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Anti-cancer activities of allyl 
isothiocyanate and its conjugated 
silicon quantum dots
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Allyl isothiocyanate (AITC), a dietary phytochemical in some cruciferous vegetables, exhibits promising 
anticancer activities in many cancer models. However, previous data showed AITC to have a biphasic 
effect on cell viability, DNA damage and migration in human hepatoma HepG2 cells. Moreover, in a 3D 
co-culture of HUVEC with pericytes, it inhibited tube formation at high doses but promoted this at low 
doses, which confirmed its biphasic effect on angiogenesis. siRNA knockdown of Nrf2 and glutathione 
inhibition abolished the stimulation effect of AITC on cell migration and DNA damage. The biological 
activity of a novel AITC-conjugated silicon quantum dots (AITC-SiQDs) has been investigated for the 
first time. AITC-SiQDs showed similar anti-cancer properties to AITC at high doses while avoiding the 
low doses stimulation effect. In addition, AITC-SiQDs showed a lower and long-lasting activation of 
Nrf2 translocation into nucleus which correlated with their levels of cellular uptake, as detected by the 
intrinsic fluorescence of SiQDs. ROS production could be one of the mechanisms behind the anti-cancer 
effect of AITC-SiQDs. These data provide novel insights into the biphasic effect of AITC and highlight 
the application of nanotechnology to optimize the therapeutic potential of dietary isothiocyanates in 
cancer treatment.

Allyl isothiocyanate (AITC) is produced by the hydrolysis of its glucosinolate precursor, sinigrin, which can be 
found in many commonly consumed cruciferous vegetables and is particularly abundant in mustard, horseradish 
and wasabi where it is responsible for the pungent taste1. Because of the pungent flavor, AITC is also used as a 
food additive known as mustard oil. AITC has been shown to possess a broad spectrum of anticancer activities 
in both cultured cancer cell lines and animal tumor models1–3. The mode of action for the chemopreventive 
activity of AITC is attributed primarily to the detoxification of carcinogens through activation of nuclear fac-
tor erythroid-related factor2 (Nrf2)4. AITC also inhibited the growth of various human cancer cell lines such 
as colorectal carcinoma5, lung cancer6, leukemia7, breast adenocarcinoma8, bladder cancer3,9, neuroblastoma10, 
hepatoma11 and prostate cancer cells2,12. The mechanisms are likely to involve DNA damage6, cell cycle arrest 
and apoptosis8,12,13 and binding to thiol-reactive groups of several cellular targets such as DNA topoisomerase 
2, p53 and tubulins4,14,15. In addition, AITC has been reported to suppress metastasis via inhibition of invasion 
and migration3,11 in neoplastic cells. The antiangiogenic activity of AITC has also reported in in vivo studies16,17. 
However, findings from epidemiological studies on the association between cruciferous vegetable intake and 
cancer risk are generally inconsistent18,19. The hormetic effects of isothiocyanates may be the cause of the complex 
biological impact of a cruciferous vegetable diet19.

In toxicology, hormesis refers to a dose–response relationship with a stimulatory response at low doses and 
an inhibitory response at high doses20. Many drugs have been found to demonstrate such contradictory effect at 
high and low doses in the same individual. This reaction, also referred to as a ‘biphasic dose response’, has shown 
significance in establishing the modality of a drug. On the other hand, mild stress stimuli can often trigger an 
adaptive stress response in order to maintain homeostasis, so that whilst a high dose of an insult brings harm, a 
low dose could promote health21. Dietary phytochemicals have been reported to be prominent hormetic stressors 
that affect various signaling pathways associated with the progression of diverse diseases, especially cancers19,22–24. 
Isothiocyanates for example, have been reported to kill cancer cells at high doses but to promote cancer cell 
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proliferation and survival at low doses19,22,23. It is thus crucial to optimize the beneficial effects and minimize the 
potential risks of isothiocyanates in cancer prevention and treatment.

Over the last decade, the growth of nanotechnology has opened several new vistas in medical sciences, espe-
cially in the field of cancer treatment. Amongst the various types of nanomaterials, semiconductor nanoparti-
cles (NPs), also referred to as quantum dots (QDs), have been developed for both bio-imaging and therapeutic 
purposes because of their unique electronic and optical properties. Within the family of QDs, silicon quantum 
dots (SiQDs) have been preferred in biomedicine applications because of their low inherent toxicity, in contrast 
to all II-VI types of QDs based on heavy metals such as cadmium, lead and arsenic25. The photoluminescent 
properties of SiQDs are as a result of quantum confinement effect while their physiochemical properties largely 
depend on the surface reconstruction and termination25,26. Further exploration of the surface functionalization 
of SiQDs may facilitate their application as drug carriers for chemotherapeutic agents, photosensitizers, siRNA 
and gene therapeutic agents and can also act as multifunctional entities for both imaging and therapy at the 
same time26–28.

