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A two-dimensional model for the non-uniform melting of a thin sheared viscous layer is de-
veloped. An asymptotic solution is presented for both a non-reactive and a reactive material.
It is shown that the melt front is linearly stable to small perturbations in the non-reactive
case, but becomes linearly unstable upon introduction of an Arrhenius source term to model
the chemical reaction. Results demonstrate that non-uniform melting acts as a mechanism
to generate hot spots which are found to be sufficient to reduce the time to ignition when
compared with the corresponding one-dimensional model of melting.
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1. Introduction

Safety is of paramount importance in the handling, processing and storage of ex-
plosives. While much is known about the behaviour of explosive materials during
high speed deformation, the mechanisms responsible for the ignition of explosive
materials in response to low energy stimuli, known as ‘insults’ in the literature, are
still not well understood. It is in general believed that explosive ignition is of ther-
mal origin, with mechanical energy being converted into heat energy in localised
regions, forming ‘hot spots’ [1]. Many hot spot mechanisms have been proposed in
the literature, but it is found that the explosive response is strongly dependent on
the material properties and type of insult, making it difficult to identify a single
mechanism as dominant. The main mechanisms suggested for hot spot generation
include adiabatic compression of trapped gas spaces, viscous heating of rapidly
extruded material, friction between impacting surfaces, local adiabatic shear, and
heating at crack tips. Note that this list is certainly not exhaustive and many more
mechanisms have been described in other studies [see 1, and references therein].

In particular, mechanisms arising from shear are widely discussed in the litera-
ture. For instance, [2–5] discuss frictional rubbing as an ignition mechanism. During
rubbing contact between two solids, the hot spot temperature is determined by the
solid with the lower melting point – the lower melting point solid ‘quenches’ the hot
spot temperature to the melting temperature. Bowden and Gurton were able to
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measure hot spot ignition temperatures for a wide range of explosives by choosing
grits of different melting points and measuring the effect on the sensitivities of the
explosives [4].

While shear localisation has been widely studied in inert materials (see [6, 7], for
example), there have been very few analytical studies on localised shear in explosive
materials. In contrast to the dearth of analytical work, many experimental studies
can be found in the literature. Evidence for localised shear within the explosive
sample can be observed in recovered unexploded samples. Photographic evidence
for adiabatic shear is given by Field et al. [8], showing ignition and propagation
occurring in a shear band in a sample of PETN (pentaerythritol tetranitrate).
Notable analytical work on shear localisation in explosive materials includes [9–
12] and the substantial work [13]. Also worthy of mention are the experimental
works [14, 15]. It is in general concluded that localised shear is a prevalent hot
spot mechanism, which manifests in many differing loading scenarios.

Investigation of explosive response to insults through the use of numerical con-
tinuum mechanics methods, such as finite element models, often falls victim to
problems such as severe mesh deformation [16]. Typically, a very high resolution
is required to overcome such issues, but this comes at the cost of computational
resources and time. Additionally, large scale numerical codes do not always offer
as much physical insight as small scale, simplified, analytical models. Here we de-
velop a simplified model for the shearing and subsequent melting of a solid block
of explosive material to try and gain a deeper understanding of the mechanisms
which may lead to thermal runaway.

We consider the melting of a thin viscous layer of explosive material due to an
applied shear. When an explosive sample is subject to a mechanical insult pre-
existing, or new, microcracks will be in compression and shear. Such microcracks
can grow in size if the local stress is great enough and, due to friction between solid
surfaces, heat is released during the growth process [17]. Subsequent to sufficient
heat release, the crack surface temperature will be raised to the solid melting point
and a thin sheared melt layer will be formed, separating the solid surfaces [18].
This thin melt layer will continue to be heated through viscous dissipation and is
thought to be a prime location for hot spot generation.

Starobin and Dienes [17] develop a one-dimensional model for the lateral melting
and ignition of a thin, sheared, viscous layer of the reactive solid HMX (cyclote-
tramethylene tetranitramine). In their work, they present an analytical and numer-
ical study of the melt front propagation both with and without a chemical reaction.
Assuming a melt layer of uniform width, and adopting a non-linear Arrhenius heat
source term to capture the reaction, they demonstrate that shear melting in the
one-dimensional geometry leads to an increase in the peak temperature relative to
the melting point of HMX.

A natural question arises: will the typically inhomogeneous structure found in ex-
plosive materials cause further localisation? Polymer bonded explosives are highly
granular materials, and the constituent materials in the explosive will in general
have different thermomechanical properties. Such spatial differences in material
properties will inevitably create a non-uniform melt layer. In this paper, we for-
mally derive a two-dimensional model for the melting and ignition of a thin layer
of explosive material, so that the effects of material inhomogeneity can be inves-
tigated. In order to account for the possible non-uniform melting of material, we
impose a shape on the melt front which is allowed to evolve in time. In particular,
we demonstrate that even a small two-dimensional disturbance can lead to the
generation of highly localised hot spots within the melt layer and greatly reduce
the predicted time to runaway.
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In [17] all material properties are treated as constant, allowing one reasonably
to assume a linear velocity profile across the melt layer to leading-order. However,
the temperature across the layer varies from the melt temperature of 520 K to a
peak temperature of well over 700 K. Inevitably this large increase in temperature
will have some effect on the material properties. In particular, it is suggested that
the viscosity may vary significantly across the layer, and the linearisation of the
fluid velocity across the layer would break down. Here we allow the specific heat,
viscosity and thermal conductivity to vary with temperature and compare the
results with those found in [17].

In Section 2 we derive a two-dimensional model describing the heating of thin
molten layer of explosive undergoing shear. The thinness of the melt layer is ex-
ploited and a lubrication approximation is made. The resulting equations are trans-
formed into front-fixed coordinates, which are particularly convenient for the nu-
merical analysis to follow. In Section 3 we investigate the effects arising from the
two-dimensionality of our model, and make the simplifying assumption of constant
material properties. A linear stability analysis in conducted, considering small de-
viations from a melt layer of uniform width. It is demonstrated the the melt front
is linearly stable in the absence of any chemical reaction, but stability is lost upon
introduction of an Arrhenius heat source which models the chemical reactions oc-
curring within the layer. In Section 3.2 we present an iterative numerical scheme
which is used to determine the temperature field in the melt layer. Times to ignition
are computed for various initial conditions, demonstrating the effect the imposed
melt front shape has on the self heating in the layer. In Section 4 we investigate
the effects of allowing the liquid specific heat, viscosity and thermal conductivity
to vary with temperature. We demonstrate a departure from the leading-order lin-
ear velocity profile found in [17], and show this leads to non-uniform mechanical
heating across the layer. We conclude in Section 5, where we discuss the possible
physical interpretations of the model and offer some suggestions for the conditions
under which non-uniform melting may occur.

2. Model equations

We consider a semi-infinite solid block of explosive material occupying the the
region x > 0, with a rigid wall located at x = 0. At time t = 0 the wall moves
impulsively downwards with speed vw. The movement provides a shear force on
the explosive sample, generating sufficient heat to melt the explosive sample near
the wall, such that, at t = t0, there already exists a thin viscous liquid melt layer
adjacent to the wall, see Figure 1. The melt front, shown here as a dashed line, is
located at x = xf (y, t).

A possible physical interpretation of the current work is to consider a scenario
in which an internal crack develops, and two material planes slide against one
another. In this case, the model is readily adapted to account for a symmetry
condition at x = 0, as in [17]. The solid wall used in the current formulation may
also be considered as a model for a piece of high melting point grit present in the
explosive sample [3]. In any case, the heating mechanisms discussed here are still
present.

