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ABSTRACT: Effects of three polymers, polyethylene glycol (PEG), polyvinylpyrrolidone 

(PVP), and copolymer of vinyl pyrrolidone/vinyl acetate (PVP-VA), on the dissolution 

behaviour of the cocrystals of flufenamic acid with theophylline (FFA-TP CO) and 

nicotinamide (FFA-NIC CO) were investigated at multiple length scales. At the molecular 

level, the interactions of crystal surfaces with a polymer were analysed by observing etching 

pattern changes using atomic force microscopy. At the macroscopic scale, dissolution rates of 

particular faces of a single crystal were determined by measurement of the physical retreat 

velocities of the faces using optical light microscopy. In the bulk experiments, the FFA 

concentration in a dissolution medium in the absence or presence of a polymer was measured 

under both sink and non-sink conditions. It has been found that the dissolution mechanisms 

of FFA-TP CO are controlled by the defect sites of the crystal surface and by precipitation of 

the parent drug FFA as individual crystals in the bulk fluid. In contrast, the dissolution 

mechanisms of FFA-NIC CO are controlled by surface layer removal and by a surface 

precipitation mechanism, where the parent drug FFA precipitates directly onto the surface of 

the dissolving cocrystals. Through controlling the dissolution environment by pre-dissolving 

a polymer, PVP or PVP-VA, which can interact with the crystal surface to alter its dissolution 

properties, improved solubility and dissolution rates of FFA-TP CO and FFA-NIC CO have 

been demonstrated.     

KEYWORDS: cocrystal, polymer, flufenamic acid, dissolution, supersaturation, 

precipitation 

 

 

 

 



 

1. INTRODUCTION 

Pharmaceutical cocrystals have attracted remarkable interests for enhancing solubility and 

dissolution rates of poorly water soluble drugs.1-3 A highly supersaturated solution 

concentration, which is significantly greater than the equilibrium saturation concentration of 

the parent drug, can be generated due to rapid dissolution of cocrystals, which is a key 

requirement for improved drug oral absorption.4 However, maintaining such a supersaturated 

state is challenging because of the tendency for rapid precipitation of a more stable form of 

the parent drug during dissolution.5,6 In order to maximise the potential of cocrystals, it is 

critical to include inhibitors in a formulation to prevent or delay the precipitation of the 

parent drug during dissolution.7-13 Although polymeric crystallization inhibitors have been 

extensively studied in many other systems, in particular amorphous solid dispersions,14,15 

such studies are still rare for cocrystal based formulations. In a recent study, we have found 

that the competition of intermolecular hydrogen bonding among drug/coformer, 

drug/polymer, and coformer/polymer was a key factor responsible for maintaining the 

supersaturation through nucleation inhibition and crystal growth modification in a 

supersaturated cocrystal solution with a pre-dissolved polymer.11 Therefore, selection of a 

polymeric excipient in a cocrystal formulation should consider the interplay of a polymer 

with both the parent drug and coformer in solution. On the other hand, it has to be stressed 

that pre-dissolved polymeric additives in solution can not only function as an inhibitor to 

maintain the supersaturated state of the parent drug, but also influence the dissolution 

properties of solid crystals. Therefore, the performance of cocrystal based products is 

determined by the overall effects of an inhibitor on both cocrystal dissolution and parent drug 

precipitation.  

The process of crystal dissolution can be considered as specific types of heterogeneous 

reactions between the solid and solvent, in which solvent molecules are first adsorbed onto 



 

the crystal surface.16 Then, through interaction or reaction between the crystal and the 

adsorbed solvent molecules, the crystal molecules detach and diffuse away from the surface. 

Using atomic force microscopy (AFM), different etching patterns can be observed during 

crystal dissolution, affected by the crystal interaction network and the interactions between 

the crystal molecules in the lattice and solvent molecules.17-22 When a polymer is present in 

solution, the polymer molecules can also be adsorbed on the surface of the dissolving crystal 

to form an adsorption layer, which affects solute bulk diffusion as well as surface diffusion. 

There are many factors affecting adsorption of a polymer on a crystal surface, such as 

properties of the polymer (i.e. polymer chains and chain rigidity) and crystal structure (i.e. 

molecular packing) and the adsorption energy involved in the specific interactions between 

the polymer and crystal surface,18,23-25 For example, polyvinylpyrrolidone (PVP) and 

hydroxyporpyl methylcelluclose (HPMC) can slow down the intrinsic dissolution rate of 

acetaminophen crystals due to their strong interactions with the crystal surface through either 

van de Waals or hydrogen bonding interactions. In contrast, although the polymers poly(vinyl 

alcohol) (PVA) and poly(ethylene glycol) (PEG) can interact the crystal surface of 

acetaminophen through hydrogen bonding, they had no significant inhibitory effect on the 

dissolution and crystallization, because of high mobility of the functional groups.18 

As a crystal dissolves, rates of dissolution of its faces are distinctly different due to their 

different interactions with the dissolution medium. A polar solvent is more likely to interact 

with polar crystal faces where polar atoms or functional groups are exposed normal to the 

faces.26 Through measurement of the physical retreat rates of individual faces of a single 

crystal, a crystal surface dependent dissolution rate can be obtained, which can be used to 

determine the relationship between crystal morphology and bulk dissolution rates.27,28 This 

knowledge of anisotropic dissolution behaviour of single crystals can highlight the factors 



 

affecting crystal dissolution, which is crucial in the design, evaluation and control of 

therapeutic efficacy of solid dosage forms.29,30  

Due to the complexity arising from the multi-component nature of pharmaceutical 

cocrystals, it is expected that the knowledge from single component crystals needs to be 

rigorously validated and further extended when applied to the dissolution of cocrystals. The 

present work, for the first time, is aimed at understanding the dissolution mechanisms of 

cocrystals in solution in the absence and presence of a pre-dissolved polymer. We carried out 

different dissolution experiments of both single and power cocrystals to examine the 

dissolution properties at multiple length scales. At the molecular level, we investigated how a 

cocrystal surface interacted with a polymer by analysing the etching pattern changes observed 

by AFM. At the macroscopic scale, dissolution rates of particular faces of a single crystal 

were determined by measurement of the physical retreat velocities of different faces using 

optical light microscopy (OLM). In the bulk experiments, the concentration of a drug in a 

dissolution medium in the absence or presence of a polymer was measured under both sink 

and non-sink conditions and the dissolution rate was deduced from the evolution of this 

concentration. Sink condition experiments were performed to evaluate the effect of a polymer 

on the dissolution rate of cocrystals, and non-sink condition ones to evaluate the ability of a 

polymer to generate and maintain supersaturated drug solutions. Under sink conditions the 

change of a cocrystal dissolution rate during dissolution should be directly related to the 

interaction between the pre-dissolved polymer in solution with the dissolving crystal surface. 

