Antimicrobial action of the cationic peptide, chrysophsin-3: a coarse-grained molecular dynamics study

Catte, Andrea, Wilson, Mark R., Walker, Martin and Oganesyan, Vasily S. (2018) Antimicrobial action of the cationic peptide, chrysophsin-3: a coarse-grained molecular dynamics study. Soft Matter, 14 (15). pp. 2796-2807. ISSN 1744-683X

[img] PDF (Accepted manuscript) - Submitted Version
Restricted to Repository staff only until 31 December 2099.

Download (1MB) | Request a copy
[img]
Preview
PDF (Published manuscript) - Published Version
Available under License Creative Commons Attribution.

Download (7MB) | Preview

Abstract

Antimicrobial peptides (AMPs) are small cationic proteins that are able to destabilize a lipid bilayer structure through one or more modes of action. In this study, we investigate the processes of peptide aggregation and pore formation in lipid bilayers and vesicles by the highly cationic AMP, Chrysophsin-3 (chrys-3), using coarse-grained molecular dynamics (CG-MD) simulations and potential of mean force calculations. We study long 50 μs simulations of chrys-3 at different concentrations, both at the surface of dipalmitoylphosphatidylcholine (DPPC) and palmitoyloleoylphosphatidylcholine (POPC) bilayers, and also interacting within the interior of the lipid membrane. We show that aggregation of peptides at the surface, leads to pronounced deformation of lipid bilayers, leading in turn to lipid protrusions for peptide : ligand ratios > 1 : 12. In addition, aggregation of chrys-3 peptides within the centre of a lipid bilayer leads to spontaneous formation of pores and aggregates. Both mechanisms of interaction are consistent with previously reported experimental data for chrys-3. Similar results are observed also in POPC vesicles and mixed lipid bilayers composed of the zwitterionic lipid palmitoyloleoylphosphatidylethanolamine (POPE) and the negatively charged lipid palmitoyloleoylphosphatidylglycerol (POPG). The latter are employed as models of the bacterial membrane of Escherichia coli.

Item Type: Article
Faculty \ School: Faculty of Science > School of Chemistry
Depositing User: Pure Connector
Date Deposited: 12 Feb 2018 15:31
Last Modified: 18 Mar 2020 00:58
URI: https://ueaeprints.uea.ac.uk/id/eprint/66283
DOI: 10.1039/C7SM02152F

Actions (login required)

View Item View Item