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Abstrac® In order to achieve efficient similarity searching,

Existing unsupervised hashing algorithms can be roughly

hash functions are designed to encode images into lew categorizednto dataindependenmethodsanddatadependent

dimensionalbinary codeswith the constraint that similar features
will have a short distance in the projected Hamming space.
Recently, deep learningbased methodshave become more pop
ular, and outperform traditional non-deep methods.However,
without label information, most state-of-the-art unsupervised
deep hashing (DH) algorihms suffer from severe performance

methods. For the former one, the most widely used algorithm
is Locality-Sensitive Hashing (LSH) [13]. LSH differs from
conventional cryptagphic hash functions because it aims
to maximise the probability of a collision for similar items.
However, with the growing data size and the performance

degradation for unsupervised scenarios. One of the main reasonsrequirement the LSH related methods are proved to be not

is that the adhoc encoding process cannot properly capture the
visual feature distribution. In this paper, we propose a novel
unsupervised framework that has two main contributions: 1) we
convert the unsupervised DH model into supervised byiscover
ing pseudo labels; 2) the framework unifies likelihood maximiza
tion, mutual information maximization, and quantization error
minimization so that the pseudo laels can maximumly preserve
the distribution of visual features. Extensiveexperimentson three

robust in many challengingcenarios.

To generate compact and effective binary codes,-data
dependent methods have gained increasing attention.
Unsupervised methods like Spectral Hashing (SH) [19],
Principle Component Analysis Hashing (PCAH) [20], Anchor
Graph Hashing (AGH) [21], Iterative Qu@zation (ITQ) [22],

popular data sets demonstrate the advantages of the proposed@nd Kernel Hashing [23], [24] can achieve impressive

method, which leads to significant performance improvement
over the stateof-the-art unsupervised hashing algorithms.

Index Terms Image retrieval, unsupervised hashing, pseudo
labels.

I. INTRODUCTION

AST similarity searchis one of the fundamentafrequire
ments for largescale visual informatioretrieval appli
cations [1] [10]. Hashing, the most widelysedmethod,
usually exploits highdimensional visual feature spatoefind
a similarity-preserved lowdimensional HammingpaceHash
codes enormously reduce the requiremerstofagespace
and improve the computational efficiency. Recenthgreare
many hashing methods [11] 8] that have achieveexcellent
performance.

performance. Even though these methods can get good
performance, they still can not satisfy the demanded accuracy
of image retrieval.

Therefore, lots of supervised methods were psedoto
improve retrieval accuracy, e.g. Canonical Correlation Analy
sis ITQ (CCAITQ) [22], Supervised Semantipgeserving
Deep Hashing (SSDH) [26], Quantization Based Hashing
(QBH) [27], which are all trained with labelled samples and
can achieve greaimprovement in performance-dowever,
these works are all supervised with real labels. Since human
annotation is expensive to acquire, it is unrealistic to expect
the largescaled data to be wdlbelled. Thus, unsupervised
hashing methods still remain ttiecus.

Earlier unsupervised binary coding methods often use-hand
craft features such as GIST [1], [28] and SIFT [29], [30],
which can make hashing methods achieve good performance,
but still not very satisfactory for our applications. Fortunately,
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deep learning [31]34], hashing methods turn to extract deep
features automatically using Convolutional Neural Network

EE’ZNN) descriptorg35]i [38], whichinherit high discriminative

property and often getateof-the-art performanceHowever,
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only make the binary codes have large variance, but can not
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reconstruction layer after the binary code layer, which can
obtain the semantics of the images, but stilh gaot get
the category information, which is more important tttae
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Fig. 1. Comparison of learnt binary codes of stdtéhe-art methods on the CIFARO dataset using3NE [25] with true class labels. (a) AGH. (b) PCAH.
(c) ITQ. (d) Qurs.

semantics for image retrieval, and the experimental resuwdte in the same colour. Our contributions can be summarised
reportedin their original literatures and this paper can alsas follows.
showthis point. Thereforejt is necessaryo find outthevisual 1) In order to leverage the power of supervised deep

feature distribution for unsupervisédshing. hashing model on unsupervised scenarios, this paper
In this paper, a novel hashing method is proposed to proposes to discover pseudo labels for a number of

discover pseudo labels to trainsapervised deep network to grouped instances with a particudastribution.