Here for the first time, the design of a new multifunctional NP system with SiQDs as carrier and AITC as 
surface ligand is reported. The objectives of the present study are to investigate the differences between the bioac-
tivities of AITC and AITC-SiQDs, and to examine the potential mechanisms/application of AITC-SiQDs to act 
as multifunctional vehicle for cancer therapy.

Materials and Methods
Materials.  AITC, Methylthiazolyldiphenyl-tetrazolium bromide (MTT), dimethyl sulfoxide (DMSO), 
DL-Buthionine-sulfoximine (BSO), N-acetyl-L-cysteine (NAC) and Bradford reagent were all purchased from 
Sigma-Aldrich. Complete protease inhibitors were obtained from Roche Applied Science. Primary antibodies to 
Nrf2 (Catalog No. 13032), Sam68 (Catalog No. 333), Ku70 (Catalog No. 1486), β-actin (Catalog No. 7210), HRP-
conjugated goat anti-rabbit and rabbit anti-goat IgG were all purchased from Santa Cruz Biotechnology. Anti-
human CD31 (Catalog No. 555444) was purchased from BD Biosciences. Secondary antibodies conjugated with 
Cy3 were obtained from Jackson Immuno Research. Nrf2 siRNA was obtained from Applied Biosystems (Sense 
strand: 5′-CCUUAUAUCUCGAAGUUUUtt-3′; antisense strand: 5′-AAAACUUCGAGAUAAGGtg-3′). AllStars 
negative control and HiPerFect transfection reagent were purchased from Qiagen. LysoTracker® Red DND-99 
was obtained from ThermoFisher.

Synthesis and characterization of AITC-SiQDs.  Hydrogen terminated SiQDs were synthesized by gal-
vanostatic anodization of porous silicon layer as reported previously29. Bromine-functionalised SiQDs were syn-
thesised by reacting the hydrogen terminated SiQDs with allyl bromide. The resultant product was dried under 
vacuum and reacted with potassium thiocyanate to form isothiocyanate-functionalised SiQDs, i.e. AITC-SiQDs 
(Supplementary Fig. S1). The elemental composition of the products was confirmed by X-ray photoelectron 
spectroscopy (XPS) (Supplementary Fig. S2). The optical properties of AITC-SiQDs were examined by UV−vis 
absorption (UV−vis) and photoluminescence (PL) spectroscopy (Supplementary Fig. S3). Thermal Gravimetric 
Analysis (TGA) was used to estimate the quantity of ligands on the surface of SiQDs (Supplementary Fig. S4). 
The sizes of AITC-SiQDs were measured by Transmission Electron Microscopy (TEM) (Supplementary Fig. S5). 
The hydrodynamic diameter of AITC-SiQDs was measured by Dynamic Light Scattering (DLS) within different 
environment (Supplementary Table S1).

Cell culture.  Human umbilical vein endothelial cells (HUVECs) were obtained from TCS Cellworks and 
murine MII perivascular cells (M2) were isolated as previously described30. HHL5, the immortalized human 
hepatocyte-derived line 5, was provided by Professor Arvind Patel, Medical Research Council Virology Unit, 
UK31. All other cell lines were purchased from ATCC. HUVECs were cultured in Endothelial Cell Growth 
Medium 2 (PromoCell) supplemented with antibiotics (penicillin (100 U/ml) and streptomycin (100 μg/ml) at 
37 °C, 5% (v/v) CO2. All other cell lines were routinely cultured in Dulbecco’s modified Eagle’s medium (DMEM) 
supplemented with foetal bovine serum (10%), 2 mM glutamine, penicillin (100 U/ml) and streptomycin 
(100 mg/ml) at 37 °C, 5% (v/v) CO2. HUVECs were used between the fifth and ninth passages and M2 were used 
between passages 35 and 40 for all experiments. For these two cell lines, HUVECs and M2 cells were grown in 
flasks coated with 10 µg/ml type-I collagen (Sigma).

Cell viability assay.  The cell viability 3-[4,5-dimethylthiazol-2-yl]-2, 5 diphenyl tetrazolium bromide (MTT) 
assay was employed to determine the toxicity of AITC or AITC-SiQDs towards cultured cells. Cells were seeded 
in 96-well plates at a concentration of 0.5–1.0 × 104 cells in a final volume of 100 μl per well. When cells were at 
approximately 70–80% confluence, different doses of AITC or AITC-SiQDs treatments were added with fresh 
medium, DMSO (0.1%) used as controls. After 24 hours, the medium was removed, 100 μl (5 mg/ml) MTT added, 
and the mixture incubated at 37 °C for 1 hour to allow metabolism of MTT. The formazan formed was then 
re-suspended in 100 μl DMSO per well. The final absorbance was recorded using a microplate reader (BMG 
Labtech Ltd) at a wavelength of 550 nm and a reference wavelength of 650 nm. The IC50 values were determined 
using the CalcuSyn Software (Biosoft, Cambridge).