Evaluation of the supersaturating systems benefits from the use of non-sink conditions that 

mimic the in vivo conditions in the gastrointestinal tract. The cocrystals of flufenamic acid-

nicotinamide (FFA-NIC CO) and flufenamic acid-theophylline (FFA-TP CO) with three 

chemically diverse polymers, polyethylene glycol (PEG), polyvinylpyrrolidone (PVP), and 

copolymer of vinyl pyrrolidone/vinyl acetate (PVP-VA) were selected, with the aim to 



 

identify the different influences of these polymers on cocrystal dissolution. The chemical 

structures of the model drug, the coformers, and the monomer units of the polymers are 

shown in Table 1 and their detailed description can be found in our previous publication.11 In 

order to eliminate the effect of viscosity, a low polymer concentration of 200 µg/mL was 

used in the study. At this polymer concentration the equilibrium solubility of FFA remained 

virtually the same as without the presence of the polymers. Because of the 

thermodynamically unstable nature of a cocrystal in solution, the solubility of FFA-TP CO 

and FFA-NIC CO was determined by their eutectic points through measuring their solubility 

curves.31 The faces of FFA I (flufenamic acid form I), FFA-TP CO and FFA-NIC CO single 

crystals were indexed using X-ray diffraction and nanometre-scale models of their 

morphologies which were created using Mercury 3.9 (The Cambridge crystallographic Data 

Centre, Cambridge, UK). These morphology models were also used to explain the properties 

of each face of a single crystal in the AFM and OLM dissolution experiments. In order to 

quantify the effect of a pre-dissolved polymer on the powder dissolution performance, the 

dissolution performance parameters (DPPs) in different non-sink condition experiments were 

calculated and compared. The solid residues after the solubility and powder dissolution 

experiments were examined by differential scanning calorimetry (DSC), powder X-ray 

diffraction (PXRD) and Fourier transform infrared spectroscopy (FTIR).        

2. MATERIALS AND METHODS 

2.1. Materials. Flufenamic acid form I (FFA I), nicotinamide (NIC) (≥99.5% purity), 

theophylline (TP) (≥99.5% purity), potassium dihydrogen phosphate (KH2PO4) and sodium 

hydroxide (NaOH) were purchased from Sigma-Aldrich (Dorset, UK). Poly(ethylene glycol) 

4000 (PEG) was purchased from Sigma-Aldrich (Dorset, UK). Plasdone K-29/32 (PVP) and 

Plasdone S-630 copovidone (PVP-VA), which is a 60:40 copolymer of N-vinyl-2-pyrrolidone 

and vinylacetate, were gifts from Ashland Inc. (Schaffhausen, Switzerland). Methanol (HPLC 



 

grade) and acetonitrile (HPLC grade) were purchased from Fisher Scientific UK 

(Loughborough, UK) and used as received. Double distilled water was generated from a Bi-

Distiller (WSC044.MH3.7, Fistreem International Limited, Loughborough, UK) and used 

throughout the study. 

2.2. Methods. 0.01M pH 6.8 Phosphate Buffer Solution (PBS). In this study 0.01 M 

pH6.8 PBS was prepared as a dissolution medium according to British Pharmacopeia 2010.  

50 mL of 0.2 M potassium dihydrogen phosphate (KH2PO4) and 22.4 mL of 0.2 M sodium 

hydroxide (NaOH) were mixed and diluted to 1000 mL with double distilled water. 

Powdered FFA Cocrystals. Cocrystals of FFA-NIC CO and FFA-TP CO were prepared 

by solvent evaporation and cooling crystallization methods respectively, as detailed in our 

previous publication.11 Formation of cocrystals was confirmed by DSC, FTIR and PXRD.  

Single FFA Cocrystals. Single crystal of FFA I was directly selected from the 

commercial products while the single cocrystals of FFA-NIC CO and FFA-TP CO were 

grown from a saturated 1:1 equimolar mixture solution of FFA and coformers in cosolvent 

(7:3 mixture of actonatrile and water) by slow evaporation at room temperature over a period 

of 3-4 days. FFA cocrystals were harvested by vacuum filtration of the mother solutions. The 

phase identities of the single crystals were confirmed by DSC, FTIR and PXRD. 

Single Crystal Face Indexing and Morphology Models. To identify the exposed crystal 

faces during AFM and OLM dissolution experiments, representative crystals of each type 

were mounted on an Oxford Diffraction XCalibur diffractometer. Only a few X-ray images 

were collected for each crystal, which allowed determination of the unit cell parameters and 

the orientation matrix. The major faces could then be identified by orienting the crystals in 

specific crystallographic directions on the diffractometer, while observing them through the 

built-in camera. Models of the observed morphologies were created in Mercury 3.9 (The 

Cambridge crystallographic Data Centre, Cambridge, UK) by manually adjusting the list of 



 

faces and face-to-centroid distances to match those observed experimentally on the 

diffractometer. A summary of these results is given in Figure 2, with the single crystal 

indexing data in Table S1 in the supplementary materials. 

Apparent Equilibrium Solubility of FFA I. Apparent equilibrium solubility of FFA I was 

measured by adding excess amount of crystalline materials into a small vial with 20 mL of 

0.01 M pH 6.8 PBS with or without 200 µg/mL of a polymer (PEG, PVP or PVP-VA) in a 

shaking water bath at 250 RPM sharking rate and 23±0.5°C for 24 h. The suspension was 

separated by an MSB 010.CX2.5 centrifuge (MSE Ltd, London, UK) at 1.3 x 10000 RPM for 

1 min. The FFA concentration was determined by HPLC. The solid residuals retrieved from 

tests were analysed by DSC, FTIR, and PXRD. All tests were repeated in triplicate. 

Cocrystal Solubility. For a 1:1 cocrystal of AB without consideration of ionization of 

each component, its solubility is calculated as,31 

��� = ���	 = �
����                     (1) 

where ��	 is the solubility product of the AB cocrystal and concentrations of 
�� and �� are 

transient concentrations of drug and coformer where the solution is in equilibrium with solid 

drug and cocrystal. 

In order to measure the transition concentrations of FFA and a coformer of TP or NIC in 

PBS, a series of the coformer solutions were prepared: 0, 7.1, 8.9, 10.7, 12.4, 14.2 mmol/L 

for TP solutions and 0, 17.8, 57.4, 61.8, 66.2, 71.1, 142.3 and 213.4 mmol/L for NIC 

solutions. Excess amount of FFA I crystalline materials was added into a small vial with 20 

mL of each of the prepared coformer solutions in a shaking water bath at 250 RPM sharking 

rate and 23±0.5°C for 24h. The concentrations of FFA and coformer of TP or NIC were 

determined by HPLC and the solid residues retrieved were analysed by PXRD, DSC, and 

FTIR. The transition concentrations (or a eutectic point) of a cocrystal were determined in the 



 

lowest coformer solution prepared where two solid phases of the solid drug and cocrystal 

coexisted in equilibrium with solution. All experiments were repeated in triplicate. 