solve the unsupervised problem. This method integrates foup) A unified framework is proposed so that the discovered

advantages of current algorithimk), Likelihood Maximisa- pseudo labels are more close to the true labels of

tion methods assume the instances in different classes share instances.
some latent attributes, in order to ensure theeugs labels  3) The proposed unified framework can incorporate differ

can truly reflect the distribution of the real class labels, lkeli ent favourable learning objectives, which can make the
hood maximisation is used to maximise the joint distribution  learnthashcoderobustto more generalisedasks.
between visual features and pseudo lab&JsQuantisation |n this paper, we select three criteria to learn the hash codes,

Error Minimisation methods [20] are proposed for bettewhich correspond to three different hashing methods:- max
quantization. One of the stadé-the-art method ITQ [22], imising the likelihood to get the approximate distribution of
which used orthogonal rotation matifikto project each datareal visual features [42]; maximising the cortigla between
point to the nearest vertex of the binary hypercube, and thiga input visual features and the variance so that the learnt
R is updated to minimise the quantization loss according Hgsh code can have safer boundaries in the Hamming distance
this assigment.3) Correlation Maximisation approaches,  space [22]; and the power of supervised Deep model [39]. Our
e.g.ITQ-CCA [22], aim to maximise the correlation betweemethod have some similar steps to GO, but actually
binary code and visual featud). Deep Hashingavoids to use they are different, since our method is unsupervised while
handcrafted features such as GIST [1], SIFT [29], and makeCA-ITQ is supervised. Furthermore, quantisation error-min
the feature extraction and encoding into a unified-erend jmisation and correlation maximisation are just partial steps
model. of our method, and the aim of our method is to combine the
Although promising progress has been achieved, forag@vantages of statf-the-art methods to train a deep network
realistic scenario, in Fig. 1 we show that only a singlgr hashingMoreover,in extensiveexperimentsye provethat
method can hardly achieve stable and satisfied performangeingle one of the above methods cannot fully address all of
One of the main reasons is that a single method mighttRe scenarios. By incorporating these criteria into our unified
designed for a particular scenario, which may suffer froffamework, the resultant hash code is more robust for-arge
severegperformancalegradationsn othertasksunderdifferent  scale retrieval tasks on differenenchmarks.
assumptions. ThAGH (Fig. 1 (a)) preserves the likelihood The rest of thipaper is organised as follows. In Section II,
of input visual feature but cannot make the learnt binary cagle give a brief review of recent hashing methods. The details
morediscriminative. Onthecontrary PCAH (Fig. 1 (b)) makes of our method are described in Section Il. Section IV reports

all of the instances are discriminative to each other, but cofile experimental results. Finally, we conclude this paper in
pletely loses the struatai information. The statef-the-art Section V.

ITQ demonstrates a balance between structure preserving and
discrimination.However,without label information, IT@ould

not further improve the binary code according to real class
distributions.Towardsmore robust &shing model, this paper Learning based hashing methods compute binary code by
proposes a unified framework that can effectively incorporaggploiting the training data and its corresponding semantic
the advantages of these methods. The resultant hash ¢aldels and can avoid the disadvantages of-iatependent
can simultaneously capture various preferred characteristigthods such as LSH [13], which encodes input data so that
as shown in Fig. 1 (d). Furthermore, by propgspseudo similar data were pregted into the same buckets with high
labels, our binary code is not only robust but can approximat@bability, and this type of methods were proved not robust.
the distributionof true classedabels,i.e. mostof the clusters The learning based hashing methods can be divided into three

