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ABSTRACT
Nest-site choice profoundly influences reproductive success and the survival of incubating adult birds. Asian Houbara
(Chlamydotis macqueenii) nest in subtly contrasting habitats where the main cause of nest failure is predation. We
examined nest-site selection across 3 semiarid shrub habitats that differed in vegetation structure and hypothesized
that increased concealment would reduce nest predation. We quantified vegetation structure at 210 nests and 194
random control sites at 2 scales, the ‘‘nest area’’ (50 m radius, considering mean ‘‘shrub height’’ and mean ‘‘shrub
frequency’’) and ‘‘nest scrape’’ (2 m radius, considering a ‘‘concealment index’’). Variance ratio tests showed that
variance in both shrub height and concealment index was lower at nests than at random sites, indicating nonrandom
selection. Analysis of the probability of nest occurrence for nest area indicated consistent selection of intermediate
shrub heights (shrub height þ shrub height2) in the Astragalus, Salsola arbuscula, and S. rigida shrub assemblages
(29.5–31.5 cm), although this was not supported statistically in S. rigida because the vegetation available was already
similar to the optimal structure. Nest survival analysis, controlling for date, showed that shrub height (but not its
quadratic term) in the nest area reduced nest predation rate. Females likely traded off nesting in even taller shrubs that
may confer greater nest success against the ability to see approaching danger and thus to reduce the risk of being
depredated themselves (head height during vigilance when incubating is ~30 cm), given that we have no records of
females being depredated on the nest. At the nest scrape, females strongly selected better-concealed locations,
although the concealment index did not affect nest success. We suggest that concealing the scrape among shrubs
may have other roles, such as thermoregulation.

Keywords: Chlamydotis macqueenii, nest placement, nest predation, nest success, nest survival, predation risk,
vegetation structure, visual security

Une sélection du site de nidification consistante entre les habitats augmente la valeur adaptative chez
Chlamydotis macqueenii

RÉSUMÉ
Le choix du site de nidification influence profondément le succès reproducteur et la survie des adultes en incubation.
Chlamydotis macqueenii niche dans des habitats subtilement contrastés où la prédation est la principale cause d’échec
de la nidification. Nous avons examiné la sélection du site de nidification dans trois habitats arbustifs semi-arides qui
différaient dans la structure de la végétation. Nous avons émis l’hypothèse qu’une dissimulation accrue du nid réduit la
prédation. Nous avons quantifié la structure de la végétation à 210 nids et 194 sites témoins aléatoires à deux échelles,
soit la « zone de nidification » (rayon de 50 m, considérant une « hauteur des arbustes » moyenne et une « fréquence
des arbustes » moyenne) et la « dépression de nidification » (rayon de 2 m, considérant un « indice de dissimulation »).
Les tests de ratio des variances ont montré que les variances de la hauteur des arbustes et de l’indice de dissimulation
étaient plus faibles pour les nids que pour les sites aléatoires, ce qui indique une sélection non aléatoire. L’analyse de la
probabilité de présence d’un nid pour la zone de nidification indiquait une sélection consistante d’arbustes de hauteur
intermédiaire (hauteur des arbustes þ hauteur des arbustes2) dans les assemblages arbustifs d’Astragalus, Salsola
arbuscula et S. rigida (29,5–31,5 cm), bien que cela ne soit pas confirmé statistiquement chez S. rigida car la végétation
disponible était déjà similaire à la structure optimale pour la nidification. En contrôlant pour la date, l’analyse de la
survie des nids a montré que la hauteur des arbustes (mais pas son terme quadratique) dans la zone de nidification
réduit le taux de prédation des nids. Les femelles ont apparemment échangé une nidification dans des arbustes plus
grands, qui peuvent conférer un plus grand succès de nidification, contre la capacité de voir approcher le danger et
donc la réduction du risque de prédation sur elles-mêmes (la hauteur de la tête en vigilance lors de l’incubation est ~
30 cm), puisque nous n’avons pas eu de cas de femelles ayant subi de la prédation sur le nid. Dans la dépression de
nidification, les femelles sélectionnaient fortement des sites mieux dissimulées, bien que l’indice de dissimulation n’ait
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pas affecté le succès de nidification. Nous suggérons que le fait de dissimuler la dépression du nid dans les arbustes
peut avoir d’autres rôles, comme la thermorégulation.

Mots-clés : Chlamydotis macqueenii, emplacement du nid, prédation des nids, risque de prédation, sécurité
visuelle, succès de nidification, structure de la végétation, survie des nids

INTRODUCTION

Choosing where to nest may influence avian reproductive

success and, ultimately, the survival of the incubating

adult. Although other factors, such as food availability

(Newton 1991), thermoregulation (Yanes et al. 1996), or

environmental predictability (Conover et al. 2010), may

constrain nest-site selection as the primary cause of nest

failure, nest predation has long been considered the main

factor driving nest-site selection in birds (Lack 1968,

Martin 1993, Ibáñez-Álamo et al. 2015). Where incubating

adults are also themselves at particular risk of predation,

avoidance of habitat features that impede vision may also

be important in determining nest site, as seen in ground-

nesting birds breeding in open habitats (e.g., Magaña et al.

2010, Webb et al. 2012). Because the needs for conceal-

ment and a clear view for visual security (i.e. the ability of

the incubating bird to observe potential danger at a large

enough distance to allow it to escape) may conflict (Camp

et al. 2013), birds may potentially trade off these

requirements when selecting a nest site (Götmark et al.

1995, Lloyd 2004, Miller et al. 2007, Magaña et al. 2010).

While many bird species find suitable nesting conditions

across different habitats (e.g., Skeel 1983), the availability

and quality of nest sites (Johnson 2007) may differ between

habitats as a result of varying ecological constraints (e.g.,

the range of vegetation structure available; Scott et al.

