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Abstract— Automatic vehicle detection and annotation for
streaming video data with complex scenes is an interesting but
challenging task for intelligent transportation systems. In this
paper, we present a fast algorithm: detection and annotation for
vehicles (DAVE), which effectively combines vehicle detection and
attributes annotation into a unified framework. DAVE consists of
two convolutional neural networks: a shallow fully convolutional
fast vehicle proposal network (FVPN) for extracting all vehicles’
positions, and a deep attributes learning network (ALN), which
aims to verify each detection candidate and infer each vehicle’s
pose, color, and type information simultaneously. These two nets
are jointly optimized so that abundant latent knowledge learned
from the deep empirical ALN can be exploited to guide training
the much simpler FVPN. Once the system is trained, DAVE
can achieve efficient vehicle detection and attributes annotation
for real-world traffic surveillance data, while the FVPN can be
independently adopted as a real-time high-performance vehicle
detector as well. We evaluate the DAVE on a new self-collected
urban traffic surveillance data set and the public PASCAL
VOC2007 car and LISA 2010 data sets, with consistent improve-
ments over existing algorithms.

Index Terms— Vehicle detection, attributes annotation, latent
knowledge guidance, joint learning, deep networks.

I. INTRODUCTION

NTELLIGENT traffic surveillance is being widely explored

since the number of vehicles is ever-increasing and large-
scale streaming video data become available. Among many
traffic surveillance techniques, computer vision-based methods
have attracted a great deal of attention and made significant
contribution to practical applications such as vehicle counting,
target vehicle retrieval, and behavior analysis. Particularly, effi-
cient and accurate vehicle detection and attributes recognition
are highly important components in these applications.

Vehicle detection is a fundamental problem in traffic sur-
veillance. Vision-based approaches [1]-[5] can usually extract
semantic visual features such as color, shape and texture.
However, the challenge is that vision-based vehicle detec-
tors always become unsteady caused by severe illumina-
tion and orientation variations, complicated backgrounds and
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occlusions. Therefore, vehicle detection by machine vision has
been extensively investigated in recent years.

In urban traffic surveillance, a more interesting and valuable
task is to extract diverse semantic information from detected
vehicles, called vehicle attributes learning. Each vehicle on
the road has its special attributes: travel direction (i.e. pose),
inherent color, type and other more fine-grained informa-
tion on headlight, grille and wheel. It would be extremely
beneficial for identifying a target vehicle if its attributes
could be annotated accurately. In general, traditional vehi-
cle attributes recognition problems such as pose estimation,
color recognition and type classification are usually treated
separately [6]-[8]. However, separate independent analysis
makes visual information utilized inefficiently. There exist
strong correlations between these vehicle attributes learning
tasks. For example, vehicle type classification based on visual
appearance is highly dependent on the viewpoint. Therefore,
we believe adopting multi-task learning can be helpful since
jointly training implicitly learns the common features shared
by correlated tasks. Moreover, a unified multi-attributes infer-
ence model can significantly improve the efficiency.

In this paper, we propose a fast framework DAVE, illustrated
in Fig. 1, for vehicle detection and attributes annotation in
urban traffic surveillance. As the deep convolutional neural
network (CNN) has been widely and successfully applied to
many vision tasks [9]-[15], we adopt its great advantages
to build our models. The DAVE consists of two CNNs:
fast vehicle proposal network (FVPN) and attributes learning
network (ALN). The FVPN is a shallow fully convolutional
network which aims to predict all the bounding-boxes of
vehicles in real-time. The latter ALN configured with a
very deep structure can precisely verify each detection and
simultaneously infer pose, color and type information for
positive vehicles. Although the ALN architecture is very
deep, it can process 2 full high definition (FHD) resolution
frames per second with GPU acceleration. Moreover, since
highly descriptive features can be learned from the deep ALN,
we adopt these features as latent data-driven knowledge to
guide training the shallow FVPN so that the proposal network
can even achieve competitive performance compared to other
state-of-the-art detection frameworks. Furthermore, our DAVE
also contributes to vehicle re-identification, to which little
work has been devoted within the computer vision community.

In the experiments, we adopt the large-scale CompCars
dataset [16] to train our models. We evaluate our models
for vehicle detection on three datasets: a self-collected and
manually-labeled Urban Traffic Surveillance (UTS) dataset
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Fig. 1.
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Illustration of DAVE. A vehicle has many semantic attributes that can be applied to intelligent transportation systems, as shown in the left sub-figure.

Given numerous surveillance videos, human labeling is expensive and time-consuming. The motivation of our proposed DAVE is to annotate the location,

pose, type and color of all the vehicles on the raw videos automatically.

containing six 1920 x 1080 (FHD) resolution videos with dif-
ferent illumination and viewpoints, the PASCAL VOC2007 car
dataset [17], and the LISA 2010 dataset [18]. Experimental
results show our framework can efficiently detect various vehi-
cles and outperforms four state-of-the-art detection methods:
DPM [19], RCNN [20], Fast RCNN [21] and Faster
RCNN [22]. Besides, evaluation of vehicle attributes anno-
tation is carried out on the CompCars dataset and the UTS
dataset.

This paper aims to unify multiple vehicle-related tasks into
one vehicle annotation framework DAVE and makes three
main contributions as follows.

o It proposes a deep vehicle Attributes Learning Net-
work (ALN) to verify vehicles and annotate their pose,
color and type simultaneously. Vehicle attributes can be
further applied to vehicle re-identification tasks.

o It proposes a Fast Vehicle Proposal Network (FVPN) to
predict all the vehicles’ positions at real-time speed. Since
the FVPN is trained together with the deeper ALN, latent
data-driven knowledge learned from the ALN enables that
the FVPN can be deployed as an independent, highly
efficient vehicle detector.

o It introduces a new Urban Traffic Surveillance (UTS)
vehicle dataset consisting of six 1920 x 1080 (FHD) res-
olution videos with different illumination and viewpoints.