Alkaline Comet assay.  The alkaline Comet Assay, also called single-cell gel electrophoresis, is a sensitive 
and rapid technique for quantifying DNA damage in individual cells. HepG2 cells were seeded in 24-well plates 
and allowed to grow to 70–80% confluence, then placed in experimental conditions. Cells were then harvested 
and resuspended in PBS containing 10% DMSO and frozen at −80 °C until the alkaline comet assay was per-
formed as described previously32. For each sample, 100–200 comets were randomly analyzed with images cap-
tured by fluorescence microscopy (Axioplan2, Carl Zeiss) and scored using Comet Assay IV Lite analysis software 
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(Perceptive Instruments, Bury St Edmunds). DNA damage was expressed as tail intensity (% DNA in the comet 
tail) for statistical analysis because it has a linear relationship to DNA break frequency, is relatively unaffected by 
threshold settings and yields the widest possible range (i.e., 0–100%)33.

Wound assay.  Cells were seeded in 24-well plates at 2 × 105 cells/ml. After cells reached 100% confluence, 
scratches were made with a 1 ml pipette tip across the center of the wells without changing the medium. Detached 
cells were removed by gently washing twice with medium. The wells were then filled with fresh medium con-
taining different treatments with DMSO (0.1%) as control. Each treatment was performed at least in triplicate. 
Cells were grown for a further 48 hours then washed twice with PBS, fixed with ice-cold methanol for 10 minutes, 
and stained with 1% crystal violet for 30 minutes. At least 3 pictures were taken within each well of the stained 
monolayer on an inverted microscope at 5x magnification. The wound area was quantitatively evaluated using 
ImageJ34, at least 10 pictures were used in each treatment. Cell migration was calculated as follows: Migration 
% = 1 − (Area W − Area C)/AreaC %, where Area W is the wound area from treated wells and Area C is the 
wound area from the control wells.

Tube formation in a 3D model.  HUVEC and M2 were co-cultured in collagen type I gel as described 
previously30. Different doses of treatment were added to the medium (top of 3-D collagen gel) with DMSO (0.1%) 
as control, the medium was being changed every 48 hours. At day 5, whole-mount immunohistochemistry of 
the 3D collagen cultures was performed for CD31 and counterstained with DAPI. Samples were examined by 
fluorescence microscopy (Axioplan2, Carl Zeiss). In five random fields from each sample, the total lengths of 
CD31-positive tube-like structures were measured by Volocity 4.0 (Improvision). Cumulative tube lengths per 
area are expressed as mm/mm2.

Protein extraction and Western blot analysis.  For total protein, cells were washed twice with ice-cold 
PBS, incubated in 20 mM Tris-HCl (pH 8), 150 mM NaCl, 2 mM EDTA, 10% glycerol, 1% Nonidet P40 (NP-40) 
containing complete proteinase inhibitor for 30 minutes at 4 °C and then harvested and centrifuged at 13,600 g for 
15 minutes at 4 °C. Supernatant was collected and the protein concentration determined by the Brilliant Blue G 
dye-binding assay of Bradford using bovine serum albumin as a standard. For the nuclear protein, the extraction 
was performed using a Nuclear Extract Kit (Active Motif), following the manufacturer’s instructions.

Protein extracts were heated at 95 °C for 5 minutes in loading buffer and loaded onto 10% SDS-polyacrylamide 
gels together with a molecular weight marker. After routine electrophoresis and transfer, the PVDF membrane 
was blocked with 5% fat-free milk in PBST (0.01% Tween 20) for 1 hour and incubated with a specific primary 
antibody overnight at 4 °C. The membrane was washed three times for 5 minutes with PBST and then incubated 
with the secondary antibody for 1 hour. After further washing, antibody binding was determined by a chemilu-
minescence detection kit (Amersham, GE Healthcare) and densitometry was measured by Fluor Chem Imager 
(Alpha Innotech).

Knockdown Nrf2 by siRNA.  HepG2 cells were seeded in 24-well plates at density of 1–1.5 × 105 cells in a 
volume of 0.5 ml per well, then transfected with siRNA for Nrf2 or Allstars (that has no homology to any known 
mammalian gene) for 24 hours following the manufacturer’s instructions. Wound assay/comet assay were then 
performed as above. The siRNA knockdown efficiency of Nrf2 was characterized using Western blot analysis 
(Supplementary Fig. S6).

