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Abstract:  

Purpose 

– In real world cases, it is common to encounter mixed discrete-continuous problems where some or all of the variables 

may take only discrete values. To solve these non-linear optimization problems, it is very time-consuming in use of finite 

element methods. The purpose of this paper is to study the efficiency of the proposed hybrid algorithms for the mixed 

discrete-continuous optimization, and compares it with the performance of Genetic Algorithms (GA).  

 

Design/methodology/approach 

– In this paper, the enhanced multipoint approximation method (MAM) is utilized to reduce the original nonlinear 

optimization problem to a sequence of approximations. Then, the Sequential Quadratic Programming (SQP) technique is 

applied to find the continuous solution. Following that, the implementation of discrete capability into the MAM is 

developed to solve the mixed discrete-continuous optimization problems. 

 

Findings 

– The efficiency and rate of convergence of the developed hybrid algorithms outperforming GA are examined by six 

detailed case studies in the ten-bar planar truss problem and the superiority of the Hooke-Jeeves assisted MAM algorithm 

over the other two hybrid algorithms and GAs is concluded.  

 

Originality/value 

– The authors propose three efficient hybrid algorithms: the rounding-off, the coordinate search, and the Hooke-Jeeves 

search assisted MAMs, to solve nonlinear mixed discrete-continuous optimization problems. Implementations include the 

development of new procedures for sampling discrete points, the modification of the trust region adaptation strategy, and 

strategies for solving mix optimization problems. To improve the efficiency and effectiveness of metamodel construction, 

regressors φ defined in this paper can have the form in common with the empirical formulation of the problems in many 

engineering subjects. 

 

Keywords: Discrete-continuous design optimization; Hybrid algorithms; Multipoint approximation method; Direct 

search 
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1. Introduction 

Problems with mixed discrete-continuous design variables are a class of complicated optimization problems that commonly 

exist in practical engineering design work. These non-linear optimization problems usually share the common features: the 

objective and constraint functions are prohibitively expensive to be examined in use of finite element methods or could be 

impossible to be evaluated at some combinations of design variables (e.g., nodal displacements, stresses, strains). In order 

to improve the computational efficiency and accuracy of the solvers dedicated for such structural optimization problems, 

the Multipoint Approximation Method (MAM) was developed (Haftka et al. 1987, Toropov 1989). The advantage of the 

MAM technique is presented to replace the original optimization problem with a succession of simpler mathematical 

programming in a scalable trust-region of design space and utilize high quality explicit approximations to reduce the total 

number of calls for analysis needed for the complicated optimization problems. Details on the development of the MAM 

technique for various applications are discussed in (Fadel et al. 1990, Wang and Grandhi 1995, Polynkin et al 1996, Keulen 

and Toropov 1997, Polynkin and Toropov 2012). To enhance the accuracy of metamodels used to approximate the real 

responses, metamodel assembly approach is implemented in MAM to construct an assembly of multiple surrogates into a 

single surrogate using linear regression (Viana and Haftka 2008, Acar and Rais-Rohani 2009, Liu and Toropov 2012).  

   In practical engineering designs, some or all of the design variables have discrete or integer values because the available 

values for those design variables are limited to a set of standard sizes, for example, the thickness of the laminated composite 

structure, the diameter of the cross-section in a truss structure, the wind farm layout design, etc. In general, it is only 

allowed to perform response function evaluations for points that have discrete values of the design variables (Balabanov 

and Venter 2004). To address such mixed discrete-continuous optimization problems, Genetic Algorithm (Goldberg 1989, 

Holland 1992, Michalewicz 1992, Shrestha and Ghaboussi 1998, Ghasemi et al 1999, Mendez et al 2006, Abdoun and 

Abouchabaka 2011, Carr 2014, Lemonge et al 2015) is considered a popular tool for locating the global optimum solution. 

GA is a population-based evolutionary algorithm and inspired by genetic evolutions. It employs the genetic operators of 

reproduction, mutation, crossover, and fitness selection as part of its evolutionary strategy. The mechanism of GA can be 

described as a combination of an artificial survival of the fittest and genetic operators from nature to iteratively improve 

the fitness of the population. However, function evaluations in GAs or other evolutionary algorithms (Dorigo et al 1996, 

Schutte and Groenwold 2003, Sadollah et al 2012, Yang and Gandomi 2012, Lakshmi and Rao 2013, Miguel and Lopez 

2013, Baghlani et al 2014, Kaveh and Mahdavi 2014, Yilmaz et al 2015, Yu et al 2015, Chakri et al 2017, Duarte et al 

2017) are the most time-consuming part as they are usually executed by finite element analysis or computational fluid 

dynamics with high computational demands, for example, a single function evaluation could be of the order of hours or 

days. Taking into account this limitation, it is necessary to develop an efficient algorithm for solving mixed discrete-

continuous design problems with less computational effort. The enhanced MAM with the implementation of the discrete 

capability such as sampling, discrete properties within a trust region (Cheng et al 2015, Yuan 2015, Larson and Billups 

2016), and the trust region adaptation strategy, has been proved as a better approach to tackle these problems (Liu and 

Toropov 2016). The obtained optimal results have demonstrated MAM with the implementation of the coordinate search 

technique can solve the complicated optimization problems with high efficiency and effectiveness. 

