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Abstractð In order to achieve efficient similarity searching, 
hash functions are designed to encode images into low- 
dimensional binary  codes with the constraint that similar  features 
will have a short distance in the projected Hamming space. 
Recently, deep learning-based methods have become more pop- 
ular, and outperform traditional non -deep methods. However, 
without label information, most state-of-the-art unsupervised 
deep hashing (DH) algorithms suffer from severe performance 
degradation for unsupervised scenarios. One of the main reasons 
is that the ad-hoc encoding process cannot properly capture the 
visual feature distribution. In this paper, we propose a novel 
unsupervised framework that has two main contributions: 1) we 
convert the unsupervised DH model into supervised by discover- 
ing pseudo labels; 2) the framework unifies likelihood maximiza- 
tion, mutual information maximization, and quantization error 
minimization so that the pseudo labels can maximumly preserve 
the distribution  of visual features. Extensive experiments on three 
popular data sets demonstrate the advantages of the proposed 
method, which leads to significant performance improvement 
over the state-of-the-art unsupervised hashing algorithms. 

Index Termsð Image retrieval, unsupervised hashing, pseudo 
labels. 

 

I. INTRODUCTION 

AST similarity search is one of the fundamental require- 

ments for large-scale visual information retrieval appli- 

cations [1]ï[10]. Hashing, the most widely used method, 

usually exploits high-dimensional visual feature space to find 

a similarity-preserved low-dimensional Hamming space. Hash 

codes enormously reduce the requirement of storage space 

and improve the computational efficiency. Recently, there are 

many hashing methods [11]ï[18] that have achieved excellent 

performance. 
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Existing unsupervised hashing algorithms can be roughly 

categorized into data-independent methods and data-dependent 

methods. For the former one, the most widely used algorithm 

is Locality-Sensitive Hashing (LSH) [13]. LSH differs from 

conventional cryptographic hash  functions  because  it  aims 

to maximise the probability of a collision for similar items. 

However, with the growing data size and the performance 

requirement, the LSH related methods are proved to be not 

robust in many challenging scenarios. 

To generate compact and effective binary codes, data-

dependent methods have gained increasing attention. 

Unsupervised methods like Spectral Hashing (SH) [19], 

Principle Component Analysis Hashing (PCAH) [20], Anchor 

Graph Hashing (AGH) [21], Iterative Quantization (ITQ) [22], 

and Kernel Hashing [23], [24] can achieve impressive 

performance. Even though these methods can get good 

performance, they still can not satisfy the demanded accuracy 

of image retrieval. 

Therefore, lots of supervised methods were proposed to 

improve retrieval accuracy, e.g. Canonical Correlation Analy- 

sis ITQ (CCA-ITQ) [22], Supervised Semantics-preserving 

Deep Hashing (SSDH) [26], Quantization Based Hashing 

(QBH) [27], which are all trained with labelled samples and 

can achieve great improvement in performance. However, 

these works are all supervised with real labels. Since human 

annotation is expensive to acquire, it is unrealistic to expect 

the large-scaled data to be well-labelled. Thus, unsupervised 

hashing methods still remain the focus. 

Earlier unsupervised binary coding methods often use hand- 

craft features such as GIST [1], [28] and SIFT [29], [30], 

which can make hashing methods achieve good performance, 

but still not very satisfactory for our applications. Fortunately, 

at near recent, on account of great development in the area of 

deep learning [31]ï[34], hashing methods turn to extract deep 

features automatically using Convolutional Neural Network 

(CNN) descriptors [35]ï[38], which inherit high discriminative 

property and often get state-of-the-art performance. However, 

most state-of-the-art unsupervised deep hashing algorithms 

[39]ï[41] suffer from severe performance degradation due to 

lack of label information, e.g.  DH  [39]  and  Deepbit  [40] 

use quantisation loss and evenly distribution loss, which can 

only make the binary codes have large variance, but can not 

get the real distribution of the data, UH-BDNN [41] adds a 

reconstruction layer after the binary code layer, which can 

obtain the semantics of the  images,  but  still  can  not  get  

the category information, which is more important than the 
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Fig. 1. Comparison of learnt binary codes of state-of-the-art methods on the CIFAR-10 dataset using t-SNE [25] with true class labels. (a) AGH. (b) PCAH. 
(c) ITQ. (d) Ours. 