Reactive oxygen species measurement.  The production of intracellular reactive oxygen species (ROS) 
was measured using the chloromethyl derivative of the fluorescent probe 2′,7′-dichlorodihydrofluorescein diac-
etate (CM-H2DCFDA) (Invitrogen). To evaluate AITC-SiQDs induced ROS, cells were seeded in 6-well plates 
and treated when they reached 70% confluence with 20 μM AITC-SiQDs for 1, 3, 6, 12 and 24 hours. The wells 
were then washed with PBS and incubated with 5 μM CM-H2DCFDA for 30 minutes at 37 °C. Subsequently, the 
cells were collected, centrifuged and re-suspended in 0.8 ml PBS. Intracellular ROS production was determined 
by detection of fluorescent intensity of the oxidized product DCF in the FL1-A channel with a flow cytometer 
(Cube 6, Sysmex Partec).

Confocal laser scanning microscopy (CLSM).  HepG2 were plated onto 10 mm glass coverslips in 24-well 
plates at a concentration of 2 × 105 cells/ml and incubated for 48 hours at 37 °C, 5% CO2. Cells were then treated 
with 50 µM AITC-SiQDs (excitation/emission: 350/440), or 0.1% DMSO as control for 1, 3, 6, 12, 24 hours. After 
exposure, cells were washed twice with PBS and fixed with 4% paraformaldehyde for 10 minutes. Cover slips 
with cells were inverted and mounted on a microscope slide. For lysosome staining, during the last 10 minutes of 
AITC-SiQDs treatment, cells were exposed to 1 µM LysoTracker (excitation/emission: 577/590). The cells were then 
washed with fresh medium for 10 minutes at 37 °C, 5% CO2, washed then fixed as above. CLSM was performed on 
a Zeiss LSM510 META confocal microscope using a 10x objective lens for imaging. Laser beams with 364, 488 and 
543 nm excitation wavelengths were used to image AITC-SiQDs, bright field and lysosome respectively.

Statistics.  Data are represented as the mean ± SD. The differences between the groups were examined using 
the one-way ANOVA test, or Student’s t-test. A p value <0.05 was considered statistically significant.

Results
Biphasic effect of AITC on cell viability, DNA integrity, migration and angiogenesis.  The anti-
neoplastic activity and genotoxicity of AITC were measured using MTT and Comet assays respectively. Results 
indicated that AITC decreased the metabolic activity of HepG2 cells in a dose-dependent manner after 24 hours. 
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When cells were treated with AITC 40–320 µM, cellular viability was significantly inhibited (77.1–19.4% com-
pared to control); however, a significant stimulation of cell viability was found with 5 µM AITC (Fig. 1A).

The genotoxicity of AITC was also measured at non-cytotoxic concentrations (0–20 µM) using the Comet 
assay. The baseline DNA damage, represented as tail intensity percentage, in control cells was 21.57% and there 
was a significant increase at 10 and 20 μM AITC treatment after 24 hours, 36.12 and 47.48% respectively; while at 
2.5 µM AITC decreased DNA damage to 12.3% (Fig. 1B,C). There have been several studies reporting the mecha-
nism behind the DNA damage caused by AITC6,35–37. Here, the induction of DNA damage with the higher dose of 
AITC was accompanied by downregulation of DNA repair protein Ku70 (Supplementary Fig. S7).

To assess whether AITC also affects cell migration, which is an indication of epithelial–mesenchymal transi-
tion and the aggressive phenotype of malignant tumor, a wound assay was performed to measure the cell migra-
tion under different doses of AITC treatment after 48 hours. Around 30% inhibition of migration compared to 
the control was observed with 20 μM AITC exposure. Again, a significant increase of cell migration was observed 
with a low dose (2.5 μM) of AITC (130% compared to control) (Fig. 1D and F).

Angiogenesis, a process leading to the formation of new blood vessels, is required for both cancer progression 
and metastasis38. Therefore, the effect of AITC on the ability of HUVECs to form capillary-like tubular structures 
was tested in a 3D co-culture model with M2. Mature tube formation, clearly observed in the control, was signif-
icantly disrupted with AITC treatment (>5 μM), as illustrated by a sharp decrease in formed total tube length. 
However, at lower doses AITC (1.25 and 2.5 μM) significantly promoted the formation of capillary tubular struc-
tures (Fig. 1E and G).

These data suggest that there was a biphasic dose response from AITC treatment in all tested endpoints. Low 
dose AITC could be beneficial to patients with cardiovascular disease because of its stimulatory effect on endothe-
lial cell tube formation. Conversely, for cancer treatment only high doses of AITC should be used, as low doses 
stimulated cancer cell viability and migration, and also restored genomic stability and promoted angiogenesis.