   In current research, a comparative study of three hybrid algorithms, which combine the metamodel-based MAM and 

direct search techniques (Kolda et al 2003), is presented. The developed hybrid algorithms are the rounding-off technique 
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assisted MAM, the coordinate search technique assisted MAM, and the Hooke-Jeeves technique assisted MAM. These 

three discrete forms of the direct search methods are implemented within the MAM to search for the optimal discrete values 

in the sub-space of the discrete variables only starting from the optimal continuous values obtained by the Sequential 

Quadratic Programming method (SQP) on the approximated functions in a current trust region. Then, the values for 

continuous design variables are updated accordingly by the optimization based on the reduced design space for continuous 

variables only. Full details are given in the section Direct Search Techniques for Discrete Optimization for the description 

of the developed hybrid algorithms. Based on this study, the advantages of hybrid algorithms outperforming GA are 

concluded by the well-established benchmark examples in terms of the computational cost, rate of convergence, and the 

quality of solutions. The capability of these proposed optimization methods has also been assessed by the case studies with 

different discreteness intervals (0.2 and 1.0) for discrete design variables. Finally, the conclusion on the superiority of the 

Hooke-Jeeves assisted MAM algorithm over the other two hybrid algorithms and GAs is drawn. 

2. Brief Review of Multipoint Approximation Method (MAM) 

Many engineering applications involve numerical simulations of response functions. These evaluations might either suffer 

from numerical noise or the intensive computational time. The MAM, based on response surface methodology, aims at 

constructing mid-range approximations (Wang and Grandhi 1995, Keulen and Toropov 1997, Sun et al 2014, Yan et al, 

2014, An et al 2016) and is suitable to solve large-scale optimization problems by producing better quality approximations 

that are sufficiently accurate in a current trust region and inexpensive in term of computational costs required for their 

building. These approximation functions have a relatively small number (N+1 where N is number of design variables) of 

regression coefficients to be determined and the corresponding least squares problem can be solved easily. The feature of 

such approximations allows applying them to large scale optimization problems with the number of design variables in the 

order of hundreds. 

In general, an optimization problem can be formulated as 

 

       NiBxAMjFF iiij ,...,1,,...,11,min 0 xx            （1） 

where x refers to the vector of design variables; iA and iB are the given lower and upper bounds on the design variable 

xi ; N is the total number of the design variables;  x0F is an objective function;  xjF is the constraint function and M

is the total number of the constraint functions. 

In order to present the detailed physical model using the response functions and reduce the number of calls for the 

response function evaluations, the MAM replaces the optimization problem by a sequence of approximate optimization 

problems: 
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The selection strategy of the approximate response functions    MjF k
j ,...,0

~
x  outlines that their evaluations are 

inexpensive as compared to the evaluation of the actual response functions  xjF  and are intended to be adequate in a 

current trust region. This is achieved by appropriate planning of numerical experiments and use of the trust region defined 

by the side constraints 
k
iA  and

k
iB .  

3. Design of Experiments, Trust Region Strategy, and Weight Coefficients 

Design of Experiments (DOE) is a powerful statistical technique to study the effect of multiple variables simultaneously. 

By applying this technique, the time required for experimental investigations or computer experiments can be significantly 

reduced. To solve the mixed discrete-continuous design problems proposed in this paper, DOE should generate sampling 

points, which represent the designs with mixed design variables having both continuous and discrete values. Also, all 

sampling points are checked for calculability of the response function. A new set of points is generated until a required 

number of sampling points (all passing the check) are obtained, if the checks for some points fail. A strategy to improve 

the quality of sampling points - constraint enhanced DOE rather than random DOE - is applied in this paper. It generates 

the sample points with a constraint on the minimal distance between the points using Eq. 3: 
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Diag is a characteristic size of the trust region, e is a number of a new sampling point, p is a number of a previously 

generated point, P is the total number of sampling points in the trust region, N is the total number of the design variables, 

r is the parameter and initially set to 0.9. Imposing such a constraint in Eq. 3 on the selection of points, the uniform 

distribution of sampling points across the design space is guaranteed. Based on DOE design points, the approximation 

models are built to efficiently evaluate the responses of the interests.     

   Trust region method (Ong et al 2003, Cheng et al 2015, Leifssona et al 2015, Yuan 2015, Kamandi et al 2017) is a 

class of numerical algorithms for solving nonlinear optimization problems. Inspired by this method, the aim of the trust 

region strategy in the MAM approach is to control the metamodel quality (Keulen and Toropov 1997). The trust region 

strategy in this paper includes: Once the optimization problem defined in Eq. 2 has been solved in each MAM iteration, an 

updated search region with new dimensions and location must be redefined according to the current sub-optimal value; 

The size of the trust region should be further reduced, if the approximation gets better; and if the sub-optimum point does 

not pass the check for calculability of the response functions, the trust region is reduced and the approximated problem is 

solved again. Hence, the track of the trust region indicates a search path from the initial starting point to the optimum over 

the entire searching domain. The only essential assumption made in the trust region strategy is that all functions of the 

optimization problem exist at the starting point. It should be noted that for the discrete variables there is a restriction on the 

http://www.sciencedirect.com/science/article/pii/S1877750315000101
http://www.sciencedirect.com/science/article/pii/S1877750315000101#aff0005
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trust region size reduction, i.e. the corresponding size of the trust region has to contain at least three levels of a discrete 

variable. A too small size for the trust region may result in the ill-conditioning of the matrix constructed by DOE points. 

