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Droplet impact onto an elastic plate: a new
mechanism for splashing
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During a droplet impact onto a substrate, splashing is known to be caused by the
presence of surrounding gas or by surface roughness. Impact occurring in a vacuum
onto a smooth rigid wall results in droplet spreading, rather than development of a
corona or prompt splash. Here we present an analytical and numerical study of a
third potential splashing mechanism, namely elastic deformation of the substrate. An
axisymmetric Wagner-style model of droplet impact is formulated and solved using the
method of normal modes, together with asymptotic analysis and numerical methods.
We highlight the effect that a flexible substrate brings to the contact line velocity and
jet behaviour, demonstrating that oscillation of the substrate can cause blow-up of the
splash jet which is absent for a rigid substrate and indicate the onset of splashing.

Key words: drops, jets, wakes/jets

1. Introduction

Liquid impact phenomena are ubiquitous in science, nature and technology. They
are critically important in fields ranging from biotechnology and agriculture to
marine engineering. One particular phenomenon observed in liquid impacts on
solid surfaces is that of splashing, where the wetting front propagating along the
surface becomes unstable, detaches from the surface, and can subsequently disperse
into multiple smaller droplets. Several causes of splashing initiation have been
identified: for example, surface roughness and interaction of the fast-moving wetting
jet with the surrounding air. Controlling splashing is of practical interest. When
designing a car windscreen, splashing is encouraged to disperse rain (Blocken &
Carmeliet 2004), whilst splashing should be avoided in ink-jet printing (Martin,
Hoath & Hutchings 2008). Increasingly surfaces are being designed using smart
materials or with microstructured roughness to control droplet dynamics (Maitra et al.
2014a,b). Splashing is a complicated process governed by several physical effects.
It is determined by properties of the liquid, substrate and surrounding atmosphere.
Flexibility of the substrate is another physical effect which may cause splashing. This
effect has can be observed for substrates with relatively high rigidity.

Despite the importance of splashing, the mechanisms that trigger splashing are still
not fully understood. It was discovered in experiments carried out by Xu, Zhang &

† Email address for correspondence: Michael.Pegg@uea.ac.uk
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Nagel (2005) that the pressure of the surrounding gas was critically important for
the splashing of a drop impacting a smooth surface. Xu (2007) later experimentally
studied the impact of liquid drops with a variety of surfaces, and found that the
surrounding gas is responsible for ‘corona’ splash where the rapidly spreading liquid
can detach from the wall and substrate roughness causes ‘prompt’ splash characterised
by the creation of smaller droplets at the contact line. Riboux & Gordillo (2014)
studied the effects of the presence of surrounding gas in droplet impacts onto smooth
surfaces, deriving a relationship between splashing and a critical impact velocity.
Ellis, Smith & White (2011) analytically investigated the impact of a liquid droplet
with a rough surface using the Wagner model for a surface of small roughness, and
an alternative model for rougher surfaces. Their study did not incorporate splashing,
but the analysis showed that the effect of surface roughness can be modelled in an
appropriate small-roughness limit.

Whilst previous theoretical works have focused on the air and surface roughness as
the causes of splashing, here we will show that elasticity of the impacted substrate
is an additional mechanism for splashing. It has been shown experimentally that
elasticity can play a key role in splashing. Pepper, Courbin & Stone (2008) presented
an experimental study of droplets impacting an elastic membrane held under different
tensions. They found indications that it is the very early times after impact that
are critical for determining whether splashing will occur. They showed that a soft
substrate can suppress splashing entirely. Experimental studies (see, for example,
Mangili et al. 2012 and Alizadeh et al. 2013) of droplets impacting deformable
surfaces have focused on soft surfaces. Experiments of droplet impacts onto soft
silicone and acrylic substrates were performed by Howland et al. (2016). Like
Pepper et al. (2008), they found softer substrates caused a reduction in the splashing
threshold.

Our current analytical and numerical study is based on the Wagner model of liquid
impact. It was first developed by Wagner (1932) for evaluating the hydrodynamic
loads on the floaters of seaplanes during landing. The Wagner model assumes that
the solid surface and the free surface of the liquid at impact are nearly parallel
to each other, with the normal displacements of these surfaces being much smaller
than the size of their contact region. The Wagner model is used during the early
stages of impact, when the geometry of the impacting surfaces, equations of the
liquid flow, and the corresponding boundary conditions can be simplified. However,
the problem remains nonlinear because the size of the wetted area is unknown in
advance and should be determined as part of the solution. The size of the wetted
part of the substrate is determined by using the so-called Wagner condition. This
condition requires that the liquid boundary, which includes the liquid free surface and
the wetted area of the substrate, is continuous. This condition was formally justified
by Howison, Ockendon & Wilson (1991) through an asymptotic analysis of liquid
impact problems.

Many of the studies adopting the Wagner model have focused on two-dimensional
problems. A droplet–liquid impact problem was investigated by Howison et al. (2005).
Water entry problems (mathematically equivalent to droplet impact) have received
much more attention, stretching as far back as the studies by von Karman (1929), who
investigated the impact of a solid wedge onto a water free surface. Other examples
include Wu (2007), who investigated the impact of liquid columns and droplets on
solid wedges, and Philippi, Lagree & Antkowiak (2016), who investigated the early
stages of a liquid drop impacting with a solid plate. Liquid–liquid impacts were
investigated by Semenov, Wu & Korobkin (2015). There have been a considerable
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Droplet impact onto an elastic plate 563

range of other important effects considered, including three-dimensional oblique
impact (Moore et al. 2012), water entry of a skimming elastic plate (Reinhard,
Korobkin & Cooker 2013), as well as including air cushioning effects (Moore,
Ockendon & Oliver 2013; Moore & Oliver 2014). Liquid-elastic impacts have begun
to receive an increasingly large amount of attention. Khabakhpasheva & Korobkin
(2013) investigated the two-dimensional liquid-elastic wedge impact problem and
Tkacheva (2008) studied the impact of a box with an elastic base onto a thin layer
of liquid. Many of the papers studying the three-dimensional impact problem derive
from the work presented by Scolan & Korobkin (2001) and Korobkin & Scolan
(2006). Xu, Wu & Duan (2011) investigated the axisymmetric impact of a liquid
block onto a solid surface and Scolan (2004) has produced one of the few works on
an axisymmetric liquid-elastic impact.

The present study addresses the normal impact between an axisymmetric liquid
droplet and a circular elastic plate which sits, simply supported, within an otherwise
rigid flat surface. The radius of the elastic plate is taken to be much smaller than the
radius of the liquid droplet. Aside from splashing mechanisms being of fundamental
theoretical interest, increasingly designs of microfluidic devices are investigating
and making use of such small flexible elements. For example, Nguyen, Takahashi
& Shimoyama (2017) report on the design of a pressure sensor using a small
(centimetre scale) flexible polydimethylsiloxane (PDMS) membrane for measuring
droplet vibrations. Vasileiou, Schutzius & Poulikakos (2017) performed experiments
on supercooled droplets impacting upon a superhydrophobic flexible substrate. They
found that a flexible patterned substrate (of approximate dimensions 30 mm) could
repel supercooled droplets which would freeze on an equivalent rigid substrate.
Weisensee et al. (2016) investigated droplets impacting and bouncing off elastic
superhydrophobic surfaces. They found that the contact time of a bouncing droplet is
dramatically reduced with the introduction of an elastic substrate of size approximately
10 mm. Although these experiments considered droplets of comparable size to the
flexible substrates, they demonstrate a trend towards the attempted understanding and
development of small-scale surface structures and nanoengineered surfaces (see also
Maitra et al. 2014a,b). The use of such elastic substrates allows for the creation of
unique devices and opens up an additional way to control droplet wetting, impact,
bouncing and, as we show in this work, potentially splashing.

Many of the recent studies showing that flexible or deformable substrates suppress
splashing, such as those by Pepper et al. (2008) and Howland et al. (2016), consider
regimes where the time scales of any response from the substrate are much longer
than those associated with the initial stages of the droplet splash. The configuration
we present here is chosen such that, rather than just absorbing energy during the
initial, most violent, part of the impact, the substrate is genuinely interacting over the
same initial time scale. We concentrate on a parameter regime where the plate has
a relatively high rigidity so that, rather than simply being deformed by the impact,
it can vibrate. The period of the substrate vibration is of the order of the duration
of the impact stage, and deflections of the elastic plate remain small. Vibration of
the substrate and the liquid flow in the impacting droplet are coupled through the
hydrodynamic pressure and the kinematic boundary condition on the wetted part of
the substrate. The effects of viscosity, surface tension and gravity are shown to play
a negligible role during the early stages of impact. We assume the conditions are such
that the flow caused by the impact is driven by inertia, and described by the theory
of potential flow. The gas surrounding the droplet is also not taken into account.