 

semantics for image retrieval, and the experimental results 

reported in their original literatures and this paper can also 

show this point. Therefore, it is necessary to find out the visual 

feature distribution for unsupervised hashing. 

In this paper, a novel hashing method is proposed to 

discover pseudo labels to train a supervised deep network to 

solve the unsupervised problem. This method integrates four 

advantages of current algorithms, 1) Likelihood Maximisa- 

tion methods assume the instances in different classes share 

some latent attributes, in order to ensure the  pseudo labels  

can truly reflect the distribution of the real class labels, likeli- 

hood maximisation is used to maximise the joint distribution 

between visual features and pseudo labels. 2) Quantisation 

Error Minimisation methods [20] are proposed for better 

quantization. One of the state-of-the-art method ITQ [22], 

which used orthogonal rotation matrix R to project each data 

point to the nearest vertex of the  binary hypercube, and then 

R is updated to minimise the quantization loss according to 

this assignment. 3) Correlation Maximisation approaches, 

e.g. ITQ-CCA [22], aim to maximise the correlation between 

binary code and visual feature. 4) Deep Hashing avoids to use 

hand-crafted features such as GIST [1], SIFT [29], and make 

the feature extraction and encoding into a unified end-to-end 

model. 

Although promising progress has been achieved, for a 

realistic scenario, in Fig. 1 we show that only a  single  

method can hardly achieve stable and satisfied performance. 

One of the main reasons is that a single method might be 

designed for a particular scenario, which may suffer from 

severe performance degradations on other tasks under different 

assumptions. The AGH (Fig. 1  (a)) preserves the  likelihood 

of input visual feature but cannot make the learnt binary code 

more discriminative. On the contrary, PCAH (Fig. 1 (b)) makes 

all of the instances are discriminative to each other, but com- 

pletely loses the structural information. The state-of-the-art 

ITQ demonstrates a balance between structure preserving and 

discrimination. However, without label information, ITQ could 

not further improve the binary code according to real class 

distributions. Towards more robust hashing model, this paper 

proposes a unified framework that can effectively incorporate 

the advantages of these methods. The  resultant  hash  code 

can simultaneously capture various preferred characteristics, 

as shown in Fig. 1 (d). Furthermore, by proposing pseudo 

labels, our binary code is not only robust but can approximate 

the distribution of true classes labels, i.e. most of the clusters 

are in the same colour. Our contributions can be summarised 

as follows. 

1) In order to leverage the power of supervised deep 

hashing model on unsupervised scenarios, this paper 

proposes to discover pseudo labels for a number of 

grouped instances with a particular distribution. 

2) A unified framework is proposed so that the discovered 

pseudo labels are more close to the true labels of 

instances. 

3) The proposed unified framework can incorporate differ- 

ent favourable learning objectives, which can make the 

learnt hash code robust to more generalised tasks. 

In this paper, we select three criteria to learn the hash codes, 

which correspond to three different hashing methods: max- 

imising the likelihood to get the approximate distribution of 

real visual features [42]; maximising the correlation between 

the input visual features and the variance so that the learnt 

hash code can have safer boundaries in the Hamming distance 

space [22]; and the power of supervised Deep model [39]. Our 

method have some similar steps to CCA-ITQ, but actually 

they are different, since our method is unsupervised while 

CCA-ITQ is supervised. Furthermore, quantisation error min- 

imisation and correlation maximisation are just  partial steps 

of our method, and the aim of our method is to combine the 

advantages of state-of-the-art methods to train a deep network 

for hashing. Moreover, in extensive experiments, we prove that 

a single one of the above methods cannot fully address all of 

the scenarios. By incorporating these criteria into our unified 

framework, the resultant hash code is more robust for large- 

scale retrieval tasks on different benchmarks. 

The rest of this paper is organised as follows. In Section II, 

we give a brief review of recent hashing methods. The details 

of our method are described in Section III. Section IV reports 

the experimental results. Finally, we conclude this paper in 

Section V. 

 
II.  RELATED WORKS 

Learning based hashing methods compute binary code by 

exploiting the training data and its corresponding semantic 

labels and can avoid the disadvantages of data-independent 

methods such as LSH [13], which encodes input data so that 

similar data were projected into the same buckets with high 

probability, and this type of methods were proved not robust. 

The learning based hashing methods can be divided into three 



 

categories according to the degree of semantic labels used: 

unsupervised, semi-supervised, and supervised. 