Our preliminary work was presented in [23]. Compared to
the previous work, in this paper, we first enhance the FVPN
introduced in [23] to get better proposal performance by hard
negative mining and carefully adjusting the training hyper-
parameters such as weight decay and base learning rate. The
current FVPN can be deployed as a successful individual
vehicle detector without verification by the ALN. In addi-
tion, we explore the superiority and necessity of our method
compared to the state-of-the-art one-net pipeline. Furthermore,
through experiments, we prove our DAVE can contribute to the
vehicle re-identification task which is hugely neglected by the
current computer vision community.

II. RELATED WORK

Vehicle-related
approaches

systems usually adopt sensor-based
which are robust against illumination and

viewpoint variations, to efficiently and stably detect and
annotate vehicles. Sonar sensors [24] are configured in the
front and rear of vehicles to help detection. Wireless magneto-
resistive sensors [25] are adopted to test whether there are
vehicles passing by. Strain gauge sensors are introduced in [26]
to automatically classify vehicle types, and dead-reckoning/
GPS sensors are exploited to estimate the pose of a driverless
vehicle in [27].

Compared to the high costs of industrial grade sensors,
computer vision methods only require low-cost cameras and
attract increasingly more interests in intelligent surveillance
applications in past decades. Most traditional vision-based
vehicle detection works reviewed in [1] can be categorized into
frame-based and motion-based approaches. For motion-based
approaches, frames subtraction [28], adaptive background
modeling [29] and optical flow [30] methods are often utilized,
but the drawback is that less visual information is exploited so
that any non-vehicle moving objects will be falsely detected.
On the other side, conventional frame-based vehicle detection
methods follow the sliding window fashion that is composed of
appearance features extraction and classification. For instance,
Histogram of Oriented Gradients (HOG) [31] and Haar-like
features [32] are usually extracted, and SVMs [33], and
AdaBoost [34] are adopted to discriminate whether each win-
dow with different scales and aspect ratios is a positive vehicle.
The deformable part-based model (DPM) [19] successfully
handles the detection of deformable objects but is not efficient
due to the sliding window framework.

In recent years, with the great success of deep learning
methods on image classification [9], Girshick et al. [20]
proposed Region-based CNN which combines object pro-
posal [35], [36], CNN learned features and SVM classifiers
to perform detection. For increasing the detection speed and
accuracy, Fast RCNN [21] adopts a region of interest (ROI)
pooling layer and multi-task loss to estimate object classes
while predicting bounding-box positions. Furthermore, Faster
RCNN [22] employs initial layers with shared convolutional
features to enable cost-free effective proposals. However, deep
models deployed by these methods are designed for general
object detection. Our work advances the idea of detection by
focusing on one specific object: private motor vehicles, which



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHOU et al.: FAST AUTOMATIC VEHICLE ANNOTATION FOR URBAN TRAFFIC SURVEILLANCE 3

GoogleNet extended to
vehicle attributes Iearning

pos: tightly cropped M
38y

itive samples with less background
i " and resized to 224x224 |“|{" "_,’;=
ll l H"

LDssl/fc o o4 I

fcl l I softmax for vehicle verification I

-
e 1
==
-

softmax for pose estimation I

Pool5/7x7_s1
1024

u l Hw-
I"Hil 1l

size:l

fc3 I I softmax for colour recognition I

I softmax for type classification I

Two nets are optimized

ALN

simultaneously

=

pos: with a part of
background and
resized to 60x60

32@5*5 32

3

Fig. 2.

Latent data-driven knowledge guiding i
Pooling 1 Conv 2

>/
=3 ’i iz
28] II .24
64@5*5
32

Training Architecture of DAVE. The FVPN is a shallow fully convolutional network, which aims to precisely localize all the vehicles in

Pooling 2

Conv_3
1024@1010. E Conv_fc_knowledge

Conv f( class
softmax for detection

2910410 >
—
smoothL1 loss

for bounding
box regressor

2114
a@iorg  Conv_fc bbr

—s
44141

real-time. The ALN is built by adding 4 fully connected layers to extend the deep GoogLeNet into a multi-attribute learning model. These two networks are
simultaneously optimized in a joint manner by bridging them with latent data-driven knowledge guidance.

obtains effective performance with a very shallow and least-
cost architecture. Detailed comparisons are illustrated in the
experiments section.

Previous automatic vehicle annotation methods only focused
on some single-purpose tasks such as color recognition [37]
and coarse vehicle type classification [38]. Little work has
been conducted for annotating different vehicle attributes
simultaneously including pose, color and type information.
We mainly review separate related work in this section.
Lin et al. [6] presented an auto-masking neural network for
vehicle detection and viewpoint estimation. In [7], an approach
by vector matching of template was introduced for vehi-
cle color recognition. In [8], an unsupervised convolutional
neural network was designed for vehicle type classification
from frontal view images. However, all these models were
implemented on their own small datasets without any robust
comparisons.

III. DETECTION AND ANNOTATION FOR VEHICLE (DAVE)

In this paper, vehicle detection and annotation of pose, color
and type are unified into one framework: DAVE. As illustrated
in Fig. 2, DAVE consists of two convolutional neural networks
called fast vehicle proposal network (FVPN) and attributes
learning network (ALN), respectively. For training the models,
FVPN and ALN are optimized together, while two-stage infer-
ence is performed in the test phase. FVPN aims to predict all
the positions of vehicles in real-time. Afterwards, these vehicle
candidates are passed to the ALN to simultaneously infer their
corresponding pose, color and type, and verification is also
operated to discard those false alarms by FVPN. Training
our DAVE is inspired by Hinton [39] that knowledge learned
from solid deep networks can be distilled to teach shallower
networks. We design to apply latent data-driven knowledge
from the deep ALN to guide training the shallow FVPN. This
method is proved to be able to enhance the performance of
the FVPN through experiments. The architecture of FVPN and

ALN are described in the following subsections. More detailed
training and inference methods are presented as well.