Atomic Force Microscopy (AFM) Measurements. Single crystals with well-defined and 

visually flat faces were selected for dissolution study. In order to correlate the etching pits 

with the crystal structure, the axis directions were determined by comparing the observed 

crystal face with the indexed crystal morphology created by Mercury 3.9. A single crystal 

was first mounted onto an AFM sample disk using double-sided seal tape, in which the 

studied face was up. The prepared sample disk was then immersed in a petri dish with 20 mL 

of 0.01 M pH 6.8 PBS in the absence or presence of a polymer at room temperature for a 

period of time varying from 2 min to 10 min as shown in Table 3. After a predetermined time 

interval, the disk was taken from the solution and the remaining solution on the crystal 

surface was removed with filter paper. Finally, the sample was air-dried for at least 0.5 h 

before AFM observation.  

The surfaces of single crystals of FFA I, FFA-TP CO and FFA-NIC CO before and after 

the immersing dissolution tests [Table 3] were observed with an AFM (Agilent 5420 SPM, 

USA). AFM measurements were carried out in contact mode at room temperature using a J-

type piezo-scanner with a standard silicon nitride tip (Windsor Scientific Ltd, UK). The 

resolution of a measurement was 512×512 points with equal steps along the x and y 

directions. Three scans on the same area were conducted at 80x80 µm2, 40x40 µm2, and 

20x20 µm2 for single crystals of FFA I and FFA-TP CO and 40x40 µm2, 20x20 µm2, and 

10x10 µm2 for single crystals of FFA-NIC CO. The images created by AFM system software 

were saved as the deflection mode, which was the derivative along the scan directions of the 

surface profile.   

Optical Light Microscopy (OLM) Dissolution Monitoring for Single Crystals of FFA I 

and FFA COs. A LEICA DM 750 polarized light microscope (Leica Microsystem Ltd, 



 

Milton Keynes, UK) with video camera at 200x magnification and version 4.0 of the Studio 

Capture software were used to monitor the displacement of different faces of a single crystal 

during dissolution. A single crystal was horizontally placed inside a petri dish with one end 

fixed by blue tack and then followed by addition of 20 mL of PBS in the absence or presence 

of a 200 µg/mL pre-dissolved polymer. Data were collected at 0 h, 2 h, 4 h and 6 h.  

 Powder Dissolution Tests. Powder dissolution experiments of FFA I, FFA-TP CO and 

FFA-NIC CO were performed under both sink and non-sink conditions. All crystalline 

materials prior to the tests were slightly ground by a mortar and pestle and sieved by a 60 

mesh sieve (below 250µm) to reduce the effect of particle size on the dissolution rates. 400 

mL of 0.01M pH 6.8 PBS in the absence or presence of 200 µg/mL of a polymer (i.e., PEG, 

PVP or PVP-VA) in a flat bottom beaker was used in each of the experiments. Cocrystal 

powders with equivalent 40 mg of FFA I were used for the sink condition experiments, while 

powders with equivalent 400 mg of FFA I were used for non-sink condition tests. The 

dissolution tests were conducted at 23±0.5°C with the aid of magnetic stirring at 250 RPM. 

Samples of 1±0.1 mL were withdrawn from the dissolution vessel at predefined time points 

of 5, 15, 30, 60, 120 and 240 min and analysed by HPLC to determine the concentrations of 

FFA and coformer NIC or TP. Solid residues retrieved from the non-sink condition 

experiments were dried at room temperature and analysed by DSC, FTIR and PXRD. All 

experiments were repeated in triplicate. 

 Dissolution Performance Parameter (DPP). Dissolution performance parameter (DPP), 

analogous to the supersaturation parameter in our previous publication,11 was used to 

evaluate the dissolution profile of cocrystal powders in the absence or presence of a pre-

dissolved polymer in comparison to a reference system. Figure 1 shows the dissolution 

profiles of different solid powers in which Cequilibrium is the equilibrium drug concentration in 

the dissolution medium. The area under the curve (AUC) 
������of a dissolution profile ���� 



 

indicates the amount of drug dissolved and is maintained over the period of the dissolution 

time from 0 to t. A higher AUC of the dissolution profile indicates a better dissolution 

performance. A curve ����� is the reference dissolution profile of solids R with 
�������. 

For solid A with a dissolution curve �����, its concentration passes the equilibrium value at 

������������ and reaches the maximum ��_�� . The 
���!��� is significantly higher than that 

of the reference solids R, indicating more of solid A dissolves. Compared with the reference 

solid R, the solid B dissolves less, because of a smaller value of  
���"��� . In order to 

quantitatively compare the dissolution performance of two solids, DPP is defined as 

#$$ =
�%�&�'�(�%�&��'�

�%�&��'�
× 100%                                                                            (2) 

Solids with a positive DPP value have an increased ability to dissolve and to be 

maintained in a dissolution medium, while as a negative DPP value indicates that solids have 

a less ability to dissolve and to be maintained in solution. 

High Performance Liquid Chromatography (HPLC) Analysis. The concentration of FFA, 

NIC or TP in solution was determined by Perkin Elmer series 200 HPLC (PerkinElmer Ltd, 

Beaconsfield, UK) with a HAISLL 100 C18 column (5 µm, 250 × 4.6 mm) (Higgins 

Analytical Inc., Mountain View, CA, USA) at ambient temperature. An isocratic method was 

used with 15% water (including 0.5% formic acid) and 85% methanol at 1.5 mL/min flow 

rate and 286 nm wavelength was used for detecting FFA concentration. Both NIC and TP 

concentrations were identified by an isocratic method with 55% methanol and 45% water at 

1mL/min flow rate and 265 nm. 

 Differential Scanning Calorimetry (DSC). A PerkinElmer Jade DSC (PerkinElmer Ltd., 

Beaconsfield, UK) was employed to characterize the melting points of solids. 8-10 mg of the 

samples was added into a crimped aluminium pan with a pinhole pierced lid for testing at 

20°C/min heating rate under a nitrogen flow rate of 20 mL/min. The temperature range of 



 

FFA I, NIC and FFA-NIC cocrystal was 25°C to 250°C while for TP and FFA-TP cocrystal it 

was 25°C-320°C.  

 Powder X-ray Diffraction (PXRD). Powder X-ray patterns of solids was recorded from 

5°o to 35° at a scanning rate of 0.3° (2θ) min-1 by a D2 PHASER diffractometer (Bruker UK 

Limited, Coventry, UK). Solids of FFA I and FFA cocrystals were crushed using a mortar 

and pestle before the measurements. Cu-Kα radiation was used with a voltage of 30 kV and a 

current of 10 mA. The calculated PXRD patterns of solid powders were obtained utilizing 

Mercury (The Cambridge Crystallographic Data Centre, Cambridge, UK). 

