

F

Unsupervised Deep Hashing With Pseudo Labels

for Scalable Image Retrieval

Haofeng Zhang , Li Liu, Yang Long, and Ling Shao , Senior Member, IEEE

Abstractð In order to achieve efficient similarity searching,
hash functions are designed to encode images into low-
dimensional binary codes with the constraint that similar features
will have a short distance in the projected Hamming space.
Recently, deep learning-based methods have become more pop-
ular, and outperform traditional non -deep methods. However,
without label information, most state-of-the-art unsupervised
deep hashing (DH) algorithms suffer from severe performance
degradation for unsupervised scenarios. One of the main reasons
is that the ad-hoc encoding process cannot properly capture the
visual feature distribution. In this paper, we propose a novel
unsupervised framework that has two main contributions: 1) we
convert the unsupervised DH model into supervised by discover-
ing pseudo labels; 2) the framework unifies likelihood maximiza-
tion, mutual information maximization, and quantization error
minimization so that the pseudo labels can maximumly preserve
the distribution of visual features. Extensive experiments on three
popular data sets demonstrate the advantages of the proposed
method, which leads to significant performance improvement
over the state-of-the-art unsupervised hashing algorithms.

Index Termsð Image retrieval, unsupervised hashing, pseudo
labels.

I. INTRODUCTION

AST similarity search is one of the fundamental require-

ments for large-scale visual information retrieval appli-

cations [1]ï[10]. Hashing, the most widely used method,

usually exploits high-dimensional visual feature space to find

a similarity-preserved low-dimensional Hamming space. Hash

codes enormously reduce the requirement of storage space

and improve the computational efficiency. Recently, there are

many hashing methods [11]ï[18] that have achieved excellent

performance.

The associate editor coordinating the review of this manuscript and approving
it for publication was Prof. Xiaochun Cao. (Haofeng Zhang and Li Liu
contributed equally to this work.) (Corresponding author: Ling Shao.)

H. Zhang is with the School of Computer Science and Engineering,
Nanjing University of Science and Technology and University of East Anglia,
Nanjing 210094, China (e-mail: zhanghf@njust.edu.cn).

L. Liu is with JD Artificial Intelligence Research (JDAIR), Beijing 100176,
China (e-mail: liuli1213@gmail.com).

Y. Long is with the Open Lab, School of Computing, University of New-
castle, Newcastle upon Tyne NE4 5TG, U.K. (e-mail: yang.long@ieee.org).

L. Shao is with JD Artificial Intelligence Research (JDAIR), Beijing 100176,
China, and also with the School of Computing Sciences, University of East
Anglia, Norwich NR4 7TJ, U.K. (e-mail: ling.shao@ieee.org).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2017.2781422

Existing unsupervised hashing algorithms can be roughly

categorized into data-independent methods and data-dependent

methods. For the former one, the most widely used algorithm

is Locality-Sensitive Hashing (LSH) [13]. LSH differs from

conventional cryptographic hash functions because it aims

to maximise the probability of a collision for similar items.

However, with the growing data size and the performance

requirement, the LSH related methods are proved to be not

robust in many challenging scenarios.

To generate compact and effective binary codes, data-

dependent methods have gained increasing attention.

Unsupervised methods like Spectral Hashing (SH) [19],

Principle Component Analysis Hashing (PCAH) [20], Anchor

Graph Hashing (AGH) [21], Iterative Quantization (ITQ) [22],

and Kernel Hashing [23], [24] can achieve impressive

performance. Even though these methods can get good

performance, they still can not satisfy the demanded accuracy

of image retrieval.

Therefore, lots of supervised methods were proposed to

improve retrieval accuracy, e.g. Canonical Correlation Analy-

sis ITQ (CCA-ITQ) [22], Supervised Semantics-preserving

Deep Hashing (SSDH) [26], Quantization Based Hashing

(QBH) [27], which are all trained with labelled samples and

can achieve great improvement in performance. However,

these works are all supervised with real labels. Since human

annotation is expensive to acquire, it is unrealistic to expect

the large-scaled data to be well-labelled. Thus, unsupervised

hashing methods still remain the focus.