A. Fast Vehicle Proposal Network (FVPN)

Searching the whole image to classify whether each region
is a vehicle in a sliding window fashion is prohibitive for
real-time applications. Traditional object proposal methods
are put forward to alleviate this problem, but thousands of
proposals usually contain numerous false alarms and duplicate
predictions which heavily lower the efficiency. Particularly for
one specific object, we expect very fast and accurate detection
performance can be achieved.

Our proposed fast vehicle proposal network (FVPN) is a
shallow fully convolutional network, which aims to precisely
localize all the vehicles in real-time. We are interested in
exploring whether or not a small scale CNN is enough to
handle the single object detection task. A schematic diagram
of the FVPN is depicted in the bottom part of Fig. 2. The first
convolutional layer (conv_1I) filters the 60 x 60 resolution train-
ing images with 32 kernels of size 5 x 5. All the convolutional
layers in FVPN are configured with stride parameter as 1 and
padding as 0. The second convolutional layer (conv_2) takes
as input the feature maps obtained from the previous layer
and filters them with 64 kernels of size 5 x 5. Max pooling
and Rectified Linear Units (ReLU) layers are configured after
the first two convolutional layers. The third convolutional
layer (conv_3) with 64 kernels of size 3 x 3 is branched
into three sibling 1 x 1 convolutional layers transformed by
traditional fully connected layers. In detail, Conv_fc_class
outputs softmax probabilities of positive samples and the
background; Conv_fc_bbr encodes bounding-box coordinates
for each positive sample; Conv_fc_knowledge is configured
for learning latent data-driven knowledge distilled from the
ALN, which makes the FVPN be trained with more meticulous
vehicle features. Inspired by [40], these 1 x 1 convolutional
layers can successfully lead to differently purposed heatmaps
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in the inference phase. This property can achieve real-time
vehicle localization from whole images/frames by our FVPN.

We employ different loss supervision layers for three cor-
responding tasks in the FVPN. First, discrimination between
a vehicle and the background is a simple binary classification
problem. A softmax loss layer is applied to predict vehicle
confidence, p¢ = {p¢,, pgg}. Besides, each bounding-box is
encoded by 4 predictions: x, y, w and h. x and y denote the
left-top coordinates of the vehicle position, while w and h
represent the width and height of the vehicle size. We nor-
malize all the 4 values relative to the image width and height
so that they can be bounded between 0 and 1. Note that all
bounding boxes’ coordinates are set as zero for background
samples. Following [21], a smooth L1 loss layer is used
for bounding-box regression to output the refined coordinates
vector, loc = (£, 9, , h). Finally, for guiding with latent
data-driven knowledge of an N-dimensional vector distilled

from a deeper net, the cross-entropy loss is employed for
know know know}_

p ={py"" ... PN

We adopt a multi-task loss Lrypy on each training
batch to jointly optimize binary classification of the vehicle
against background, bounding-box regression and learning
latent knowledge from a deeper net as the following function:

Lrypn(loc, pP€, p*%) = Lyic(p%©) + aLppox (loc)
+ BLinow (P""), (1)

where Lj;. denotes the softmax loss for binary classification
of vehicle and background. Ly, indicates a smooth ¢ loss
defined in [21] as:

Lppox(loc) = fri(loc —locy),
0.5x2, if |x] <1

s.t. fri(x) = { |x| — 0.5, otherwise @

Furthermore, the cross entropy 10ss Lo 1S to guide the
training of the FVPN by a latent N-dimensional feature vector
tknow earned from a more solid net, which is defined as:

N
1
Linow (pknow) — _N 2 tiknow log pf_cnow
i

+ (1 —1f") log(1 — pf"*).  (3)

It is noteworthy that a bounding-box for the background
is meaningless in the FVPN back-propagation phase and will
cause training to diverge early [41], thus we set a = O for
background samples, otherwise a = 0.5, whiles f remains at
a fixed weighting value of 0.5.

B. Attributes Learning Network (ALN)

Attributes learning is also an interesting task [42]. Modeling
vehicles’ pose, color and type information separately is less
accurate and inefficient. Actually, relationships between these
tasks can be explored, so that designing a multi-task network is
beneficial for learning shared features which can lead to extra
performance gains. The attribute learning network (ALN) is a
unified network to verify vehicle candidates and annotate their
poses, colors and types. The network architecture of the ALN
is mainly inspired by the GoogLeNet [10] model. Specifically,
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we design the ALN by adding 4 fully connected layers to
extend the GoogLeNet into a multi-attribute learning model.
The reason to adopt such a very deep structure here is because
vehicle annotation belongs to fine-grained categorization prob-
lems and a deeper net has the more powerful capability
to learn representative and discriminative features. Another
advantage of the ALN is its high-efficiency inherited from the
GooglLeNet which has lower computation and memory costs
compared with other deep nets such as the VGGNet [11].

The ALN is a multi-task network optimized with four
softmax loss layers for vehicle annotation tasks. Each training
image has four labels in V, P, C and T. V determines whether
a sample is a vehicle. If V is a true vehicle, the remaining
three attributes P, C and T represent its pose, color and type
respectively. However, if V is the background or a vehicle
with a catch-all! type or color, P, C and T are set as zero
denoting attributes are unavailable in the training phase. The
first softmax loss layer Lyerify (pV) for binary classification
(vehicle vs. background) is the same as Lp;.(p©) in the FVPN.
The softmax loss Lpose(pp), Leoior(p©) and L,ype(pT) are
optimized for pose estimation, color recognition and vehicle
type classification respectively, where p* = {p{,..., pr },
pC = {plc, ... ,pfc} and pT = {plT, e pnT,}. {np, nc, nt}
indicate the number of vehicle poses, colors and types respec-
tively. The whole loss function is defined as follows:

LALN(PVa PPa PCa pT)
= Lyerify (Pv) + j~1Lpose(pp)

+ 22 Lcotor (pC) + /13Ltype(pT); “4)

where all the four sub loss functions are softmax loss for
vehicle verification (“verification” in this paper means con-
firming whether a detection is vehicle), pose estimation, color
recognition and type classification. Following the similar case
of a in Eq. (1), parameters {41, 12, A3} all remain at a fixed
weighting value of 1 for the positive samples, otherwise 0 for
the background.