 Fourier Transform Infrared Spectroscopy (FTIR). An ALPHA interferometer (Bruker 

UK Limited, Coventry, UK), equipped with a horizontal universal attenuated total reflectance 

(ATR) accessory, was used to measure the FTIR spectra of solid samples. For each of the 

samples, 30 scans were collected per spectrum with a resolution of 2 cm-1 in the spectral 

region of 400 to 4000 cm-1 using the OPUS software. All the spectral data were collected at 

an ambient temperature. 

3. RESULTS 

3.1. FFA I and FFA Cocrystals Characterization, Morphology Prediction and Face 

Indices. Single cocrystals of FFA-NIC CO and FFA-TP CO were grown using the slow 

solvent evaporation technique described in the Materials and methods section. The identities 

of the crystals have been confirmed by PXRD, DSC and FTIR measurements [See Figure S1 

in the supplementary materials]. Single FFA-NIC COs harvested were thin, brick-shaped and 

single FFA-TP COs were chunky, with sizes ranging from millimetres up to one centimetre. 

The single crystals of FFA I from the received materials were plate-like with a wider size 

range from millimetres up to one centimetre. Representative microscopy images of these 

single crystals are shown in Figure 2. 



 

Models of the crystal morphologies were created using Mercury 3.9 based on the crystal 

structures of each material obtained from the Cambridge Structural Database (CSD refcodes: 

FPAMCA18 for FFA I; EXAQAW for FFA-NIC CO; ZIQDUA for FFA-TP CO, detailed in 

Table S1 in the supplementary materials) and face indexing of representative single crystals 

using an X-ray diffractometer [Section 2.2, Figure  2]. 

The FFA I structure is formed with hydrogen-bonded dimers between the carboxyl 

groups of two FFA molecules.32 In the FFA-NIC CO structure, hydrogen-bonded rings are 

formed by two FFA and two NIC molecules. These four-molecule rings are linked into 

infinite tubes by the amide chain motif.33 Regarding the FFA-TP CO structure, TP molecules 

form a dimer via N-H···O hydrogen bonds involving the saturated N atom of the imidazole 

ring and one of the carbonyl groups. An O-H···N hydrogen bond involving the carboxylic 

acid of the FFA and unsaturated N atom of the imidazole ring of TP results in a four-

component supramolecular unit.34 The identity of each powder sample was confirmed by 

comparison of the measured and predicted PXRD patterns shown in Figure 2. It can be seen 

that the calculated PXRD patterns were in good agreement with the experimental data for all 

crystals. All main PXRD peaks of FFA I were predicted accurately. Some mismatched peak 

positions in the predicted and measured PXRD patterns of cocrystals of FFA-NIC CO and 

FFA-TP CO were found in Figure 2 (indicated by arrows). These differences were likely to 

come from the different temperatures of the measurements, i.e., room temperature for PXRD 

measurements and around 100 K for the single crystal data.33,34 At different temperatures the 

size of the unit cell will be (slightly) different, leading to the shifts of the PXRD peak 

positions. 

In comparison with the observed single crystal images in Figure 2, it can be seen that the 

crystal morphologies of FFA I, FFA-TP CO and FFA-NIC CO are represented accurately by 



 

the models created by the software of Mercury 3.9. Therefore each surface of a single crystal 

can be assigned through directly comparing the measured image with its morphology model.       

Six well-defined planes of a single FFA I crystal were identified, with a pair of major 

faces, (100) and (-100), bounded by two pairs of the less prominent side faces (011), (0,-1,-

1), (01-1) and (0-11). The (100) plane could expose either the COOH or the CF3 groups 

[Figure 2]. The (0-11) face, on the other hand, exposes the COOH and CF3 groups 

simultaneously, along with the aromatic rings [Figure 2]. Based on this structural inspection, 

it is expected that subsequent (100) layers with dominant CF3…CF3 contacts should have 

lower attachment energy than the (0-11) faces and have a slow growth rate normal to the 

surface, leading to a large face.  

The rectangular shape of FFA-TP CO is formed with a pair of the dominant (001) and 

(00-1) faces, larger side faces (0-10) and (010), and smaller side faces (100) and (-100). The 

(001) face could again have a more hydrophobic nature, because the trifluoromethylbenzene 

rings of FFA are exposed almost perpendicularly out of this surface. In contrast, the crystal 

faces (0-10) and (100) are more hydrophilic, because they expose more hydrogen-bond 

donors and acceptors.       

The dominant pair of FFA-NIC CO faces are (0-11) and (01-1), with less prominent 

faces (011) and (0-1-1) and the smallest pair of (-100) and (100). On the (100) face, both 

COOH groups of FFA and CONH2 groups of NIC are exposed, resulting in a polar surface. 

The (01-1) plane is less polar, carbon, fluorine and hydrogen atoms are dominating the 

exposed area.   

3.2. Solubility Study. The apparent FFA I equilibrium solubility at 23°C was 373.3±4.2 

µg/mL in PBS and was comparable of those of FFA I in the presence of 200 µg/mL PEG 

(376.3±6.7 µg/mL), PVP (387.7±5.9) or PVP-VA (398.8±2.3 µg/mL) shown in Table 2, 

indicating that none of the polymers changed the equilibrium solution properties.  The solid 



 

residues collected after the experiments were analysed by DSC, FTIR and PXRD, and 

indicated that they were the same as the starting materials [Figure S2, supplementary 

materials].   

The concentrations of FFA and TP after equilibration for 24 h when excess amount of 

FFA I was added into each of the prepared TP solutions are shown in Figure 3(a). The 

solubility of FFA I initially increased slightly with increasing the TP concentration due to 

soluble complex formation between the two compounds. When the TP concentration 

exceeded 8.9 mM, it was found that the apparent solubility of FFA I reached a plateau, 

because the solubility limit of the complex formed was exceeded and the concentration of 

uncomplexed FFA in solution did not change significantly. Only an averaged 1.2-fold 

increase in the apparent solubility of FFA I was observed in the presence of TP in comparison 

to FFA I solubility in PBS alone. Precipitation of the FFA-TP CO was observed based on 

PXRD analysis [DSC and FTIR results in Figure S3 in the supplementary materials] of the 

solid residues, which indicated the presence of two solid phases, FFA-TP CO and FFA I as 

shown in Figure 3(b). Therefore, the measured concentrations of FFA and TP in this solution 

represent the FFA-TP CO transition concentration [Table 2]. The molar ratio of FFA to TP at 

the transition point was 0.26:1, indicating that the system is incongruently saturating. The 

solubility of FFA-TP CO was calculated as 2.99 mmol/mL using Equation (1), which is a 

2.25-fold increase compared to the solubility of FFA I alone.  

