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Abstract
Color transfer is an image editing process that naturally transfers the color theme of a source image to a target image. In this
paper, we propose a 3D color homographymodelwhich approximates photo-realistic color transfer algorithm as a combination
of a 3D perspective transform and a mean intensity mapping. A key advantage of our approach is that the re-coded color
transfer algorithm is simple and accurate. Our evaluation demonstrates that our 3D color homography model delivers leading
color transfer re-coding performance. In addition, we also show that our 3D color homography model can be applied to color
transfer artifact fixing, complex color transfer acceleration, and color-robust image stitching.

Keywords Color transfer · Color grading · Color homography · Tone mapping

1 Introduction

Color palette modification for pictures/frames is often
required in professional photograph editing as well as the
video postproduction. Artists usually choose a desired tar-
get picture as a reference and manipulate the other pictures
to make their color palette similar to the reference. This pro-
cess is known as photo-realistic color transfer. Figure 1 shows
an example of photo-realistic color transfer between a target
image and a source image. This color transfer process is a
complex task that requires artists to carefully adjust for mul-
tiple properties such as exposure, brightness, white point, and
color mapping. These adjustments are also interdependent,
i.e., the alignment for a single property can cause the other
previously aligned properties to become misaligned. Some
artifacts due to nonlinear image processing (e.g., JPEG block
edges) may also appear after color adjustment.

One of the first photo-realistic color transfer methods
was introduced by Reinhard et al. [23]. Their method pro-
posed that the mean and variance of the source image, in
a specially chosen color space, should be manipulated to
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match those of a target. More recent methods [1,16,19–21]
might adopt more aggressive color transfers—e.g., color dis-
tribution force matches [19,20]—and yet, these aggressive
changes often do not preserve the original intensity gradi-
ents and new spatial type artifacts may be introduced into
an image (e.g., JPEG blocks become visible or there is false
contouring). In addition, the complexity of a color transfer
method usually leads to longer processing time. To address
these issues, previous methods [11,13,18] were proposed to
approximate the color change produced by a color trans-
fer, such that an original complicated color transfer can
be re-formulated as a simpler and faster algorithm with an
acceptable level of accuracy and some introduced artifacts.

In this paper, we propose a simple and general model for
re-coding (approximating) an unknown photo-realistic color
transfer which provides leading accuracy and the color trans-
fer algorithm can be decomposed into meaningful parts. Our
model is extended from a recent planar color homography
color transfer model [11] to the 3D domain, as opposed to
the original 2D planar domain. In our improved model, we
decompose an unknown color transfer into 3D color per-
spective transform andmean intensity mapping components.
Based on [11], we make two new contributions: (1) a 3D
color mapping model that better re-codes color change by
relating two homogeneous color spaces and (2) a mono-
tonic mean intensity mapping method that prevents artifacts
without adding unwanted blur. Our experiments show signif-
icant improvements in color transfer re-coding accuracy. We
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Fig. 1 Pipeline of our color transfer decomposition. The “target” image
was used by the “original color transfer” algorithms to produce the
“original color transfer” output image, but it is not used by the proposed
color transfer re-coding algorithm. The orange dashed line divides the
pipeline into two steps: (1) color space mapping: The RGBs of the
source image (drawn as red edge circles) and the original color transfer
image (by [16] with the target image as the reference, black edge cir-

cles) are matched according to their locations (e.g., the blue matching
lines), from which we estimate a 3D homography matrix H and use H
to transfer the source image colors and (2) mean intensity mapping: The
image mean intensity values (mean values of R, G, and B) are aligned
by estimating the per-pixel shading between the color space-mapped
result and the original color transfer result by least squares. The final
result is a visually close color transfer approximation

demonstrate three applications of the proposed method for
color transfer artifact fixing, color transfer acceleration, and
color-robust image stitching.

Throughout the paper, we denote the source image by Is
and the original color transfer result by It . Given Is and It ,
we re-code the color transfer with our color homography
model which approximates the original color transfer from
Is to It . Figure 1 shows the pipeline of our color transfer
decomposition.