   In most cases, the optimum point usually locates on the boundary of the feasible region. This requires that the 

approximation functions at the points located in the region which is quite close to the boundary of the feasible domain 

should be more accurate. Taking into account this situation, greater weights are assigned to the plan points close to the 

boundary of the feasible design domain. In this paper, the weight coefficients influenced by the value of a constraint 

function at a point are taken as
1)(4 


pjF

pj ew
x

(see Eq. 1). 

4. Build Approximations by a Two-Step Regression Procedure 

Based on the research on multiple metamodels (Viana and Haftka 2008, Acar and Rais-Rohani 2009, Liu and Toropov 

2012), a two-step regression procedure is used to build the metamodel, which is represented by the assembly of different 

approximations below 
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                                        (4) 

where )(xl means different approximate models, 

      NF is the number of regressors in the approximate models { )(xl }, 

      lb is the corresponding regression coefficient and determined by 
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The above weighted least squares problem (Eq. 5) leads to solving a linear system of NF equations with unknowns lb .  P 

means the number of points used in a specified DOE (see Section Design of Experiments). The parameters pjw refer to the 

weights that reflect the inequality of data obtained at different sampling points. Before the Eq. 5 has been solved, the 

minimization defined in Eq. 6 below should be performed to determine N+1 tuning parameters ja by matching the 

approximate response function j with the actual function jF . 

                        
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2
)(min a,xx                                 (6) 

 

   By applying the above two-step regression strategy, the approximation model with very high accuracy is produced. 

The evaluation of the regressors l is based on the data from the sampling points currently located in the trust region. To 

reduce the computational cost, inexpensive approximate models for objective and constraint functions are built using 
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minimum required number of sampling points. The simplest case is a linear function and more complex ones are 

intrinsically linear functions (Box and Draper 1987) that have been successfully used for a variety of design optimization 

problems. Intrinsically linear functions are nonlinear but they can be led to linear ones by simple transformations. In some 

engineering subjects, for example, civil engineering, empirical or semiempirical formulae (Rahman et al 2010) are widely 

used to efficiently evaluate the solutions for many complex engineering problems. These equations are generated by curve 

fitting experimental data and are especially important in the fields (e.g., prediction of critical impact energy on the structures, 

fundamental vibration period determination of buildings subject to seismic excitation, etc.) due to the complexity of the 

phenomena reflecting the physical processes. It is often desirable to use closed-form expressions for the calculation of the 

response of the interest. Based on these facts, a user-defined regressor l is implemented in the model bank { )(xl } of the 

MAM framework and its form is defined as same as the empirical formulation, but the coefficients are determined by the 

proposed two-step regression analysis. Consequently, implementation of the user-defined regressor l into the model bank 

{ )(xl } will significantly improve the efficiency and accuracy of the enhanced MAM for solving complex optimization 

problems. In this paper, the intrinsically linear functions considered in the model bank { )(xl } are: 
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(7) 

5. Direct Search Techniques for Discrete Optimization 

Three hybrid algorithms, combining the metamodel-based Multipoint Approximation Method (MAM) and different direct 

search techniques, are presented in this paper to find the optimum discrete representation of the discrete variables. These 

three developed algorithms are a rounding-off technique assisted MAM, a coordinate search technique assisted MAM, and 

the Hooke-Jeeves technique assisted MAM (HJ-MAM). The flowchart for the proposed hybrid algorithms is shown in 

Figure 1 and the detailed methodology consists three steps below: 
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Figure 1 Flowchart of the hybrid algorithms 

 

Step One: Before exploiting the sub-optimal solution for the discrete optimization in use of direct search techniques, a 

continuous optimization solution in each iteration of MAM should be initially sought in a current trust region using the 

SQP method applied to the approximate optimization formulation defined in Eq. 2. 

 

Step Two: Based on Step One, detailed procedures for seeking the sub-optimal solution of the discrete optimization 

problems by local exploitations have been given with regards to each of the three direct search techniques: 

 

(1) Rounding-off technique assisted MAM is applied to obtain the sub-optimal solution for the discrete form of the 

optimization problem (Eq. 2). The flowchart for this technique is shown in Figure 2 and its strategy consists of: 

rounding the continuous variables to the nearest discrete ones for the discrete variables, fixing these values, and solving 

a continuous optimization problem again (with the reduced number of design variables to include only continuous 

variables). This is the simplest strategy to solve an optimization problem with the discrete variables. Since the discrete 

variables have been assigned the rounded values from the continuous solution, the optimal values for the remaining 

continuous variables must be updated accordingly by performing a dimensionality-reduction continuous optimization 

again. It should be noted that the efficiency of this traditional search algorithm is quite low due to its simple mechanism 

of seeking the optimal solutions and the total computational time required for the converged solution in the entire 

optimization process is expected to be very long. 

 

 

 

 

 

Start MAM 

Step One: To find the optimal continuous values of all the design variables 

based on the approximation model in the predefined trust region 

Step Two: To exploit the optimal values of discrete design variables using 

direct search techniques, and then update the optimal values of continuous 

design variables by performing SQP on the approximation model 

 Converged solution? 
No 

Yes 

Output the results 

Step Three:  

To update the 

starting point for 

MAM and adjust 

the size of the 

trust region 
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Figure 2 Flowchart for the rounding-off technique in Step Two 

 

(2) Coordinate search technique assisted MAM is a more complicated algorithm and its flowchart is given in Figure 3. 