The molten explosive in the melt layer is modelled as an incompressible viscous
fluid with temperature dependent specific heat c, viscosity µ and thermal con-
ductivity κ. Under these assumptions, the continuity equation and Navier-Stokes
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equations, given here in non-dimensional form, are
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Re

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ 2

∂

∂x

(
µ
∂u

∂x

)
+

∂

∂y

[
µ

(
∂u

∂y
+
∂v

∂x

)]
, (2)

Re

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ 2

∂

∂y

(
µ
∂v

∂y

)
+

∂

∂x

[
µ

(
∂u

∂y
+
∂v

∂x

)]
, (3)

where (u, v) are the horizontal and vertical components of the liquid velocity, re-
spectively, p is the pressure and Re = (ρv∗l∗)/µ∗ is the Reynolds number. Here
we have non-dimensionalised using typical velocity scale v∗ = vw, time scale t∗,
density ρ and reference viscosity µ∗. The length scale may be given as the product
of a time scale t∗ and the typical wall speed vw, i.e. l∗ = vwt

∗. The pressure has
been scaled with (µ∗vw)/l∗ to balance with the viscous terms. As in [17], we assume
the molten explosive behaves as a viscous fluid, so appropriate conditions on the
wall and liquid/solid boundary are the no-slip conditions:

u = 0, v = −1 on x = 0, (4)

u = 0, v = 0 on x = xf (y, t). (5)

The explosive sample is initially heated by viscous dissipation in the melt layer
and, once the temperature rise is sufficient, heated further by a consequent chem-
ical reaction. We denote the temperature in the melt layer by T and the solid
temperature by Tsol. The chemical reaction is modelled as a single step Arrhenius
reaction, expressed in terms of the mass fraction α of gaseous products [16]. This
is given in non-dimensional form by

∂α

∂t
+ u

∂α

∂x
+ v
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= Â(1− α) exp
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−Ê
T

)
, (6)

where Â = t∗A = (l∗A)/vw is the non-dimensional pre-exponential factor, Ê =
E/(R∆T ) is the non-dimensional activation energy, E is the activation energy,
R is the molar gas constant and ∆T a typical temperature difference. It is well
known that multiple reactions, some endothermic, some exothermic are actually
proceeding in parallel, but the one-step Arrhenius reaction serves as a preliminary
model. The viscous dissipation in the melt is given by

Φ = µ(T )
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In the presence of both viscous and chemical heating in the melt, the conservation
of energy equations in the liquid and solid phases read, in non-dimensional form,
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, (8)



December 8, 2017 Combustion Theory and Modelling ”Reactive two-dimensional sheared viscous
layer”

Combustion Theory and Modelling 5

and

c(Tsol)
∂Tsol

∂t
=

1

Pe
∇ · (κ(Tsol)∇Tsol) + Ω̂Â(1− α) exp

(
− Ê

Tsol

)
, (9)

respectively. Here Ω̂ = Ω/(c∗∆T ) is the non-dimensional heat of reaction, Ω is
the specific heat of the reaction and c∗ the reference specific heat of the explosive
material. The energy equations include the Reynolds number and three further
dimensionless groupings: the Péclet number Pe = (c∗ρvwl

∗)/κ∗, where κ∗ is the
reference thermal conductivity; the Eckert number Ec = v2

w/(c
∗∆T ); and the ratio

of heat of the reaction to the sensible heat Ω̂ = Ω/(c∗∆T ). The location of the
melt front is determined by the Stefan condition, which equates the temperature
flux discontinuity across the melt front with the magnitude of the latent heat sink
at the phase boundary,

∂

∂t
xf (y, t) = D

(
− ∂

∂x
T (x, y, t)

∣∣∣∣
x=x−

f

+
∂

∂x
Tsol(x, y, t)

∣∣∣∣
x=x+

f

)
, (10)

where the non-dimensional diffusion coefficient is given by

D =
Ste

Pe
, (11)

which is the ratio of the Stefan number to the Péclet number. The Stefan number
is the ratio of the sensible heat to the latent heat

Ste =
c∗∆T

L
, (12)

where L is the latent heat of the material. The melting temperature is assumed
constant, T = Tm, and as in [17] we make the equilibrium assumption at the
solid-liquid interface, giving the condition

T (xf (y, t)) = Tsol(xf (y, t)) = Tm. (13)

In the following we will assume that the wall acts as a insulating boundary, giving

∂T

∂x
= 0 at x = 0. (14)

In reality there will be some heat loss to the wall. However, any loss will be negli-
gibly small owing to the very short typical timescale to ignition and comparatively
large thermal diffusion time. Note that condition (14) would also be applicable at
the midpoint of a symmetric shear layer, as in [17]. In the far-field (i.e. away from
the melt front) the temperature of the solid explosive material should decay to the
ambient temperature, giving the condition

Tsol → T̄ as x→∞, (15)

where T̄ = 300 K/∆T is the non-dimensional ambient temperature.
Herein we restrict our attention to localised disturbances to the melt front, cen-

tred about y = 0, so that we recover the existing corresponding one-dimensional
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solution as we move away from the disturbance site. This provides the conditions

∂T

∂y
→ 0,

∂Tsol

∂y
→ 0, and

∂P

∂y
→ 0 as y → ±∞. (16)

The equation for the mass fraction (6) is supplemented by the boundary conditions

∂α

∂x
= 0 at x = 0 and x = xf , and

∂α

∂y
→ 0 as y → ±∞. (17)

The two-dimensional melt model presented here accounts for the temperature
dependence of the specific heat, viscosity and thermal conductivity. We describe
the specific heat c using an Einstein relation. This particular functional form has
been used by Austin et al. [18] to describe the heat capacity for the β phase of HMX,
and it is therein assumed that the heat capacity of the liquid phase is identical to
that of the solid phase. In the interest of simplicity we make the same assumption
here so that the specific heat of liquid HMX is given by

c(T ) =
(θ1/T )2 exp(θ1/T )

(exp(θ1/T )− 1)2
, (18)

where θ1 = (1000 K)/∆T . The temperature dependence of the viscosity µ is mod-
elled using an Arrhenius law

µ(T ) = exp

(
θ2

T
− θ2

θ3

)
, (19)

where θ2 = (7800 K)/∆T and θ3 = (800 K)/∆T are experimentally determined
constants. For the thermal conductivity κ we fit data found in [19, 20] using an
exponential law

κ(T ) = θ4 + θ5 exp(−θ6T ), (20)

where θ4 = (0.26 W m−1 K−1)/κ∗, θ5 = (246.08 W m−1 K−1)/κ∗ and θ6 =
(0.0145 K−1) ∆T .

The non-dimensional specific heat, viscosity and thermal conductivity are related
to their dimensional counterparts through the scalings c∗ = 1034 J kg−1 K−1, µ∗ =
5.5 × 10−3 kg m−1 s−1 and κ∗ = 0.3884 W m−1 K−1, respectively. For the viscosity
we use the values given by Menikoff and Sewell [19], who state that at 800 K the
viscosity of HMX drops to 5.5 × 10−3 kg m−1 s−1, whereas the scaling for the
specific heat has been chosen to compare well with previous modelling. The scaling
for the thermal conductivity was chosen using the data from [20].

The relevant material properties, their notation, and typical values for HMX,
are shown in Table 1. In order to simplify the problem, all material properties
are taken to be the same in both the solid and liquid regions. This assumption
is consistent with [17], and has been used in other models for HMX [e.g. 18]; the
analysis could be extended in a straightforward manner to account for differing
material properties. However, in the following lubrication analysis we only treat
the liquid layer, and the properties of the solid phase do not appear explicitly at
leading-order. As a result, the analysis presented herein would be unchanged.
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2.1 Lubrication approximation

After an initial small time period a viscous melt layer will have formed between
the moving wall and the solid explosive. The melt layer is expected to be thin in
comparison to its length, so we adopt the lubrication approximation (see [21], for
example). This essentially reduces the problem to a single-phase Stefan problem
in which we are concerned with the temperature evolution in the liquid melt layer.
To exploit this expected thinness of the melt layer we adopt the usual scalings

x = εX, u = εU, p = ε−2P, (21)

where ε is a small parameter such that X,U, P are O(1) in the thin melt layer. To
leading-order we obtain the governing equations for the liquid melt layer

∂U

∂X
+
∂v

∂y
= 0, (22)

∂P

∂X
= 0, (23)

−∂P
∂y

+
∂

∂X

(
µ(T )

∂v

∂X

)
= 0, (24)

which are based on the usual assumption that both ε� 1 and ε2Re� 1. Equations
(22) – (24) are to be solved subject to no-slip boundary conditions on the wall and
melt front, where the liquid melt layer will be in contact with the unmelted solid
explosive. Since we are restricting our attention to localised disturbances we expect
that far from the site of the two-dimensional disturbance the solution will resemble
the one-dimensional solution, and that the pressure will be a function of time only.

