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Abstract— Correlation filters are special classifiers designed for
shift-invariant object recognition, which are robust to pattern
distortions. The recent literature shows that combining a set
of sub-filters trained based on a single or a small group of
images obtains the best performance. The idea is equivalent
to estimating variable distribution based on the data sampling
(bagging), which can be interpreted as finding solutions (variable
distribution approximation) directly from sampled data space.
However, this methodology fails to account for the variations
existed in the data. In this paper, we introduce an intermediate
step—solution sampling—after the data sampling step to form a
subspace, in which an optimal solution can be estimated. More
specifically, we propose a new method, named latent constrained
correlation filters (LCCF), by mapping the correlation filters to a
given latent subspace, and develop a new learning framework in
the latent subspace that embeds distribution-related constraints
into the original problem. To solve the optimization problem,
we introduce a subspace-based alternating direction method of
multipliers, which is proven to converge at the saddle point. Our
approach is successfully applied to three different tasks, including
eye localization, car detection, and object tracking. Extensive
experiments demonstrate that LCCF outperforms the state-of-
the-art methods.1

Index Terms— Correlation filter, ADMM, subspace, object
detection, tracking.

I. INTRODUCTION

CORRELATION filters have attracted increasing attention
due to its simplicity and high efficiency. They are usually

trained in the frequency domain with the aim of producing
a strong correlation peak on the pattern of interest while
suppressing the response to the background. To this end, a
regression process is usually used to obtain a Gaussian output
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that is robust to shifting. Recently, correlation filters have
emerged as a useful tool for a variety of tasks such as object
detection and object tracking.

The correlation filter method is first proposed by Hester and
Casasent, named synthetic discriminant functions (SDF) [13],
which focuses more on formulating the theory. Later on,
to facilitate more practical applications, many variations are
proposed to solve object detection and tracking problems.
For object detection task, early research can be traced back
to [23], where Mahalanobis et al. [25] synthesize filters by
Minimizing the Average Correlation plane Energy (MACE),
thus allowing easy detection in the full correlation plane as
well as control of the correlation peak value. In their improved
work, it was noted that the hard constraints of MACE cause
issues with distrotion tolerance. Therefore, they eliminate the
hard constraints and require the filter to produce a high average
correlation response instead. A newer type of CF, named
Average of Synthetic Exact Filters (ASEF) [3], tunes filters for
particular tasks, where ASEF specifies the entire correlation
output for each training image, rather than specifying a single
peak vaule used in earlier methods. Despite its better capability
of dealing with the over-fitting problem, the need of a large
number of training images makes it difficult for real-time
applications. Alternatively, Multi-Channel Correlation Filters
(MCCF) [15] take advantage of multi-channel features, such
as Histogram of Oriented Gradients (HOG) [34] and Scale-
Invariant Feature Transform (SIFT) [20], in which each feature
responds differently and the outputs are combined to achieve
high performance. For the tracking task, Minimum Output
Sum of Squared Error filters (MOSSE) [2] are considered
as the earliest CF tracker, which intends to produce ASEF-
like filters from fewer training images. Its essential part is
a mapping from the training inputs to the desired training
outputs by minimizing the sum of squared error between
the actual output of the convolution and the desired out-
put of the convolution. Alternatively, Kernelized Correlation
Filters (KCF) [12] map the feature to a kernel space, and
utilize the properties of the cyclic matrix to optimize the
solution process. Since then, most trackers are improved based
on KCF, such as [19], [22], [27], [33], and [40]. We provide
a comprehensive review of these approaches in the next
section.

In general, the existing correlation filtering algorithms
work pretty well in ideal situations. However, the perfor-
mance degrades dramatically when dealing with distorted
data, such as occlusion, noise, illumination, and shifting.
Adding constrains is a sensible way to improve robustness
of classification, leading to the constrained correlation filters.
In [16], a new correlation filter considering the boundary effect
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Fig. 1. The framework of the proposed latent constrained correlation filters (LCCF). In the left-upper part, we show a detection training process. ĥ0:t+1

forms a subspace, in which ĝt+1 is obtained based on a projection �. In the left-bottom part, we show a tracking process. α̂0:t+1 forms a subspace, in which
β̂ t+1 is obtained based on a projection �. This procedure leads to a subspace based alternating direction method Of multipliers (SADMM) algorithm.

constraint can greatly reduce the number of examples involved
in a correlation filter that are affected by boundary effects.
The maximum margin correlation filters (MMCF) [26], con-
straining the output at the target location, show better robust-
ness to outliers. The Distance Classifier Correlation Filters
(DCCF) [24] incorporate the distance information into the fil-
ter calculation for multi-class tasks. In our previous work [30],
an adaptive multi-class correlation filters (AMCF) method
is introduced based on an alternating direction method of
multipliers (ADMM) framework by considering the multiple-
class output information in the optimization objective.

