, there is a finitely generated Γ-subfield A0 of A such
that for any intermediate Γ-field A0 ⊆ A′ ⊆ A, we have δ(b/A) = δ(b/A′).

(2) (Addition formula for δ)
Let X,Y be Γ-subfields of B finitely generated over A with X ⊆ Y . Then

δ(Y/A) = δ(Y/X) + δ(X/A).

(3) (Submodularity of δ)
Suppose X,Y are Γ-subfields of B with X finitely generated over X ∧ Y .
Then abbreviating 〈X ∪ Y 〉 by XY we have

δ(XY/Y ) 6 δ(X/X ∧ Y ).
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Proof. (1) Immediate since transcendence degree and kO-linear dimension have
finite character.

(2) Note that the addition formula holds with transcendence degree or linear
dimension in place of δ, so it also holds for δ by linearity.

(3) The submodularity condition is true when δ is replaced by transcendence
degree. Linear dimension is modular, which means

ldimkO
(Γ(XY )/Γ(Y )) = ldimkO

(Γ(X)/Γ(X ∧ Y )),

so by subtracting we get the required submodularity of δ.
�

4.2. Strong extensions.

Definition 4.3. An extension A ⊆ B of Γ-fields is said to be a strong extension if

(1) the extension preserves kernels; and
(2) for every Γ-subfield X of B that is finitely generated over A, δ(X/A) > 0.

In this case, we also say that A is a strong Γ-subfield of B, and write A⊳B.
For arbitrary Γ-fieldsA, B, an embedding A →֒ B is said to be a strong embedding

if the image of A is a strong Γ-subfield of B. To denote that an embedding is strong

we use the notation A
⊳
−֒→ B.

The method of predimensions and strong (also known as self-sufficient) exten-
sions has been widely used since it was introduced by Hrushovski [Hru93]. We now
give a few basic results which are well-known in general, but fundamental to the
later development so it would be inappropriate to omit them. Some of the proofs are
slightly more involved for this setting than the more well-known settings, especially
those where no field is present.

Lemma 4.4. The composition of strong embeddings is strong.

Proof. Suppose A ⊳B and B ⊳ C. Clearly the kernels of C are the same as those
of A, since both are the same as those of B. Let X ⊆ C be finitely generated over
A. Then δ(X/A) = δ(X/X ∧ B) + δ(X ∧B/A) by the addition formula. We have
δ(X/X ∧ B) > δ(XB/B) by submodularity, and δ(XB/B) > 0 because B ⊳ C.
Also δ(X ∧B/A) > 0 because A⊳B. So δ(X/A) > 0. �

Given a strong extension A ⊳ B of Γ-fields, and an intermediate Γ-field X ,
finitely generated over A, it follows that A ⊳ X but it may not be the case that
X ⊳B. However, as Y varies over finitely generated extensions of X inside B, the
predimension δ(Y/A) takes integer values bounded below by 0 because A⊳B. Thus
we can replace X by a finitely generated extension X ′ of X , inside B, such that
δ(X ′/A) is minimal, and from the addition formula for δ it follows that X ′ ⊳B.

The next lemma shows that we can find this X ′ in a canonical way. It is crucial
for understanding the finitely generated Γ-fields we will amalgamate, and it will
allow us to understand the types in our models and prove there are only countably
many of them.

Lemma 4.5. Suppose B is a Γ-field and for each j ∈ J , Aj is a strong Γ-subfield
of B. Then

∧
j∈J Aj is also strong in B.

Proof. The kernels of
∧

j∈J Aj are the same as those of B since they are for each
Aj , so it remains to consider the predimension condition.

First we prove that if A1, A2 ⊳B then A1 ∧A2 ⊳A1. So suppose X is a finitely
generated Γ-field extension of A1 ∧ A2, inside A1. Then

δ(X/A1 ∧ A2) = δ(X/X ∧ A2) > δ(XA2/A2) > 0
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using submodularity and the fact that A2 ⊳B. So A1 ∧A2 ⊳A1, but A1⊳B so, by
Lemma 4.4, A1 ∧ A2 ⊳B. It follows by induction that if J is finite,

∧
j∈J Aj ⊳B.

Now suppose that J is infinite and that X is a Γ-subfield of B which is finitely
generated as an extension of A =

∧
j∈J Aj . Then we have

A = A ∧X =
∧

j∈J

(Aj ∧X).

Each Γ-field Aj ∧ X is in the lattice of Γ-fields intermediate between A and X .
This lattice is isomorphic to the lattice of vector subspaces of the finite-dimensional
vector space Γ(X)/Γ(A) and so has no infinite chains. Thus there is a finite subset
J0 of J such that writing AJ0 =

∧
j∈J0

Aj we have

A =
∧

j∈J

(Aj ∧X) =
∧

j∈J0

(Aj ∧X) = AJ0 ∧X.

Now using the result for finite intersections we have that AJ0 ⊳ B, so using also
submodularity we have

δ(X/A) = δ(X/AJ0 ∧X) > δ(AJ0X/AJ0) > 0

and hence A⊳B as required. �

Consider again a strong extension A⊳B of Γ-fields, and an intermediate Γ-field
X .

Definition 4.6. We define the hull of X in B, ⌈X⌉B (also known as the strong
closure of X or the self-sufficient closure of X) by

⌈X⌉B =
∧

{Y a strong Γ-subfield of B |X ⊆ Y } .

The previous lemma shows that ⌈X⌉B is indeed strong in Y , and we observe also
that if X is finitely generated as an extension of A then so is ⌈X⌉B. Furthermore, if
B⊳C then it is immediate that ⌈X⌉C = ⌈X⌉B, so often we will drop the subscript
B.

Lemma 4.7. The hull operator has finite character. That is, if A ⊳ B and X is
an intermediate Γ-field,

⌈X⌉B =
⋃

{⌈X0⌉B |X0 ⊆ X and X0 is a finitely generated extension of A} .

Proof. Let U be the union in the statement of the lemma. It is immediate from
the definition of the hull that if X0 ⊆ X then ⌈X0⌉B ⊆ ⌈X⌉B. It follows that
U ⊆ ⌈X⌉B. Also X ⊆ U . Now U is a directed union of strong Γ-subfields of B, and
since δ has finite character, it follows that U ⊳B. So ⌈X⌉B ⊆ U , as required. �

Finally in this section we give a useful lemma giving a simple sufficient condition
for an extension of a strong Γ-subfield also to be strong.

Lemma 4.8. If A⊳B and A ⊆ A′ ⊆ B with δ(A′/A) = 0 then A′ ⊳B.

Proof. Let X ⊆ B be a finitely generated extension of A′. Then

δ(X/A′) = δ(X/A)− δ(A′/A) = δ(X/A) > 0.

�
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4.3. Pregeometry. In this section, F is any full Γ-field strongly extending a Γ-
subfield Fbase. We will use the predimension function δ to define a pregeometry
on F . We could drop the assumptions that F is full and that F strongly extends
some Fbase and give a definition along the lines of that done for exponential fields
in [Kir10a] and for Weierstrass ℘-functions in [JKS16]. However, it is sufficient for
our purposes and much more straightforward to do it this way.

Definition 4.9. A Γ-subfield A of F , extending Fbase, is Γ-closed in F , written
A ⊳cl F , if for any A ⊆ B ⊆ F with B finitely generated over A and δ(B/A) 6 0
we have B = A.

Lemma 4.10. (1) If A⊳cl F then A⊳ F .
(2) If A⊳cl F then A is a full Γ-subfield of F .
(3) If Aj ⊳cl F for j ∈ J and A =

∧
j∈J Aj then A⊳cl F .

Proof. (1) Immediate.
(2) Suppose a ∈ G1(F ) is algebraic over A. Since F is full, there is b ∈ G2(F )

with (a, b) ∈ Γ(F ). We have trd((a, b)/A) = trd(b/A) 6 dimG2 = d, so
δ((a, b)/A) 6 d − d ldimkO

((a, b)/Γ(A)). If ldimkO
((a, b)/Γ(A)) = 1 then

δ((a, b)/A) 6 0, so since A is closed in F we have (a, b) ∈ Γ(A). Otherwise
ldimkO

((a, b)/Γ(A)) = 0 so again (a, b) ∈ Γ(A). Similarly if b ∈ G2(F ) is
algebraic over A. Since G1(A) contains all points of G1 that are algebraic
over A, A is an algebraically closed field. Thus A is a full Γ-field.

(3) Suppose δ(B/A) 6 0. By submodularity and Lemma 4.5, for each j we
have δ(BAj/Aj) 6 δ(B/Aj ∧B) = δ(B/A)− δ(Aj ∧B/A) 6 0, so B ⊆ Aj .
Thus B ⊆ A.

�

This notion of Γ-closedness induces a closure operator on the field F .

Definition 4.11. If A ⊆ F is any subset the Γ-closure of A in F is defined to be
the smallest Γ-closed Γ-subfield containing A,

ΓclF (A) =
∧

{B ⊳cl F |A ⊆ B } .

ΓclF (A) is a Γ-subfield of F , and in particular a subset of F , so ΓclF induces a map

PF → PF which we also denote by ΓclF .

Lemma 4.12. For any Γ-subfield A of F , we have ΓclF (A) =
⋃

B, where B is the
set of all Γ-subfields B ⊆ F such that B is a finitely generated Γ-field extension of
⌈A⌉F and δ(B/⌈A⌉F ) = 0.

Proof. Since ΓclF (A) ⊳ F we have ⌈A⌉F ⊆ ΓclF (A). So ΓclF (A) = ΓclF (⌈A⌉F ),
and thus we may assume A ⊳ F . Let C =

⋃
B. Using the submodularity of δ it

is easy to see that the system B of Γ-subfields of F is directed, so its union C is a
Γ-subfield of F .

Suppose that b is a finite tuple from Γ(F ) such that δ(b/C) 6 0. Then by the
finite character of δ and directedness of the union defining C, there is a finitely
generated extension B of A inside C such that δ(B/A) = 0 and δ(b/B) = δ(b/C).
Using the addition formula,

0 > δ(b/B) = δ(b/A)− δ(B/A) = δ(b/A) > 0.

So δ(b/A) = 0 and hence b ∈ Γ(C). Thus C is Γ-closed, so ΓclF (A) ⊆ C.
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Now suppose B is a finitely generated Γ-field extension of A with δ(B/A) = 0
and A ⊆ D ⊳cl F . Then

δ(BD/D) 6 δ(B/B ∧D)

= δ(B/A)− δ(B ∧D/A)

6 0

because A ⊳ F so δ(B ∧ D/A) > 0 and so B ⊆ D. Hence B ⊆ ΓclF (A), and so

C ⊆ ΓclF (A). �

The predimension function δ is a function depending on the sort Γ, but Γ-closure
will be shown to be a pregeometry on the field sort. The next lemma allows us to
move from one sort to the other.

Lemma 4.13. If A⊳F and a ∈ F rΓclF (A) there is α ∈ Γ(F ) such that π1(α) ∈
G1(F ) is interalgebraic with a over A and δ(α/A) = 1, and the Γ-subfield 〈Aα〉
of F generated by A and α satisfies 〈Aα〉 ⊳ F . We can choose α such that a is
rational over A(π1(α)), and if A is essentially finitary also such that α is a good
basis. Furthermore, the locus Loc(α, a/A) can be taken to be a particular algebraic
curve defined over K0, not depending on A or a.

Proof. We have trd(a/A) = 1 (since otherwise a ∈ ΓclF (A)). We have fixed an
identification of G1 with a constructible subset of affine space AN for some N ,
defined over K0. Let f be the projection map from G1 to the first coordinate
where the projection is dominant, and choose a constructible curve X ⊆ G1 by
fixing the values of all the other coordinates to be values in K0. Then X and
the map f are defined over K0. Choose α1 ∈ X(F ) with f(α1) = a. Then α1 is
interalgebraic with a over A, with a rational over A(α1), and the locus Loc(α1, a/A)
is defined over K0.

Since F is full, there is α ∈ Γ(F ) with π1(α) = α1. Then α ∈ ΓclF (Aa) and

a ∈ ΓclF (Aα). Then ldimkO
(α/Γ(A)) = 1 and so since δ(α/A) 6= 0 by Lemma 4.12,

trd(α/A) = d + 1 and δ(α/A) = 1. If there were B ⊇ 〈Aα〉 with δ(B/Aα) < 0

then δ(B/A) 6 0 which contradicts a /∈ ΓclF (A). So 〈Aα〉 ⊳ F . If A is essentially
finitary then by Lemma 3.22 we can divide α by some m ∈ N+ to ensure it is a
good basis. Since α2 is generic in G2(A) over α1, and G2 is defined over K0, we
deduce that Loc(α, a/A) is defined over K0. �

Proposition 4.14. The Γ-closed subsets of F are the closed sets of a pregeometry
on F .

Proof. It is immediate that for any subsets A ⊆ B of F we have A ⊆ ΓclF (A),

ΓclF (ΓclF (A)) = ΓclF (A) and ΓclF (A) ⊆ ΓclF (B).

For finite character, suppose b ∈ ΓclF (A). By Lemma 4.12 there is a finitely
generated extension ⌈A⌉F ⊆ B in F such that δ(B/⌈A⌉F ) = 0 and b ∈ B. Then
there is a finite tuple β ∈ Γ(F ) with b rational over β and δ(β/A) = 0. By finite
character of δ from Lemma 4.2, there is a finitely generated Γ-subfield A0 of ⌈A⌉F
such that for any A′ with A0 ⊆ A′ ⊆ ⌈A⌉F we have δ(β/A′) = 0. So by Lemma 4.12

again, b ∈ ΓclF (A0).
The hull operator is a closure operator which by Lemma 4.7 has finite character.

We have A0 ⊆ ⌈A⌉F , so there is a finite subset A00 of A such that ⌈A0⌉F = ⌈A00⌉F .
Hence b ∈ ΓclF (A00), and so ΓclF has finite character.

For exchange, suppose A⊳cl F and that a, b ∈ F rA with b ∈ ΓclF (Aa). Using
Lemma 4.13, we choose α, β ∈ Γ(F ) corresponding to a and b respectively.
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Now β ∈ ΓclF (Aα) so there is a finitely generated Γ-field extension A ⊆ B inside
F with β, α ∈ Γ(B) and δ(B/Aα) = 0. Then we have

δ(B/Aβ) = δ(B/A)− δ(β/A)

= δ(B/A)− 1

= δ(B/A)− δ(α/A)

= δ(B/Aα) = 0

so α ∈ ΓclF (Aβ), or equivalently a ∈ ΓclF (Ab). �

We write ΓdimF for the dimension with respect to the pregeometry ΓclF . How-
ever, if F1 and F2 are both full Γ-fields with F1⊳clF2 and A ⊆ F1 then ΓclF1(A) =

ΓclF2(A). So from now on we will usually drop the superscript F and just write
Γcl and Γdim except where it might cause confusion.

We have the usual connection between the dimension and the predimension
function.