C. Deep Nets Training

1) Training Dataset and Data Augmentation: We adopt
the large-scale CompCars dataset [16] with more than
100,000 web-nature data as the positive training samples
which are annotated with tight bounding-boxes and rich vehi-
cle attributes such as pose, type, make and model. In detail,
the web-nature part of the CompCars dataset provides five
viewpoints as front, rear, side, frontside and rearside, twelve
vehicle types as MPV, SUV, sedan, hatchback, minibus, pickup,
fastback, estate, hardtop-convertible, sports, crossover and
convertible. To achieve an even training distribution, we dis-
card less common vehicle types with few training images and
finally select six types with all the five viewpoints illustrated
in Fig. 3(a) to train our model. Besides, since color is another
important vehicle attribute, we additionally annotated colors
on more than 10,000 images with five common vehicle colors
as black, white, silver, red and blue to train our final model.

l«Catch-all” indicates other undefined types and colors which are not
included in our training model.
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Apart from positive samples, about 150,000 negative sam-
ples (by hard negative mining) without any vehicles are
cropped from Google Street View Images to compose our
training data.

For data augmentation, we first triple the training data
with increased and decreased image intensities for making
our DAVE more robust under different lighting conditions.
In addition, image downsampling up to 20% of the original
size and image blurring are introduced to improve annotation
precision and recall of detected vehicles that were small in

scale within the image.
2) Jointly Training With Latent Knowledge Guidance: The

entire training structure of DAVE is illustrated in Fig. 2.
We optimize the FVPN and the ALN jointly but with different
sized input training data at the same time. The input resolution
of the ALN is 224 x 224 for fine-grained vehicle attributes
learning, while it is decreased to 60 x 60 for the FVPN to
fit smaller scales of the test image pyramid for efficiency
in the inference phase. In fact, the resolution of 60 x 60
can well guarantee the coarse shape and texture of a vehicle
is discriminative enough against the background. Besides,
another significant difference between the ALN and the FVPN
is that input vehicle samples for the ALN are tightly cropped,
however, for the FVPN, uncropped vehicles are used for
bounding-box (labeled as /oc; in Eq. (2)) regressor training.

The pre-trained GoogLeNet model for 1000-class ImageNet
classification is used to initialize all the convolutional lay-
ers in the ALN, while the FVPN is trained from scratch.
A 1024-dimensional feature vector of the pool5/7x7_sl layer
in the ALN, which can exhaustively describe a vehicle,
is extracted as the latent data-driven knowledge guidance
to supervise the same dimensional Conv_fc_knowledge layer
in the FVPN by cross entropy loss. We set the dimension
of layer Conv_fc_knowledge in FVPN with the same value
of 1024 correspondingly.

We first jointly train ALN and FVPN for about 10 epochs on
the selected web-nature data that only contains pose and type
attributes from the CompCars dataset. In the next 10 epochs,
we fine-tune the models by a subset with our complementary
color annotations. Throughout the training process, we set the

Training loss for binary of vehicle and background
T T T T T T T T

without knowledge learning

———with knowledge learning

Average Training Error

Epochs

Training loss for box regression
T T T T

‘without knowledge learning
with knowledge learning

Average Training Error

(a) Training data (columns indicate vehicle types, while rows indicate poses and colors), (b) Training loss with/without knowledge learning.

batch size as 64, and the momentum and weight decay are
configured as 0.9 and 0.0005, respectively. Learning rate is
scheduled as 10~2 for the first 10 epochs and 5 x 10~ for
the second 10 epochs. To make our method more convincing,
we train two models with and without knowledge guid-
ance, respectively. During training, we definitely discover that
knowledge guidance can indeed benefit training the shallow
FVPN to obtain lower training losses. Training loss curves for
the first 10 epochs are depicted in Fig. 3(b).

D. Two-Stage Deep Nets Inference

Once the joint training is finished, a two-stage scheme
is implemented for inference of DAVE. First, the FVPN
takes as input the 10-level test image Gaussian pyramid. For
each level, the FVPN is operated over the input frame to
infer Conv_fc_class and Conv_fc_bbr layers as corresponding
heatmaps. All the 10 Conv_fc_class heatmaps are unified into
one map by rescaling all the channels to the largest size
among them and keeping the maximum along channels, while
the index of each maximum within 10 channels is used to
obtain four unified Conv_fc_bbr heatmaps (10 levels by sim-
ilar rescaling). After unifying different levels Conv_fc_class
heatmaps into the final vehicle detection score map, we first
filter the score map with threshold thres to discard low hot
spots, and then local peaks on the map are detected by a circle
scanner with tuneable radius ». In all our experiments, r = 8
and thres = 0.5 are fixed. Thus, these local maximal positions
are considered as the central coordinates of proposals, (X; ,;).
Coarse width and height of each detection can be simply
predicted based on the bounding-box of its corresponding hot
spot centered on each local peak. If one hot spot contains
multiple peaks, the width and height will be shared by these
peaks (i.e. proposals). For preserving the complete vehicle
body, coarse width and height are multiplied by fixed parame-
ter m = 1.5 to generate (ﬁ)f’”bb’ ,ﬁ?(’bbr). Thus, a preliminary
bounding-box can be represented as (fi,fi,d)flObb’ le’."’bb’).
Finally, bounding-box regression offset values (within [0,1])
are extracted from four unified heatmaps of Conv_fc_bbr at
those coordinates (X;,y;) to obtain the refined bounding-box.
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Fig. 4. A two-stage inference phase of DAVE. Vehicle candidates are first obtained from FVPN in real-time. Afterwards, we use ALN to verify each

detection and annotate each positive one with the vehicle pose, color and type.