II. RELATED WORKS



categories according to the degree of semantic labels used:the semantic information, and then exploits ITQ to -min
unsupervisegdsemisupervised, and supervised. imise the quantization error. The Supervised Discrete Hashing
For the first category, label information of training data SDH) [11] compute the hash codes withe preservation
not required in the entire training process of unsupervisefdsemantics with the intention for classification. Based on
methods, which try to keep the similarity information betwee3DH, X. Shiet al. proposed to exploit kernel based method
training samples in the original sgawhen the samples wereKernetbased Supervised Discrete Hashing (KSDH) [48] to
projectednto Hammingspace Representativalgorithmssuch improve the performancélo solve the problem of Nard
as SH [19], PCAH [20], ITQ [22], Kernelized Locality optimisation and computational complexity in graph based
Sensitive Hashing (KLSH) [43AGH [21], Spherical Hashing method, Asymmetric Discrete Graph Hashing (ADGH) [49]
(SpH) [44], KMeans Hashing (KMH) [42], can get prettywas proposed by preserving the asymmetric discrete constraint
goad performance. SH [19] generates efficient binary codasd building an asymmetric affinity matrix to learn compact
by spectral graph partitioning. Additionally, PCAH [20] andinary codes. AdditionallySSDH [26] constructs hash func
its orthogonal projection variant [22] have been proposed t@ns as a latent layer in a deep network and the binary codes
better quantization. The method ITQ exploits a simple aatk learned by minimising an objective function defined over
efficient alternatig minimisation scheme to find a rotatiortlassificationerror.
of zerocentred data to minimise the quantization error of
mapping this data to the vertexes of a zeeotred binary A. Deep Hashing Methods
hypercube. Kulis and Grauman [43] proposed a kernelisedn learning based hashing methods, deep learning based
version of LSH, namely KLSH, which @lscomputes random methodsform a specialgroupin this area, sowe discusst here
projections, as standard LSH does, but these random projggparatelyTo our knowledge, Semantic Hashing (SmH) [50]
tions are constructed using only the kernel function andisahe earliesteffort to usedeepnetworkto learnhashfunction.
sparsesetof exampledrom thedatabasdself, whichis differ- |t compute hash codes by passing an unlabelled image through
ent from standard LSHIo achieve less time complexity anda stacked Restricted Boltzmann Machi{B8Ms).
better applicability, and also inspired by the spectral hashingrhe unsupervised deep hashing methods, Deep Hashing
method,AGH [21] was introduced to utilise Anchor GraphgDH) [39] and Deep compact binary descriptor (Deepbit) [40]
to obtain tractable lowank adjacency matrices and it camlso use deep network fégarning compact binary code. DH
automatically discover the neighbourhoadhérent structure develop a deep neural network to seek multiple hierarchical
in the training data. Heet al. proposed a hyperplasissed nonlinear transforms to learn binary codes. In this method,
hash function, called Spherical Hashing [44], which -miDH employs three constraints as follow at the top layer of
imises the spherical distance between the originatvaaked the deep network: 1) the loss betwekea original reavalued
features and the learned binary codes, this distanetics feature and the learned binary vector is minimised, 2) the
is also called spherical Hamming distance. KMH [42] usB#ary codes distribute evenly on each bit, and 3) different
an affinity-preserving Kmeans algorithm to simultaneouslbits are as independent as possible. DH also has its-super
performs kmeans clustering and learns the binary indices wiged version, which includes one discriminativenteinto
the quantized cells and exploits the Hamming distance of digective function and simultaneously minimises the intra
cell indicesto approximatethe distancebetweenthesecells.  class differences and maximises the hdleiss difference of
For the second category, sesuipervised methods uséearned binary code. On the basis of DH, Deepbit adds another
information from both labelled training data and unlabellesbnstraint, rotation invariant, to the final loss function, and
training data. One of the typical methods of this categeghieve a slight boost on the performance. &oal. [41]
is Semisupervised Hashing (SSH) [45], which minimisegropose a Binary Deep Neural Network (BDNN), which has
empirical error over th pairwise labelled data and maximisesoth unsupervised and supervised versions. BDNN introduces
the variance over both labelled amdabelled sets. one hidden layer to directly output the binary codes and
For the third category, the semantic label information efien utilises the binargode layer to reconstruct the original
each sample is fully used in learning more efficient binafyature. Through optimising the sum of reconstruction loss,
representations, thus better performance tharunsupervised independence constraint loss, and balance constraint loss,
and the semsupervised methods can be achieved. For exaBDNN can get a little improvement with respect to DH. The
ple, Binary Reconstructive Embedding (BRE) [46] utilisegcent statef-art method is SupervideSemantigoreserving
pairwiserelationsbetweerdatasamplego minimisetherecon  Deep Hashing (SSDH) [26], which assumes that the semantic
struction error between the original Euclidean space and taels are governed by several latent attributes. Based on
learned Hamming space. QBH [27] incorporates quantizatigils assumption, SSDH constructs hash function as a latent
error reduction methods into conventional property preservigger in a deep network and learns the binary codes by
hashing methods. Norouzi and Fleet [47] presented a hashimising an objective function combined by classification
function cdled Minimal Loss Hashing (MLH) to computeerror, independent property, and balance property like those in
binary codes by minimising the empirical loss between th&thodBDNN.
learnedHammingdistanceandthe quantizatiorerror.ITQ also
has its supervised version called GCAQ [22], which utilises Ill. METHODOLOGY
Canonical Correlation Analysi€CA) with label information et X = [xq; ... ; Xn} ... ; Xn ] WRN*W*hpe the training
to reducethe dimensionof original featureswhile preserving set which contain! image samples, whexa WRY* s
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Fig. 2. Main Framework of Unsupervised hashing method with Pseudo Labels. The discovered pseudo label codes apenssimadas finetuning
the deephashingnetworklike existing supervisednethods.The total procedures executedfor T timesrecurrentlyto find betternetwork model.

