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Abstract 

The poor aqueous solubility of many APIs, such as felodipine, are significant dissolution rate 

limiting factors that often lead to poor oral systemic bioavailability. Solid dispersions have been 

used as a formulation approach to improve drugs dissolution properties. Most of the reported solid 

dispersion formulations in the literature are binary mixtures with limited functionalities (with 

enhancing dissolution being the primary function). The aim of this study is to design, characterise 

and evaluate complex solid dispersions with intentionally designed microstructures (in the form 

of phase separations). The potential functionalities of these microstructures were explored by this 

project. In our view, the complex formulations are more representative of real pharmaceutical 

products in their final forms.  

HME-IM is a single processing technique for fabricating formulations with high geometric 

precision in a rapid, efficient and environmentally friendly way.  It was used as the main 

processing method to produce the solid dispersion based buccal patches in this project. The 

patches were thoroughly characterised using conventional techniques including DSC, MTDSC, 

TGA, DVS, ATR-FTIR, PXRD, SEM, EDS, IR imaging, mucoadhesion and in vitro dissolution 

testing. In order to address the spatial distribution of the phase separations, two non-conventional 

characterisation methods, thermal analysis by structural characterisation and X-ray micro-

computed tomography, were introduced to provide novel insights into the heterogeneity and phase 

distribution of these formulations. The results revealed that HME-IM patches with 10% drug 

loading were unsaturated while those with 20-30% w/w drug concentration were saturated or even 

supersaturated. HME-IM patches containing TPGS were more solubilising to felodipine and more 

stable compared to Tween 80 containing systems. Thermal analysis by structural characterisation 

provided rapid detection of heterogeneity and the thermal dissolution of crystalline drug fraction 

while XµCT provided microscale spatial distribution of different phases. Having shown the 

advantages of using polymeric blends to formulate solid dispersions that were demonstrated by 

the felodipine buccal patches, we further explored the use of polymer blends for improving the 

FDM 3D printability of pharmaceutical solid dosage forms with the potential applications in 

personalised medicine.  

This project demonstrated the potential and formulation principles of using HME-IM and FDM 

3D printing as formulation methods for production of polymer blend based complex solid 

dispersions for the purposes of enhanced bioavailability of poorly soluble drugs and providing 

personalised medicines. 
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1.1 The mystery of poor water solubility of active pharmaceuticals 

Poor water solubility due to the hydrophobic nature of ~ 40% of the newly discovered 

pharmaceutically active chemical entities (due to the chemistry of their active forms) comprises 

a challenging problem that affects their dissolution from the final products (1, 2). The equilibrium 

solubility of any chemical compound is an essential feature that can be changed only by chemical 

structure modification while the dissolution rate is an extrinsic property that can be modified by 

chemical, physical, and crystallographic changes like complexation, surface properties, particle 

size, solid state modification and formulation based solubilisation (3). According to U.S Food and 

Drug Administration (FDA), World Health Organisation (WHO) and European Medicines 

Agency (EMA), drugs are generally classified into four classes according to biopharmaceutics 

classification system (BCS). The classification is based on their aqueous solubility and 

permeability through the intestinal barriers at the site of absorption as a tool to predict their 

pharmacokinetic performances (4). Drugs are termed highly soluble when their highest strength 

is soluble in 250 mL or less aqueous solution within the pH range of 1- 6.8 at 37 ± 1 ̊C. In addition, 

the expression ‘high permeable’ indicates not less than 85% of the administered dose (based on 

mass balance or in comparison to an intravenous reference dose) is absorbed through the intestinal 

site of absorption (5). The different classes with examples of various drugs are presented in 

Figure 1.1. 

 

Figure 1.1: Biopharmaceutics classification system (BCS) with examples; adapted from references 

(6-8) 
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Solubility and/or dissolution rate are considered as critical parameters that control the 

development of any pharmaceutical product starting from the formulation process and ending by 

the different drug disposition stages inside the human body. Also, their impacts extend to later 

stages after the intake of medication to include the release profile, absorption, bioavailability, 

distribution, metabolism and excretion (3, 9, 10).  