Lemma 4.15. Suppose that A⊳ F and B is a finitely generated Γ-field extension
of A in F . Then:

(1) Γdim(B/A) = min {δ(C/A) |B ⊆ C ⊆ F }, and
(2) B ⊳ F if and only if Γdim(B/A) = δ(B/A).

Proof. Since ⌈B⌉F ⊆ ΓclF (B), we have Γdim(B/A) = Γdim(⌈B⌉F /A). Now it
follows from the addition formula that δ(⌈B⌉F /A) = min {δ(C/A) |B ⊆ C ⊆ F },
so statement 1 reduces to the left-to-right direction of statement 2. To prove that,
first assume B ⊳ F .

Let n = Γdim(B/A) and let b1, . . . , bn be a Γcl-basis for B over A. Applying
Lemma 4.13, we get βi ∈ Γ(F ) in the closure of B with βi corresponding to bi. Let
D be the Γ-subfield of F generated by A and β1, . . . , βn. Then δ(D/A) = n and

D ⊳ F . Furthermore ΓclF (D) = ΓclF (B).

Since D ⊆ ΓclF (B), there is C ⊇ B ∪D such that δ(C/B) = 0. Then

δ(B/A) = δ(C/A)− δ(C/B) = δ(C/A) > δ(D/A) = n

using that D⊳ F . Reversing the roles of B and D, the same argument shows that
δ(B/A) 6 δ(D/A), and so δ(B/A) = n = Γdim(B/A) as required.

The right-to-left direction of statement 2 now follows from statement 1 and the
addition property. �

Remarks 4.16. (1) In the sense of the pregeometry Γcl, the set Γ(F ) is d-
dimensional. Thus when d = 1 such as in pseudo-exponentiation and
pseudo-℘ we actually get a pregeometry directly on Γ(F ).

(2) In the case of pseudo-exponentiation or a pseudo-℘-function, G1(F ) =
Ga(F ) = F , and Γ is the graph of a function exp, so we have a bijection
ϕ : F → Γ(F ) given by x 7→ (x, exp(x)). The predimension usually consid-
ered for exponentiation, for example in [Zil05b], is a function on tuples from
the field sort, and in fact is just the composite δ ◦ ϕ of the predimension
function described here with ϕ.

(3) It is possible to define a predimension function directly on the field sort,
even in our generality. Given any subfield A of F we write Γ(A) for Γ(F )∩
G(A). For any subset X of F (in the field sort) we write Xalg for the
field-theoretic algebraic closure of Fbase(X) in F .

Given subsets X,Y of F , with trd
(
(X ∪ Y )alg/Xalg

)
<∞, define

η(Y/X) = trd
(
(X ∪ Y )alg/Xalg

)
− ldimkO

(
Γ((X ∪ Y )alg)/Γ(Xalg)

)
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which takes values in Z ∪ {−∞}.
The predimension functions η and δ are closely related, and we could

write η(Y/X) = δ((X ∪Y )alg/Xalg) except that Xalg will usually fail to be
a Γ-subfield of F by our definition, because as a field it will not usually be
generated by the coordinates of the points in Γ(Xalg). It may not even be
algebraic over the field generated by those points.

It is possible to define the notion of strong embeddings of Γ-fields us-
ing this predimension function instead. Some things are easier with this
approach, because the predimension is defined on a 1-dimensional sort.
However we choose to work in the sort Γ because it is a vector space and
hence has a modular geometry, which makes other things much easier.

4.4. Full closures. The following theorem and proof follow [Kir13, Theorem 2.18].

Theorem 4.17. If A is a Γ-field then there is a full Γ-field extension Afull of A
such that A ⊳ Afull and Afull is generated as a full Γ-field by A. Furthermore if A
is essentially finitary then Afull is unique up to isomorphism as an extension of A.

Proof. First we prove existence. Embed A in a large algebraically closed field F .
Choose a point a ∈ G1(F ) which is algebraic over A and not in π1(Γ(A)), if such

exists. Choose a division sequence â ∈ Ĝ1(F ) for a. Let b ∈ G2(F ) be generic overA

and choose a division system b̂ for it. (Up to field isomorphism over A, b̂ is unique.)
Let A′ be the field generated by A and the division sequences â = (am)m∈N+ and

b̂ = (bm)m∈N+ , and define Γ(A′) to be the O-submodule of G(A′) generated by Γ(A)
and the points (am, bm) for m ∈ N+. Then A′ is a Γ-field extension of A. Since
π1(Γ(A)) already contains the torsion of G1, the extension preserves the kernels.
We have

δ(A′/A) = trd(b/A)− d ldimkO
(b/A) = d− d = 0,

so it is a strong extension. Similarly if there is b ∈ G2(F ) which is algebraic over
A but not in π2(Γ(A)) we can form a similar strong extension. Iterating these
constructions, a strong full extension Afull of A is readily seen to exist.

Now we prove uniqueness under the additional hypothesis that A is essentially
finitary. Suppose that B and B′ both satisfy the conditions for Afull. Since A is
essentially finitary it is countable, and then the construction above shows that we
can take B to be countable as well. Enumerate Γ(B) as (sn)n∈N+ such that for
each n, either π1(sn) or π2(sn) is algebraic over A∪{s1, . . . , sn−1}. This is possible
since B is generated as a full Γ-field by A.

We will inductively construct a chain of strong Γ-subfields An ⊳ B, each a
finitely generated Γ-field extension of A such that A0 = A and sn ∈ Γ(An).

We will also construct a chain of strong embeddings θn : An

⊳
−֒→ B′. Assume

we have An and θn. Let An+1 be the Γ-subfield of B generated by An and
sn+1. As a field, An+1 is generated by An and the division points of sn+1. If
sn+1 ∈ Γ(An), then we have An+1 = An and can just take θn+1 = θn. Otherwise,
we have ldimkO

(Γ(An+1)/Γ(An)) > 1. By hypothesis, one of π1(sn+1) or π2(sn+1)
is algebraic over An, say π1(sn+1). Thus trd(An+1/An) = trd(sn+1/An) 6 d.
By inductive hypothesis An ⊳ B, so we have δ(An+1/An) > 0. It follows that
ldimkO

(Γ(An+1)/Γ(An)) = 1 and trd(An+1/An) = d, so δ(An+1/An) = 0. Thus by
Lemma 4.8, An+1 ⊳B. Also π2(sn+1) is generic in G2 over An.

Since An is a finitely generated Γ-field extension of A, by Proposition 3.22 there
ism ∈ N such that {sn+1/m} is a good basis for the extension An⊳An+1. Replacing
sn+1 by sn+1/m, we may assume m = 1. Now let W be the locus of π1(sn+1) over
An (a variety of dimension 0, irreducible over An, but not necessarily absolutely
irreducible), and let w be any point inW θn , the corresponding subvariety of G1(B

′).
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Choose v ∈ G2(B
′) such that (w, v) ∈ Γ(B′). Since w is algebraic over θn(An) which

is strong in B′, the same predimension argument as above shows that v is generic in
G2 over θn(An), so Loc(w, v/θn(An)) =W θn×G2 = (Loc(sn+1/An))

θn . Since sn+1

is a good basis over An, we can extend θn to a field embedding θn+1 : An+1 → B′

with θ(sn+1) = (w, v), and using again that θn(An)⊳B
′ we get that Γ(θn+1(An+1))

is generated by (w, v) over Γ(θn(An)) and hence θn+1 is a Γ-field embedding.
Also δ(θn+1(An+1)/θn(An)) = 0 so θn+1 is a strong embedding by Lemma 4.8.
Now B =

⋃
{An |n ∈ N} and

⋃
{θn(An) |n ∈ N} is a full Γ-subfield of B′

containing A, so it must be B′. Hence
⋃
{θn |n ∈ N} is an isomorphism B ∼= B′.

So Afull is unique, up to isomorphism as an extension of A. �

Proposition 4.18. Let A be a countable full Γ-field. Then there are only countably
many finitely generated strong full Γ-field extensions of A, up to isomorphism.

Proof. Let A⊳B be such an extension and let b be a finite tuple generating B over
A as a full Γ-field, such that B0 := 〈Ab〉 ⊳ B, and of minimal length such. Then
by Proposition 3.22 we may replace b by b/m for some m ∈ N+ to ensure that b is
a good basis for the extension A⊳ B0. Then B = Bfull

0 which by Proposition 4.17
is determined uniquely up to isomorphism by B0, and by Corollary 3.26 there are
only countably many choices for B0. �

5. The canonical countable model

5.1. The amalgamation theorem. We use the definition of amalgamation cate-
gory from [Kir09], slightly extending Droste and Göbel [DG92] who were themselves
abstracting from Fräıssé’s amalgamation theorem. We restrict to the countable
case. We will apply the general theory to various categories of Γ-fields with strong
embeddings as morphisms. The notions of finitely generated, universal and satu-
rated all have category-theoretic translations which we give first.

Definition 5.1. Given a category K, an object A of K is said to be ℵ0-small if and

only if for every ω-chain (Zi, γij) in K with direct limit Zω, any arrow A
f

−→ Zω

factors through the chain, that is, there is i < ω and A
f∗

−→ Zi such that f = γiω◦f∗.
We write K<ℵ0 for the full subcategory of ℵ0-small objects of K and K6ℵ0 for the
full subcategory of the limits of ω-chains of ℵ0-small objects of K.

Definition 5.2. Given a category K and a subcategory K′, an object U of K is
said to be K′-universal if for every object A of K′ there is an arrow A −→ U in

K. U is K′-saturated if for every arrow A
f

−→ B in K′ and every arrow A
g

−→ U

in K, there is an arrow B
h

−→ U in K such that g = h ◦ f . U is K′-homogeneous

if for every object A of K′ and every pair of arrows A
f,g
−→ U in K, there exists an

isomorphism U
h

−→ U in K such that g = h ◦ f .

Some authors refer to K′-saturation as richness with respect to the objects and
arrows from K′.

Definition 5.3. A category K is an amalgamation category if the following hold.

AC1. Every arrow in K is a monomorphism.
AC2. K has direct limits (unions) of ω-chains.
AC3. K<ℵ0 has at most ℵ0 objects up to isomorphism.
AC4. For each object A ∈ K<ℵ0 there are at most ℵ0 extensions of A in K<ℵ0 , up

to isomorphism.
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AC5. K<ℵ0 has the amalgamation property (AP), that is, any diagram of the form

B1 B2

A

✲

✛

can be completed to a commuting square

C

B1

✲

B2

✛

A

✲

✛

in K<ℵ0 .
AC6. K<ℵ0 has the joint embedding property (JEP), that is, for every B1, B2 ∈

K<ℵ0 there is C ∈ K<ℵ0 and arrows

C

B1

✲

B2

✛

in K<ℵ0 .

The point of the definition is that the following form of Fräıssé’s amalgamation
theorem holds.

Theorem 5.4 ([Kir09, Theorem 2.18]). If K is an amalgamation category then
there is an object U ∈ K6ℵ0 , the “Fräıssé limit”, which is K6ℵ0-universal and
K<ℵ0-saturated.

Furthermore, if A ∈ K6ℵ0 is K<ℵ0-saturated then A ∼= U .

Remark 5.5. It follows from saturation and a back-and-forth argument that U is
also K<ℵ0 -homogeneous.

5.2. Amalgamation of Γ-fields. We fix a Γ-field Fbase which is either finitely
generated as a Γ-field, or is a countable full Γ-field.

The identity map on a Γ-field is obviously a strong embedding, hence from
Lemma 4.4 we have a category of strong Γ-field extensions of Fbase, with strong
embeddings as the arrows. We write C(Fbase) for this category, but will usually
abbreviate it to C. We also consider the following full subcategories of C.

Notation 5.6.

• Cfull (or Cfull(Fbase)) consists of the full strong Γ-field extensions of Fbase.
• Cfg consists of the strong Γ-field extensions of Fbase which are finitely gen-
erated.

• Cfg-full consists of the strong Γ-field extensions of Fbase which are full and
finitely generated as full extensions.

• C6ℵ0 consists of the strong Γ-field extensions of Fbase which are countable.
• Cfull,6ℵ0 consists of the strong Γ-field extensions of Fbase which are full and
countable.

For our categories C and Cfull, it is immediate that ℵ0-small just means finitely
generated in the appropriate sense, and a (full) Γ-field is the union of an ω-chain
of finitely generated (full) Γ-fields if and only if it is countable.
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We will construct our canonical model as the Fräıssé limit of Cfg. In fact it is
also the Fräıssé limit of Cfg-full.

In proving the amalgamation property we actually prove a stronger result, asym-
metric amalgamation, which will be necessary when we come to axiomatize our
models. However, the asymmetric property holds only in the case of full Γ-fields,
not for Cfg. We also observe that our amalgams are disjoint.

Proposition 5.7. The categories Cfull and Cfull,6ℵ0 have the disjoint asymmetric
amalgamation property. That is, given full Γ-fields A0, AL, AR ∈ Cfull, an embed-

ding A0 →֒ AL and a strong embedding A0
⊳
−֒→ AR, there exist A ∈ Cfull and dashed

arrows making the following diagram commute;

AL � p

⊳

  ❆
❆

❆
❆

A0

. �

==⑤⑤⑤⑤⑤⑤⑤⑤

� p

⊳
!!❈

❈❈
❈❈

❈❈
❈

A

AR

. �

>>⑥
⑥

⑥
⑥

moreover, if the embedding A0 →֒ AL is also strong, then so is the embedding
AR →֒ A; furthermore, identifying A0, AL and AR with their images in A, we have
that AL ∩ AR = A0.

Proof. Since A0 is algebraically closed as a field, we may form the free amalgam
A1 of AL and AR over A0 as fields, that is, the unique (up to isomorphism) field
compositum of AL and AR in which they are algebraically independent over A0.
We identify AL and AR as subfields of A1 so, in particular, AL ∩ AR = A0. We
make A1 into a Γ-field by defining Γ(A1) to be the O-submodule Γ(AL) + Γ(AR)
of G(A1).

Then Γ(AL) and Γ(AR) are O-submodules of Γ(A1).
Suppose that a ∈ ker1(A1), that is, (a, 0) ∈ Γ(A1). Then there are (aL, bL) ∈

Γ(AL) and (aR, bR) ∈ Γ(AR) such that (a, 0) = (aL, bL)+(aR, bR). Then bL = −bR,
so

bL, bR ∈ Γ2(AL) ∩ Γ2(AR) ⊆ G2(AL) ∩G2(AR) = G2(A0).

Since A0 is a full Γ-field there is a0 ∈ G1(A0) such that (a0, bL) ∈ Γ(A0). Then
aL − a0 ∈ ker1(AL) = ker1(A0), so aL ∈ Γ1(A0). Similarly, aR ∈ Γ1(A0), so
a ∈ Γ1(A0).

Thus ker1(A1) = ker1(A0). The same argument shows that ker2(A1) = ker2(A0),
and hence the inclusions of AL and AR into A1 preserve the kernels.