The flow in the main part of the droplet, deflection of the elastic plate, and the
size of the wetted area are described by the model of Wagner (1932). The plate
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vibrations are described by the method of normal modes. The two-dimensional study
by Korobkin & Khabakhpasheva (2006) used this method to investigate the impact of
a water wave onto an elastic plate. In contrast to the current paper, the entire focus
of Korobkin & Khabakhpasheva (2006) was to predict the loads experienced by the
plate due to impact; other than noting that the splash jets exist, the characteristics of
the splash, and in particular how the elasticity of the plate drives the splash, were
not considered. Scolan (2004) used the method of normal modes to investigate an
elastic cone impacting a liquid. The present analysis, unlike those works, focuses on
the jetting and initiation of splashing. The Wagner model provides the speed of the
jet formed at the periphery of the wetted surface, and the thickness of the jet through
the self-similar and nonlinear solution of the impact problem in the jet-root region
(Howison et al. 1991). The speed of the jet is a monotonically decreasing function
of time for a rigid substrate, but can be non-monotonic for an elastic substrate. The
dynamics of the jet is described by a system of nonlinear hyperbolic shallow-water
equations. These equations predict a gradient catastrophe if the flow speed at the
entrance to the jet is a non-monotonic function of time. This blow-up of the jet
solution strongly indicates the onset of splashing with formation of a corona at some
distance from the jet-root region. In this paper the role of elasticity on splashing is
highlighted and quantified. We note here that we adopt an axisymmetric model to
allow better comparison with experimental results in the future. The new splashing
mechanism identified here would also be present in two-dimensional configurations.

In § 2 below, we introduce the problem of a droplet impacting upon a substrate
which includes a small elastic part. We introduce the relevant scales and non-
dimensional variables for the early stage of droplet impact within a potential flow
model. Both the coupled elastic and hydrodynamic problems are described at the
leading order. These problems are coupled, in particular, via the equation for the
unknown radius of the contact region between the droplet and substrate. The resulting
model is based on the Wagner theory of liquid impact. In § 3, the plate deflection
is obtained by the normal mode method and the hydrodynamic pressure in the
contact region is determined as a solution of an axisymmetric mixed boundary value
problem for the velocity potential of the flow in the droplet. The obtained solution
predicts singular flow velocities close to the advancing contact line. The Wagner
solution is corrected near the contact region in § 4, where the jet-root region is
introduced. The solution of the problem in the jet-root region provides the speed of
the flow at the entrance to the jet and the thickness of this sheet. The jet flow is
described by a one-dimensional nonlinear model. It is shown that the nonlinear jet
solution breaks down if the acceleration of the contact line is positive, predicting
unbounded jet thickness. This is interpreted as splashing. In § 5, the coupled problem
of hydroelasticity is solved numerically. Convergence and stability of the numerical
algorithm are discussed. The results of the analysis are presented in § 6. It is shown
that the Wagner model of liquid impact is no longer appropriate for very thin plates,
or for very flexible plates. Conditions of splashing are obtained and explained. The
conclusions are drawn in § 7 together with ideas for future work. For clarity, some
details of the analysis are collected in the appendices at the end of the paper.

2. Formulation of the problem

The axisymmetric problem of a liquid droplet impacting onto a partly elastic
substrate is formulated in non-dimensional variables. The liquid drop is taken to be
spherical before impact, with radius R. The impact speed V is constant. At the instant
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Droplet impact onto an elastic plate 565

z

L
r

VR

FIGURE 1. A side-on view of the problem. A spherical droplet of radius R, travelling
with constant speed V , impacts onto a circular elastic plate of radius L (thin horizontal
line) housed in a solid housing of otherwise infinite extent (thick horizontal line).

of impact (t= 0), the drop touches the elastic circular plate at its central point. The
circular elastic plate of radius L sits in an otherwise rigid substrate, and is simply
supported at its edge (see figure 1). The liquid in the drop is assumed inviscid and
incompressible, and the subsequent flow is irrotational and axisymmetric. The effects
of the surrounding gas, gravity and surface tension are neglected; these assumptions
are more formally justified below. The radius of the elastic plate, L, is assumed to
be much smaller than the radius of the drop, R. This condition is motivated by a
potential application of the present study to the design of smart surfaces. The ratio

ε = L/R (2.1)

is a small parameter in the present study. We consider the frame of reference in which
the droplet is stationary and the plate moves up towards it. This is equivalent to
considering the droplet impacting a stationary plate.

The early stage of the impact with a strong coupling between the deflection of
the elastic plate and the liquid motion is considered here. The conditions of strong
coupling are derived below. The dimensional scales are taken to be: L is the length
scale, V is the velocity scale and ρV2R/L is the pressure scale. The typical time scale
T of this stage of the impact is taken as the time required for the elastic plate to be
completely wetted. Geometrical considerations yield T = L2/(VR). The displacements
of both the plate and free surface of the liquid drop are of the order of VT . All
variables used below are non-dimensional.

The problem is studied by using the cylindrical coordinate system (r, z). Initially,
t= 0, the drop is spherical and touches the flat horizontal substrate, z= 0, at a single
point which is taken as the origin of the coordinate system (see figure 2). The initial
surface of the drop is described by the equation

z=
ε

2
(r2
+ z2). (2.2)
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566 M. Pegg, R. Purvis and A. Korobkin

For mathematical convenience we chose a frame of reference where the droplet is
initially at rest and the substrate hits the liquid drop at unit speed from below. The
position of the moving substrate is given by

z= ε(t−w(r, t)), (2.3)

where w(r, t) is the deflection of the elastic part, r<1, of the substrate, and w(r, t)=0
elsewhere. The deflection w(r, t) is taken to be positive in the negative z-direction.

The flow in the droplet is described by the velocity potential ϕ(r, z, t). The potential
satisfies Laplace’s equation in the flow region, Ω(t, ε), and is subject to the kinematic
boundary condition,

ϕz = εηrϕr + ηt, (2.4)

on the free surface of the drop, z= εη(r, t), where η(r, 0)= (1/2)r2
+O(ε) and r=

O(1), and the body boundary condition

ϕz = 1−wt − εwrϕr, (2.5)

on the moving substrate (2.3), in the wetted region where r < a(t, ε). This wetted
region is unknown in advance and should be found as part of the solution; the
unknown function a(t, ε) gives the radius of the contact region (neglecting the thin
jet discussed later). The dynamic boundary condition on the free surface of the
impacted drop is

p(r, εη(r, t), t)= 0, (2.6)

where the hydrodynamic pressure p(r, z, t) is given by the Bernoulli equation,

p(r, z, t)=−ϕt −
1
2ε|∇ϕ|

2. (2.7)

The plate deflection w(r, t) is taken to be described by the thin plate theory:

αwtt + β∇
4w= p(r, ε(t−w(r, t)), t), (r 6 1), (2.8)

where

α =
ρph
ρL
, β =

Eh3ε2

12(1− ν2)ρV2L3
, (2.9a,b)

ρp is the density of the elastic plate, h is the plate thickness, E is the Young modulus
of the plate material, and ν is the Poisson ratio. The parameter α indicates the
importance of the structural mass per unit area of the plate, ρph, compared to the
added mass of the liquid per unit area, which is of the order of O(ρL). The parameter
β can be considered as the dynamic rigidity of the plate. This parameter depends on
the elastic characteristics of the plate, speed of impact and the size of the drop. We
assume that both α and β are of order O(1) in the present analysis, which guarantees
strong coupling between hydrodynamic loads and the plate deflection. Outside the
wetted region, r > a(t, ε), the right-hand side in (2.8) is zero. We assume that the
elastic plate is simply supported at r = 1 and flat initially. Then the plate equation
(2.8) is to be solved subject to the initial and boundary conditions

w= 0, wrr +
ν

r
wr = 0, (r= 1), (2.10a,b)

w(r, 0)= 0, wt(r, 0)= 0 (r 6 1). (2.11a,b)
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Droplet impact onto an elastic plate 567

The formulation of the fully coupled problem is completed by the initial conditions

ϕ(r, z, 0)= 0, (2.12)
a(0, ε)= 0, (2.13)

η(r, 0)= 1
2 r2
+O(ε), (2.14)

where r = O(1) and z = O(1). The pressure p(r, z, t) in (2.6) and (2.7) does not
account for ambient pressure, hydrostatic pressure and the pressure due to surface
tension effects. The hydrostatic pressure is of the order of ρgR, which is much smaller
than the dynamic pressure scale ρV2R/L if ε(gR/V2)� 1. The surface tension can be
neglected at leading order if the inverse Weber number We−1

= σ/(ρV2R)� 1, where
σ is the coefficient of surface tension of the liquid. For a water droplet of density
ρ = 1000 kg m−3, surface tension σ = 7.2× 10−2 N m−1 and radius R= 5× 10−3 m,
with g = 9.81 m s−2 impacting an elastic circular disk of radius L = 1 × 10−3 m
at velocity V = 1 m s−1, we have σ/(ρV2R) < 0.0144 and ε(gR/V2) < 10−2. Hence
we neglect surface tension and gravity, as both provide smaller contributions to the
hydrodynamic pressure compared to that from inertia.