Low dose AITC stimulation effect is mediated by Nrf2/GSH signaling.  A low dose stimulation 
effect could be a risk factor in the role of AITC in cancer prevention and treatment. Isothiocyanates have been 
shown to activate Nrf2, a master transcription factor involved in cell redox homeostasis, stress adaptation and 
cytoprotection39. The role of Nrf2 in the low dose stimulation effect of AITC on DNA damage and cell migra-
tion was investigated using a siRNA knockdown approach. As shown in Fig. 2, Nrf2 knockdown cells showed 
significantly increased DNA damage and reduced cell migration compared to non-transfected control cells. This 
suggested Nrf2 is involved in HepG2 cell genomic stability and migration. AITC at 2.5 µM reduced DNA damage 
and promoted cell migration in HepG2 cells. Cells transfected with Allstar negative control showed similar effects 
with AITC treatment to the non-transfected ones. In contrast, these stimulatory effects from 2.5 µM AITC were 
abolished upon Nrf2 knockdown, i.e. DNA damage increased from 9.4% to 41.8%; cell migration decreased from 
122.7 to 66.1% (p < 0.01). These data strongly indicated that Nrf2 was involved in the low dose stimulation effect 
of AITC in DNA damage and cell migration.

Glutathione (GSH) is the most abundant non-enzymatic antioxidant molecule in the cell and is essential 
for redox regulation. One of the Nrf2 target genes, γ-glutamyl cysteine synthetase (γ-GCS), is the rate limiting 
enzyme of GSH synthesis39. Therefore, the involvement of GSH in the AITC stimulation effect was studied using 
buthionine sulfoximine (BSO), a specific inhibitor of γ-GCS. The inhibition efficiency of BSO in the intracellular 
GSH level was characterized using HPLC (Supplementary Fig. S8). BSO increased DNA damage by 1.5-fold and 
decreased cell migration by approximately 20% compared with the control. Co-treated with BSO, 2.5 µM AITC 
treatment showed no stimulatory effect on DNA damage or cell migration (Fig. 2). Therefore, it can be concluded 
that the Nrf2/GSH signaling pathway plays an essential role in low dose AITC inhibition of genomic instability 
and stimulation of cell migration.

AITC-SiQDs abolished the low dose stimulation effect of AITC.  The effect of AITC-SiQDs on 
cell viability was initially screened using the MTT assay. Cells were incubated with different concentrations of 
AITC-SiQDs for 24 hours with AITC as the positive control for 24 hours. As shown in Fig. 3A, there was no signif-
icant difference between the cytotoxicity of AITC-SiQDs and AITC at high dose (nearly 20% decrease from 40 µM 
treatment); but there was a significant difference on the cell viability between low dose AITC-SiQDs and AITC 
treatments, thus cell viability was approximately 90% compared to control with 2.5 and 5 µM of AITC-SiQDs 
treatment while AITC treatment increased cell viability to 103–110% of the control.

To confirm the cytotoxicity of AITC-SiQDs came from the surface ligand instead of the SiQDs core, 
amine-capped SiQDs (NH2-SiQDs)40 were used as negative control in the MTT assay. Results in Supplementary 
Fig. S9A showed that AITC-SiQDs decreased the viability of HepG2 cells after 24 hours incubation, in contrast, 
NH2-SiQDs showed no significant cytotoxicity. Moreover, the cytotoxicity of AITC-SiQDs was measured in 
HHL5 cells to test their effect on normal cells. Results showed that there were no significant difference between 
the cytotoxicity from AITC and AITC-SiQDs in HHL5 cells (Supplementary Fig. S9B).

The effect of AITC-SiQDs on DNA damage, cell migration and angiogenesis was also examined (Fig. 3B–D). 
At 20 µM AITC-SiQDs induced DNA damage (2.5-fold increase compared to control); inhibited cell migration 
(60% decrease compared to control); and inhibited tube formation in the 3D co-culture model (60% decrease 
compared to control). More importantly, AITC-SiQDs at 2.5 µM showed no stimulation in contrast to AITC.