The apparent concentration of FFA I as a function of NIC concentration is shown in 

Figure 3(c), which is similar to a previous work.8 The apparent solubility of FFA I increased 

with increasing NIC concentration up to 61.8 mM, indicating complex formation of FFA and 

NIC in solution. In this region, the solubility limit of the complex formed was not exceeded, 

therefore the solid residues were FFA I alone, confirmed by PXRD results in Figure 3(d) 

[DSC and FTIR results in Figure S4 in the supplementary materials]. In solutions with a NIC 



 

concentration of 66.8 mM or above, the solid residues indicated the presence of two phases:  

FFA-NIC CO and FFA I solids, again confirmed by PXRD results in Figure 3(d) [DSC and 

FTIR results in Figure S4 in the supplementary materials]. Therefore the measured 

concentrations of FFA and TP in the 66.8 mM NIC solution represent the FFA-NIC CO 

transition concentration shown in Table 2. The molar ratio of FFA to NIC at the transition 

point was 0.026:1. The solubility of FFA-NIC CO was determined to be 10.4 mM, which is a 

7.83 fold increase compared to the solubility of FFA I alone. 

3.3. AFM Measurements of Single Crystals. Figure 4 shows the representative AFM 

images of the faces of single crystals at a 40x40 µm2 scan area after exposure to PBS in the 

absence and presence of PEG, PVP, or PVP-VA. The AFM images at other scans can be 

found in Figure S5 in the supplementary materials. Before the etching experiments, the 

surfaces of FFA I and FFA-TP CO studied were generally flat and smooth, but with clear 

defects shown in Figures. 4(a) and (f). In contrast, the FFA-NIC CO (01-1) face was not 

smooth, but was marked with many parallel strips.   

After being etched by PBS, clear etching patterns appeared on the FFA I (100) face 

shown in Figure 4(b). The pits observed were roughly circular in shape and were randomly 

distributed on the surface. Their diameters ranged from 1 µm to 10 µm with depths of up to 

0.5 µm shown in three dimensional AFM images in Figure S6 in the supplementary 

materials. When the FFA I (100) face was etched using PBS in the presence of PEG, bigger 

and deeper pits were obtained in comparison with those etched by PBS alone [Figure 4(c) and 

Figure S6]. Similar pits were also obtained by etching in the presence of PVP, but they 

appeared at a much smaller in diameter. In contrast, the pattern etched by PBS in the presence 

of PVP-VA was less regular, with pits of varied shapes and sizes. 

When the FFA-TP CO (001) face was etched by PBS, many small interpenetrating 

trapezium pits with some isolated pits were formed with diameters of less than 1 µm [Figure 



 

4(g)]. At the same time, several long ditches were observed, with depth of about 1.3 µm 

[Figure S6]. In the presence of PEG in PBS, similar etching patterns were obtained to that 

etched by PBS alone [Figure 4(h)]. The sizes of the well-defined separate pits in Figure 4(i), 

etched by PBS in the presence of PVP, were much larger than those by PBS alone or in the 

presence of PEG. The etching pattern by PBS in the presence of PVP-VA, shown in Figure 

2(j), was very different, with less clearly defined ditches than in PBS alone.   

The etching patterns in Figure 4(i)-(o) on the FFA-NIC CO (01-1) face etched by PBS in 

the absence and presence of PEG, PVP or PVP-VA were very similar to the original surface 

[Figure 4(k)], showing striped patterns with lines in the direction of the a-axis. However, the 

roughness of the FFA-NIC CO (01-1) face was different after etching dissolution in different 

dissolution media in Figure S6 in the supplementary materials.  In PBS with the pre-dissolved 

PVP-VA the roughness of the etching surface is pretty much same as the original one while 

the surface is roughest etched by PBS in the pre-dissolved PEG.     

3.4. Face Dissolution Rate Determination of Single Crystals. The temporal change in 

the lateral dimensions of a single crystal was recorded by measurements of the retreating face 

using OLM. The measurements were made for two faces of each single crystal: (100) and (0-

11) faces of FFA I, (001) and (100) faces of FFA-TP CO and (01-1) and (100) faces of FFA-

NIC CO.      

Representative images of a single crystal during dissolution recorded by OLM are shown 

in Figure 5(a) [all other images can be found in Figure S7 in the supplementary materials] 

and the face dissolution profiles of each single crystal are shown in Figure 5(b). A linear 

relationship for different faces of both FFA I and FFA-TP CO single crystals in PBS in the 

absence or presence of a polymer was observed in Figures 5(b1)-(b8), indicating a constant 

dissolution rate. The face dependent dissolution rate was determined from the gradient of a 

plot of displacement of the edge of a face versus dissolution time. It can be seen in Figure 6 



 

that the dissolution rates of different faces for the same crystal are distinctly different.  It was 

found that for the same crystal the bigger face had a lower dissolution rate. In the presence of 

PEG in PBS, the dissolution rates of the faces of FFA I or FFA-TP CO increased slightly 

except the FFA-TP CO (100) face, indicating PEG can enhance the crystal dissolution. In 

contrast, in the presence of PVP or PVP-VA, the retreating rates of the faces of FFA I or 

FFA-TP CO decreased, indicating PVP or PVP-VA can retard the face dissolution.  

FFA-NIC CO shows complicated face dependent dissolution behaviour in Figures. 

5(b9)-(b12). In contrast to FFA I and FFA-TP CO, the dissolution rate increased rapidly on 

both of faces in the presence of PVP or PVP-VA in PBS. The variation of the dissolution rate 

on the small (100) face was significantly higher than the big face (01-1). It was interesting to 

note that the pre-dissolved PEG in solution decreased the dissolution of the small face (100) 

and increased the dissolution of the big face (01-1), leading to close to isotropic dissolution 

behaviour of FFA-NIC CO faces. Furthermore, only FFA-NIC CO faces showed good linear 

dissolution behaviour in PBS in the presence of a polymer of PEG. 

3.5. Powder Dissolution Under Sink and Non-Sink Conditions. Figure 7 shows the 

dissolution profiles of FFA I, FFA-TP CO and FFA-NIC CO in the absence and presence of a 

polymer under sink conditions in which  ������������	  was 100 µg/mL (based on all the 

materials dissolved in solution). The gradient of a dissolution curve indicates the solid 

dissolution rate. Without a pre-dissolved polymer in solution, FFA-TP CO was shown to 

dissolve fastest, with 24% increase of AUC in comparison with that of pure FFA I solids. 

FFA-NIC COs dissolved rapidly in the first 5 min, but after that their dissolution rate slowed 

and became comparable with FFA I, indicating that a phase transformation to FFA occurred. 

Overall the AUC of FFA-NIC COs was 11% higher than that of FFA I. There was no 

significant change (within ±2%) of DPP and dissolution rate of FFA I, FFA-TP COs or FFA-

NIC COs in the pre-dissolved PEG solution. With pre-dissolved PVP or PVP-VA, the 



 

dissolution performance of FFA-NIC COs improved remarkably, i.e., in the pre-dissolved 

PVP solution 75% of solids dissolved within 15 min and AUC increased by 34%, while in the 

pre-dissolved PVP-VA solution 89% of solids dissolved within 15 min and AUC increased 

by 38%. In contrast, both PVP and PVP-VA reduced the dissolution rate and DPP of FFA-TP 

COs and FFA I solids as shown in Figure 7(e).        