2002). Understanding whether, and how, nest-site selection

varies between habitats may help inform effective man-

agement and conservation efforts. Furthermore, relating

nest-site selection to nest survival is crucial for under-

standing whether observed patterns influence individual

fitness (Clark and Shutler 1999), although studies to date

have shown inconsistent results (see Chalfoun and

Schmidt 2012, Borgmann and Conway 2015).

Throughout its breeding range, the cryptic, ground-

nesting Asian Houbara (Chlamydotis macqueenii; IUCN

status ‘‘vulnerable’’; BirdLife International 2016) nests in a

variety of shrub assemblages that are mostly used as

rangelands; males play no role in the nesting process

beyond fertilizing females, which are therefore exclusively

involved in nest-site selection. The nest is simply a slight (if

any) indentation (‘‘scrape’’) in the ground involving no

material and typically placed in sites with good visibility

and sparse vegetation (Yang et al. 2003). We examined

nest-site selection by the Asian Houbara, and the

consequences of such choices for nest survival, across a

heterogeneous semiarid landscape of the Kyzylkum Desert

in Uzbekistan. We compared vegetation structure at nest

sites and random control sites across 3 semiarid shrub

assemblages, considering 2 scales: the surrounding ‘‘nest

area’’ (50 m radius) and the immediate ‘‘nest scrape’’ (2 m

radius), each of which may independently influence female

choices. We tested the hypotheses that females select

similar vegetation structures at nest sites across different

shrub assemblages and that selection for features that

improve concealment will positively influence nest survival

through avoidance of nest predation.

METHODS

Study Area
Our study area covered ~14,300 km2 of the southern

Kyzylkum Desert, in the Bukhara District of Uzbekistan

(39.34–40.568N, 62.21–65.208E). The climate is predomi-

nantly arid and continental, characterized by hot summers

and cold winters, with annual precipitation of 125–170

mm falling mostly during winter as snow, or in spring,

often as heavy showers. Lying at 170–400 m above sea

level, the landscape was largely flat with gently rolling

terrain, bordered to the north and east by low mountains,

to the west by large sand dunes dominated by white saxaul

(Haloxylon persicum) sub-forest, and to the southeast by

irrigated croplands and villages (Koshkin et al. 2016a). The

area was characterized by a mosaic of semiarid desert

shrub assemblages comprising halophytic and drought-

resistant shrubs, and the local species composition was

influenced by topography, geomorphology, drainage, and

soil.

The distribution of 5 shrub assemblages was previously

classified and mapped, through extensive field survey (871

sampling locations; see Koshkin et al. 2016a, 2016b), as

‘‘Salsola rigida,’’ dominated by 2 saltwort species, S. rigida

and S. gemmascens, on halophytic soils (2,180 km2);

‘‘Salsola arbuscula,’’ characterized by high densities of this

taller saltwort species, but also Artemisia diffusa and S.

rigida, on gypseous and halophytic soils (3,904 km2);

‘‘Astragalus,’’ categorized by the leguminous Astragalus

villosissimus, with Convolvulus hamadae and Salsola spp.,

on semi-consolidated sands (3,778 km2); ‘‘Artemisia,’’

largely dominated by A. diffusa, typical of gypseous or

clay soils at slightly higher elevations (2,873 km2); and

‘‘Calligonum,’’ comprising both Calligonum microcarpum

and C. leucocladum and a high frequency of A. villos-

issimus and C. hamadae, characteristic of drifting and

weakly consolidated sands (1,603 km2).
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Pastoralism, with areas of desert used as rangeland

during spring for flocks mainly of sheep (Koshkin et al.

2014), varied at the landscape scale, because it was

constrained by proximity to water sources (particularly

functioning wells) and roads, with most sheep camps

found within 10–20 km of croplands and settlements,

leaving considerable areas of desert free of grazing

pressure (Koshkin et al. 2014). Although degraded areas

were noted around water points and sheep camps, at the

landscape scale even moderate (10–30 individuals km�2) to

high (30–83 individuals km�2) sheep densities had little

impact on shrub vegetation structure (Koshkin et al. 2014),

nor did they affect Asian Houbara clutch size, nest success,

or egg hatchability (Koshkin et al. 2016b). Therefore, when

modeling nest-site selection and nest survival, we did not

include measures of sheep density, focusing solely on

vegetation structure.

Nest Searches and Monitoring
Asian Houbara nests were found by tracking female

footprints and monitoring satellite-tagged birds. Searches

were conducted during 5 breeding seasons (earliest laying

date: March 7; latest laying date: May 7) from 2012 to

2016, in areas known to hold females, across a variety of

substrates (consolidated sand, weakly consolidated sand

and clay) within the 5 shrub assemblages, including areas

with high and low sheep densities (Koshkin et al. 2016b).

However, in the hard clay substrates of the Artemisia shrub

assemblage, our main nest-searching method, following
tracks, was of limited use, and in Calligonum our nest-

searching ability was reduced by higher densities of sheep

and the presence of large shrubs and small dunes;

therefore, these 2 shrub assemblages were excluded from

analyses, owing to low sample size.

Female tracks were searched for by 2 observers from a
vehicle driven at a precautionary low speed (5–10 km hr�1)

in order to reduce the risk of flushing females directly off

the nest at close range, which can have negative effects on

nest survival (Koshkin et al. 2016b). Searches were

confined to the 2–3 hr after sunrise and before sunset,

to reduce the risk of exposing eggs to high temperatures.

Whenever Asian Houbara tracks were found, they were

followed for a few hundred meters. If a nest was not found

after ~30 min the tracking was stopped, to avoid keeping a

female off her nest too long (data from nest cameras

indicated that females take incubation breaks of ~30 min;

R. J. Burnside personal observation). For 27 wild females

carrying satellite transmitters as part of a tagging program

(under license from the State Committee for Nature

Conservation of the Republic of Uzbekistan; see Burnside

et al. 2017), GPS location data (accuracy 618 m) were

inspected daily; if a female had �2 repeat fixes from the

same location, the area was visited to confirm the presence

of a nest.