Let us check that the inclusion AL →֒ A1 is strong. Let X be a Γ-subfield of
A1 which is finitely generated over AL. Choose a basis b for the extension, say of
length n. Translating by points in Γ(AL), we may assume that b ∈ Γ(AR)

n. Now
δ(b/A0) > 0 since A0 ⊳AR, so trd(b/A0) > d ldimkO

(g/Γ(A0) = dn.
Since AR is ACF-independent from AL over A0, we have trd(b/AL) = trd(b/A0),

and we also have ldimkO
(b/Γ(AL)) = n by assumption, so

δ(X/AL) = trd(b/AL)− d ldimkO
(b/Γ(AL)) = δ(b/A0) > 0

as required. Thus AL ⊳ A1. The same argument shows that if the embedding
A0 →֒ AL is strong, then so is the embedding AR →֒ A1.

Now take A = Afull
1 , which exists and is a strong extension of A1, by the existence

part of Theorem 4.17. Note that if AL and AR are countable then so is A. �

Corollary 5.8. The category Cfg has the amalgamation property. That is, given

A0, AL, AR ∈ Cfg and strong embeddings A0
⊳
−֒→ AL and A0

⊳
−֒→ AR as in the
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following diagram, there exist A ∈ Cfg and dashed arrows making the diagram
commute.

AL � p

⊳

  ❆
❆

❆
❆

A0

. �

⊳

==⑤⑤⑤⑤⑤⑤⑤⑤

� p

⊳
!!❈

❈❈
❈❈

❈❈
❈

A

AR

. �
⊳

>>⑥
⑥

⑥
⑥

Proof. Let A0, AL, AR be as in the statement. By the existence part of Theo-
rem 4.17, we can extend each of the three Γ-fields to its full closure.

AL
� � ⊳ // Afull

L

A0

. �

⊳

==⑤⑤⑤⑤⑤⑤⑤⑤⑤

� p

⊳
!!❇

❇❇
❇❇

❇❇
❇❇

� � ⊳ // Afull
0

AR
� �

⊳
// Afull

R

Then because we have A0 ⊳ Afull
L and A0 ⊳ Afull

R , by the uniqueness part of the
same theorem there are embeddings as in the following diagram, which are strong
by Lemma 4.8 and finite character of δ.

AL
� � ⊳ // Afull

L

A0

. �

⊳

==⑤⑤⑤⑤⑤⑤⑤⑤⑤

� p

⊳
!!❇

❇❇
❇❇

❇❇
❇❇

� � ⊳ // Afull
0

. �

⊳

<<③③③③③③③③

� p

⊳
""❉

❉❉
❉❉

❉❉
❉

AR
� �

⊳
// Afull

R

By Theorem 5.7, we can complete the diagram to

AL
� � ⊳ // Afull

L � p

⊳

  ❇
❇❇

❇❇
❇❇

❇

A0

. �

⊳

==⑤⑤⑤⑤⑤⑤⑤⑤⑤

� p

⊳
!!❇

❇❇
❇❇

❇❇
❇❇

� � ⊳ // Afull
0

. �

⊳

<<③③③③③③③③

� p

⊳
""❉

❉❉
❉❉

❉❉
❉

A′

AR
� �

⊳
// Afull

R

. �
⊳

>>⑤⑤⑤⑤⑤⑤⑤⑤

and then we can take A to be the Γ-subfield of A′ generated by AL ∪AR, which is
in Cfg. �

Theorem 5.9. The categories C and Cfull are amalgamation categories, with the
same Fräıssé limit.

Proof. Strong embeddings are injective functions, so monomorphisms. Hence AC1
holds. It is clear that the union of a chain of (full) Γ-fields is a (full) Γ-field, so
AC2 holds. AC4 is given by Corollary 3.26 for C and Proposition 4.18 for Cfg-full.
The amalgamation property AC5 is proved in Proposition 5.7 and Corollary 5.8.
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Since every Γ-field in C is an extension of Fbase, and every full Γ-field in Cfull is
an extension of (Fbase)

full, properties AC3 and AC6 follow from AC4 and AC5
respectively.

Thus C and Cfull are both amalgamation categories. Let M be the Fräıssé limit
of Cfull. If A ∈ C6ℵ0 then Afull ∈ Cfull,6ℵ0 , so as M is Cfull,6ℵ0-universal there is a
strong embedding Afull ⊳M , which restricts to a strong embedding A⊳M . Hence
M is C6ℵ0-universal. Similarly, using Proposition 4.17 and the Cfg-full-saturation
of M we can see that M is also Cfg-saturated. Hence M is also the Fräıssé limit of
Cfg. �

Notation 5.10. We write M(Fbase) for the Fräıssé limit in C.

5.3. Γ-algebraic extensions.

Definition 5.11. Let A ⊳ B be a strong extension of Γ-fields. The extension is
Γ-algebraic if for all finite tuples b from Γ(B) there is a finite tuple c ∈ Γ(B)
containing b such that δ(c/A) = 0.

Remark 5.12. From Lemma 4.15 we see that if F is a full Γ-field such that B⊳F
then the extension A⊳B is Γ-algebraic if and only if B ⊆ ΓclF (A).

Let Calg be the subcategory of C consisting of the Γ-algebraic extensions of Fbase.

Proposition 5.13. Calg is an amalgamation category.

Proof. The proof of Theorem 5.9 goes through, except we also have to show that
the amalgam of Γ-algebraic extensions is Γ-algebraic. So suppose we have the
amalgamation square

AL � p

⊳

  
❆

❆
❆

❆

A0

. �

⊳

==⑤⑤⑤⑤⑤⑤⑤⑤

� p

⊳
!!❈

❈❈
❈❈

❈❈
❈

A

AR

. �
⊳

>>⑥
⑥

⑥
⑥

as in Corollary 5.8 with AL and AR both Γ-algebraic over A0, A
′ a full Γ-field

and A the Γ-subfield of A′ generated by AL ∪ AR. Then by remark 5.12, we have

AL ∪ AR ⊆ ΓclA
′

(A0) and so A ⊆ ΓclA
′

(A0), so A0 ⊳A is Γ-algebraic. �

Write M0 (or M0(Fbase)) for the Fräıssé limit of Calg.

Definition 5.14. A Γ-field F strongly extending Fbase is ℵ0-saturated for Γ-
algebraic extensions over Fbase if whenever Fbase ⊳A⊳F with A finitely generated

over Fbase and A
⊳
−→ B is a finitely generated Γ-algebraic extension then B embeds

(necessarily strongly) into F over A.

Proposition 5.15. M0(Fbase) is the unique countable full Γ-field strongly extending
Fbase which is Γ-algebraic over Fbase and ℵ0-saturated for Γ-algebraic extensions.

Proof. Immediate from the uniqueness part of the amalgamation theorem and
Proposition 5.13. �

5.4. Purely Γ-transcendental extensions. In contrast with Γ-algebraic exten-
sions are those we will call purely Γ-transcendental extensions. We discuss amal-
gamation of these which gives rise to some variant constructions.

Definition 5.16. Let A ⊳ B be a strong extension of Γ-fields. The extension is
purely Γ-transcendental if for all tuples b from Γ(B), either δ(b/A) > 0 or b ⊆ Γ(A).
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Remark 5.17. If A ⊳ B is an extension of full Γ-fields then it is purely Γ-
transcendental if and only if A is Γ-closed in B.

Definition 5.18. When Fbase is a full countable Γ-field, we define CΓ-tr(Fbase)
(usually abbreviated to CΓ-tr) to be the full subcategory of C consisting of the
strong purely Γ-transcendental extensions of Fbase.

Lemma 5.19. If A ∈ CΓ-tr then Afull ∈ CΓ-tr.

Proof. Consider the case when (a1, a2) ∈ Γ(Afull)r Γ(A) with a1 ∈ G1(A
full) alge-

braic over A. Since A ⊳Afull we have trd(a2/A) = d. If δ((a1, a2)/Fbase) 6 0 then
trd(a1, a2/Fbase) 6 d, which implies that trd(a1/Fbase) = 0. Since Fbase is full, that
implies (a1, a2) ∈ Γ(Fbase), a contradiction.

Replacing A by the Γ-subfield of Afull generated by A ∪ {(a1, a2)} and iterating
appropriately, we see that Afull ∈ CΓ-tr. �

We will show that CΓ-tr is an amalgamation category by showing that the free
amalgam of purely Γ-transcendental extensions is purely Γ-transcendental, using a
lemma on stable groups.

Lemma 5.20. Let H be a commutative algebraic group defined over an algebraically
closed field C. Suppose a1, a2, a3 ∈ H are pairwise algebraically independent over
C and a1 + a2 + a3 = 0. Then there is a connected algebraic subgroup U of H and
cosets ci + U defined over C such that ai is a generic point of ci + U over C, for
each i = 1, 2, 3. In particular, trd(ai/C) = dimU for each i.

Proof. This is the special case for algebraic groups of a result about stable groups
due to Ziegler [Zie06, Theorem 1]. �

Theorem 5.21. If Fbase is a full countable Γ-field then CΓ-tr and Cfull
Γ-tr are amal-

gamation categories.

Notation 5.22. We write MΓ-tr(Fbase) for the Fräıssé limit in CΓ-tr(Fbase).

Proof of Theorem 5.21. Axioms AC1, AC3 and AC4 follow immediately from the
fact that CΓ-tr and Cfull

Γ-tr are full subcategories of C. AC2 and AC6 are also imme-
diate. It remains to prove AC5, the amalgamation property.

Using Lemma 5.19, the same argument as for Corollary 5.8 allows us to reduce
the amalgamation property for CΓ-tr to the amalgamation property for Cfull

Γ-tr. So
suppose we have full Γ-fields

AL AR

A0

1 Q

⊳

bb❊❊❊❊❊❊❊❊ - 


⊳

<<②②②②②②②②

Fbase

?�

⊳

OO

with A0, AL and AR all purely Γ-transcendental extensions of Fbase. Let A1 be the
free amalgam of AL and AR over A0 as in the proof of Proposition 5.7. We must
show that A1 is a purely Γ-transcendental extension of Fbase.

So let B be a Γ-subfield of A1 properly containing Fbase and finitely generated
over it. It remains to show that δ(B/Fbase) > 1. If B ∧ AR 6= Fbase then we have

δ(B/Fbase) = δ(B/B ∧ AR) + δ(B ∧ AR/Fbase)

> δ(BAR/AR) + δ(B ∧ AR/Fbase) by submodularity

> 0 + 1 = 1,
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the last line because AR ⊳A1 and AR is purely Γ-transcendental over Fbase. So in
this case we are done, and similarly if B ∧AL 6= Fbase.

So we may assume that B∧AR = B∧AL = Fbase. Choose a basis b = (b1, . . . , bn)
of B over Fbase. For each i, choose biL ∈ Γ(AL) and biR ∈ Γ(AR) such that bi =
biL + biR. Let BL and BR be the Γ-field extensions of Fbase generated by bL :=
(b1L, . . . , b

n
L), and bR := (b1R, . . . , b

n
R) respectively.

We claim that BL ∧AR = Fbase and that AL ∧BR = Fbase. To see this, suppose
that v ∈ Γ(BL ∧ AR) = Γ(BL) ∩ Γ(AR). Since v ∈ Γ(BL) there are si ∈ kO and
some a ∈ Γ(Fbase) such that v =

∑n
i=1 sib

i
L + a. Let uL = v − a =

∑n
i=1 sib

i
L,

let uR =
∑n

i=1 sib
i
R, and let u = uL + uR =

∑n
i=1 sib

i. Then v, a ∈ Γ(AR), so
uL ∈ Γ(AR), and also uR ∈ Γ(AR), hence u ∈ Γ(AR). But u ∈ Γ(B) and we have
B ∧ AR = Fbase. So u ∈ Γ(Fbase) and so each si = 0, and thus v ∈ Γ(Fbase).
So BL ∧ AR = Fbase. The same argument shows that AL ∧ BR = Fbase, and in
particular BL ∧BR = Fbase.

Let C be the Γ-subfield of A1 generated by B ∪ BL, and note that it is also
generated by BL∪BR. We have B∧BL = Fbase = BL∧BR, so applying modularity
of linear dimension to the squares

C C

B
. �

⊳

<<③③③③③③③③③
BL

1 Q

⊳

bb❋❋❋❋❋❋❋❋❋

and BL

- 


⊳

<<①①①①①①①①①

BR

1 Q

⊳

bb❋❋❋❋❋❋❋❋❋

Fbase

0 P

⊳

aa❉❉❉❉❉❉❉❉ - 


⊳

<<②②②②②②②②

Fbase

1 Q

⊳

bb❊❊❊❊❊❊❊❊ - 


⊳

<<②②②②②②②②

we get

ldimkO
(Γ(BR)/Γ(Fbase)) = ldimkO

(Γ(C)/Γ(BL)) = ldimkO
(Γ(B)/Γ(Fbase)) = n,

and so bR is kO-linearly independent over Γ(Fbase), and hence, since BR ∧ A0 =
Fbase, over Γ(A0). We have

trd(b/Fbase) > trd(b/A0) > trd(b/A0bL) = trd(bR/A0bL) = trd(bR/A0) > dn

with the last three (in)equalities holding because b = bL+bR, bR is algebraically in-
dependent from bL over A0, and because A0⊳A1 and bR is kO-linearly independent
over Γ(A0). Similarly trd(b/A0) > trd(bL/A0) > dn.

Suppose for a contradiction that δ(B/Fbase) 6 0. Then we must have

trd(b/Fbase) = trd(b/A0) = trd(bL/A0) = trd(bR/A0) = dn,

and then we also have

trd(b, bL/A0) = trd(b, bR/A0) = trd(bL, bR/A0) = trd(b, bL, bR/A0) = 2dn

so b, bL, bR are pairwise algebraically independent over A0.
We apply Lemma 5.20 with H = Gn = Gn

1 ×Gn
2 , a1 = −b, a2 = bL and a3 = bR

to get a connected algebraic subgroup U of Gn of dimension dn such that b is
in an A0-coset of U . Since trd(b/Fbase) = trd(b/A0) = dimU , and Fbase is an
algebraically closed field, the coset is actually defined over Fbase.
G1 and G2 are non-isogenous and so U is of the form U1 × U2 where each Ui is

a connected subgroup of Gn
i . Since dimU = dn, if U2 = Gn

2 then U1 is the trivial
subgroup of Gn

1 , so π1(b) ∈ Gn
1 (A0). But A0 is a full Γ-field and so b ∈ Γ(A0)

n

which contradicts trd(b/A0) = dn (and n > 0). So U2 must be a proper subgroup
of Gn

2 . Since G2 is simple, it follows that π2(b) satisfies an O-linear equation∑n
i=1 siπ2(b

i) = c with c ∈ G2(Fbase). Then, since b ∈ Γ(B)n and Fbase is a full
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Γ-field we have
∑n

i=1 sib
i ∈ Γ(Fbase), which contradicts b being a basis for B over

Fbase.
So we have δ(B/Fbase) > 1, and thus A1 is a purely Γ-transcendental extension

of Fbase, as required. �

6. Categoricity

6.1. Quasiminimal pregeometry structures. This definition of quasiminimal
pregeometry structures comes from [BH2K214].

Definition 6.1. Let M be an L-structure for a countable language L, equipped
with a pregeometry cl (or clM if it is necessary to specify M). Write qftp for the
quantifier-free L-type. We say that M is a quasiminimal pregeometry structure if
the following hold:

QM1. The pregeometry is determined by the language. That is, if a, a′ are single-
tons, b, b′ are tuples, qftp(a, b) = qftp(a′, b′), and a ∈ cl(b) then a′ ∈ cl(b′).