Vehicle candidates inferred from the FVPN are taken as
inputs into the ALN. Although verifying each detection and
annotation of attributes are at the same stage, we assume
that verification has a higher priority. For instance, in the
inference phase, if a detection is predicted as a positive
vehicle, it will then be annotated with a bounding-box and
inferred pose, color and type. However, a detection predicted
as the background will be neglected in spite of its inferred
attributes. Finally, we perform non-maximum suppression as
in RCNN [20] to eliminate duplicate detections. The full
inference scheme is demonstrated in Fig. 4. At present, it is
difficult to train a model that has the capability to annotate all
the vehicles with enormously rich vehicle colors and types.
During inference, a vehicle with untrained colors and types is
always categorized into similar classes or a catch-all “others”
class, which is a limitation of DAVE. In future work, we may
expand our training data to include more abundant vehicle
classes.

1V. EXPERIMENTS AND RESULTS

In this section, we evaluate our DAVE for detection and
annotation of pose, color and type for each detected vehicle.
Experiments are mainly divided into two parts: vehicle detec-
tion and attributes learning. In addition, we also explore
the vehicle re-identification problem using the automatically
annotated attributes. DAVE is implemented based on the deep
learning framework Caffe [43] and run on a workstation
configured with a NVIDIA TITAN X GPU.

A. Evaluation of Vehicle Detection

To evaluate vehicle detection, we train our models using
the large-scale CompCars dataset as mentioned before, and
test on three other vehicle datasets. We collect a full high
definition (1920 x 1080) Urban Traffic Surveillance (UTS)
vehicle dataset with six videos which were captured from
different viewpoints and illumination conditions. Each video
sequence contains 600 annotated frames. To be more con-
vincing, we also compare our method on two other public
datasets: the PASCAL VOC2007 car dataset [17] and the LISA

2010 dataset [18] with four competitive models: DPM [19],
RCNN [20], Fast RCNN [21] and Faster RCNN [22]. These
four methods obtain state-of-the-art performances on gen-
eral object detection and the codes are publicly available.
We adopted the trained car model from voc-release5 [44]
for DPM, while the competitive NN models (VGG-16 based)
were trained for this study using the CompCars dataset to
implement vehicle detection. The vehicle detection evalua-
tion criterion is the same as PASCAL object detection [17].
Intersection over Union (IoU) is set as 0.7 to assess correct
localization.

1) Testing on the UTS Dataset: We not only test our
real-time and highly accurate FVPN independently, but also
verify that, by the deeper ALN (i.e., FVPN+verify in Fig. 5),
the detection performance can be further improved, because
some false alarms by the shallow FVPN will be discarded after
the more rigorous ALN. The detection accuracy as average
precision (AP) and speed as frames-per-second (FPS) are
compared in the left column of Table I. Our model outperforms
all the other methods with obvious improvements. Specifically,
the shallow FVPN obtains an increased AP of 2.11% compared
to the best model Faster RCNN, while the detection speed
is significantly improved from 4 fps to 30 fps which can be
termed as real-time. After verification by the deep ALN, 1.1%
AP increase can be further achieved compared to FVPN, but
the efficiency superiority is lost due to the deep architecture
of ALN. However, the more complicated ALN is designed
for fine-grained vehicle attributes annotation. Therefore, if we
only consider implementing vehicle detection tasks, our pro-
posed FVPN is preferred to be independently adopted as a
high-performance vehicle detector.

The other two deep models, RCNN and Fast RCNN, do not
produce satisfactory results mainly due to the low-precision
proposals extracted by Selective Search [35]. Mixture-DPM
with bounding-box prediction (MDPM-w-BB [19]) signif-
icantly improve the performance compared to MDPM-w/
0-BB [19] by 10.77%. In addition, the speed of all these
baselines is slower than 1 fps which is far from real-time
vehicle detection.
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Precision-recall curves on three vehicle datasets FVPN+veri illustrates the detection results after verification by the ALN. MDPM-w/o-BB and

MDPM-w-BB denote Mixture-DPM without / with bounding-box prediction, respectively.

TABLE I
VEHICLE DETECTION AP (%) AND SPEED (fps) COMPARISON ON THE UTS, PASCAL VOC2007 AND LISA 2010 DATASETS

UTS PASCAL VOC2007 LISA 2010
Methods Average Processing Average Processing Average Processing
Precision (AP) | Speed (fps) Precision (AP) | Speed (fps) Precision (AP) | Speed (fps)
MDPM-w/o-BB 41.96% 0.25 48.44% 1.25 63.61% 0.7
MDPM-w-BB 52.73% 0.2 57.14% 1.25 72.89% 0.7
RCNN 44.87% 0.03 38.52% 0.08 55.37% 0.06
FastRCNN 51.58% 0.4 52.95% 0.5 53.37% 0.5
FasterRCNN 59.82% 4 63.47% 6 77.09% 6
FVPN-w/o-knowledge guide 55.73% 30 60.27% 46 73.88% 42
FVPN-w/o-bbr 57.04% 30 60.81% 46 73.46% 42
FVPN 61.93% 30 65.12% 46 80.46% 42
FVPN+Verify 63.03% 2 66.44 % 4 81.10% 4

bbr” indicates the bounding-box regressor used in our model, while “BB’

denotes bounding-box prediction used in DPM model. “w” and “w/0™ are the

abbreviations of “with” and “without”, respectively. “Verify” denotes the vehicle verification in the ALN.

We also test the FVPN trained without knowledge guid-
ance, with the AP decreased by 6.20%, which proves
the significant advantage of knowledge guidance. Moreover,
if FVDN-w/o-bbr is adopted for simplifying the algorithm,
most predicted bounding boxes will get some offsets or include
more backgrounds, which makes detection unsatisfactory.
Corresponding experiments are carried out to demonstrate that
bounding-box regression can be helpful with the AP increased
by 4.89%.