A total of 210 nests were monitored under a

standardized protocol (2012–2016) with temperature

loggers placed inside the nest scape (2013–2016) to

determine when incubation ended (see Koshkin et al.

2016b); additionally, 64 of these nests were also

monitored with nest cameras. The exact date, and often

time, of nest outcome was determined for 77% of the

nests, using data from (in order of most accurate data)

nest cameras (n¼ 63), temperature loggers (n¼ 30), nest

visit on day of nest fate (n¼ 53), or satellite tracking (n¼
16; showing the female permanently leaving the nest). For

the remaining nests (23%; those monitored in 2012 or

where the female removed the temperature logger from

the nest scrape), date of outcome was taken as the

midpoint between the final and penultimate monitoring

visit (Mayfield 1975). Nest fate was assigned on the basis

of the best available evidence: (1) outcome recorded on

nest camera (n¼63; Supplemental Material Video S1); (2)

direct observation of chicks in the scrape (n¼ 26); or (3)

through field signs within and around the nest scrape

(validated by nest camera recordings), supported by

satellite-tracking and temperature-logger data when

available (n ¼ 89; for details, see Appendix). Nests were

classified as either successful, if at least one egg hatched

(n ¼ 101); or failed (predation and other causes), if no

eggs hatched. Predation (n ¼ 58) involved the entire

clutch being lost and could be assigned, in most cases, to

desert monitor (Varanus griseus), fox (Vulpes vulpes or V.

corsac), or hedgehog (Paraechinus hypomelas or Hemi-

echinus auritus), while in 25% of the cases it was not
possible to determine the exact predator species. For 7

nests, although clutch loss was likely due to predation, it

was not possible to attribute the exact cause of failure

because of conflicting field signs. Other forms of nest

failure (n ¼ 9) were livestock trampling, failure to hatch

long after the established Asian Houbara incubation

period of 23 days, and human interference. For 32 nests,

clutches were taken for artificial incubation at the

Emirates Bird Breeding Center for Conservation, Uzbeki-

stan, owing to the high risk of nest desertion after

attempts to catch females at their nests to fit satellite

transmitters. Lastly, for 3 nests the outcome could not be

determined.

Nests known to be of captive-bred released females were

excluded from analyses because the similarity of their nest-

site selection to that of wild birds remains unstudied, and

the present sample (n¼8) was considered too small to test.

The origin (wild or captive-bred) of nesting females was

confirmed for 61% of the studied nests through satellite

tracking (n¼ 84) or nest cameras (n¼ 44), while the origin

remained unconfirmed for 83 nests. However, the proba-

bility of an unconfirmed nest being from a captive-bred

female was low (1.6%; see Koshkin et al. 2016b) and, thus,

any influence on the analysis will be negligible.
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Measures of Vegetation Structure at Nests and
Controls
Vegetation structure was measured at all 210 nests, after

the nesting event was confirmed to have finished and

females with chicks were assumed to have left the area, and

at 194 control sites (hereafter ‘‘controls’’) that were

randomly generated and stratified within each of the 3

shrub assemblages to give sample sizes equivalent to the

number of nests. Data were collected from nest sites

toward the end of each breeding season (during May and

the beginning of June), while collection of data at controls

was limited to the 2013 and 2014 seasons, owing to

fieldwork constraints. The shrub community is composed

of long-lived, slow-growing species with a permanent

woody structure that annually produces green leafy shoots

that die back in winter before the next growing season.

Shrub height was mostly determined by the woody parts of

the crown and, to a lesser extent, by the current year’s

green growth. Green growth is complete by late March (J.

L. Guilherme personal observation), so measurements

collected at the end of the season reflected conditions

during incubation. Furthermore, shrub frequency re-

mained unchanged during the nesting season, and the

structure of vegetation within each assemblage was stable

between years, so we are confident that the 2013–2014

controls represent the range of structure available for the

period 2012–2016.

We considered vegetation structure at 2 scales: the ‘‘nest

area,’’ a circle with a 50 m radius around the nest; and ‘‘nest

scrape,’’ a circle with a 2 m radius from the center of the

scrape. For the nest area scale, the height of all shrubs

(living or dead) touching each of 4 line intercepts (each 50

m long) radiating in cardinal directions was measured to 1

cm resolution. For each nest or control, pooled line

intercept data provided 2 candidate structural variables:

‘‘shrub height’’ (mean height of all shrubs, in centimeters),

considered as a direct measure of height and also as a

proxy for shrub volume because it was strongly correlated

with shrub diameter (Koshkin et al. 2014); and ‘‘shrub

frequency’’ (mean number of shrubs per 200 m). At the

nest scrape scale, concealment was considered in terms of

the proximity and height of shrubs immediately surround-

ing the nest. Assuming that taller (and thus wider) shrubs

and those positioned closer to the nest provided greater

concealment, a hypothetical ‘‘concealment index’’ was

calculated as

concealment index ¼
X hi

di

� �
þ 1

where di is the distance from the center of the nest scrape

to the nearest shrub (to a maximum of 2 m radius) and hi
is the height of that shrub, measured within each of 4

quadrants (i; based on cardinal directions); a quadrant with

no shrubs within 2 m contributed zero to the index.

Intercorrelation between the 3 vegetation structure

variables was sufficiently low (examined separately for

nests and controls in each shrub assemblage, all Pearson’s

r 2 � 0.40) that these could be treated as independent

predictor variables in analyses (following Freckleton 2002).

Statistical Analysis
Sample sizes used for all analyses within each shrub

assemblage were as follows: Astragalus, 91 nests and 97

controls; S. arbuscula, 96 nests and 57 controls; and S.

rigida, 23 nests and 40 controls. One nest was considered

an outlier and excluded from the analyses, because it was,

exceptionally, found directly under a white saxaul in the S.

arbuscula shrub assemblage (concealment index .3 times

higher than that of the next-ranked nest).

