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Vortex nucleation limited mobility of free electron bubbles in the Gross-Pitaevskii model
of a superfluid
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We study the motion of an electron bubble in the zero-temperature limit where neither phonons nor rotons
provide a significant contribution to the drag exerted on an ion moving within the superfluid. By using the Gross-
Clark model, in which a Gross-Pitaevskii equation for the superfluid wave function is coupled to a Schrödinger
equation for the electron wave function, we study how vortex nucleation affects the measured drift velocity of
the ion. We use parameters that give realistic values of the ratio of the radius of the bubble with respect to the
healing length in superfluid 4He at a pressure of one bar. By performing fully three-dimensional spatiotemporal
simulations of the superfluid coupled to an electron, that is modeled within an adiabatic approximation and
moving under the influence of an applied electric field, we are able to recover the key dynamics of the ion-vortex
interactions that arise and the subsequent ion-vortex complexes that can form. Using the numerically computed
drift velocity of the ion as a function of the applied electric field, we determine the vortex nucleation limited
mobility of the ion to recover values in good agreement with measured data.
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I. INTRODUCTION

Electrically charged particles have been one of the most
effective probes to study properties of 4He in the superfluid
state. Beginning with the pioneering works of Williams [1],
Careri et al. [2], and Reif and Mayer [3], it has been observed
that ions moving through liquid helium due to an external
applied electric field can interact with different types of
excitations that act to produce a drag force on the ion [4]. On
the one hand, upon exceeding a critical velocity, these ions can
nucleate vortex rings. On the other hand, phonons and rotons
scattering off the ion also provide an important contribution to
the drag force experienced by the ion. These characteristics
allow ions to be used to study microscopic hydrodynamic
structures that form when a critical velocity is exceeded. At
the same time, they provide useful probes to glean information
regarding the properties of a quantum turbulent flow.

In this work, we will mainly focus on the study of so-called
electron bubbles. The existence of electrons in the so-called
self-trapped bubble state was initially suggested to explain the
anomalous low mobilities of negative ions that were measured
at low temperatures in superfluid 4He [2,5,6]. The rationale
behind this model is that it is energetically favorable for a single
electron to carve out a spherical cavity within the superfluid
due to the short-range repulsive interactions that would other-
wise exist between the bare electron and the cloud of electrons
of the helium atoms. Although the electron in the self-trapped
bubble state has received further experimental confirmation
[7], there are many aspects characterizing the dynamics of these
ions that remain obscure. In particular, the detailed dynamical
mechanisms that give rise to the drag forces acting on electron
bubbles at low pressure and high electric fields remain poorly
understood [8].

Difficulties in directly observing the relevant microscopic
hydrodynamic structures has meant that many of the proposals

that have been put forward to explain observed measurements
have not been fully verified. At the same time, direct numerical
modeling of the problem has been hindered by the lack of
an accurate microscopic model that can be used to study
the complex spatiotemporal dynamics of the ion interacting
with the superfluid. Relatively recently, there has been some
work employing density-functional theories [9–11], that can
accurately reproduce the equation of state (as well as the roton
dispersion relation), in order to study the dynamics of the
electron bubble. However, given the complexity of these mod-
els, simulations were restricted to axisymmetric configurations
which we believe to be inadequate in representing some of the
key physics such as the mechanism of asymmetric capture of
the ion by nucleated vortex rings. Motivated by these questions
and possibilities that electron bubbles provide in measuring
properties of quantum turbulence in the zero-temperature limit
[12,13], we will aim to uncover the dynamics of electron
bubbles by focusing on the key hydrodynamic processes that
determine the limiting velocity of the ion as a function of an
applied electric field.

Since there is no universally accepted microscopic model
for liquid helium, we will adopt the so-called Gross-Clark
model [14,15] to study the three-dimensional (3D) motion
of an electron bubble within a superfluid. In this model, a
Schrödinger equation describing the wave function of the
electron is coupled to a mean-field equation of a superfluid.
In this work, we will adopt a Gross-Pitaevskii (GP) equation
for the superfluid. We note that such a model does not provide
an accurate description for 4He since it neither reproduces
the correct equation of state nor does it describe the correct
dispersion relation since a roton minimum is not present.
However, it has been shown by Berloff and Roberts [15]
that this model can account for the deformations affecting
the bubble in its motion and it also captures all the main
qualitative physics characterizing the interaction between
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electron bubbles and superfluid vortices. We note that it has
recently been shown that a vortex filament description of a
superfluid can be systematically derived from the GP equation
[16]. Therefore, despite the shortcomings of the GP model
in accurately representing certain properties of superfluid 4He,
we anticipate that the model is reasonably accurate in allowing
us to infer the hydrodynamic interactions of quantized vortices
with the negative ion impurity.

II. MATHEMATICAL MODEL

A. Gross-Clark Model

We begin by adopting the Gross-Clark model [14,15] in
which superfluid 4He is modeled by a GP equation. The energy
of the system is then given by the Hamiltonian

H = HGP + He + HGP−e. (1)

Here, liquid helium is governed by the GP Hamiltonian

HGP =
∫ (

h̄2

2m4
|∇ψ |2 + V0

2
|ψ |4

)
d3x, (2)

where m4 is mass of the 4He atom, whereas the electron is
represented by

He =
∫ (

h̄2

2me

|∇φ|2 + eQy|φ|2
)

d3x, (3)

where me is mass of the electron. In order to study the transport
of the ion through the liquid, we have included the second term
which models the effect of an applied constant electric field Q

directed along the y-coordinate direction of the domain and
e = 1.6 × 10−19 C is the electric charge of the electron. We
model the interaction between the superfluid and the electron
by the term

HGP−e =
∫

U0|ψ |2|φ|2d3x. (4)

In this model, the parameters U0 = 2πlh̄2/me and V0 =
4πdh̄2/m4 represent the two-body short-range fermion-boson
and the boson-boson interactions with effective scattering
lengths given by d and l, respectively. Variation of H with
respect to ψ∗ and φ∗ results in the equations of motion

ih̄
∂ψ

∂t
= − h̄2

2m4
∇2ψ + (U0|φ|2 + V0|ψ |2)ψ, (5)

ih̄
∂φ

∂t
= − h̄2

2me

∇2φ + U0|ψ |2φ + eQyφ. (6)