=
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the n-th image sample iX, and has the dimension & h. convl_1Iconv5_%each one followed by ReLUlayer), pool

Hashing methods aim to learn a hash funckg@p: y  \ inglayersandfirst two fully connectedayersfc6, andfc7. The

{ L 1}N"kto project each sample into a compact binary codeelLU layer afterfc7 is removed. Then, the findt8 layer is

b, = H (Xn), wherek is the target binary codkength. substituted by the objective binary code followed btaiah
Figure 2 illustrates the framework of our method. Thenction to constrain théearnt codes to fall withif T 1, 1).

fundamentalssueis howto obtainclasslabelsduringtraining. In orderto retainthe excellenttraining modelof ImageNetwe

In supervised methods, the class labels are used to guide iffiitkaconvl_1conv5_3and releaséc6i fc8 to be trainable. The

class instances to be encoded closerBinFor improved detailed configuration of the network is illustrated in R3g.

performancainderunsupervisedcenariosthis papemproposes  However,the fundamental difficulty is the lack of super

to discover latent pseudo labels that can maximumly refletsion. In other words, the vital objectiv@ of the above

the data distribution. Correspondingly, we adopt three of tlearningfunctionis missing.Randomcodeallocation,e.g.[39]

most important criteria to align the latent labels multiple can make the resultant code completely lose the original

times. Firstly, the latent label; W RN ko maximise the data structure. Motivate by this, we investigate a unified

likelihoodto the visual feature X yRN*9, whichis extracted  framework to discover pseudo labels that can maximumly

from visual sampleX. However, in most scenarios, stablepreserve the original distribution, which will be introduced

performance often results from a smaller number of laterext.

labels,i.e. k < k, which may lead to severe information

loss. Therefore, the next step discovers an adequate nu :

of latent classe¥. R * K that cFe)m preserve the ma>c<1imum ngj'%seUdo Labelpiscovery

mutual information, wherék is used as the length of final Pseudo labels of latent classes can be achieved by linear

hash codes. Finally, the latent labels are converted into bin@fynortlinear combinations of the real classes according to

codes that can preserve the distributioVefn the meantime the intrinsic data distribution. Ideally, instances from the

maximising the overall variance so that the final hash codi@ne class should be closer in the pseudo label space. How

are more discriminative. Hereaftene can recurrently train €Vver, without the guidance of true class labels, conventional

deep hashing models using the discovered latent label cod@sipervised hashing methods often suffer from the severe
like supervisednethods. discrepancy between the pseudo and real labels. One of the