Our paper is organized as follows. We review the leading
prior color transfer methods and the previous color transfer
approximation methods in Sect. 2. Our color transfer decom-
position model is described in Sect. 3. We present a color
transfer re-coding method for two corresponding images in
Sect. 4. In addition,we demonstrate its applications in Sect. 5.
Finally, we conclude in Sect. 6.

2 Background

In this section, we briefly review the existing work on photo-
realistic color transfer, themethods for re-coding such a color
transfer, and the concept of Color Homography.

2.1 Photo-realistic color transfer

Example-based color transfer was first introduced by Rein-
hard et al. [23]. Their method aligns the color distributions
of two images in a specially chosen color space via 3D scal-
ing and shift. Pitie et al. [19,20] proposed an iterative color

transfer method that distorts the color distribution by ran-
dom 3D rotation and per-channel histogram matching until
the distributions of the two images are fully aligned. This
method makes the output color distribution exactly the same
as the target image’s color distribution. However, the method
introduces spatial artifacts. By adding a gradient preservation
constraint, these artifacts can be mitigated or removed at the
cost of more blurry artifacts [20]. Pouli and Reinhard [21]
adopted a progressive histogram matching in L*a*b* color
space. Their method generates image histograms at different
scales. From coarse to fine, the histogram is progressively
reshaped to align the maxima and minima of the histogram,
at each scale. Their algorithm also handles the difference in
dynamic ranges between two images. Nguyen et al. [16] pro-
posed an illuminant-aware and gamut-based color transfer.
They first eliminate the color cast difference by a white-
balancing operation for both images. A luminance alignment
is later performed by histogram matching along the “gray”
axis of RGB. They finally adopt a 3D convex hull mapping
to limit the color-transferred RGBs to the gamut of the target
RGBs. Other approaches (e.g., [1,25,28]) solve for several
local color transfers rather than a single global color transfer.
As most non-global color transfer methods are essentially a
blend of several single color transfer steps, a global color
transfer method is extendable for multi-transfer algorithms.

2.2 Photo-realistic color transfer re-coding

Various methods have been proposed for approximating
an unknown photo-realistic color transfer for better speed
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and naturalness. Pitie et al. [18] proposed a color transfer
approximation by a 3D similarity transform (translation +
rotation+ scaling) which implements a simplification of the
earth mover’s distance. By restricting the form of a color
transfer to a similarity transform model, some of the gener-
ality of the transfer can be lost such that the range of color
changes it can account for ismore limited. In addition, a color
transfer looks satisfying only if the tonality looks natural and
this is often not the case with the similarity transformation.
Ilie and Welch [13] proposed a polynomial color transfer
which introduces higher-degree terms of the RGB values.
This encodes the non-linearity of color transfer better than a
simple 3×3 linear transform.However, the nonlinear polyno-
mial termsmayover-manipulate a color change and introduce
spatial gradient artifacts. Similarly, this method also does
not address the tonal difference between the input and output
images. Gong et al. [11] proposed a planar color homography
model which re-codes a color transfer effect as a combina-
tion of 2D perspective transform of chromaticity and shading
adjustments. Compared with [18], it requires less parame-
ters to represent a non-tonal color change. The model’s tonal
adjustment also further improves color transfer re-coding
accuracy. However, the assumption of a 2D chromaticity
distortion limits the range of color transfer it can represent.
Their [11] tonal adjustment (mean intensity-to-shading map-
ping) also does not preserve image gradients and the original
color rank. Another important work is probabilistic moving
least squares [12] which calculates a largely parameterized
transform of color space. Its accuracy is slightly better than
[13]. However, due to its high complexity, it is unsuitable
for real-time use. In this paper, we only benchmark against
the color transfer re-coding methods with a real-time perfor-
mance.