Over the last decades, researchers have developed a variety of strategies to overcome this problem 

like salt formation, complexation, co-crystals, nanocrystals, prodrug formation, lipid-based drug 

delivery systems and solid dispersions.  Each one of these approaches has its advantages and 

limitations. Salt formation significantly increases the solubility, however, it is only applicable to 

acidic and basic drugs (11). Complexation using inclusion excipients like cyclodextrins enhance 

the solubility of hydrophobic drugs by trapping them in their central cavity. The formation of 

these solubilisation complexes is controlled by the size of the cyclodextrin ring and the guest 

molecule and the presence of interaction between them (12). Co-crystals can increase the 

solubility of this category of drugs by lowering the lattice energy and increasing the solvent 

affinity. However, the flexibility to formulate those drugs as co-crystals is limited by safety 

restrictions on the concentrations of coformers such as malic acids which forms co-crystals with 

itraconazole in a maximum allowable combination of less than 7% (13). Also, reducing the 

particle size by using nanocrystals approach led to the development of marketed products such as 

nabilone (Cesamet®/Lilly) and fenofibrate (Tricor®/Abbott) oral nanocrystal formulations 

through enhancing the dissolution rate by the enormous increase in the surface area exposed to 

solvent action (14). However, it was reported that physiological factors like pH variations, the 

composition of the gastric juices and GI peristalsis could affect the redispersion of nanocrystals 

resulting in a failure to achieve good in vivo performance (15). Reducing particle size may also 

be compromised by the extensive precipitation and the high recrystallisation tendency of the drug. 

It should be mentioned that very fine particles may express poor wetting properties, aggregation 

and agglomeration and difficulty in handling such particles during formulation and manufacturing 

processes (16-18). Furthermore, prodrug approach was shown to improve the solubility of poorly 

water soluble drugs, but this involves modification of drug’s chemical structure which is generally 

not favourable to overcome solubility limitations (19). Lipid-based drug delivery systems offer 

the advantage of dissolving lipophilic drugs. A variety of lipids, surfactants or mixtures of lipids 

and surfactants were used to omit the dissolution step which acts as the limiting parameter for the 

absorption of poorly water soluble drugs (20-22). However, this formulation strategy may be 

affected by some challenges like physical changes and oxidative degradation over time which 

might have a potential impact on drug stability and formulation performance (23). Another 
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approach to improve the solubility and dissolution rate of poorly water soluble drugs is through 

the use of solid dispersions. The solubility and/or dissolution enhancement by this method is 

achieved majorly by converting the drug from its crystalline state to typically molecularly level 

solid dispersion. The major drawback of this formulation based technology is the physical 

stability of the dispersed drug in the formulation (24, 25).  It should be mentioned that lipid-based 

formulations can be processed as solid dispersions to prepare drug delivery systems for improved 

dissolution properties of poorly water soluble drugs (21, 26).   

1.2 Solid dispersions 

Pharmaceutical solid dispersions are systems in which the APIs are distributed in a carrier 

composed of one or more pharmaceutical excipients (27, 28). The interest in solid dispersions is 

growing rapidly in the last five decades owing to the advantages offered by this type of 

preparations like the improvement in the bioavailability of poorly water-soluble drugs (BCS class 

II) through increasing their solubility and/or dissolution rates (18). The importance of this 

approach compared to other methods used for achieving this purpose is attributed to the flexibility 

in combining the drugs with a very wide range of pharmaceutically approved excipients having 

different functionalities to achieve the desired objectives of formulation. Excipients with wide 

variety of physicochemical properties like different chemical structures, molecular weights, 

crystalline, amorphous, lipidic, hydrophilic, amphiphilic, viscous, liquids, semisolids, solids can 

be used in fabricating solid dispersions. In addition, solid dispersions as blends are not restricted 

with certain stoichiometric mixing ratios which enable researchers to use a wide range of 

concentrations depending on the miscibility between the different components. Furthermore, 

there are several methods can be utilised for the fabrication of these formulations with different 

formulation strategies and applications that may be used to overcome preparation challenges (29-

32). However, there are only a few products marketed as therapeutically effective and stable 

formulations to be used by the patients to cure diseases mainly due to physical stability issues 

(18). An illustration of the structure of different solid dispersions is shown in Figure 1.2. 

Depending on the physical states of the drug and the carrier, several types of solid dispersions 

with single or multiple phases can be formed.   

 



Chapter 1   Introduction  

 

5  School of Pharmacy / University of East Anglia 

 

 

Figure 1.2: An illustration of phase composition of different types of solid dispersions 

Poorly water soluble drugs are mostly crystalline compounds characterised by long-range three-

dimensional order of arrangement of molecules (Figure 1.2). On the other hand, amorphous forms 

are disordered compounds lacking this property and have only short range of order (33). Also, 

polymorphic forms are crystalline forms belong to the same drug with different crystalline 

structures having various molecular arrangements caused by differences in packing and/or 

molecular conformations (34). Polymorphic forms are different in their thermodynamic (like 

melting temperature), kinetic (such as dissolution rate), packing (like density), surface (such as 

surface free energy) and mechanical properties (like hardness) (35).  