Problem: Given the training samples, at the core of cor-
relation filtering is to find the optimal filters, which requires
the unknown variable distribution estimation. Traditional algo-
rithms normally adopt one of the following schemes: 1) finding
a single filter (i.e., channel filter [15]) trained by a regression
process based on all training samples [15], [16], and 2) finding
a set of sub-filters (a single filter per image [3]) and eventually
integrating them into one filter. Here, the combination can
be either based on averaging the sub-filters in an off-line
manner [3] or an on-line iterative updating procedure [12],
which is similar to that of the bagging method [17]. Revealed
by the literature, the performance of the second scheme is
better than that of the first one [12], even though it is compu-
tationally more expensive. The second scheme is equivalent to
estimating solution distribution based on only a limited amount
of sampled data, which fails to consider the variations existed
in the data in the optimization objective.

One fact that has been overlooked in correlation filter
learning is that data sampling (bagging) can actually lead
to solution sampling, which is traditionally used to find an
ensemble classifier. However, we argue that the bagging results
can also be used to estimate the distribution of the solutions.
Then, the distribution (later subspace) in turn can be deployed
to constrain and improve the original solution. In this paper,
we attempt to implement the above idea in correlation filtering,
in order to enhance the robustness of the algorithm.

The framework of the proposed Latent Constrained Corre-
lation Filters (LCCF) is shown in Fig. 1. To find the solution
sampling in the training process, unlike an ad-hoc way that
directly inputs all samples to train correlation filters, we train
sub-filters step by step based on iteratively selecting subsets.
Instead of estimating a real distribution for an unsolved

variable that is generally very difficult, we exploit sampling
solutions to form a subspace, in which the bad solution from a
noisy sample set can theoretically be recovered after being pro-
jected onto this subspace in an Alternating Direction Method
of Multipliers (ADMM) scheme. Eventually, we can find a
better result from the subspace (subset) that contains different
kinds of solutions to our problem. From the optimization
perspective, the subspace is actually used to constrain the
solution, as shown in Fig. 1. In fact, the above constrained
learning method is a balanced learning model across different
training sets. The application of constraints derived from data
structure in the learning model is capable of achieving good
solutions [5], [6], [36]. This is also confirmed by [5], in which
the topological constraints are learned by using data structure
information. Zhang et al. [36] put forward a new ADMM
method, which can include manifold constraints during the
optimization process of sparse representation classification
(SRC). These methods all achieve promising results by adding
constraints.

Another key issue is how to efficiently embed the subspace
constraints in the optimization process. In this paper, we
propose a Subspace based Alternating Direction Method of
Multipliers (SADMM). The classical ADMM is an algorithm
that solves convex optimization problems by breaking them
into smaller pieces, and each of which can be handled eas-
ily [4]. However, the original ADMM cannot be directly
applied to solve our problem due to its infeasibility of handling
the subspace constraint. In contrast, the proposed SADMM
is more flexible and proved to converge at the saddle point,
therefore enabling a faster algorithm. In summary, our LCCF
based on SADMM differ from the previous approaches in two
aspects:

1) Our SADMM takes advantage of the inherent visual data
structure for solving the optimization problem. We show
that SADMM theoretically converges at the saddle point
in an efficient way.

2) Our SADMM can be used to solve both linear and kern-
erlized correlation filtering based on a latent subspace
constraint. Experimental results show that it consistently
outperforms the state-of-the-art methods on three dif-
ferent tasks, i.e., eye localization, car detection and
object tracking, revealing the generalization ability of
the proposed SADMM model.
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TABLE I

A BRIEF DESCRIPTION OF VARIABLES AND OPERATORS USED IN THE PAPER

Notation: In this paper, T is the transpose operator of
matrix. The operator diag converts the D dimensional vector
into a D × D dimensional matrix, which is diagonal with the
original vector. The subscript i represents the i th element in
a data set (i.e., xi refers to the i th sample in a training set
or a test set), the subscript [k] represents channel (i.e., xi,[k]
represents the kth channel of xi , h[k] refers to the kth channel
of h ), and the superscript refers to the iterations of variable
(i.e., ĥt for the variable ĥ in the t th iteration). For clarity,
we summarize main variables in Table I.

II. RELATED WORK

Comparing with the traditional object detection and tracking
algorithms [10], [14], [34], [35], [39], correlation filtering
exploits convolution to simplify the mapping between the input
training image and the output correlation plane, and has high
computational efficiency and strong robustness. A flurry of
recent extensions to correlation filter have been successfully
used in the object detection and tracking applications.

Chang et al. propose a method to learn several accurate
weak classifiers to construct a strong classifier for eye local-
ization [6]. Later, they propose to learn a Minimum Output
Sum of Squared Error (MOSSE) filter [5] for visual tracking
on gray-scale images, which is very efficient with a speed
reaching several hundreds frames per second. Heriques et al.
present a method based on kernel ridge regression, exploiting a
dense sampling strategy and the circulant structure to simplify
the training and testing processes [11]. The kernel ridge
regression based method has been further improved in recent
years and many variants appear [8], [12], [22], [27], [40].
By using HOG features, KCF is developed to improve the
performance of CSK [12]. Tang and Feng [27] introduce the
multi-kernel correlation filter which is able to take advantage
of the invariance discriminative power spectrums of various
features. Part-based correlation filters, such as [19] and [31]
adopt the correlation filters as part classifiers to effectively
handle partial occlusions. Danelljan et al. exploit the color
attributes of a target object and learn an adaptive correlation
filter by mapping multi-channel features into a Gaussian kernel
space [8]. In [7], Discriminative Scale Space Tracker (DSST)
is proposed to handle scale variations based on a scale pyramid
representation. This scale assessment method can also be
embedded into other models [22], [27]. Ma et al. [22] develop
a re-detecting process to further improve the performance
of KCF. Kiani Galoogahi et.al [16] present a method to
limit the circular boundary effects while preserving many of
the computational advantages of canonical frequency domain

correlation filters. In [21], convolutional features correlation
filters (CFCF) exploit features extracted from deep convolu-
tional neural networks (DCNN) trained on object recognition
datasets to improve tracking accuracy and robustness.