Figure 8 shows the dissolution profiles of FFA I, FFA-TP CO and FFA-NIC CO in the 

absence and presence of a polymer under non-sink conditions. Therefore ������������	 was the 

FFA I solubility of 373.3 µg/mL measured in this study in Table 2. ������������ and ���  

values of each test are shown in Tables 4 and 5. In the presence of a polymer, FFA I solids 

dissolved slower [Table 4], in particular, the pre-dissolved PVP lead to 38% reduction of 

AUC in Figure 8(e). There was no supersaturation generated from FFA I dissolution in PBS 

in the absence or presence of PEG, PVP or PVP-VA [Table 5]. FFA-TP COs show an 

advantage of improved dissolution relative to FFA I solids both in the absence or presence of 

a pre-dissolved polymer. Pre-dissolved PVP can modestly increase the DPP of FFA-TP COs, 

to 40% from 30% in pure PBS, while pre-dissolved PVP-VA can slightly decrease its DPP to 

24%. A significant increase of DPP of FFA-TP COs, to 56%, was observed in the pre-

dissolved PEG. Pre-dissolved PEG in PBS can increase the dissolution rate of FFA-TP CO, 

showing a reduced  ������������  in contrast to the slow FFA-TP CO dissolution in the 

presence of PVP or PVP-VA in PBS [Table 4]. There was no dissolution advantage observed 

for FFA-NIC COs in PBS alone or in the presence of pre-dissolved PEG. However, in the 

presence of PVP in the solution, the advantage of FFA-NIC COs in dissolution performance 

was apparent, with a 64% increase of AUC [Figure 8(e)], 50% higher peak solubility [Table 

5], and faster dissolution rate [Table 4]. Similarly, in the presence of PVP-VA in solution, the 

DPP of FFA-NIC COs was increased by 60% and the maximum FFA concentration was 1.6 

times of its solubility.  



 

The PXRD results of the solid residues collected after the FFA I dissolution experiments 

were the same as for the starting materials, shown in Figure 9(a), indicating that there was no 

phase transformation for FFA I in solution. The solid residues from the FFA-NIC CO 

experiments in the presence or absence of a pre-dissolved polymer  gave PXRD patterns 

[Figure 9(c)] that matched the characteristic features of FFA III,35 indicating that FFA III 

crystals precipitated during dissolution. Interestingly, in the presence of PVP or PVP-VA, the 

solid residues after the FFA-TP CO dissolution tests were their starting materials, FFA-TP 

COs, as shown in Figure 9 (b). In contrast, the solid residues after FFA-TP CO dissolution 

tests in PBS or in the presence of pre-dissolved PEG were the mixtures of FFA-TP CO and 

FFA III solids. The DSC and FTIR results of the solid residues are shown in Figure S8 and 

Figure S9 in the supplementary materials 

4. DISCUSSION 

It is well known that the dissolution mechanism of the cocrystals of poorly water soluble 

drugs is complex, in which both dissolution of the cocrystals and the precipitation of the 

parent drug can occur simultaneously depending on the properties of the parent drug and 

coformer and the experimental conditions.5 In this study, through rational selection of a 

coformer as well as the dissolution medium in the presence of a polymeric additive, we aimed 

to provide mechanistic insights into the intrinsic relationship among dissolution, 

supersaturation and precipitation for pharmaceutical cocrystals. 

Based on the measured transition concentrations of the parent drug FFA I and coformers 

of NIC and TP, it was shown that FFA-NIC CO increased the FFA solubility by 7.83 fold, 

while the increase was 2.25 fold for FFA-TP CO. Discrepancies between predicted and 

observed solubility advantages were significant in the bulk experiments. In the powder 

dissolution experiments FFA-TP CO partially revealed its solubility advantage in PBS. Under 

sink conditions [Figure 7(a)] it showed 24% increase of AUC and under non-sink conditions 



 

[Figure 8(a)] achieved a maximum FFA concentration of 497.5 µg/mL, which was just 1.33 

fold of its parent drug solubility. Despite having a higher solubility, FFA-NIC CO dissolved 

slower than FFA-TP CO in PBS under either sink or non-sink conditions [Figure 7(a), Figure 

8(a)]. However, when PVP or PVP-VA was pre-dissolved in the dissolution medium, the 

expected improvements in dissolution rate and apparent FFA concentration were clearly 

revealed in the bulk dissolution experiments of FFA-NIC CO shown in Figures. 7(c)-(d) and 

Figures. 8(c)-(d). In contrast, under non-sink conditions the dissolution rate of FFA-TP CO 

decreased with slightly higher ���  in the presence of PVP or PVP-VA relative to 

dissolution in PBS without a polymer.  

Based on the crystal structure illustrated in Figure 2, it is shown that the hydrogen 

bonding between the FFA and NIC molecules creates a layer structure of the crystal lattice 

where the NIC molecules form channels among the FFA molecules. Such configuration in the 

crystal lattice allows complete layers of molecules to be easily removed from the surface by 

the solvent medium.36 Therefore the etching surface shown in Figure 4(i) of the FFA-NIC CO 

(01-1) face etched by PBS was almost same as the initial surface Figure 4(k). Due to rapid 

removal of the hydrophilic NIC molecules from the surface during dissolution, a local 

supersaturation of FFA near the dissolving surface of FFA-NIC CO was generated, leading to 

precipitation of the stable form FFA solids on the cocrystal particle, indicating changes in the 

roughness of the etching surface [Figure S6] observed by AFM. Consequently this resulted in 

reduction of the dissolution rate of FFA-NIC CO. Therefore, the dissolution profile of FFA-

NIC CO was similar to FFA I, which was observed in the bulk powder dissolution in Figure 

8(a). It has been reported that FFA has up to nine different crystal forms, among which FFA I 

(white colour) and FFA III (yellow colour) are the most commonly encountered.35 Below a 

temperature of 42°C FFA III is the most stable form and has a lower solubility than its 

metastable form of FFA I, although the solubility difference between the two forms is very 



 

small with less than 1 µg/mL.37 Precipitation of the solid FFA III during dissolution under 

non-sink conditions shown in Figure 9(c) demonstrated that the supersaturation was first 

generated by the FFA-NIC CO dissolution and then followed by precipitation of the stable 

form FFA III. Furthermore, a nonlinear relationship of the concentration vs time data 

acquired for the FFA-NIC CO (01-1) face in Figure 5(b) also concluded precipitation of FFA 

solids on the dissolving crystal surface. In contrast, no supersaturation was generated by 

dissolution of FFA I crystals, confirmed by the PXRD results in Figure 9(a) where the solid 

residues collected after the FFA I dissolution tests were the same as the starting materials. 