main reasons is that a preferred encoding procedure often
. requires ensuring different itgria at the same time, which
A. Deep Hashing/odel makes the optimisation intractable to solve. In this paper, we
Our deep hashing model is initialised by using the- prgropose a unified framework that sequentially discovers latent
trained VGG16 parameters. Although the model is trained Qflasses that are aligned with the visual data at multiple time.
the largescale ImageNet dataset, the extracted visual featupefch step corresponds to an optatiisn based on a specific
are not readily applied to learn hashing codes. Firstly, orgg@erion.
different dataet, some of the involved classes are not present) Feature Extraction and Dimension ReductiolVe first
in ImageNet, thus only using pteained model to extract extract the visual features from training images usingfdfie
features may degrade the performance. Secondly, the iniiglers of the prerained Model. The dimensionality of visual
classification model may not perform the best for learnifgatures is 4096 that is much larger than the required length
binary codes. Therefore, wemsider to trim the model usingof binary codesTo enhance the discriminative property and
the followed loss function: reduce the computational cost, we first generate a compact
o T om = ONXK feature whee the variance of every variable is maximised,
J="HEGO)T B'E stBW LI+ (1) the variables are uncorrelated paisely, and the redundancy
where© is the parameter space of the deep hashagd noise are removed. This can be realised by Principle
model. Specifically, our model uses all the convolutayrers  Component Analysis (PCA) easillowever,in order to
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Fig. 3. Configuration of the deep hash model. The convolutional layers are fixed and the full connection layers are reless@didebe

achieve the expected length of codes, conventional methdalel can be aligned to corresponding visual feature space to
suchasPCA-Hashing[20], directly reducethedimensionfrom  preserve both the discriminative and intrinsic data distribution.

4096 to binary code lengthregardless the loss of importaniye first extend pseudo labds into onehot vedors: ¥1 =

propertypreserving information. In comparison, @eheme  [¢h] W {0, 1}N*k0, where ¢'n= 1 fori = v, and¥ & O
allows to retain as many PCA components as possible, atfterwise. Given the visual featuresafter PCA Y WRN*d |
shorter codes can be obtained in later stages. Therefore, we maximise the correlation function:

use the percentage of retained variance as criterion like the : . < )EWl, A
most traditional usage of PCA. The resultant representationlis = max Corr (%Wi, YiWs) = max ,

the extractedvisual feature ¥ of our framework. Wi, W2 W W MR N WS
2) Pseudo LabeldVith Maximum Likelihood:Due to the (4)
widely existing intraclass variance, a class label Oﬂen'co{}vhere Wi RS %K | W, g% K are the parameters for linear

responds to several different latent distributions. Also, SOm&stormations. Hereby, the visual features can be converted

classes may share the same latent distribution. For exampliﬂtda he embedded pseudo label space in the final desire
6pl aned and a O6birdé6 Shem"e’edirﬁehsﬁonalft) > at Br es ofIO éwnl ngs%. ther

the ideal number of latent labels may not always equal to

that of real classes. A typical solution is to find a set of Vo= YW, (5)
latent classe& z =.. [Z ;.. Zothat canmaximise 4) Maximum Variance:In the Jast stage. we. convht
the likelihood to the visual data distributiare. to generate into b|nary co es_a[n order to m?nim?se t q'ug}{]tisatio\r/] error

visual features using several latent distributions. Suppose there . i
is ako number of latent classes, where each visual instance "sgn(v)l v"% between generated binary cod@saindVz, we

belongs to one of the latent class. By assuming unifornf@PPt the ITQ algorithm to find mtation matrixR w R
prior p(Z) 4 , taking the Bayesbd tthﬁt ca :c1I|gn\m§ b'nﬁl% qp%es tQ theenea§e§t Yerex 9f W% od

function: hypercube:
EYRCS L= "BT V2R'2, St RR'= I, (6)
Pz R = pKz)= 109 p(&|z). 2

where,"-" ¢ denotes the Frobenius norky is zerecentred,
| is the identity matrixi.e. lij = 1 if and onlyf i = j.