Based on the optimal values of continuous optimization in Step One, the rounding is performed to obtain the nearest 

discrete values for discrete design variables. Then, points near the rounding-off solution are examines by perturbing 

discrete design variables by a perturbationΔi (positive or negative) - one discrete variable at a time - until the point 

with the lowest objective function value (that will be penalized in case of violated constraints) is identified among all 

the tested points. There is a similarity between this technique and one previously suggested in (Balabanov and Venter 

2004), however, the type of approximations applied to solve the optimization problems is completely different. The 

coordinate search technique assisted MAM begins with the starting point (the rounding-off solution), as well as 2Nd 

coordinate points for function evaluations using the approximation model, where Nd is the number of discrete design 

variables or coordinates and the coefficient ‘2’ means a pair of positive and negative perturbationsΔ i for each 

coordinate. As an example, the ith pair of coordinate points differs from the starting point only in the ith coordinate. 

The size ofΔi is determined by the spacing of the ith discrete design variable. Again, it is noted that optimal values for 

the continuous variables must be updated accordingly at each coordinate point and the point with the lowest objective 

function value along ith coordinate will be selected as the new starting point for the next (i+1)th coordinate search until 

all the coordinate points are evaluated to determine the sub-optimal solution in the current iteration. The efficiency of 

coordinate search technique assisted MAM is much improved as compared to rounding-off technique assisted MAM 

and as expected, the number of iterations for the optimization process are reduced.  

 

 

 

The optimal continuous values for all 

design variables from Step one 

Evaluating the objective function 

 

Rounding to the nearest values for discrete design variables  

Start Step Two 

Fixing the values for discrete design variables and then 

updating the optimal values only for continuous design 

variables by performing SQP on the approximation model 

The end of Step Two 
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Figure 3 Flowchart for the coordinate search technique in Step Two 

(3) Hooke-Jeeves direct search technique (Kolda et al 2003, Garcia et al 2006, Brauna et al 2015, Liu 2016), a more robust 

approach than the first two algorithms, can more efficiently and effectively exploit the design space of discrete 

variables for the optimal solutions. The flowchart for the Hooke-Jeeves direct search technique is depicted in Figure 

4. This technique examines points near the current point (representing the rounded values for discrete design variables) 

by perturbing design variables along one coordinate at a time until an improved point is found in that coordinate 

direction. The Hooke-Jeeves technique and the coordinate search algorithm have the common feature seen to 

determine the search path for the optimal solution, however the Hooke-Jeeves technique has more efficient search 

strategy. Based on the search strategy of the coordinate search technique assisted MAM, the point with the lowest 

objective function value along ith coordinate will be saved and then, a further perturbationΔi along the preceding 

search direction is taken into account as well as optimal values for the continuous variables are updated accordingly. 

This search process will be terminated until a worse objective function value is identified in this pre-defined search 

direction. Then, the saved sub-optimal values are assigned to the ith discrete design variables as the optimum. The 

search strategy is applied again for the next (i+1)th coordinate search until all the coordinates representing discrete 

design variables are considered in the current iteration of MAM. Compared with the other two hybrid algorithms, HJ-

The optimal continuous values for all 

design variables from Step one 

Evaluating objective functions and saving results for the 

minimum objective function and corresponding design variables 

 

Rounding to the nearest values for discrete design variables  

Start Step Two 

Assigning DDVi (ith Discrete Design Variable) with the nearest 

discrete value, the positive, or negative spacingΔi by perturbing 

the nearest discrete value,  

 i=1 

The end of Step Two 
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            i≤Nd 

(Nd means number of DDVs) 
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No 

Fixing the remaining DDVs 

Updating the optimal values for continuous design variables by 

performing SQP on the approximation model 

http://www.sciencedirect.com/science/article/pii/S1877050915010261
http://www.sciencedirect.com/science/article/pii/S1877050915010261#aff0005
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MAM has the maximum efficiency to seek the optimum and its rate of convergence is fastest according to the effective 

search mechanism. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Flowchart for the Hooke-Jeeves direct search technique in Step Two 

The optimal continuous values for all 
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Step Three: The sub-optimal solution from local exploitations in Step Two becomes a starting guess for the next iteration 

of MAM and then, the Step one is repeated in an updated trust region to seek the sub-optimum until the optimal solution 

converges in the whole optimization process. 

 

As direct search algorithms (Kolda et al 2003) are known as unconstrained optimization techniques, an exterior penalty 

function is used to accommodate the constraints by penalizing unfeasible solutions as follows: 

                    



m

i
i xF

F

xF
f

1
*
0

0 )](,1max[
)(

)( x                             (8) 

where )(xf  is the objective function penalized is case any of the constraints is violated, 

     )(0 xF  is the objective function, 

      
*

0F   is the initial value of objective function at the starting point, 

      ,   are the penalty parameters, here 5.0 and 1 are suggested  

     )(xFi  is the i-th constraint function, mi ,1 , 

      m   is the total number of constraints. 