Solid dispersions enhance the solubility and/or dissolution of poorly water-soluble drugs by 

different mechanisms. These mechanisms include converting the drug into molecular level, 
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amorphous or other polymorphic forms having higher solubility and/or dissolution properties (27, 

36). The higher surface free energy of the molecularly dispersed and amorphous forms compared 

to crystalline form is the driving force responsible for the improvement in solubility and/or 

dissolution characteristics as shown in Figure 1.3. In addition, other factors like the decrease in 

particle size, reduction in agglomeration and aggregation, interaction with other excipients to 

form complexes and enhanced wettability are also contributing to such improvement in drug 

solubility and/or dissolution properties (27, 36). Increasing the dissolution properties by solid 

dispersions through particle size reduction is based on the assumption that the components of 

these dispersions crystallise as very small particles. Consequently, when these particles come into 

contact with the dissolution media, the larger surface area exposed to the solvent action of these 

small particles enhance the dissolution rate (37).  

 

Figure 1.3: Surface free energy of crystalline compared to amorphous and molecularly dispersed 

drugs in solid dispersions; adapted from reference (38). 

1.2.1 Classification of solid dispersions according to the physical state of the 

drug and the carrier 

Based on the physical state of the drug and the carrier excipient(s), solid dispersions can be 

classified into many classes as illustrated in Figure 1.4 
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Figure 1.4: Classification of solid dispersions based on the physical state and distribution of phases; 

adapted from reference (36) 

1.2.1.1 Eutectic mixtures 

Eutectic mixtures are solid dispersions having a melting point (eutectic temperature) lower than 

that of its original components. The mixture is single phase in the liquid state and phase separated 

crystalline mixture in the solid state (36, 38, 39). An intimate physical interaction such as 

hydrogen bonding is a critical factor in causing the melting point depression of the system in the 

solid state. This kind of solid dispersions can be formed between drugs, excipients and their 

mixtures (40). Eutectic mixtures are further classified into monotectic and typical eutectic solid 

dispersion depending on how close the eutectic temperature to the melting point of individual 

constituents. Monotectic solid dispersions have eutectic point close to one of the mixture 

ingredients while in the case of typical eutectic systems the eutectic temperature lies in the middle 

area away from individual constituents (38, 39).  

Several poorly water soluble drugs showed to form eutectic mixtures resulting in an enhancement 

in their dissolution properties. It was reported that ibuprofen solubility is improved by eutectic 



Chapter 1   Introduction  

 

8  School of Pharmacy / University of East Anglia 

 

mixture formation with menthol resulting in a significant improvement in the initial plasma 

concentration of the drug (41).  Also, the dissolution rates of acetylsalicylic acid, benzoic acid 

and phenylacetic acid were found to be higher by the formation of eutectic mixtures with choline 

chloride and menthol at specific mixing proportions (42).  

Furthermore, eutectic mixture of urea and efonidipine hydrochloride ethanolate was reported to 

be formed by microwave radiation treatment in which the eutectic point was depressed 70 ̊C and 

40 ̊C with respect to the melting temperature of the drug and urea respectively (43). The phase 

diagram of this class of solid dispersions is illustrated in Figure 1.5. 

 

 

Figure 1.5: Simple eutectic mixture phase diagram with negligible solid solubility 

1.2.1.2 Solid solutions 

Solid solutions or often called mixed crystals are solid dispersions in which the components of 

the mixture in the solid state are crystallised together as a single phase homogeneous system. The 

dissolution properties of poorly water soluble drugs using this system are higher compared to the 

aforementioned eutectic mixture. The improved dissolution is attributed to particle size reduction 

to the maximum degree in which the drug is existing at the molecular level (36). Solid solutions 

are classified according to the extent of miscibility between the components of the system into 

continuous and discontinuous solid solutions. In the former, the constituents of the blends are 

miscible in all proportions while in the later there is incomplete miscibility between the individual 

ingredients. They also are subdivided into interstitial and substitutional solid dispersions. 
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Interstitial solid solutions, the solid solute molecules fill the interstitial spaces between the solid 

solvent molecules while in the case of substitutional type, the guest solute molecules substitute 

the solvent ones (27, 36, 44, 45). According to the similarities in their structure and/or the open 

spaces in the crystal of the solvent (host crystal), the solute (guest) can orient itself in a specific 

manner giving the dispersion its final characteristics.  

The phase diagrams of the continuous and the discontinuous solid solutions are illustrated in 

Figures 1.6 A and B, respectively. Also, an illustration of the substitutional and the interstitial 

types of solid solutions is shown in Figure 1.7. 