From the review of previous works, it can be seen that the
distribution introduced by the bagging method is not well
studied for the correlation filter calculation. However, the
distribution information is important to calculate robust filters,
especially when the data suffer from severe noise, occlusion,
etc.

III. SUBSPACE BASED ALTERNATING DIRECTION

METHOD OF MULTIPLIERS (SADMM)

The Augmented Lagrangian Multiplier (ALM) methods are
a class of algorithms for solving constrained optimization
problems by including penalty terms to the objective func-
tion [28]. As a variant of the standard ALM method that uses
partial updates (similar to the Gauss-Seidel method for solving
linear equations), ADMM recently gained much more attention
due to its adaptability to several problems [4]. By solving
iteratively a set of simpler convex optimization sub-problems,
each of which can be handled easily. In this section, we show
how the visual data structure, i.e., subspace constraints, can be
embedded into the ALM minimization to define SADMM. We
then present the resulting algorithm for the proposed SADMM
and the solution of each sub-problem.

The primary task is to minimize E(ĥ) that is a general and
convex optimization objective. In order to exploit the property
of solution sampling from the data sampling, the subspace
constraint is added to the original optimization problem. That
is to say, instead of estimating a real distribution function of
any unsolved variable, the problem can be solved based on a
subspace containing the sub-solutions. Specifically, we add a
new variable in the optimization problem, which is ĝ repre-
senting the mapping of ĥ in a specific subspace: ĥ → ĝ ∈ S.
The goal is to explicitly impose the subspace constraints by
the cloned variables, though this will inevitably bring extra
storage costs due to the replicated variables. We have a new
optimization problem as:

minimize E(ĥ)

subject to ĥ = ĝ; ĝ ∈ S, (1)

where S refers to a well-designed subspace. ALMs are used
to solve the problem via

ES(ĥ) = E(ĥ) + RT (ĝ − ĥ) + σ

2
||ĝ − ĥ||2, (2)
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where RT denotes the Lagrange multiplier vector, and σ is
a regularization term. Based on the classical ADMM method
which uses partial updates for the dual variables, ĝ, ĥ are then
solved as follows:

ĥt+1 = argmin ES(ĥ|ĝt) (3)

ĝt+1 = argmin ES(ĝ|ĥt+1)

subject to ĝ ∈ S. (4)

Different from Eq. (3) that can be easily solved using an exist-
ing optimization method, i.e., Gradient descent, the solution
of Eq. (4) becomes complex due to the new constraint of
g ∈ S. We rewrite Eq. (4) by dropping the index for an easy
presentation:

ĝ = argmin RT (ĝ − ĥ) + σ

2
||ĝ − ĥ||2,

subject to ĝ ∈ S. (5)

By dropping constant terms, Eq.(5) is equivalent to:

ĝ = argmin ||ĝ − (ĥ − R

σ
)||2,

subject to ĝ ∈ S. (6)

The solution to Eq.(6) is given by: ĝ = Ms(ĥ − r
σ ),

where Ms is the projection matrix related to the subspace
of the solutions to our problem. R is omitted to obtain the
ADMM scheme from the original ALM method [36]. This
also improves the efficiency of our method. Thus, we have:

ES(ĥ) = E(ĥ) + σ

2
||ĝ − ĥ||2. (7)

In the relaxed version ĝ is only considered to be recovered
by S (Ms ) built from ĥ, which is defined by the function �
discussed later. This leads to a new ADMM method, named
subspace based ADMM (SADMM) algorithm, which makes
use of an iterative process similar to that in [4]. Specifically,
after the variable replication, ĝ is calculated according to a
given subspace. This means that we could find ĥt+1 based on
ĥt and ĝt in the t th iteration. Next, we expand the training set
by adding a number of training samples. ĝt+1 is calculated
based on the subspace spanned by ĥ0:t+1 ((Ms)), which
includes sub-filters from ĥ0 (initialized) to ĥt+1. This iterative
process is described as follows:

ĥt+1 = argmin ES(ĥ|ĝt ),

ĝt+1 = �(ĥt+1, ĥ0:t ). (8)

It should be noted that the theoretical investigation into
our SADMM algoritm shows that the convergence speed of
SADMM is as fast as ADMM [4], which is elaborated in the
appendix part.