Effect of AITC/AITC-SiQDs on the nuclear accumulation of Nrf2.  The involvement of AITC-SiQDs 
in the activation of Nrf2 compared to AITC in HepG2 cells was examined. Nuclear protein was extracted and 
Nrf2 measured by Western blotting. As shown in Fig. 4, untreated cancer cells had low Nrf2 levels in the nucleus 
consistent with the continuous degradation of Nrf2 under homeostasis. With 20 µM AITC treatment, a signifi-
cant increase of Nrf2 protein in the nucleus was observed after 1 hour but this started to decrease after 4 hours, 
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Figure 1.  Effect of AITC on cell viability, DNA integrity, migration and angiogenesis. (A) HepG2 cell 
viability at 24 hours AITC treatment was determined by MTT assay. Data are presented as mean ± SD 
(n ≥ 5), *p < 0.05, **p < 0.01 compared to control. (B) HepG2 DNA damage at 24 hours AITC treatment 
was detected by the Comet assay. Data are presented as mean ± SD (n ≥ 5), **p < 0.01 compared to control. 
(C) Representative pictures from the comet assay. Scale bar = 500 µm. (D) HepG2 cell migration at 48 hours 
AITC treatment was measured by the wound assay. Data are presented as mean ± SD (n ≥ 5), **p < 0.01 
compared to control. (E) Effect of AITC on tube formation of HUVECs in a 3D co-culture with pericytes 
model. The total lengths of CD31 positive tubes were measured and expressed as mean ± SD (n ≥ 5), 
*p < 0.05, **p < 0.01 compared to control. (F) Representative phase contrast images from the wound assay. 
Scale bar = 1 mm. (G) Representative pictures from the immunostaining of CD31 (red) and DAPI (blue), 
scale bar = 500 µm.
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Figure 2.  Effect of Nrf2 siRNA and GSH inhibition on HepG2 cell DNA damage and migration exposed to 
AITC. Allstars (AS) was used as a control for knockdown. Cells were incubated with 2.5 μM AITC or DMSO 
(0.1%) control with/without 50 μM BSO co-treatment. (A) DNA damage was measured by the Comet assay after 
24 hours treatments. (B) Cell migration was measured by the Wound assay after 48 hours. Data are presented as 
mean ± SD (n ≥ 3), **p < 0.01 between the indicated groups (t-test).

Figure 3.  Effect of AITC-SiQDs was compared with AITC on HepG2 cell viability (A), DNA integrity (B), 
migration (C) and tube formation in the 3D HUVEC co-culture with the pericytes model (D). Data are 
presented as mean ± SD (n ≥ 3), *p < 0.05, **p < 0.01 compared to corresponding AITC treatment.
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while with the same dose AITC-SiQDs treatment caused the nuclear protein level of Nrf2 to increase compared 
to control for at least 24 hours. In addition, AITC treatment (1.25, 5, 20 µM) for 4 hours induced a significant and 
dose-dependent increase of Nrf2 in the nucleus, but AITC-SiQDs treatment showed much milder effect in this 
regard compared to the same dose of AITC. These data indicated different dynamics of Nrf2 activation between 
AITC and AITC-SiQDs.

Cellular uptake of AITC-SiQDs.  The nature of the internalization of NPs with cells is a key factor in their 
bioactivity. To investigate the cellular uptake of AITC-SiQDs, HepG2 cells were incubated with fluorescent 
AITC-SiQDs and analyzed by CLSM; additional studies were performed using Lysotracker red, a fluorescent 
cell-permeant acidic organelle-selective marker. The Lysotracker probes, which comprise a fluorophore linked 
with a weak base that is only partially protonated at neutral pH, freely penetrate cell membranes and are typically 
used to mark organelles including lysosomes and some late endosome at acidic pH41. The confocal microscopy 
images are shown in Fig. 5. The control cells (treated with 0.1% DMSO) did not exhibit fluorescence. After 1 hour 
of incubation with AITC-SiQDs, a blue fluorescence signal was observed inside the cells; this peaked around 
12 hours indicating the internalization of a large number of AITC-SiQDs. At 24 hours, there were still signals 
from internalized AITC-SiQDs which indicated the excretion of QDs took at least this length of time. Lysosomes 
were identifiable within HepG2 cells, and there was a clear co-localization of AITC-SiQDs within lysosomal 
structures at all time points investigated (Fig. 5B), which indicated that QDs were taken up by the cells through 
endocytosis as is the case for most types of NPs42.

Anti-cancer properties of AITC-SiQDs is mediated by ROS.  To check that the observed effect of 
AITC-SiQDs on abolishing the low dose stimulation effect was not specific to HepG2, the effect of AITC-SiQDs 
on colorectal adenocarcinoma cells, Caco-2, was investigated. Caco-2 cells were more sensitive towards AITC 
than HepG2 cells. As anticipated, results showed 80 µM AITC-SiQDs decreased cell viability to 31.77% com-
pared to control in Caco-2 while only 78.19% in HepG2 cells (Supplementary Fig. S10A). As presented in 
Supplementary Fig. S10B,C, AITC-SiQDs abolished the stimulation effect seen with AITC (2.5 and 5 µM) on cell 
migration; and the prolonged induction of Nrf2 nuclear accumulation by AITC-SiQDs compared to the sharp 
induction by AITC was also observed in Caco-2. These results suggest that this effect of AITC-SiQDs is not cell 
line specific.