According to the FFA-TP CO structure shown in Figure 2, an extended chain structure 

formed by a supramolecular ladder network involving both FFA and TP molecules with a 

strong hydrogen bond and interactions of C-H···π and π···π  implies that the stronger crystal 

lattice of FFA-TP COs hinders surface dissolution and hence impacts the overall solubility. 

However, each surface of a FFA-TP CO becomes more hydrophilic due to inclusion of TP 

molecules in the crystal lattice in comparison with those of FFA I shown in Figure 2, leading 

to an increased interaction force between the faces of FFA-TP COs and aqueous solvent 

molecules. Therefore, FFA-TP CO has a limited ability to improve the FFA solubility by 2.25 

fold in Table 2. Similarly to the parent drug FFA I, the dissolution mechanism of FFA-TP 

COs appears to be controlled by defect locations on the crystal surface and the underlying 

crystal lattice. Because the molecules at defect sites have higher mobility to be detached from 

the surface, a regular etching pattern can be formed during etching dissolution, which was 

observed in the AFM etching images of both FFA I and FFA-TP CO faces shown in Figures. 

4(b) and 4(g). Formation of the etching pattern on the crystal surface is determined by the 

crystal interaction network together with the interactions between solvent and crystal 

surface.17 On the (100) face of FFA I, there are two non-perpendicular crystallographic axes: 

the b-axis and c-axis, in which the COOH or CF3 (see bottom) group in Figure 2 is exposed 



 

out of the surface. Each molecule is surrounded by six neighbors, each attracted through π-π 

stacking inside the surface, resulting in non-directional force along either the b-axis or c-axis. 

Therefore, the pits on the (100) face of FFA I were circular shape without specific preference 

of directions shown in Figure 4(b). Presumably, the size or strain of individual defects on the 

surface of FFA I was different before dissolution, leading to a wide size distribution of the 

pits. However, the situation is different for FFA-TP CO dissolution. When FFA-TP CO 

dissolves, both of FFA and TP molecules detach from the FFA-TP CO lattice from the defect 

sites on the surface. The different etching pattern in Figure 4(g) in comparison with that on 

the FFA I (100) face in Figure 4(b) reflects the more anisotropic nature of the interactions in 

FFA-TP CO, with the ditches roughly parallel to the strong hydrogen bonds. According to the 

single crystal dissolution experiments, linear dissolution rates were obtained for both the 

FFA-TP (001) and (100) faces, indicating that no solid form conversion occurred during 

dissolution [Figure 5(b5)]. Under non-sink conditions, the precipitation of FFA III solids was 

observed after 50 min [Figure 8(a)], when the FFA concentration in solution was above its 

solubility. Therefore a bulk precipitation mechanism is proposed for the FFA-TP CO 

dissolution, where the dissolved parent drug precipitates as individual crystals from the bulk 

solution, in contrast to a surface precipitation mechanism for the FFA-NIC CO dissolution, 

where the parent drug precipitates directly onto the surface of the dissolving cocrytals as a 

coating layer. The strong interaction between FFA and TP, along with the smaller difference 

in hydrophobicity between the coformers in FFA-TP CO relative to FFA-NIC CO, suggests 

that the coformers are more likely to remain closely associated in the case of FFA-TP CO. 

This would then lead to a smaller local supersaturation of FFA near the dissolving FFA-TP 

CO surface, thereby explaining the lack of surface precipitation. 

When a polymer of PEG, PVP or PVP-VA was pre-dissolved in the dissolution medium, 

dissolution profiles of FFA-NIC CO or FFA-TP CO changed to significantly different extents 



 

under either sink or non-sink conditions. In this study, the used polymer concentration of 200 

µg/mL was so low that the solution viscosity remained the same as that of the PBS 

dissolution medium alone. Furthermore, the pre-dissolved polymer had no effect on the 

solubility of FFA I [Table 2]. Therefore the effects of polymeric additives on the dissolution 

of FFA cocrystals are attributed to surface adsorption of the polymers through specific 

interactions with the crystal surface, in particular, hydrogen bonding.17-20,23,26,38,39 Among the 

polymers used in this study, PEG, containing a high percentage of hydrogen acceptors in the 

backbone, is the most hydrophilic, while PVP-VA, containing 40% acetate side chains in 

comparison to PVP, is the most hydrophobic.11  

Based on the dissolution experiment of the single FFA I crystal, the FFA I (100) face is 

more hydrophobic because it has a slower face dissolution rate in Figure 5(b1). The 

hydrophilic polymer of PEG with its rigid backbone chains should not be easily absorbed on 

the crystal surface. Therefore that there was no change of the etching patterns of FFA I (100) 

face in PBS in the presence of pre-dissolved PEG in Figure 4(c). Bigger and steeper pits 

observed were most likely caused by an enhanced diffusion rate of FFA molecules from the 

crystal surface attracted by PEG in solution due to less hydrophilic environment generated 

than water around the surface, indicating a slightly increased surface dissolution rate in the 

single crystal dissolution measurement in Figure 6. PVP and PVP-VA have oxygen 

molecules at the side chain positions, therefore, there should be no strong steric repulsion for 

them to form hydrogen bonds with the COOH groups of FFA I on the crystal surface. Once 

the polymers were adsorbed onto the surface, they prevented the dissolution medium 

contacting the crystal surface to retard the etching locally, leading smaller and less deep pits 

in Figures. 4(d) and 4(e). A lower density of the pits with irregular etching patterns in PBS in 

the presence PVP-VA [Figure 4(e)] indicated that PVP-VA had more chance to be adsorbed 



 

on the FFA I crystal surface due to more oxygen molecules at the side chains in comparison 

with PVP. 

The hydrophobic nature of the FFA-TP CO (001) face was likely to prevent PEG to be 

adsorbed on it; therefore, there was no change of the surface etching patterns in comparison 

with those in PBS alone in Figures. 4(g)-(h). With increasing the non-polarity of PVP and 

PVP-VA, both of the polymers had more opportunities to be adsorbed on the crystal surface, 

affecting the etching patterns of the FFA-TP (001) face in Figures 4(i)-(j) and also causing a 

reduction of the face dissolution rates in the single crystal face dissolution experiments in 

Figure 6 and decreased DPP values in the power dissolution experiments in Figure 7(e) and 

Figure 8(e). It has to be stressed that PVP or PVP-VA not only decreased the dissolution rates 

of FFA-TP CO but also prevented the precipitation of FFA III when the FFA concentration 

was above its solubility through intermolecular interaction in solution without increasing the 

solubility of FFA I,11 confirmed by the PXRD results of the solid residues where FFA-TP 

COs were the only solid phase in Figure 9(b). Consequently an increased ���  in Table 5 

was generated by the FFA-TP CO dissolution.  