QM2. M is infinite-dimensional with respect to cl.
QM3. (Countable closure property) If A ⊆M is finite then cl(A) is countable.
QM4. (Uniqueness of the generic type) Suppose that C,C′ ⊆ M are countable

closed subsets, enumerated such that qftp(C) = qftp(C′). If a ∈ M r C
and a′ ∈ M r C′ then qftp(C, a) = qftp(C′, a′) (with respect to the same
enumerations for C and C′).

QM5. (ℵ0-homogeneity over closed sets and the empty set)
Let C,C′ ⊆ M be countable closed subsets or empty, enumerated such
that qftp(C) = qftp(C′), and let b, b′ be finite tuples from M such that
qftp(C, b) = qftp(C′, b′), and let a ∈ cl(C, b). Then there is a′ ∈ M such
that qftp(C, b, a) = qftp(C′, b′, a′).

We say M is a weakly quasiminimal pregeometry structure if it satisfies all the
axioms except possibly QM2.

Definition 6.2. Given M1 and M2 both weakly quasiminimal pregeometry L-
structures, we say that an L-embedding θ : M1 →֒ M2 is a closed embedding if for
each A ⊆ M1 we have θ(clM1(A)) = clM2(θ(A)). In particular, θ(M1) is closed in
M2 with respect to clM2 . We write M1 ⊳cl M2 for a closed embedding.

Definition 6.3. Given a quasiminimal pregeometry structureM , let K(M) be the
smallest class of L-structures which containsM and all its closed substructures and
is closed under isomorphism and under taking unions of directed systems of closed
embeddings. We call any class of the form K(M) a quasiminimal class.

The purpose of these definitions is the categoricity theorem, which is Theorem 2.3
in [BH2K214].

Fact 6.4. If K is a quasiminimal class then every structure A ∈ K is a weakly
quasiminimal pregeometry structure, and up to isomorphism there is exactly one
structure in K of each cardinal dimension. In particular, K is uncountably categor-
ical. Furthermore, K is the class of models of an Lω1,ω(Q) sentence.

We will verify axioms QM1–QM5 for the Fräıssé limits we constructed. We first
make some general observations which simplify what we have to verify.

Proposition 6.5. Suppose that M is a countable L-structure. Then it satisfies
QM1–QM5 if and only if it satisfies the following axioms.

QM1′. If a and b are finite tuples and qftp(a) = qftp(b) then dim(a) = dim(b).
QM2. M is infinite-dimensional with respect to cl.
QM4. (Uniqueness of the generic type)
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QM5a. (ℵ0-homogeneity over the empty set)
If a and b are finite tuples from M and qftp(a) = qftp(b) then there is
θ ∈ Aut(M) such that θ(a) = b.

QM5b. (Non-splitting over a finite set)
If C⊳clM and b ∈M is a finite tuple then there is a finite tuple c ∈ C such
that qftp(b/C) does not split over c. That is, for all finite tuples a, a′ ∈ C,
if qftp(a/c) = qftp(a′/c) then qftp(a/cb) = qftp(a′/cb).

Proof. QM1′ is equivalent to QM1, because a ∈ cl(b) if and only if dim(a, b) =
dim(b), so if quantifier-free types characterize the dimension they also characterize
the closure operation, and vice versa.

QM3, the countable closure property, is immediate for a countable M .
Axiom QM5 with C = ∅ gives a back-and-forth condition which is equivalent to

ℵ0-homogeneity using the standard back-and-forth argument together with QM1
and QM4. SinceM is countable, the back-and-forth construction gives QM5a. The
converse is immediate.

Then [BH2K214, Corollary 5.3] shows the case of QM5 with C closed is equivalent
to QM5b. �

Remark 6.6. All the axioms refer to quantifier-free types with respect to a partic-
ular language, and from QM5a we get the conclusion that if two finite tuples from
M have the same quantifier-free type then they actually have the same complete
type (even the same L∞,ω-type, and furthermore they lie in the same automor-
phism orbit, that is, they have the same Galois-type). Since M is not necessarily
a saturated model of its first-order theory, it does not follow that every definable
set is quantifier-free definable. Nonetheless, identifying the language which works
allows us to understand the types which are realised in M .

6.2. Verification of the quasiminimal pregeometry axioms. Recall that our
language of Γ-fields is LΓ = 〈+, ·,−,Γ, (ca)a∈K0〉, where Γ is a relation symbol of
suitable arity to denote a subset of G. We start by defining the expansion LQE of LΓ

in which we will have the form of quantifier-elimination described in the previous
remark.

Let W be any subvariety of Gn × Ar defined over Fbase, for some n, r ∈ N. (It
suffices to consider those W which are the graphs of rational maps f : W ′ → Ar,
with W ′ ⊆ Gn.) Let ϕW (x, y) name the subset of G(M)n ×M r given by

(x, y) ∈ W & x ∈ Γn & x is O-linearly independent over Γ(Fbase)

and let ψW (y) be the formula ∃xϕW (x, y).

Definition 6.7. We define LQE to be the expansion of LΓ by parameters for Fbase

and relation symbols for all the formulas ϕW (x, y) and ψW (y).

Remark 6.8. Note that the formulas ϕW (x, y) are are always expressible in Lω1,ω(LΓ)
(with parameters in Fbase), so a priori this is an expansion of LΓ(Fbase) by Lω1,ω-
definitions. However, if the ring O and its action on G are definable and Γ(Fbase) is
either of finite rank (which is true for example in pseudo-exponentiation) or is oth-
erwise an LΓ-definable set, then L

QE is just an expansion of LΓ(Fbase) by first-order
definitions.

For the rest of this section we use tuples both from the field sort of a model M
and from Γ(M), so to distinguish them we will use Latin letters for tuples from M
and Greek letters for tuples from Γ(M).

Theorem 6.9. Take M to be either M(Fbase) or MΓ-tr(Fbase), the latter only if
Fbase is a full Γ-field. Then, considered in the language LQE and equipped with Γcl,
M is a quasiminimal pregeometry structure.
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Proof. We verify the axioms from Proposition 6.5. The main difficulty is that the
axioms refer to the field sort whereas the construction ofM was done in the sort Γ,
and there is no canonical way to go from one sort to the other in either direction.
However the sort Γ has rank d with respect to the pregeometry Γcl, so as we want
to include the case d > 1 we have to verify the axioms with respect to the field sort.

First we prove QM2. For any n ∈ N, there is a strong Γ-field extension An of
Fbase generated by a tuple α ∈ Γ(An)

n such that α is generic in Gn over Fbase. Then
δ(α/Fbase) = dn. This An embeds strongly inM by the universality property of the

Fräıssé limit, so ΓdimM (α) = dn by Lemma 4.15. Hence M is infinite-dimensional.

Now we prove QM1′ and QM5a together.
Suppose a, b ∈ M r with qftpLQE(a) = qftpLQE(b). Choose a strong Γ-subfield

A ⊳ M which is a finitely-generated extension of Fbase such that a ∈ Ar and
δ(A/Fbase) is minimal such. Let α ∈ Γ(A)n be a good basis for A over Fbase, such
that a is in the field Fbase(α), let W = Loc(α, a/Fbase), and let V = Loc(α/Fbase).
Then M |= ψW (a), so also M |= ψW (b). So there is β ∈ Γ(M)n such that M |=
ϕW (β, b). In particular, β ∈ V ∩Γ(M)n, kO-linearly independent over Γ(Fbase). We
claim that W = Loc(β, b/Fbase). Suppose not, soW

′ := Loc(β, b/Fbase) is a proper
subvariety of W . We have M |= ψW ′(b), so since a and b have the same quantifier-
free LQE-type, M |= ψW ′(a). So there is some α′ ∈ Γ(M)n such that M |=
ϕW ′(α′, a). W is irreducible over Fbase, so dimW ′ < dimW . Since a is rational
over Fbase(α), dimW = dimV , and so α′ lies in a subvariety V ′ of V with dimV ′ <
dimV . But then setting A′ = 〈Fbase, α

′〉 we have a ∈ A′r and δ(A′/Fbase) =
δ(α′/Fbase) = dimV ′ − ldimkO

(α′/Γ(Fbase)) < δ(A/Fbase), which contradicts the
choice of A. Thus Loc(β, b/Fbase) = W , and in particular Loc(β/Fbase) = V . Let
B = 〈Fbase, β〉. We further deduce that B ⊳M , since if not the same proof would
show that δ(A/Fbase) were not minimal.

By Lemma 4.15, we have Γdim(A) = δ(A/Fbase) = δ(B/Fbase) = Γdim(B).
Now Γdim(a) = Γdim(A) by the minimality of δ(A/Fbase), since A could be taken
within Γcl(a), and Γdim(b) ≤ Γdim(B), so Γdim(b) ≤ Γdim(a). By symmetry,
Γdim(a) = Γdim(b), so QM1′ is proved.

Since α is a good basis, there is an isomorphism of Γ-fields θ0 : A → B over
Fbase, with θ0(α) = β. Then also θ0(a) = b. Since M is Cfg-homogeneous (or

Cfg
Γ-tr-homogeneous), θ0 extends to an automorphism θ of M . That proves QM5a.

QM4: Suppose that C1, C2 ⊳cl M with the same quantifier-free LQE-type ac-
cording to some enumeration, and let θ : C1

∼= C2 be the isomorphism given by the
enumeration. Suppose also that b1 ∈M r C1 and b2 ∈M r C2.

Using Lemma 4.13 we get β1, β2 ∈ Γ(M) such that bi ∈ Ci(βi) and Loc(β1, b1/C1)
is defined over K0 and is equal to Loc(β2, b2/C2). Also, setting Bi := 〈Ci, βi〉 we
have Bi⊳M and βi is a good basis for Bi over Ci. By the definition of a good basis,
the isomorphism θ extends to θ1 : B1

∼= B2 with θ1(β1) = β2 and hence θ1(b1) = b2.
Let Fbase ⊳ A1 ⊳ C1 with A1 finitely generated over Fbase, and let A2 = θ(A1).

Then θ1 restricts to an isomorphism θ0 : 〈A1β1〉 ∼= 〈A2β2〉. Also 〈Aiβi〉 ⊳ M

since δ(〈Aiβi〉 /Ai) = 1 and βi /∈ Γcl(Ai). Since M is Cfg-homogeneous (or Cfg
Γ-tr-

homogeneous), θ0 extends to an automorphism ofM . So qftpLQE(A1b1) = qftpLQE(A2b2)
and thus, as A1 ranges over strong Γ-subfields of C1 finitely generated over Fbase,
we deduce that qftpLQE(C1b1) = qftpLQE(C2b2) as required.

QM5b: Let C⊳clM and let b ∈M be a finite tuple. Let B be a finitely generated
Γ-field extension of C such that B ⊳M and b ∈ B, and let β ∈ Γ(B)n be a good
basis for B over C with b ∈ C(β).
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Now choose a finitely generated Γ-field extension C0 of Fbase in C with C0 ⊳C,
and a good basis γ for C0, such that Loc(β, b/C) is defined over Fbase(γ).

Suppose that finite tuples a, a′ ∈ C have qftpLQE(a/γ) = qftpLQE(a′/γ). By
QM5a, there is a Γ-field automorphism θ ∈ Aut(M/Fbase(γ)) such that θ(a) = a′.
Let A be a strong Γ-subfield of Γcl(C0, a) which is finitely generated over C0 and
contains a, and let A′ = θ(A). Then A′ ⊳ C.

Let V = Loc(β/C). Then Loc(β/A) = Loc(β/A′) = V because V is defined
over Fbase(γ). So, since β is a good basis, the isomorphism θ0 : A ∼= A′ extends to
θ1 : 〈Aβ〉 ∼= 〈A′β〉.

We claim that 〈Aβ〉⊳B. To see this, suppose that X ⊆ B is a finitely generated
extension of 〈Aβ〉, and let X0 = X ∧ C. Let ξ be a basis of X0 over A. Then
ξ ∪ β is a basis for X over A, since β is a basis for B over C and hence for X over
X ∧C = X0. So

δ(X/Aβ) = trd(ξ/Aβ)− d ldimkO
(ξ/Γ(A), β)

= trd(ξ/A)− d ldimkO
(ξ/Γ(A))

= δ(ξ/A) > 0

because β is algebraically and linearly independent from C over A and ξ ∈ C. Since
B ⊳M we have 〈Aβ〉⊳M . The same argument shows that 〈A′β〉⊳M .

Thus, since M is Cfg-homogeneous (or Cfg
Γ-tr-homogeneous), θ1 extends to an

automorphism θ2 of M . Now θ2 fixes b and γ and θ2(a) = a′, so qftpLQE(a/bγ) =
qftpLQE(a′/bγ). Taking c = γ, considered as a tuple from the field sort of C, we
see that tp(b/C) does not split over c, as required. �

Remark 6.10. A more complete analysis of splitting for pseudo-exponentiation
was carried out in the PhD thesis of Robert Henderson [Hen14].

We conclude this section by showing that the Γ-algebraic types over finite tuples
are isolated.

Proposition 6.11. Suppose that a, b are finite tuples in M and that b ∈ ΓclM (a).
Then tp(b/a) is isolated by an LQE-formula.

Proof. Choose a finitely generated Γ-field B⊳M with B ⊆ Γcl(a), and a good basis
β for B such that a, b ∈ Fbase(β). Let W = Loc(β, a⌢b/Fbase).

Then M |= ϕW (β, a⌢b) and M |= ψW (a⌢b). Suppose M |= ψW (a⌢c). Then
there is a tuple γ from Γ(M) such thatM |= ϕW (γ, a⌢c). So Loc(γ/Fbase) ⊆ V but
Fbase⊳M and ldimkO

(γ/Γ(Fbase)) = dimV by the definition of ϕW , so γ is generic
in V over Fbase. Thus Loc(γ/Fbase) = Loc(β/Fbase) so, since β is a good basis, the
Γ-field C generated by γ is isomorphic to B via an isomorphism θ : B → C such
that θ(β) = γ, and then necessarily θ(a) = a and θ(b) = c.

Using Lemma 4.15 repeatedly,

δ(C/Fbase) = δ(B/Fbase) = Γdim(B) = Γdim(a) 6 Γdim(C)

and so δ(C/Fbase) = Γdim(C), and C ⊳M . Thus θ extends to an automorphism
of M , so tp(c/a) = tp(b/a), so the formula ψW (a⌢x) isolates tp(b/a). �

7. Classification of strong extensions

We next give a classification of the finitely generated strong extensions. In the
next section we will use it to give axiomatizations of the classes of Γ-closed fields
we have constructed, generalizing Zilber’s axioms for pseudo-exponentiation.