ROS generation is one of the common mechanisms by which NPs exert toxicity; accordingly the intracellular 
ROS was measured using a H2DCFDA probe, a stable nonpolar dye that diffuses readily into cells and yields 
DCFH. Intracellular ROS, in the presence of peroxidase, converts DCFH to fluorescent DCF. As shown in Fig. 6A, 
20 µM AITC or AITC-SiQDs treatment both caused significant increase of ROS at 1 hours in Caco-2 cells, i.e., 
the DCF fluorescence intensity measured as 124.6% and 149.6% of the control from AITC and AITC-SiQDs 
respectively. ROS returned to control level after 3 hour in AITC-treated cells, but in AITC-SiQDs treated cells 
DCF intensity was 121.8% and 145.7% of control at 3 and 24 hours. To exam further whether the AITC-SiQDs 
induced anti-proliferative response is related to ROS, a well-known antioxidant N-acetyl-L-cysteine (NAC) was 
introduced to quench ROS production. Results from their co-treatment showed that NAC completely blocked 
the reduction in cell viability caused by AITC-SiQDs in Caco-2 (Fig. 6B), this suggested that ROS generated 
by AITC-SiQDs participated in the anti-proliferation effect. Further results indicated that co-treatment with 
NAC reduced DNA damage caused by AITC-SiQDs and impaired the inhibitory effect of AITC-SiQDs on cell 
migration (Fig. 6C,D). Taken together, these data suggest a ROS mediated mechanism behind the bioactivities 
of AITC-SiQDs.

Discussion
Phytochemicals can play an important role in cancer prevention and treatment. Some phytochemicals exert 
health benefits by inducing adaptive cellular stress responses. Indeed, recent findings suggest that several phy-
tochemicals exhibit biphasic dose responses on cells with low doses activating signaling pathways that result in 

Figure 4.  Effect of AITC or AITC-SiQDs on Nrf2 nuclear accumulation in HepG2 cells. Nrf2 was detected 
by Western blotting and quantified against SAM as a loading control, results were expressed as fold induction 
relative to controls. (A) Time course of the effect of 20 µM AITC or AITC-SiQDs on Nrf2 nuclear protein level. 
(B) Dose response of AITC or AITC-SiQDs at 4 hours on Nrf2 nuclear protein level.
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increased expression of genes encoding cytoprotective proteins such as antioxidant enzymes, protein chaperones, 
growth factors and mitochondrial proteins22. One example is the isothiocyanates from cruciferous vegetables and 
their activation of Nrf2.

A common mechanism behind the chemopreventive activity of isothiocyanates is the activation of Nrf2, 
which lead to the induction of iron metabolism proteins, phase II detoxifying enzymes, phase III transport-
ers and antioxidant proteins. Among these antioxidants, GSH synthesis and utilization are regulated by Nrf243. 
However recent studies have demonstrated a negative aspect of Nrf2 in cancer. Several genes activated by Nrf2 

Figure 5.  Confocal imaging and quantification of AITC-SiQDs cellular uptake in HepG2 over 24 hours. (A) 
Representative images of the time course of AITC-SiQDs signalling in HepG2 cells. The red channel shows 
fluorescence of Lysotracker and the blue channel the fluorescence of AITC-SiQDs, a merged image of red, blue 
and bright channels is shown in the final column. Scale bar = 50 µm. (B) High resolution images from 6 hours of 
AITC-SiQDs localization into the lysosomes of HepG2 cells, area indicated by the black rectangle in the merged 
images. Scale bar = 10 µm.
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are associated with cancer progression, such as those regulating proliferative signaling and reprograming energy 
metabolism44,45. Nrf2 has also been reported to be a major driver of hepatocarcinogenesis46, and to be constitu-
tively activated in many types of cancer cells or tumor samples from patients, which contributes to aggressive 
cancer phenotypes such as increased proliferation, metastasis and chemotherapeutic resistance. Overexpression 
of Nrf2 is associated with poor prognosis in cancer patients45. Recent applications of Nrf2 inhibitors and knock-
down treatment have been reported to effectively enhance chemotherapy44,47. Therefore, there is a pressing need 
to define the boundaries between the positive and negative effects of Nrf2 in cancer, and to establish a precise 
rationale for undertaking Nrf2 therapeutic targeting.

The results reported here showed that AITC, a naturally occurring isothiocyanate, exhibited biphasic 
anti-cancer properties in HepG2 cells: high dose (≥20 µM) of AITC decreased cell viability, increased DNA dam-
age and inhibited cell migration and angiogenesis; while low doses (1.25–2.5 µM) produced an opposite effect. 
One of the main mechanisms behind the low dose stimulation effect is linked to the induction of Nrf2 signaling 
by AITC as siRNA knockdown treatment abolished the stimulations. BSO co-treatment also significantly reduced 
the effects of low dose AITC indicating the involvement of GSH in the stimulatory effect. In this context it should 
be noted that the physiological concentration of AITC following by consumption of a meal rich in cruciferous 
vegetables or from supplements is around 1–5 µM in human plasma1, which means for most people the exposure 
of AITC would be within the subtoxic stimulatory dose range, which could be a risk factor for those who have 
transformed cells in the body.