 

In summary, when the discrete variables are modified by the discrete optimizer, it is necessary to make an adjustment 

of the remaining, continuous design variables so that the optimal values for both discrete and continuous design variables 

are obtained at the current iteration. This is achieved by the use of SQP for the optimal values for continuous variables 

only while the discrete variables are assigned by the current discrete optimum. Therefore, the overall local optimization 

process is performed in two levels: The outer optimization loop deals with the discrete variables only in use of direct search 

techniques, and the inner optimization loop adjusts the continuous design variables using SQP. 

6. Case Studies 

6.1 Ten-bar Planar Truss Structure 

 

The developed hybrid algorithms are tested on the ten-bar planar truss benchmark problem (Haftka and Gürdal 1992) 

shown in Figure 5 that had been used and further investigated by many researchers (Mahfouz 1999, Kripakaran et al 2007, 

Eskandar et al, 2013). For a more complex truss bridge problem, Hasançebi (2007) obtained the optimal design by an 

evolution strategy-based algorithm. 

 

Fig. 5. Ten-bar planar truss structure 
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Example 1 

The optimization formulation of this problem is defined to minimize the weight of the structure by varying the cross-

sectional areas (from 0.1
2in  to 12.7

2in ) of the ten-bar truss members subject to stress constraints. The allowable stress 

in each truss member is the same in tension and compression and is set to 25 ksi for all members except member 9 for 

which it is 75 ksi . The density of the truss material is 0.1
3/ inlb , the member size L = 360 in , the loads P1 = P2 = 100

Kips and P3 = 0. For the discrete optimization, the discreteness interval of 0.2 is used. 

Optimal weight designs (continuous and discrete results) of the ten-bar planar truss structure are presented in Table 1 

and information on the constraint values is listed in Table 2. The number of sampling points used to build metamodels in 

each iteration of MAM is assigned the value 15. The lightest weight (1497) of the truss structure can be obtained by 

continuous optimization of the benchmark example due to a largest space domain of design variables. This optimal solution 

can be deemed as a feasible design because only a slight violation of constraint (0.4%) is identified in Table 2. In the 

discrete optimization, the results obtained by three proposed hybrid algorithms and a binary GA are compared to 

demonstrate the potentials of these algorithms. In this research, the following settings of the binary GA were used in the 

examples in this Section: a population size of 200, 40 generations, elite as 10% of the population, tournament selection, 

single point crossover, and 1% mutation rate. This was performed on a personal computer with 8 cores (E5-2670, 2.6GHz) 

and 24G RAM. Since a GA is naturally suitable to the discrete optimization and is also a global search algorithm, a better 

result from GA could be expected. On the contrary, optimization by HJ-MAM has achieved the lighter weight (1546.0) 

with no violation of constraints and the other two hybrid algorithms, rounding-off and coordinate search assisted MAMs, 

have achieved the same and lightest weight (1525.6), but the violation of constraints by 0.8% has been observed (see Table 

2). This can explain why the optimal design by HJ-MAM has a slightly heavier weight than the result by the other two 

hybrid algorithms. However, all of these optimal designs are lighter than the weight obtained by GA, which is the best 

result out of five separate GA runs.  

In this paper, the number of iterations means the number of the repetitive processes to find a converged solution 

described in Figure 1, while the number of response analyses depicts the total number of times that the analytical model is 

called for the purpose of function evaluations by FEM or CFD simulations throughout the entire optimization process, see 

Table 1. In each iteration of the optimization process, there will be only few of numbers of response analyses involved to 

build the metamodels for seeking the sub-optimal solution. For a given physical problem, the time for each function 

evaluation of the analytical model is almost identical and this takes up most of the actual execution time. It can be obviously 

concluded that the less number of response analyses or iterations, the less the total execution time required to obtain the 

final solution in the whole optimization process. Therefore, the numbers of iterations and response analyses by the 

optimizers with different techniques, which are the three proposed hybrid algorithms and GA, are used as quality indicators 

to evaluate the effectiveness and efficiency of the algorithms in the following comparative study.  

   As expected, the numbers of iterations and response analyses in the optimization by a binary GA are significantly 

increased. The numbers of iterations and response analyses (values in the round bracket) in use of hybrid algorithms 

(rounding-off, coordinate search, and Hooke-Jeeves technique assisted MAMs) are 48 (721), 24 (361), and 11 (166), 

respectively. With the rounding-off assisted MAM algorithm, the number of iteration, 48, is reduced by 20% from the total 
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number of 57 required by GA. It can be seen that the developed hybrid algorithms outperform GA in terms of the 

computational efficiency, the rate of convergence, and the quality of the results. 

  

Example 2 

The only difference between this example and Example 1 is the allowable stress for the member 9 in the ten-bar truss 

problem is limited to 25 кsi. Optimal weight designs using GAs and three hybrid algorithms are presented in Table 3. It is 

expected that the lightest weight of the truss structure should be obtained by the continuous optimization. Results from the 

discrete optimizations using the hybrid algorithms have been compared with the ones by GAs (Mahfouz 1999, HyperStudy 

2012) shown in Table 3. Optimizations by the coordinate search and HJ-MAMs have achieved the same result, which 

reflects the lightest weight design of 1610.1 as compared with a slightly heavier weight (1617.3) by the rounding-off 

assisted MAM algorithm and the result (1627.5) by GAs. It is also noted that the numbers of response analyses used in the 

hybrid algorithms have been significantly reduced by an order magnitude in comparison with the results from other 

published papers (Mahfouz 1999, HyperStudy 2012) and the numbers of iterations required are also less than the ones by 

GAs. This reflects the fact that the developed hybrid algorithms are very effective approaches with the fast rate of 

convergence and suitable to solve discrete optimization problems. In Table 4, the constraint values for the optimal designs 

by discrete optimizations are provided and feasible solutions with no violation of constraints are observed. It is concluded 

that the computational efficiency of the three developed hybrid algorithms for the discrete optimization is quite higher than 

GAs in terms of the rate of convergence, the number of response analyses, and the quality of the solutions. 