Since G is an O-module, each matrixM ∈ Matn(O) defines an O-module homo-

morphism Gn M
−→ Gn in the usual way. If V ⊆ Gn, we write M · V for its image.

Note that if V is a subvariety of Gn then M ·V is a constructible set, and since the
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O-module structure is defined over K0, if V is defined over A then M ·V is defined
over K0 ∪ A. If V is irreducible then M · V is also irreducible.

We have Gn = (G1 × G2)
n and we write x1, . . . , xn for the coordinates in G1

and y1, . . . , yn for the coordinates in G2.

Definition 7.1. Let V be an irreducible subvariety of Gn. Then V is G1-free if
V does not lie inside any subvariety defined by an equation

∑n
j=1 rjxj = c for any

rj ∈ O, not all zero, and any c ∈ G1. We define G2-free the same way. We say V
is free if it is both G1-free and G2-free.
V is rotund (for G as an O-module) if for every matrix M ∈ Matn(O) we have

dim(M · V ) > d rkM

where dim means dimension as an algebraic variety or constructible set, rkM is
the rank of the matrix M , and recall that d = dimG1.
V is strongly rotund if for every non-zero matrix M ∈ Matn(O) we have

dim(M · V ) > d rkM.

A reducible subvariety V of Gn is defined to be free / rotund / strongly rotund
if at least one of its (absolutely) irreducible components is free / rotund / strongly
rotund respectively. If we say that such a V is free and (strongly) rotund then we
mean that the same irreducible component is free and (strongly) rotund.

So V is free if it is “free from O-linear dependencies”, and it is rotund if all its
images under suitable homomorphisms are of large dimension.

Lemma 7.2. An irreducible subvariety V ⊆ Gn is G2-free if and only if π2(V ) does
not lie in a coset of a proper algebraic subgroup of Gn

2 . If O = End(G1) then V is
G1-free if and only if π1(V ) does not lie in a coset of a proper algebraic subgroup
of Gn

1 .

Proof. This is an immediate consequence of Lemma 2.1(i). �

Proposition 7.3. Suppose that A is a full Γ-field, A ⊆ B is a finitely generated
extension of Γ-fields, preserving the kernels, and that b ∈ Γ(B)n is a basis for the
extension. Let V = Loc(b/A).

Then V is free. Furthermore the extension is strong if and only if V is rotund,
and it is purely Γ-transcendental if and only if V is strongly rotund.

Proof. If V is not G1-free then, writing b = (b11, . . . , b
n
1 , b

1
2, . . . , b

n
2 ) ∈ Gn

1 × Gn
2 we

have
∑n

j=1 rjb
j
1 = c1 ∈ G1(A). Let c2 =

∑n
j=1 rjb

j
2. Then (c1, c2) ∈ Γ(B) and since

A is full and the extension preserves the kernels we have (c1, c2) ∈ Γ(A). That
contradicts b being a basis for the extension. So V is G1-free and, symmetrically,
G2-free.

For M ∈ Matn(O) we have M · b ∈ Γ(B)n with ldimkO
(M · b/Γ(A)) = rkM .

Furthermore, every finite tuple from Γ(B) generates the same Γ-field extension of
A as some tuple M · b, because b is a basis. Thus the extension is strong if and
only if for all M we have trd(M · b/A) > d rkM , if and only if for all M we have
dim(M · V )Zar > d rkM , if and only if V is rotund.

Similarly any finite tuple from Γ(B) which is not in Γ(A) generates the same
extension of A as a tuple M · b for some non-zero matrix M , and V is strongly
rotund if and only if all such tuples have δ(M · b/A) > 0. �

Corollary 7.4. Suppose that A ⊳ B is a finitely generated strong extension of
essentially finitary Γ-fields, that Afull ∧ B = A, that b ∈ Γ(B)n is a basis for the
extension, and that V = Loc(b/A). Then V is free and rotund, and it is strongly
rotund if and only if B is a purely Γ-transcendental extension of A.
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Proof. First note that, since A and B are essentially finitary, by Theorem 4.17,
Bfull is uniquely determined up to isomorphism and Afull is uniquely determined as
a Γ-subfield of Bfull, so the condition that Afull∧B = A makes unambiguous sense.
Now the proof of Proposition 7.3 goes through with this weaker condition in place
of A = Afull. �

8. Axiomatization of Γ-closed fields

Recall we have fixed a ringO, algebraicO-modules G1 andG2, both of dimension
d, defined over a countable field K0, we have G = G1 × G2, and we consider
structures in the language LΓ = 〈+, ·,−,Γ, (ca)a∈K0〉, where Γ is a relation symbol
of appropriate arity to denote a subset of G. We are given an essentially finitary
Γ-field Fbase containing K0, of type (EXP), (COR), or (DEQ). We add parameters
for Fbase to the language to get a language LFbase

. We also have an expanded
language LQE.

Definition 8.1. A model in the quasiminimal class K(M(Fbase)) will be called a
Γ-closed field (with the countable closure property, on the base Fbase).

Theorem 8.2. An LFbase
structure F is a Γ-closed field if and only if it satisfies

the following list of axioms which we denote by ΓCFCCP(Fbase).

1. Full Γ-field: F is an algebraically closed field containing K0 and Γ(F ) is
an O-submodule of G(F ) such that the projections of Γ(F ) to G1(F ) and
G2(F ) are surjective.

2. Base and kernels: F satisfies the full atomic diagram of Fbase. (In some
examples we will discuss how this can be weakened.) Also keri(F ) = keri(Fbase)
for i = 1, 2.

3. Predimension inequality (generalised Schanuel property): The pred-
imension function

δ(x/Fbase) := trd(x/Fbase)− d ldimkO
(x/Γ(Fbase))

satisfies δ(x/Fbase) > 0 for all tuples x from Γ(F ).
4. Strong Γ-closedness: For every irreducible subvariety V of Gn defined

over F and of dimension dn, which is free and rotund for the O-module
structure on G, and every finite tuple a from Γ(F ), there is b ∈ V (F ) ∩
Γ(F )n such that b is kO-linearly independent over Γ(Fbase) ∪ a (that is,
no non-zero kO-linear combination of the bi lies in the kO-linear span of
Γ(Fbase) ∪ a).

5. Countable Closure Property: For each finite subset X of F , the Γ-
closure ΓclF (X) of X in F is countable.

Observe that if F is a Γ-field for the O-module G, and in particular if it is full
so satisfies axiom 1, then it satisfies axioms 2 and 3 if and only if Fbase ⊳ F .

Lemma 8.3. If F satisfies axioms 1–3 then it also satisfies axiom 4 if and only if
it is ℵ0-saturated for Γ-algebraic extensions (in the sense of Definition 5.14).

Proof. First assume that F satisfies axioms 1–4. Suppose A ⊳ F is finitely gen-

erated over Fbase and A
⊳
−֒→ B is a finitely generated Γ-algebraic extension. We

have assumed that Fbase is essentially finitary, so Afull and Bfull are unique up to
isomorphism as extensions of A and B respectively, so Afull embeds (strongly) into
Bfull. Choose an embedding. Since Afull embeds in F we have Afull ∧B embedding
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(strongly) into F , as summarised in the diagram below.

Afull ✲ F

A ✲

✲

Afull ∧B

✲

Bfull

✲

B

✲

✲
✲

So it remains to embed B in F over Afull ∧B, so we may assume A = Afull ∧B.
Let a be a basis for A over Fbase and let b ∈ Γ(B)n be a good basis for B over A,
which exists by Proposition 3.22. Let V = Loc(b/A), a subvariety of Gn. Then V is
free and rotund by Corollary 7.4. Since B is Γ-algebraic over A we have δ(b/A) = 0,
so dimV = dn.

Then, by axiom 4 applied to an absolutely irreducible component of V , there is
c ∈ Γ(F )n ∩ V (F ), kO-linearly independent over Γ(Fbase) ∪ {a}. Since A ⊳ F we
have δ(c/A) > 0, so trd(c/A) = dn = dimV . Thus c is generic in V over A. Let C
be the Γ-subfield of F generated by A and c. Then c is a good basis of C over A
because this is a property of Loc(c/A), that is, of V . So, by the definition of a good
basis, C is isomorphic to B over A. So F is ℵ0-saturated for Γ-algebraic extensions
over Fbase.

For the converse, suppose that F is ℵ0-saturated for Γ-algebraic extensions over
Fbase. Let V be a free and rotund absolutely irreducible subvariety of Gn which
is defined over F and of dimension dn, and let a be a finite tuple from Γ(F ).
Extending a if necessary, we may assume that A = 〈Fbase, a〉 ⊳ F and that V is
defined over a.

Consider a Γ-field extension B of A, generated by a tuple b ∈ Γ(B) such that
Loc(b/A) = V . By Proposition 7.3 the extension is strong. Since V is free,
ldimkO

(b/Γ(A)) = n and so δ(b/A) = dimV − dn = 0. So B is a Γ-algebraic
extension. Thus B embeds into F over A and so we have b ∈ V (F ) ∩ Γ(F )n which
is kO-linearly independent over Γ(Fbase) ∪ {a} as required. �

Proof of Theorem 8.2. Suppose F is a Γ-closed field. Then, by definition, F is
(isomorphic to) a closed substructure of the canonical model M or is obtained
from M (and its closed substructures) as the union of a directed system of closed
embeddings. If F is a closed substructure of M then certainly it is a full Γ-field
strongly extending Fbase, so it satisfies axioms 1–3, and it is countable so satisfies
axiom 5.

For axiom 4, suppose A ⊳ F is finitely generated and A
⊳
−→ B is a finitely

generated and Γ-algebraic extension. Since M is Cfg-saturated, B embeds strongly
into M over A and since F is closed in M , B ⊆ F . So by Lemma 8.3, F satisfies
axiom 4.

So closed substructures ofM satisfy axioms 1–5. Axioms 1–4 are preserved under
unions of directed systems of strong embeddings, and all the axioms are preserved
under unions of directed systems of closed embeddings, hence all Γ-closed fields
satisfy all 5 axioms of ΓCFCCP(Fbase).

Suppose now that F satisfies axioms 1–5. Since it satisfies axioms 1–3, we have
the pregeometry ΓclF on F . If F0 is a finite-dimensional substructure of F then F0

satisfies axioms 1–3 and 5 immediately and, using Lemma 8.3, also axiom 4. Let
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ā be a ΓclF -basis for F0. Using Lemma 4.13, for each ai ∈ ā, choose αi ∈ Γ(F0),
interalgebraic with ai over Fbase. Let C = 〈Fbase, α1, . . . , αn〉. Then F0 is Γ-
algebraic over C and is saturated for Γ-algebraic extensions so, by Proposition 5.15,
F0

∼=M0(C). Now choose an embedding of C intoM and note that ΓclM (C) is also
Γ-algebraic over C and is saturated for Γ-algebraic extensions so is also isomorphic
to M0(C). Hence F0 is a Γ-closed field.

Now F is the union of the directed system of all its finite-dimensional closed
substructures, which by CCP are countable, and the class of Γ-closed fields is
closed under such unions by definition, hence F is a Γ-closed field. �

We can now prove Theorem 1.7.

Proof of Theorem 1.7. By Theorem 6.9, M(Fbase) is a quasiminimal pregeometry
structure, so by Fact 6.4 the class K(M(Fbase)) is uncountably categorical and
every model is quasiminimal. By Theorem 8.2, the list of axioms ΓCFCCP(Fbase)
axiomatizes the class K(M(Fbase)). �

Remarks 8.4. (1) It is easy to show that axioms 1–4 are Lω1,ω-expressible,
and axiom 5 is expressible as an Lω1,ω(Q)-sentence.

(2) If we add an (Lω1,ω-expressible) axiom stating that F is infinite dimen-
sional to axioms 1–4, the only countable model is M and so we get an
ℵ0-categorical, and hence complete, Lω1,ω-sentence.

9. Specific applications of the general construction

We list several instances of Γ-fields that are of interest, starting with the original
example.

9.1. Pseudo-exponentiation. We take K0 = Q, G1 = Ga and G2 = Gm. Take
O = Z. Let τ be transcendental, and take Fbase to be the field Qab(τ), where Qab

is the extension of Q by all roots of unity. For each m ∈ N+, choose a primitive
mth root of unity ωm, such that for all m,n ∈ N+ we have (ωmn)

n = ωm. We take
Γ(Fbase) to be the graph of a homomorphism from the Q-linear span of τ to the
roots of unity such that τ/m 7→ ωm for each m ∈ N+. (This Fbase is called SK in
the paper [Kir13].)

Then the construction gives a class of fields F with a predicate Γ(F ) defining the
graph of a surjective homomorphism from Ga(F ) to Gm(F ), with kernel τZ, which
we denote by exp. The predimension inequality is precisely Schanuel’s conjecture,
and the strong existential closedness axiom is known as strong exponential-algebraic
closedness. Thus we obtain a proof of Theorem 1.2, which we restate in explicit
form.

Theorem 9.1. Up to isomorphism, there is exactly one model 〈F ; +, ·, exp〉 of each
uncountable cardinality of the following list ECFSK,CCP of axioms.

1. ELA-field: F is an algebraically closed field of characteristic zero, and
exp is a surjective homomorphism from Ga(F ) to Gm(F ).

2. Standard kernel: the kernel of exp is an infinite cyclic group generated
by a transcendental element τ .

3. Schanuel Property: The predimension function

δ(x̄) := trd(x̄, exp(x̄))− ldimQ(x̄)

satisfies δ(x̄) > 0 for all tuples x̄ from F .
4. Strong exponential-algebraic closedness: If V is a rotund, additively

and multiplicatively free subvariety of Gn
a × Gn

m defined over F and of di-
mension n, and ā is a finite tuple from F , then there is x̄ in F such that



PSEUDO-EXPONENTIAL MAPS, VARIANTS, AND QUASIMINIMALITY 37

(x̄, ex̄) ∈ V and x̄ is Q-linearly independent over ā (that is, no non-zero
Q-linear combination of the xi lies in the Q-linear span of the ai).

5. Countable Closure Property: For each finite subset X of F , the expo-
nential algebraic closure eclF (X) of X in F is countable.

Proof. We apply Theorem 1.7, but note that axioms 2 and 3 are slightly different
from the axioms given in the statement of Theorem 8.2. The Schanuel property
holds on our choice of Fbase because τ is transcendental, and it follows from the
addition property for δ that the two versions of axiom 3 are equivalent in this case.
Since τ is transcendental and the kernel is standard, it follows that Fbase embeds
strongly in F , so the two versions of axiom 2 are also equivalent. �

We denote the canonical model of cardinality continuum by B.

9.2. Incorporating a counterexample to Schanuel’s conjecture. We pro-
ceed as in the previous example, except now we choose an irreducible polynomial
P (x, y) ∈ Z[x, y] and take (ǫ, τ) to be a generic zero of the polynomial P (x, y). (We
assume that P is such that neither ǫ nor τ is zero.) Choose a division sequence
(ǫm) for ǫ, that is, numbers such that ǫ1 = ǫ and (ǫmn)

n = ǫm for all m,n ∈ N+.
Now take K to be the field Qab(τ, (ǫm)m∈N+), and define Γ(K) to be the graph of
a homomorphism from the Q-linear span of τ and 1, with τ/m 7→ ωm as above and
1/m 7→ ǫm.