The wave functions are subject to the normalization conditions∫
|ψ |2d3x = N and

∫
|φ|2d3x = 1, (7)

where N denotes the total number of 4He atoms. The GP
equation provides the simplest model capable of reproducing
the key phenomena characterizing the interaction between an
ion and quantum vortices. For these purposes, it is essential to
ensure that the model recovers the correct ratio of the radius of
the ion relative to the healing length. As previously discussed in
[17], the GP model contains sufficient parameters that allows
the model to be tuned to recover this property. On the other

hand, the compressibility of the fluid will be represented
inaccurately. In fact, in the GP equation, the pressure of the
liquid is given by

p = V0|ψ |4
2

, (8)

which provides an inaccurate relation between pressure and
density for liquid 4He. Although other models have been
proposed that remedy this deficiency of the GP equation
[18], in this work we are interested in regimes where the
motion of the ion is strongly dominated by the presence of
superfluid vortices. Therefore, provided phonon emission is
not the dominant contribution to the drag, which is the case
for experiments at low temperatures and low pressures, we can
expect this to be less important than accurate modeling of the
interaction of vortices with the ion. Similarly, the lack of a roton
in the dispersion relation is of less concern since in the low-
pressure and low-temperature regimes, the density of roton
excitations diminishes very rapidly. Moreover, experimental
measurements indicate that they play a less important role in
comparison to the process of vortex ring nucleation which is
believed to be the main contributing factor to the drag exerted
on the ion for sufficiently high electric fields [4].

B. Nondimensional form of the equations of motion

In order to gain further insight into the properties of the
electron in the self-trapped bubble state and to identify the key
length scales that will arise in our problem which need to be
well resolved within our numerical simulations, we will adopt
a simple model of a perfectly spherical cavity at equilibrium.
We will assume that the electron is in its s state and is trapped
within a cavity of radius b. For simplicity, the cavity is assumed
to have infinite depth. It can then be shown (see Appendix A)
that the total energy for the electron bubble-superfluid system
is given by

E = Eq + EV + ET = h̄2π2

2meb2
+ 4πb3

3
p + 4πT b2. (9)

The first contribution to the total energy corresponds to the
quantum mechanical energy associated with the zero-point
motion of the electron. The second contribution is determined
by the work required to carve out a cavity within the superfluid
due to the pressure field p = V0ρ

2/2m2
4 for a spherical cavity.

The third contribution to the total energy of the system is
proportional to the area of the bubble and it can be associated
to the surface tension T of the cavity wall.

Using this model, we can now estimate the radius b of the
electron bubble and subsequently its hydrodynamic mass mh

[19]. Since the electron mass me is much smaller than the
mass of the 4He atom, m4, with δ = me/m4 ∼ 1.4 × 10−4,
the effective mass of the bubble (me + mh) can then be
approximated by its hydrodynamic mass which is given by

mh = 2
3πρb3. (10)

At zero pressure, Eq. (9) can be used to evaluate the radius of
the bubble that minimizes the electron energy E; this gives

b =
(

πh̄2

8meT

)1/4

. (11)
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Using typical measured values of parameters for liquid helium
at zero temperature, such as the surface tension of bulk
helium [20], T = 375 μJ m2, and the liquid density ρ =
0.145 g/cm3, we can finally estimate that the effective radius is
b = 18.91 Å whereas the hydrodynamic mass, mh = 309 m4,
for an electron bubble at zero pressure.

For nonzero pressure, it is possible to estimate the radius
of the bubble by using the method of dominant balance (see
Appendix A) under the condition that δ → 0. The respective
radius of the bubble is then given by

b ∼
(

πh̄2

4mep

)1/5

. (12)

The radius b provides an important length scale in the problem
that dictates the size of the computational domain that will be
needed in our simulation to resolve the relevant physical scales
of interest.

Having identified the typical radius of the bubble, we can
now integrate the superfluid-electron system numerically by
rewriting the equations of motion in nondimensional form. We
begin by introducing the transformations

x → ax, t → σ t, ψ → 	∞ψ, φ → 
φ, Q → qQ,

(13)

such that positions are measured in units of the superfluid
healing length given by

a = h̄√
2m4μ

= (8πd	2
∞)−1/2, (14)

where μ denotes the chemical potential for a uniform con-
densate wave function 	∞ with N particles, i.e., 	∞ =√

ρ∞/m4 = √
μ/V0. The time scale is set by the healing length

a and the speed of sound c, such that

σ = a√
2c

= h̄

2μ
. (15)

Using the rescalings given by Eq. (13), Eq. (5) transforms to

i
∂ψ

∂t
= −1

2
∇2ψ + 1

2

(
4πa2

[
m4l

mea

]

2|φ|2 + |ψ |2

)
ψ.

(16)

We, therefore, introduce the small parameter

ε =
(

ame

lm4

)1/5

. (17)

Noting that 1/ε is of the same order as the dimensionless
radius of the bubble b/a, we chose to rescale the electron wave
function such that


 =
(

ε3

4πa3

)1/2

with
∫

|φ|2d3x = 4π

ε3
. (18)

Finally, we express the electric field in units of

q =
( μ

δea

)
. (19)

The above rescaling allows us to rewrite Eqs. (5) and (6) as

i
∂ψ

∂t
= −1

2
∇2ψ + γ

2
|φ|2ψ + 1

2
|ψ |2ψ, (20)

i
∂φ

∂t
= − 1

2δ
∇2φ + 1

2δ
(ζ 2|ψ |2 + yQ)φ, (21)

where

γ = 1

ε2
, ζ 2 = l

2d
, δ = me

m4
. (22)

Motivated by modeling ions in superfluid 4He, we follow [21]
and take a = 1 Å, ζ = 0.41, ε = 0.187, μ = 5.22 × 10−4 eV,
δ = 1.4 × 10−4, and ρ∞ = 0.145 Kg/cm2. This gives the unit
of the electric field q = 3.72 V/Å, the unit of time σ =
0.63 × 10−12 s, and the unit of velocity a/σ = √

2c = 1.58 ×
102 m/s.