 

Example 3 

In this example, a mixed discrete-continuous design problem is studied and the stress constraints are the same as those 

formulated in Example 1. However, two types of design variables bounded from 0.1
2in  to 12.7

2in are defined: Continuous 

cross-sectional areas for truss members 1 to 6 (horizontal and vertical members) and discrete cross-sectional areas for truss 

member 7 to 10 (diagonal members) with the increment of 0.2. 

   In Table 5, the weights of optimal designs by the coordinate search and HJ-MAMs are same (1506.7), but the optimal 

values for continuous variables are different because this is an optimization problem with multiple optimal solutions. As 

compared with the result obtained by GA (1583.3), the optimal weight is reduced by 5%. This should result in more 

constraints being activated for the lighter weight design shown in Table 6. The number of response analyses for GA (14901) 

has been reduced by 96.8% to 481, which is the result by HJ-MAM. The similar conclusion on the number of iterations 

can also be drawn. In comparison of the results obtained by these three hybrid algorithms, the fast rate of convergence (11) 

is identified using the round-off assisted MAM algorithm for the heaviest weight (1534.3), while the lightest weight can 

be obtained by the coordinate search and HJ-MAMs with acceptable more numbers of iterations (35 and 32, respectively). 

In Table 6, all the optimal solutions are feasible designs and no constraint violation happens in these discrete optimizations. 

Considering the computational efficiency, the hybrid algorithms for the mixed discrete-continuous optimization outperform 

GA in terms of the quality of the obtained solutions and numbers of iterations and response analyses. It can be concluded 

that taking into account the computational efficiency and quality of the solution, the HJ-MAM is the best approach among 

these three hybrid algorithms for solving the optimization problem with mixed design variables. 

 

Example 4 
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In this challenging study, the discreteness interval of 1.0 for discrete design variables are applied to the above three 

examples in order to examine the effects of the discreteness interval on the performance (the quality of the solution and 

computational efficiency) of three developed hybrid algorithms. Therefore, the discrete design variables vary over the 

range of 0.1
2in , 1.1

2in , … , 12.1
2in , 12.7

2in . 

   In the foregoing Example 1, the optimal designs by GA and three hybrid algorithms are presented in Table 7. 

Optimizations using the coordinate search and HJ-MAMs have achieved the same objectives (the lightest weight, 1612.6), 

as compared with the result (1684.6) by the simple rounding-off assisted MAM and the solution (1663.5) by GA. Regarding 

the numbers of iterations required, only 21 iterations are needed for the lightest weight design by HJ-MAM, while four 

times more iterations (86) are observed to achieve the same weight design using the coordinate search assisted MAM. 

Although the numbers of iterations by the coordinate search (86) and the rounding-off assisted MAMs (120) are more than 

the result by GA (57), the total numbers of response analyses (1291 and 1801, respectively) are far less than the number 

required by GA (6900). In comparison with the weights achieved by the hybrid algorithms and GA, the overall quality of 

the optimal designs is well kept, whereas the maximum constraint violation shown in Table 8 for the lightest weight design 

in use of the hybrid algorithms is 0.8%, which is deemed to be within an acceptable tolerance. The reason for GA achieving 

a slightly heavier weight is explained as no constraints are violated in the optimal design. 

Based on the preceding Example 2, both the effects of the discreteness interval of 1 for discrete variables on the 

optimal design and the performance of the hybrid algorithms and GA are investigated in Table 9. The coordinate search 

assisted MAM and simple rounding-off assisted MAM have the potential to identify the lighter designs (1786.4 and 1801.3, 

respectively), as compared to the result by GA (1858.4). The numbers of response analyses are reduced from 6764 (by GA) 

to 1711 (by the simple rounding-off assisted MAM), further to 376 (by the coordinate search assisted MAM). As expected, 

the minimum number of response analyses (181) for the lightest design can be found by HJ-MAM. In terms of the number 

of iterations, a twofold decrease can be observed when comparing the results of these three hybrid algorithms themselves. 

In Table 10, all four optimal designs are feasible solutions and no constraint violation has been observed. Conclusions can 

be drawn that compared with GA, the developed hybrid algorithms can solve the optimization problem more efficiently as 

well as produce a lighter design. They outperform GA for a better feasible design in terms of the structural weight, the rate 

of convergence, and the number of analyses. Among these three hybrid algorithms, HJ-MAM is the most efficient approach 

to solve the optimization problem.    