Earlier unsupervised binary coding methods often use hand-

craft features such as GIST [1], [28] and SIFT [29], [30],

which can make hashing methods achieve good performance,

but still not very satisfactory for our applications. Fortunately,

at near recent, on account of great development in the area of

deep learning [31]ï[34], hashing methods turn to extract deep

features automatically using Convolutional Neural Network

(CNN) descriptors [35]ï[38], which inherit high discriminative

property and often get state-of-the-art performance. However,

most state-of-the-art unsupervised deep hashing algorithms

[39]ï[41] suffer from severe performance degradation due to

lack of label information, e.g. DH [39] and Deepbit [40]

use quantisation loss and evenly distribution loss, which can

only make the binary codes have large variance, but can not

get the real distribution of the data, UH-BDNN [41] adds a

reconstruction layer after the binary code layer, which can

obtain the semantics of the images, but still can not get

the category information, which is more important than the

http://ieeexplore.ieee.org/

Fig. 1. Comparison of learnt binary codes of state-of-the-art methods on the CIFAR-10 dataset using t-SNE [25] with true class labels. (a) AGH. (b) PCAH.
(c) ITQ. (d) Ours.

semantics for image retrieval, and the experimental results

reported in their original literatures and this paper can also

show this point. Therefore, it is necessary to find out the visual

feature distribution for unsupervised hashing.

In this paper, a novel hashing method is proposed to

discover pseudo labels to train a supervised deep network to

solve the unsupervised problem. This method integrates four

advantages of current algorithms, 1) Likelihood Maximisa-

tion methods assume the instances in different classes share

some latent attributes, in order to ensure the pseudo labels

can truly reflect the distribution of the real class labels, likeli-

hood maximisation is used to maximise the joint distribution

between visual features and pseudo labels. 2) Quantisation

Error Minimisation methods [20] are proposed for better

quantization. One of the state-of-the-art method ITQ [22],

which used orthogonal rotation matrix R to project each data

point to the nearest vertex of the binary hypercube, and then

R is updated to minimise the quantization loss according to

this assignment. 3) Correlation Maximisation approaches,

e.g. ITQ-CCA [22], aim to maximise the correlation between

binary code and visual feature. 4) Deep Hashing avoids to use

hand-crafted features such as GIST [1], SIFT [29], and make

the feature extraction and encoding into a unified end-to-end

model.

Although promising progress has been achieved, for a

realistic scenario, in Fig. 1 we show that only a single

method can hardly achieve stable and satisfied performance.

One of the main reasons is that a single method might be

designed for a particular scenario, which may suffer from

severe performance degradations on other tasks under different

assumptions. The AGH (Fig. 1 (a)) preserves the likelihood

of input visual feature but cannot make the learnt binary code

more discriminative. On the contrary, PCAH (Fig. 1 (b)) makes

all of the instances are discriminative to each other, but com-

pletely loses the structural information. The state-of-the-art

ITQ demonstrates a balance between structure preserving and

discrimination. However, without label information, ITQ could

not further improve the binary code according to real class

distributions. Towards more robust hashing model, this paper

proposes a unified framework that can effectively incorporate

the advantages of these methods. The resultant hash code

can simultaneously capture various preferred characteristics,

as shown in Fig. 1 (d). Furthermore, by proposing pseudo

labels, our binary code is not only robust but can approximate

the distribution of true classes labels, i.e. most of the clusters

are in the same colour. Our contributions can be summarised

as follows.

1) In order to leverage the power of supervised deep

hashing model on unsupervised scenarios, this paper

proposes to discover pseudo labels for a number of

grouped instances with a particular distribution.

2) A unified framework is proposed so that the discovered

pseudo labels are more close to the true labels of

instances.

3) The proposed unified framework can incorporate differ-

ent favourable learning objectives, which can make the

learnt hash code robust to more generalised tasks.

In this paper, we select three criteria to learn the hash codes,

which correspond to three different hashing methods: max-

imising the likelihood to get the approximate distribution of

real visual features [42]; maximising the correlation between

the input visual features and the variance so that the learnt

hash code can have safer boundaries in the Hamming distance

space [22]; and the power of supervised Deep model [39]. Our

method have some similar steps to CCA-ITQ, but actually

they are different, since our method is unsupervised while

CCA-ITQ is supervised. Furthermore, quantisation error min-

imisation and correlation maximisation are just partial steps

of our method, and the aim of our method is to combine the

advantages of state-of-the-art methods to train a deep network

for hashing. Moreover, in extensive experiments, we prove that

a single one of the above methods cannot fully address all of

the scenarios. By incorporating these criteria into our unified

framework, the resultant hash code is more robust for large-

scale retrieval tasks on different benchmarks.