2) Testing on the PASCAL VOC2007 Car Dataset and
the LISA 2010 Dataset: To make our methods more con-
vincing, we also evaluate on two public datasets. All the
images containing vehicles in the trainval and test sets (totally
1434 images) in the PASCAL VOC 2007 dataset are extracted
to be evaluated. In addition, the LISA 2010 dataset contains
three video sequences with low image quality captured by an
on-board camera. All the results are shown in the middle and
right columns of Table I. For the PASCAL VOC2007 dataset,
the FVPN achieves 65.12% in AP with high-speed of 46 fps,
which outperforms MDPM-w-BB, RCNN, FastRCNN and
Faster RCNN by 7.98%, 26.6%, 12.17% and 1.65%, respec-
tively. Likewise, FVPN+veri can even obtain a higher AP
of 66.44%. Similarly, for the LISA 2010 dataset, the highest
accuracy of 81.10% by FVPN+veri and 80.46% by only
FVPN beats all other methods as well. Therefore, it demon-
strates that our method is able to stably detect vehicles

with different viewpoints, occlusions and varied image
qualities.

Fig. 5 presents the precision-recall curves of all the com-
pared methods on UTS, PASCAL VOC2007 car and the LISA
2010 datasets, respectively. From all these figures, we can
further discover that, for all three datasets, both FVPN+Verify
and only FVPN-based system achieve better performance than
other vehicle detection methods by comparing Area Under
the Curve (AUC). Besides, some qualitative detection results
including successful and failure cases are shown in Fig. 6.
It can be observed that the FVPN cannot handle highly
occluded cases at very small sizes, since local peaks within the
corresponding FVPN heat map overlap. The similar situation
also exists in most of the deep networks based detection
approaches [20]-[22], [41].

3) PASCAL VOC2007 Car Dataset Error Analysis: To fur-
ther examine the detection results, we look into an in-depth
error analysis on the VOC2007 car dataset. We categorize all
the positive predictions into four different types with their
corresponding IoU settings:

o Correct localization, IoU >= 0.7
Wrong localization due to occlusions, 0.3 <= [oU < 0.7

o Wrong localization due to others, 0.3 <= IoU < 0.7

o False alarm due to backgrounds, IoU < 0.3

Fig. 7 demonstrates the error type analysis of false positives
by a pie chart. We find that the severe occlusion between
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Fig. 6.
denotes missing detection.

LISA 2010 Car
Dataset

PASCAL VOC
_ |2007 Car Dataset
$mm———

UTS Vehicle
Dataset

Examples of successful and failure cases for detection. A green box denotes correct localization, a red box denotes false alarm and a blue box

TABLE II
EVALUATION (%) OF ATTRIBUTES ANNOTATION COMPARED TO ONE-NET PIPELINE ON THE UTS DATASET

| Methods | Detection | Pose Estimation | 12-type Classification | 6-type Classification | Color Recognition |
Faster RCNN VGG-16 59.82 91.30 58.19 88.43 69.44
DAVE 63.03 98.03 69.64 94.91 79.25

= Correct localization
. Incorrect localization due to
occlusions

= Incorrect localization due to
others

False alarm due to backgrounds

Fig. 7. Error analysis for detection results on VOC2007 car dataset.
It shows the false positive detections are mainly due to the incorrect
localization.

cars is the main factor for incorrect bounding-box prediction.
Apart from false positives, the case of missing detection
(i.e. false negatives) is always observed when the scale size
is extremely small or a car body is occluded over 50%.
Moreover, we can observe that vehicles in some dark colors
cannot be detected under very low illumination. If we drop the
data augmentation by adjusting image intensities for training,
this situation will become more severe, decreasing the AP
to 62.35%.

B. Evaluation of Vehicle Attributes Annotation

The experiments and analysis of the ALN are mainly based
on the CompCars dataset and the UTS dataset. The web-
nature data in the CompCars dataset are labeled with five
viewpoints and twelve types about 136000 and 97500 images,
respectively. We neglect those images without type annotation
and randomly split the remaining data into the training and
validation subsets as 7:3. In addition to pose estimation and
type classification, we complement the annotation of five
common vehicle colors on about 10000 images for evalu-
ation of color recognition. Besides, for type classification,

we compare the results of both the selected 6 common vehicle
types and the total 12 types as mentioned in Section 3. 3.
Vehicle verification (i.e., binary classification of vehicle and
background) is evaluated in all the experiments as well.

In the following subsections, we first explain the superi-
ority of our method compared to the state-of-the-art one-net
pipeline. Then, we implement four different experiments to
investigate the gain of the multi-task architecture, the accuracy
by inputs with different image qualities, the effect of layer
depths and the difficulty of fine-grained classification under
different viewpoints.

1) Comparison to State-of-the-Art One-Net Pipeline: For
investigating the necessity of our two-stage inference architec-
ture for vehicle detection and attributes annotation, we com-
pare it with the one-net pipeline FasterRCNN VGG-16 [22]
trained with multi-attributes learning. We modify the last
fully-connected layers of FasterRCNN to implement both
bounding-box regression for detection and softmax for dif-
ferent attributes classification. Table II illustrates that the
annotation accuracy of one-net FasterRCNN is much lower
than that of our DAVE. The reasons are as follows. Vehicle
attributes annotation is a fine-grained task, which requires
relatively high-resolution vehicle images for better results,
especially for vehicle type. Thus, the input frame of FVPN for
test should be large (e.g. 1920 x 1080) to ensure all vehicle
proposals inside are clear and informative to be fed into ALN
for better annotation. However, one-net FasterRCNN has to
take fixed size input (600 x 600) for initial layers (i.e. RPN),
which leads to relatively small sized vehicle proposals (usually
less than 100 x 100) that subsequently reduced the performance
on later annotation due to lack of visual details. Although
we can reconstruct FasterRCNN by uniformly amplifying the
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TABLE III
EVALUATION (%) OF ATTRIBUTES ANNOTATION FOR VEHICLES ON THE UTS DATASET