Using theZ with the maximised likelihood, we can assign Considering all of the three losses, Eq. 1 can be modifted
eachof the visual features ¥ to a latent class in Z by  the following objective function:

maximising the marginal probability mass functidn: =

p(%, Z| V1), where V; = [vn+ W [1, ko] is the pseucb label mn  vH(x;©)1 B"F+ "BT YW, R":2
spacewith ko latentclasses. The eachpairedv, of ¥ canbe ©,B, RW1
achieved by: st.BW {LF1N*K RRT = |, (7)
Vn = arg maxp(z ). 3) o
W1, ko, c C. Optimisation

3) Maximum Correlation Label Embeddinghe aboveV: The above objective function has four variab®sB, R,
only contains generative distributione. shared similarities Wi, and the function is a nesonvex problem with the binary
between real classes. In the second stage, we discoverlandiorthogonal constraints. As we have known that there is no
latent label embedding space so thatdimgle valued pseudo direct method to solve the problem of Ef.



Therefore, for each loop, we propose an alternating strategy

that in turn optimise§V,, interactively updateB andR, and 0975
finally optimise ©. The overall optimisation usually takes a 057
few iterations for a specific bit size which we summarise as
follows. 0.565

R Wi Step By first fix the parameters of the ptained
deep model©, we can discover latent classes that can 056
maximise the likelihood of the extracted visual features in 0.555 \4

Eq. 2. In this paper, we simply adopt tKe-means algo UV
rithm as the geerative model to solve the equation. This 0.55 | M
can be simply implemented by findikgcentroidsZz = M | ”" A'AA Lot T s

[215.. Z;... 7RI Y] Rseudo labed; then can be 0.545 'VUWALV\MPVAV'VWW WWWW"W’W W\W\j‘JWWNHW

assigned by: 054 ‘

Function Loss

Vo= ag min &1 z"%, (8)
cW1 kq] 0535 |

50 100 150 200

After extendng Vi to onehot vedors ¥1 = [¢'] W lterations

{0, YN*ko e can estimate its correlation to the original

extractedfeatures € in Eq. 4. A kernel matrix can be used Fig. 4. An example of the objective function convergence on the GIERAR
e dataset.

to estimate the correlations between each pair of dimensions

in ¥1 and Y. This paperadoqs the simplest linear kernelin
Eqg. 4 that can result in the following covariance malbréfore the deep network with Adam optimization [51], where the

the linear transformatiow; andW;: 1 hashing loss is minimised with mibiatch backpropagation.
E é EEcTEe& 1 Koo Ky The network paramet@ is updated simultaneously and
K(X,V1) = E([X,V1] [X, Vi]) = Ky, Ky (9) determined in the current loop after convergence. Then, the

network model can generate new image features for the next

whereE( ') denotes a normalisation using the empirical expegoop. Those parameters are updated sequentially lfawps
tation. K , wKare innefspace correlations and K « ake intef - and finally the hash model can be constructed.

spaceWe leave the problem as a generalised function so that
existing kernel methods can be directly applied. In this Papgr,

we simply usethe linear kernel with an analytic solution to Scalable ImageRetrieval

achievew: . Using the achieved hashing model, images in the gallery can
K K'IK W = &K W, (10) be efficiently converted into binary codessyn(H(x ; ©)).
xyyy Yx1 xx1 Given a query image X, we can carry out the retrieval by

which is an eigenproblem that can be efficiently addressedB§king its Hamming distances to the irrzlages in the gallery
Matlab toolboxeig(.), wherea:is the eigenvalue correspondind®y arg mim'sgn(Hx ©)) ggn( (H ©)) “'¢ The overall

to Wh. method is summarized ilgorithm(1).
R BR Step: By fixing ©, Wi, we interactively solv@® and
R in a innerloop, which is same as that did in ITQ [22]. IV. EXPERIMENTS
Initialise R as a random orthogonal matrix, and the Eq. (7)We provide a comprehensive comparison with various
can be easily solveds, baselines and statd-the-art methods on three challenging
: datasets, the CIFARO color images [52], the NU®/IDE
B = sgn(H(X:; ©) + W:R), (11)  gataset [53], and the MIRFLICKR5K [54] dataset.