C. Adiabatic approximation

The nondimensional form of the equations presented above
reveals a major difficulty arising from any attempt to directly
integrate these equations using realistic values of parameters
for superfluid 4He. In particular, the small value of δ appearing
in the Schrödinger equation (21) leads to a clear disparity in
the time scales of the superfluid and the electron. Therefore,
time-resolved solutions of Eqs. (20) and (21) for scenarios of
physical relevance become impractical. Although the disparity
in time scales leads to numerical challenges, one can also
exploit this inherent feature of the system in order to eliminate
the source of the difficulty. In particular, we observe that, for an
electron trapped within the potential |ψ(x,t)|2 created by the
surrounding fluid, if the time scale over which the potential
changes is much larger than the typical quantum time scale
meb

2/πh̄ of the electron [set by Eq. (A1)], then we are in a
regime where the so-called adiabatic (also known as Born-
Oppenheimer) approximation holds. In quantum mechanics,
the adiabatic theorem states that for adiabatic changes of the
potential that do not lead to degenerate eigenmodes, a particle
initially in the nth eigenstate φn, at time ti , will remain in that
nth eigenstate φ̃n at time tf , but will acquire some extra phase
factors, such that the final state is given by

φ̃(tf ) = φn(ti)e
iθn(tf −t0)eiχn(tf −t0), (23)

where θn and χn are called the dynamical and the geometrical
phase factors, respectively [22].

We remark that the condition on the degeneracy of eigen-
modes, and consequently the validity of the adiabatic approx-
imation, can break down during the splitting of an electron
bubble. This scenario can occur when an electron bubble that
contains an electron in an excited p state is subjected to a
negative pressure pulse that can cause the bubble to split
into two parts [23,24]. Under such situations, the adiabatic
approximation is no longer applicable since the splitting of the
bubble can lead to time scales for the evolution of ψ that are of
the same order of magnitude as the electron wave function φ. In
this work, we will be concerned with an electron that remains
in the ground state without any splitting of the bubble. Under
such conditions, the adiabatic theorem can then be exploited
to study the dynamics of the superfluid-bubble complex. In
particular, for an electron that is initially in its ground state,
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FIG. 1. Isosurface plot corresponding to |ψ2| = 0.3 for an electric field Q = 5 × 10−4. The figure shows the highly irregular generation
of vortex rings that interact together to form a small vortex tangle behind the ion. The size of the computational domain used to numerically
integrate the superfluid wave function ψ is shown in black, while the extent of the domain used for the electron wave function φ is shown in
blue.

we expect the electron to remain in its lowest energy level.
This allows us to reformulate our original problem as

i
∂ψ

∂t
= −1

2
∇2ψ + γ

2
|φg|2ψ + 1

2
|ψ |2ψ, (24)

where φg corresponds to the ground state that is determined by
finding the minimum energy E for which

Eeφg =
[
− 1

2δ
∇2 + 1

2δ
(ζ 2|ψ |2 + yQ)

]
φg, (25)

and Eq. (7) are satisfied. Since the contribution of the electron
wave function in Eq. (24) is given by the squared modulus
|φg|2, the evaluation of the dynamical and the geometrical
phases turns out to be unimportant in studying the dynamics
of an electron bubble in a superfluid within the adiabatic
approximation.

The system of equations presented above in the adiabatic
approximation were solved in a periodic domain using the
algorithm described in Appendix C. This was implemented
on a Tesla K40 NVIDIA graphics card. We modeled a flow
in a channel of length Lx = 1024, Ly = 128, and Lz = 128
with resolution set to�x = �y = �z = 1. Given the localized
nature of the electron wave function, this was resolved on
a smaller domain of dimensions Lx = 128, Ly = 128, and
Lz = 128, and constrained to lie within the central region of
the channel as illustrated in Fig. 1. To initialize an electron in
its ground state, at the beginning of each run an initial condition
correctly describing the lowest energy state for the system
of Eqs. (20) and (21) with Q = 0 is needed. We accomplish
this by initializing the wave functions to correspond to the
solution of an electron bubble trapped within a spherical
cavity with hard walls. This initial guess is then relaxed by
using the so-called gradient flow method [25] which consists
of integrating Eqs. (20) and (21) in imaginary time. More
details are given in Appendix B. Upon recovering the desired
initial condition, Eq. (24) is then integrated in real time while
Eq. (25) is solved in the presence of an applied electric field
corresponding to Q �= 0. The time step used for integrating the
GP equation was �t = 0.01 while the step used for the gradient
flow method to find the ground state of the time-independent
Schrödinger equation was set to �η = 0.0001. The gradient
flow method was applied at each step until the L2 norm of φg

appearing in Eq. (25) satisfied the threshold Err < 10−6. We

have checked that such values were sufficient to accurately
capture the coupling between the electron and the superfluid
wave functions. Tests carried out using smaller values of the
threshold did not affect our results significantly. Throughout
the numerical solution procedure, we allowed the bubble to
evolve over 100 time steps before shifting the entire fields,
such that the bubble was recentered within the channel using
the procedure described in Appendix C.

III. RESULTS

The transport of negative ions in liquid helium has been the
subject of experimental investigation for some time in order
to understand the different forms of drag that can arise on
an object moving through the superfluid [26,27]. It is now
well established that, at finite temperatures, the velocity of
an ion is limited by the scattering of thermal excitations which
consist of rotons and phonons. As the temperature is lowered
below 0.7–0.8 K, the density of rotons falls off rapidly, leaving
phonons as the key remaining thermal excitations that interact
ballistically with the ion. In the limit of T = 0 K, the density
of phonons and rotons becomes so small that the kinetic energy
transferred to the ion by the applied electric field can not
be dissipated by interaction with thermal excitations alone.
There is compelling experimental evidence which indicates
that the ion can accelerate until it attains a critical velocity
for the nucleation of vortex rings [26–30]. Depending on the
strength of the applied electric field, it is believed that the
ion can become either trapped on the core of a nucleated
vortex ring, or it can continue to shed a stream of rings
while undergoing intermittent vortex recapture events. This
mechanism of nucleation of vortex rings is believed to provide
a significant contribution to the drag experienced by the ion.