Vehicle Type
Tasks Vehicle Verification | Pose Estimation Classification Color Recognition
12 types [ 6 types
Comparison of single-task learning (STL) and multi-task learning (MTL) for attributes prediction
STL 98.73 96.94 60.37 88.32 78.33
MTL 99.45 98.03 69.64 94.91 79.25
STL feature+SVM 99.11 97.12 60.86 90.75 78.06
MTL feature+SVM 99.36 98.10 69.86 95.12 79.19
Comparison of Attributes prediction with different sizes of vehicle images
28 x 28 90.45 83.49 37.52 53.66 49.73
56 X 56 98.12 91.33 52.02 77.02 66.14
112 x 112 99.37 96.56 63.41 90.67 80.31
224 x 224 99.45 98.03 69.64 94.91 79.25
Comparison of Attributes prediction with different deep models
ALN based on FVPN (depth = 4) 95.96 81.21 27.26 43.12 65.12
ALN based on AlexNet (depth = 8) 99.51 95.76 66.01 89.25 77.90
ALN based on GoogLeNet (depth = 22) 99.45 98.03 69.04 94.91 79.25

TABLE IV

EVALUATION (%) OF FINE-GRAINED VEHICLE

TYPE CLASSIFICATION ON THE UTS DATASET

| Number of vehicle type | Front | Re

ar | Side | FrontSide | RearSide |

12 58.02 | 60.

37 | 66.73 61.28 64.90

6 7942 | 84.

60 | 92.93 86.77 92.53

spatial size of each layer to meet the requirement of resolution
for good annotation, the computational and memory costs will
dramatically increase and the detection speed will drop to
0.6 fps for FasterRCNN. Therefore, our two-stage inference
architecture is necessary, and achieves significant advancement
in real-world vehicle annotation tasks.

2) Single-Task Learning or Multi-Task  Learning?:
To explore this problem, we compare the multi-task ALN
with the case of training networks for each attribute sepa-
rately (i.e., single task). In addition, results by the combi-
nation of deep learned features and an SVM classifier are
compared as well. All the model architectures are based on
the GoogleNet, and 1024-dimensional features are extracted
from layer pool5/7x7_sl to train the corresponding SVM
classifier [45]. As shown in the top part of Table III, the multi-
task model consistently achieves higher accuracies on four
different tasks, which reveals the benefit of joint training.
Although the combination of extracted features and SVM
classifiers sometimes can lead to a small increase, we still
prefer the proposed end-to-end model because of its elegance
and efficiency.

3) How Small a Vehicle Size Can DAVE Annotate?: Since
vehicles within surveillance video frames are usually in differ-
ent sizes. Visual details of those vehicles far from the camera
are significantly unclear. Although they can be selected by the
FVPN with coarse requirements, after rescaling to 224 x 224,
these vehicle proposals with low image clarity are hard to be
annotated with correct attributes by the ALN. To explore this
problem, we test vehicle images with original sizes of 224,
112, 56 and 28 using the trained ALN. The middle part of
Table III illustrates that the higher resolution the original input
size is, the better accuracy it can achieve.

4) Deep or Shallow?: How deep of the network is nec-
essary for vehicle attributes learning is also worth to be
explored. Since our ALN can be established on different deep
models, we compare popular deep networks: AlexNet [9]
and GoogleNet with 8 layers and 22 layers, respectively.
As VGGNet (16 layers version) [11] configured with numerous
parameters requires heavy computation and large memory,
we do not expect to employ it for our ALN. Besides, our pro-
posed shallow FVPN with 4 layers is also used for attributes
learning. From the bottom part of Table III, we can see that
a deeper network does not obtain much better performance
on vehicle verification compared to a shallow one. However,
for pose estimation, type classification and color recognition,
the deepest GoogleNet consistently outperforms other nets
with obvious gaps. Particularly for type classification which
belongs to fine-grained categorization, the shallow FVPN gives
extremely poor results. It illustrates that a deeper network with
powerful discriminative capability is more suitable for fine-
grained vehicle classification tasks.

5) Fine-Grained Categorization in Different Views: Finally,
since vehicle type classification belongs to fine-grained cat-
egorization, we are interested in investigating its difficulty
in different views due to its importance for our future work
such as vehicle re-identification. As demonstrated in Table IV,
for both 12-type and 6-type classification, higher precision is
easier to be achieved from side and rearside views, while it
is difficult to discriminate vehicle types from the front view.
In other words, if we aim to re-identify a target vehicle from
two different viewpoints, the type annotation predicted from
a side view is more credible than that from a front view.

Fig. 8 shows some qualitative evaluation results of our
DAVE on vehicle attributes annotation. It demonstrates that
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#1: Red Hatchback - Rearside
#2: White Pickup - Rearside
#3: Black Hatchback - Front
#4: Blue Sedan - Rearside.

#5: Slver Sedan - Rear

#6: White Hatchback - Rear
#7: Silver Sedan - Rear

#8: N/A(C) Hatchback - Rear
#9: Slver Hatchback - Rear
#10: White Hatchback - Front
#11: Black Hatchback - Front
#12: White Minibus - Front
#13: White Sedan - Front

#14: White Minibus - Front
#15: Slver Sedan - Front

#16: White Minibus - Frontside

#17:Silver SUV - Frontside

L, #1:Silver Hatchback -Frontside
. #2: Black Sedan - Frontside
L, #3: White Minibus - Side
#4: Red Hatchback - Frontside
#5: Silver Hatchback - Side.
#6: Silver Sedan - Frontside
#7:White HatchbackFrontside
#8: Silver Hatchback- Frontside
#9: Slver Hatchback - Side
110: Black Sedan - Side

H11: N/A(C) Pickup - Side

#1: Blue Hatchback -Rear
e #2: Black Sedan - Rear
#3: Black Hatchback - Rearside
#4: White Hatchback - Front
#5: Silver Hatchback - Front
#6: Silver MPV - Rearside.
#7:Black Hatchback-Frontside

#1: Siver Hatchback -Front
#2: Black Hatchback- Frontside
#3: Black SUV - Front

#4: Slver Hatchback - Front
#5: Black Hatchback - Frontide
#6: White Sedan - Frontside
#7: Silver SV - Frontside

#8: N/A(C) MPV- Frontside

#9: Black Hatchback - Side

Fig. 8.

our model is robust to detect vehicles and annotate their poses,
colors and types simultaneously for urban traffic surveillance.
The failure cases mainly take place on incorrect colors and
vehicle types.