2.3 2D color homography

The color homography theorem [7,8] shows that chromatic-
ities across a change in capture conditions (light color,
shading, and imaging device) are a homography apart. Sup-
pose that we have an RGB vector ρ = [R,G,B]ᵀ, its r and g
chromaticity coordinates are written as r = R/B, g = G/B
which can be interpreted as a homogeneous coordinate vector
c and we have:

c ∝ [
r g 1

]ᵀ
. (1)

when the shading is uniform and the scene is diffuse, it is well
known that across a change in illumination or a change in
device, the corresponding RGBs are, to a reasonable approx-
imation, related by a 3 × 3 linear transform H3×3:

ρ′ᵀ = ρᵀH3×3 (2)

where ρ′ is the corresponding RGBs under a second light
or captured by a different camera [14,15]. Due to different
shading, the RGB triple under a second light is written as

c′ᵀ = αcᵀH3×3 (3)

where H3×3 here is a color homography color correction
matrix, α denotes an unknown scaling. Without loss of gen-
erality, let us interpret c as a homogeneous coordinate, i.e.,
assume its third component is 1. Then, rg chromaticities cᵀ

and c′ᵀ are a homography apart.
The 2D color homography model decomposes a color

change into a 2D chromaticity distortion and a 1D tonal
mapping, which successfully approximates a range of phys-
ical color changes. However, the degrees of freedom of a
2D chromaticity distortion may not accurately capture more
complicated color changes applied in photograph editing.

3 3D color homographymodel for
photo-realistic color transfer re-coding

The color homography theorem reviewed in Sect. 2.3 states
that the same diffuse scene under an illuminant (or camera)
change will result in two images whose chromaticities are a
2D (planar) homography apart. The 2Dmodel works best for
RAW-to-RAW linear color mappings and can also approxi-
mates the nonlinear mapping from RAW to sRGB [8]. In this
paper, we extend the planar color homography color transfer
to the 3D spatial domain. A 3D perspective transformation
in color may be interpreted as a perspective distortion of
color space (e.g., Fig. 2). Comparedwith the 2D homography
model, the introduction of a 3D perspective transform can
model a higher degree of non-linearity in the color mapping.
We propose that a global color transfer can be decomposed
into a 3D perspective transform and a mean intensity align-
ment.

We start with the outputs of the previous color transfer
algorithms. We represent a 3D RGB intensity vector by its

Standard Homogenous 
RGB cube spaces

Distorted Homogenous 
RGB cube spaces

G

B

R
G

B

R
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Fig. 2 Homogeneous color space mapping. The left 3 homogeneous
RGB cubes are equivalent (up to a scale). The left RGB space cubes
can be mapped to the right by a 4 × 4 3D homography transform H
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4D homogeneous coordinates (i.e., appending an additional
element “1” to each RGB vector). Assumingwe relate Is to It
with a pixel-wise correspondence, we represent the RGBs of
Is and It as two n×3matrices Rs and Rt , respectively, where
n is the number of pixels.We also denote their corresponding
n×4 homogeneous RGBmatrices as Ṙs and Ṙt . For instance,
Ṙs can be converted to Rs by dividing its first 3 columns by its
4th column. Our 3D color homography color transfer model
is proposed as:

Ṙt ≈ DṘsH4×4 (4)

Rt ≈ D′h(ṘsH4×4) (5)

where D is a n×n diagonal matrix of scalars (i.e., exposures,
but only used for estimating H4×4) and H4×4 is a 4× 4 per-
spective color space mapping matrix, h() is a function that
converts a n × 4 homogeneous RGB matrix to a n × 3 RGB
matrix (i.e., it divides the first 3 columns of Ṙs by its 4th col-
umn and removes the 4th column such that Rs = h(Ṙs)), D′
is another n×n diagonal matrix of scalars (i.e., shadings) for
mean intensity mapping. A color transfer is decomposed into
a 3Dhomographymatrix H4×4 and amean intensitymapping
diagonal matrix D′. The effect of applying the matrix H is
essentially a perspective color space distortion (e.g., Fig. 2).
That is, we have a homography for RGB colors (rather than
just chromaticities – (R/B,G/B)). D′ adjusts mean intensity
values (by modifying the magnitudes of the RGB vectors) to
cancel the tonal difference between an input image and its
color-transferred output image (e.g., the right half of Fig. 1).

4 Image color transfer re-coding

In this section, we describe the steps for decomposing a color
transfer between two registered images into the 3D color
homography model components.