   The challenging, mixed discrete-continuous optimization problem defined in Example 3 is reformulated in light of the 

discreteness interval of 1.0 for discrete design variables. In Table 11, the number of response analyses by GA (12375) has 

been drastically reduced to 526 by the coordinate search assisted MAM and a further reduction to 436 by HJ-MAM. A 

similar conclusion can also be drawn on the objective function (the weight). Using the rounding-off assisted MAM, a 

slightly heavier design (1677.7) is achieved as compared to the result (1666.6) by GA, but the number of analyses used to 

seek the optimal solution is significantly reduced from 12375 to 1396. The weights of the optimal designs are further 

reduced by 4.6% and 5.2% using the coordinate search assisted MAM and HJ-MAM, respectively. The lightest weight 

(1591.1) is achieved by HJ-MAM and the minimum number of iterations (29) required for this optimal design can be 

observed as well in Table 11. In terms of constraint information listed in Table 12, it is noted that all four optimal solutions 

are feasible designs with no constraint violation. 
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Discussions 

Based on the preceding fours examples, the performance of three developed hybrid algorithms in terms of computational 

efficiency, the rate of convergence, and the quality of solutions has been investigated by comparing the results with GAs 

and between themselves. Also, the effect of the different discreteness interval on the optimal designs has been evaluated.  

For the mild cases considering the size (0.2) of the discreteness for discrete design variables shown in Tables 5, 7, 

and 9, the hybrid algorithms can generate, on average, better designs than GAs and the computational efficiency is also 

higher than the latter. The rounding-off assisted MAM has capability to solve the optimization problems with the acceptable 

accuracy of solutions, but with the comparison of the coordinate search assisted MAM and HJ-MAM, its optimal design is 

heavier while less iterations and response analyses are normally needed during the optimization process. The conclusions 

can be drawn that in the mild cases, the rounding-off assisted MAM is fast, but its solutions are less accurate. To seek the 

near optimal solution with less computational cost, the rounding-off assisted MAM is recommended for solving the 

optimization problem. No distinct difference in the optimal designs (the same level of quality of weights) can be observed 

by both the coordinate search assisted MAM and HJ-MAM, but the latter can solve the optimization problem with slightly 

higher computational efficiency. 

As the discreteness interval is increased to 1.0, the heavier weights of the optimal designs can be observed because 

the smaller design space in the optimization process can be explored than the one in the foregoing mild cases. The hybrid 

algorithms have the ability to efficiently solve these optimization problems with sufficient accuracy. The optimal designs 

are lighter than the ones by GAs and the computational efficiency is also higher than the latter. As expected, the rounding-

off assisted MAM has less capability to obtain the solutions with the sufficient accuracy in such challenging optimization 

problems. Both the better designs and the lower computational cost for solving the optimization problems are achieved by 

the coordinate search assisted MAM and HJ-MAM (see Table 7, 9 and 11). It turns out that using HJ-MAM, the lightest 

design are obtained with the minimum number of iterations required during the optimization process. In the most 

complicated case study (the mixed discrete-continuous optimization problem in Example 4), HJ-MAM can demonstrate its 

capacity superior to the other two hybrid algorithms and GAs with regard to computational efficiency and the quality of 

solutions. 

In summary, comparing with the results by GAs, the optimal designs by the hybrid algorithms are, on average, lighter. 

The rounding-off assisted MAM can not solve the optimization problems as efficiently and precisely as the coordinate 

search and HJ-MAMs due to its simple search mechanism. HJ-MAM is the most robust method and its superiority over 

the other two hybrid algorithms and GA in solving complex optimization problems is demonstrated on the four examples, 

especially when the discreteness interval for discrete design variables is relatively large, for example the value of 1.0. 

 

6.2 Design of a Pressure Vessel 

Design optimization of the cylindrical pressure vessel capped at both ends by hemispherical heads shown in Fig. 6 is 

considered as the fifth example to demonstrate the efficiency and accuracy of three developed hybrid algorithms. This 

vessel design has been discussed by many researchers (Sandgren 1990, Kannan and Kramer 1994, Deb 1997, Coello 2000, 

Coello and Montes 2003, He and Wang 2007, Montes and Coello 2008, Kaveh and Talatahari 2010). The objective of the 

optimization problem is to minimize the total manufacturing cost of the vessel based on the combination of welding, 
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material and forming costs. The vessel is designed for a working pressure of 3000 psi and a minimum volume of 750
3ft

regarding the provisions of ASME boiler and pressure vessel code. The shell and head thicknesses should be multiples of 

0.0625 in. The thickness of the shell and head is restricted to 2 in. The shell and head thicknesses must not be less than 

0.625 in and 0.25 in, respectively. The design variables of the problem are 1x  as the shell thickness ( sT ), 2x  as the 

spherical head thickness ( hT ), 3x  as the radius of cylindrical shell ( R ), and 4x  as the shell length ( L ). The problem 

formulation is as follows: 
 

Minimize 𝑐𝑜𝑠𝑡(𝑥) = 0.6224𝑥3𝑥1𝑥4 + 1.7781𝑥3
2𝑥2 + 3.1611𝑥1

2𝑥4 + 19.8621𝑥3𝑥1
2 

Design variables: {𝑥1, 𝑥2, 𝑥3, 𝑥4}, 𝑥1 and 𝑥2 are integer multiples of 0.0625  

Subject to: 

𝑔1(𝑥) = 0.0193𝑥3 − 𝑥1 ≤ 0 

𝑔2(𝑥) = 0.00954𝑥3 − 𝑥2 ≤ 0 

𝑔3(𝑥) = 1296000 − (𝜋𝑥3
2𝑥4 +

4

3
𝜋𝑥3

3) ≤ 0 

𝑔4(𝑥) = 𝑥4 − 240 ≤ 0 

Bounds on the design variables: 0.625 ≤ 𝑥1 ≤ 2, 0.25 ≤ 𝑥2 ≤ 2, 10 ≤ 𝑥3 ≤ 240, 10 ≤ 𝑥4 ≤ 240 