Structure of available and used vegetation. We

examined whether the structure of the vegetation

available to females differed between the 3 shrub

assemblages (using measures from control locations).

Group means were compared using general linear models

(GLMs) with normal error distribution, applying Bonfer-

roni corrections for multiple comparisons; to satisfy

conditions of homoscedasticity, shrub height and con-

cealment index were respectively square-root- and log-

transformed, after first confirming that variances were
similar among assemblages (pairwise 2-tailed Levene’s

tests were all nonsignificant, pooling across the 2

sampling years; Appendix Table 1).

Next we examined whether females selected similar
vegetation structure across different shrub assemblages by

comparing measures taken at nests. We used normal-error

generalized linear mixed-effect models (GLMMs) to

accommodate a random (intercept) effect of ‘‘female

identity’’ (to account for several nests of some satellite-

tagged females), again testing differences between group

means with Bonferroni corrections for multiple compar-

isons, using square-root shrub height and log-concealment

index, and after first testing for similarity of variances of

each variable between shrub assemblages (pairwise 2-tailed

Levene’s tests were all nonsignificant for shrub height and

concealment index, but relationships of shrub frequency

variances were mixed among shrub assemblages when

pooling data from the 5 breeding seasons; Appendix Table

1C).

Nest-site selection. Separately within each shrub

assemblage, we tested the a priori hypothesis that

vegetation structure measures would have lower variance

at nests than at controls as a result of female selection,

using a one-tailed Levene’s test. We then assessed the

relative importance of vegetation structure measures in

predicting nesting probability using binomial models of

nests vs. controls in a used/available design, both
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separately for the nest area and nest scrape scales, and then

combining across scales. In each case, candidate variables

were assessed by multimodel inference (MMI; Burnham

and Anderson 2002) of GLMMs with a binomial error

distribution, coding nests as 1 and controls as 0, including

female identity as a random effect, and pooling data across

years.

At the nest area scale, candidate measures of shrub

height, its quadratic term shrub height2 (because we

expected, a priori, that site selection would be within a

range of shrub heights), and shrub frequency were assessed

by MMI.We examined each shrub assemblage (Astragalus,

S. arbuscula, and S. rigida) separately, because pairwise

contrasts of means at controls (see above) showed that

mean shrub height and mean shrub frequency of available

vegetation differed between shrub assemblages (see below;

Figure 1A, 1B). At the nest scrape scale, candidate models

of concealment index and its quadratic term concealment

index2 (because we expected, a priori, that nest scrape

selection would be within a restricted range of conceal-

ment) were also examined by MMI, but pooling data

across shrub assemblages, because concealment index

values at both controls and nests showed similar variance

(all pairwise Levene’s tests nonsignificant; Appendix Table
1) and mean across the 3 shrub assemblages (see below;

Figure 1C).

To investigate the relative importance of vegetation

structure to nest-site selection at each of these 2 scales
(nest area and scrape), and whether these interact to affect

nest occurrence probability, we considered all candidate

variables (nest area: shrub height, shrub height2, and shrub

frequency; nest scrape: concealment index and conceal-

ment index2), combining data from the 3 shrub assem-

blages in MMI. Initial exploratory modeling showed no

support for including either additive or interaction effects

of ‘‘shrub assemblage,’’ because its inclusion resulted in an

increase of Akaike’s Information Criterion corrected for

small samples (AICc).

For MMI, model-averaged parameter estimates and

relative variable importance (RVI; varying 0–1) of each

variable were calculated from each set of candidate

models; quadratic terms were considered conditional on

the presence of the original input variables, so we removed

those models including the quadratic term of a variable but

not its linear term. Following Whittingham et al. (2005), a

randomly generated variable (mean ¼ 1, SD ¼ 1) was

incorporated in the candidate variable set to estimate the

RVI that could occur by chance for predictors unrelated to

the dependent variable, and the MMI analysis was

repeated 1,000 times each with a newly generated random

variable. Subsequently, candidate variables were consid-

ered strongly supported if their RVI was above the 95%

interval of the RVI distribution of the random null variate

and if the 95% confidence limit of the model-averaged

parameter did not span zero (following Boughey et al.

2011).

Nest survival. Finally, we related the daily probability of

a nest escaping predation (daily survival rate [DSR]) to

vegetation structure at nest area and nest scrape scales. Of

the 210 nests monitored, 186 were suitable for inclusion in

a DSR analysis. All nests that escaped predation were

coded 0; these include nests that successfully hatched (n¼
91), nests that survived until the clutch was collected for

artificial incubation during attempts to catch females for

satellite tagging (n¼ 32; recorded as successful up to that

date), and those unsuccessful because of human interfer-

ence (n¼ 2), livestock trampling (n¼ 4), or failure to hatch

after prolonged incubation periods (n ¼ 3; listed as

successful up to the predicted hatching date). Nests that

failed as a result of predation were coded 1 and include

predation events by desert monitor (n¼29), hedgehog (n¼
2), fox (n¼6), and unknown predators (most likely fox; n¼
11); nests that were most likely depredated but for which

conflicting evidence did not allow us to distinguish

predation from other causes of failure with certainty (n ¼
6) were also coded 1 in order to prevent possible bias from

excluding these failed nests. Analyses were repeated

excluding these 6 nests, and no results differed signifi-

cantly or qualitatively. Twenty-four nests were unsuitable

for DSR analysis, comprising 18 found on the day of

hatching or predation (i.e. with zero exposure days), 3

where females were flushed by our vehicle (considered to

have been compromised because all were depredated

within one day), and 3 with unknown outcome. We

constructed models in RMARK (8.2; White and Burnham

1999), such that DSR can vary both with season and across

incubation (Dinsmore et al. 2002). Preliminary analysis

confirmed (as previously shown by Koshkin et al. 2016b)

that DSR initially decreases during the breeding season
and then increases again toward the end. Therefore, both

‘‘date’’ (day in season) and its quadratic term date2 were

forced into all nest survival models. Candidate models of

nest survival examined effects of shrub height, conceal-

ment index, shrub assemblage, and year (because nest

predation was expected, a priori, to vary among years,

depending on the abundance of predators and also their

alternative prey), while controlling for date and date2.