IV. LATENT CONSTRAINED CORRELATION FILTERS

A. Correlation Filters

The solution to correlation filters, i.e., multiple-channel
correlation filter, can be regarded as an optimization problem

which minimizes E(h). This procedure can be described by
the following objective function:

E(h) = 1

2

N∑

i=1

||yi −
K∑

k=1

h[k]T ⊗ xi,[k]||22+ 1

2

K∑

k=1

||h[k]||22, (9)

where N represents the number of images in the training
set, and K is the total number of channels. In Eq. (9), xi

refers to a K-channel feature/image input which is obtained
in a texture feature extraction process, while yi is the given
response whose peak is located at the target of interest. k
represents the kth-channel. The single-channel response is a
D dimensional vector, yi = [y(1), . . . , y(D)]T ∈ R

D . Both
xi and h are K × D dimensional super-vectors that refer to
multi-channel image and filter, respectively. Correlation filters
are usually constructed in the frequency domain. Therefore, to
solve Eq. (9) efficiently, we transform the original problem into
the frequency domain by the Fast Fourier Transform (FFT),
which becomes:

E(ĥ) = 1

2

N∑

i=1

||ŷi −
K∑

k=1

diag(x̂i,[k])T ĥ[k]||22 + λ

2

K∑

k=1

||ĥ[k]||22,

(10)

where ĥ, x̂, and ŷ refer to the Fourier form of h, x, and y,
respectively. Eq. (10) can be further simplified to:

EL(ĥ) = 1

2

N∑

i=1

||ŷi − X̂i ĥ||22 + λ

2
||ĥ||22, (11)

where

ĥ = [ĥT[1], . . . , ĥT[k]]T

X̂i = [diag(x̂i,[1]), . . . , diag(x̂i,[k])] (12)

A solution in the frequency domain is given by:

ĥ = (λI +
N∑

i=1

X̂T
i X̂i )

−1
N∑

i=1

X̂T
i ŷi . (13)

Here, since Xi is usually a sparse banded matrix, one can
actually transform solving the K D × K D linear system into
solving D independent K × K dimensional linear systems. By
doing so, the correlation filters calculation exhibits excellent
computational and memory efficiency.

B. Latent Constrained Linear Correlation Filter (LC-LCF)
Based on SADMM

In order to solve Eq. (11) based on SADMM, we reformu-
late it using the subspace constraint as:

minimize EL(ĥ)

subject to ĥ = ĝ; ĝ ∈ S. (14)

The objective function in Eq. (14) can be expressed as:

ES,L(ĥ) = 1

2

B∑

i=1

||ŷi − X̂i ĥ||22 + λ

2
||ĥ||22 + σ

2
||ĝ − ĥ||2,

(15)
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where λ and σ are regularization terms. According to
SADMM, the solution is described as follows:

ĥt+1 = argmin EL ,S(ĥ|ĝt ),

ĝt+1 = �(ĥt+1, ĥ0:t ). (16)

Here Ms is defined to be ĥ0:t . To solve Eq.(16), we calculate
the partial derivatives of Eq. (15), and thus have:

∂ ES,L(ĥt+1)

∂(ĥt+1)

=
B∑

i=1

(X̂T
i X̂i + λI + σ I)ĥt+1 −

∑
X̂T

i Ŷi − σ ĝt , (17)

where B is the size of the training set. We come to the result
of ĥt+1, and have:

ĥt+1 = H−1(

B∑

i=1

X̂T
i Ŷi + σ t ĝt ), (18)

where

H =
B∑

i=1

(X̂T
i X̂i ) + λI + σ t I, (19)

then ĝt+1 is calculated as :

ĝt+1 = �(ĥt+1, ĥ0:t ) =
t∑

i=0

ωi ĥi , (20)

where ωi = 1
di

, and di is the Euclidean distance between ĥt+1

and ĥi . ω will be normalized by the L1 norm.After several
iterations, ĥt+1 converges to a saddle point, which is proved
in Appendix I. The pseudocode of our proposed method is
summarized in Algorithm 1. The LC-LCF is first initialized
based on a half of the training samples, and then we add

B
maxiter samples into the training set, which is one kind of data
sampling. Subsequently, a set of sub-filters (solution sampling)
are calculated, and further used to constrain our final solution.

C. Latent Constrained Kernelized Correlation Filter
(LC-KCF) Based on SADMM

In kernelized correlation filter (KCF), similar to the linear
case, filters learned on the previous frames can also be used
to constrain the solution. Details about KCF can refer to
Appendix II. If one frame is disturbed by occlusion and
noise, the performance of the filter tends to drop. Our idea
is that, with a subspace constraint, the filter is regularized by
a projection into a well-defined subspace to achieve a higher
performance. In other words, the samples of the previous
frames are involved in the reconstruction process of the filter
with different weights, therefore enhancing the robustness of
the filters.

As described in the second KKT condition detailed in
Appendix II, we can solve h in a dual space by setting
α = θ

2λ . For KCF, the latent constraint is actually made for
α. We introduce the constraint term β as the mapping of α

Algorithm 1 LC-LCF Based on SADMM

in the subspace: (α → β,β ∈ S). Therefore, Eq. (47) can be
rewritten as:

Lp =
M×N∑

i=1

ξ t+1
i

2 +
M×N∑

i=1

θ t+1
i (yi − (ht+1)T φi − ξ t+1

i )

+ λ(||ht+1||2 − C2) − δt ||αt+1 − β t ||22. (21)

The superscript t refers to the frame index, and also denotes
the iteration number. The solution to Eq. (21) based on the
SADMM method also depends on the iterative process. The
variables need to be updated include α, β, and punishment
coefficient δ. The mapping function φi = φ(xi ), which is used
to calculate the kernel matrix K.