The rest of this paper is organised as follows. In Section II,

we give a brief review of recent hashing methods. The details

of our method are described in Section III. Section IV reports

the experimental results. Finally, we conclude this paper in

Section V.

II. RELATED WORKS

Learning based hashing methods compute binary code by

exploiting the training data and its corresponding semantic

labels and can avoid the disadvantages of data-independent

methods such as LSH [13], which encodes input data so that

similar data were projected into the same buckets with high

probability, and this type of methods were proved not robust.

The learning based hashing methods can be divided into three

categories according to the degree of semantic labels used:

unsupervised, semi-supervised, and supervised.

For the first category, label information of training data is

not required in the entire training process of unsupervised

methods, which try to keep the similarity information between

training samples in the original space when the samples were

projected into Hamming space. Representative algorithms such

as SH [19], PCAH [20], ITQ [22], Kernelized Locality-

Sensitive Hashing (KLSH) [43], AGH [21], Spherical Hashing

(SpH) [44], K-Means Hashing (KMH) [42], can get pretty

good performance. SH [19] generates efficient binary codes

by spectral graph partitioning. Additionally, PCAH [20] and

its orthogonal projection variant [22] have been proposed for

better quantization. The method ITQ exploits a simple and

efficient alternating minimisation scheme to find a rotation

of zero-centred data to minimise the quantization error of

mapping this data to the vertexes of a zero-centred binary

hypercube. Kulis and Grauman [43] proposed a kernelised

version of LSH, namely KLSH, which also computes random

projections, as standard LSH does, but these random projec-

tions are constructed using only the kernel function and a

sparse set of examples from the database itself, which is differ-

ent from standard LSH. To achieve less time complexity and

better applicability, and also inspired by the spectral hashing

method, AGH [21] was introduced to utilise Anchor Graphs

to obtain tractable low-rank adjacency matrices and it can

automatically discover the neighbourhood inherent structure

in the training data. Heo et al. proposed a hyperplane-based

hash function, called Spherical Hashing [44], which min-

imises the spherical distance between the original real-valued

features and the learned binary codes, this distance metrics

is also called spherical Hamming distance. KMH [42] uses

an affinity-preserving K-means algorithm to simultaneously

performs k-means clustering and learns the binary indices of

the quantized cells and exploits the Hamming distance of the

cell indices to approximate the distance between these cells.

For the second category, semi-supervised methods use

information from both labelled training data and unlabelled

training data. One of the typical methods of this category

is Semi-supervised Hashing (SSH) [45], which minimises

empirical error over the pairwise labelled data and maximises

the variance over both labelled and unlabelled sets.

For the third category, the semantic label information of

each sample is fully used in learning more efficient binary

representations, thus better performance than the unsupervised

and the semi-supervised methods can be achieved. For exam-

ple, Binary Reconstructive Embedding (BRE) [46] utilises

pairwise relations between data samples to minimise the recon-

struction error between the original Euclidean space and the

learned Hamming space. QBH [27] incorporates quantization

error reduction methods into conventional property preserving

hashing methods. Norouzi and Fleet [47] presented a hash

function called Minimal Loss Hashing (MLH) to compute

binary codes by minimising the empirical loss between the

learned Hamming distance and the quantization error. ITQ also

has its supervised version called CCA-ITQ [22], which utilises

Canonical Correlation Analysis (CCA) with label information

to reduce the dimension of original features while preserving

the semantic information, and then exploits ITQ to min-

imise the quantization error. The Supervised Discrete Hashing

(SDH) [11] compute the hash codes with the preservation

of semantics with the intention for classification. Based on

SDH, X. Shi et al. proposed to exploit kernel based method

Kernel-based Supervised Discrete Hashing (KSDH) [48] to

improve the performance. To solve the problem of NP-hard

optimisation and computational complexity in graph based

method, Asymmetric Discrete Graph Hashing (ADGH) [49]

was proposed by preserving the asymmetric discrete constraint

and building an asymmetric affinity matrix to learn compact

binary codes. Additionally, SSDH [26] constructs hash func-

tions as a latent layer in a deep network and the binary codes

are learned by minimising an objective function defined over

classification error.