For the first category, label information of training data is 

not required in the entire training process of unsupervised 

methods, which try to keep the similarity information between 

training samples in the original space when the samples were 

projected into Hamming space. Representative algorithms such 

as SH [19], PCAH [20], ITQ [22], Kernelized Locality- 

Sensitive Hashing (KLSH) [43], AGH [21], Spherical Hashing 

(SpH) [44], K-Means Hashing (KMH) [42], can get pretty 

good performance. SH [19] generates efficient binary codes 

by spectral graph partitioning. Additionally, PCAH [20] and 

its orthogonal projection variant [22] have been proposed for 

better quantization. The method ITQ exploits a simple and 

efficient alternating minimisation scheme to  find  a  rotation 

of zero-centred data to minimise the quantization error of 

mapping this data to the vertexes of a zero-centred binary 

hypercube. Kulis and Grauman [43] proposed a kernelised 

version of LSH, namely KLSH, which also computes random 

projections, as standard LSH does, but these random projec- 

tions are constructed using only the kernel function and a 

sparse set of examples from the database itself, which is differ- 

ent from standard LSH. To achieve less time complexity and 

better applicability, and also inspired by the spectral hashing 

method, AGH [21] was introduced to utilise  Anchor Graphs 

to obtain tractable low-rank adjacency matrices and it can 

automatically discover the neighbourhood inherent  structure 

in the training data. Heo et al. proposed a hyperplane-based 

hash function, called Spherical Hashing [44], which min- 

imises the spherical distance between the original real-valued 

features and the learned binary codes,  this  distance  metrics 

is also called spherical Hamming distance.  KMH  [42] uses 

an affinity-preserving K-means algorithm to simultaneously 

performs k-means clustering and learns the binary indices of 

the quantized cells and exploits the Hamming distance of the 

cell indices to approximate the distance between these cells. 

For the second category, semi-supervised methods use 

information from both labelled training data and unlabelled 

training data. One of  the  typical  methods  of  this  category 

is Semi-supervised Hashing (SSH) [45], which minimises 

empirical error over the pairwise labelled data and maximises 

the variance over both labelled and unlabelled sets. 

For the third category, the semantic label information of 

each sample is fully used in learning more efficient binary 

representations, thus better performance than the unsupervised 

and the semi-supervised methods can be achieved. For exam- 

ple, Binary Reconstructive Embedding (BRE) [46] utilises 

pairwise relations between data samples to minimise the recon- 

struction error between the original Euclidean space and the 

learned Hamming space. QBH [27] incorporates quantization 

error reduction methods into conventional property preserving 

hashing methods. Norouzi and Fleet [47] presented a hash 

function called Minimal Loss Hashing (MLH) to compute 

binary codes by minimising the empirical loss between the 

learned Hamming distance and the quantization error. ITQ also 

has its supervised version called CCA-ITQ [22], which utilises 

Canonical Correlation Analysis (CCA) with label information 

to reduce the dimension of original features while preserving 

the semantic information, and then exploits ITQ  to  min- 

imise the quantization error. The Supervised Discrete Hashing 

(SDH) [11] compute the  hash  codes  with  the  preservation 

of semantics with the intention for classification. Based on 

SDH, X. Shi et al. proposed to exploit kernel based method 

Kernel-based Supervised Discrete Hashing (KSDH) [48] to 

improve the performance. To solve the problem of NP-hard 

optimisation and computational complexity in graph based 

method, Asymmetric Discrete Graph Hashing (ADGH) [49] 

was proposed by preserving the asymmetric discrete constraint 

and building an asymmetric affinity matrix to learn compact 

binary codes. Additionally, SSDH [26] constructs hash func- 

tions as a latent layer in a deep network and the binary codes 

are learned by minimising an objective function defined over 

classification error. 

A. Deep Hashing Methods 

In learning based hashing methods, deep learning based 

methods form a special group in this area, so we discuss it here 

separately. To our knowledge, Semantic Hashing (SmH) [50] 

is the earliest effort to use deep network to learn hash function. 

It compute hash codes by passing an unlabelled image through 

a stacked Restricted Boltzmann Machines (RBMs). 