where, sgnx) =1 if x > 0 and [1 otherwiseWith
fixed B, we can efficiently optimis® using singular value p patasets

decomposition (S_VD)'_ 1) CIFAR10 Dataset: [52] contains 10 classeand
BTYXw, = SO€T each class consists of 6,000 images, leading to a total of
R= &sT (12) 60,000 images. And the dataset is split into two sets, training
. setandtestingset,with 50,000and10,000magesespectively.
where S w RK*K and § \ R¥*X are two unitary matrices, We randomly select 100 images from each class, totally
andO is a rectangular diagonal matrix with roegative real 1,000 images, as the testing set, and set the rest 59,000 images
numbers on the diagonalVe alternating the abovB andR as the traininget.
stepgterativelyuntil convergenceAn exampleof theobjective 2) NUSWIDE Dataset [53] is a realworld web image
function convergence is shown in Fig. 4. Hereafter, we cdataset, which contains about 270K web images. It is a-multi
finally get the final binary cod® as the supervision for thelabel dataset, in which each image is associated with one or
deep hashinmodel. multiple class labels from 81 classes, the number of images in
R © Step: Using theB obtained from the above three stagesach class ranges from 5,000 from(8®),. Because the dataset
we solve the minimisation problem in Eq. 1 by fitoaing was download from the Internet, and some of its URLs are



Algorithm 1 Unsupervised Deep Hashing With Pseudo Lab&rPnget al.[22]. The iteration time of our deep training in each
loop was set to ¢ 10°, and the total loop timeBis set to 10.

Input:
Tralining image set X Hyper-parameters: k. ko. T, Ini- = Main Comparisons With Statkthe-Art Methods
tialised B; . o _ In this ction, we evaluate our method by four common
Pre-trained net model inlcuding initialized ©; . . . -
Output: metrics and provide comprehensive comparison to the eleven
o ) stateof-the-art baselines: 1) mean average precision(mAP),
Network parameters ©. . .
. A which evaluates the overall performance of hashing methods;
I: for each i € [1.7] do . ; . ) :
) B . . . 2) precisionrecall curve, which @scribes the relationship
Feature Extraction and Dimension Reduction: . . g
) e . ) ) between retrieval precision and recall rate; 3) precision at N
Extract fe7 feature from X using net parameters O, . .
. . o e P retrieved samples, which means the percentage of ground truth
Reduce dimension of fc7 feature from 4096 to d with . . .
PCA. and et X images among top N retrieved samples; and 4) recall rate at N
M--mi]numDLikclifmmP retrieved samples, which measures the peeacge of ground
. R R truthimagesdn retrievedimagesamongall groundtruthimages
Latent class discovery using Eq. 2; . . - .
C P in the query dataset. In this experiment, we use the hashing
“ompute V| using Eq. 8; .
4 Maximum Correlation: toolbox supplied byYuan et al. [59] and Luet al. [60] to
Compute T using Eq. 9, 10; co:jnp_ute I’:hz mA.\lPdvalule a_mdbdrah ’ P-Nl’ E.mth?I Il(:uryes,
Compute Vs using Eq. 5; anbglve_t edetailedanalysisabouttheresultsin thefollowing
Maximum Variance: subsections. ..
1) Mean AveragePrecision: In the query phase, we cem

Repeat until converge .
Fix R, update B using Eq. 11: pute the mean average precision (mAP) to evaluate the

[Re]

[9%)

n

Fix B, update R using Eq. 12; fsgge%%g%rfgé?ﬁggggf our algorithm on all thidstasets.
6:  Deep Hashing: ' ~ Oy
Update the parameters of fea-fe& © using Eq. 1; mAP 1 xQ 1 P(i ')C) (13)
7: end for = A~ -]
8: return O; QW N
- \7
i=1 r

j=1
where,|Q is the size of the query image setis the number
of retrieved images from the dataset related toitfhejuery
?r%tage, andP(i, j )is the precision of the topth retrieved
image ofith query image. In addition, all of the performances
5#3he baseline and our method are evaluated on four different
length of binary code{162, 48, 64.}
Tablel showsour resultsof mAP onall of thethreedatasets.
ur method significantly outperforms all of the compared
Steof-the-art methods, which manifest the robustness of our
ﬁaeéh code. The success can be understood by comparing to
the results of three ethods in the table. First is the power of
_ ) deep model. Compared to LSH, the deep modetBIHNN
B. ExperimentalSettings achieved 8% improvementHowever,due its model is based