A. Deep Hashing Methods

In learning based hashing methods, deep learning based

methods form a special group in this area, so we discuss it here

separately. To our knowledge, Semantic Hashing (SmH) [50]

is the earliest effort to use deep network to learn hash function.

It compute hash codes by passing an unlabelled image through

a stacked Restricted Boltzmann Machines (RBMs).

The unsupervised deep hashing methods, Deep Hashing

(DH) [39] and Deep compact binary descriptor (Deepbit) [40]

also use deep network for learning compact binary code. DH

develop a deep neural network to seek multiple hierarchical

non-linear transforms to learn binary codes. In this method,

DH employs three constraints as follow at the top layer of

the deep network: 1) the loss between the original real-valued

feature and the learned binary vector is minimised, 2) the

binary codes distribute evenly on each bit, and 3) different

bits are as independent as possible. DH also has its super-

vised version, which includes one discriminative term into

objective function and simultaneously minimises the intra-

class differences and maximises the inter-class difference of

learned binary code. On the basis of DH, Deepbit adds another

constraint, rotation invariant, to the final loss function, and

achieve a slight boost on the performance. Do et al. [41]

propose a Binary Deep Neural Network (BDNN), which has

both unsupervised and supervised versions. BDNN introduces

one hidden layer to directly output the binary codes and

then utilises the binary code layer to reconstruct the original

feature. Through optimising the sum of reconstruction loss,

independence constraint loss, and balance constraint loss,

BDNN can get a little improvement with respect to DH. The

recent state-of-art method is Supervised Semantic-preserving

Deep Hashing (SSDH) [26], which assumes that the semantic

labels are governed by several latent attributes. Based on

this assumption, SSDH constructs hash function as a latent

layer in a deep network and learns the binary codes by

minimising an objective function combined by classification

error, independent property, and balance property like those in

method BDNN.

III. METHODOLOGY

Let X = [x1; . . . ; xn; . . . ; xN] Ԝ RN × w× h be the training

set which contains N image samples, where xn Ԝ Rw× h is

Ԝ

=
Ԝ

F

= H

{Ī }
H : Ҷ Ԝ

×

Ī

Fig. 2. Main Framework of Unsupervised hashing method with Pseudo Labels. The discovered pseudo label codes are used as supervision for fine-tuning
the deep hashing network like existing supervised methods. The total procedure is executed for T times recurrently to find better network model.

the n-th image sample in X, and has the dimension of w h.

Hashing methods aim to learn a hash function X B

1, 1 N × k to project each sample into a compact binary code

bn (xn), where k is the target binary code length.

Figure 2 illustrates the framework of our method. The

fundamental issue is how to obtain class labels during training.

In supervised methods, the class labels are used to guide intra-

class instances to be encoded closer in B. For improved

performance under unsupervised scenarios, this paper proposes

to discover latent pseudo labels that can maximumly reflect

the data distribution. Correspondingly, we adopt three of the

most important criteria to align the latent labels multiple

times. Firstly, the latent labels V1 Ԝ RN × k0 maximise the
li kelihood to the visual feature XĖ RN × d , which is extracted

from visual sample X. However, in most scenarios, stabler

performance often results from a smaller number of latent

labels, i.e. k0 < k, which may lead to severe information

loss. Therefore, the next step discovers an adequate number

of latent classes V2 RN × k1 that can preserve the maximum

mutual information, where k1 k is used as the length of final

hash codes. Finally, the latent labels are converted into binary

codes that can preserve the distribution of V2 in the meantime

maximising the overall variance so that the final hash codes

are more discriminative. Hereafter, we can recurrently train

deep hashing models using the discovered latent label codes

like supervised methods.