Shrub frequency was excluded because it was not

supported in all previous analyses. Exploratory modeling

showed no support for additional quadratic terms for

shrub height and concealment index, or for the interaction

of shrub assemblage with these variables, because their

inclusion individually and together led to increased AICc;

therefore, they were excluded from further analysis. MMI

and RVI were applied following the methods detailed

above. A random effect could not be included in the

RMARK nest survival model, so we tested the effect of

female identity using a separate binomial GLMM of nest
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outcome, considering exposure days as the number of

binomial trials, including lay dateþ lay date2 (analogous to,

but not as detailed as, the RMARK date method), shrub

height, and concealment index; female identity as random

effect showed zero variance, warranting its exclusion from

further survival analysis.

All statistical analyses and calculations were performed

in R 3.3.3 (R Development Core Team 2016), using

package lme4 1.1–12 (Bates et al. 2014) to build the

models, package MuMIn 1.15.1 (Bartón 2013) for MMI

analyses, and package RMark 2.2.2 (Laake 2013) for the

nest survival analysis.

RESULTS

Structure of available and used vegetation. At the

nest area (50 m radius) scale, the shrub vegetation available

to nesting females (measured at controls) was structurally

diverse and differed between the 3 shrub assemblages:

mean shrub height was taller in Astragalus than in S.

arbuscula and S. rigida, which did not differ, while shrub

frequency was greater in S. arbuscula than in either

Astragalus or S. rigida (Figure 1A, 1B; Appendix Table 2A).

Overall, Astragalus was characterized by dispersed taller

shrubs, S. arbuscula by lower but more frequent shrubs,
and S. rigida by dispersed low shrubs (Figure 1A, 1B;

Appendix Figure 5). At the nest scrape scale, however,

variance and mean concealment index measured at

controls did not differ between shrub assemblages (Figure

1C; Appendix Table 2A).

Vegetation structure around nests also differed among

shrub assemblages, in directions that reflected differences

in the available vegetation. At the nest area scale, mean

shrub height was taller in Astragalus than in either S.

arbuscula or S. rigida, which did not differ; and shrub

frequency was greater in S. arbuscula than in either

Astragalus or S. rigida, which did not differ (Figure 1A, 1B;

Appendix Table 2B and Appendix Figure 5). As in controls,

at the nest scrape scale nests had similar concealment

indices between assemblages (Figure 1C; Appendix Table

2B and Appendix Figure 5).

Nest-site selection. Comparison of vegetation struc-

tural variables between nests and controls suggests that

females actively selected their nest sites. At the nest area

scale, nest locations showed less variance in shrub height

than controls in each of the 3 shrub assemblages (one-

tailed Levene’s tests; Figure 1A; Appendix Table 1A); for

shrub frequency, the variance at nests was less than at

controls in Astragalus, while no differences were apparent

for either of the other 2 shrub assemblages (Figure 1B;

Appendix Table 1A). At the nest scrape scale, nests had

less variance in concealment index than at controls in both

Astragalus and S. arbuscula, but this contrast was

marginally nonsignificant in S. rigida (Figure 1C; Appendix

FIGURE 1. Vegetation structure at Asian Houbara nest sites (dark
gray symbols) and control points (light gray symbols) at 2 scales:
(A, B) the nest area (50 m radius) and (C) the nest scrape (2 m
radius), within each of 3 shrub assemblages (Astragalus, Salsola
arbuscula, and S. rigida): (A) mean shrub height, (B) mean shrub
frequency, and (C) concealment index (values .10 excluded to
facilitate visualization). Dark lines represent the median, boxes
the interquartile range, and symbols the data points (horizontal
jitter added for clarity). Asterisk denotes significant one-tailed
Levene’s test (P , 0.05) of the a priori hypothesis, within each
shrub assemblage, that variance is less across nests than across
controls (test results in Appendix Table 1A). Superscript letters
show homogeneous subsets of means (from pairwise contrasts
with Bonferroni correction, P , 0.05) of controls (lowercase) and
nests (uppercase) across shrub assemblages (using generalized
linear models and generalized mixed-effect models, respectively,
to accommodate female identity; test results in Appendix Table
2).
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Table 1A). This inequality of variances between nests and

controls precluded using GLM (with normal error) to

compare means of vegetation structure between nest and

control locations, but nest-site selection in relation to

controls could be assessed by binomial models.

At the nest area scale, the probability of nest occurrence

was nonlinearly related to shrub height, with a quadratic

relationship strongly supported (selection of the quadratic

term was robust despite being underrepresented in the

MMI) for both Astragalus and S. arbuscula, while there

was no support for shrub frequency (parameter estimates

shown in Figure 2B, 2D). In S. rigida the null model had

the best AICc and no candidate variables received support

(all RVIs within the 95% null interval and confidence limits

spanning zero; parameter estimates shown in Figure 2F).

The shrub height (at the nest area scale) at which

probability of nest occurrence was predicted to be

maximum was remarkably consistent between shrub

assemblages: 31.5 cm in Astragalus, 29.5 cm in S.

arbuscula, and 29.6 cm in S. rigida (Figure 2A, 2C, 2E).

At the nest scrape scale, nest occurrence was related to

the concealment index, with a quadratic relationship

receiving strong support (despite concealment index2

being underrepresented in the MMI), with the best model

including both variables (parameter estimates in Figure

2H). Highest relative probabilities of nest occurrence were

at an index value of 16.9 (Figure 2G), above the upper 95%
of values measured at controls, indicating selection for

highly concealed nest scrapes.