Substitution of the lubrication layer scalings (21) into the energy equation for
the melt layer (8) provides

c(T )

(
∂T

∂t
+ U

∂T

∂X
+ v

∂T

∂y

)
=

1

Pe
ε−2

(
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∂X

∂T

∂X
+ κ(T )

∂2T

∂X2

)

+
1
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(
∂κ(T )

∂y

∂Y

∂y
+ κ(T )

∂2T

∂y2

)
+
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Re
Φ + Ω̂Â(1− α) exp

(
−Ê
T

)
, (25)

where the expansion of the mechanical dissipation is given by

Φ = µ(T )

{
2

[(
∂U

∂X

)2

+

(
∂v

∂y

)2 ]
+ ε−2

(
∂v

∂X

)2

+ ε2
(
∂u

∂y

)2

+ 2
∂v

∂X

∂U

∂y

}
. (26)

The energy equation (25) is to be solved subject to the boundary conditions

∂T

∂X
= 0 atX = 0, T = Tm atX = Xf (y, t),

∂T

∂y
→ 0 as y → ±∞. (27)

The small parameter ε is fixed to obtain a dominant balance between convection,
diffusion and dissipation terms in the melt layer. This amounts to ensuring the
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horizontal diffusion term in the energy equation (25) is O(1), so that

ε2 =
1

Pe
. (28)

For the material properties used in this study we find that the Péclet number is in
the range 103 < Pe < 106, depending on wall speed vw, so that ε is indeed small.

We retain the leading-order terms, along with the reaction term which is initially
small but grows rapidly as the temperature increases. The leading-order energy
equation in the melt layer now reads

c(T )

(
∂T

∂t
+ U

∂T

∂X
+ v

∂T

∂y

)
=
∂κ(T )

∂X

∂T

∂X
+ κ(T )

∂2T

∂X2

+ Ec Pr Φ + Ω̂Â(1− α) exp

(
−Ê
T

)
, (29)

with Φ = µ(T ) (∂v/∂X)2 . Here we have introduced the Prandtl number, defined
as Pr = (c∗µ∗)/κ∗. Note that for heat transfer the Péclet number can be written
as the product of the Reynolds number and the Prandtl number: Pe = Re Pr. The
rescaled Stefan condition (10) reads

ε
∂

∂t
Xf (y, t) = D

(
−ε−1 ∂T

∂X

∣∣∣∣
X=X−

f

+ ε−1 ∂

∂X
(εT ′sol(X = Xf ) +O(ε2))

∣∣∣∣
X=X+

f

)
(30)

where the solid temperature has been expanded about the melt front so that the size
of its derivative may be properly determined with respect to ε. For the material
properties quoted for HMX, and taking a typical temperature difference to be
∆T ∼ O(100 K), it is found that the Stefan number is typically O(1). This makes
the diffusion coefficient D ∼ O(ε2) so that the leading-order Stefan condition is
given by

∂Xf

∂t
= −Ste

∂T

∂X

∣∣∣∣
X=X−

f

. (31)

2.2 Front-fixing transformation

In Section 3.2 the governing equations in the liquid region (22) – (24), (??) and
(31), along with the Arrhenius equation (6) are to be solved numerically. In order to
facilitate this we introduce the front-fixed co-ordinate ξ = X/Xf . This significantly
simplifies the numerical treatment, and formally recovers a fixed grid. The 3 × 3
Jacobian transformation matrix reads

J =
∂(ξ, y, t)

∂(X, y, t)
=


1
Xf

0 0

−∂Xf

∂y
ξ
Xf

1 0

−∂Xf

∂t
ξ
Xf

0 1

 . (32)

Under this coordinate transformation the moving phase boundary is located exactly
at ξ = 1. The governing equations for the melt front take the following form in the
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front-fixing coordinates:

1
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ξ
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+
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= 0, (35)
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+ Ec Pr Φ + Ω̂Â(1− α) exp
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)
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Φ = µ(T )
1

X2
f

(
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)2

, (37)

∂Xf

∂t
+ Ste

1

Xf

∂T

∂ξ

∣∣∣∣
ξ=1−

= 0, (38)

∂α

∂t
+

1

Xf

(
U − ∂Xf

∂t
ξ − v∂Xf

∂y
ξ

)
∂α

∂ξ
+ v

∂α

∂y
= Â(1− α) exp

(
−Ê
T

)
, (39)

where velocity components U, v, temperature T , mass fraction α and are all func-
tions of ξ, y, t, and pressure P and melt front location Xf are functions of y and t
only. This formulation of the problem will be used to obtain asymptotic results in
Sections 3.1 and 4.

In the preceding analysis we have derived a two-dimensional model for the melt-
ing of HMX. The introduction of the lubrication approximation has reduced the
problem to a single-phase Stefan problem, in which the melt front only propagates
in the direction perpendicular to the wall located at ξ = 0 (X = 0). The solid
region of unmelted explosive is now considered to be of infinite expanse, occupying
the region ξ > 1 (X > Xf ), and is held fixed at the melting temperature Tm. In
the absence of any y dependence the analysis in this section may be viewed as
a formal derivation of the ad-hoc one-dimensional model for a thin shear-melted
viscous layer presented in [17]. Equivalently, the model presented in [17] may be
recovered by considering early time solutions of the two-dimensional model (see
Appendix A).

3. Shear melt model: constant material properties

In order to simplify the analysis, and to compare results with [17], the specific
heat, viscosity and thermal conductivity are treated as constant in this section,
taking dimensional values c̃ = 989.25 J kg−1 K−1, µ̃ = 4.6 × 10−2 kg m−1 s−1

and κ̃ = 0.404 W m−1 K−1, respectively. Since the material properties are assumed
independent of temperature, the functions (18) – (20) are constant c(T ) = µ(T ) =
κ(T ) = 1. This assumption will be relaxed in Section 4, where the effects of temper-
ature dependent material properties will be investigated, and are shown to make
only a minor qualitative difference to the hot spot generation mechanisms discussed
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here.
For constant material properties, the mechanical and thermal equations decouple

and explicit expressions may be found for the velocity components. Equation (34)
immediately requires that the pressure in the lubrication layer is independent of ξ,
i.e. P = P (y, t). Integrating (35) directly with respect to ξ and applying boundary
conditions we obtain an expression for the vertical velocity component

v(ξ, y, t) =
1

2
X2
f

∂P

∂y
ξ (ξ − 1)− (1− ξ) . (40)

The horizontal velocity component may then be calculated by integration of the
continuity equation (33) a distance ξ across the layer

U(ξ, y, t) =
1

2

∂Xf

∂y
ξ2 +

1

12

(
3X2

f

∂Xf

∂y

∂P

∂y
ξ2 + 6X3

f

∂2P

∂y2

(
ξ2

2
− ξ3

3

))
. (41)

Application of the no-slip boundary conditions then provides a condition relating
the position of the melt front and the pressure gradient

∂Xf

∂y
+

∂

∂y

(
X3
f

6

∂P

∂y

)
= 0. (42)

In Section 3.2 the above expressions will be substituted into the energy equation,
which is solved numerically subject to the Stefan condition. The simplified system
of equations that result from assuming constant material properties allows consid-
eration of larger departures from a uniform melt front in our numerical analysis.

3.1 Asymptotic analysis for small disturbances to the melt front

In this section we consider small deviations from a flat melt front Xf0 = Xf0(t)
for both reactive and non-reactive materials in order to assess the stability of the
melt front in the presence and absence of any chemical reaction. The problem
is linearised about Xf0, and formulated in terms of the leading-order front-fixed
coordinate ζ = X/Xf0 instead of ξ = X/Xf . It is demonstrated that the melt front
is linearly stable to small disturbances in the absence of the chemical reaction,
but linearly unstable upon inclusion of the Arrhenius source term. We look for a
solution in terms of a perturbation series, writing

Xf = Xf0(t) + δXf1(t)S(y) +O(δ2), (43)

P (y, t) = P0(t) + δP1(y, t) +O(δ2), (44)

[U, v, T, α](ζ, y, t) = [U0, v0, T0, α0](ζ, t) + δ[U1, v1, T1, α1](ζ, y, t) +O(δ2), (45)

where 0 < δ � 1 and S(y) is a given function describing the shape of the localised
disturbance in the melt front. Note that since we are only considering localised
disturbances we require that S → 0 as y → ±∞. We further stipulate that this
shape must be slowly varying in the y direction so that its derivatives may be
neglected to a first approximation.