A. Deep Hashing Model

Our deep hashing model is initialised by using the pre-

trained VGG-16 parameters. Although the model is trained on

the large-scale ImageNet dataset, the extracted visual features

are not readily applied to learn hashing codes. Firstly, on a

different dataset, some of the involved classes are not present

in ImageNet, thus only using pre-trained model to extract

features may degrade the performance. Secondly, the initial

classification model may not perform the best for learning

binary codes. Therefore, we consider to trim the model using

the followed loss function:

J = "H (X; ©) Ī B"2 , s.t. B Ԝ {Ī1, + 1}N × k, (1)

where © is the parameter space of the deep hashing

model. Specifically, our model uses all the convolution layers

conv1_1ïconv5_3(each one followed by a ReLU layer), pool-

ing layers and first two fully connected layers fc6, and fc7. The

ReLU layer after fc7 is removed. Then, the final fc8 layer is

substituted by the objective binary code followed by a tanh

function to constrain the learnt codes to fall within (1, 1).

In order to retain the excellent training model of ImageNet, we

fix conv1_1ïconv5_3 and release fc6ïfc8 to be trainable. The

detailed configuration of the network is illustrated in Fig. 3.

However, the fundamental difficulty is the lack of super-

vision. In other words, the vital objective B of the above

learning function is missing. Random code allocation, e.g. [39]

can make the resultant code completely lose the original

data structure. Motivated by this, we investigate a unified

framework to discover pseudo labels that can maximumly

preserve the original distribution, which will be introduced

next.

B. Pseudo Labels Discovery

Pseudo labels of latent classes can be achieved by linear

or non-linear combinations of the real classes according to

the intrinsic data distribution. Ideally, instances from the

same class should be closer in the pseudo label space. How-

ever, without the guidance of true class labels, conventional

unsupervised hashing methods often suffer from the severe

discrepancy between the pseudo and real labels. One of the

main reasons is that a preferred encoding procedure often

requires ensuring different criteria at the same time, which

makes the optimisation intractable to solve. In this paper, we

propose a unified framework that sequentially discovers latent

classes that are aligned with the visual data at multiple time.

Each step corresponds to an optimisation based on a specific

criterion.

1) Feature Extraction and Dimension Reduction: We first

extract the visual features from training images using the fc7

layers of the pre-trained Model. The dimensionality of visual

features is 4096 that is much larger than the required length

of binary codes. To enhance the discriminative property and

reduce the computational cost, we first generate a compact

feature where the variance of every variable is maximised,

the variables are uncorrelated pair-wisely, and the redundancy

and noise are removed. This can be realised by Principle

Component Analysis (PCA) easily. However, in order to

= [; ; ; ;]

Ԝ Ԝ

F

=

Ԝ

ʅ F

I = =

= | Ė
c

]

n n n

ʅ

Fig. 3. Configuration of the deep hash model. The convolutional layers are fixed and the full connection layers are released to be trainable.

achieve the expected length of codes, conventional methods,

such as PCA-Hashing [20], directly reduce the dimension from

4096 to binary code length k regardless the loss of important

property-preserving information. In comparison, our scheme

label can be aligned to corresponding visual feature space to

preserve both the discriminative and intrinsic data distribution.

We first extend pseudo labels into one-hot vectors: Vē1 =

[vēi] Ԝ {0, 1}N × k0 , where vēi = 1 for i = vn and vēi = 0
allows to retain as many PCA components as possible, and

shorter codes can be obtained in later stages. Therefore, we
otherwise. Given the visual features after PCA XĖ

we maximise the correlation function:

Ԝ RN × d ,

use the percentage of retained variance as criterion like the
most traditional usage of PCA. The resultant representation is L2 = max Cor r (XĖ W1, Vē1W2) = max

< XĖ W1, Vē1W2 >
,

the extracted visual feature XĖ of our framework. W1,W2 W1,W2 "XĖ W1" · "Vē1W2"

2) Pseudo Labels With Maximum Likelihood: Due to the

widely existing intra-class variance, a class label often cor-

responds to several different latent distributions. Also, some

classes may share the same latent distribution. For example, a

óplaneô and a óbirdô share the features of ówingsô. Therefore,

the ideal number of latent labels may not always equal to

that of real classes. A typical solution is to find a set of

latent classes Z z1 . . . zc . . . zk0 that can maximise

the likelihood to the visual data distribution, i.e. to generate

(4)

where W1 Rd × k , W2 Rk0 × k are the parameters for linear

transformations. Hereby, the visual features can be converted

into the embedded pseudo label space in the final desired

dimensionality k:

V2 = XĖ W1. (5)

4) Maximum Variance: In the last stage, we convert V2
into binary codes. In order to minimise the quantisation error

visual features using several latent distributions. Suppose there
is a k0 number of latent classes, where each visual instance "sgn(v) Ī v"2

 between generated binary codes B and V2, we
k× k

belongs to one of the latent class. By assuming uniformed

prior p(Z) 1, taking the Bayesô rule, we have the likelihood

function:

adopt the ITQ algorithm to find a rotation matrix R R

that can align the binary codes to the nearest vertex of the

hypercube:

k0 L3 = "B Ī V2 R"2 , s.t. RRT = I , (6)

p(Z, XĖ) = p(XĖ | Z) =
n= 1

log
c= 1

p(xĖn| zc). (2)
where, "·" F denotes the Frobenius norm; V2 is zero-centred;

Using the Z with the maximised likelihood, we can assign

each of the visual features XĖ to a latent class in Z by

is the identity matrix, i.e. I i, j 1 if and only if i j .

Considering all of the three losses, Eq. 1 can be modified into
the following objective function:

maximising the marginal probability mass function: L1 =
2 2

p(XĖ , Z| V1), where V1 = [vn] Ԝ [1, k0] is the pseudo label
space with k0 latent classes. The each paired vn of xĖn can be

min
©,B, R,W1

"H(X; ©) Ī B"F + "B Ī XĖ W1 R"F ,

achieved by:

vn arg max p(zc xn). (3)
Ԝ[1,k0

s.t. B Ԝ {Ī1, + 1}N × k, RRT = I . (7)

C. Optimisation

3) Maximum Correlation Label Embedding: The above V1

only contains generative distribution, i.e. shared similarities

between real classes. In the second stage, we discover a

latent label embedding space so that the single-valued pseudo

The above objective function has four variables ©, B, R,

W1, and the function is a non-convex problem with the binary

and orthogonal constraints. As we have known that there is no

direct method to solve the problem of Eq. 7.

N

Å

[; ; ; ;] Ԝ

=

n

K K K K
·

F

Å

= Ī

Å

2

" H ; Ī H ¯; "

Ԝ Ԝ

Therefore, for each loop, we propose an alternating strategy

that in turn optimises W1, interactively updates B and R, and

finally optimise ©. The overall optimisation usually takes a

few iterations for a specific bit size which we summarise as

follows.

W1 Step: By first fix the parameters of the pre-trained

deep model ©, we can discover latent classes that can

maximise the likelihood of the extracted visual features in

Eq. 2. In this paper, we simply adopt the K -means algo-

rithm as the generative model to solve the equation. This

can be simply implemented by finding k0 centroids Z

z1 ... zc ... zk0 R
k0× d . Pseudo labels V1 then can be

assigned by:

vn = arg min "xĖn Ī zc"2. (8)
cԜ[1,k0]

Af ter extending V1 to one-hot vectors Vē1 = [vēi] Ԝ
{0, 1}N × k0 , we can estimate its correlation to the original

extracted features XĖ in Eq. 4. A kernel matrix can be used

to estimate the correlations between each pair of dimensions

in Vē1 and XĖ . This paper adopts the simplest linear kernel in
Eq. 4 that can result in the following covariance matrix before
the linear transformation W1 and W2:

Fig. 4. An example of the objective function convergence on the CIFAR-10
dataset.

the deep network with Adam optimization [51], where the

hashing loss is minimised with mini-batch back-propagation.

Ė ē Ė ē T Ė ē
ʅ

Kxx, Kxv ʅ

The network parameter © is updated simultaneously and

K(X , V1) = E([X, V1] [X, V1]) = Kvx, Kvv
, (9) determined in the current loop after convergence. Then, the

network model can generate new image features for the next
where E() denotes a normalisation using the empirical expec-
tation. xx , vv are inner-space correlations and xv, v x are inter-

space. We leave the problem as a generalised function so that

existing kernel methods can be directly applied. In this paper,

we simply use the linear kernel with an analytic solution to

achieve W1:

K KĪ1K W = ɚ2K W , (10)

loop. Those parameters are updated sequentially for T loops

and finally the hash model can be constructed.