4.1 Perspective color spacemapping

We solve for the 3D homography matrix H4×4 in Eq.4 by
using alternating least squares (ALS) [9] as illustrated in
Algorithm 1 where i indicates the iteration number. In each

1 i = 0, argminD0

∥∥D0 Ṙs − Ṙt
∥∥
F , Ṙ

0
s = D0 Ṙs;

2 repeat
3 i = i + 1;
4 argminH4×4

∥
∥Ṙi−1

s H4×4 − Ṙt
∥
∥
F ;

5 argminD
∥
∥DṘi−1

s H4×4 − Ṙt
∥
∥
F ;

6 Ṙi
s = DṘi−1

s H4×4;
7 until

∥
∥Ṙi

s − Ṙi−1
s

∥
∥
F < ε OR i > n;

Algorithm 1: Homography from alternating least squares

iteration, Step 4 (Algorithm 1) keeps D fixed (which was
updated in Step 5 of a previous iteration) and finds a better
H4×4. Step 5 finds a better D using the updated H4×4 fixed.
The minimization in Steps 1, 4, and 5 are achieved by linear
least squares. After these alternating estimation steps, we get
a decreasing evaluation error for

∥∥Ṙi
s − Ṙi−1

s

∥∥
F . The assured

convergence of ALS has been discussed in [26]. Practically,
we may limit the number of iterations to n = 20. (Empiri-
cally, the error is not significant after 20 iterations.)

4.2 Mean intensity mapping

The tonal difference between an original input image and the
color-transferred image is caused by the nonlinear operations
of a color transfer process. We cancel this tonal difference by
adjusting mean intensity (i.e., scaling RGBs by multiplying
D′ in Eq.5). To determine the diagonal scalars in D′, we first
propose a universal mean intensity-to-mean intensity map-
ping function g() which is a smooth and monotonic curve
fitted to the per-pixel mean intensity values (i.e., mean val-
ues of RGB intensities) of the two images. As opposed to the
unconstrained mean intensity-to-shading mapping adopted
in [11], we enforce monotonicity and smoothness in our
optimization which avoids halo-like artifacts (due to sharp
or non-monotonic tone change [6]). The mapping function g
is fitted by minimizing the following function:

argmin
g

∥∥∥y − g(x)
∥∥∥
2 + p

∫ ∥∥g′′(t)
∥∥2dt

subject to g′(t) ≥ 0 and 0 ≤ g(t) ≤ 1.

(6)

where the first term minimizes the least-squares fitting error
and the second term enforces a smoothness constraint for
the fitted curve. x and y are assumed in [0, 1]. The curve is
smoother when the smoothness factor p is larger (p = 10−5

by default). x and y are the input and reference mean inten-
sity vectors. The mapping function g() is implemented as a
lookup table which is solved by quadratic programming [4].
(See “Appendix” 1.) Figure 1 shows an example of the com-
puted function g().

Let the operator diag(x) return a diagonal matrix with
components of x along its diagonal. Given the estimated
mean intensity mapping function g(), the diagonal scalar
matrix D′ (in Eq.5) is updated as follows:

b = 1

3
h(ṘsH4×4)

⎡

⎣
1
1
1

⎤

⎦

D′ = diag(g(b))diag−1(b)

(7)

where b is the input mean intensity vector of the 3D color
space-mapped RGB values (i.e., h(ṘsH4×4)). Because this
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Our Initial 
Approximation After Noise Reduction Output of  2D-H [11]

Fig. 3 Minor noise reduction: Some JPEG block artifacts of our initial
approximation are reduced via mean intensity mapping noise reduction
step. Compared with our final approximation result (middle), the output
of [11] contains significant blur artifacts at the boundary of the hill. Row
2 shows the magnified area in Row 1. Row 3 shows the shading image
ID′ of the magnified area

step only changes the magnitude of an RGB vector, the phys-
ical chromaticity and hue are preserved.

4.3 Mean intensity mapping noise reduction

Perhaps because of the greater compression ratios in images
and videos, we found that, even though the mean intensity
is reproduced as a smooth and monotonic tone curve, some
minor spatial artifacts could—albeit rarely—be introduced.
We found that the noise can be amplified in themean intensity
mapping step and the component D′ (in Eq.5) absorbs most
of the spatial artifacts (e.g., JPEG block edges). To reduce
the potential gradient artifacts, we propose a simple noise
reduction. Because D′ scales each pixel individually, we can
visualize D′ as an image denoted as ID′ . We remove the spa-
tial artifacts by applying a joint bilateral filter [17] which
spatially filters the scale image ID′ guided by the source
image Is such that the edges in ID′ are similar to the edges in
the mean intensity channel of Is. Figure 3 shows the effect of
the monotonic smooth mean intensity mapping and its map-
ping noise reduction. Although it is often not necessary to
apply this noise reduction step, we have always included it
as a “safety guarantee.”