The unsupervised deep hashing methods, Deep Hashing 

(DH) [39] and Deep compact binary descriptor (Deepbit) [40] 

also use deep network for learning compact binary code. DH 

develop a deep neural network to seek multiple hierarchical 

non-linear transforms to learn binary codes. In this method, 

DH employs three constraints as follow at the  top  layer  of 

the deep network: 1) the loss between the original real-valued 

feature and the learned binary vector is minimised, 2) the 

binary codes distribute evenly on each bit, and 3)  different 

bits are as independent as possible. DH also has its super- 

vised version, which includes one discriminative term into 

objective function and simultaneously minimises the intra- 

class differences and maximises the inter-class difference of 

learned binary code. On the basis of DH, Deepbit adds another 

constraint, rotation invariant, to the final loss function, and 

achieve a slight boost on the performance. Do et al. [41] 

propose a Binary Deep Neural Network (BDNN), which has 

both unsupervised and supervised versions. BDNN introduces 

one hidden layer to directly output the  binary  codes  and  

then utilises the binary code layer to reconstruct the original 

feature. Through optimising the sum of reconstruction loss, 

independence constraint loss, and balance constraint loss, 

BDNN can get a little improvement with respect to DH. The 

recent state-of-art method is Supervised Semantic-preserving 

Deep Hashing (SSDH) [26], which assumes that the semantic 

labels are governed by several latent attributes.  Based  on  

this assumption, SSDH constructs hash function as a latent 

layer in a deep network and learns the binary codes by 

minimising an objective function combined by classification 

error, independent property, and balance property like those in 

method BDNN. 

III.  METHODOLOGY 

Let X = [x1; . . .  ; xn; . . .  ; xN ] Ԝ RN × w× h be the training 

set which contains N image samples, where xn Ԝ Rw× h is 
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Fig. 2.  Main Framework of Unsupervised  hashing method with Pseudo Labels. The discovered  pseudo label codes  are used as supervision for fine-tuning   
the deep hashing network like existing supervised methods. The total procedure is executed for T times recurrently to find better network model. 

 

 

the n-th image sample in X, and has the dimension of w h. 

Hashing methods aim to learn a hash function X B 

1, 1 N × k to project each sample into a compact binary code 

bn (xn), where k is the target binary code length. 

Figure 2 illustrates the framework of our method. The 

fundamental issue is how to obtain class labels during training. 

In supervised methods, the class labels are used to guide intra-

class instances to be encoded closer in B. For improved 

performance under unsupervised scenarios, this paper proposes 

to discover latent pseudo labels that can maximumly reflect 

the data distribution. Correspondingly, we adopt three of the 

most  important  criteria  to  align  the  latent  labels  multiple 

times. Firstly, the latent labels V1 Ԝ RN × k0 maximise the 
li kelihood to the visual feature XĖ    RN × d , which is extracted 

from visual sample X. However, in most scenarios, stabler 

performance often results from a smaller number of latent 

labels, i.e. k0 < k, which may lead to severe information 

loss. Therefore, the next step discovers an adequate number 

of latent classes V2 RN × k1 that can preserve the maximum 

mutual information, where k1 k is used as the length of final 

hash codes. Finally, the latent labels are converted into binary 

codes that can preserve the distribution of V2 in the meantime 

maximising the overall variance so that the final hash codes 

are more discriminative. Hereafter, we can recurrently train 

deep hashing models using the discovered latent label codes 

like supervised methods. 

 
A. Deep Hashing Model 

Our deep hashing model is initialised by using the pre- 

trained VGG-16 parameters. Although the model is trained on 

the large-scale ImageNet dataset, the extracted visual features 

are not readily applied to learn hashing codes. Firstly, on a 

different dataset, some of the involved classes are not present 

in ImageNet, thus only using pre-trained model to extract 

features may degrade the performance. Secondly, the initial 

classification model may not perform the best for learning 

binary codes. Therefore, we consider to trim the model using 

the followed loss function: 

J = "H (X; ©) Ī B"2 ,   s.t. B Ԝ {Ī1, + 1}N × k, (1) 

where © is  the  parameter  space  of  the  deep  hashing 

model. Specifically, our model uses all the convolution layers 

 

conv1_1ïconv5_3(each one followed by a ReLU layer), pool- 

ing layers and first two fully  connected layers fc6, and fc7. The 

ReLU layer after fc7 is removed. Then, the final fc8 layer is 

substituted by the objective binary code followed by a tanh 

function to constrain the learnt codes to fall within (   1, 1).   