Now the construction gives us a canonical model BP , the unique model of car-
dinality continuum of almost the same list of axioms as those for B, except that
Schanuel’s conjecture has this exception with the formal analogues ǫ and τ of e
and 2πi being algebraically dependent via the polynomial P . More precisely, the
predimension axiom is replaced by an axiom scheme stating that exp(1) and τ
are transcendental, that P (exp(1), τ) = 0, and the condition that for all tuples ā,
trd(ā, exp(ā)/τ, exp(1))− ldimQ(ā/τ, 1) > 0.

More generally, we can take any finitely generated partial exponential field with
standard kernel (that is, a finitely generated Γ-field for the appropriate groups and
kernels) as Fbase and do the same construction to build a quasiminimal exponential
field M(Fbase) of size continuum with counterexamples to the Schanuel property
within a finite-dimensional Q-vector space, but with the Schanuel property holding
over that vector space. Each M(Fbase) is unique up to isomorphism as a model of
appropriate axioms, just as B is. One could conjecture that Cexp is isomorphic to
one of these. Several people have asked us if it might be possible to prove Schanuel’s
conjecture easily by some method showing that Cexp must be isomorphic to B, just
because B is categorical. Examples such as these show that soft methods which
ignore transcendental number theory and analytic considerations cannot hope to
work.

9.3. Pseudo-Weierstrass ℘-functions. Let E be an elliptic curve over a number
field K0. Choose a Weierstrass equation for E

Y 2Z = 4X3 − g2XZ
2 − g3Z

3

with g2, g3 ∈ K0, which fixes an embedding of E into projective space P2, with
homogeneous coordinates [X : Y : Z]. Apart from the point O = [0 : 1 : 0] at
infinity, we can identify E with its affine part, given by solutions of the equation

y2 − 4x3 − g2x− g3 = 0

in A2.
For our construction we take G1 = Ga and G2 = E, and we take O = End(E), so

O = Z if E does not have complex multiplication (CM) and O = Z[τ ] if E has CM
by the imaginary quadratic τ . In the CM case, we assume that τ ∈ K0 (and adjoin
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it if not). Take ω1 transcendental over K0 and ω2 transcendental over K0(ω1) if E
does not have CM, or ω2 = τω1 if E has CM by τ .

As a field, we define Fbase = K0(Tor(E), ω1, ω2), where Tor(E) means the full
torsion group of E, which is contained in E(Qalg). We define Γ(Fbase) to be the
graph of a surjective O-module homomorphism from Qω1 + Qω2 to Tor(E), with
kernel Λ = Zω1+Zω2. While this may not specify Fbase up to isomorphism, we will
see that Serre’s open image theorem allows us to specify Fbase with only a finite
amount of extra information.

In a model M , Γ(M) will be the graph of a surjective homomorphism expE,M :

Ga(M) → E(M) with kernel Λ. Using our chosen embedding of E into P2, we
can identify the components of the function expE,M with functions ℘, ℘′ : M →
M ∪ {∞}, where expE,M (a) = [℘(a) : ℘′(a) : 1]. We call the function ℘ a “pseudo-
Weierstrass ℘-function”.

Note that in our model M , Λ is definable by the formula expE,M (x) = O. In
the non-CM case, Z is definable by the formula ∀y[y ∈ Λ → xy ∈ Λ], so Q is also
definable as the field of fractions. In the CM case, these formulas define the rings
Z[τ ] and Q[τ ].

Following [Gav08], we will apply the following version of Serre’s open image
theorem to show that only a finite amount of extra information is required to
specify Fbase as a Γ-field.

Fact 9.2. Let E be an elliptic curve defined over a number field K0. Then there
exists an m ∈ N such every End(E)-module automorphism of the torsion Tor(E)
which fixes the m-torsion E[m] pointwise is induced by a field automorphism over
K0, that is, the natural homomorphism

Gal(Kalg
0 /K0(E[m])) → AutEnd(E)(Tor(E)/E[m])

is surjective.

Proof. When End(E) ∼= Z, this is Serre’s open image theorem [Ser72, Introduction
(3)]. When E has complex multiplication, it is the analogous classical open image
theorem [Ser72, Section 4.5, Corollaire]. �

Unfortunately the proof does not give an effective bound for m, so given an
explicit K0 and E we do not know how to compute it.

We can now prove the first half of Theorem 1.6, which we restate precisely.

Theorem 9.3. Let E be an elliptic curve over a number field K0 ⊆ C. Up to
isomorphism, there is exactly one model of each uncountable cardinality of the fol-
lowing list ℘CFSK,CCP(E) of axioms, and these models are all quasiminimal.

1. Full ℘-field: M is an algebraically closed field of characteristic zero, and
Γ is the graph of a surjective homomorphism from Ga(M) to E(M), which
we denote by expE,M . We add parameters for the number field K0.

2. Kernel and base (non-CM case): There exist ω1, ω2 ∈ Ga(M), Q-linearly
independent, such that the kernel of expE,M is of the form Zω1 + Zω2

and, for the number m specified by Fact 9.2, the algebraic type of the pair
(expE,M (ω1/m), expE,M (ω2/m)) ∈ E[m]2 over the parameters K0 is speci-
fied.

2. Kernel and base (CM case): There exists a non-zero ω1 ∈ Ga(M) such
that the kernel of expE,M is of the form Z[τ ]ω1, and for the number m
specified by Fact 9.2, the algebraic type of expE,M (ω1/m) ∈ E[m] over the
parameters K0 is specified.

3. Predimension inequality: The predimension function

δ(x̄) := trd(x̄, expE,M (x̄))− ldimkO
(x̄)
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satisfies δ(x̄) > 0 for all tuples x̄ from M where kO = Q or Q(τ) as
appropriate.

4. Strong ℘-algebraic closedness: The specific case of strong Γ-closedness
for this choice of G, O and Fbase, from Theorem 8.2.

5. Countable Closure Property: as in Theorem 8.2.

Proof. Again we must show that these axioms are equivalent to those given in The-
orem 8.2. As in the exponential case, we have the absolute form of the predimension
inequality here, which is equivalent to the relative statement over the base together
with the assertion that ω1 is transcendental and, in the non-CM case, that ω2 is
transcendental over K0(ω1). It remains to show that the axioms here specify the
atomic diagram of Fbase.

So suppose that M and M ′ are both models of the axioms, and their bases,
that is the Γ-subfields generated by the kernels, are Fbase and Fbase

′. We have
K0 as a common subfield, and the axioms give us kernel generators (ω1, ω2) ∈M2

and (ω′
1, ω

′
2) ∈ M ′2 such that (α1, α2) := (expE,M (ω1/m), expE,M (ω2/m)) and

(α′
1, α

′
2) := (expE,M ′(ω′

1/m), expE,M ′(ω′
2/m)) have the same algebraic type over

K0. (In the CM case we define ω2 = τω1 and ω′
2 = τω′

1 to treat the two cases
at the same time.) The points αi ∈ E generate the m-torsion subgroup E[m] of
E. So we can define a field isomorphism σ1 : K0(E[m](M)) → K0(E[m](M ′))
by αi 7→ α′

i for i = 1, 2. Then we extend σ1 arbitrarily to a field isomorphism
σ2 : K0(Tor(E)(M)) → K0(Tor(E)(M ′)).

Now define an End(E)-module automorphism of Tor(E)(M) by

expE,M

(
ω1

n1
+
ω2

n2

)
7→ σ−1

2

(
expE,M ′

(
ω′
1

n1
+
ω′
2

n2

))

for all n1, n2 ∈ Z. By construction of σ2 this automorphism fixes E[m] pointwise, so
by Fact 9.2 it extends to a field automorphism σ3 of K0(Tor(E)(M)). So defining
σ4 = σ2 ◦ σ3 we get a field isomorphism σ4 : K0(Tor(E)(M)) → K0(Tor(E)(M ′))

such that σ4

(
expE,M

(
ω1

n1
+ ω2

n2

))
= expE,M ′

(
ω′

1

n1
+

ω′
2

n2

)
for all n1, n2 ∈ Z.

The predimension inequality implies that (ω1, ω2) and (ω′
1, ω

′
2) have the same

field-theoretic type over Qalg, so we can extend σ4 to a field isomorphism σ5 by
defining σ5(ωi) = ω′

i for i = 1, 2, and this σ5 is a Γ-field isomorphism Fbase → Fbase
′

as required. �

Later in Proposition 10.1 we will show that the predimension inequality above
is the appropriate form of Schanuel’s conjecture for the ℘-functions, and we will
thereby complete the proof of Theorem 1.6.

9.4. Variants on ℘-functions. As in the exponential case, we can do variant
constructions by changing the base field Fbase to a different finitely generated Γ-
field, to incorporate some counterexamples to the predimension inequality. We
can also do constructions of “pseudo-analytic” homomorphisms Ga(M) → E(M)
which have no complex-analytic analogue. For example, choose an elliptic curve
E without complex multiplication and take the kernel lattice Λ = Zω1 + Zω2 for
ω1/ω2 ∈ R, totally real (that is algebraic and such that it and all its conjugates
are real), for example real quadratic. The construction still works perfectly well to
produce a unique quasiminimal model, but no embedding of Λ into C can be the
kernel of a meromorphic homomorphism because it is dense on the line Rω1.

9.5. Exponential maps of simple abelian varieties. This is the algebraic setup
corresponding to the complex example described in Definition 3.1. Take G1 = Gd

a

and G2 a simple abelian variety of dimension d, defined over a number field K0.
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Take O = End(G2), and suppose these endomorphisms are also defined over K0.
Fix an embedding of K0 into C.

Let ω1, . . . , ω2d ∈ Cd be generators of a lattice Λ such that Cd/Λ is isomorphic
to G2(C) as a complex O-module manifold.

We take Fbase to be the field generated by the ωi together with Tor(G2), and
Γ(Fbase) to be the graph of an O-module homomorphism from QΛ onto Tor(G2).

For abelian varieties of dimension greater than 1 there is no non-conjectural
analogue of Serre’s open image theorem so we cannot be more specific about an
axiomatization of the atomic diagram of the base. So we have no improvement on
the statement of Theorem 8.2 in this case.

9.6. Factorisations via Gm of elliptic exponential maps. The examples so
far have all been of the exponential type, case (EXP). Here, we give an example
in case (COR). Let G1 = Gm and G2 = E, an elliptic curve without complex
multiplication, defined over a number field K0. Let O = Z.

Let ω be transcendental. As a field Fbase = K0(ω,Tor(Gm),Tor(E)) and we
define Γ(Fbase) to be the graph of a surjective homomorphism from Qω+Tor(Gm)
onto Tor(E) with kernel Zω. Then for M = M(Fbase), Γ(M) is the graph of a
surjective homomorphism θM : Gm(M) → E(M).

In the complex case, the exponential map of E factors through the exponential
map of Gm as

Ga(C)
[℘:℘′:1]

✲ E(C)

Gm(C)

exp

❄

θ

✲

and this pseudo-analytic map θM is an analogue of the complex map θ. Since E×Gm

is not simple, the methods of this paper do not suffice to build a field F equipped
with a map θ and pseudo-exponential maps of Gm and E together, in which the
analogue of the above commutative diagram would hold together with a suitable
predimension inequality and a categoricity theorem for a reasonable axiomatization.
However, it seems likely that this is achievable by combining the methods of this
paper with those of [Kir09].

Question 9.4. The main obstacle to stability for the first-order theory of B is the
kernel. In this case the kernel is just a cyclic subgroup of Gm, and it is known
that Gm equipped with such a group is superstable. So it is natural to ask whether
the first-order theory of M in this case is actually superstable. One could even ask
if any construction of type (B), say with finite rank kernels, produces a structure
with a superstable first-order theory.

9.7. Differential equations. We now give an example of type (DEQ). Let K0 be
a countable field of characteristic 0, let G2 be any simple semiabelian variety of
dimension d defined over K0 and let G1 = Gd

a. Let O = End(G2). Let C be a
countable algebraically closed field extending K0, and define Γ(C) = G(C).

Now consider the amalgamation construction using C as the base but considering
only purely Γ-transcendental extensions of C, that is using the category CΓ-tr(C) in
place of C(C). Theorem 6.9 shows we have a quasiminimal pregeometry structure,
and hence a canonical model in each uncountable cardinality. The models we obtain
are quasiminimal and Γcl(∅) = C.

This construction is also considered in [Kir09] where it is shown that the first-
order theory of these models is ℵ0-stable. In that paper it is also shown that if
〈F ; +, ·, D〉 is a differentially closed field and we define Γ(F ) to be the solution set
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to the exponential differential equation for G2 then the reduct 〈F ; +, ·,Γ〉 is a model
of the same first-order theory, and C is the field of constants for the differential
field. The paper [Kir09] also considers the situation with several different groups ΓS

relating to the exponential differential equations of different semiabelian varieties
S, which do not have to be simple, but they do have to be defined over the constant
field C.

10. Comparison with the analytic models

Zilber conjectured that Cexp
∼= B and it seems reasonable to extend the conjec-

ture to the exponential map of any simple complex abelian variety, and indeed to
other analytic functions such as the function θ from section 9.6. In each example,
axioms 1 and 2 are set up to describe properties we know about these analytic
functions, so verifying the conjecture amounts to verifying the other three axioms.
We consider the progress towards each of the axioms in turn.

10.1. The predimension inequalities. For the usual exponential function, the
predimension inequality states that for all tuples a from C, trd(a, ea) > ldimQ(a).
This is precisely Schanuel’s conjecture.

In the case of an elliptic curve E defined over a number field, the predimension
inequality states for all tuples a from C, δE(a) = trd(a, expE,C(a))− ldimkO

(a) > 0.

Proposition 10.1. The predimension inequality above for the exponential map of
an elliptic curve follows from the André-Grothendieck conjecture on the periods of
1-motives.

The following proof was explained to us by Juan Diego Caycedo, and follows the
proof of a related statement in section 3 of [CZ14].

Proof. By Théorème 1.2 of [Ber02], with s = 0 and n = 1, a special case of André’s
conjecture (building on Grothendieck’s earlier conjecture) states that if j(E) is the
j-invariant of E, ω1 and ω2 are the periods of E, η1 and η2 are the quasiperiods of
E, P1, . . . , Pn ∈ E(C), ai is the integral of the first kind associated with Pi, and di
is the integral of the second kind associated with Pi then:

(1) trd(2πi, j(E), ω1, ω2, η1, η2, P̄ , a, d) > 2 ldimkO
(a/ω1, ω2) + 4[kO : Q]−1.

In this case, we have that Pi = [℘(ai) : ℘′(ai) : 1] = expE,C(ai). Since our E
is defined over a number field, j(E) is algebraic. The Legendre relation states
ω1η2 − ω2η1 = 2πi, so j(E) and 2πi do not contribute to the above inequality.