4.4 Results

In our experiments, we assume that we have an input
image and an output produced by a color transfer algorithm.
Because the input and output are matched (i.e., they are in
perfect registration), we can apply Algorithm 1 directly.

In the experiments which follow, we call our method—3D
homography color transform + mean intensity mapping—
“3D-H.” Similarly, the 2D homography approach for color

transfer re-coding [11] is denoted as “2D-H.” We first show
some visual results of color transfer approximations of [16,
20,21,23] in Fig. 4. Our 3D color homography model offers
a visually closer color transfer approximation.

Although a public dataset for color transfer re-coding was
published in [11], it contains a limited sample size. In this
work, we use a new dataset1 In Table 1, we quantitatively
evaluate the approximation accuracy of the 3 state-of-the-art
algorithms [11,13,18] by the error between the approxima-
tion result and the original color transfer result. The results
are the averages over the 200 test images. The method [13] is
tested by using a common second-order polynomial (which
avoids over-fitting). We adopt PSNR (peak signal-to-noise
ratio) and SSIM (structural similarity) [27] as the error
measurements. Acceptable values for PSNR and SSIM are
usually considered to be, respectively, over 20 dB and 0.9.
Table 1 shows that 3D-H is generally better than the other
compared methods for both PSNR and SSIM metrics. To
further investigate the statistical significance of the evalu-
ation result, we run a one-way ANOVA to verify that the
choice of our model has a significant and positive effect on
the evaluation metrics (i.e., PSNR and SSIM). In our test, we
categorize all evaluation numbers into four groups according
to associated color transfer re-coding method. Table 2 shows
the post hoc tests for one-way ANOVA where the choice of
color transfer approximation method is the only variable. We
obtained the overall p-values < 0.001 for both PSNR and
SSIM which indicate the choice of color transfer re-coding
method has a significant impact on the color transfer approx-
imation result. In addition, we run a post hoc analysis and
found near 0 p-values when comparing 3D-Hwith all 3 other
methods. This further confirms that the difference in perfor-
mance of 3D-H is significant. Our test also shows that the
difference between 2D-H [11] and Poly [13] is not signif-
icant. Our 3D color homography model produces the best
result overall.

5 Applications

In this section,we demonstrate three applications of our color
transfer re-coding method.

5.1 Color transfer acceleration

More recent color transfer methods usually produce higher-
quality outputs, however, at the cost of more processing

1 The dataset will be made public for future comparisons. with a sig-
nificant larger size—200 color transfer images—so that the quality of
color transfer re-coding can be thoroughly evaluated. Each color trans-
fer image pair also comes with the color transfer results of 4 popular
methods [16,20,21,23].
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Original Color Transfer MK [18] 3D-HPoly [13] 2D-H [11]

PSNR: 23.20 
SSIM 0.88

PSNR: 21.74  
SSIM: 0.86

PSNR: 27.15 
SSIM: 0.90

PSNR: 27.45 
SSIM: 0.90

PSNR: 30.07 
SSIM: 0.89

PSNR: 32.94 
SSIM: 0.94

PSNR: 32.51 
SSIM: 0.93 

PSNR: 34.22 
SSIM: 0.92

PSNR: 25.76 
SSIM: 0.78

PSNR: 27.43 
SSIM: 0.75

PSNR: 37.13 
SSIM: 0.95

PSNR: 31.09 
SSIM: 0.85

PSNR: 22.64 
SSIM: 0.83

PSNR: 25.30 
SSIM: 0.93

PSNR: 26.16 
SSIM: 0.92

PSNR: 29.36 
SSIM: 0.95

[20]

[23]

[21]

[16]

Fig. 4 Visual result of 4 color transfer approximations (rightmost 4
columns). The original color transfer results are produced by the meth-
ods cited at the top right of the images in the first column. The original

input images are shown at the bottom right of the first column. Please
also check our supplementary material for more examples (http://goo.
gl/n6L93k)