Based on KCF, we come up with a new maximizing
objective function E(α):

E(α) = −λ2
M×N∑

i=1

(
αt+1

i

)2 + 2λ

M×N∑

i=1

αt+1
i yi

− λ

M×N∑

i, j=1

αt+1
i αt+1

j Ki, j −δt
M×N∑

i

(αt+1
i − β t

i )
2 − λC2.

(22)

We can further simplify it as:

E(α) = −λ2(αt+1)
T
(αt+1) + 2λ(αt+1)T y − λ(αt+1)

T
Kαt+1

− δt (αt+1 − β t )T (αt+1 − β t ) − λB2. (23)

By setting a variable substitution δt = λσ t and taking
derivatives w.r.t. (αt+1):

∂(E(α))

∂(αt+1)
= −2λ2αt+1+2λy−2λKαt+1−2λσ t (αt+1 − β t ),

(24)
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Algorithm 2 LC-KCF Algorithm for Object Tracking

we come to the solution of αt+1 as:

αt+1 = (K + λI + σ t I)−1(y + σ tβ t ). (25)

The kernel matrix K is a cyclic matrix, we transform
Eq. (25) by Fast Fourier Transform (FFT) to avoid the inverse
operation of matrices [12]:

K = F H Kx x F, (26)

where F is a discrete Fourier transform matrix, and F H is the
conjugate transpose operation. Kx x is the first row of K, then
we obtain

α̂t+1 = (Kx x + λ + σ t )−1(ŷ + σ t β̂ t ). (27)

By setting

η = (Kx x + λI + σ t I)−1(Kx x + λI ), (28)

we change Eq. (27) to another form

α̂t+1 = ηα̂ + (1 − η) β̂ t . (29)

This means that for the t th frame, we can calculate α̂t+1

based on β̂ t , and then update β̂ t+1 based on the subspace

spanned by α̂0:t+1 as the linear case. The process mentioned
above can be summarized as:⎧

⎪⎨

⎪⎩

α̂t+1 = ηα̂ + (1 − η) β̂ t

β̂ t+1 = �(α̂t+1, α̂0:t ) = ∑
i ωi α̂

i

σ̂ t+1 = cσ̂ t

(30)

Similar to Eq. (20), ωi is calculated based on the Euclidean
distance, and details about normalization refer to the source
code.

V. EXPERIMENTS

In this section, to evaluate the performance of the proposed
method, experiments are carried out for object detection and
tracking. For objection detection, two different applications
are considered: eye localization and car detection. A 2D
Gaussian function with the same parameter is employed to
generate a single channel output whose peak is located at the
coordinate of target. All images are normalized before training
and testing. The images are power normalized to have a zero-
mean and a standard deviation of 1.0.

Subset, Subspace and Robustness Evaluation for Object
Detection: We first introduce how to create different kinds
of subsets for calculating the sub-filers subspace. We add
some noise or occlusions to the training and test sets in order
to show how LC-LCF can gain robustness by a projection
onto a subspace. More specifically, we first select an initial
subset containing half of the training samples (the size was
denoted by B). Other subsets are built by adding B

maxiter
samples into the initial subset, where maxi ter represents the
maximum number of iterations. Based on the initial subset, we
obtain ĥ[0], and calculate other sub-filters, i.e., ĥt for the t th

iteration, step by step. With respect to the robustness evalu-
ation, the basic idea for both applications is to measure the
algorithm accuracy when adding Gaussian noise or occlusions
to the training and test sets. For both applications, HOG feature
is extracted by setting the number of direction gradients to 5,
and both the sizes of block and cell to [5, 5], as suggested
in [15].

A. Eye Localization

In the first experiment, the proposed method is evaluated
for eye localization and compared with several state-of-the-
art correlation filters, including MCCF [15], correlation fil-
ters with limited boundary (CFwLB) [16], ASEF [3] and
MOSSE [2].

1) CMU Multi-PIE Face Database: The CMU Multi-PIE
face database is used in this experiment. It consists of 902
frontal faces with neutral expression and normal illumination.
We randomly select 500 images for training and the remaining
for testing. All images are cropped to have a same size of 128×
128 with fixed coordinates of the left and right eyes. We train
a 128 × 128 filter of the right eye using full face images by
following [15]. Similar to ASEF and MOSSE, we define the
desired response as a 2D Gaussian function with a spatial
variance of 2. Eye localization is performed by correlating the
filters over the test images followed by selecting the peak of
the output as the predicted eye location.



1044 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 3, MARCH 2018

Fig. 2. Left: the localization rates under different maximum iterations for
LCCF. Right: the convergence of our method when fixing the maxiter to 12.

Results and Analysis: In order to evaluate the performance
of our algorithm, we use the so-called fraction of interocular
distance, which is defined by the actual and the predicted
positions of the eyes. This distance can be computed as

d = ||pi − mi ||2
||ml − mr ||2 , (31)

where pi is the predicted location by our method, and mi is the
ground truth of the target of interest, i.e., the eye’s coordinates
ml and mr .