In the presence of PEG in PBS, the FFA-NIC (01-1) face dissolution rate increased and 

its (100) face dissolution rate reduced in Figure 5(b10), therefore there was no change of the 

overall dissolution performance of FFA-NIC CO in the bulk dissolution experiments in 

Figures. 7(e) and 8(e). In contrast, both PVP and PVP-VA were easily adsorbed on the FFA-

NIC CO surface to slow down the crystal dissolution rate. Consequently precipitation rate of 

the stable form FFA III solids on the surface of the dissolving cocrytals was reduced, 

showing a similar roughness of the etching FFA-NIC (01-1) in the pre-dissolved PVP or 

PVP-VA as the original one prior to the etching experiment. Therefore the advantages of the 

improved solubility and dissolution rates of FFA-NIC CO were observed in the single crystal 

dissolution experiments in Figures 5(b11)-(b12) and bulk dissolution experiments in Figure 



 

7(e) and Figure 8(e). It is worth re-emphasising that the precipitation of the stable form FFA 

III was only partially inhibited by the pre-dissolved PVP or PVP-VA in solution, supported 

by the evidence of the nonlinear face dissolution rates in Figures 5(b11)-(b12) and PXRD 

results of solid residues after non-sink powder experiments in Figure 9(c). Except the surface 

roughness, no change of the appearance of the FFA-NIC (01-1) face after etching dissolution 

shown in Figures 4(i)-(o) is another evidence to support the surface layer removal dissolution 

mechanisms of FFA-NIC CO. In order to maximize the advantages of FFA-NIC CO, an 

increasing polymer concentration or new approaches have to be developed to completely 

inhibit the FFA precipitation, which is part of on-going research in our group. 

5. CONCLUSIONS 

Understanding the dissolution mechanisms of pharmaceutical cocrystals can lead to strategies 

for improving cocrystal design and its optimum product development. In this study, effects of 

the three polymers, PEG, PVP and PVP-VA, on the dissolution behaviour of the cocrystals of 

FFA-TP CO and FFA-NIC CO were investigated at multiple length scales. At the molecular 

level, the interactions of a crystal surface with a polymer by observing etching pattern 

changes using AFM. At the macroscopic scale, dissolution rates of particular faces of a single 

crystal were determined by measurement of the physical retreat velocities of the faces using 

OLM. In the bulk experiments, the FFA concentration in a dissolution medium in the absence 

or presence of a polymer was measured under both sink and non-sink conditions. It has been 

found that the dissolution mechanisms of FFA-TP CO are controlled by the defect sites of the 

crystal surface and by precipitation of the parent drug as individual crystals in the bulk fluid. 

In contrast, the dissolution mechanisms of FFA-NIC CO are controlled by the surface layer 

removal and by a surface precipitation mechanism, where the parent drug precipitates directly 

onto the surface of the dissolving cocrytals as a coating layer. Through controlling the 

dissolution environment by pre-dissolving a polymer, PVP or PVP-VA, which can interact 



 

with the crystal surface to alter its dissolution properties, the advantages of the improved 

solubility and dissolution rates of the FFA-TP CO and FFA-NIC CO can be demonstrated.     
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Table 1: Chemical structures of model drug, coformers, and nonomer units of polymers 

 FFA NIC TP PEG PVP PVP-AV 

Molecular 

structure  

 

 

 

   



 

Table 2: Solubility test results 

 

FFA I equilibrium solubility 

(µg/mL) 

In PBS 373.3±4.2 

In PBS with pre-dissolved PEG  376.3±6.7 

In PBS with pre-dissolved PVP  387.7±5.9 

In PBS with Pre-dissolved PVP-

VA 

398.8±2.3 

FFA-TP cocrystal transition 

concentration (µg/mL) 

FFA concentration in 8.9 mM of 

TP solution 

439.9±2.0 

TP concentration in 8.9 mM of 

TP solution 

1028.9±25.3 

FFA-NIC cocrystal transition 

concentration (µg/mL) 

FFA concentration in 66.8 mM 

of NIC solution 

474.3±15.6 

NIC concentration in 66.8 mM 

of NIC solution 

7812.5±300.6 

 

Table 3: AFM measurements 

Crystal Face Dissolution time (min) 

PBS PBS with pre-

dissolved PEG 

PBS with pre-

dissolved PVP 

PBS with pre-

dissolved PVP-VA 

FFA I (100) 10 10 10 10 

FFA-TP CO (001) 10 10 10 10 

FFA-NIC CO (01-1) 2 2 3 4 

 

Table 4: ������������ values of powder dissolution under non-sink conditions  

Crystal ������������  (min) 

PBS PBS with pre-

dissolved PEG 

PBS with pre-

dissolved PVP 

PBS with pre-

dissolved PVP-VA 

FFA I 166 196 >240 186 

FFA-TP CO 50 10 62 87 

FFA-NIC CO 223 196 23 22 

 

Table 5: ���  values of powder dissolution under non-sink conditions  

Crystal ���  (µg/mL) 

PBS PBS with pre-

dissolved PEG 

PBS with pre-

dissolved PVP 

PBS with pre-dissolved 

PVP-VA 

FFA I 415.3±6.0 397.8±8.40 283.3±44.8 415.4±32.8 

FFA-TP CO 497.5±20.7 527.1±23.3 538.8±32.9 539.4±1.6 

FFA-NIC CO 383.6±34.1 397.3±20.7 609.4±14.0 629±10.1 

  



 

Fig. 1: Illustration of dissolution performance parameter 

 

 

 



 

Figure 2: Crystal morphologies and molecular packings at crystal faces used in experiments.   
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Fig. 3:  Apparent solubility of FFA I in a coformer solution: (a) FFA and TP concentrations as 
a function of TP concentration; (b) PXRD results of solid residues after the tests in TP 
solutions; (c) FFA and NIC concentrations as a function of NIC concentration; (d) ) PXRD 
results of solid residues after the tests in NIC solutions 
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(c)                                                                                           (d) 
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Fig. 4: AFM images of results at a 40x40µm2 scan area  
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Fig. 5: OLM dissolution experiments: a) representative OLM images of single crystal during dissolution; b) displacements of the edge of a 
crystal face as a function of dissolution time   
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Figure 6. Face dependent dissolution rate of a single crystal in PBS in the absence and 

presence of a polymer.   
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Fig. 7: Powder dissolution profiles in the absence or presence of a polymer under sink 
conditions: (a) PBS; (b) PBS with pre-dissolved PEG; (c) PBS with pre-dissolved PVP; (d) 
PBS with pre-dissolved PVP-VA 
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Fig. 8: Powder dissolution profiles in the absence or presence of a polymer under non-sink 
conditions: (a) PBS; (b) PBS with pre-dissolved PEG; (c) PBS with pre-dissolved PVP; (d) 
PBS with pre-dissolved PVP-VA 
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Fig. 9: Test results of solid residues after dissolution tests under non-sink conditions: (a) FFA 
I; (b) FFA-TP CO (c) FFA-NIC CO 
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