Nancolas and McClintock [31] showed that such a transition
in which the ion is captured by the nucleated ring can be
suppressed by operating at high pressures and by applying a
sufficiently high electric field. In this regime, the ion can exceed
Landau’s critical velocity, which corresponds to the velocity
at which rotons should be excited. They also demonstrated
that as the operating pressure is lowered below 16 bar, the
experimental data of Nancolas et al. showed a clear drop in
the drift velocity of the ion (see Fig. 2). They attributed this
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FIG. 2. Plot of the drift velocity of negative ions as a function of
pressure in 4He at 0.3 K moving under the influence of an applied
electric field of 2.6[MV/m]. The lower dashed line represents the
dependence of the Landau’s critical velocity vL on the pressure while
the upper line represents the expected drift velocity vD of the ion if the
difference vD − vL were to remain the same as the value measured
at a pressure of 25 bar. (Data presented based on results published in
Nancolas et al. [8].)

behavior to the continuous generation of vortex rings in which
the ion can undergo intermittent vortex capture events.

Given that many of the processes occur on scales that are
impossible to observe directly, many of the assertions that have
been made from existing experimental measurements have
not been confirmed. Moreover, to date, no direct modeling
has been performed to reinforce the conclusions drawn from
data collected from measurements. In particular, as pointed out
above, much of the modeling that has been carried out has been
based on simplifying assumptions that are often unphysical. In
addition, there has not been a systematic study of the response
of the ion to different applied electric fields.

In order to resolve the questions concerning the nature of the
dissipation mechanism at low temperatures and low pressures,
we will numerically model the motion of an ion under different
electric fields. Given that our model includes neither thermal
excitations nor rotons, we will use the model to focus on how
the nucleated vortex rings affect the motion of a bare electron
bubble.

In the absence of any damping due to thermal excitations,
the velocity of the ion is expected to increase linearly under
the influence of an externally applied electric field. This should
continue until a critical velocity vc is reached that coincides
with the onset of nucleation of vortex rings.

In Fig. 3, we present the time variation of the y component
of the velocity of the bubble that is estimated as

vY 	 Yc.m.(t + �ts) − Yc.m.(t)

�ts
, (26)

where Yc.m. represents the y coordinate of the center of mass
of the bubble as defined in Eq. (C8). Since the ion does not
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FIG. 3. Variation in time of the longitudinal velocity of the elec-
tron bubble moving under the influence of electric fields of different
strength. Each run shows an essentially discontinuous change in the
velocity due to the capture of the ion by a nucleated vortex ring. After
the sudden drop in velocity, the ion experiences large fluctuations.

experience any drag during the early stages of the dynamics,
the acceleration of the ion will initially be governed by the
equation

v̇y = eqσ 2

mha
Q = 1

2δ

m4

mh

Q. (27)

By performing a linear fit within the time interval 0 < t < 500
for the case with Q = 3 × 10−3 we obtained the bubble ac-
celeration v̇y = 1.9 × 10−5 which corresponds to an effective
mass of 184m4 and to an effective radius of 16 Å that is
consistent with our estimates quoted in Sec. II B.

Following the initial linear growth, the velocity starts
decreasing in time due to the deformations of the bubble.
When the velocity attains a critical value of vc ∼ 0.32, the
bubble begins nucleating a vortex ring which subsequently
reattaches to the ion. This process gives rise to the formation
of a charged vortex ring [32,33]. Details of this transition are
illustrated in Fig. 4(a). The transition to a charged vortex ring
is associated with a sudden drop in the velocity of the bubble.
During the recapture of the ion by the ring, sudden sideways
motion of the ion occur that generate large perturbations on the
ring. These fluctuations can be clearly seen in Fig. 3 following
the characteristic sudden drop in the velocity of the ion. We
expect that these oscillations will be mediated by nonlinear
interactions of Kelvin waves that act to transfer energy to
smaller scales until they are dissipated through emission of
phonons [34]. At later times, the size of the charged vortex
ring continues to increase with its velocity asymptoting to the
self-induced velocity of a circular vortex ring [35,36].

The mechanism by which vortex nucleation occurs is a
subject that has attracted much attention in the past and is one
that has led to several different explanations. In particular, we
recall the works by Bowley et al. [37] and Murihead et al. [38].
In these works, two different competing mechanisms were
presented that came to be known as the girdling model and the
peeling model, respectively. In the former case, a vortex ring
detaches from the equator of the bubble, while in the latter case
a vortex ring grows out from a small vortex loop that is attached
asymmetrically to the bubble. A schematic plot of these two
models is presented in Fig. 5.
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(a) Electric field Q = 3 ×10−6

(b) Electric field Q = 10−5

(c) Electric field Q = 2 ×10−5

FIG. 4. Isosurface plot corresponding to |ψ |2 = 0.3 of an electron
bubble moving in the presence of constant applied electric fields.
The sequence of images corresponds to the times: (a) t = 12 500,
t = 14 750, t = 15 000, t = 15 500, and t = 15 750; (b) t = 5250,
t = 5500, and t = 5750; (c) t = 16 250, t = 16 500, and t = 16 750
and they illustrate (a) the transition from a free ion to a charged vortex
ring; (b) the nucleation of a vortex ring according to the girdling
model; (c) the transition to a charged vortex ring.

Our simulations corroborate observations made in previous
numerical studies [17,36] and reveal that as an electron bubble
is accelerated by a constant electric field, vortex nucleation
is initiated by the emergence of a perfectly circular ring
along the equator. This is also in agreement with theoretical
models proposed by Schwarz and Jang [39], and by Bowley
[40] for the initial stages of the process of vortex nucleation.
However, it appears that this scenario which is consistent with
the mechanism depicted in Fig. 5(b) is inherently unstable to
azimuthal perturbations. Consequently, as the ring begins to
detach, it does not preserve the axisymmetry and leads to the
formation of several smaller loops detaching from the bubble.
Bernoulli effects associated with the nucleation of the vortex
ring results in a pressure drop which causes the ion to become
more susceptible to perturbations that causes the ion to begin to
move in the transverse direction. Consequently, the ion moves
of -center with respect to the axis of the nucleated ring and is
thus recaptured.

(a)

(b)

FIG. 5. Schematic of the two alternative models describing the
nucleation process: (a) the peeling model; (b) the girdling model. The
arrows indicate the direction of time (image representative of the one
illustrated in Bowley et al. [37]).