Haven calculated the distance d , the next step is to compare
it with a threshold τ . If d < τ , the result will be considered
as a correct one. We count the correct number under this
threshold, and compute the ratio of the correct count to the
total number of tests as the localization rate. The localization
rates under different maxi ters are shown in Fig. 2. We can see
that LC-LCF obtains the best accuracy when maxi ter = 12.
Therefore, we use this setting for all the following experi-
ments. In addition, we also test the convergence of our method
when maxi ter = 12. It is clear that the performance is
monotonically increasing as the incremental iteration numbers,
which verifies our proof.

LC-LCF is also compared with MCCF in the robustness
evaluation. As shown in Fig. 3, LC-LCF achieves a much
higher performance than MCCF, especially when severe noises
are present. In Fig. 4, LC-LCF is compared with the state-of-
the-art methods, showing that LC-LCF is less affected by noise
and occlusion than others. Particularly, in the situation when
the test set is extremely noisy, LC-LCF and CFwLB perform
significantly better than other competing approaches. It is also
evident that LC-LCF achieves a much better performance
than CFwLB for the occlusion case. In these experiments,
all methods are based on the same training and test sets.
For the experiment on the original dataset (without noise
and occusion), we randomly choose 500 images for training
and other 402 for testing. To test the robustness, we further
conduct another experiment by adding noise or occlusion
onto the selected 500 images, thereby generating a total of
1000 training images. Similarly, the 402 testing images are
also added with random noise and occlusion. This evaluation
is repeated for ten times to avoid bias and finally the average
accuracy over the ten experiments is reported.

2) LFW Database: In the second eye localization exper-
iment, we choose face images in the Labeled Faces in the

Fig. 3. The comparison between LCCF and MCCF on CMU Multi-PIE with
different Gaussian noise parameters.

Fig. 4. The results of LC-LCF compared to the state-of-the-art correlation
filters on CMU Multi-PIE. The variance is varying from 0.05 (slight) to 0.1
(heavy). On the left part, from the first column to the fourth column, we
show results on the original images, images with occlusions, images with
slight noise, and images with heavy noise and occlusions.

Wild (LFW) database. LFW database contains ten thousands
of face images, covering different age, sex, race of people. The
training samples take into account the diversity of lighting,
pose, quality, makeup and other factors as well.

We randomly choose 1000 face images of 250×250 pixels,
in which the division for training and testing is half:half.
Fig. 5 shows the predominant robustness of the proposed
algorithm. Similar to the results on the CMU dataset, the
performance difference between the proposed algorithm and
the state-of-the-arts is getting larger as increased intensity
of noise. Considering that LC-LCF is implemented based on
MCCF, we only compare the two methods on this dataset.
We fail to run the CFwLB code on this database, because it
requires the facial points must be at the same positions for all
the images. However, on the following Car dataset, we provide
comparisons of all methods.
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Fig. 5. The results of LC-LCF and MCCF on the LFW dataset.

Fig. 6. Experimental results of LC-LCF compared to other correlation filters
for car detection. The variance of Gaussian noise is 0.05. On the left part,
from the first column to the third column, we present the results of different
methods on the original images, images with occlusion, and images with noise.

B. Car Detection

The car detection task is similar to eye localization.
We choose 938 sample images from the MIT Streetscape
database [1]. They are cropped to 360 × 360 pixels. In the
training procedure, HOG feature is used as input and the peak
of the required response is located at the center of the car.
We use a 100 × 180 rectangle to extract the car block and
exclude the rest regions in the image.In testing, the peak of
the correlation output is selected as the predicted location of
a car in the street scene. we compare the predicted location
with the target center, and choose the pixels deviation between
them as measurement for evaluation [15]. The results of this
experiment are presented in Fig. 6.

In Fig. 6, it can be seen that most methods are quite close
to each other in terms of the performance when there is

Fig. 7. Success and precision plots according to the online tracking
benchmark [29] for long-term tracking experiments.

no occlusion or noise. However, LC-LCF shows much better
robustness when the test data suffer from noise and occlusion.
The enhanced performance is achieved, because a subspace
that contains various kinds of variations is used to find a more
stable and robust solution.

With respect to the complexity, in the testing process,
LC-LCF is very fast since we only need element-wise product
in the FFT domain. When we train D dimensional vec-
tor features with maxi ter iteration, LC-LCF has a time
cost of O(N DlogD) for FFT calculation (once per image),
which is the same to that of MCCF. The memory storage
is O(maxi ter K D) for LC-LCF, and O(K 2 D) for MCCF.
Considering that maxi ter is not very big, LC-LCF is quite
efficient on training and testing process.

C. Object Tracking

The evaluation of object tracking with the proposed method
is conducted on 51 sequences of the commonly used track-
ing benchmark [29]. In the tracking benchmark [29], each
sequence is manually tagged with 11 attributes which represent
challenging aspects in visual tracking, including illumination
variations, scale variations, occlusions, deformations, motion
blur, abrupt motion, in-plane rotation, out-of-plane rotation,
out-of-view, background clutters and low resolution. All the
tracking experiments are conducted on a computer with an
Intel I7 2.4 GZ (4 cores) CPU and 4G RAM. The results show
that the tracking performance is significantly improved by
adding latent constrains without sacrificing real-time process-
ing. The source code will be publicly available.