In order to retain the excellent training model of ImageNet, we 

fix conv1_1ïconv5_3 and release fc6ïfc8 to be trainable. The 

detailed configuration of the network is illustrated in Fig. 3. 

However, the fundamental difficulty is the lack of super- 

vision. In other words, the vital objective B of the above 

learning function is missing. Random code allocation, e.g. [39] 

can make the resultant code completely lose  the  original  

data structure. Motivated by this, we investigate a unified 

framework to discover pseudo labels that can maximumly 

preserve the original distribution, which will be introduced 

next. 

 
B. Pseudo Labels Discovery 

Pseudo labels of latent classes  can be  achieved by linear  

or non-linear combinations of the real classes  according  to 

the intrinsic data distribution. Ideally, instances from the  

same class should be closer in the pseudo label space. How- 

ever, without the guidance of true class labels, conventional 

unsupervised hashing methods often suffer from the severe 

discrepancy between the pseudo and real labels. One of the 

main reasons is that a preferred encoding procedure often 

requires ensuring different criteria at the same time, which 

makes the optimisation intractable to solve. In this paper, we 

propose a unified framework that sequentially discovers latent 

classes that are aligned with the visual data at multiple time. 

Each step corresponds to an optimisation based on a specific 

criterion. 

1) Feature Extraction and Dimension Reduction: We first 

extract the visual features from training images using the fc7 

layers of the pre-trained Model. The dimensionality of visual 

features is 4096 that is much larger than the required length   

of binary codes. To enhance the discriminative property and 

reduce the computational cost, we first generate a compact 

feature where the variance of every variable is  maximised,  

the variables are uncorrelated pair-wisely, and the redundancy 

and noise are removed. This can be realised by Principle 

Component Analysis (PCA) easily. However, in order to 



 

=  [  ; ; ; ; ] 

Ԝ Ԝ 

F 

=  

Ԝ 

ʅ F 

I  =  =  

=   |  Ė
c

 ]
 

n n n 

ʅ 

 

 
 

Fig. 3. Configuration of the deep hash model. The convolutional layers are fixed and the full connection layers are released to be trainable. 

 

 

achieve the expected length of codes, conventional methods, 

such as PCA-Hashing [20], directly reduce the dimension from 

4096 to binary code length k regardless the loss of important 

property-preserving information. In comparison, our scheme 

 

label can be aligned to corresponding visual feature space to 

preserve both the discriminative and intrinsic data distribution. 

We  first  extend  pseudo  labels  into  one-hot  vectors:  Vē1   = 

[vēi ]  Ԝ  {0, 1}N × k0 ,  where  vēi   =   1  for  i  =   vn  and  vēi   =   0 
allows  to  retain  as  many PCA  components as  possible, and 

shorter codes can  be obtained in  later  stages.  Therefore, we 
otherwise.  Given  the  visual  features  after  PCA  XĖ 

we maximise the correlation function: 

Ԝ RN × d , 

use  the  percentage of  retained  variance  as  criterion like the 
most traditional usage of PCA. The resultant representation is L2 =   max  Cor r (XĖ W1, Vē1W2) =   max  

< XĖ W1, Vē1W2 >
, 

 

the extracted visual feature  XĖ of our framework. W1,W2 W1,W2 "XĖ W1" ·  "Vē1W2" 

2) Pseudo Labels With Maximum Likelihood: Due to the 

widely existing intra-class variance, a class label often cor- 

responds to several different latent distributions. Also, some 

classes may share the same latent distribution. For example, a 

óplaneô and a óbirdô share the features of ówingsô. Therefore, 

the ideal number of  latent labels may  not always equal to  

that of real classes. A typical solution is to find  a  set  of 

latent classes Z z1 . . .  zc . . .  zk0 that can maximise 

the likelihood to the visual data distribution, i.e. to generate 

(4) 

where W1 Rd × k , W2 Rk0 × k are the parameters for linear 

transformations. Hereby, the visual features can be converted 

into the embedded pseudo label space in the final desired 

dimensionality k: 

V2 =  XĖ W1. (5) 