 

 

 

Fig. 6 The pressure vessel with indication of design variables 

 

   The comparison of results obtained by three developed hybrid algorithms and other methods has been shown in Table 

13. The cost computed using HJ-MAM has been reduced to 5991.517 by 1.12% from 6059.0888, which was the best design 

referred by Kaveh and Talatahari (2010). In the optimization process, all these three hybrid MAM algorithms outperform 

GA not only in terms of the cost of the optimal design (the accuracy), but also the number of response analyses involved 

(the efficiency). It is noted that the optimized solution by HJ-MAM is the best feasible design (5991.517) since no violated 

constraints are observed in Table 14. The coordinate search assisted MAM has ability to seek the better design (6058.5456) 

than the solution (6092.8310) by rounding-off assisted MAM. However, the constraint 𝑔1 is violated by 0.55% in the 

optimal design by the former shown in Table 14 and the numbers of iterations and response analyses have been also 

significantly increased, which are indicated in Table 13. Summarizing, all the three hybrid MAM algorithms have the 

superiority over GA in terms of the accuracy and efficiency. Rounding-off assisted MAM is the fastest algorithm with 

acceptable accuracy and HJ-MAM can find the best solution with a faster rate of convergence than coordinate search 
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assisted MAM. It is advocated that the HJ-MAM with the overall best capability can be applied to effectively solve the 

complex mixed-variable optimization problems. 

 Table 13. Comparison of optimal designs of the pressure vessel 

Methods 𝑥1(𝑇𝑠) 𝑥2(𝑇ℎ) 𝑥3(𝑅) 𝑥4(𝐿) cost 
No. of 

iterations 

No. of response 

analyses 

Sandgren (1990) 1.1250 0.625 47.7000 117.701 8129.8000 - - 

Kannan and 

Kramer(1994) 
1.1250 0.625 58.2910 43.690 7198.2000 - - 

Deb (1997) 0.9375 0.500 48.3290 112.679 6410.3811 - - 

Coello (2000) 0.8125 0.4375 40.3239 200.000 6288.7445 - - 

Coello and 

Montes (2003) 
0.8125 0.4375 42.0974 176.654 6059.9463 - - 

He and Wang 

(2007) 
0.8125 0.4375 42.0913 176.747 6061.0777 - - 

Montes and 

Coello (2008) 
0.8125 0.4375 42.0981 176.641 6059.7456 - - 

Kaveh and 

Talatahari (2010) 
0.8125 0.4375 42.1036 176.573 6059.0888 - - 

GA (HyperStudy 

2012) 
0.8125 0.375 39.2436 215.720 6272.7006 40 2238 

Rounding-off 

assisted MAM 
0.8750 0.4375 45.3310 140.365 6092.8310 16 145 

Coordinate search 

assisted MAM 
0.8750 0.4375 45.6233 137.367 6058.5456 51 460 

Hooke-Jeeves 

technique assisted 

MAM 

0.750 0.375 38.1954 234.194 5991.517 28 253 

 

Table 14. Constraint values of the mixed continuous-discrete optimization 

Methods 𝑔1 𝑔2 𝑔3 𝑔4 

Sandgren (1990) -0.204 -0.170 0.000 -122.299 

Kannan and Kramer(1994) -2.9e-4 -0.069 -0.138 -196.225 

Deb (1997) -4.7e-3 -0.0390 -3652.877 -127.321 

Coello (2000) -3.4e-2 -0.0528 -27.106 -40.000 

Coello and Montes (2003) -2.0e-5 -0.0359 -27.886 -63.346 

He and Wang (2007) -1.4e-4 -0.0359 -116.383 -63.254 

Montes and Coello (2008) -7.0e-6 -0.0371 2.94791 -63.360 

Kaveh and Talatahari (2010) 1.0e-5 -0.0370 -1.1823 -63.427 

GA (HyperStudy 2012) -5.5e-2 -6.16e-4 -865.498 -24.280 

Rounding-off assisted MAM -1.1e-4 -0.0050 -336.885 -99.635 

Coordinate search assisted MAM 5.5e-3 -0.0023 -50.591 -102.633 

Hooke-Jeeves technique assisted MAM -1.3e-2 -0.0106 -10777.078 -5.806 

7. Conclusions  

Three proposed hybrid algorithms in this paper, combining the metamodel-based MAM and the different search techniques, 

have successfully solved the ten-bar planar truss structure with mixed discrete-continuous design variables. By comparing 

the optimal results with GAs and between themselves, the conclusions have been drawn that the developed hybrid 
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algorithms have the ability to solve the complicated optimization problems with much higher computational efficiency 

than GAs. The influence of sizes of the discreteness interval (0.2 and 1.0) on the computational efficiency and preciseness 

of the solutions is analyzed in the ten-bar truss design example and the superiority of HJ-MAM algorithm over the other 

two hybrid algorithms and GA is also demonstrated by two case studies. HJ-MAM algorithm is the most robust method of 

three developed hybrid algorithms and as an ideal and efficient tool, it can be used to solve the complicated real-world 

problems in which it is essential to perform the mixed discrete-continuous optimization during the design process. 
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