It has been demonstrated here for the first time that by using nanotechnology the biphasic effect of AITC can 
be avoided. The biological and optical properties of AITC-SiQDs, combining the anti-cancer activity of AITC as 
the surface ligand and the photoluminescence of the SiQDs core, were both exploited in this nanoscale system. 
Results showed that at high doses AITC-SiQDs exhibited similar effects to that of AITC while at low doses were 
free from the stimulatory effect. Since the low dose AITC stimulation effect was mediated by Nrf2 signaling, 
the time- and dose- responses of Nrf2 signaling from AITC-SiQDs treatment were examined comparing to that 
from AITC. The accumulation of nuclear Nrf2 induced by AITC-SiQDs was found to be much less and to act 
over a longer time than that induced by AITC alone. Confocal imaging confirmed that the internalization and 
excretion of AITC-SiQDs took at least 24 hours, distinctively different from the free diffusion of AITC. Although 
the underlying mechanism is not yet fully understood, the different patterns of Nrf2 activation may be the key of 
AITC-SiQDs escaping the biphasic response shown by AITC, especially when at low doses the cytotoxic effects 
could be very limited. Further investigation is needed to confirm the differences between the bioactivities induced 

Figure 6.  Anti-cancer properties of AITC-SiQDs is mediated by ROS. (A) Caco-2 cells were incubated with 
20 µM AITC or AITC-SiQDs over 24 hours with DMSO (0.1%) as control, ROS was measured using flow 
cytometry. Data are presented as mean ± SD (n ≥ 3), **p < 0.01 compared to corresponding AITC treatment. 
(B) Caco-2 cells were incubated with different doses of AITC-SiQDs with or without NAC (2 mM) for 24 hours. 
Cell viability was measured by the MTT assay. (C) HepG2 cells were incubated with different doses of AITC-
SiQDs with or without NAC (2 mM) for 24 hours. DNA damage was measured by the Comet assay. (D) HepG2 
cells were incubated with different doses of AITC-SiQDs with or without 0.5 mM NAC for 48 hours. Cell 
migration was measured by the wound assay. Data are presented as mean ± SD (n ≥ 5), **p < 0.01 between the 
indicated groups (t-test).



www.nature.com/scientificreports/

1 0SCiENtifiC REPorTS |  (2018) 8:1084  | DOI:10.1038/s41598-018-19353-7

by a mild, long-lasting activation of Nrf2 and acute activation, such as the induction of detoxifying enzymes and 
antioxidant proteins, and the cross-talk with autophagy, metabolic activities, and other transcription factors such 
as NF-κB and p53.

Cellular uptake and excretion of NPs affect their biomedical applications. Endocytosis and exocytosis have 
been identified as major pathways for NPs entering and exiting the cells respectively. The endocytosed NPs are 
normally found in membrane bound organelles in the cytoplasm42, with fewer reported to be in the cytoplasm 
or other organelles such as nucleus48 and endoplasmic reticulum49. Cellular excretion of NPs is generally realized 
through lysosomal secretion, which last from 0.5 to 48 hours according to different reports50. The interaction 
between SiQDs aggregates and receptors in the endosome was found to be a determining factor for the removal 
process of SiQDs51. In this study, the luminescence from AITC-SiQDs were still observed in the lysosome after 
24 hours incubation, indicating that the lysosome was still intact and that AITC-SiQDs had not been degraded. 
Therefore, AITC-SiQDs can be used to track and monitor in vitro over long timescales, and the longer reten-
tion of AITC-SiQDs in cells could contribute to the toxic effects especially at high doses. The role of ROS in the 
anti-cancer activities of AITC-SiQDs was also demonstrated by counteraction from the co-treatment of NAC. 
Both AITC and SiQDs have been reported to exert cytotoxicity via disrupting ROS homeostasis4,52. Prolonged 
intracellular retention of AITC-SiQDs may be better to exert their desired bioactivates, in this case, the cytotox-
icity in comparison to AITC alone.

In summary, this nano delivery system presents an encouraging platform to avoid the biphasic effect of AITC 
administrated alone. Further in vivo studies must be performed to extrapolate the dose-effects found in the in 
vitro experiments. Together with other advantages that could be provided by this nanoscale delivery system, such 
as passive tumor targeting and real time monitoring53, AITC-SiQDs have the potential to be used in anti-cancer 
drug delivery.
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