4) Maximum  Variance:   In  the  last  stage,  we  convert V2 
into binary codes. In order to minimise the quantisation error 

visual features using several latent distributions. Suppose there 
is a k0 number of latent classes, where each visual instance "sgn(v) Ī v"2

 between generated binary codes  B and V2, we 
k× k 

belongs to one of the latent class. By assuming uniformed 

prior p(Z) 1, taking the Bayesô rule, we have the likelihood 

function: 

adopt the  ITQ algorithm to  find  a rotation matrix R R 

that can align the binary codes to the nearest vertex of the 

hypercube: 

k0 L3 = "B Ī V2 R"2 ,   s.t.  RRT = I  , (6) 

p(Z, XĖ ) =  p(XĖ |  Z) =   
n= 1 

log  
c= 1 

p(xĖn| zc). (2) 
where, "·" F denotes the Frobenius norm; V2 is zero-centred; 

Using the Z with the maximised likelihood, we can assign 

each  of  the  visual  features   XĖ  to  a  latent  class  in   Z  by 

is  the identity matrix, i.e.   I i, j 1  if  and  only if  i j . 

Considering all of the three losses, Eq. 1 can be modified into 
the following objective function: 

maximising  the  marginal  probability  mass  function:  L1  =  
2 2

 

p(XĖ , Z| V1),  where  V1  =  [vn]  Ԝ [1, k0]  is  the  pseudo  label 
space with k0 latent classes. The each paired vn of  xĖn can be 

min 
©,B, R,W1 

"H(X; ©) Ī B"F +  "B Ī XĖ W1 R"F , 

achieved by: 

vn arg   max  p(zc xn). (3) 
Ԝ[1,k0 

s.t.  B Ԝ {Ī1, + 1}N × k, RRT =  I  . (7) 

C. Optimisation 

3) Maximum Correlation Label Embedding: The above V1 

only contains generative distribution, i.e. shared similarities 

between real classes. In the second stage, we discover  a  

latent label embedding space so that the single-valued pseudo 

The above objective  function  has  four  variables  ©, B, R, 

W1, and the function is a non-convex problem with the binary 

and orthogonal constraints. As we have known that there is no 

direct method to solve the problem of Eq. 7. 
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Therefore, for each loop, we propose an alternating strategy 

that in turn optimises W1, interactively updates B and R, and 

finally optimise ©. The overall optimisation usually takes a 

few iterations for a specific bit size which we summarise as 

follows. 

W1 Step: By first fix the parameters of the pre-trained 

deep model ©, we can discover latent classes that can 

maximise the likelihood of the extracted visual  features  in 

Eq. 2. In this paper, we simply adopt the K -means  algo- 

rithm as the generative model to  solve  the  equation.  This 

can be simply implemented by finding k0 centroids Z 

z1 ... zc ... zk0 R
k0× d . Pseudo labels V1 then can be 

assigned by: 

vn =  arg   min  "xĖn Ī zc"2. (8) 
cԜ[1,k0] 

   

Af ter   extending   V1  to   one-hot  vectors   Vē1   =    [vēi ]   Ԝ 
{0, 1}N × k0 , we can estimate its correlation to the original 

extracted  features  XĖ  in  Eq.  4.  A  kernel  matrix  can  be  used 

to estimate the correlations between each pair of dimensions 

in  Vē1  and  XĖ . This paper adopts the simplest linear kernel in 
Eq. 4 that can result in the following covariance matrix before 
the linear transformation W1 and W2: 

Fig. 4. An example of the objective function convergence on the CIFAR-10 
dataset. 

 

 

the deep network with Adam optimization [51], where the 

hashing loss is minimised with mini-batch back-propagation. 

Ė  ē Ė ē T Ė ē 
ʅ
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The network parameter © is updated simultaneously and 

K(X , V1) =  E([X, V1] [X, V1]) =  Kvx, Kvv  
, (9) determined in the current loop after convergence. Then, the 

network model can generate new image features for the next 
where E( ) denotes a normalisation using the empirical expec- 
tation. xx , vv are inner-space correlations and xv, v x are inter-

space. We leave the problem as a generalised function so that 

existing kernel methods can be directly applied. In this paper, 

we simply use the linear kernel with an analytic solution to 

achieve W1: 

K   KĪ1K   W   = ɚ2K W , (10) 

loop. Those parameters are updated sequentially for T loops 

and finally the hash model can be constructed. 