If we assume that a1, . . . , an ∈ C are kO-linearly independent over ω1, ω2 we can
discard the integrals of the second kind to get the bound

(2) trd(ω1, ω2, η1, η2, a, expE,C(a)) > ldimkO
(a/ω1, ω2) + 4[kO : Q]−1.

Consider the case where there is no CM, so kO = Q. Throwing away η1 and η2
we get

(3) trd(ω1, ω2, a, expE,C(a)) > ldimkO
(a/ω1, ω2) + 2.

From the case n = 0 we see that trd(ω1, ω2) = 2 and since ω1 and ω2 are Q-
linearly independent we have δE(ω1, ω2) = 0. Then (3) implies for any a we
have δE(a/ω1, ω2) > 0, and putting these two statements together we deduce that
δE(a) > 0.

Where E does have CM (and is defined over a number field) Chudnovsky’s theo-
rem [Chu80, Theorem 1 and Corollary 2] gives us trd(ω1, ω2, η1, η2) = trd(ω1, π) =
2, so in particular trd(ω1) = 1. We also have kO = Q(τ) with [kO : Q] = 2 and
ω2 = ω1τ , so we can discard ω2, η1 and η2 from (2) to obtain

(4) trd(ω1, a, expE,C(a)) > ldimkO
(a/ω1) + 1.
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The same argument now shows that δE(a) > 0 for any tuple a. �

Proof of Theorem 1.6. Theorem 9.3 shows that the axioms ℘CFSK,CCP(E) are un-
countably categorical and that every model is quasiminimal. The analytic struc-
ture C℘ is a model of the first two axioms by construction. Proposition 10.1 shows
that the predimension inequality given in axiom 3 is the appropriate analogue of
Schanuel’s conjecture for ℘-functions. Axiom 5, the countable closure property was
proved in this case in [JKS16]. �

We will give another proof of the countable closure property in Theorem 1.8 in
this paper.

Our understanding of the periods conjecture uses Bertolin’s translation to remove
the motives, which she did only in the cases of elliptic curves and Gm. For abelian
varieties of dimension greater than 1 we suspect that the predimension inequality
axiom again follows from the André-Grothendieck periods conjecture, but there are
more complications because the Mumford-Tate group plays a role and so we have
not been able to verify it.

10.2. Strong Γ-closedness. In the case of the usual exponentiation for Gm, Man-
tova [Man14] currently has the best result towards proving the Strong Γ-closedness
in the complex case. He only considers the case of a variety V ⊆ Gn where n = 1.
A free and rotund V ⊆ G1 is just the solution set of an irreducible polynomial
p(x, y) ∈ C[x, y] which depends on both x and y, that is, the partial derivatives ∂p

∂x

and ∂p
∂y

are both non-zero.

Fact 10.2. Suppose p(x, y) ∈ C[x, y] depends on both x and y. Then there are in-
finitely many points x ∈ C such that p(x, ex) = 0. Furthermore suppose Schanuel’s
conjecture is true and let a be a finite tuple from C. Then there is x ∈ C such that
(x, ex) is a generic zero of p over a.

The observation that there are infinitely many solutions and the whole statement
in the case that p is defined over Qalg is due to Marker [Mar06]. The general case
stated above is due to Mantova [Man14, Theorem 1.2].

10.3. Γ-closedness. In section 11 we will see that for some purposes strong Γ-
closedness can be weakened to Γ-closedness.

Definition 10.3. A full Γ-field F is Γ-closed if for every irreducible subvariety V
of Gn defined over F and of dimension dn, which is free and rotund, V (F )∩Γ(F )n

is Zariski-dense in V .

Using the classical Rabinovich trick, one can easily show this axiom scheme is
equivalent to the existence of a single point β ∈ V (F ) ∩ Γ(F )n, for every such
V . For the usual exponentiation, Γ-closedness is known as exponential-algebraic
closedness. In this direction, Brownawell and Masser [BM16, Proposition 2] have
the following.

Fact 10.4. If V ⊆ (Ga×Gm)
n(C) is an algebraic subvariety of dimension n which

projects dominantly to Gn
a then there is a ∈ Cn such that (a, ea) ∈ V .

In this case V can be taken free without loss of generality, and the condition of
projecting dominantly to Gn

a implies rotundity. However it is much stronger than
rotundity. Another exposition of this theorem is given in [DFT16].
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10.4. The pregeometry and the countable closure property. To compare
the pregeometry of our constructions such as B with the complex analytic models
such as Cexp we have to define the appropriate pregeometry on the complex field.
Given a Γ-field F , we defined a Γ-subfield A of F to be Γ-closed in F if whenever
A ⊆ B ⊆ F with δ(B/A) 6 0 then B ⊆ A. One can construct Γ-fields with no
proper Γ-closed subfields. Fortunately we are able to show unconditionally that
there is a countable Γ-subfield of C which is Γ-closed in C.

For Cexp, this was done in [Kir10a] by adapting the proof of Ax’s differential
forms version of Schanuel’s conjecture. A similar proof was given in [JKS16] for
elliptic curves. The same method ought to work for any semiabelian varieties, but
here we give a different approach, applying the main result of [Ax72] directly to
generalise a theorem of Zilber in the exponential case [Zil05b, Theorem 5.12].

Let CΓ be an analytic Γ-field, which recall means a Γ-field from Definition 3.1
or 3.2. Then Γ is a complex Lie subgroup of G(C), and LΓ ≤ LG(C) is the graph
of a C-linear isomorphism between LG1(C) and LG2(C). Thus Γ

n is a complex Lie
subgroup of Gn(C), so has a complex topology. It might not be a closed subgroup,
so the topology might not be the subspace topology.

Definition 10.5. Given an algebraic subvariety V ⊆ Gn, write V isol for the set
of all isolated points of V (C) ∩ Γn with respect to the complex topology on Γn.
For any subset A ⊆ C we define Γcl′(A) to be the subfield of C generated by the
union of all V isol where V ranges over the algebraic subvarieties V ⊆ Gn which
are defined over K0(A). We consider Γcl′(A) as a Γ-subfield of C by defining
Γ(Γcl′(A)) := Γ ∩G(Γcl′(A)).

Lemma 10.6. Γcl′ is a closure operator on C and for any A ⊆ C, Γcl′(A) is a full
Γ-subfield of C of cardinality |A|+ ℵ0.

Proof. For transitivity, suppose x is a finite tuple from Γcl′(A) and y ∈ Γcl′(Ax).
We may reduce to the case that α ∈W (C)∩Γn is isolated and the tuple x lists the
co-ordinates of α, and β ∈ V (C)∩Γm is isolated and y is a co-ordinate of β, withW
defined over K0(A) and V over K0(Ax). Then V can be written as a fibre V ′(α) of
a subvariety V ′ ⊆ Gm+n over K0(A) projecting toW ⊆ Gn. Then βα ∈ V ′∩Γm+n

is an isolated point, so β ∈ Γcl′(A).

Now let A ⊆ C, and set A′ := aclC(K0(A)). Let α0 ∈ G1(A
′), and let V0 ⊆ G1

be the set of its conjugates, i.e. the 0-dimensional locus of α0 over K0(A), and let
V := V0×G2 ⊆ G. Then V ∩Γ is non-empty, since π1 : Γ ։ G1(C) is surjective, and
it consists of isolated points since ker(π1) does. This shows that A

′ ⊆ Γcl′(A), and
hence in particular that Γcl′ is a closure operator, and furthermore this argument
shows that Γcl′(A) is full.

Finally, for the cardinality calculation, note there are only (|A| + ℵ0)-many al-
gebraic varieties V defined over A and for each there can be only countably many
isolated points in V (C) ∩ Γn. �

Proposition 10.7. For an analytic Γ-field CΓ, the closure operators Γcl and Γcl′

are the same. In particular, Γcl′ is a pregeometry on C.

To prove this we will use a lemma and Ax’s theorem on the transversality of
intersections between analytic subgroups and algebraic varieties.

Lemma 10.8. If H ≤ Gn is a connected algebraic subgroup which is free then the
analytic subgroup H(C) + Γn is equal to Gn(C).

Proof. Since G2 is simple and not isogenous to G1, every algebraic subgroup of
Gn is of the form H1 × H2 with Hi a subgroup of Gn

i , and since H is free it is
G2-free. Since O = End(G2) it follows that H is of the form H1 ×Gn

2 . Now since
π1(Γ

n) = Gn
1 (C) we see H(C) + Γn = Gn(C). �
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Fact 10.9 ([Ax72, Corollary 1]). Suppose that G is a complex algebraic group, A is
a connected analytic subgroup of G, U is open in G and X is an irreducible analytic
subvariety of U such that X ⊆ A, XZar is the Zariski closure of X and H is the
smallest algebraic subgroup of G containing X. Then

dim(H +A) 6 dimXZar + dimA− dimX.

Proof of Proposition 10.7. Suppose that A ⊆ C is Γcl-closed. Let α ∈ V isol for
some V defined over K0(A). Replacing α with a subtuple if necessary, we may
assume α is kO-linearly independent over Γ(A). Then α is a smooth point of V and
of Γn, so by considering tangent spaces we see that trd(α/A) 6 dim V 6 nd, and
hence δ(α/A) 6 0. So α ∈ Γn(A) and hence A is Γcl′-closed.

Now suppose A is Γcl′-closed, and that A ⊆ B ⊆ C is a proper finitely generated
Γ-field extension in CΓ. Let b ∈ Γn(B) be a basis for the extension and let V =
Loc(b/A). We will show that δ(b/A) > 0.

Let X be an irreducible analytic component containing b of the analytic subset
V (C)∩Γn of the complex Lie group Γn. Since A is Γcl′-closed and b /∈ A, dimX > 1.

We claim that X has some point in A. To see this, let e be a smooth point of X ,
and take regular local co-ordinates ηi at e in Gn such that X is locally the graph
of a function from the first dimX co-ordinates to the rest. A is algebraically closed
as a field, so is topologically dense in C. So there is a point a ∈ X close to e such
that the first dimX co-ordinates are in A. Let W be the intersection of V with
ηi = ai for i = 1, ..., dimX . Then W is defined over A and a is an isolated point of
W (C) ∩ Γn, hence a is in Gn(A) as required.

Suppose XZar is not G1-free, so say (x, y) ∈ XZar implies a non-trivial O-linear
equation

∑n
j=1 rjxj = c. Then this equation holds for π1(a), so c ∈ G1(A). But

then since b ∈ X , already (x, y) ∈ V implies this equation, so V is not G1-free, a
contradiction since V is the locus of a basis over A. The same proof shows that
XZar is G2-free, so it is free.

LetH be the algebraic subgroup ofGn generated byXZar(C)−b. ThenXZar(C)−
b is free, so H is free. So by Lemma 10.8, the subgroup H + Γn is equal to Gn.

Applying Fact 10.9 we get

dim(H + Γn) 6 dim(XZar − b) + dimΓn − dim(X − b)

which gives

2dn 6 dimXZar + dn− dimX

but dimX > 0 and XZar ⊆ V so we deduce that dimV > nd. Thus δ(b/A) > 0.
So A is Γcl-closed, as required. �

Proof of Theorem 1.8. Proposition 10.7 shows that Γcl = Γcl′, and so Lemma 10.6
shows that Γcl has the countable closure property. �

Remark 10.10. In [Kir10a], an algebraic version of the isolated points closure Γcl′

was given, using the fact that a solution to a system of 2n equations of analytic
functions in 2n variables is isolated if and only if a certain Jacobian matrix does
not vanish at the point. So this gives a definition of a closure operator ecl which
makes sense on any exponential field, and it was shown in [Kir10a] that ecl-closed
sets are strong and agree with the Γcl-closed sets as we have defined them here,
and in particular that ecl is always a pregeometry. This algebraic definition of the
closure operator was suggested by Macintyre [Mac96] although it had previously
been used in the real and complex cases by Khovanskii and by Wilkie.
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11. Generically Γ-closed fields

In this section we consider Γ-fields which may not be strongly Γ-closed but are
generically strongly Γ-closed. Using the variant of the amalgamation construction
from Section 5.4, we show that such Γ-fields are also quasiminimal and that the
strong part of strong Γ-closedness becomes redundant in this generic case.

Let K be a full Γ-field. Recall from section 5.4 that an extension K ⊆ A of
K is purely Γ-transcendental if and only if K ⊳cl A, if and only if for all tuples b
from Γ(A), either δ(b/K) > 0 or b ⊆ Γ(K). Clearly an extension A of K is purely
Γ-transcendental if and only if all of its finitely generated sub-extensions are.

11.1. Generic Γ-closedness. Recall from Theorem 8.2 that a full Γ-field F is
strongly Γ-closed if for every irreducible subvariety V of Gn defined over F and
of dimension dn, which is free and rotund for the O-module structure on G, and
every finite tuple a from Γ(F ), there is b ∈ V (F )∩Γ(F )n such that b is kO-linearly
independent over Γ(Fbase) ∪ a.

Assuming the Schanuel property, this is equivalent to requiring that b is generic
in V over Fbase(a). Recall also the weaker form of Γ-closedness from Definition 10.3:
F is Γ-closed if for every irreducible subvariety V of Gn defined over F and of

dimension dn, which is free and rotund, V (F ) ∩ Γ(F )n is Zariski-dense in V .

For the concept of generic Γ-closedness with respect to a subfield K, we need to
consider extensions of the form K ⊳cl A⊳B where A and B are finitely generated
as extensions of the full Γ-field K. Say α is a basis of A over K and β is a basis of
B over A, and that V := Loc(β/A) and W := Loc(α, β/K). We also assume that
Afull ∧B = A. Then by Corollary 7.4 both V and W are free, V is rotund, and W
is strongly rotund.

Definition 11.1 (Generic Γ-closedness). Let F be a full Γ-field and K ⊳cl F ,
K 6= F . Suppose V ⊆ Gn is free and rotund, irreducible and of dimension dn.
Suppose also that there is α ∈ Γ(F )r, kO-linearly independent over Γ(K) such
that V is defined over K(α) and for β ∈ V , generic over K(α), the variety W :=
Loc(α, β/K) is strongly rotund.

We say that F is generically Γ-closed over K (GΓC over K) if, for all such V ,
we have that V (F ) ∩ Γn(F ) is Zariski-dense in V .
F is generically strongly Γ-closed over K (GSΓC over K) if, whenever V and α

are as above, there is γ ∈ V (F ) ∩ Γn(F ), kO-linearly independent over Γ(K) ∪ α.
We say F is GΓC or GSΓC without reference to K to mean G(S)ΓC over ΓclF (∅).

Proposition 11.2. Suppose F is a full Γ-field and K ⊳cl F , K 6= F . Then F is
GSΓC over K if and only if F is ℵ0-saturated for Γ-algebraic extensions which are
purely Γ-transcendental over K.

Proof. This is essentially the same as the proof of Lemma 8.3. �

It is immediate from the definitions that GSΓC over K implies GΓC over K. In
[KZ14] it was shown that if the Conjecture on Intersections with Tori (CIT, now also
known as the multiplicative case of the Zilber-Pink conjecture) is true, then any ex-
ponential field satisfying the Schanuel property which is exponentially-algebraically
closed is also strongly exponentially algebraically closed. We use similar ideas here
to prove that GΓC over K implies GSΓC over K. The Schanuel property is re-
placed by the assumption that K is Γ-closed in F , and instead of the Zilber-Pink
conjecture it is enough to use the weak version which is a theorem.