The problem formulated above is strongly coupled. The plate deflection depends
on the hydrodynamic loads through the right-hand side of (2.8), and both the
hydrodynamic pressure (2.7) and the flow in the liquid droplet depend on the elastic
deflection of the plate through the body boundary condition (2.5). The flow region,
Ω(ε, t), and the wetted area of the plate, r < a(t, ε), are unknown in advance and
should be determined along with the hydrodynamic and structural characteristics of
the problem.

The problem (2.2)–(2.14) can be simplified during the early stage of impact. The
approximate solution can be obtained by asymptotic methods as ε → 0. Equations
(2.2)–(2.3) show that the flow region can be approximated by the upper half-space,
z > 0, to leading order, and the boundary conditions (2.4)–(2.6) can be linearised
and imposed on the plane z = 0. In addition, the linearised dynamic condition (2.6)
can be integrated in time using the initial conditions. Below we keep the original
notations of the unknown functions for their leading-order terms. At leading order,
the hydrodynamic part of the problem reads

∇
2ϕ = 0, (z> 0), (2.15)

ϕ = 0, (z= 0, r> a(t)), (2.16)
ϕz = 1−wt(r, t), (z= 0, r 6 a(t)), (2.17)

ϕ→ 0, (r2
+ z2
→∞), (2.18)

where w(r, t) = 0 for r > 1. The hydrodynamic pressure is given by the linearised
Bernoulli equation, p(r, z, t) = −ϕt(r, z, t). The plate equation (2.8) at leading order
then becomes

∂

∂t
(αwt(r, t)+ ϕ(r, 0, t))+ β∇4w= 0, (r< 1). (2.19)

Equation (2.19) is solved subject to the boundary conditions (2.10) and initial
conditions (2.11). The shape of the liquid free surface, z = εη(r, t), is provided
at leading order by ηt(r, t) = ϕz(r, 0, t), where r > a(t), which follows from the
kinematic condition (2.4). Note that η(r, 0)→ r2/2 as ε→ 0. The equations of flow,
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(a) (b)

FIGURE 2. (a) A sketch of the problem away from the contact region. The light grey
paraboloid shows the liquid free surface z = εη(r, t), the dark grey circle is the elastic
plate with deformation z = ε(t − w(r, t)) and the light grey square region indicates the
infinite rigid substrate for the elastic plate. (b) A side-on view of the impact situation for
time t> 0 with plate deflection w(r, t) shown. The substrate moves upwards towards the
droplet, which is initially at rest, at a unit speed in the non-dimensional variables.

(2.15)–(2.18), and the equation of the plate deflection (2.19) at leading order are
linear but crucially still coupled.

The radius of the contact region between the liquid and substrate, r < a(t), is
determined by using the condition that the vertical coordinate of the free surface,
z = εη(a(t), t) at the contact line r = a(t), and the vertical coordinate of the elastic
substrate (2.3) are equal, namely

η(a(t), t)= t−w(a(t), t). (2.20)

Condition (2.20) is known as the Wagner condition (Wagner 1932). This condition
assumes that the spray jet formed at the periphery of the contact region is thin and can
be neglected at leading order as ε→ 0. The Wagner condition makes the leading-order
problem nonlinear. As in Korobkin (1982), we can reduce the Wagner condition (2.20)
to ∫ π/2

0
sin(θ)F(a(t) sin(θ), t) dθ = 0, (2.21)

where F(r, t) = t − w(r, t) − r2/2 is the distance between the initial position of the
liquid free surface and the current position of the impacting elastic substrate. See
Korobkin (1996) and Korobkin & Scolan (2006) for full details of this approach for
related problems. Note that the radius of the contact region a(t) depends strongly on
the plate deflection w(r, t).

The hydrodynamic problem (2.15)–(2.18) is solved by the method of dual integral
equations (Sneddon 1966) and the plate deflection is obtained by the method of
normal modes (Korobkin 1998; Scolan 2004) applied to the structural problem (2.19),
(2.10), (2.11), where the radius a(t) of the contact region is determined by equation
(2.21).

3. Coupled problem of hydroelastic impact
The formulated problem (2.10)–(2.11), (2.15)–(2.21) is coupled. The hydrodynamic

part of the problem (2.15) subject to (2.16)–(2.18), and the structural part of the
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Droplet impact onto an elastic plate 569

problem (2.19), subject to (2.10)–(2.11) should be solved simultaneously, together with
the Wagner condition (2.21) for the unknown radius of the contact region, a(t).

3.1. Structural problem
It is convenient to introduce a new unknown function,

q(r, t)=−
1
β
(αwt(r, t)+ ϕ(r, 0, t)), (3.1)

where 0 6 r< 1, and to rewrite equation (2.19) as

qt =∇
4w, (3.2)

αwt + ϕ(r, 0, t)=−βq(r, t). (3.3)

Here ϕ(r, 0, t)= 0, where a(t)6 r< 1, during the early stage when the elastic plate is
only partly in contact with the liquid, a(t) < 1. Within the method of normal modes,
the deflection w(r, t) and auxiliary function q(r, t) are sought in the forms

w(r, t)=
∞∑

n=1

An(t)wn(r), (3.4)

q(r, t)=
∞∑

n=1

k4
nqn(t)wn(r), (3.5)

where An(t) and qn(t) are the coefficients to be determined. The functions wn(r) are
the non-trivial bounded solutions to the homogeneous boundary value problem

∇
4wn = k4

nwn, r< 1, (3.6)

wn(1)= 0, w′′n(1)+ νw′n(1)= 0, (3.7a,b)

and kn are the corresponding eigenvalues. The functions wn(r) describe the axisymmet-
ric shapes of free vibrations of a circular simply supported plate with frequencies
proportional to k2

n (Leissa 1969). The solutions have the form

wn(r)= J0(knr)−
J0(kn)

I0(kn)
I0(knr), (3.8)

where kn are the solutions of the equation

J1(kn)

J0(kn)
+

I1(kn)

I0(kn)
=

2kn

1− ν
, (3.9)

with n> 1 and kn+1> kn. Here Jn(r) and In(r) are the Bessel functions of the first kind
and modified Bessel functions of the first kind of order n respectively. The functions
(3.8) are orthogonal but not normalised:∫ 1

0
wn(r)wm(r)r dr=Unδnm, (3.10)

where Un are given in appendix A, and where δnm = 0 for n 6=m and δnn = 1.
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570 M. Pegg, R. Purvis and A. Korobkin

3.2. Coupled problem
The equations (3.3), (3.4) and (3.5) together with initial conditions (2.11) provide the
system of ordinary differential equations for the vector q(t)= {q1(t), q2(t), . . .},

q̇=A(t), q(0)= 0, (3.11a,b)

where A(t) = {A1(t), A2(t), . . .} is the vector of coefficients in the series (3.4), and
overdot stands for time derivative. The boundary problem (2.15)–(2.18) for the
velocity potential ϕ(r, z, t) and the series for the plate deflection (3.4) lead to the
following decomposition of the potential:

ϕ(r, z, t)= ϕ0(r, z, a)−
∞∑

n=1

Ȧn(t)ϕn(r, z, a). (3.12)

Here ϕ0(r, z, a) is the potential of the flow caused by the impact of the rigid
circular disk of radius a with the condition on the disc, ϕ0,z(r, 0, a) = 1. The
potentials ϕn(r, z, a) satisfy (2.15) and (2.18), with the condition (2.17) becoming
ϕn,z(r, 0, a)= wn(r), for r< a. Substituting (3.12) and (3.4) into the second equation
of (3.3), multiplying both sides of this equation by wm(r)r, and integrating in r from
0 to 1, we find