 
D. Scalable Image Retrieval 

Using the achieved hashing model, images in the gallery can 

be efficiently converted into binary codes by sgn(H(x ; ©)). 
xy yy yx 1 xx 1 Given a query image x̄,  we  can  carry  out  the  retrieval  by 

which is an eigenproblem that can be efficiently addressed by 

Matlab toolbox eig(.), where ɚ is the eigenvalue corresponding 

to W1. 

BR Step: By fixing ©, W1, we interactively solve B and 

R in a inner-loop, which is same as that did in ITQ [22]. 

Initialise R as a random orthogonal matrix, and the Eq. (7)  

can be easily solved as, 

B =  sgn(H(X; ©) +  XĖ W1 R), (11) 

where,  sgn(x)  1  if  x   >  0  and   1  otherwise.  With 

fixed B, we can efficiently optimise R using singular value 

decomposition (SVD): 

ranking its Hamming distances to the images in the  gallery  

by arg mini sgn( (xi ©))  sgn(  (x  ©))  2 .  The  overall 

method is summarized in Algorithm(1). 

 
IV.  EXPERIMENTS 

We provide a comprehensive comparison with various 

baselines and state-of-the-art methods on three challenging 

datasets, the CIFAR-10 color images [52], the NUS-WIDE 

dataset [53], and the MIRFLICKR-25K [54] dataset. 

 
A. Datasets 

1) CIFAR-10   Dataset: [52] contains 10 classes and 

BT XĖ W1 =  SOSėT 

R =  Sė ST, 
(12) 

each class consists of 6,000 images, leading to a total of 

60,000 images. And the dataset is split into two sets, training 

set and testing set, with 50,000 and 10,000 images respectively. 

where  S Rk× k  and  Sė Rk× k  are  two  unitary  matrices, 

and O is a rectangular diagonal matrix with non-negative real 

numbers on the diagonal. We alternating the above B and R 

steps iteratively until convergence. An example of the objective 

function convergence is shown in Fig. 4. Hereafter, we can 

finally get the final binary code B as the supervision for the 

deep hashing model. 

© Step: Using the B obtained from the above three stages, 

we solve the minimisation problem in Eq. 1 by fine-tuning 

We randomly select 100 images from each class,  totally  

1,000 images, as the testing set, and set the rest 59,000 images 

as the training set. 

2) NUS-WIDE Dataset: [53] is a real-world web image 

dataset, which contains about 270K web images. It is a multi- 

label dataset, in which each image is associated with one or 

multiple class labels from 81 classes, the number of images in 

each class ranges from 5,000 from 30,000. Because the dataset 

was download from the Internet, and some of its URLs are 
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Gong et al. [22]. The iteration time of our deep training in each 

loop was set to 1 × 105, and the total loop times T is set to 10. 

C. Main Comparisons With State-of-the-Art Methods 

In this section, we evaluate our method by four common 

metrics and provide comprehensive comparison to the eleven 

state-of-the-art baselines: 1) mean average precision(mAP), 

which evaluates the overall performance of hashing methods; 

2) precision-recall curve, which describes the relationship 

between retrieval precision and recall rate; 3) precision at N 

retrieved samples, which means the percentage of ground truth 

images among top N retrieved samples; and 4) recall rate at N 

retrieved samples, which measures the percentage of ground 

truth images in retrieved images among all ground truth images 

in the query dataset. In this experiment, we use the hashing 

toolbox supplied by Yuan et al. [59] and Lu et al. [60] to 

compute the mAP value and draw P-R, P-N, and R-N curves, 

and give the detailed analysis about the results in the following 

subsections. 

1) Mean Average Precision: In the query phase, we com- 

pute the mean average precision (mAP) to evaluate the 

retrieval performance of our algorithm on all three datasets. 
The mAP is defined as: 

mAP
 1

 

|Q|  

ʅ| Q|  
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1 

ʅr 
 

 

P(i , j )

Ѹ

Ѻ (13) 

 

 
invalid, furthermore, we use the settings as in [57], the most 

frequent 21 concept classes, we can get 159,579 images finally. 

We randomly select 2,100 images from the dataset as the test 

set, and the remaining images are left as the training set. 

3) MIRFLICKR-25K Dataset: [54] contains 25,000 images 

with 38 categories as well as their tags collected from Flickr. 

Each of images is annotated with more than one label. We 

randomly select 1,000 images from the dataset as the test set, 

and the left 24,000 images were kept as the training set. 