D. Scalable Image Retrieval

Using the achieved hashing model, images in the gallery can

be efficiently converted into binary codes by sgn(H(x ; ©)).
xy yy yx 1 xx 1 Given a query image x̄, we can carry out the retrieval by

which is an eigenproblem that can be efficiently addressed by

Matlab toolbox eig(.), where ɚ is the eigenvalue corresponding

to W1.

BR Step: By fixing ©, W1, we interactively solve B and

R in a inner-loop, which is same as that did in ITQ [22].

Initialise R as a random orthogonal matrix, and the Eq. (7)

can be easily solved as,

B = sgn(H(X; ©) + XĖ W1 R), (11)

where, sgn(x) 1 if x > 0 and 1 otherwise. With

fixed B, we can efficiently optimise R using singular value

decomposition (SVD):

ranking its Hamming distances to the images in the gallery

by arg mini sgn((xi ©)) sgn((x ©)) 2 . The overall

method is summarized in Algorithm(1).

IV. EXPERIMENTS

We provide a comprehensive comparison with various

baselines and state-of-the-art methods on three challenging

datasets, the CIFAR-10 color images [52], the NUS-WIDE

dataset [53], and the MIRFLICKR-25K [54] dataset.

A. Datasets

1) CIFAR-10 Dataset: [52] contains 10 classes and

BT XĖ W1 = SOSėT

R = Sė ST,
(12)

each class consists of 6,000 images, leading to a total of

60,000 images. And the dataset is split into two sets, training

set and testing set, with 50,000 and 10,000 images respectively.

where S Rk× k and Sė Rk× k are two unitary matrices,

and O is a rectangular diagonal matrix with non-negative real

numbers on the diagonal. We alternating the above B and R

steps iteratively until convergence. An example of the objective

function convergence is shown in Fig. 4. Hereafter, we can

finally get the final binary code B as the supervision for the

deep hashing model.

© Step: Using the B obtained from the above three stages,

we solve the minimisation problem in Eq. 1 by fine-tuning

We randomly select 100 images from each class, totally

1,000 images, as the testing set, and set the rest 59,000 images

as the training set.

2) NUS-WIDE Dataset: [53] is a real-world web image

dataset, which contains about 270K web images. It is a multi-

label dataset, in which each image is associated with one or

multiple class labels from 81 classes, the number of images in

each class ranges from 5,000 from 30,000. Because the dataset

was download from the Internet, and some of its URLs are

.

=

ѷ
r

×

| |

{ }

Algorithm 1 Unsupervised Deep Hashing With Pseudo Labels

Gong et al. [22]. The iteration time of our deep training in each

loop was set to 1 × 105, and the total loop times T is set to 10.

C. Main Comparisons With State-of-the-Art Methods

In this section, we evaluate our method by four common

metrics and provide comprehensive comparison to the eleven

state-of-the-art baselines: 1) mean average precision(mAP),

which evaluates the overall performance of hashing methods;

2) precision-recall curve, which describes the relationship

between retrieval precision and recall rate; 3) precision at N

retrieved samples, which means the percentage of ground truth

images among top N retrieved samples; and 4) recall rate at N

retrieved samples, which measures the percentage of ground

truth images in retrieved images among all ground truth images

in the query dataset. In this experiment, we use the hashing

toolbox supplied by Yuan et al. [59] and Lu et al. [60] to

compute the mAP value and draw P-R, P-N, and R-N curves,

and give the detailed analysis about the results in the following

subsections.

1) Mean Average Precision: In the query phase, we com-

pute the mean average precision (mAP) to evaluate the

retrieval performance of our algorithm on all three datasets.
The mAP is defined as:

mAP
 1

|Q|

ʅ| Q|
ѵ

1

ʅr

P(i , j)

Ѹ

Ѻ (13)

invalid, furthermore, we use the settings as in [57], the most

frequent 21 concept classes, we can get 159,579 images finally.

We randomly select 2,100 images from the dataset as the test

set, and the remaining images are left as the training set.