Given any variety S and subvarieties W,V of S, the typical dimension of W ∩ V
is dimW +dimV − dimS. If X is an irreducible component of W ∩ V it is said to
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have atypical dimension (for the intersection) if

dimX > dimW + dimV − dimS.

We also say that X is an atypical component of the intersection. For the multi-
plicative group, the weak Zilber-Pink theorem is known as weak CIT and is due to
Zilber [Zil02, Corollary 3]. The semiabelian form of the statement is the following
theorem [Kir09, Theorem 4.6].

Fact 11.3 (“Semiabelian weak Zilber-Pink”, basic version). Let S be a semiabelian
variety, defined over an algebraically closed field of characteristic 0. Let (Wb)b∈B

be a constructible family of constructible subsets of S. That is, B is a constructible
set and W is a constructible subset of B × S, with Wb the obvious projection of a
fibre. Then there is a finite set HW of connected proper algebraic subgroups of S
such that for any b ∈ B and any coset c+J of any connected algebraic subgroup
J of S, if X is an irreducible component of Wb ∩ c+J of atypical dimension with
c ∈ X then there is H ∈ HW such that X ⊆ c+H.

We also need a version for subvarieties not of S but of varieties of the form U×S,
which is sometimes called a “horizontal” family of semiabelian varieties.

Theorem 11.4 (“Horizontal semiabelian weak Zilber-Pink”). Let S be a semia-
belian variety and let U be any variety. Let (Wb)b∈B be a constructible family of
constructible subsets of U×S. Then there is a finite set HW of connected proper al-
gebraic subgroups of S such that for any b ∈ B and any coset c+J of any connected
algebraic subgroup J of S, if X is an irreducible component of Wb ∩ (U × c+J) of
atypical dimension with c ∈ X then there is H ∈ HW such that X ⊆ U × c+H.
Furthermore H can be chosen such that we have

(∗) dimX 6 dim
(
Wb ∩ (U × c+H)

)
+ dim(H ∩ J)− dimH.

Proof. First suppose U is a point, so U × S ∼= S. The main part of the statement
is then Fact 11.3. For the “furthermore” part, suppose (∗) does not hold for the H
we chose from HW . Then rename HW as H1

W . We give an inductive argument to
find a new HW which suffices. We have the irreducible X as a component of the
intersection (Wb ∩ c+H)∩ c+(H ∩J), and the failure of (∗) says that X is atypical
as a component of this intersection considered as an intersection of subvarieties of
c+H . Translating everything by c, we get that X−c is an atypical component of
the intersection (Wb−c ∩H) ∩ (H ∩ J) inside H . Now apply Fact 11.3 again with
H in place of S to get a proper connected algebraic subgroup H ′ of H from the
finite set H2

W := H1
W ∪

⋃
H∈H1

W
H(Wb−c∩H)b,c such that X ⊆ c+H ′. If necessary

we can iterate this construction and since dimH ′ < dimH it stops after finitely
many steps, and the HW we eventually find is still finite.

Now consider arbitrary U . Suppose first that all fibres of the co-ordinate pro-
jection π : Wb → S have the same dimension k, constant with respect to b. Take
HW to be the finite set H(π(Wb))b∈B

given by this theorem with U a point. We will
see that this works as required.

Indeed, let c+J be a coset in S, letX be an atypical component ofWb∩(U×c+J),
let Y be any irreducible component of π(Wb) ∩ c+J containing π(X), and let H ∈
H(π(Wb))b∈B

be as given by the theorem.
Then by considering dimensions of fibres, we have

dimX = dim(π(X)) + k

6 dimY + k

6 dim(π(Wb) ∩ c+H) + dim(H ∩ J)− dimH + k

= dim
(
Wb ∩ (U × c+H)

)
+ dim(H ∩ J)− dimH
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Now for a general family W ⊆ B×U ×S, write π : U ×S → S for the projection
and define

W k =
{
(b, u, s) ∈W

∣∣dim(Wb ∩ π
−1(s)) = k

}

for each k = 0, . . . , dimW . By the definability of dimension, these W k are all con-
structible subsets of W , partitioning it, and each W k satisfies the above constancy
condition on fibres. For any c+J , any component X of Wb ∩ (U × c+J) contains a
dense constructible subset which lies in some piece W k

b . So we can take HW to be⋃
k HWk . �

Now we can prove that GSΓC and GΓC are equivalent.

Proposition 11.5. Suppose F is a full Γ-field and K ⊳cl F , K 6= F . Then F is
GSΓC over K if and only if it is GΓC over K.

Proof. As remarked earlier, it is immediate that GSΓC overK implies GΓC overK.
So assume F is GΓC overK. Let V , α, β, andW be as given in Definition 11.1. Let
Vα,dep be the set of points of V (F ) which are kO-linearly dependent over Γ(K)∪α.
We shall find a proper Zariski-closed subset of V containing Vα,dep.

We first work in case (EXP), so G2 is a simple semiabelian variety of dimension
d and G1 = Gd

a, which we identify with the Lie algebra LG2 of G2.
For a d(r + n)-square matrix M and an d(r + n)-column vector c, let ΛM,c ⊆

G
d(r+n)
a be given by x ∈ ΛM,c if and only if Mx = c. So as M and c vary, we get

the family of all possible affine linear subspaces. Let UM,c =W ∩ (ΛM,c ×Gr+n
2 ).

Now suppose ξ ∈ Vα,dep ∩ Γ(F )n. Let ζ = (α, ξ) ∈ Γ(F )r+n. We write ζ also
as ζ = (ζ1, ζ2) ∈ Gr+n

1 ×Gr+n
2 . Let J be the smallest algebraic subgroup of Gr+n

2

such that ζ2 lies in a K-coset of J , say ζ2 ∈ c′2 + J with c′2 ∈ G2(K)r+n. Since
ξ ∈ Vα,dep, we see that J is a proper algebraic subgroup of Gr+n

2 .
By Lemma 2.1, there is M ∈ Matr+n(O) such that J = (ker(M))o and LJ =

ker(M). Since K is a full Γ-field, there is c′1 ∈ Gr+n
1 (K) such that c′ := (c′1, c

′
2) ∈

Γ(K)r+n. Then M(ζ − c′) ∈ Γ(K)r+n since K ≤ F preserves the kernels. Now
Γ(K) is a kO-subspace of Γ(F ), so in particular is existentially closed as an O-
submodule, so there exists c′′ ∈ Γ(K)r+n such that Mc′′ = M(ζ − c′). Set c =
(c1, c2) := c′ + c′′ ∈ Γ(K)r+n, so M(ζ − c) = 0. Then ζ − c is divisible in ker(M),
since Γ(F ) is divisible and torsion-free, so ζ − c ∈ LJ × J .

Now we have ζ ∈ UM,c1 ∩ (Gr+n
1 × c2+J). Let X be the irreducible component

of this intersection containing ζ.
We next show that X has atypical dimension for the intersection. From the

definition of the predimension δ and its relationship with Γdim we have

dimX > trd(ζ/K) = δ(ζ/K) + d ldimO(ζ/Γ(K))

= δ(ζ/K) + dim J

> ΓdimF (ζ/K) + dim J

dimX > ΓdimF (α/K) + dim J.(5)

Since α ∈ Γ(F )r was chosen kO-linearly independent over Γ(K) and such that
〈K,α〉⊳ F , we have

(6) ΓdimF (α/K) = δ(α/K) = trd(α/K)− d ldimO(α/Γ(K)) = trd(α/K)− dr.

Since W = Loc(α, β/K), and V = Loc(β/K(α)) has dimension dn, using (6) we
have

dimW = dimV + trd(α/K)

= d(r + n) + ΓdimF (α/K)(7)
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From (5) and (7),

dimX > dimW + dim J − d(r + n)

= dimW + (dim J + d(r + n))− 2d(r + n)

= dimW + dim(Gr+n
1 × c2+J)− dim(Gr+n)

but W is free, so dimUM,c1 < dimW and so

(8) dimX > dimUM,c1 + dim(Gr+n
1 × c2+J)− dim(Gr+n).

So X has atypical dimension.
Applying Theorem 11.4 there is a proper algebraic subgroup H of Gr+n

2 from
the finite set HU such that X ⊆ Gr+n

1 ×c+H . We have ζ ∈ X , so ζ2 ∈ c+H . J was
chosen as the smallest algebraic subgroup of S such that ζ2 lies in a K-coset of J ,
so J ⊆ H and hence H∩J = J . So, from the “furthermore” clause of Theorem 11.4
we have

(9) dimX 6 dim

(
UM,c1 ∩ (Gr+n

1 × c2+J)

)
+ dim J − dimH.

We write TJ = LJ × J and TH = LH × H , thinking of them as the tangent
bundles. Then we have

UM,c1 ∩ (Gr+n
1 × c2+J) = W ∩ (c1+LJ ×Gr+n

2 ) ∩ (Gr+n
1 × c2+J)

= W ∩ c+TJ

= W ∩ ζ+TJ

⊆ W ∩ ζ+TH

so

(10) dim

(
UM,c1 ∩ (Gr+n

1 × c2+J)

)
6 dim

(
W ∩ ζ+TH

)
.

Combining (9), (10), and (5) we get

ΓdimF (α/K) + dim J 6 dim
(
W ∩ ζ+TH

)
+ dim J − dimH

ΓdimF (α/K) + dimH 6 dim
(
W ∩ ζ+TH

)
.(11)

By Lemma 2.1, there is M ∈ Matr+n(O) such that H = ker(M)o and LH =
ker(M), so TH = ker(M)o for the action of O on G. So M : Gr+n → Gr+n

factors as Gr+n ։ Gr+n/TH → Gr+n, where the first homomorphism is the
quotient map, and the kernel of the second homomorphism is the finite group
ker(M)/ ker(M)o. Now let θH : W ։ W/TH be the restriction of the quotient
map Gr+n ։ Gr+n/TH . Then dim(W/TH) = dim(M ·W ). Now H is a proper
subgroup of Gr+n

2 , and dim(H) = dim(ker(M)) = d(r + n − rkM), and so M is
non-zero. Then sinceW is strongly rotund, dim(W/TH) = dim(M ·W ) > d rkM =
d(r + n)− dimH .

So using the fibre dimension theorem, the dimension of a typical fibre of θH is

dim(typical fibre) = dimW − dim(W/TH)

<
(
d(r + n) + ΓdimF (α/K)

)
−
(
d(r + n)− dimH

)

= ΓdimF (α/K) + dimH(12)

The fibre of θH in which ζ lies is W ∩ ζ+TH , so (11) says exactly that ζ lies in a
fibre of θH of atypical dimension. By the fibre dimension theorem, there is a proper
Zariski-closed subset WH of W , defined over K, containing all the fibres of θH of
atypical dimension.

Since α is generic in the projection of W , and hence of WH , the subset VH,α :=
{y ∈ V | (α, y) ∈WH } is proper Zariski-closed in V . Let Vα :=

⋃
H∈HW

HH,α.
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Then Vα is also a proper Zariski-closed subset of V , and we have shown that
Vα,dep ⊆ Vα.

So since F is GΓC over K, there is a point β ∈ Γ(F )n ∩ V (F ) r Vα(F ). Since
β /∈ Vα,dep, β is kO-linearly independent over Γ(K) ∪ α. Hence F is GSΓC over K
as required.

The proof for case (COR) is very similar, but instead of ζ ∈ (c1+LJ)× (c2+J)
we have subgroups J1 ⊆ Gr+n

1 and J2 ⊆ Gr+n
2 which correspond to each other

in the sense that they are connected components of solutions to the same system
of O-linear equations. So we get ζ ∈ (c1+J1) × (c2+J2) with dim J1 = dim J2 =
ldimkO

(ζ/Γ(K)) < r + n. Then a similar calculation shows that ζ lies in a com-
ponent of the intersection W ∩ c+(J1 × J2) of atypical dimension, and we ap-
ply the weak Zilber-Pink for the semiabelian variety Gr+n and proceed as in case
(EXP). �

11.2. Sufficient conditions for quasiminimality.

Theorem 11.6. Suppose F is a full Γ-field with the countable closure property
which is generically Γ-closed over some countable K⊳clF . Then F is quasiminimal.

Proof. We take Fbase = K and consider the category CΓ-tr(K). By Theorem 5.21
it is an amalgamation category so we have a Fräıssé limit MΓ-tr(K). By Theo-
rem 6.9, MΓ-tr(K) is a quasiminimal pregeometry structure, so defines a quasimin-
imal class K(MΓ-tr(K)). Substituting Proposition 11.2 for Lemma 8.3, the proof
of Theorem 8.2 shows that the models in this class are precisely the full Γ-fields
which are purely Γ-transcendental extensions of K, are ℵ0-saturated with respect
to the Γ-algebraic extensions which are purely Γ-transcendental over K, and satisfy
the the countable closure property. Hence by Propositions 11.2 and 11.5, F is in
K(MΓ-tr(K)) and hence is quasiminimal. �

If F is the complex field, in practice it might be difficult or impossible to identify
a countable Γ-closed K and prove directly that F is generically Γ-closed over K.
Thus the following corollaries may be more useful.

Corollary 11.7. Suppose F is a full Γ-field with the countable closure property
which is Γ-closed. Then F is quasiminimal.

Proof. Clearly Γ-closedness implies generic Γ-closedness. �

Since Cexp has the countable closure property by Proposition 10.7, this completes
the proof of Theorem 1.5. We can do slightly better.

Corollary 11.8. Suppose F is a full Γ-field with the countable closure property
which is almost Γ-closed. That is, for all but countably many free and rotund,
irreducible subvarieties V ⊆ Gn of dimension dn, Γn(F ) ∩ V (F ) is Zariski-dense
in V . Then F is quasiminimal.

Proof. Suppose F is almost Γ-closed, and take K1 to be a countable subfield of
F over which all the countably many exceptional varieties V are defined. Take
K = ΓclF (K1). Then F is generically Γ-closed over K. �

Overall we have proved the following generalization of Theorem 1.5, which applies
to the exponential function, the Weierstrass ℘-functions, the exponential maps of
simple abelian varieties, and more.

Theorem 11.9. Let CΓ be an analytic Γ-field. If CΓ is almost Γ-closed then it is
quasiminimal.

Proof. Combine 11.8 with Proposition 10.7 which gives CCP. �
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Since being Γ-closed implies being almost Γ-closed, Theorem 1.9 follows. Theo-
rem 1.5 is a special case.

Remark 11.10. We do not know if almost Γ-closedness is a necessary condition
for quasiminimality. For example in the exponential case, is it possible to build an
uncountable quasiminimal exponential field F with a definable family (Vp)p∈P of
rotund and free varieties such that for only countably many p (perhaps none) there
is (x̄, ex̄) ∈ Vp(F )?
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