In MMI of candidate cross-scale models, combining

nest area and nest scrape scales and pooling across shrub
assemblages, the effects of shrub height and shrub height2,

and of concealment index and concealment index2, were

all strongly supported, with no support for any effect of

shrub frequency (Figure 3C). The quadratic effect and

selection of intermediate shrub height in the surrounding

area (Figure 3A) suggest that female Asian Houbara

choose nest sites both for clear view and for protection

from view, as well as selecting highly concealed nest

scrapes (Figure 3B).

Nest survival. Mean nest survival, denoted here as the

probability of escaping predation, was 57.5% (SE¼ 4.33%)

across the 5 breeding seasons. MMI showed no support for

a difference of DSR between years or shrub assemblages

(Figure 4C). A positive relationship showing that taller

shrubs in the nest area reduce the probability of predation

was strongly supported. When taking date into account,

taller shrubs in the nest area consistently provided a nest

survival advantage (with no overlap in confidence interval

of predicted nest survival probability for the upper 95%

and lower 5% quantiles of shrub height) throughout almost

the entire season. However, the differences in predation

probability between the short and tall shrub heights

became more pronounced in the middle of the breeding

season, when predators were increasingly active (Figure

4A). Surprisingly, however, the level of scrape concealment

(as given by the concealment index) did not influence

whether nests avoided predation (Figure 4B). Finally, from

all nests monitored, there were no recorded events of

females being depredated at the nest.

DISCUSSION

Vegetation structure, especially height of shrubs and level

of concealment, plays an important role in nest-site choice

by female Asian Houbara. At the nest area scale (50 m

radius around the nest), females selected a narrower range

of intermediate shrub heights from the available vegetation

structure. Although the mean shrub height around nests

differed slightly, the peak probability of nest-site occur-

rence from MMI was consistent (range: 29.5–31.5 cm)

across all 3 shrub assemblages. Shrub height had a positive

but linear association with nest survival suggesting that,
within the observed range, incrementally greater shrub

height continued to increase concealment from predators.

Furthermore, it is conceivable that nests placed in areas

with taller shrubs than the observed range may have

received even greater survival benefit. However, the

probability of nest placement peaked at intermediate

heights in relation to the available distribution, even

though such nests carry a cost of increased nest predation

risk when taller shrubs are available. We suggest that

nesting in even taller shrub heights would trade off nest

concealment against vigilance capability. Given that there

were no recorded predations of females from .200 nesting

attempts, it appears that approaching an incubating female

without being detected is extremely hard. At the nest

scrape scale (2 m radius), females exhibited a strong

selection for more concealed sites, indicating an optimum

arrangement of shrubs around the nest scrape based on

their height (i.e. taller shrubs can be farther from the

scrape and shorter shrubs need to be closer). However,

contrary to our prediction, selection for more concealed

nest scrapes failed to improve nest survival.

The Role of Vegetation Structure
The striking similarity found in nest sites across shrub

assemblages indicates consistent female selection for nest

placement that may be interpreted as reflecting optimal

conditions for nesting across the southern Kyzylkum, and

illustrates how carefully balanced the process of nest-site

choice is. Previous studies addressing fine-scale habitat

selection of nesting houbara species (Chlamydotis spp.)

have highlighted the importance of vegetation structure

for nest-site selection, generally involving low, sparse

vegetation (Yang et al. 2003, Hingrat et al. 2008,

Aghanajafizadeh et al. 2012). However, drawing compar-

isons between these studies is problematic because they
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FIGURE 2. (Left column) Nest-site selection by female Asian Houbara: modeled probability of nesting in (A) Astragalus, (C) Salsola
arbuscula, and (E) S. rigida at the nest area (50 m radius) scale in relation to mean shrub height (95% confidence interval shaded),
showing additive effects of mean shrub frequency (as dotted and solid lines, representing the maximum and minimum respectively);
and (G) in all shrub assemblages at the nest scrape (2 m radius) scale in relation to concealment index. Vertical dashed line and the
bold value on the x-axis show mean vegetation structure (mean shrub height or concealment index) with the highest nesting
probability; on the y-axis, 1 represents nests and 0 controls, with observations shown as jitter. (Right column) Relative variable
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each used different methodologies to quantify habitat.

Importantly, from the aspect of study design, we demon-

strated that unless nest-site choice is analyzed separately

across a range of shrub assemblages, important cues could

be missed if sampling is limited to homogeneous habitats.

Particularly, the probability of occurrence tests in the

Astragalus and S. arbuscula habitats showed that shrub

height was important, because these habitats contain taller

and shorter vegetation, respectively, than that selected by

Asian Houbara. However, in the third habitat, S. rigida,

prevailing vegetation height already matches the optimum;

therefore, if analyzed in isolation, the importance of shrub

height might be overlooked (although the variance tests of

shrub height showed that selection was still occurring in

this habitat).

In addition to vegetation structure, factors that have

been suggested to affect houbara nest-site suitability or

nest survival include the abundance of arthropods (Hingrat

et al. 2007, Aghanajafizadeh et al. 2012), presence and

abundance of key predators (Yang et al. 2003), and density

of edible or succulent plants, specifically Salsola spp.

(Alekseev 1985, Yang et al. 2003). However, in the southern

Kyzylkum, female houbara start nesting shortly after their

return from the wintering grounds (earliest laying dates

March 14–24 and median dates April 1–8 in 2012–2015;

Koshkin et al. 2016b), when temperatures are still low,

shrubs and invertebrates dormant (Koshkin et al. 2016b),

and desert monitors still hibernating (Tsellarius et al.

1995). It is possible that vegetation structure offers an early

proxy by which females can predict food availability during

incubation, or for their brood, but given the subtle

difference of selected nest sites from prevailing vegetation,

combined with nesting across a range of shrub assem-

blages, this does not seem a likely mechanism.