The expansions (43) – (45) are substituted into the governing equations (33) –
(39) and terms with like powers of δ are collected to form a series of problems to
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be solved. At leading-order we have the problem

1

Xf0

∂U0

∂ζ
= 0, (46)

1

X2
f0

∂2v0

∂ζ2
= 0, (47)

∂T0

∂t
+

1

Xf0

(
U0 −

∂Xf0

∂t
ζ

)
∂T0

∂ζ
=

1

X2
f0

∂2T0

∂ζ2
+ Ec Pr Φ0 + Ω̂

∂α0

∂t
, (48)

Φ0 =
1

X2
f0

(
∂v0

∂ζ

)2

, (49)

∂Xf0

∂t
= −Ste

1

Xf0

∂T0

∂ζ

∣∣∣∣
ζ=1−

, (50)

∂α0

∂t
+

1

Xf0

(
U0 −

∂Xf0

∂t
ζ

)
∂α0

∂ζ
= Â(1− α0) exp

(
− Ê
T0

)
, (51)

with boundary conditions

U0 = 0, v0 = −1,
∂T0

∂ζ
= 0,

∂α0

∂ζ
= 0 on ζ = 0, (52)

U0 = 0, v0 = 0, T0 = Tm,
∂α0

∂ζ
= 0 on ζ = 1. (53)

At O(δ) we have the problem

1

Xf0

∂U1

∂ζ
+
∂v1

∂y
= 0, (54)

−∂P1

∂y
+

1

X2
f0

∂2v1

∂ζ2
= 0, (55)

∂T1

∂t
+

1

Xf0

(
U0 −

∂Xf0

∂t
ζ

)
∂T1

∂ζ
+

1

Xf0

(
U1 −

∂Xf1

∂t
Sζ

)
∂T0

∂ζ
+ v0

∂T1

∂y

=
1

X2
f0

∂2T1

∂ζ2
+ Ec Pr Φ1 + Ω̂

∂α1

∂t
, (56)

Φ1 =
2

X2
f0

∂v0

∂ζ

∂v1

∂ζ
, (57)

∂Xf1

∂t
= −Ste

(
Xf1

X2
f0

∂T0

∂ζ
+

1

Xf0

∂T1

∂ζ

)∣∣∣∣∣
ζ=1−

, (58)

∂α1

∂t
+

1

Xf0

(
U0 −

∂Xf0

∂t
ζ

)
∂α1

∂ζ
+

1

Xf0

(
U1 −

∂Xf1

∂t
Sζ

)
∂α0

∂ζ
+ v0

∂α1

∂y

= Â

[
(1− α0)

Ê

T 2
0

T1 − α1

]
exp

(
− Ê
T0

)
, (59)
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with boundary conditions

U1 = 0, v1 = 0,
∂T1

∂ζ
= 0,

∂α1

∂ζ
= 0 on ζ = 0, (60)

Xf1

Xf0

∂U0

∂ζ
+ U1 =0,

Xf1

Xf0

∂v0

∂ζ
+ v1 = 0,

Xf1

Xf0

∂T0

∂ζ
+ T1 = 0,

Xf1

Xf0

∂α0

∂ζ
+ α1 = 0 on ζ = 1. (61)

It is found that U1 ∼ S′(y), so the horizontal velocity is neglected up to O(δ) in
this analysis.

3.1.1 Linearised model: non-reactive material

Here we consider the heating solely due to mechanical dissipation in the melt
layer. Naturally, we take Â = 0 since we are considering non-reactive materials.
The leading-order problem is the same as that found in [17] and has an analytical
solution, whereas the first-order problem is solved numerically using an iterative
Crank-Nicolson scheme.

It is easily verified that a steady state velocity profile satisfies the equations (46)
and (47) for the leading-order velocity components

U0(ζ, t) = 0, v0(ζ, t) = ζ − 1, (62)

which, by equation (49), predicts uniform leading-order dissipative heating Φ0(t) =
1/X2

f0. The same solution may be found by substitution of the expansions into

equations (40) – (42). In the absence of any chemical reaction, the leading order
equations admit a self-similar analytical solution which has parabolic advancement
of the melt front Xf0 = q

√
t, with propagation parameter q. As in [17], the leading-

order temperature may be written as a sum of of two functions

T0(ζ, t) = f(ζ, t) + h(ζ). (63)

The function h(ζ) satisfies the time-independent form of (48), along with the ap-
propriate boundary conditions, and is given by

h(ζ) = Tm + Ec Pr

√
π

2u

(
erf(
√
u)

∫ √u
0

eq
2

dq −
∫ √u

0
erf(q)eq

2

dq

)

− Ec Pr

∫ ζ

0
e−uζ

2
2

∫ ζ2

0
euζ

2
1 dζ1 dζ2, (64)

with the propagation parameter u = q2/4 satisfying

2u = Ste Ec Pr
e−u√
u

∫ √u
0

eq
2

dq. (65)
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The function f(ζ, t) satisfies the equation

q2t
∂f

∂t
=
∂2f

∂ζ2
+
q2

2
ζ
∂f

∂ζ
, (66)

and must have vanishing derivative at ζ = 0. We also require f(1, t) = 0 so that
the temperature is equal to the melt temperature Tm at the melt front. It can be
shown (see [17]) that the function f(ζ, t) has the following form:

f(ζ, t) ∝
(
t0
t

)β2/q2

1F1

(
β2

q2
,
1

2
,−q

2

4
ζ2

)
, (67)

where t0 is the initial time, 1F1 is a confluent hypergeometric function [22], and β
is a constant which is fixed by ensuring f(ζ, t) vanishes at ζ = 1.

Figure 2 shows the melt front correction Xf1 and melt front propagation speed

Ẋf1 both as a function of time. It is found that small spatial variations in the melt
front are linearly stable, always decaying back to the one-dimensional case for a
non-reactive material. We observe that the propagation speed decays very rapidly,
and we soon return to a solution close to the one-dimensional solution.

Figure 3 (a) shows the leading-order velocity, i.e. the linear profile, along with
the velocity computed up to O(δ). We observe a small departure from the linear
profile, which in turn creates some spatial variation in the mechanical heating across
the melt layer, as seen in Figure 3 (b) which depicts the first-order correction to
the dissipation at a series of increasing times. The correction to the mechanical
dissipation may be calculated in terms of the melt front correction Xf1 as

Φ1(ζ, y, t) = 4
Xf1

Xf0
(1− 3ζ)S(y), (68)

which has a root at ζ = 1/3, so that we always observe an area of increased
dissipative heating along with an accompanying area of decreased heating. The
locations of these so called “mechanical hot/cool spots” will depend on the sign of
the shape function S(y). Irrespective of the selected shape, Figure 3 shows clear
localisation of mechanical dissipation which may serve as a source for hot spot
generation.

The results of the perturbation analysis can be investigated for different melt
front shapes and the key results are discussed here. For initial conditions which
solely act to widen the melt layer (S(y) > 0) we find increased dissipative heating
adjacent to the moving wall and decreased heating on the opposite side of the
melt layer, near the solid explosive. Localised dissipation is also witnessed in com-
putations using initial conditions which perturb the melt front towards the wall
(S(y) < 0). However, this heating happens adjacent to the unmelted solid explosive
material, with an accompanying region close to the wall in which the dissipation
is lower. In shapes which provide both positive and negative disturbances both
heating mechanisms are present – we observe increased dissipative heating both
near the wall where the melt layer widens and near the solid explosive where the
melt layer narrows.

The locations of the mechanical hot, and accompanying cool, spots may be un-
derstood by consideration of the dissipation term near the sliding wall and melt
front. Upon substitution of the analytical solution for the vertical velocity compo-
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nent (40) into the dissipation (37) we find

Φ ∼ 1

X2
f

(
1 +

X4
f

4

(
∂P

∂y

)2
)
− ∂P

∂y
near ξ = 0 (X = 0), (69)

Φ ∼ 1

X2
f

(
1 +

X4
f

4

(
∂P

∂y

)2
)

+
∂P

∂y
near ξ = 1 (X = Xf ). (70)

We observe that the final correction term to the heating depends on the sign of
the pressure gradient, which is negative for disturbances away from the wall and
positive for disturbances towards the wall. The above considerations also explain
why we always observe an accompanying mechanical cool spot on the opposite side
of the melt layer to each hot spot.