 
B. Experimental Settings 

1) Baselines: We systematically compare our method with 

eight state-of-the-art non-deep methods: ITQ [22], PCAH [20], 

LSH [13], DSH [55], SpH [44], SH [19], AGH [21], and 

SELVE [56], and three deep methods: DH [39], Deepbit [40], 

UH-BDNN [41] for retrieval task, all  these  eleven  meth-  

ods are unsupervised. All of the non-deep methods and UH-

BDNN [41] in our experiments use the same VGG 

[58] fc7 feature as that in our method, and DH [39] and 

Deepbit [40] are based the same settings like that in their 

original papers. 

2) Key Hyper-Parameters: The  energy  ratio  of  PCA  is 

set as  0.98,  and  the  number  of  clusters  k0  is  set  to  10  

for dataset CIFAR-10 and 5 for dataset MIRFLICKR and 

NUS-WIDE in main comparisons. For deep training process 

of our method, we set the mini-training batches as 20, learning 

rate  as 2 10Ī6.  The  iteration  time  of  solving  maximum 

variance method is  set  as  50,  an  example  of  convergence 

is illustrated in Fig. 4, same as the original definition by 

where,  Q  is the size of the query image set, r  is the number 

of retrieved images from the dataset related to the ith query 

image, and P(i, j )is the precision of the top jth retrieved 

image of ith query image. In addition, all of the performances 

of the baseline and our method are evaluated on four different 

length of binary code 16, 32, 48, 64 . 

Table I shows our results of mAP on all of the three datasets. 

Our method significantly outperforms all of the compared 

state-of-the-art methods, which manifest the robustness of our 

hash code. The success can be understood by comparing to  

the results of three methods in the table. First is the power of 

deep model. Compared to LSH, the deep model UH-BDNN 

achieved 5-8% improvement. However, due its model is based 

on an auto-encoder-like scheme, the learnt hash code is not 

structural-aware enough. In comparison, the AGH preserves 

data structure by the graph-regularization and achieves better 

performance than that of UH-BDNN. The second best method 

is ITQ, which performs stabler than AGH on long codes, such 

as 48 and 64-bits. This is because the maximised variance in 

ITQ benefits the exploration of a higher-dimensional Hamming 

space, which makes the safety-bounds between classes wider. 

Our framework effectively absorbs the advantages of all the 

above mentioned methods. Therefore, both of our shorter and 

longer hashing codes achieve the best performance. 

From Table 1, we observe that our method is not very 

sensitive to the length of the code. From 16 bits to  64 bits,  

the performances just vary  marginally. Another  observation 

is that longer code may perform slightly  worse,  especially  

for the dataset NUS-WIDE. The potential reason is related to 

the number of real classes and latent classes. Since the NUS- 

WIDE is a multi-label dataset, and the number of latent classes 

i= 1 
j = 1 
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TABLE I 

IMAGE RETRIEVAL RESULTS (MEAN AVERAGE PRECISION(mAP)) WITH 16 BITS, 32 BITS, 48 BITS AND 64 BITS ON THE CIFAR-10, NUS-WIDE AND 

MIRFLICKR-25K DATASETS. THE SCALES OF TEST SET ARE 1K, 2.1K, 1K RESPECTIVELY, AND THE mAPs ARE COMPUTED USING ALL THE 

TRAINING SETS. THE PROPOSED METHOD OUTPERFORMS ALL THE STATE-OF-THE-ART METHODS LISTED IN THIS TABLE 
 

 

 
   

            

             

             

             

             

             

             

             

             

             

             

             

             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
     

     

 

     
 

     

     

     

 

 
 

Fig. 5. Results of Precision VS Recall Curves on all of the three datasets. 

 

is fixed to be 5 (the reason why we choose 5 latent classes  

will be analysed in the following subsection), longer codes 

make the intermediate representation non-compact and result 

in redundant dimensions, which is same as that in PCAH [20]. 

In addition, this phenomenon of mAP reduction with code 

length growing also appears in AGH [21] and SELVE [56]. 

2) Precision-Recall: Another popular evaluation  protocol 

is the precision-recall (PR)  curve  which  plots  the  preci- 

sion and  recall  rates  at  different searching Hamming radius 

r 0,  1,  2,  . . .  ,  k  , where k  is the length of  the binary 

codes. Fig. 5 shows the precision-recall curve of each method 

with 16, 32, 48, and 64 bits. The first point of the curve stands 