Visual Security, Concealment, and Nest Survival
Selection for particular nest-site features can affect the

survival of both clutch and incubating bird (Martin 1998,

Clark and Shutler 1999), so females should nest in places

that offer protection for both their eggs and themselves.

Selection of nest areas peaked at intermediate shrub

heights similar to the head height of an incubating female

houbara (measured from taxidermist-mounted decoys in

non-alert position as 23–27 cm, n¼ 4; but 5–10 cm taller

when the neck is extended in upright alert posture), which

suggests that females favor less exposed (more concealing)

places that still provide good visibility, possibly to improve

early detection of approaching danger. This way females

can vacate the nest, slipping away rapidly but surrepti-

tiously, before a potential predator arrives at the site (as

frequently seen from nest cameras; Supplemental Material

Video S2), simultaneously ensuring their own safety (Yang

et al. 2003, Miller et al. 2007, Magaña et al. 2010) and

improving the daily survival of the nests (e.g., Lloyd 2004).

Furthermore, nests placed in areas with taller shrubs had

greater nest survival, indicating that taller shrubs did not

compromise visual security, at least within the range of

shrub heights at which nests were placed.

We also found strong selection for concealed nest

scrapes, and previous studies of Chlamydotis spp. have also

reported selection for more screened sites, with African

Houbara (C. undulata) laying their eggs closer to a shrub

than random sites (Hingrat et al. 2008) and anecdotal

evidence from Pakistan similarly indicating that Asian

Houbara frequently place nests near a taller shrub (Mian

1998). Despite this clear female preference, placing the

scrape in a well-concealed position had no effect on nest

survival. Similar results, with preference for concealment

that did not increase nest success, have been reported for

Greater Sage-Grouse (Centrocercus urophasianus) in

Wyoming, USA (Dinkins et al. 2016), and Woodlark

(Lullula arborea) in the UK (Mallord et al. 2007). It is

possible that all nests may have met a minimum

requirement for screening an incubating female, such that

no benefit of further concealment was found. Nevertheless,

the consistent selection of a concealing position may have

other benefits (e.g., shrub shading and wind protection

helping to regulate temperature and water loss of either

the clutch [Hingrat et al. 2008, Tieleman et al. 2008] or the

incubating female, or reducing stress to the incubating

bird).

Conservation Implications
Asian Houbara populations are under pressure from

unregulated hunting and poaching and from increasing

encroachment in the deserts due to expanding infrastruc-

ture, mining, gas extraction, and extraction of fuelwoods

(Combreau et al. 2001, Allinson 2014). Clearly, their first

form of nest defense is undetectability in the vast deserts

with generally low densities of predators. Although the

studied population currently seems to have a healthy nest

survival rate, the fate of individual nests is largely

stochastic and likely directly related to predator density

(Koshkin et al. 2016b). Asian Houbara appear to have quite

specific criteria regarding the structure of nest sites, which

also influences the rate of nest predation. Any activities in

 
importance (RVI) of candidate variables and model-averaged coefficients 6 SE (in parentheses) at the nest area scale for (B)
Astragalus, (D) Salsola arbuscula, (F) S. rigida, and (H) all shrub assemblages. Black bars are the median RVI of a random null variable
(generated across 1,000 multimodel inference iterations), with the dashed line representing its upper 95% null limit; asterisk denotes
strongly supported predictors. Abbreviations: SH ¼mean shrub height, SF ¼mean shrub frequency, CI ¼ concealment index.
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FIGURE 3. (A, B) Nest-site selection by female Asian Houbara;
modeled probability of nesting in relation to vegetation structure
at multiple scales (merged across shrub assemblages) considering
(A) mean shrub height, showing additive effects of mean shrub
frequency and concealment index; and (B) concealment index,
showing additive effects of mean shrub frequency and mean
shrub height. Dotted and solid lines represent the maximum and
minimum, respectively, of the variable; shaded areas represent
95% confidence intervals; vertical dashed line and the bold value
on the x-axis show mean vegetation structure (mean shrub height
or concealment index) with the highest nesting probability; on the
y-axis, 1 represents nests and 0 controls, with observations shown
as jitter. (C) Relative variable importance (RVI) of candidate
variables with model-averaged coefficients 6 SE; black bars are
the median RVI of a random null variable (generated across 1,000
multimodel inference iterations), with the dashed line represent-
ing its upper 95% null limit; asterisk denotes strongly supported
predictors. Abbreviations: SH ¼ mean shrub height, SF ¼ mean
shrub frequency, CI¼ concealment index.

FIGURE 4. Estimated probability of Asian Houbara nests
surviving predation in relation to (A) mean shrub height,
showing additive effects of concealment index; and (B)
concealment index, showing additive effects of mean shrub
height. Dark gray and light gray symbols represent, respectively,
the upper 95% and lower 5% quantiles of mean shrub height
(42.7 cm and 19.4 cm) and of concealment index (11.0 and 2.2).
(C) Relative variable importance of candidate variables with
model-averaged coefficients (6 SE), except for shrub assem-
blage (3 categories: S. arbuscula [�0.0003 6 0.12], S. rigida
[�0.021 6 0.18], referenced to Astragalus), and year (5
categories: 2013 [0.021 6 0.18], 2014 [0.037 6 0.20], 2015
[�0.005 6 0.16], 2016 [�0.037 6 0.20], referenced to 2012); black
bars are the median RVI of a random null variable (generated
across 1,000 multimodel inference iterations), with the dashed
line representing its upper 95% null limit; asterisk denotes
strongly supported predictors. Abbreviations: SH¼mean shrub
height, CI ¼ concealment index.
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the landscape that lead to changes in vegetation structure

and/or increases in predators are likely to affect the

productivity of the populations in 3 ways, by (1) reducing

the availability of suitable nesting habitat; (2) reducing nest

success by modifying shrub structure through the

denudation of natural vegetation, thus reducing conceal-

ment; and (3) increasing predator densities associated with

human encroachment. These changes could additively

reduce nesting success and, hence, the viability of wild

populations.
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selection in larks from a European semi-arid shrub-steppe:
The role of sunlight and predation. Journal of Arid
Environments 32:469–478.