Clearly the solution for the non-reactive material cannot make any predictions
regarding time to thermal runaway or locations of increased chemical heating.
However, a large temperature increase is required to start the chemical reaction, so
the localisation of heating due to mechanical dissipation is an excellent indicator
of possible hot spot locations.

3.1.2 Linearised model: reactive material

We now account for self-heating due to exothermic reaction in the melt layer. The
non-dimensional rate constant Â = t∗A is no longer taken to be zero, and we include
an Arrhenius heat source, described by equations (51) and (59), in our analysis to
account for the chemical reaction. In this case, both the leading- and first-order
equations are solved numerically. Since the material properties are considered to be
constant, the velocity profile remains unchanged, as does the mechanical heating
in the layer. However, the heat generated by the chemical reactions affects the
propagation of the melt front. Figure 4 shows the first-order correction to the
melt front Xf1 and its propagation speed Ẋf1. In contrast to the non-reactive
results we find that the perturbation begins to grow in time, i.e. the melt front is
found to be linearly unstable upon inclusion of the Arrhenius source term. This
destabilising effect introduced by the chemical reaction may lead to the growth of
local disturbances to the melt front, which in turn may lead to the formation of
more violent hot spots.

3.2 Numerical results for a reactive material

We now return to the full problem described by (33) – (39), including the Arrhenius
source term. The model equations for the liquid region in the front-fixing coordi-
nates are solved numerically using an iterative Crank-Nicolson scheme, subject to
the boundary conditions which are the front-fixed counterparts of conditions (27),
which read

1

Xf

∂T

∂ξ
= 0 at ξ = 0, T = Tm at ξ = 1,

∂T

∂y
→ 0 as y → ±∞, (71)

where we have used the fact that we are studying localised shapes (S → 0 as
y → ±∞) to remove the terms arising from the coordinate transformation in
the final condition. We solve the problem on an Nξ × Ny grid, with subscripts
i = 1, . . . , Nξ and j = 1, . . . , Ny indexing the position and superscript k denoting



December 8, 2017 Combustion Theory and Modelling ”Reactive two-dimensional sheared viscous
layer”

Combustion Theory and Modelling 15

the time step. The convective terms were discretised using a two-point centred
difference and the second order diffusive term was discretised using a three point
centred difference, both of which are averaged over the current and subsequent time
steps (see Appendix B). For the time derivative a second order centred difference
is used to evaluate the derivative at the point (xi, yj , tk+1/2). The nonlinear terms
were evaluated at the mid-level, in-keeping with the rest of the scheme. This gives
overall truncation error O(∆ξ2,∆y2,∆t2), where ∆ξ,∆y and ∆t are the grid and
time spacing, respectively. Typically a grid spacing of ∆ξ = 0.02 and ∆y = 0.06
was used. For the time-stepping an adaptive scheme was used allowing for larger
steps to be taken in the early stage of the simulation before the onset of rapid
reaction.

The method uses an initial condition provided by the small time solution given
in Appendix A and proceeds in the following way:

(1) The current iterate of the temperature is computed using the discrete form
of the energy equation (36) using the current melt front location.

(2) The current melt front location is updated using the Stefan condition (38)
with the current temperature iterate.

(3) The current iterate of the pressure gradient is updated using (42).

This process is iterated until the melt front location converges. In practice it is
found that 2 or 3 iterations is normally sufficient to meet a convergence threshold
of 10−6 in the relative change in the melt front location.

To obtain a suitable initial condition for computations an initial time t0 is se-
lected, and the time-independent part of the analytical one-dimensional solution
for non-reactive materials (64) is applied at each y station in the finite difference
scheme. This approach is consistent with the assumption that the melt layer has
already formed before being perturbed. The one-dimensional solution also deter-
mines the thickness of the melt layer at the initial time Xf (t0) = q

√
t0. The liquid

speed at the wall will remain equal to the sliding speed for melt layers thicker than
approximately 10 nm [17], so in order to apply the no-slip boundary condition used
in this analysis we must select an initial time t0 which provides an initial dimen-
sional melt layer thickness of at least 10 nm. Typically an initial time of 10 ns
was used. A selection of different initial times were taken, and the choice of t0 was
shown to have a negligible effect on the results below. At time t = t+0 the uniform
melt front is perturbed via a shape function S(y) so that it is now a function of
space and time Xf = Xf (y, t+0 ). The numerical scheme is then used to evolve the
temperature field forward in time subject to the Stefan condition.

Results are presented for a sample of HMX subject to a uniform wall speed vw. A
number of melt front shapes were studied. Here we draw comparison between two
initial shapes which describe the y dependence of the initial melt front Xf (y, t+0 ),

and are parametrised by δ: S1(δ, y) = 1+(δ/2)e−y
2

and S2(δ, y) = 1+δe−2y2 sin(πy).
For shape S1 positive values of δ correspond to a local widening of the melt layer,
whereas negative values of δ correspond to a local narrowing of the melt layer.
Shape S2 describes a localised sinusoidal perturbation the melt front shape. In the
following the time to ignition is defined as the time at which the peak temperature
exceeds 1000 K.

Figure 5 compares the non-dimensional propagation constant q calculated from
equation (65), with the numerically computed propagation constant for a flat melt
front profile, i.e. Xf = Xf (t). The agreement is shown to be good, with numerical
and analytical values agreeing to within one percent, for grid sizes ∆ξ = 0.05,
∆y = 0.05 and timestep ∆t = 10−4. It is found in practice that the time scale t∗
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should decrease logarithmically from 10−4 s to 10−7 s over the range of wall speeds
vw = 50-80 m s−1. Figure 6 shows the time to ignition and maximum melt width
for a sample of HMX with a uniform melt layer, which corresponds exactly to the
one-dimensional model. As in [17], we observe an order of magnitude decrease in
the ignition time and melt width as the wall speed is increased.

Somewhat counterintuitively, we find that making the melt layer locally wider,
as in S1 with δ > 0, appears to be the most violent initial condition in the sense of
decreasing time to runaway. It is found that the heating due to mechanical dissipa-
tion is greatest adjacent to the wall and opposite from the imposed disturbance in
the melt front, see Figure 7 (a). The location of the hot spot is due to the sign of
the pressure gradient induced by the perturbation to the melt front, see equation
(70). The temperature rise here is sufficient to kickstart a local reaction, causing
the temperature to rise rapidly. This has the resultant effect of causing the distur-
bance to grow in magnitude, causing further temperature localisation. Thus the
overall time to runaway is reduced when compared with the one-dimensional case.
The high contribution of heating due to reaction is clearly depicted in Figure 7.

The evolution of the melt front, along with the temperature profiles across the
width of the melt layer, is shown in Figure 8. Looking at the temperature across
the melt width, we observe a temperature rise of over 200 K near the reaction site.
However, away from the reaction site we see that the temperature profile across
the melt width has remained almost unchanged throughout the duration of the
computation.

As in the linearised case in Section 3.1, it is found that upon reintroduction of
the chemical reaction the melt front becomes unstable to small perturbations. This
can be observed in Figure 8 (b) which depicts the perturbation from the uniform
melt layer at a series of increasing times. We see that initially the disturbance
decays, as in the non-reactive material, but towards the end of the computation
the disturbance begins to grow again, albeit only by a small amount by the time the
ignition threshold was reached. In particular this result demonstrates the ability of
the chemical reaction to turn what was a stable system into an unstable one.