We note that for these low electric fields, the nucleation
always takes place at the critical velocity vc ∼ 0.32 [15]. Such
a value of the critical velocity can be explained in terms of the
motion of a sphere in an incompressible fluid as discussed by
Berloff et al. [15] and Frisch et al. [40]. By working within a
potential flow approximation of a classical fluid, it is known
that the flow around such an object has a maximum velocity at
the equator equal to 3/2U∞, where U∞ is the velocity in the
far field. According to [15], when Umax matches the speed of
sound c = (1/

√
2), that is set by the dispersion relation of the

superfluid, vortex nucleation occurs. Small corrections due to
the deformations of the bubble during its motion can modify
the value of the critical velocity. This has been calculated in
[15] and it was found that Umax = c when vc ∼ 0.34, which
turns out to be in good agreement with our observed numerical
value.

For higher electric fields, a markedly different behavior
is observed in that the ion enters a regime where a vortex
ring is nucleated but manages to fully escape from the ion
[see Fig. 4(b)]. The deflection of the trajectory of the ion
leads to the development of chaotic dynamics. For example,
for even higher electric fields we observe in Fig. 4(c) that
transverse motion of the bubble can lead to the formation of
two vortex loops with different sizes, the smaller of which
detaches from the ion while the larger one captures the bubble.
The detachment of the ring from the ion leads to an intermittent
signal in the magnitude of the longitudinal velocity of the ion as
illustrated in Fig. 6(a). This clearly indicates the nucleation of
several vortex rings that is evident from the abrupt falloff in the
velocity of the ion that takes place at different instants in time.
In particular, for Q = 10−5 at t = 3000 the ion reaches the
critical velocity vc, nucleates a vortex ring with a consequent
dropoff in the velocity. Thereafter, the ion accelerates until it
again reaches the critical velocity vc, and the system cycles
again through the same sequence of events. Eventually, after
the nucleation of several vortices, the ion finally becomes
trapped, resulting in a charged vortex ring with the velocity
fluctuating around the value vy ∼ 0.1. As can be seen from
Fig. 6(a), the time between two subsequent vortex nucleation
processes decreases with the increasing strength of the electric
field.

We recall that Nancolas et al. [31] suggested that the
transition to a charged vortex ring can be suppressed by
applying sufficiently high electric fields. In Fig. 7 we show a
stream of vortex rings having more or less the same size as the
bubble for Q = 10−4. We have found that these nucleated rings
interact together giving rise to a leapfrogging type behavior
(see Supplemental Material [41] for explanatory movies). In
particular, vortex rings nucleated at earlier time can be slowed
down and eventually propelled toward the ion until they scatter
off the ion. Because of the collective motion of the nucleated
rings, the velocity of the ion initially exceeds the critical value
vc but subsequently enters a regime characterized by highly
chaotic dynamics with irregular vortex shedding (see Fig. 1).
Upon increasing the strength of the electric field, the frequency
for the emission of vortex rings increases. As shown in Fig. 1,
for Q = 5 × 10−4, the nucleation becomes so rapid that a small
vortex tangle develops in the wake of the ion.

In Fig. 6(b), we present the evolution of the velocity
of the bubble for higher values of the electric field. The
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FIG. 6. Plot of the time evolution of the velocity of an electron
bubble for different values of the applied electric field; (a) the
transition to a charged vortex ring takes place after the emission of
several vortex rings. The time between two subsequent nucleation
processes decreases with the increasing strength of the electric field;
(b) for even higher electric fields, we observe that the velocity plateaus
at different values depending on whether (solid line) or not (dashed
line) the axis symmetry is broken.

figure shows that the ion experiences two different regimes
during its dynamics. More specifically, by analyzing the case
corresponding to Q = 5 × 10−4 (purple line), it is possible
to see that the velocity of the bubble initially plateaus at
vy ∼ 0.5 (see solid line). This value is associated with the
axis-symmetric nucleation of vortex rings. Once the symmetry
breaks down, the motion of the ion becomes chaotic and the
value of the velocity significantly changes (see dashed line).

FIG. 7. Isosurface plot corresponding to |ψ2| = 0.3 for an applied
electric field Q = 10−4. The figure shows the emission of a stream of
vortex rings. The smaller rings are nucleated at earlier times and they
travel faster towards the ion by undergoing a leapfrogging motion
with the array of rings nucleated at later times.
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FIG. 8. Plot of the x and z coordinates of the center of mass of
the bubble. The fluctuating behavior is the signature of the transition
into a chaotic regime.

To detect the moment when the transition into a chaotic regime
takes place, in Fig. 8 we plot the x and the z coordinates of
the center of mass of the bubble denoted by Xc.m. and Zc.m.,
respectively, which are evaluated according to (C8). The figure
clearly shows that the onset of chaotic motion of the bubble
occurs at tc ∼ 1600 which coincides with the transition from
vy ∼ 0.5 to vy ∼ 0.4 seen in Fig. 6(b). A drift velocity for the
bubble can be evaluated by averaging over time the velocity
vy of the bubble after the transition tc ∼ 1600 has occurred. In
Fig. 9, we plot the drift velocities for different values of the
applied electric field. An interesting observation that we make
is the linear relationship that exists between vD and Q within
the range of values shown.

We recall that the mobility of the ion is defined as μphonon =
vD/Q in the limit as Q → 0. In experiments, this mobility
is typically determined by the phonon limited drift velocity
since a finite fraction of phonons is typically present in
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FIG. 9. Plot of the drift velocity of an electron bubble under
different applied electric fields. A linear relation between vD and Q

is found by fitting the numerical data with a first-order polynomial
vD = p1Q + p2.
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experiments at low temperatures that scatter off the ion and
lead to a drag force. However, experiments also reveal that for
higher electric fields, exceeding the critical velocity coinciding
with the formation of charged vortex rings where the drift
velocity of the ion is seen to rapidly fall off, another regime is
encountered where the ion’s velocity is seen to again increase
with increasing field strength. This regime which is the one
that is relevant to our numerical studies can be used to define
a vortex nucleation limited mobility [42] given by μring =
vD/(Q − Qcr ). Here, Qcr coincides with the critical threshold
of the electric field for which the drift velocity of the ion is
seen to rise again. Using our results presented in Fig. 9, we
find μring = 1.26 m2 s−1 M−1 V−1.