1) Feature Experiments: To validate the performance of our
algorithm on different features, we adopt gray feature, HOG
and DCNN feature for comparison. Here, Gaussian kernel
function (standard variance = 0.5) is used. Most parameters
utilized in LC-KCF are empirically chosen according to [12]:
λ = 10−4, ρ = 0.1, and the searching size is set to 1.5.

In Table.II, we report the localization precision, which
measures the ratio of successful tracking frames. The crite-
rion of being successfully tracked is that the tracker output
is within the certain distance to the ground truth location
(typically 20 pixels), measured by the center distance between
bounding boxes.

Comparing with KCF, our method performs better on
these three features. For gray feature, LC-KCF and KCF
achieve 56.8% and 56.1% localization precision respectively,



1046 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 3, MARCH 2018

TABLE II

SUCCESS AND PRECISION PLOTS ACCORDING TO THE ONLINE TRACKING
BENCHMARK [29] BASED ON DIFFERENT FEATURES

TABLE III

SENSITIVITY EXPERIMENTS OF PARAMETER T , RESULTS SURPASS

THE BASELINE ARE MARKED IN BOLD TYPE

and LC-KCF achieves a higher overlap success rate (49.5%
vs. 47.3%). For the HOG feature, LC-KCF improves the
localization accuracy by 5% (79.4% vs. 74.0%). We also
compare the performance of our method using deep feature
extracted from a VGG-19 model, which is also used in [21].
The results show that the localization precision is improved
as well (89.6% vs 89.1%) by our method, without bringing in
too much additional computational burden. Although the FPS
of LC-KCF drops, as compared to KCF, it is still a nearly
real-time tracker.

2) Parameter Experiments: In Eq. (30), T represents the
number of frames used to reconstruct the subspace, which
has a large impact on performance. For the HOG feature, we
set T = 16, which also appears in Algorithm II. Actually,
the value of T is flexible, which can vary from 10 to 25 on
different trackers or different features. We verify the sensitivity
of this parameter by using HOG feature in this section. For
HOG features, T is relatively stable, and the results are
improved when T is within the range of 12 to 22.

3) Long-Term Tracking Experiments: The tracking targets
may undergo significant appearance variations caused by
deformation, abrupt motion, heavy occlusion and out-of-view,
which affect the tracking performance significantly. Long-term
correlation tracking [22] (LCT) regards tracking as a long-term
problem, and makes a series of improvements on the basis of
KCF. LCT decomposes the task of tracking into translation
and scale estimation of objects, adds re-detection framework
and achieves a substantial increase in accuracy. For the long-
term tracking task, we directly impose our latent constrains to
LCT and generate a Latent Constrained Long-term Correlation
Tracker (LC-LCT).

KCF and LCT train two correlation filters (context tracker
Rc and target appearance tracker Rt ) during the tracking
process. Our latent constrains are only added to the context
tracker (i.e., no change to the appearance tracker). Parameter
settings follow [22]. The results are shown in Fig. 7

The LC-LCT and LCT achieve 78.2% and 76.8% based
on the average success rate, while the KCF and DSST
trackers respectively achieve 67.4% and 67.8%. In terms of
precision, LC-LCT and LCT respectively achieve 86.5% and

Fig. 8. Precision plots on some attribute categories.

84.8% when the threshold is set to 20. LC-LCT consistently
obtains much higher tracking performance than KCF (74.0%),
DSST (73.7%), Struck (65.6%) and TLD (60.8%). We also
observe that LC-LCT exhibits very good performance on some
attribute categories, such as occlusion, illumination variation,
out of view, etc. On the subset of occlusion, LC-LCT is
about 3% higher than LCT (87.4% vs 84.6%). These results
are presented in Fig.8. In terms of tracking speed, LCT
processes 29.67 frames per second (FPS), while LC-LCT has a
processing rate of 25.43 FPS. Therefore, the proposed LC-LCT
only has a minuscule frame rate drop as compared to the
original LCT, yet is still able to achieve real-time processing.

These results confirm that the latent constraint contributes
to our tracker and enables it to perform better than the state-
of-the-art methods.

VI. CONCLUSIONS

In this paper, we have proposed the latent constrained
correlation filters (LCCF) and introduced a subspace ADMM
algorithm to solve the new learning model. The theoretical
analysis reveals that the new subspace ADMM is much faster
than the original ADMM in terms of the convergence speed.
The experimental results have shown consistent advantages
over the state-of-the-arts when applying LCCF to several com-
puter vision applications including eye detection, car detection
and object tracking. In future work, we will incorporate the
latent constraint in deep learning frameworks, and explore
other applications such as action recognition [37], image
retrieval [9], [18] and visual saliency detection [32], [38].