In shapes which cause the melt layer to be locally more narrow (i.e. S1 with
δ < 0) we find the dissipation to be greatest at the melt front, see Figure 9 (a) and
equation (69). The additional temperature increase near the unmelted explosive
material causes the melt front to propagate more quickly at the disturbance site,
so that the melt layer flattens, returning to a uniform width. We find that the
hot spot generated by the narrowing of the melt layer is quenched to the melt
temperature Tm by the unmelted solid explosive, so does not have the effect of
decreasing the time to runaway. We conclude that a hot spot located on the melt
front has little or no effect on the time to runaway. Indeed, we observe that the
chemical reaction finally takes off on the wall, but away from the site of the localised
disturbance owing to the corresponding mechanical cool spot, see Figure 9 (b). This
is further illustrated in Figure 10, where we observe that the temperature increase
is less near the disturbance (Figure 10 (c)) than it is away from the disturbance
(Figure 10 (d)). In this case the reaction takes longer to kick off, and we observe a
noticeable temperature increase throughout the melt layer over the duration of the
computation. Since the reaction occurs on the wall away from the perturbation,
the bulk of the melt layer propagates ahead of the narrow area, resulting in the
apparent growth of the perturbation in the later stages of melting.

Figures 11 and 12 show similar results for the localised sinusoidal disturbance
S2, which combines both effects seen in shape S1 with positive and negative δ. As
one might expect for such a small disturbance, we see no interaction between the
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two heating mechanisms and we observe two hot spots.
The time to ignition as a function of δ for both shapes S1(δ, y) and S2(δ, y) is

shown in Figure 13. The quenching behaviour is clearly demonstrated; for per-
turbations which only serve to narrow the melt width (shape S1, δ < 0), we see
that the ignition time is unchanged from that of a uniform melt layer, whereas for
positive disturbances (δ > 0) the ignition time decreases as δ increases.

4. Shear melt model: temperature-dependent material properties

In this section we consider the effects of allowing the specific heat, viscosity and
thermal conductivity to vary with temperature. When the assumption of constant
material properties is relaxed the lubrication equations cannot be integrated di-
rectly, so we instead adopt an asymptotic approach. It is shown that the hot spot
mechanisms discussed in Section 3 are still present when the assumption of con-
stant material properties is relaxed. Full numerical solution of the coupled equations
(33) – (39) would involve iteration between the mechanical and thermal equations
and be more complicated than the analysis presented in Section 3.2. Since the re-
sults are found to be qualitatively similar in both the constant and non-constant
material properties model, only the asymptotic results are presented here, and not
the full numerical solution.

As in Section 3.1 we look for a solution in terms of a perturbation series as given
by (43) – (45), with the additional expansions for the specific heat, viscosity and
thermal conductivity

[c, µ, κ](ζ, y, t) = [c0, µ0, κ0](ζ, t) + δ[c1, µ1, κ1](ζ, y, t) +O(δ2), (72)

where 0 < δ � ε � 1 is a small parameter characterising the size of the two-
dimensional disturbance. As in the previous sections, we stipulate that this shape
must decay in the far field, so that our one-dimensional solution is applicable as
y → ±∞. It is recognised that the specific heat and viscosity may be expressed in
terms of the temperature expansion. However, the expansions (72) provide a useful
notational convenience. The expansions (43) – (45) and (72) are to be substituted
into the governing equations (33) – (39).

First we present the leading-order solutions, demonstrating a departure from the
linearised velocity profile used by Starobin and Dienes [17] and the resulting local-
isation in the mechanical heating across the layer. The leading-order solutions cor-
respond to the one-dimensional case, that is an unperturbed melt front of uniform
width. Comparison of the leading-order results with the one-dimensional model
presented in [17] allows for the identification of heating mechanisms due solely to
modelling the temperature dependence of material properties. We then present an
example two-dimensional solution computed up to O(δ) in the analysis and observe
that the localisation mechanisms discussed in the previous section persist when we
relax the assumption of constant specific heat, viscosity and thermal conductivity.
The leading and first-order problems were solved using the front-fixed coordinate
system and iterative Crank-Nicolson scheme presented in Section 3.2. In the inter-
est of brevity we only present a single two-dimensional solution to illustrate the
effects of temperature dependent material properties, but similar conclusions hold
for the other melt front shapes discussed in this paper.

Figure 14 shows the leading-order specific heat, viscosity and thermal conduc-
tivity across the melt layer at a series of increasing times. Figure 14(d) shows the
temperature dependence of each of the three properties, scaled by their values at
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a reference temperature of 750 K. We observe that the specific heat increases with
temperature, with the shape of the plot looking much like a typical temperature
profile across the layer. Conversely, both the viscosity and thermal conductivity
decrease with temperature, thus taking their smallest values adjacent to the mov-
ing wall where the temperature is greatest. Interestingly we see very little change
in the viscosity and specific heat as functions of time, with all snapshots virtu-
ally coinciding. The temperature profile used as an initial condition is such that
we already observe a dramatic decrease in the viscosity and specific heat across
the melt layer, and the local changes in temperature have relatively little effect
on both of these properties as time proceeds. Note that since the leading-order
equations reduce to one spatial dimension, the observed effects are entirely due to
the temperature dependence of the material properties and not the result of any
geometrical disturbance to the melt front.

Figure 15 shows the leading-order vertical velocity and mechanical dissipation
across the melt layer. As predicted in [17], we see an increase in the velocity gra-
dient near the sliding surface and as the temperature increases the velocity profile
moves further away from the linear profile. We now observe that the leading-order
dissipation is no longer constant in the melt layer, owing to the departure from the
linear velocity profile. The dissipation term is computed as

Φ = µ0

(
∂v0

∂ζ

)2

+ δ

[
2µ0

∂v0

∂ζ

∂V1

∂ζ
+ µ1

(
∂v0

∂ζ

)2
]

+O(δ2), (73)

where we note that in the leading-order term both µ0 and ∂v0/∂ζ are now functions
of ζ and t. This may be contrasted with the constant materials properties result
in which the leading-order mechanical dissipation is a function of time only Φ =
(1/Xf0(t))2 +O(δ), see Section 3.1.

Figure 16 shows a comparison of the leading-order temperature and magnitude
of the reaction source term for the constant material properties simulation (dashed
blue) and temperature dependent material properties simulations (solid black). In
panels (a–f) we only allow one of the material properties to very with tempera-
ture, allowing us to see how each property affects the shape of the leading-order
temperature profile across the layer. Since the ignition times are changing, the
plots are shown at approximately 25%, 50%, 75% and 100% of the time to thermal
runaway, allowing the shapes of the temperature profiles to be compared. For the
constant material properties simulation this corresponds to times t = 226, 441, 657
and 872 ns. For the temperature dependant plots times are: t = 206, 403, 599 and
795 ns for temperature dependent specific heat only; t = 326, 643, 959 and 1276 ns
for temperature dependent viscosity only; t = 31, 52, 73 and 94 ns for temperature
dependent thermal conductivity only; and t = 117, 223, 330 and 436 ns for tem-
perature dependent specific heat, viscosity and thermal conductivity. Considering
the large variation in time to runaway for each of the cases studied, it may be
concluded that accurate modelling of the temperature dependence of the material
properties is vital for making reasonable predictions about the time to runaway.
However, in this paper we are concerned with how perturbations to the melt front,
as well as the temperature dependence of the material properties, affect the spa-
tial distribution of the temperature within the layer, and are less concerned with
making predictions about runaway times.

Figure 16 (a) compares the temperature in the melt layer in the case of constant
material properties with the solution found for temperature dependent specific
heat. It is observed that the shape of the temperature profile remains nearly un-
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changed, due to the weak dependence of the specific heat on the temperature.
However, we observe in Figures 16 (c/d) and (e/f) that allowing the viscosity and
specific heat to vary with temperature alters the shape of the temperature profile.
When µ = µ(T ) it is found that the hot spot is confined to a thinner region near the
wall when compared with the constant material properties solution, due to the in-
creased velocity gradient near the wall, see Figure 15. In contrast, when κ = κ(T )
the zone in which significant reaction occurs is comparatively much wider. This
may seem counterintuitive, as one might expect decreased thermal conductivity
lead to a more localised hot spot. However, in the early stages on melting, when
the heating is dominated by viscous dissipation, it is found that the heat diffuses
across the layer leading to more rapid melting in the constant material properties
case. When we account for the temperature dependence of the specific heat the
timescales are such that there isn’t enough time for the temperature to diffuse
across the entire layer before the reaction commences, leading to a wider region
adjacent to the wall in which the temperature is elevated, ultimately leading to a
wider reaction zone.