Table 1 Mean errors between
the original color transfer result
and its approximations by 4
popular color transfer methods

Nguyen [16] Pitie [20] Pouli [21] Reinhard [23]

PSNR (peak signal-to-noise ratio)

MK [18] 23.24 22.76 22.41 25.21

Poly [13] 25.54 25.08 27.17 28.27

2D-H [11] 24.59 25.19 27.22 28.24

3D-H 27.34 26.65 27.55 30.00

SSIM (structural similarity)

MK [18] 0.88 0.85 0.81 0.85

Poly [13] 0.91 0.89 0.85 0.88

2D-H [11] 0.86 0.86 0.90 0.92

3D-H 0.93 0.90 0.89 0.93

The best results are made bold

time. Methods that produce high-quality images and are
fast include the work of Gharbi et al. [10] who proposed
a general image manipulation acceleration method—named
transform recipe (TR)—designed for cloud applications.
Based on a downsampled pair of input and output images,
their method approximates the image manipulation effect
according to changes in luminance, chrominance, and stack
levels. Another fast method by Chen et al. [3] approximates
the effect ofmany general imagemanipulation procedures by
convolutional neural networks (CNNs).While their approach
significantly reduces the computational time for some com-
plex operations, it requires substantial amounts of samples

for training a single image manipulation. In this subsection,
we demonstrate that our re-coding method can be applied
as an alternative to accelerate a complex color transfer by
approximating its color transfer effect at a lower scale. We
approximate the color transfer in the following steps: (1) We
supply a thumbnail image (40× 60 in our experiment) to the
original color transfer method and obtain a thumbnail out-
put; (2) Given the pair of lower-resolution input and output
images, we estimate a color transfermodel that approximates
the color transfer effect; (3) We then process the higher-
resolution input image by using the estimated color transfer
model and obtain a higher-resolution outputwhich looks very
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Table 2 Post hoc tests for one-way ANOVA on errors between the
original color transfer result and its approximations

Method A Method B p-value

PSNR overall p-value < 0.001

MK [18] Poly [13] < 0.001

MK [18] 2D-H [11] < 0.001

MK [18] 3D-H < 0.001

Poly [13] 2D-H [11] 0.95

Poly [13] 3D-H < 0.001

2D-H [11] 3D-H < 0.001

SSIM overall p-value < 0.001

MK [18] Poly [13] < 0.001

MK [18] 2D-H [11] < 0.001

MK [18] 3D-H < 0.001

Poly [13] 2D-H [11] 0.48

Poly [13] 3D-H < 0.001

2D-H [11] 3D-H < 0.001

close to the original higher-resolution color transfer result
without acceleration.

In our experiment, we choose two computationally expen-
sive methods [16,20] as the inputs and we compare our
performance (MATLAB implementation) with a state-of-
the-art method TR [10] (Python implementation). Figure 5
shows the output comparisons between the original color
transfer results and the acceleration results. The results indi-
cate that our re-coding method can significantly reduce the
computational time (25× to 30× faster depending on the
speed of original color transfer algorithm and the input
image resolution) for these complicated color transfer meth-
ods while preserving color transfer fidelity. Compared with
TR [10], our method produces similar quality of output for
global color transfer approximation, however, at a much
reduced cost of computation (about 10× faster). Although
TR [10] is less efficient, it is also worth noting that TR
supports a wider range of image manipulation accelerations
which include non-global color change.

5.2 Color transfer artifact reduction

Color transfer methods often produce artifacts during the
color matching process. Here we show that our color trans-

a  Original Input

b   Original Output by [20]

Total Time: 0.29s 
App. Time: 0.05s 
PSNR: 32.00

Time: 16.04s

Time: 8.86s

d  [20] Accelerated by 3D-H

e  Original Output by [16]

Total Time: 6.63s 
App. Time: 6.39s 
PSNR: 34.00

Total Time: 0.62s 
App. Time: 0.05s 
PSNR: 32.00

Total Time: 6.46s 
App. Time: 5.89s 
PSNR: 31.20

c  [20] Accelerated by TR [22]

g  [16] Accelerated by 3D-Hf  [16] Accelerated by TR [22]