3) MIRFLICKR-25K Dataset: [54] contains 25,000 images

with 38 categories as well as their tags collected from Flickr.

Each of images is annotated with more than one label. We

randomly select 1,000 images from the dataset as the test set,

and the left 24,000 images were kept as the training set.

B. Experimental Settings

1) Baselines: We systematically compare our method with

eight state-of-the-art non-deep methods: ITQ [22], PCAH [20],

LSH [13], DSH [55], SpH [44], SH [19], AGH [21], and

SELVE [56], and three deep methods: DH [39], Deepbit [40],

UH-BDNN [41] for retrieval task, all these eleven meth-

ods are unsupervised. All of the non-deep methods and UH-

BDNN [41] in our experiments use the same VGG

[58] fc7 feature as that in our method, and DH [39] and

Deepbit [40] are based the same settings like that in their

original papers.

2) Key Hyper-Parameters: The energy ratio of PCA is

set as 0.98, and the number of clusters k0 is set to 10

for dataset CIFAR-10 and 5 for dataset MIRFLICKR and

NUS-WIDE in main comparisons. For deep training process

of our method, we set the mini-training batches as 20, learning

rate as 2 10Ī6. The iteration time of solving maximum

variance method is set as 50, an example of convergence

is illustrated in Fig. 4, same as the original definition by

where, Q is the size of the query image set, r is the number

of retrieved images from the dataset related to the ith query

image, and P(i, j)is the precision of the top jth retrieved

image of ith query image. In addition, all of the performances

of the baseline and our method are evaluated on four different

length of binary code 16, 32, 48, 64 .

Table I shows our results of mAP on all of the three datasets.

Our method significantly outperforms all of the compared

state-of-the-art methods, which manifest the robustness of our

hash code. The success can be understood by comparing to

the results of three methods in the table. First is the power of

deep model. Compared to LSH, the deep model UH-BDNN

achieved 5-8% improvement. However, due its model is based

on an auto-encoder-like scheme, the learnt hash code is not

structural-aware enough. In comparison, the AGH preserves

data structure by the graph-regularization and achieves better

performance than that of UH-BDNN. The second best method

is ITQ, which performs stabler than AGH on long codes, such

as 48 and 64-bits. This is because the maximised variance in

ITQ benefits the exploration of a higher-dimensional Hamming

space, which makes the safety-bounds between classes wider.

Our framework effectively absorbs the advantages of all the

above mentioned methods. Therefore, both of our shorter and

longer hashing codes achieve the best performance.

From Table 1, we observe that our method is not very

sensitive to the length of the code. From 16 bits to 64 bits,

the performances just vary marginally. Another observation

is that longer code may perform slightly worse, especially

for the dataset NUS-WIDE. The potential reason is related to

the number of real classes and latent classes. Since the NUS-

WIDE is a multi-label dataset, and the number of latent classes

i= 1
j = 1

= { }

TABLE I

IMAGE RETRIEVAL RESULTS (MEAN AVERAGE PRECISION(mAP)) WITH 16 BITS, 32 BITS, 48 BITS AND 64 BITS ON THE CIFAR-10, NUS-WIDE AND

MIRFLICKR-25K DATASETS. THE SCALES OF TEST SET ARE 1K, 2.1K, 1K RESPECTIVELY, AND THE mAPs ARE COMPUTED USING ALL THE

TRAINING SETS. THE PROPOSED METHOD OUTPERFORMS ALL THE STATE-OF-THE-ART METHODS LISTED IN THIS TABLE

Fig. 5. Results of Precision VS Recall Curves on all of the three datasets.

is fixed to be 5 (the reason why we choose 5 latent classes

will be analysed in the following subsection), longer codes

make the intermediate representation non-compact and result

in redundant dimensions, which is same as that in PCAH [20].

In addition, this phenomenon of mAP reduction with code

length growing also appears in AGH [21] and SELVE [56].

2) Precision-Recall: Another popular evaluation protocol

is the precision-recall (PR) curve which plots the preci-

sion and recall rates at different searching Hamming radius

r 0, 1, 2, . . . , k , where k is the length of the binary

codes. Fig. 5 shows the precision-recall curve of each method

with 16, 32, 48, and 64 bits. The first point of the curve stands