αȦmUm +

∫ a

0
ϕ0(r, 0, a)wm(r)r dr−

∞∑
n=0

Ȧn(t)
∫ a

0
ϕn(r, 0, a)wm(r)r dr

=−βk4
mqm(t)Um, (3.13)

which can be written more concisely in vector form as

Ȧ=−(Λ+W (a))−1(Zq− g(a)), A(0)= 0. (3.14a,b)

Here Λ= diag{αU1, αU2, . . .} and Z = diag{βk4
1U1, βk4

2U2, . . .} are diagonal matrices.
The elements of the vector g(a) are

gn(a)=−
∫ a

0
ϕ0(r, 0, a)wn(r)r dr, (3.15)

and the symmetric added mass matrix W (a) has the elements

W nm(a)=−
∫ a

0
ϕn(r, 0, a)wm(r)r dr. (3.16)

The system of ordinary differential equations (3.11) and (3.14) is valid for a6 1. For
the later stages, when a(t) > 1 and the elastic plate is completely wetted, we should
change the upper limits in (3.15) and (3.16) to 1 and set wn(r)= 0, where r> 1 in the
boundary conditions for the potentials ϕn(r, z, a). The coefficients in (3.14) depend on
the radius of the wetted area, a(t), which is defined by equation (2.21). Substituting
for F(r, t) and the series (3.4) in (2.21), we find

t−
1
2

a2(t)
∫ π/2

0
sin3(θ) dθ −

∞∑
n=1

An(t)
∫ π/2

0
sin(θ)wn(a sin(θ)) dθ = 0, (3.17)
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Droplet impact onto an elastic plate 571

and then
a2(t)= 3t− 3A(t) ·Q(a), (3.18)

where

Qn(a)=
∫ π/2

0
sin(θ)wn(a sin(θ)) dθ =

1
a

∫ a

0

ρwn(ρ) dρ√
a2 − ρ2

. (3.19)

Note that wn(a sin(θ))≡0, where a sin(θ)>1. The system (3.11), (3.14) and (3.18) can
be solved numerically once the integrals (3.15), (3.16) and (3.19) are known functions
of a. The functions Qn(a) and gn(a) are evaluated in appendices B and C, respectively.

3.3. Hydrodynamic problem
The hydrodynamic problem (2.15)–(2.18), together with the decomposition (3.12),
leads to two mixed boundary value problems. The rigid part of the decomposition
(3.12) becomes

∇
2ϕ0 = 0, (z> 0), (3.20)

ϕ0 = 0, (z= 0, r> a(t)), (3.21)
ϕ0,z = 1, (z= 0, r 6 a(t)), (3.22)
ϕ0→ 0, (r2

+ z2
→∞), (3.23)

whilst the elastic part of the decomposition requires

∇
2ϕn = 0, (z> 0), (3.24)

ϕn = 0, (z= 0, r> a(t)), (3.25)
ϕn,z =wn(r), (z= 0, r 6 a(t)), (3.26)
ϕn→ 0, (r2

+ z2
→∞), (3.27)

where n > 1.
These mixed boundary value problems are solved through the use of Hankel

transformations. Equations (3.20) and (3.23) give

ϕ0(r, z, a)=
∫
∞

0
G0(λ, a)e−λzJ0(λr) dλ, (3.28)

where G0(λ, a) is a new unknown function. Substituting (3.28) in the boundary
conditions (3.21) and (3.22) gives us the dual integral equations∫

∞

0
G0(λ, a)J0(λr) dλ= 0, r> a (3.29)∫

∞

0
G0(λ, a)λJ0(λr) dλ=−1, r 6 a. (3.30)

These equations were solved by Sneddon (1966), yielding

G0(λ, a)=−

√
2λ
π

∫ a

0

√
xJ1/2(xλ) dx

∫ x

0

ρ dρ√
x2 − ρ2

. (3.31)
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572 M. Pegg, R. Purvis and A. Korobkin

Equations (3.31) and (3.28) provide

ϕ0(r, 0, a)=−

√
2
π

∫ a

0

√
x dx

∫ x

0

ρ dρ√
x2 − ρ2

∫
∞

0

√
λJ0(λr)J1/2(λx) dλ. (3.32)

This can be integrated directly (with the λ integral given by 6.575.1 of Gradshteyn &
Ryzhik (2007)) to give an explicit expression for the rigid velocity potential,

ϕ0(r, 0, a)=−
2
π

√
a2 − r2, (r 6 a). (3.33)

The elastic part of the problem (3.24)–(3.27) is solved using the same method. The
elastic terms of the velocity potential, ϕn(r, 0, a), are given by

ϕn(r, 0, a)=−
2
π

∫ a

r

dx
√

x2 − r2

∫ x

0

ρwn(ρ) dρ√
x2 − ρ2

. (3.34)

By using (3.19) we can express (3.34) as

ϕn(r, 0, a)=−
2
π

∫ a

r

xQn(x) dx
√

x2 − r2
=−Φn(r, a), (3.35)

and (3.12) as

ϕ(r, 0, a)=−
2
π

√
a2 − r2 +

∞∑
n=1

Ȧn(t)Φn(r, a), (r 6 a). (3.36)

The added-mass elements (3.16) then become

W nm =
2
π

∫ a

0

(∫ a

r

xQn(x) dx
√

x2 − r2

)
wm(r) dr=

2
π

∫ a

0
x2Qn(x)Qm(x) dx. (3.37)

The integrals (3.37) are evaluated analytically in appendix D. Integrating in (3.35) by
parts, we obtain

Φn(r, a)=
2
π

Qn(a)
√

a2 − r2 −
2
π

∫ a

r

√
x2 − r2Q′n(x) dx, (3.38)

where Qn(a) is given by (3.19).
Equations (3.38) and (3.36) provide the behaviour of the velocity potential close to

the contact line as r→ a(t),

ϕ(r, 0, t)= B(t)
√

a(t)− r+O((a− r)3/2), (3.39)

where

B(t)=
2
π

√
2a

(
∞∑

n=1

Ȧn(t)Qn(a)− 1

)
. (3.40)

Therefore the Wagner model predicts a square-root singularity in the radial velocity
of the flow in the main region, (∂ϕ/∂r)(r, 0, t), and in the hydrodynamic pressure,
p(r, 0, t)=−∂ϕ/∂t, at the contact line as r→ a(t). The coefficient of this singularity,
B(t), depends on the plate deflection and is calculated as part of the solution in the
main flow region. The Wagner model is not valid at the periphery of the contact
region. In Wagner-type problems, this singularity is resolved by introducing an inner
region, the so-called jet-root region, around the contact line (Howison et al. 1991).
This locally resolves the singularity by the presence of a thin jet running along the
substrate. This local inner solution is discussed below.
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Droplet impact onto an elastic plate 573

4. Jet-root and jet regions
The dynamics of the jet and its dependence on elastic oscillations of the plate play

a key role in potential splashing of the droplet. We distinguish the jet-root region,
which is in a small vicinity of the contact line and is characterised by large velocities
and pressures, and the jet itself. The equations governing the flows in both the jet-
root region and the jet region are derived by using stretched variables. For the jet-root
region r= a(t)+ ε2X, z= ε(t−w(a, t))+ ε2Z and ϕ = ε(φ(X, Z, t)+ ȧX) are used in
the limit ε→ 0. Howison et al. (1991) and Oliver (2002) contain full details of the
case for impact with a rigid substrate. We do not provide details of the asymptotic
analysis here, and instead just highlight how the elastic substrate affects the solution.