C. Evaluation of Vehicle Re-Identification

Compared to person re-identification [46]-[49], vision-
based vehicle re-identification is a more challenging task,
which is neglected by the computer vision community. Vehicle
re-identification aims to identify a target vehicle in different
cameras with disjoint views. In this experiment, we imple-
ment vehicle re-identification by exploiting semantic attributes
learning. We adopt the attributes of vehicle type, color, make
and model from the Compcars dataset to retrain the ALN
with two extended softmax loss layers for learning make and
model information, and then test on the surveillance-nature
data. The surveillance data in Compcars consists of vehicles
of 281 models in the front view. We select five positive
pairs (i.e. same model and color) in each model to establish the

HiBlack Hatchback -Rearside
#2:iver SUV- Rearside

#3: White Sedan - Front
#4:Black Sedan - Front

5 Siker Hatchback Frontside
Y 46: Red Hatchback-Rear

L 17:Siver Hatchback Frontside
8 White Minibus -Front

#9: Red Hatchback - Front

#1:Siver Hatchback Rearside
P i2:ihver Hatchback.Frontside
#3: Red Hatchback - Rearside
#4: White Minibus - Rear

5 Red Hatchback - Frontside:
#6: White Minibus - Frontside

#7: White Minibus - Frontside

H1: N/C(A) SUV - Front

#2: White Minibus - Front
#3: Black Sedan - Front

#4: White SUV - Frontside
#5: Black Hatchback - Front
#6: Black Sedan - Rearside
#7:SilverHatehback-Frontside
#8: N/A(C) Sedan - Rearside
#9: Black SUV - Frontside
#10: White Pickup - Rear
#11: Silver Sedan - Rearside
#12: White SUV - Rearside
H13: White Sedan - Rearside
#14: Red Pickup - Rearside.

#1: Siver MPV - side
#2: Silver Hatchback- Side
43: Red Sedan - Side:

#4: Black SUV - Frontside

#5: Black Sedan - Frontide
#6: Red Sedan - Frontside.

Qualitative results of attributes annotation. Red marks denote incorrect annotation, and N/A(C) means a catch-all color.

Color: Red Color: Black Color: Silver Color: White
Type: SUV Type: Sedan Type: SUV Type: Hatchback
Make: Besturn Make: Chevy Make: Audi Make: Suzuki
Model: Besturn X80 Model: Epica Model: Audi Q5 Model: Cultus

Fig. 9. Surveillance data pair samples for vehicle re-identification.

RelD dataset (1405 IDs in total). Fig. 9 shows some positive
pair samples and their corresponding attributes.

In the test phase, all the attributes can be inferred, and
features of the pool5/7x7_sI layer are extracted for computing
the Euclidean distances to get the final ranking of matching.
Table V illustrates the classification results of each attribute
and the final matching rate of top-k (k = 1, 5, 20 and 100)
widely used in person re-identification. Fig. 10 also demon-
strates some qualitative success and failure examples in the
top-5 rank. We can observe that the color attribute is the
most accurate factor for filtering candidates in the gallery
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Fig. 10. Qualitative results of top-5 rank by the ALN on the surveillance
data. The left column shows the query images, while the right column
illustrates top-5 rank in the gallery set.

TABLE V
EVALUATION (%) OF ATTRIBUTES-BASED VEHICLE RE-IDENTIFICATION

Attributes | Type Color Make Model
ALN 74.32 81.05 72.63 55.16
Human 61.54 96.82 87.43 -
Top-k top-1 top-5 top-20 | top-100
ALN 31.27 50.96 77.35 92.88
Human 86.25 | 100.00 - -

set, although the illumination will make our model confused
between similar colors such as black and gray, white and silver,
and yellow and orange. Moreover, models with the same type
and similar visual patterns also lead to failure cases.

To better understand the vehicle re-identification task,
we introduce the human level performance for comparison.
We invite 10 vehicle amateurs to annotate the type, color
and make labels for the test images. Annotation on a large
variety of models is hard to be included by non-experts.
For re-identification, each human annotator is asked to re-
identify 140 query vehicles and select 5 candidates in the
gallery set by ranking as well. All the average results are
compared in Table V. During the experiments, most people
think the color is the easiest one to be identified, while
the type is hard to be classified by the front view of a
vehicle. The make recognition is mainly identified based on
the logo, but failed in the low-resolution cases. Moreover,
a very high accuracy of re-identification is achieved by humans
since detailed visual textures can be carefully discriminated.
However, for re-identifying one query vehicle, it averagely
takes 220 seconds for a human to finish a ranking in the gallery
set with the size of 1405. Although re-identification by humans
is highly accurate, it is not acceptable in the real large-scale
scenarios due to the poor efficiency. Therefore, the intelligent
vehicle re-identification requires in-depth study.

V. CONCLUSION

In this paper, we developed a unified framework for fast
vehicle detection and annotation: DAVE, which consists of two
convolutional neural networks FVPN and ALN. The detec-
tion and attributes learning networks predict bounding-boxes
for vehicles and infer their attributes: pose, color and type,
simultaneously. Extensive experimental results have shown
that our method outperforms state-of-the-art frameworks and
achieves a highly accurate vehicle attributes annotation system.

In addition, we also integrated more vehicle attributes such as
make and model into the ALN, and exploited these attributes
for vehicle re-identification tasks.
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