Yang, W.-K., J.-F. Qiao, O. Combreau, X.-Y. Gao, and W.-Q. Zhong
(2003). Breeding habitat selection by the houbara bustard
Chlamydotis [undulata] macqueenii in Mori, Xinjiang, China.
Zoological Studies 42:470–475.

APPENDIX

Nest Outcome Classification from Field Signs
Successful hatching (at least one egg hatched) was

confirmed through direct observations of at least one

freshly hatched chick in the nest scrape (or just next to it)
for half of the successful nests monitored without nest

camera (n ¼ 26). For the remaining successful nests, field

signs of hatching were very small eggshell fragments inside

the nest scrape (n ¼ 17), and sometimes (n ¼ 8) chick

footprints could also be visible in and around the scrape,

depending on the substrate (not always visible if the scrape

was on clay) and the weather conditions subsequent to

hatching (wind and/or rain). Nest predation could be
attributed to 3 different predators, based on different field

signs: desert monitor (Varanus griseus) left footprints, tail

marks, and/or claw marks, along with a scrape containing

large eggshell fragments and/or congealed yolk and no

surviving eggs (data from nest temperature loggers would

indicate incubation ended during the middle of the day in

these events); signs of fox (Vulpes vulpes or V. corsac)

predation were an empty clean scrape with variably
present footprints and sometimes scat, typically occurring

during the night or rarely the early morning (confirmed by

temperature logger data); and hedgehog (Paraechinus

hypomelas or Hemiechinus auritus) predation signs

included eggs pushed from the scrape and left with a

small hole in the side and their contents drained.
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APPENDIX FIGURE 5. Examples of Asian Houbara nesting habitats, defined according to the composition of shrub species
assemblages, in a heterogeneous semiarid landscape of the Kyzylkum Desert in Uzbekistan. Panels show nests in situ and examples
of each shrub assemblage: (A–B) Astragalus, (C–D) Salsola arbuscula, and (E–F) S. rigida; black arrows indicate the location of nests.
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APPENDIX TABLE 1. Variance in vegetation structure at Asian Houbara nests and control sites, considering 2 scales, ‘‘nest area’’
(mean shrub height and mean shrub frequency; 50 m radius around nest) and ‘‘nest scrape’’ (concealment index; 2 m radius from
center of scrape), across 3 shrub assemblages: Astragalus, Salsola arbuscula, and S. rigida. Shown are sample sizes and results of
Levene’s tests comparing variance in measures of vegetation structure for (A) nests compared to controls, separately within each
shrub assemblage (one-tailed test of a priori hypothesis that variance is less across nests than across controls); and for (B) controls
and (C) nests, each compared between different shrub assemblages (2-tailed tests of null hypothesis that variance is similar between
pairs of shrub assemblages): ***P , 0.001, **P , 0.01, *P , 0.05, nonsignificant (ns) P . 0.05.

Taxa
Number

of controls
Number
of nests

Nest area scale Nest scrape scale

Shrub height Shrub frequency Concealment index

F P F P F P

(A) Nests compared to controls, within shrub assemblage
Astragalus 97 91 17.633 *** 7.162 ** 3.123 *
Salsola arbuscula 57 96 10.063 *** 0.186 ns 18.977 ***
Salsola rigida 40 23 3.327 * 0.189 ns 1.543 ns
(B) Controls, compared between shrub assemblage
Astragalus vs. S. arbuscula 154 1.81 ns 0.22 ns 1.60 ns
Astragalus vs. S. rigida 137 1.28 ns 2.02 ns 0.82 ns
S. arbuscula vs. S. rigida 97 0.02 ns 2.68 ns 0.00 ns
(C) Nests, compared between shrub assemblage
Astragalus vs. S. arbuscula 187 1.20 ns 15.22 *** 3.03 ns
Astragalus vs. S. rigida 114 0.19 ns 0.01 ns 0.20 ns
S. arbuscula vs. S. rigida 119 0.02 ns 4.34 * 0.27 ns

APPENDIX TABLE 2. Differences in vegetation structure available to Asian Houbara at control sites and nests, considering 2 scales,
‘‘nest area’’ (mean shrub height and mean shrub frequency; 50 m radius around nest) and ‘‘nest scrape’’ (concealment index; 2 m
radius from center of scrape), compared between 3 shrub assemblages: Astragalus, Salsola arbuscula, and S. rigida. Shown are
sample sizes and results of pairwise comparisons of means of each vegetation structure variable using Bonferroni corrections at (A)
controls, using generalized linear models; and at (B) nests, using generalized linear mixed-effect models to accommodate female
identity; in all models Bonferroni corrections for multiple comparisons were applied: ***P , 0.001, **P , 0.01, *P , 0.05,
nonsignificant (ns) P . 0.05.

Taxa

Number of
controls
or nests

Nest area scale Nest scrape scale

Shrub height Shrub frequency Concealment index

df t P df t P df t P

(A) Controls
Astragalus vs. S. arbuscula 152 190 6.91 *** 190 �3.63 *** 190 �0.10 ns
Astragalus vs. S. rigida 135 190 6.45 *** 190 1.47 ns 190 0.58 ns
S. arbuscula vs. S. rigida 95 190 0.37 ns 190 4.29 *** 190 0.62 ns
(B) Nests
Astragalus vs. S. arbuscula 150 180 7.20 *** 164 �4.10 *** 180 0.90 ns
Astragalus vs. S. rigida 86 180 5.21 *** 164 1.69 ns 180 1.20 ns
S. arbuscula vs. S. rigida 94 180 1.01 ns 164 4.21 *** 180 0.67 ns
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