In the jet-root region the singularity found in the pressure above is resolved by
considering a locally two-dimensional flow problem around the contact line r = a(t)
subject to the far-field condition which follows from (3.39) as X2

+ Y2
→∞. Locally

the jet-root flow is the same as in the problem of a rapid rigid body impact onto a
water free surface. The latter problem was studied by Oliver (2002). In our situation
the key difference is in the B(t) term of the far-field condition, which contains
additional elastic terms: see equation (3.40). The important results are the initial
thickness of the jet,

Hj(t)=
π

16
B2

ȧ2
, (4.1)

and the velocity of fluid entering the jet 2ȧ(t), in the static frame of reference.
Note that without the elastic deflection of the plate, Aj(t) = 0 in (3.18) and

(3.40), the Wagner condition requires a(t) =
√

3t, giving B = −2
√

2a/π in the
non-dimensional variables. The jet thickness (4.1) is then given by 2t3/2/(

√
3π). In

dimensional variables, the jet thickness at the entrance to the jet is 2R(Vtd/R)3/2/(
√

3π),
where td is the dimensional time and Vtd is the displacement of the droplet. The
obtained results are in agreement with the results by Korobkin & Scolan (2003)
in the problem of an elliptic paraboloid impact onto the flat water surface. Note
that the uniform velocity in the jet, 2ȧ(t), and the constant jet thickness, Hj,
are approached exponentially quickly as X increases. In particular, φX(X, 0, t) =
ȧ(t) + O(exp[−πX/2Hj]) as X→+∞ along the plate. The pressure in the jet-root
region is much greater than in the main flow region, with p= ȧ2/(2ε) at the stagnation
point. However, the hydrodynamic pressure approaches zero in the jet exponentially
quickly as X→+∞. With the elastic deformation of the plate, the jet thickness and
jet velocity can be found from (4.1) once the coupled hydrodynamic-elastic problem
described above is solved.

Although the curvature in the jet-root region becomes higher than in the main flow
region, we still neglect the effect of surface tension in the current paper. Using the
jet-root scales we find a Weber number local to the jet root given by ρV2Rε/σ , which
compares with ρV2R/σε in the main flow region considered in § 3. We note here that
since the Weber number in the jet-root region is two orders of magnitude smaller, the
overall effect of curvature (proportional to 1/We) can become large and cause surface
tension to be a leading-order effect. For instance, when considering the impact of a
water droplet with a 0.5 mm radius elastic plate at 1 m s−1, we find ρV2Rε/σ ≈ 7.
More generally, for a typical range of water droplet sizes and impact velocities the
local Weber number in the jet root ranges from approximately 1 to 450. Solving the
jet root with strong surface tension included is a challenging and interesting problem
in its own right, but is not the focus of this work. We restrict ourselves to situations
where the surface tension may be considered a higher-order correction.
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574 M. Pegg, R. Purvis and A. Korobkin

As the flow leaves the jet-root region it enters a long thin jet detailed here.
Motivated by matching to the jet-root region, the axisymmetric flow in the jet is
described in cylindrical coordinates by the shallow-water equations,

∂h0

∂t
+

1
r
∂

∂r
(ruh0)= 0, (4.2)

∂u
∂t
+ u

∂u
∂r
= 0, (4.3)

where r > a(t). Here we have introduced the leading-order jet thickness h(r, t) and
radial velocity u(r, t). Matching onto the jet-root region provides boundary conditions

u(a, t)= 2ȧ(t), h(a, t)=Hj(t). (4.4a,b)

We note here that the jet thickness in the dimensional variables is L3h(r, t)/R2. Details
of these equations can be found in Howison et al. (1991) for two-dimensional
problems, in Korobkin (1997) for axisymmetric problems, and in Oliver (2002)
for three-dimensional problems. See also Moore & Oliver (2014) and Moore et al.
(2012) for more details and the case of an oblique impact. The shallow-water problem
(4.2)–(4.4) is solved using the method of characteristics. We introduce the Lagrangian
coordinate τ corresponding to the time at which a given material particle enters the
jet. The position of this particle at a later time t is given by

r= a(τ )+ 2ȧ(τ )(t− τ), (4.5)

and the jet thickness by

h(r, t)=Hj(τ )

(
1−

2ä(τ )(t− τ)
ȧ(τ )

)−1 (
1+

2ȧ(τ )
a(τ )

(t− τ)
)−1

. (4.6)

This jet thickness has been derived under the assumption that the flow in the main
region is described by the Wagner model of liquid impact. The Wagner model requires,
in particular, that the contact region expands in time, namely that ȧ(t) > 0. Therefore
1+ 2ȧ(τ )(t− τ)/a(τ )> 1 in (4.6). The last term in (4.6) describes a decrease of the
jet thickness as the particles spread further from the contact line in order to conserve
mass. We note that as in (for example) Howison et al. (1991), Oliver (2002) and
Howison et al. (2005), at leading order, equation (4.5) predicts that the splash jet
extends to infinity. This infinite jet is only present for the impact of solid and liquid
bodies bounded by a smooth surface before impact where ȧ(t)→∞ as t→ 0. For
non-smooth bodies, such as the water entry of a rigid cone at constant speed, the jet
is finite in length.

It can be observed from (4.6) that the jet thickness h(r, t) grows beyond all bounds
if the acceleration of the contact line ä(τ ) is positive as (2ä(τ )(t− τ))/ȧ(τ ) → 1
for some t. This predicted unbounded growth in h(r, t) violates the assumptions of
our shallow-water model, as the vertical extent of the jet grows beyond the O(ε2)
thickness we have assumed. We note that the vertical velocity of the jet at the point
of unbounded growth is more singular than its height. As the critical time at which
the shallow-water model breaks down is approached, the jet vertical velocity can
become the same order of magnitude as the jet horizontal velocity, indicating a
splash. Note that the contact line acceleration is strictly negative for a rigid substrate,
where a(t) =

√
3t (3.18). In this case h(r, t) in (4.6) is always bounded. With the

coupled elastic plate however, oscillations appear in the contact line acceleration ä(t)
and it can become positive, leading to splashing being prompted in the jetting region.
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Droplet impact onto an elastic plate 575

5. Numerical solution
The system (3.11), (3.14) and (3.18) which describes the response of the elastic

plate and the flow in the main flow region is solved numerically. Note that the right-
hand sides of (3.11) and (3.14) depend on the unknown vector functions q, A and
the radius of the contact region a(t), where da/dt > 0 during the impact stage. It is
convenient numerically to take the radius a as a new time-like variable and consider
the time-varying functions vectors q, A as functions of a. Differentiating the Wagner
condition (3.18) with respect to time, we obtain

dt
da
=

2
3 a+A ·Q′(a)
1− Ȧ ·Q(a)

=G(A, q, a), (5.1)

where Ȧ is given by (3.14). Note that G(A, q, a) does not depend on the unknown
function t(a). Next we multiply both sides of equations (3.11) and (3.14) by dt/da
and use (5.1) to derive the equations for A(a) and q(a):

dA
da
=−(Λ+W (a))−1(Zq(a)− g(a))G(A, q, a), (5.2)

dq
da
=A(a)G(A, q, a). (5.3)

The initial conditions for the system of ordinary differential equations (5.1)–(5.3) are

A= 0, q= 0, at t= 0 or a= 0. (5.4a,b)

The initial value problem (5.1)–(5.4) is regular at a= 0. In particular, t=O(a2). The
new time-like variable allows us to avoid difficulties with starting simulations from
t = 0, where da/dt→∞ as t→ 0 (see for example Korobkin & Khabakhpasheva
(2006) for more details). The system of ordinary differential equations (5.1)–(5.3) is
truncated to N modes and integrated by using the fourth-order Runge–Kutta scheme.
In total 2N + 1 equations are integrated. The number of retained modes is not an
issue in the present problem because all elements of the system (5.1)–(5.3) are given
by analytic formulae. The step of integration, δa, is related to the time step, δt, by
equation (5.1), δt = Gδa, where G = O(a) for small time. To properly capture the
highest Nth mode, the time step δt is taken to be smaller than the non-dimensional
period of the Nth mode. The natural frequency of the Nth mode is equal to (β/α)1/2k2

N ,
which follows from the plate equation (2.8) and equation (3.6). The time step δt is at
least six times smaller than the period of the Nth mode if

δt< (α/β)1/2k−2
N . (5.5)

Correspondingly the step δa should be smaller than

δa< (α/β)1/2k−2
N G−1(A, q, a). (5.6)

It is seen that the upper limit of the integration step δa depends on the solution
through the speed of the contact radius da/dt = G−1(A, q, a). Initially the speed is
very high, which makes it possible to use a relatively large step δa. However, as the
speed da/dt becomes small the right-hand side in (5.6) decreases, and this inequality
requires a very small step of integration. In such conditions we swap between
numerical stepping in contact line radius, a, and stepping in time, t, depending on
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576 M. Pegg, R. Purvis and A. Korobkin

the contact line velocity da/dt. We make this transition at approximately da/dt= 2.5.
If the stepping in time is used, the radius a(t) is obtained from the Wagner condition,
(3.18), by a root-finding method.