 

Figure 1.6: Continuous (A) and discontinuous (B) solid solution phase diagrams 
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Figure 1.7: Schematic representation of substitutional solid solution (left) and interstitial solid 

solution (right). Black hexagons represent drug molecules (guest) while the orange hexagons 

represent the carrier (host) molecules 

In the literature, it has been reported that several hydrophobic drugs form crystalline solid 

solutions with some excipients. The possible formation of interstitial solid solution between 

clofibrate and various molecular weight grades of PEG was considered as the contributing factor 

for enhancing the dissolution properties of the drug (46). Similar findings were concluded in the 

case of the oxazepam where its dissolution profiles are significantly enhanced by solid solution 

formation with PEG (47). However, other more recent studies showed that drugs dispersed in 

PEG are more likely distributed as molecularly dispersed in the amorphous fraction of these 

polymers or as nanocrystals that reported to be distributed into the interfibrillar, interlamellar or 

interspherulitic spaces of the PEG/PEO polymer carriers (48-51). Nevertheless, members of PEG 

polymers and other polymers are also reported to form cocrystals or mixed crystals with several 

drugs such as griseofulvin (52-55). 

1.2.1.3 Glass solutions and suspensions 

The third category of solid dispersions is glass dispersions in which the drug is either molecularly 

dispersed as single phase (glass solution) or phase separated mixtures in which the drug present 

as amorphous domains and/or crystalline fraction distributed in an amorphous polymer or 

polymeric blend (glass suspension) as illustrated in Figure 1.8 (56, 57).  
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Figure 1.8: Schematic representation of glass solutions and suspensions 

This class has attracted the attention of researchers to formulate amorphous solid solutions for 

poorly water soluble drugs like BCS class II because these mixtures have the maximum ability to 

improve the dissolution rate and the solubility of these drugs. Unlike crystalline or semi-

crystalline systems, the individual molecules of amorphous systems lack the repetitious order and 

distributed randomly which makes the incorporation of the drug in the interstitial spaces between 

the polymer chains easier compared to crystalline polymers. Due to the lack of crystallinity, 

amorphous systems exhibit a characteristic behaviour of existing in the solid-like (glass) and 

liquid-like (supercooled liquid or rubbery) states depending on their temperature. The range of 

temperatures in which the system transforms from its glass to supercooled liquid states is termed 

the glass transition (Tg). Several theories explained the physics behind this thermal event like the 

free volume, configurational entropy, potential energy landscape and mode coupling theories.  

The Tg is mostly considered as an important parameter to estimate the stability and miscibility of 

amorphous solid dispersions due to the significant variation in the properties of the system above 

and below this thermal event. The solubility/dissolution properties of many poorly water soluble 

drugs have been reported to be significantly enhanced by the formation of molecular level 

amorphous solid dispersions (24, 25, 29, 44).  

Amorphous polymers like PVP, HPMC and HPMC-AS are found to stabilise molecularly 

dispersed celecoxib resulting in an improvement in its release profile (58). The same polymers 

have found to improve the dissolution and maintain supersaturation in solution state for variable 

periods depending on the type of polymer and the loading percentage of the model drug danazol 

(59). Furthermore, an amorphous polymeric blend of PVP K90 and Eudragit E100 showed 
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significant enhancement in the dissolution profile and stability of molecularly dispersed poorly 

water soluble drug indomethacin (60). 

1.2.1.4 Amorphous precipitations in crystalline carrier 

In this type of solid dispersions, the solute (drug) phase is separated as amorphous domains in the 

crystalline carrier. Since the amorphous form is expected to have higher solubility compare to 

crystalline form, this category of solid dispersions can be considered as a mean to improve the 

dissolution properties of poorly water soluble drugs (44). The presence of phase separated fraction 

of amorphous indomethacin in the semicrystalline polymer PEG 6000 is an indication of the 

presence of this kind of solid dispersion (48). Similar findings have also confirmed the 

precipitation of amorphous bifonazole and acetaminophen in semicrystalline PEO−PPO−PEO 

triblock copolymers (Poloxamers® 188 and 407) solid dispersions (61). It was reported that 

amorphous glibenclamide precipitated in the semi-crystalline PEG 4000 is a possible explanation 

for the improvement in the dissolution properties of the drug (62). 