Our value for the vortex nucleation limited mobility of
ions, within the range of electric fields explored, can be com-
pared against previously performed measurements of the same
quantity. We note that previous work has studied the mobility
of ions at high electric fields as a function of both pressure
and temperature [42,43]. We could not find data obtained for
pressures that correspond directly to the conditions associated
with the parameters used in our model. We will, therefore,
consider two sets of data. The first is taken from [42] which
contains measurements for a pressure of p = 1 MPa and taken
over a range of temperatures that is of most relevance to our
work. When comparing with experimental data collected at
high pressures, consideration must be given to the fact that the
mechanism that determines the maximum drift velocity of the
ion is dependent on the pressure. In particular, as demonstrated
in [43,44], roton pair creation is believed to be the dominant
mechanism above 10 bar, whereas vortex ring nucleation is
the main mechanism below 10 bar. This is consistent with the
observation that the Landau critical velocity for roton creation
and the critical velocity for vortex ring nucleation both vary
with pressure but the two velocities coincide at p = 10 bar
(see Fig. 1 in [43]). The measurements presented in [42] for
p = 10 bar are, therefore, most relevant for our simulations.
Taking the measured vortex limited mobility presented in Fig.
19 of [42], we find μE = 1.1 m2 s−1 M−1 V−1 which is in
remarkably good agreement with our value quoted above.

To establish the sensitivity of these results with changes in
the operating pressure and, more specifically, to quantify to
what extent the emission of roton pairs affects the measured
mobility, we have also analyzed a second set of data presented
in [44] for p = 2.5 MPa and T = 0.34 K. In fact, in that work,
the measured drift velocity vD(Q) of an ion had a discrepancy
from the expected behavior that is predicted if pair-roton
emission is taken to be the main source of drag. As suggested
in [8], such a discrepancy could be accounted for if one takes
into account corrections arising from the emission of vortex
rings. We have reanalyzed the experimental data to determine
the measured mobility of the ion at this higher pressure. As
can be seen from their data included in Appendix E, a linear
relation can be identified between the measured drift velocity
of the ion and the applied electric field. This allows us to
obtain an experimental value of the measured mobility of
μE = 2.76 m2 s−1 M−1 V−1. This reveals that increasing the
pressure increases the measured mobility. We note that at
higher pressures, the radius of the electron bubble is reduced.
Therefore, if vortices are nucleated together with pair-roton
emission, the rings are expected to be significantly smaller in

(f) t = 3420(e) t = 540(d) t = 480

(a) t = 300 (b) t = 360 (c) t = 420

FIG. 10. Plot of two slices corresponding to the plane z = 0: (up-
per half of each subfigure) and x = 0: (lower half of each subfigure)
extracted from the 3D numerical simulation for Q = 5 × 10−4 at
different times. Dark areas represent depletions in the field |ψ |2, while
bright areas stands for high values of |ψ |2.

comparison to those formed at lower pressures. Despite these
different physical effects, the measured mobility only increases
by around a factor of 2.

We end by noting that Guo and Jin [9] have shown, using
a density-functional theory, that emission of sound waves by
disturbances of the bubble can provide a significant channel
for dissipating energy. While we also observe the emission
of sound waves as illustrated in Fig. 10, the model used
in [9] allows the correct equation of state for 4He to be
used thereby providing a more accurate description of this
dissipation mechanism. However, as shown in this work, their
assumption of axisymmetry inhibits the transverse chaotic
motion of the bubble that appears to be the dominant factor
in determining the subsequent velocity of the ion at late times.
Future work will aim to extend the 3D simulations we have
performed to more realistic models such as the ones considered
in [9]. This would permit a more quantitative determination of
the different contributions to the drag force exerted on the ion.
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APPENDIX A: SPHERICAL CAVITY MODEL OF
ELECTRON BUBBLE

In order to gain further insight into the properties of the
electron in the self-trapped bubble state, we will use the
equations presented in Sec. II A to derive a simple model
of a perfectly spherical cavity at equilibrium. This will help
in identifying the key length scales that will arise in our
problem and which need to be well resolved in our numerical
simulations.

We begin by assuming that the electron is in its s state
and is trapped within a perfectly spherical cavity of radius b
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that represents the bubble state. For simplicity, the cavity is
assumed to have an infinite depth. The lowest eigenvalue of
Eq. (3) will then be given by

Eq = h̄2π2

2meb2
. (A1)

This expression corresponds to the quantum mechanical en-
ergy associated with the zero-point motion of the electron.
Another key contribution to the total energy of the electron
bubble and superfluid system is one that arises from the
(nonlinear) interaction part of the GP Hamiltonian (2). From
this term, we can determine the work required to carve out
a cavity within the superfluid due to the pressure field p =
V0ρ

2/2m2
4 for a spherical cavity. This contribution to the

energy is given by

EV = pV = 4πb3

3
p = 2πb3V0ρ

2

3m2
4

. (A2)

The third principal contribution to the total energy of the system
that is associated with the electron bubble state is given by the
kinetic energy term in Eq. (2):

h̄2

2m4

∫
|∇ψ |2d3x ∼ 2πh̄2ρ

3m2
4a

2
[(a + b)3 − b3]. (A3)

Here, a is the healing length that sets the length scale over
which the density of the fluid rapidly falls off from its far-field
value (see [45]). For experimentally relevant parameters, we
can assume that a 
 b. The dominant contribution to Eq. (A3)
is then proportional to the area of the bubble and we can
interpret this term as the energy associated with the surface
tension T of the cavity wall that can be expressed as

ET = 2π
h̄2b2ρ

m2
4a

≡ 4πT b2. (A4)

We note that in [45] a slightly more accurate estimate of the
surface tension was obtained by using a tanh profile to describe
the superfluid profile at the boundary of the bubble. In the
cavity model of the electron bubble, the wave functions for
the electron and the superfluid do not overlap and, hence, the
interaction term given by Eq. (4) does not contribute. The
total energy for the electron bubble-superfluid system is then
given by

E = Eq + EV + ET = h̄2π2

2meb2
+ 4πb3

3
p + 4πT b2. (A5)

Using this model, we can now estimate the radius b of the
electron bubble and subsequently its hydrodynamic mass mh

[19]. Since the electron mass me is much smaller than the
mass of the 4He atom m4, with δ = me/m4 ∼ 1.4 × 10−4,
the effective mass of the bubble (me + mh) can then be
approximated by its hydrodynamic mass which is given by

mh = 2

3
πρb3. (A6)

At zero pressure, Eq. (A5) can be used to evaluate the radius
of the bubble that minimizes the electron energy E; this gives

b =
(

πh̄2

8meT

)1/4

. (A7)

Using typical measured values of parameters for liquid helium
at zero temperature, such as the surface tension of bulk
helium [20], T = 375 μJ m2, and the liquid density ρ =
0.145 g/cm3, we can finally estimate that the effective radius
is b = 18.91 Å, whereas the mass mh = 309 m4 for an electron
bubble at zero pressure.