It was confirmed numerically that the solution converges with increasing number of
modes and that the number of modes used in our calculations captures the physics of
the full system with sufficient accuracy. We confirmed the convergence with number
of modes by analysing in particular the behaviour of the added-mass matrix, W (a).
It was found that as the number of modes increases the elements of the added-mass
matrix rapidly decay, as will be seen in appendix D, figure 21. The convergence with
number of modes was found to be fairly good – with ten modes providing very good
accuracy during the impact stage with a partially wetted plate. Later, when the elastic
plate is fully wetted, the method is found to have substantially better convergence –
with five modes providing an adequate long-term representation of the flow and plate
deflection. This stems from the elastic effects (and hence the added-mass contribution)
becoming much less important compared with the rigid terms during the stage with a
fully wetted plate.

Once (5.1)–(5.4) have been resolved the jet thickness (4.6) yields conditions
providing the time splashing is observed. For negative acceleration ä(τ ), we have

1−
2ä(τ )(t− τ)

ȧ(τ )
= 1+

2|ä(τ )|(t− τ)
ȧ(τ )

> 1, (5.7)

where t > τ . If ä(τ ) > 0 for a certain τ , then h(r, t)→∞ as t→ tc(τ ), where tc(τ )

is determined by the equation

2ä(τ )
ȧ(τ )

(tc(τ )− τ)= 1, (5.8)

and tc(τ ) > τ . For a given function a(τ ), to determine the position and time of
formation of the splash we need to find the minimum value, tmin, of the function
tc(τ ). To calculate tmin and the radius rs at which the splashing occurs, we find the
maxima of

1
tc(τ )

=
2ä(τ )

ȧ(τ )+ 2τ ä(τ )
, (5.9)

with the constraint that
0<

1
tc(τ )

<
1
τ
. (5.10)

This approach provides a graphical way to find the time tmin and the corresponding
value of τ = τmin, such that tc(τmin)= tmin. The radius rs at which splashing occurs then
follows from (4.5):

rs = a(τmin)+
ȧ2(τmin)

ä(τmin)
. (5.11)

Although the elastic plate motion additionally affects fine details of the jet behaviour
through the initial jet thickness Hj (see (3.39) and (4.1)), its primary effect is to be
responsible for triggering blow-up of the jet through the varying acceleration of the
contact line.

Although the method of normal modes provides a good basis to investigate the
velocity field in the droplet, plate deflection and elastic stresses, it does not allow us
to accurately determine the pressure distribution over the wetted region. The pressure
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FIGURE 3. Parametric plane showing the regions of negative and unbounded contact
line velocity. Pluses represent simulations which encounter contact line shrinkage, crosses
represent simulations with no problems, and filled circles represent simulations with an
unbounded contact line velocity.

singularity at the contact line, coupled with poor convergence of the modal series for
the plate acceleration wtt(r, t), make a series representation of the pressure impractical,
as discussed by Korobkin (1998). However, our main goal in this paper is to study
the effect of elasticity on the spreading and splashing of a droplet. We assume that
the pressure in the wetted part of the substrate does not go down to the vapour
pressure due to the elastic plate vibration. If so, cavitation does not occur, and both
the spreading and splashing of the droplet are not affected by the details of the
pressure distribution.

6. Results
The problem described above is entirely governed by two non-dimensional

parameters α and β, as defined in (2.9). Solutions have been calculated across the
entirety of the α–β parameter space by solving (5.2)–(5.4), along with subsequently
determining the characteristics of the splash jets. Before discussing these results in
more detail, we note that there are values of α and β for which solutions cannot be
found. Due to constraints of the Wagner approach adopted here, our model breaks
down if the contact region begins to shrink, da/dt < 0, or if the velocity of the
contact region expansion becomes comparable to the speed of sound in the liquid
for t > 0. This means that for some values of the parameters α and β in (2.8) the
simulations cannot be completed up to the time the plate is fully wetted. Figure 3
depicts the regions in the parametric plane (α, β) where these two types of failure
were found. It is seen that the regions of failure are limited to small values of both α
and β. Wagner theory can be used for any values of β if α > 0.07. For an aluminium
plate, with density ρp= 2700 kg m−3, radius L= 1 mm and a water droplet of density
ρ= 1000 kg m−3, this inequality requires the thickness of the plate to be greater than
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578 M. Pegg, R. Purvis and A. Korobkin

26 µm. The magnitudes of α and β in these excluded regions match those found by
Korobkin & Khabakhpasheva (2006) in the related two-dimensional problem of water
wave impact onto an elastic plate, although the details are different. Both types of
failure are observed to occur at a relatively late stage of the impact, when the main
part of the elastic plate has been wetted.

To understand the physical reasons for the very small and very large predicted
velocities of the contact line when the validity of our model breaks down, note that the
denominator in (5.1) corresponds to the relative velocity of impact, and the numerator
corresponds to the relative angle between the undisturbed far-field droplet shape and
the shape of the deformed elastic plate. This becomes more transparent if we return
to the Wagner condition (2.21) for the radius of the contact region a(t), differentiate
it in time, and introduce the new variable of integration, r= a(t) sin(θ),

da
dt

1
a2

∫ a

0

(
r+

∂w
∂r
(r, t)

)
r2 dr
√

a2 − r2
=

1
a

∫ a

0

(
1−

∂w
∂t
(r, t)

)
r dr
√

a2 − r2
. (6.1)

In (6.1), r in the first integral corresponds to the slope of the initial shape of the
droplet and ∂w/∂r corresponds to the slope of the deformed plate in the contact
region, 0< r< a. The integral on the left-hand side of (6.1) divided by a2 represents
the averaged difference of the slopes with the weighting r2/

√
a2 − r2. The weighting

determines the relative importance of the local difference in slope and indicates
that the value of the integral depends mainly on the relative slope near the contact
line. Similar arguments hold for the integral on the right-hand side of (6.1). This
integral divided by a is the averaged relative velocity of the impact with weighting
r/
√

a2 − r2. Both integrals should remain positive within the assumptions underlying
the Wagner condition. If the velocity of the plate deflection, ∂w/∂t, becomes too
large and the integral in the right-hand side of (6.1) approaches zero, then da/dt also
approaches zero and the contact region stops expanding. This type of failure is shown
in figure 3 by pluses. This failure mode is illustrated by figures 4 and 5 for α= 0.01
and β = 0.001. These values of the non-dimensional parameters α and β imply that
for the aluminium plate of radius 1 mm and droplet radius 5 mm, the impact speed
is 9.67 m s−1 and the elastic plate thickness is 3.7 µm. Figure 4 shows that the
non-dimensional contact line speed, da/dt, for this elastic plate is smaller than that
for the corresponding rigid substrate, and the contact line speed starts oscillating at
a ≈ 0.65, well before the plate is fully wetted. The averaged plate deflection and
velocity, ∫ 1

0
w(r, t)r dr,

∫ 1

0
wt(r, t)r dr, (6.2a,b)

are shown in figure 5. Both the averaged deflection and velocity are very small
for 0 < a 6 0.2. However, the plate deflection cannot be neglected even during this
initial phase. The effect of the plate deflection on the speed of the contact line is
significant (see figure 4). Note that the acceleration of the contact line, d2a/dt2, is
always negative for rigid plates, but oscillates for the elastic plate.

The second distinct failure occurs where the slope of the deformed plate, −∂w/∂r,
becomes large and approaches the slope, r, of the free surface of the undisturbed
droplet. In this regime, the integral on the left-hand side of (6.1) approaches zero and
da/dt→∞. This second type of failure is related to the shape of the deformed plate.
When the shapes of the elastic plate and impacting free surface have the same gradient
near the contact line, Wagner theory predicts that the plate can be instantly wetted.
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FIGURE 4. Contact line velocity da/dt for α= 0.01, β = 0.001 as a function of the non-
dimensional contact line radius a(t).

Physically this corresponds to touchdown occurring simultaneously over a finite region
of the plate rather than via a moving contact line. This causes the unrealistically
extremely large contact line velocity found in the results, and the failure of our model.

The non-dimensional speed of the contact line and the shapes of the plate at time
instants corresponding to the radius of the contact line with a step of 0.05 from a= 0
to a = 0.9 are shown in figure 6 for α = 0.005 and β = 0.014. These values of α
and β correspond to an aluminium plate of radius 1 mm and the thickness 2 µm
impacted by a droplet of water with radius 5 mm and speed 0.9 m s−1. The speed
of the contact line becomes unbounded shortly before the plate is completely wetted.
When the elastic plate is partially wetted the contact region expands more slowly than
for a rigid plate, which qualitatively agrees with the results by Pepper et al. (2008).
This is not typically true as the contact line approaches the edge of the plate. This
phenomenon was not observed by Pepper et al. (2008), where an elastic film of large
radius was considered. The early stages, where the wetted region is far smaller than
the elastic plate, act as an approximation to the situation investigated by Pepper et al.
(2008).