It is found that the introduction of temperature dependence in the specific heat,
viscosity and thermal conductivity does not suppress the localisation mechanisms
induced by perturbing the melt front, and it is still the case that the melt front
may be unstable to small perturbations in the presence of chemical reaction. As
an example case, Figure 17 shows results for HMX with an initial melt shape
S1(y) with δ = 0.2. As found in the previous section, the imposed disturbance in
the melt front causes a mechanical hot spot adjacent to the moving wall. This is
most clearly seen in the middle pane which shows the magnitude of the reaction
source term in the melt layer – we see that the reaction is starting to kick off
all along the wall, owing the the increased mechanical heating near X = 0, but
there is clearly a localised hot spot opposite the site of the disturbance in the melt
front. This highly localised heating ultimately leads to a substantial temperature
increase and the time to ignition is significantly decreased when compared with
the corresponding one-dimensional (or, equivalently, uniform width) case. As in
the constant material properties case, it is found that the substantial temperature
increase due to chemical reaction causes the initially decaying perturbation to the
melt front to grow in time.

5. Conclusion

The numerical results presented here indicate that perturbations from a uniform
width melt layer can cause localised heating due to mechanical dissipation. In
particular, it has been demonstrated that accounting for the non-uniform melting
behaviour through the introduction of spatial dependence in the melt front location
can reduce the time to ignition compared with the corresponding one-dimensional
model of melting.

In order to model the non-uniform melting, highly idealised melt front shapes
were selected for analysis. The shapes chosen captured both of the possible impor-
tant disturbances: those which locally increase the width of the melt layer, cor-
responding to areas which initially melted more quickly, and those which locally
reduce the width of the melt layer, corresponding to areas which initially melted
more slowly. One possible physical interpretation of this would be a scenario in
which the melt temperature of the unmelted solid explosive material varies locally
in space. This would result in a non-constant melt temperature, which would be
accounted for in equation (13). This would affect the propagation of the melt front,
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causing some areas to melt rapidly, thus introducing some shape in the melt front.
In our modelling it is assumed that the melt layer has already formed at time t0,
and it is reasoned that the initial melt front shape we impose could be generated
by the mechanism described above. Local differences in other thermo-mechanical
properties would operate in a similar fashion to give rise to non-uniform melting.

For certain disturbances it was shown that the time to ignition may be consid-
erably reduced. For instance, the results in Figure 8 predicted an ignition time
of 256 ns compared with an ignition time on the microsecond timescale for the
corresponding one-dimensional simulation. The possibly reduced time to ignition
predicted by the two-dimensional model increases the range of physical scenarios
in which the shear melting hot spot mechanism is plausible.

For example, we may consider the physical scenario of an internal microcrack. In
their analysis, Starobin and Dienes [17] find that for sliding speeds below 50 m s−1

the ignition time predicted by the one-dimensional model exceeds a millisecond.
Over this time period the slip would be greater than 5 cm, a distance much larger
than the HMX grain size found in a plastic-bonded explosive (PBX), meaning the
shear crack would cross the grain boundary [17]. The crossing of the boundary
would likely change the crack propagation direction and the model with lateral
melting would no longer be appropriate. However, due to local inhomogeneities
in the material properties, the ignition time may be significantly reduced, even to
the nanosecond timescale, meaning that the shear melting mechanism may lead to
ignition in this model well before the slip length becomes an issue.

For the initial part of this study many material properties, such as viscosity, were
assumed constant with respect to pressure and temperature. Later these assump-
tions were relaxed, and the the specific heat, viscosity and thermal conductivity
were allowed to vary with temperature. As suggested by Starobin and Dienes [17],
it was shown that the leading-order velocity profile was no longer linear, with most
of the slip being supported in the region of the melt layer adjacent to the wall. This
in turn introduced spatial dependence into the leading-order mechanical dissipation
term. The pressure dependence of the material properties may also be studied. For
example, Menikoff and Sewell [19] propose a modified form of the viscosity which
increases with pressure, which may go some way to offset the drop in viscosity
associated with the temperature increase across the layer.

Future work may include computation of numerical solutions for the fully-coupled
governing equations, accounting for temperature (and possibly pressure) depen-
dence of the material properties. This would allow for consideration of larger de-
partures from the uniform melting case, but the results would be qualitatively
similar to those found here. We would certainly expect the hot spot mechanisms
introduced by the shape in the melt front to persist.
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Table 1. Material properties for HMX taken from [16, 17, 19].

Explosive Property HMX

Density ρ 1860 kg m−3

Reference Specific Heat c∗ 1034 J kg−1 K−1

Reference Thermal Conductivity κ∗ 0.3884 W m−1 K−1

Reference Viscosity µ∗ 5.5 × 10−3 kg m−1 s−1

Melting Temperature Tm 520.6 K
Latent Heat L 2.08 × 105 J kg−1

Activation Energy E 2.2 × 105 J mol−1

Heat of Reaction Ω 5.02 × 106 J kg−1

Molar Gas Constant R 8.314 J mol−1 K−1

Pre-Exponential Constant A 5.011872336 × 1019 s−1

x

y

Liquid
melt layer

Unmelted
solid explosive

vw

u

v

Melt front
x = xf (y, t)

Figure 1. A solid block of explosive material occupies the region x > 0. At t = 0 the rigid wall located
at x = 0 is impulsively moved downward, so that at t = t0 a thin viscous liquid melt layer has already
formed.
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Figure 2. (a) Melt front correction Xf1; and (b) melt front correction propagation speed Ẋf1 for an inert
melt layer, both as a function of non-dimensional time t. In the absence of any chemical reaction, the melt
front is shown to be linearly stable to small perturbations in shape.
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Figure 3. (a) The vertical velocity v correct up to O(δ); and (b) the (ξ, t) dependence of the first-order
correction to the mechanical dissipation, i.e. Φ1 = 4(Xf1/X

3
f0)(1− 3ζ)S(y) with fixed S(y) = 1. Both are

plotted as a function of the leading -order front-fixed variable ζ at a series of increasing times. The dotted
line (· · · ) in (a) shows the leading-order linear velocity profile.
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Figure 4. (a) Melt front correction Xf1; and (b) melt front correction propagation speed Ẋf1 for a reactive
melt layer, both as a function of non-dimensional time t. It is found the the inclusion of a chemical reaction
in the melt layer has a destabilising effect; the melt front is no longer linearly stable to small perturbations
in shape.
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Figure 6. (a) Dimensional ignition time tign; and (b) dimensional melt width at ignition X̃f , both as a
function of dimensional wall speed vw for a melt layer of uniform width in HMX.
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Figure 7. (a) Non-dimensional instantaneous energy increase due to mechanical dissipation; (b) non-
dimensional instantaneous energy increase due to reaction; and (c) dimensional temperature (K) of a
sample of HMX at 90% of the time to runaway since t0. An initial melt front shape S1(0.8, y) and wall
speed vw = 70 m s−1 were used. [Original in colour.]
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Figure 8. (a) Melt front location at times t = 59, 108, 158, 207, 256 ns for a sample of HMX with initial
melt front shape S1(0.8, y); and (b) the magnitude of the melt front perturbation at a series of increasing
times. Also shown are temperature profiles across the melt width at the times depicted in (a), plotted at
vertical coordinates: (c) y = yR, where yR is the vertical coordinate of the peak reaction site, and (d)
y = −4. The filled diamond symbol shows the location of the peak reaction site at ignition. The dashed
lines in (a) show the locations of the temperature profiles taken in (c) and (d). A wall speed vw = 70 m s−1

was used.
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Figure 9. (a) Non-dimensional instantaneous energy increase due to mechanical dissipation; (b) non-
dimensional instantaneous energy increase due to reaction; and (c) dimensional temperature (K) of a
sample of HMX at 90% of the time to runaway since t0. An initial melt front shape S1(−0.8, y)and wall
speed vw = 70 m s−1 were used. [Original in colour.]
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Figure 10. (a) Melt front location at times t = 186, 357, 530, 704, 877 ns for a sample of HMX with initial
melt front shape S1(−0.8, y); and (b) the magnitude of the melt front perturbation at a series of increasing
times. Also shown are temperature profiles across the melt width at the times depicted in (a), plotted
at vertical coordinates: (c) y = 0, and (d) y = −4. The dashed lines in (a) show the locations of the
temperature profiles taken in (c) and (d). A wall speed vw = 70 m s−1 was used.
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Figure 11. (a) Non-dimensional instantaneous energy increase due to mechanical dissipation; (b) non-
dimensional instantaneous energy increase due to reaction; and (c) dimensional temperature (K) of a
sample of HMX at 90% of the time to runaway since t0. An initial melt front shape S2(0.5, y) and wall
speed vw = 70 m s−1 were used. [Original in colour.]