For nonzero pressure, it is possible to estimate the radius
of the bubble by using the method of dominant balance under
the condition that δ → 0. We begin by noting that a stationary
value for the energy (A5) is given by the solution of

dE

db
= − h̄2π2

meb3
+ 4πb2p + 8πT b = 0. (A8)

Now, we can assume that Eq. (A8) is balanced by two dominant
terms. Assuming the first term to be negligible we find

b = −2T

p
. (A9)

Since b is negative, it follows that we can not neglect the first
term in the equation. On the other hand, assuming the second
term to be negligible gives

b =
(

h̄2π

8meT

)1/4

. (A10)

Substituting (A10) into (A5) we obtain

E =
[

h̄2π2

2

(
h̄2π

8T

)−1

+ 4πp

3

(
h̄2π

8T me

)1/4

+ 4πT

]

×
(

h̄2π

8T me

)1/2

. (A11)

Motivated by the physics of the problem, we consider the limit
δ → 0. In this regime, the second term is dominant, which is
inconsistent with our initial assumption. Finally, if we assume
the third term to be negligible, then

b =
(

πh̄2

4mep

)1/5

. (A12)

Substituting (A12) into (A5) we obtain

E =
[

h̄2π2

2m
1/5
e

(
πh̄2

4p

)−4/5

+ 4πp

3m
1/5
e

(
πh̄2

4p

)1/5

+ 4πT

]

×
(

πh̄2

4pme

)2/5

. (A13)

In the limit δ → 0 the third term is negligible, which leads to a
self-consistent estimate. It follows that the radius of the bubble
at nonzero pressure will be given by

b ∼
(

πh̄2

4mep

)1/5

. (A14)

This provides an important length scale in the problem that
dictates the size of the computational domain that will be
needed in our simulation to resolve the relevant physical scales
of interest.

094507-9



ALBERTO VILLOIS AND HAYDER SALMAN PHYSICAL REVIEW B 97, 094507 (2018)

APPENDIX B: INITIAL CONDITION

In order to find the correct initial condition for the electron in
the ground state, we first need to solve the Helmholtz equation

∇2φ + k2φ = 0, (B1)

in a sphere of radius π/k. The spherically symmetric modes
are given by

φ0(r,θ,ϕ) =
(

2k3

πε3

)1/2 sin(kr)

kr
, r < π/k, (B2)

where k represents the different eigenvalues that can be
supported by the system. For the ground state with energy Eq

given by Eq. (A1), we find

k2 = meEq

m4μ
= h̄2π2

2m4μb2
= π2a2

b2
= 0.0342, (B3)

to obtain

4π

∫ π/k

0
|φ|2r2dr = 4π

ε3
. (B4)

For the superfluid wave function we choose a density profile
given by

ψ0(r,θ,ϕ) =
{

tanh
(

r−b√
2

)
, r � b

0, r � b.
(B5)

With the above initial conditions for the two fields ψ(x,0) =
ψ0(x) and φ(x,0) = φ0(x), we can then integrate the system of
equations

∂

∂η

(
ψ

φ

)
= 1

2

[∇2 0
0 δ−1∇2

](
ψ

φ

)

− 1

2

[
γ |φ|2 + |ψ |2 0

0 δ−1ζ 2|ψ |2
](

ψ

φ

)
, (B6)

with respect to the imaginary time η, until the system converges
to the desired level of accuracy. This gradient flow method
was applied until Eq. (C4) satisfied the threshold Err < 10−7

in Eq. (B6) (see below).

APPENDIX C: NUMERICAL INTEGRATION OF
EQUATIONS OF MOTION

For all our numerical simulations, we have assumed peri-
odic boundary conditions that permit fast Fourier transforms
(FFTs) to be used to evaluate the kinetic energy terms ap-
pearing in our system of equations. To advance our equations
forward in (real or imaginary) time, we use a symmetric Strang
splitting pseudospectral method for Eq. (B6). This leads to(

ψ(x,η + �η)

φ(x,η + �η)

)
= e(�η/2)N̂ (x)e�ηL̂e(�η/2)N̂ (x)

(
ψ0(x,η)

φ0(x,η)

)
.

(C1)

In Eq. (C1), N̂ (x) is defined in physical space as

N̂ (x) =
[
N̂GP 0

0 N̂e

]
= −1

2

[
γ |φ|2 + |ψ |2 0

0 δ−1ζ 2|ψ |2
]
,

(C2)

whereas L̂(x) is defined in Fourier space as

L̂(k) =
∫

L̂(x)eik·xd3x =
[
L̂GP 0

0 L̂e

]

= − 1

2

[|k|2 0
0 δ−1|k|2

]
. (C3)

This method is iterated until the L2 norm defined as

Err =
∫ ∣∣∣∣

(
ψ(x,η + �η)

φ(x,η + �η)

)
−

(
ψ(x,η)

φ(x,η)

)∣∣∣∣
2

d3x, (C4)

drops below a specified threshold. Once the equilibrium
state of the system has been determined, we set Q �= 0 and
integrate Eq. (24) to study the dynamics of the superfluid
and electron bubble in the adiabatic approximation. The
evolution of the superfluid from time t0 to time t = t0 + �t is
given by

ψ(x,t + �t) = ei(�t/2)L̂GPei�tN̂GP(x,t1)ei(�t/2)L̂GPψ(x,t),

(C5)

where t1 = �t/2 + t . We note that in contrast to Eq. (C1), this
choice of splitting allows us to evaluate the the ground state of
the bubble once within each time step of the simulation. The
nonlinear operator N̂GP is defined in terms of

ψ(x,t1) = ei(�t/2)L̂GPψ(x,t), (C6)

while φ(x,t1) corresponds to the ground state for an electron
governed by Eq. (25) in the presence of an external potential
given by (ζ 2/2δ)|ψ(x,t1)|2.