Since the slope of the substrate is discontinuous at the edge of the simply supported
elastic plate, the contact line speed is also discontinuous there. This discontinuity is
well described by the Wagner theory, as shown in figure 7 for an aluminium plate
with parameters α = 0.1 and β = 0.01. This figure demonstrates that, as the contact
line advances beyond the edge of the elastic plate, the influence of the plate vibrations
on the contact line velocity decays rapidly. Calculations were also performed with
different end conditions for the elastic plate, in particular with clamped ends rather
than simply supported; whilst the quantitative details of contact line velocity and plate
behaviour are markedly different, the same splashing mechanism described below is
still observed. This suggests that the edge discontinuity does not affect the underlying
trigger for splashing.
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FIGURE 5. The averaged plate displacement (a) and averaged plate velocity (b) for α =
0.01, β = 0.001 as functions of the contact line radius a.
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FIGURE 6. The contact line velocity (a) and plate shapes (b) calculated at intervals of
a= 0.05 for α = 0.005, β = 0.014.

Figure 8 illustrates the method to determine the conditions of splashing; see § 5.
Splashing occurs for any τ such that the function 1/tc(τ ), given by (5.9) and shown
in figure 8 by the solid line, satisfies both inequalities in (5.10). The limits in (5.10)
are shown by dotted lines in figure 8. The earliest time of splashing, tmin, corresponds
to the maximum of 1/tc(τ ) under conditions (5.10). This value is shown in figure 8
by a circle marker. Splashing occurs also for liquid particles with their Lagrangian
coordinates τ approximately 0.2 and 0.35 but slightly later than for the earliest splash
and in different locations. For the parameters shown in figure 8 we can see that the
first splash occurs at τ = 0.071 and is seen at approximate non-dimensional time
t= 1/3.87≈ 0.258. It is expected that surface tension and viscosity may smooth the
predicted splash. Profiles of the jet thickness as functions of the radial coordinate
r > a(t), at t = 0.07, 0.12 and 0.19 are shown in figure 9(a) and in figure 9(b) as
functions of the Lagrangian coordinate τ at different time instants. It is seen that the
jet thickness decreases in front of and behind the liquid particle at which splashing
occurs.

The region of the parametric plane (α, β) where splashing can occur is large (see
figure 10), and includes all cases studied above. As parameter pairs come closer to
the edge of the splashing region, the time in which we see the splash occur grows
rapidly.

To give further insight into the predicted behaviour of our model, figures 11–18
show variations in contact line velocity, plate deformation and jet profiles for a
selection of parameters. Considering a 1 cm radius water droplet impacting a 1 mm
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FIGURE 7. Contact line velocity da/dt for α= 0.1, β = 0.01 as a function of contact line
radius a.
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FIGURE 8. Plot of splashing conditions (5.9) and (5.10) for α= 0.1, β = 0.3. The circle
indicates the value of τ for which splashing first occurs.

radius aluminium plate at a speed of 2.5 ms−1, we present results for three plate
thicknesses 0.1, 0.065 and 0.04 mm. These choices correspond to our non-dimensional
numbers being given by α= 0.27, 0.175, 0.108 and β = 10.6, 2.91, 0.678, respectively.
Physically they represent three distinct cases: no splashing predicted (0.1 mm), on
the borderline of splashing (0.065 mm) and splashing (0.04 mm). This can be seen
in figure 10.
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FIGURE 9. For the parameters α = 0.1 and β = 0.3, (a) shows the jet thickness h(r, t)
given by (4.6) as the function of r, where r > a(t) for t = 0.07, 0.12 and 0.19 and
(b) shows the growth of the splash for the interval 0.08 < τ < 0.105 of the Lagrangian
coordinate τ , from time t= 0.145 to t= 0.235 in steps of 0.01. Increasing time is shown
by an increasing maximum in both plots.

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

 0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

FIGURE 10. The α−β parametric plot where splashing is predicted (dark crossed region)
and where it is not predicted (dotted region).

Considering the contact line velocity in figure 11, the thickest plate (which does
not splash) follows very closely the behaviour of a rigid plate. Note that, although
the borderline case does demonstrate some oscillatory behaviour, the acceleration of
the contact line never becomes positive, in contrast to the 0.04 mm case, which does
exhibit splashing. The shapes of the elastic plates are shown in figures 12 (0.1 mm),
13 (0.065 mm) and 14 (0.04 mm) at fixed times. The more elastic substrates deform
substantially further and faster. The large displacements can result in a much longer
time until the plate is completely wetted, as plotted in figure 15.

Profiles of the evolving splash jet are plotted in figures 16 (0.1 mm), 17 (0.065
mm) and 18 (0.04 mm). Oscillations of the elastic plate, and subsequent effects
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FIGURE 11. Contact line velocity for α = 0.27, β = 10.6. α = 0.175, β = 2.911 and α =
0.108, β = 0.678.

on the contact line velocity, can be seen to cause disturbances in the jet profiles
even in the non-splashing cases. Due to the contact line acceleration never becoming
positive, these disturbances can be observed not to grow in figures 16 and 17, whilst
in figure 18 the initial disturbance grows and leads to blow-up in the thin jet, and
subsequent splashing.

7. Conclusion
A model of droplet impact onto an elastic plate has been presented. The model

generalises the Wagner theory of water impact to axisymmetric configurations and an
elastic surface of the body. The uniformly valid description of the resulting flow was
obtained using the asymptotic approach by Howison et al. (1991). The flow region
is divided into three subregions: the main flow region with its size on order of the
elastic plate diameter; the small jet-root region at the periphery of the wetted part of
the substrate; and the jet region where splashing can be observed. The pressure and
velocity field of the main flow region are singular at the contact line, necessitating the
formation of an asymptotic jet root close to the contact line. In order to conserve mass,
a liquid jet emanates from the jet-root region in a direction normal to the contact line.
It was shown that the vibrating substrate does not directly interact with the jet-root
region at leading order, only providing a contribution to the jet parameters through
the far-field condition and contact line position and velocity.

The leading-order solutions in each subdomain of the flow region were obtained
and matched to each other. The flow in the main flow region was coupled with
the plate vibration caused by impact. It was shown that the radius of the contact
region is strongly dependent on the deflection of the elastic substrate. The jet flow
is smooth and finite only if the acceleration of the contact line is negative, as it is
for a rigid substrate. Elasticity of the substrate may change the sign of the contact
line acceleration if the substrate starts to oscillate during the early impact stage.
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FIGURE 12. Plate displacement calculated at times t = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3 for
α = 0.27 and β = 10.6 (h= 0.1 mm). Crosses indicate the position of the contact line.
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FIGURE 13. Plate displacement calculated at times t = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3 for
α = 0.175 and β = 2.911 (h = 0.065 mm). Crosses indicate the position of the contact
line.

This can occur only for the finite elastic substrate with a relatively small period
of natural vibration. It was shown that a positive acceleration of the contact line
leads to blowing-up of the jet flow, with formation of the secondary torus jet in the
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FIGURE 14. Plate displacement calculated at times t = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3 for
α= 0.108 and β = 0.678 (h= 0.04 mm). Crosses indicate the position of the contact line.
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FIGURE 15. Dimensional time at which the plate is fully wetted versus plate thickness for
a 1 cm water droplet impacting a 1 mm radius aluminium plate at 2.5 ms−1. The vertical
line separates the splashing regimes to the left and non-splashing to the right.

direction normal to the surface of the substrate. The formation of this secondary jet
is treated in the present model as splashing. Conditions of the splashing were derived
in terms of the parameters of impact and characteristics of the substrate, α and β.
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FIGURE 16. Jet profile for α = 0.27, β = 10.6 (h = 0.1 mm) at times t =
0.07, 0.14, 0.21, 0.28.
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FIGURE 17. Jet profile for α = 0.175, β = 2.91 (h = 0.065 mm) at times t =
0.07, 0.14, 0.21, 0.28.

A graphical way to predict the time and location at which splashing will first be
seen was discussed and presented. The evolution of the jet thickness from a small
bump to a large splash was shown against Eulerian and Lagrangian variables. Finally,
a parametric analysis of the values of α and β for which splashing is predicted was
performed. It was found that there is a large range of α and β for which splashing
occurs.
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FIGURE 18. Jet profile for α = 0.108, β = 0.678 (h = 0.04 mm) at times t =
0.07, 0.14, 0.21, 0.28.