Fig. 5 Color transfer acceleration. The color transfers [16,20] of an
original image (a) are accelerated by our 3D-H color transfer re-coding
method and a state-of-the-art method transform recipe (TR) [10]. The
top right labels in (b) and (e) show the original color transfer time. The

top right labels in (c, d) and (f, g) show the improved processing time
and the measurements of similarity (PSNR) to the original color trans-
fer output. “App. Time” indicates time for color transfer approximation
only
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b Original Input

a  Original Output d  Our Resultc  Yarovslavski Filter-Based TMR [22] e  Our Detail Recovered Result

f  Color Difference between a & c g  Color Difference between a & d h  Color Difference between a & e

0 5 10 15 20 25 30

E = 5.37 E = 4.92 E = 5.30

Fig. 6 Artifact reduction comparison based on an original image (b)
and its defective color transfer output (a). c is an artifact reduction
result by a state-of-the-art method— transportation map regularization
(TMR) [22]. d is our re-coding result where the artifacts are indirectly
smoothed at the layer of shading scales. e is our alternative enhancement

result which makes its higher-frequency detail similar to the original
input image. f, g CIE 1976 Color Difference �E [24] visualization of
c–e where the average color difference is labeled at the top right corner.
A lower �E indicates a closer approximation to (a)

fer re-coding method can be applied as an alternative to
reduce some undesirable artifacts (e.g., JPEG compression
block edges). As discussed in Sect. 4.3, the color transfer
artifacts are empirically “absorbed” in the shading scale com-
ponent. Therefore, we can simply filter the shading scale
layer by using the de-noising step described in Sect. 4.3.
Figure 6 shows our artifact reduction result where we also
compare with a state-of-the-art color transfer artifact reduc-
tionmethod—transportationmap regularization (TMR) [22].
Compared with the original color transfer output, our pro-
cessed result better preserves its contrast and color similarity
(e.g., the grass). Meanwhile, it also removes the undesirable
artifacts. And, depending on an individual user’s personal
preference, the result of TMR could also be preferred since
TMR makes the contrast of its result more similar to the
original input. While one of our goals is to make the pro-
cessed colors close to the original output image’s colors, it
is also possible to transfer the details of the original input
image to our result using the detail transfermethod suggested
in [5]. The result of this input detail recovery is shown in
Figure 6e.

5.3 Color-robust image stitching

The input images for image stitching are not always taken
by the same camera or under the same illumination con-

ditions. The camera’s automatic image processing pipeline
alsomodifies the colors. Direct image stitching without color
correction may therefore leave imperfections in the final
blending result. Since the color change between images of
different views is unknown but photo-realistic, our color
transfer approximation model can be applied to address this
color inconsistency problem. Figure 7 shows an example
of a color-robust image stitching using our color transfer
re-coding method where 2 input images taken by 2 differ-
ent cameras and in different illuminations are supplied for
image stitching. In our color-robust procedure, we first regis-
ter these two images and find the overlapping pixels.With the
per-pixel correspondences, we estimate a 3D color homog-
raphy color transfer model that transfers the colors of the
first image to the second image’s. We then apply the esti-
mated color transfer model to correct the first image. Finally,
the corrected first input image and the original second image
are supplied to the image stitching software AutoStitch [2].
Although the multi-band blending proposed in [2] provides a
smooth transition at the stitching boundary, the color differ-
ence between the two halves is still noticeable (especially for
the sky and tree colors) in the original stitching result. After
our color alignment process, the colors of the two halves
look more homogeneous. We also compare our method with
a local color correction method—gain compensation [2].
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a  Original Image 1 b Original Image 2 c Image 1 to Image 2

d Original Stitching Result

f  Color Aligned by 3D-H

e Color Aligned Result by Gain Compensation [2]

Fig. 7 Color-robust image stitching. a, b are the original images taken
by 2 different cameras. c is the color-transferred results from Image 2 to
Image 1. d shows the original image stitching result without color trans-

fer. e, f are the image stitching results matched to the colors of Image
2 by using different color alignment algorithms (The color transition in
f) is better, which is especially visible in the sky.)