1) Baselines:We systematically compare our method witton an auteencodeilike scheme, the learnt hash code is not
eightstateof-the-artnondeepmethodsiTQ [22], PCAH[20], structuralaware enough. In comparisonetAGH preserves
LSH [13], DSH [55], SpH [44], SH [19]AGH [21], and data structure by the grapegularization and achieves better
SELVE [56], and three deep methods: DH [39], Deepbit [40performance than that of UBDNN. The second best method
UH-BDNN [41] for retrieval task, all these eleven methis ITQ, which performs stabler tha&GH on long codes, such
ods are unsupervised. All of the rdaep methods and UH as 48 and 64its. This is because the maximised variance in
BDNN [41] in our experiments use the saM&G ITQ benefitstheexplorationof a higherdimensionaHamming
[58] fc7 feature as that in our methodnd DH [39] and space, which makes the saféstyunds between classes wider.
Deepbit [40] are based the same settings like that in th@ir framework effectively absorbs the advantages of all the
original papers. above mentioned methods. Therefore, both of our shorter and

2) Key HyperParameters:The energy ratio of PCA islonger hashingodes achieve the bgsrformance.
set as 0.98, and the number of clusteysis set to 10 From Table 1, we observe that our method is not very
for datasetCIFAR-10 and 5 for dataset NRFLICKR and sensitive to the length of the code. From 16 bits to 64 bits,
NUS-WIDE in main comparisons. For deep training procefise performances just vary marginally. Another observation
of our method, we set the mitraining batches as 2@arning is that longer code may perform slightly worse, especially
rate as2 x 10 6. The iteration time of solving maximum for the dataset NUSVIDE. The potential reason is related to
variance method is set as 50, an example of convergegheenumber of real classes and latent classes. Since the NUS
is illustrated in Fig. 4, same as the original definitimn WIDE is amulti-labeldatasetandthe numberof latentclasses

invalid, furthermore, we use the settings as in [57], the m
frequent21 conceptlasseswe canget159,579magedinally.
We randomly select 2,100 images from the dataset as the
set,andthe remainingimagesare left asthe training set.

3) MIRFLICKR25K Dataset:[54] contains 25,000 images
with 38 categories as well as their tags collected from Flic
Each of images is annotated with more than one label. :g

and the left 24,000 images were kept agthi@ing set.



TABLE |

IMAGE RETRIEVAL RESULTS(MEAN AVERAGE PRECISIONMARP)) WiTH 16 BiTs, 32 BTs, 48 BTs AND 64 BiTs oN THECIFAR-10, NUSWIDE AnD
MIRFLICKR-25K DATASETS. THE SCALES OFTESTSETARE 1K, 2.1K, 1K RESPECTIVELY, AND THE MAPS ARE COMPUTEDUSING ALL THE
TRAINING SETS. THE PROPOSEDMETHOD OUTPERFORMSALL THE STATE-OFTHE-ART METHODSLISTED IN THIS TABLE

mQ [22]
PCAH [20]
LSH [13]
DSH [55]
SpH [44]
SH [19]
SEIVE [56]
AGH [21]
DH [39]
UH-BDNN [41]
Deepbit [40]
Our Method

--|TQ-+PCAH ¢ LSH+DSH = SpH »SH-e-SELVE +AGH = UN-BDNN -+ Deepbit -.-Our Method

Fig. 5. Results of Precision VS Recall Curves on all of the three datasets.

is fixed to be 5 (the reason why we choose 5 latent classe®) PrecisiorrRecall: Another popular evaluation protocol
will be analysed in the following subsection), longer codés the precisiosrecall (PR) curve which plots the preci
make the intermediate representation-sompact and result sion and recall rates at differesgarching Hamming radius
in redundant dimensions, which is same as that in PCAH [20[- ¥, 2, ... , k j}wherek is the length of the binary
In addition, his phenomenon of mAP reduction with codeodes. Fig. 5 shows the precisi@tall curve of each method
length growing also appearsA@GH [21] and SELVE[56]. with 16, 32, 48, and 64 bits. The first point of the custends