The Wagner model requires that during the impact the contact line velocity is
positive and finite. We obtained the range of the non-dimensional elastic parameters
α and β for which the Wagner model is valid. Mechanisms behind the unbounded
contact line velocity and contact line shrinking were investigated, and both tied
directly to behaviour of the elastic plate. These critical regimes of a droplet impact
are related to the early stage when the elastic plate is partly wetted. It was shown
that the elastic effects decay quickly after the elastic plate is wetted completely, and
the contact region continues to expand along the rigid part of the substrate.

It is interesting to highlight the difference between the splashing mechanism
presented here, and that in the related problem of droplet impact onto a rigid plate
with forced vertical vibrations (see Khabakhpasheva & Korobkin 2016). In the latter
situation, splashing is caused by the presence of positive vertical motion of the plate
forcing additional fluid into the splash jet (and hence eventually requiring positive
acceleration the contact point). In the current work, the splashing mechanism is
caused by a more subtle local and global combination of plate accelerations, of plate
and free-surface shapes, and of contact line position. In fact, in the non-splashing
case presented in figure 12 the elastic plate is moving upwards, whilst in figure 14
splashing is predicted despite the average plate motion being downwards throughout
the initial spreading of the droplet. Further investigation is required to fully understand
this somewhat counter-intuitive difference.

We have shown that the presence of an elastic plate can cause splashing in the
absence of interaction with surrounding gas or substrate roughness. However, the roles
of the liquid surface tension and viscosity in the formation or suppression of the
splash are still unclear. Surface tension will initially enter the problem at leading order
in two ways: firstly, in the jet-root region, where it will probably require a numerical
solution to resolve the rather complex local jetting problem; secondly, in the thin jet
itself, when the thickness h(r, t) becomes large, both surface tension and viscosity can
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become significant in some ranges of our parameter space. Whilst beyond the current
study, further investigation of both would offer important insight into how the splash
might develop, and in particular whether surface tension and viscosity can suppress
the splashing discussed here in certain parameter regimes.

Vibrations of the elastic plate can cause cavitation which can be responsible
for damage to the substrate. The present model does not allow us to control the
distribution of the hydrodynamic pressure near the contact region and its evolution in
time. This is due to the very slow convergence of the series for the pressure in terms
of the normal modes of the elastic plate (see discussion of this problem by Korobkin
(1998)).

This study was carried out assuming axisymmetry of the flow. It is interesting to
investigate how much a fully three-dimensional situation would change the dynamics
of spreading and splashing. The three-dimensionality of the flow and elastic response
can be achieved by moving the impact point away from the centre of the plate, or by
considering the impact of an ellipsoidal liquid droplet.
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Appendix A. Integrals Un

The integrals

Un =

∫ 1

0
rw2

n(r) dr, (A 1)

where
wn(r)= J0(knr)−

J0(kn)

I0(kn)
I0(knr), (A 2)

and kn are the real solutions of the equation (3.9), provide

Un =

∫ 1

0
r
(

J0(knr)−
J0(kn)

I0(kn)
I0(knr)

)2

dr. (A 3)

The integrals (A 3) are evaluated by using the standard integrals:∫ 1

0
xJ2

0(ax) dx=
1
2
(J2

0(a)+ J2
1(a)), (A 4)∫ 1

0
xI2

0(ax) dx=
1
2
(I2

0(a)− I2
1(a)), (A 5)∫ 1

0
xJ0(ax)I0(ax) dx=

J0(a)I1(a)+ J1(a)I0(a)
2a

. (A 6)

The result is

Un =

(
1−

2
1− ν

−
2k2

n

(1− ν)2

)
J2

0(kn)+
2kn

1− ν
J0(kn)J1(kn), (A 7)

where Un =O(kn) as n→∞.
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FIGURE 19. The functions Qn(a) for n= 1, 2, 3 and 4 using modes calculated with
ν = 0.3.

Appendix B. Integrals Qn(a)

Substituting the normal modes (3.8) of a circular simply supported plate into (3.19),

Qn(a)=
∫ π/2

0
sin(θ)

(
J0(akn sin(θ))−

J0(kn)

I0(kn)
I0(akn sin(θ))

)
dθ, (B 1)

and using the standard relations,∫ π/2

0
sin(θ)J0(X sin(θ)) dθ =

sin(X)
X

, (B 2)∫ π/2

0
sin(θ)I0(X sin(θ)) dθ =

sinh(X)
X

, (B 3)

we find

Qn(a)=
sin(akn)

akn
−

J0(kn)

I0(kn)

sinh(akn)

akn
. (B 4)

The functions Qn(a) are depicted in figure 19, for n= 1, 2, 3, 4. The functions behave
as sin(akn)/(akn) for large n because J0(kn)/I0(kn)→ 0 as n→∞ in (B 4).

Appendix C. Calculation of the vector elements gn(a)

Substituting (3.8) and (3.33) in (3.15),

gn(a)=
2ḣ
π

∫ a

0
r
√

a2 − r2

(
J0(knr)−

J0(kn)

I0(kn)
I0(knr)

)
dr, (C 1)
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FIGURE 20. gn versus a for n = 1, 2, 3 and 4 using modes calculated with ν = 0.3 for
ḣ= 1.

and making the substitution r= a sin(θ) gives

gn(a)=
2a3ḣ
π

∫ π/2

0
(sin(θ)− sin3(θ))(J0(knr)−

J0(akn sin(θ))
I0(kn)

I0(akn sin(θ))) dθ. (C 2)

The four integrals in (C 2) are given by∫ π/2

0
sin(θ)J0(K sin(θ)) dθ =

sin(K)
K

, (C 3)∫ π/2

0
sin(θ)I0(K sin(θ)) dθ =

sinh(K)
K

, (C 4)∫ π/2

0
sin3(θ)J0(K sin(θ)) dθ =

K cos(K)− sin(K)+K2 sin(K)
K3

, (C 5)∫ π/2

0
sin3(θ)I0(K sin(θ)) dθ =

sinh(K)−K cosh(K)+K2 sinh(K)
K3

. (C 6)

Combining (C 3)–(C 6) with (C 2) provides

gn(a)=
2ḣ
πk3

n

(
sin(akn)− akn cos(akn)−

J0(kn)

I0(kn)
(akn cosh(akn)− sinh(akn))

)
. (C 7)

The functions gn(a)/ḣ are depicted in figure 20 for n= 1, 2, 3, 4. The functions behave
as −(2a/πk2

n) cos(akn), where n→∞.
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FIGURE 21. (a) The first four diagonal elements of the added mas matrix, W nn(a). (b) The
first three off-diagonal elements of the first column of the added-mass matrix, W nm(a).

Appendix D. Elements of the added-mass matrix
The integrals (3.37),

W nm(a)=
2a3

π

∫ 1

0
y2Qn(ay)Qm(ay) dy, (D 1)

are evaluated analytically by using Qn(ay) and Qm(ay) from (B 4):

W nm(a)=
2a

πknkm

∫ 1

0

(
sin(akny) sin(akmy)−

J0(km)

I0(km)
sin(akny) sinh(akmy)

−
J0(kn)

I0(kn)
sinh(akny) sin(akmy)+

J0(kn)J0(km)

I0(kn)I0(km)
sinh(akny) sinh(akmy)

)
dy. (D 2)

The result is

W nm(a) =
2

πknkm

(
km sin(akn) cos(akm)− kn cos(akn) sin(akm)

k2
n − k2

m

−
J0(kn)

I0(kn)

kn sin(akm) cosh(akn)− km cos(akm) sinh(akm)

k2
m + k2

n

−
J0(km)

I0(km)

km sin(akn) cosh(akm)− kn cos(akn) sinh(akm)

k2
n + k2

m

+
J0(km)J0(kn)

I0(kn)I0(km)

kn cosh(akn) sinh(akm)− km sinh(akn) cosh(akm)

k2
n − k2

m

)
, (D 3)

for n 6=m and

W nn(a) =
2a
πk2

n

(
1
2
−

sin(2akn)

4akn
−

J0(kn)

I0(kn)

sin(akn) cosh(akn)− cos(akn) sinh(akn)

akn

+
J2

0(kn)

I2
0(kn)

(
sinh(2akn)

4akn
−

1
2

))
, (D 4)

for n=m. The functions W nm(a) are depicted in figure 21. The diagonal elements of
the added-mass matrix, W nn(a), behave as 1/k2

n when n→∞.
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