6 Conclusion

In this paper, we have shown that a global color transfer can
be approximated by a combination of 3D color space map-
ping and mean intensity mapping. Our experiments show
that the proposed color transfer model approximates well
for many photo-realistic color transfer methods as well as
unknown global color change in images. We have demon-
strated three applications for color transfer acceleration, color
transfer artifact reduction, and color-robust image stitching.
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Appendix

Quadratic programming solution for
function g()

In this subsection, we explain the details of solving Eq.6
using quadratic programming. In our solution, we try to build
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a 1000-entry lookup table (LUT) that approximates the mean
intensity mapping function g(). We first quantize input mean
intensity values x into 1000 uniform levels distributed within
[0, 1]. To construct a deterministic one-to-one mean inten-
sity mapping, we have two issues to address before the actual
optimization: (1) Among the training mean intensity pairs,
it is likely that each unique input mean intensity level xi
(where i is an index) is mapped to more than one reference
output mean intensity values. To address this, we define the
mean of all reference output mean intensity values of xi as
a unique reference output mean intensity value yi for xi . (2)
Each unique input level xi may have a different number of
(or none) input training data pairs. To balance data fitness in
the later weighted least-squares optimization, we construct
a weight vector w whose element wi is the count of train-
ing data associated with xi which can be 0 if there are no
data associated with the quantization level. (See Fig. 1 for an
example.)

Suppose that the elements of the 1000-vectors x and y
are simultaneously sorted in an ascending order based on
the elements of x (i.e., xi < xi+1), we can approximate the
minimization by finite differentiation and rewrite Eq.6 as:

argmin
g()

(
n∑

i=1
wi ‖yi − g(xi )‖2

)
+

p

(
n∑

i=3

∥∥∥ g′(xi )−g′(xi−1)

(n−1)−1

∥∥∥
2
)

s.t. ∀i ∈ {2, 3, . . . n} g(xi ) − g(xi−1) ≥ 0
0 ≤ g(xi−1), g(xi ) ≤ 1

where g′(xi ) ≈ g(xi )−g(xi−1)
xi−xi−1

= g(xi )−g(xi−1)

(n−1)−1

n = 103.

(8)

where n is the number of unique input mean intensity values
x (for training). Further, since the mean intensity mapping
is a positive-to-positive number mapping, we can define the
mean intensity mapping function as g(xi ) = αi xi where αi

is a positive scalar of a scalar vector α. We can then rewrite
Eq.8 in matrix multiplication form as:

argmin
α

(
yᵀdiag(w)y − 2yᵀdiag(w)diag(x)α+

+ (diag(x)α)ᵀdiag(w)(diag(x)α)
)

+ p(Dg2α)ᵀ(Dg2α)

s.t. Dn(x)α ≥ 0
0 ≤ x ≤ 1

where Dn =

⎡

⎢⎢
⎢
⎣

− 1 1
− 1 1

. . .
. . .

− 1 1

⎤

⎥⎥
⎥
⎦

(n−1)×n
dg1 = (n − 1)−1Dndiag(x)α
dg2 = (n − 1)−1Dn−1dg1

(9)

In Eq.9, Dn is defined as a (n − 1) × (n) sparse forward
difference matrix (where n is a variable size), 0 and 1 are,
respectively, a (n − 1) zero vector and a (n − 1) one vector,
dg1 and dg2 are, respectively, the first-order and second-order
finite difference vectors of g(), with respect to x .

Finally, we convert theminimization function of Eq.9 into
a quadratic form:

argmin
α

1
2α

ᵀMα + f ᵀα

where M = 2(pT ᵀT + diag(w)diag2(x))

T = (n − 1)−2Dn−1Dndiag(x)

f = −2yᵀdiag(w)diag(x)

(10)

where M is a sparse Hessian matrix and f is a linear term.
With the pre-computed M , f , and the inequality conditions,
we can apply quadratic programming to solve for α. The
mappedone-to-one deterministic outputmean intensity value
is computed as diag(x)α.

Implementation details

We implemented the proposed algorithm in MATLAB. In
ALS (Algorithm 1), we exclude the undersaturated pixels
with zero RGBs as they contain no useful color information.
Practically, we also limit the maximum iteration number of
ALS to 20, beyond which we do not find any significant
fidelity improvement.
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