0 0.2 0.4 0.6 0.8 1 1.2 1.4

−4

−2

0

2

4

Xf

y

0 0.2 0.4 0.6 0.8 1

600

700

800

900

1,000

ξ = X/Xf

T
/
K

50

0.005

0

0.01

0.015

200 0

0.02

400
600

-5800
y

t /ns

(b)

|X
f

Pe
rt

ur
ba

tio
n
|

0 0.2 0.4 0.6 0.8 1

600

700

800

900

1,000

ξ = X/Xf

T
/
K

(a) (c)

(d)

Figure 12. Melt front location at times t = 134, 258, 383, 507, 631 ns for a sample of HMX with initial
melt front shape S2(0.5, y); and (b) the magnitude of the melt front perturbation at a series of increasing
times. Also shown are temperature profiles across the melt at the times depicted in (a), plotted at vertical
coordinates: (c) y = yR, where yR is the vertical coordinate of the peak reaction site, and (d) y = −4.
The filled diamond symbol shows the location of the peak reaction site at ignition. The dashed lines in (a)
show the locations of the temperature profiles taken in (c) and (d). A wall speed vw = 70 m s−1 was used.
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Figure 14. (a) The leading-order dimensional specific heat c̃ = c∗c0; (b) the leading-order dimensional
viscosity µ̃ = µ∗µ0; and (c) the leading-order dimensional thermal conductivity κ̃ = κ∗κ0 across the
melt layer at times t = 117, 223, 330 and 436 ns. Panel (d) shows the material properties as a function of
temperature, scaled by their values at a reference temperature of 750 K.
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Figure 15. (a) The leading-order vertical velocity profile v0 across the melt layer at times t = 117, 223, 330
and 436 ns; and (b) The non-dimensional leading-order energy increase due to viscous dissipation across
the melt layer shown at the same times.
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Figure 16. (a,c,e,g) The dimensional leading-order temperature across the melt layer; and (b,d,f,h) the
non-dimensional leading-order energy increase due to chemical reaction across the melt layer. The dashed
blue line shows results with constant material properties in each plot. The solid black line shows results
for: (a/b) temperature dependent specific heat; (c/d) temperature dependent viscosity; (e/f) temperature
dependent thermal conductivity; and (g/h) temperature dependent specific heat, viscosity and thermal
conductivity. The plots show snapshots at approximately 25%, 50%, 75% and 100% of the time to thermal
runaway. For the constant material properties simulation this corresponds to times t = 226, 441, 657 and
872 ns. For the temperature dependant plots the times shown are: (a/b) t = 206, 403, 599 and 795 ns;
(c/d) t = 326, 643, 959 and 1276 ns; (e/f) t = 31, 52, 73 and 94 ns; and (g/h) t = 117, 223, 330 and 436 ns.
[Original in colour.]
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Figure 17. (a) Non-dimensional instantaneous energy increase due to mechanical dissipation; (b) non-
dimensional instantaneous energy increase due to reaction; and (c) dimensional temperature (K) of a
sample of HMX at 90% of the time to runaway since t0, as predicted by the analysis which includes
temperature dependent specific heat and viscosity. An initial melt front shape S1(0.2, y) and wall speed
vw = 70 m s−1 were used. [Original in colour.]
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Appendix A. Small-time behaviour

Shortly after the onset of melting we expect a balance between the rate of change
of temperature and the horizontal diffusion term in the liquid region, essentially
reducing the problem to one which is locally one-dimensional. Here we show that
we recover the model presented in [17] by considering the two-dimensional model
at early times. For t� 1 and xf � 1 we anticipate the following scalings

t ∼ δ � 1, x ∼
√
t ∼ δ1/2 � 1, u ∼ δ1/2 � 1, y ∼ 1, v ∼ 1. (A1)

At early times we make the assumption that the velocity field is linear v = x/xf−1,
giving local viscous heating (1/xf )2. Note that the large Prandtl number Pr ≈ 110
indicates that thermal diffusion time is much greater than the momentum diffusion
time, and validates our assumption that the velocity field is near the steady state
[17]. Further, in the early stages of melting the temperature in the melt layer is not
expected to be near the activation temperature for the reaction, so the Arrhenius
source term is exponentially small.

Under these early time assumptions, and the assumption of constant material
properties, the model equations have a solution for a parabolic advancement law for
the phase boundary xf = q

√
t which is equivalent to the one-dimensional solution

presented in [17]. The solutions in the liquid and solid region are given here in
terms of the front-fixed variable ξ = x/xf = x/(q

√
t).

In each phase, the temperature may be written as a sum of of two functions

T (ξ, t) = f(ξ, t) + h1(ξ), Tsol(ξ, t) = f(ξ, t) + h2(ξ) (A2)

The functions hi(ξ) satisfy the time-independent form of the governing equations,
along with the appropriate boundary conditions, and are given by

h1(ξ) = Tm + Ec Pr

√
π

2u

(
erf(
√
u)

∫ √u
0

eq
2

dq −
∫ √u

0
erf(q)eq

2

dq

)

− Ec Pr

∫ ξ

0
e−uξ

2
2

∫ ξ2

0
euξ

2
1 dξ1 dξ2, 0 < ξ < 1, (A3)

and

h2(ξ) = T̄ − (T̄ − Tm)
erfc(
√
uξ)

erfc(
√
u)

, ξ > 1, (A4)

respectively. The Stefan condition provides the equation for the propagation pa-
rameter u

Pexf ẋf = 2u = Ste

(
Ec Pr

e−u√
u

∫ √u
0

eq
2

dq − 2(Tm − T̄ )√
π

e−u
√
u

erfc(
√
u)

)
. (A5)

The function f(ξ, t) must satisfy have vanishing derivative at the origin, decay
at infinity and be continuous at the melt front. It can be shown that f has the
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following form:

f(ζ, t) ∝
(
t0
t

)β2/q2

1F1

(
β2

q2
,
1

2
,−q

2

4
ξ2

)
, (A6)

where t0 is the initial time, 1F1 is a confluent hypergeometric function [22], and β
is a constant which is fixed by ensuring the f(ξ, t) vanishes at ξ = 1 (thus ensuring
T = Tm = Tsol at ξ = 1).

A number of other self similar solutions with a parabolic advancement law for
the phase boundary are available. For discussion see Carslaw and Jaeger [23], for
example.

Appendix B. Discrete approximations

The discrete approximations to the differential operators used in the numerical
scheme read{

∂T

∂t

}k+1/2

i,j

=
T k+1
i,j − T ki,j

∆t
,

{
∂T

∂ξ

}k+1/2

i,j

=
1

2

(
T k+1
i+1,j − T k+1

i−1,j

2∆ξ
+
T ki+1,j − T ki−1,j

2∆ξ

)
,

{
∂2T

∂ξ2

}k+1/2

i,j

=
1

2

(
T k+1
i+1,j − 2T k+1

i,j + T k+1
i−1,j

(∆ξ)2
+
T ki+1,j − 2T ki,j + T ki−1,j

(∆ξ)2

)
,

{
∂T

∂y

}k+1/2

i,j

=
1

2

(
T k+1
i,j+1 − T k+1

i,j−1

2∆y
+
T ki,j+1 − T ki,j−1

2∆y

)
,

{
∂v

∂ξ

}k+1/2

i,j

=
1

2

(∗vk+1
i+1,j − ∗vk+1

i−1,j

2∆ξ
+
vki+1,j − vki−1,j

2∆ξ

)
,

{
exp

(
−Ê
T

)}k+1/2

i,j

= exp

(
− 2Ê

(∗T k+1
i,j + T ki,j)

)
,

where the pre-superscript asterix indicates that the previous iterate should be used
in order to linearise the problem.