APPENDIX I
CONVERGENCE OF SADMM

To prove the convergence of SADMM, we set F(ĥ) =
1
2

B∑
i=1

||ŷi − X̂i ĥ||22 + λ
2 ||ĥ||22. Then Eq. 7 can be rewritten as:

Lσ (ĥ) = F(ĥ) + σ

2
‖ĥ − ĝ‖2. (32)

We set ĥ∗ as the saddle point for the objective mentioned
above. Considering the case ε = ‖ĥt+1 − ĥt‖2 as shown in
Algorithm 1, ĥt+1 minimizes

F(ĥt+1) + σ t

2
‖ĥk+1 − ĝt‖2 + σ t

2
‖ĥt+1 − ĥt‖2. (33)
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Since ĝ = ĥ, Eq.(33) is rewritten as:

Lσ (ĥ) = F(ĥt+1) + σ t‖ĥt+1 − ĝt‖2, (34)

and the derivative of Eq. (34) is:

∂ F(ĥt+1) + 2σ t (ĥt+1 − ĝt ), (35)

which can also be considered as the derivative of Eq.(36):

F(ĥ) + 2σ t (ĥt+1 − ĝt )ĥ. (36)

We have:

F(ĥt+1) + 2σ t (ĥt+1 − ĝt )ĥt+1 ≤ F(ĥ∗) + 2σ t (ĥt+1 − ĝt )ĥ∗

(37)

and obtain:

F(ĥt+1) − F(ĥ∗) ≤ 2σ t (ĥt+1 − ĝt )(ĥ∗ − ĥt+1). (38)

In addition, based on Eq.(32), we have:

F(ĥt+1)+ σ t

2
‖ĥt+1−ĝt‖2 ≥ F(ĥ∗)+ σ t

2
σ t‖ĥ∗−ĝt‖2. (39)

Since ĥ∗ is the saddle point for our problem, we have:

F(ĥ∗)−F(ĥt+1) ≤ σ t

2
∗ (‖ĥt+1 − ĝt‖2 − ‖ĥ∗ − ĝt‖2). (40)

From Eq. (38) and Eq. (40), we get:

−4‖ĥt+1 − ĥ∗‖2 + 4(ĥ∗ − ĝt )(ĥ∗ − ĥt+1)

+ ‖ĥt+1 − ĝt‖2 − ‖ĥ∗ − ĝt‖2 ≥ 0. (41)

where we also used 4(ĥt+1 − ĥ∗ + ĥ∗ − ĝt )(ĥ∗ − ĥt+1) to
change the right part of Eq. (38). And then we have:

‖ĥt+1 − ĝt‖2 = ‖ĥt+1 − ĥ∗‖2+‖ĥ∗ − ĝt‖2

+ 2(ĥt+1 − ĥ∗)(ĥ∗ − ĝt ), (42)

we have:

−4‖ĥt+1 − ĥ∗‖2 + 4(ĥ∗ − ĝt )(ĥ∗ − ĥk+1)

+ ‖ĥt+1 − ĝt‖2 + ‖ĥt+1 − ĝt‖2

− ‖ĥ∗ − ĝt‖2 − ‖ĥt+1 − ĝt‖2

= −4‖ĥt+1 − ĥ∗‖2 + 2‖ĥt+1 − ĥ∗‖2 + 2‖ĥ∗ − ĝt‖2

− ‖ĥ∗ − ĝt‖2 − ‖ĥt+1 − ĝt‖2 ≥ 0. (43)

Therefore we obtain:

−2‖ĥt+1 − ĥ∗‖2 + ‖ĥ∗ − ĝt‖2 − ‖ĥt+1 − ĝt‖≥0 (44)

Again, using ĝ = ĥ, we have:

‖ĥt+1 − ĥ∗‖2 ≤ 1

2
‖ĥ∗ − ĥt‖2 − 1

2
‖ĥt+1 − ĝt‖2. (45)

Compared to [4], our method is more efficient than ADMM
in terms of convergence speed.

APPENDIX II
KERNELIZED CORRELATION FILTERS (KCF)

We briefly review the KCF algorithm. Based on the input
image of x of M × N pixels, in the spatial domain, KCF is
described as

min
h

∑

i

ξ2
i

subject to yi − hT φ(xi ) = ξi ∀i ; ||h|| ≤ C. (46)

In Eq. (46), xi is the circular samples of image x. y
representing a Gaussian output and ξ denoting a slack variable,
are vectors. Therefore, yi and ξi in Eq. (46) are scalars. φ(.)
(later φi ) refers to the nonlinear kernel function, and C is a
small constant. Then, we have

Lp =
M×N∑

i=1

ξ2
i +

M×N∑

i=1

θi (yi − hT φi − ξi ) + λ(||h||2 − C2),

(47)

Using KKT conditions θi = 2ξi , h = ∑M×N
i

θi
2λφi and setting

αi = θi
2λ , solving h will be converted to solving a dual variable

α in a dual space. Plugging α back into Eq.(47), we formulate
a new maximizing objective function E(α):

E(α) = −λ2
M×N∑

i=1

α2
i + 2λ

M×N∑

i=1

αi yi −λ

M×N∑

i, j=1

αiα j Ki, j −λC2,

(48)

where K is a kernel matrix. Then, the solution is

α = (K + λI)−1y. (49)

According to the properties of the cyclic matrix, Eq. (49)
is transformed into the Fourier domain to speed up the
calculation based on Fast Fourier Transform (FFT). Then, we
have α̂ as:

α̂ = (Kx x + λI)−1ŷ, (50)

where Kx x refers to the first row of K.
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