In order to find the ground state of Eq. (25), we use the
gradient flow method described above but applied only to the
Schrödinger equation now given by

∂φ

∂η
= 1

2δ
∇2φ − 1

2δ
(ζ 2|ψ |2φ + yQ + Ee)φ. (C7)

We note that the presence of the y-dependent term yQφ/2δ

appears to be inconsistent with the use of periodic boundary
conditions along the y-coordinate direction. This difficulty is
circumvented by noting that since the bubble is a localized
object that is confined within the cavity created by the potential
of the surrounding superfluid, the wave function will decay
exponentially outside this cavity. Indeed, we exploit this
property of φ to allow us to solve the Schrödinger equation
on a truncated domain (see Fig. 1). On the other hand, the
motion of the electron bubble towards the boundaries can lead
to numerical instabilities due to the discontinuous form of
the potential arising from the last term in Eq. (C7) across
the boundaries. To avoid this, we apply a coordinate trans-
formation that recenters the bubble within the computational
domain after a time interval �ts to coincide with the origin of
our coordinate system. The spatial translations are defined by
setting x′ = x − �xc.m.(ti), where

�xc.m.(ti) =
∫

x|φ(x,ti)|2d3x∫ |φ(x,ti)|2d3x
, (C8)

is the center of mass of the bubble at time ti = i�ts . To keep
track of the real position of the ion, we evaluate the cumulative
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displacement of the bubble by defining

Xc.m.(ti+1) = Xc.m.(ti) + �xc.m.(ti+1). (C9)

The condensate wave function ψ(x′,t) in the new frame of
reference can then be recovered from

ψ(x′,t) = F̂−1[eik·xc.m.F̂[ψ(x,t)]], (C10)

where F̂ stands for the fast Fourier transform. Using this newly
evaluated wave function, computing φ can then be simply
reduced to finding a new ground state subject to the shifted
potential |ψ(x′,t)|2(ζ 2/2δ).

APPENDIX D: PROJECTED
GROSS-PITAEVSKII EQUATION

An issue that arises when applying pseudospectral numerical
methods applied to nonlinear partial differential equations is
the well-known aliasing error that is caused from having a finite
truncation in Fourier space [46]. To understand the source of
the problem, we will express the GP equation (with γ = 0) in
terms of Fourier harmonics, such that

i
dAk

dt
= k2

2
Ak + 1

2

∑
k1,k2

Ak1A
∗
k1+k2

Ak+k2 , (D1)

where

ψ(x,t) =
∑

k

Ak(t)eik·x. (D2)

The essence of the aliasing error can now be understood by fo-
cusing on a periodic 1D system discretized on nmax collocation
points in a domain of length Lx . This leads to k = n�k where
{n ∈ Z : −nmax < n � nmax} and �k = 2π/Lx . Therefore,
the number of modes is defined up to a cutoff scale given
by kmax = nmax�k/2. We note that for such a discrete system,
the harmonic einx�k is equivalent to ei(n+jnmax)x�k ∀ j ∈ Z. In
general, the nonlinear term can excite modes with a higher
harmonic (e.g., the interaction of the modes corresponding to
k1 and k2 and lying within the range −kmax < k1,k2 � kmax,
can excite a k1 + k2 mode). It follows that if not accounted for
correctly, this k1 + k2 mode will project back onto the modes
within the range −kmax < k1,k2 � kmax leading to inaccurate
solution of the equations. This is the essence of the aliasing
phenomena.

To avoid such errors that result in the biasing of the
amplitude of the lower modes, we introduce a low-pass filter
acting in Fourier space. Such a filter consists of truncating all
the modes higher than 2kmax/3. To apply such a filter, we define
a projector P̂ acting on the Fourier space as

P̂[Ak] = �(2kmax/3 − |k|)Ak, (D3)

where �(. . .) is the Heaviside step function. Generalizing these
arguments to 3D leads to the truncated form of the GP equation
(TGP):

i
∂ψ

∂t
= P̂

[
−1

2
∇2ψ + 1

2
P̂[|ψ |2]ψ

]
. (D4)

This equation can be derived from the truncated Hamiltonian

H =
∫ (

1

2
P̂[|∇ψ |2] + 1

4

(
P̂[|ψ |2]

)2
)

d3x. (D5)
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FIG. 11. Plot of the measured drift velocity of a negative ion taken
from [44] under different applied electric fields. A linear relation
between vD and Q is found by fitting the experimental data with a
first-order polynomial vD = μEQ + v0.

As shown by Krstulovic and Brachet [47], such a system also
conserves the number of particles and the linear momentum.
From these considerations, it follows that if we include the
interaction with the electron wave function, we can finally write
the projected Gross-Clark equation for the superfluid as

i
∂ψ

∂t
= P̂

[
−1

2
∇2ψ + γ

2
P̂[|φg|2]ψ + 1

2
P̂[|ψ |2]ψ

]
. (D6)

We have found that, in practice, introducing this projector helps
stabilize our numerical scheme.

APPENDIX E: EXPERIMENTAL DATA
OF DRIFT VELOCITIES

Here, we present the experimentally measured drift veloci-
ties of an ion moving, at pressurep = 2.5 MPa and temperature
T = 0.34 K, under different values of the electric field Q. The
data are taken from Ellis et al. [44]. In particular, we focus
on the range vD(Q) > 70 ms−1 where, according to [44], the
drift velocities do not follow the expected trend predicted from
assuming that the main source of drag acting on the motion of
the ion is related to the emission of roton pairs. In Fig. 11,
we have plotted the data for vD as a function of Q. As can
be seen, a linear relation exists over the considered range of
Q which provides a measured value of the mobility equal to
μE = 2.76 m2 s−1 M−1 V−1.
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