1.2.1.5 Compound or complex formation 

Complex formation between poorly water soluble drugs and hydrophilic carriers can also be 

considered as mean to improve their dissolution profiles and consequently enhance their 

bioavailability. Several examples of hydrophilic carriers have demonstrated their ability to form 

complexes with drugs such as cyclodextrins, PVP, PEG and PEO. Cyclodextrins are cyclic 

compounds characterised by hydrophobic interior cavities and the ability to form noncovalent 

inclusion complexes with a variety of drugs (27, 63-66). PVP as a hydrophilic amorphous polymer 

used widely for preparing solid dispersions has also reported to form complexes with BCS class 

II drugs resulting in an increase in their aqueous dissolution properties (67-69). In addition, 

hydrophilic solid dispersions of PEG and PEO have been shown to form soluble complexes with 

hydrophobic drug molecules such as griseofulvin, diflunisal and carbamazepine (54, 70, 71). The 

schematic representation of these complexes is illustrated in Figure 1.9. 
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Figure 1.9: Schematic representation of drug-PEG inclusion complexes; adapted from reference (54) 

1.2.1.6 Combination solid dispersions  

Solid dispersions can exist as a mixture of two or more of the previously mentioned classes in 

single system depending on the number, characteristics and the degree of interaction between 

their constituents. Consequently, the global improvement in the dissolution profile of poorly water 

soluble drugs can be explained based on the individual class of solid dispersions. It was reported 

that PEO based mucoadhesive buccal patches of the antifungal drug ciclopirox olamine were 

heterogeneous solid dispersions composed of multiple phases of molecularly dispersed, 

amorphous, crystalline fractions resulting in an overall improvement of the poorly water soluble 

drug from its final formulation (50). Also, the structural diversity of the polymeric carriers was 

found to control the formation of multiphasic solid dispersions of acetylsalicylic acid prepared by 

freeze drying as seen using solid state NMR (72). Furthermore, the immiscibility between 

different polymers in polymeric blend solid dispersions found to form multiphasic solid 

dispersions of different characteristics (73). 

1.3 Drug-polymer miscibility predictions for solid dispersion development  

Theoretical prediction methods are considered as important approaches during the development 

of pharmaceutical products for selecting the most suitable excipients candidates for active 

pharmaceuticals. These approaches have been widely used for predicting quantitative structure-

property relationships like solubility, permeability and biopharmaceutical profiles using a variety 

of methods (74-76). Concerning solid dispersions, these methods are also adapted to predict the 
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miscibility and stability of drugs in the different carriers as a preformulation strategy to select the 

best excipient candidates that show the highest solubilisation and stabilisation properties (77-80). 

Maintaining the stability of molecular level solid dispersions is a key parameter to ensure the 

enhancement in the solubility/dissolution properties of poorly water soluble drugs. Failure to 

achieve this requirement is expected to partially or completely abolish the formulation objectives 

behind solid dispersions. Using these predictions, it would be possible to select with higher 

certainty and more time and cost effective way the suitable carrier excipients that are more likely 

producing successful formulations.  

Solubility and miscibility are critical physical parameters in the formulation of solid dispersions 

(3). Quantitatively, solubility is the concentration of solute in a saturated solution at a certain 

temperature while qualitatively it can be defined as the spontaneous interaction of two or more 

compounds to form a homogenous molecular dispersion (3). On the other hand, miscibility is used 

as a term describing the mutual solubilities of the components of the solution in liquid-liquid 

systems (3). Based on this, solutions are classified as subsaturated, saturated and supersaturated 

depending on the concentration of the solute in the solution below, at or above the saturation limit 

at specified temperature respectively (81). The degree of saturation of the system is critically 

affecting the physical state of the drug in the solid dispersion. Systems with drug concentrations 

at or above the saturation limits are more likely subjected to physical stability problems like phase 

separation affecting the quality of the product (82). Thus, predicting the solubility of the drug in 

the polymeric carrier system is crucial as it gives an indication of the solubilisation limits of the 

carrier which in turn may affect the stability of the final formulation.    

1.3.1 Solubility parameter approach 

 The solubility parameter (δ) approach is one of the widely used prediction methods for the 

estimation of the solubility between the components of mixtures including polymer-drug blends 

(83, 84). This approach is based on the observation that the solubility of a polymer in organic 

solvents can be expressed directly by its cohesive properties which can be quantitatively 

expressed as the cohesive energy. The cohesive energy per unit volume is termed as the cohesive 

energy density. Hildebrand in 1936 proposed the square root of the cohesive energy density as a 

parameter to describe the behaviour of certain solvents. In 1949, this parameter was named as 

solubility parameter and given its known symbol (δ). Because the chemical structure of the 

polymer is largely the determinant of its solubility in different organic solvents, the similarity in 

the chemical structure of both compounds is in favour of solubility ‘like dissolves like’ (3). This 
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means that the solubility of the two components is in favour if their solubility parameters are 

similar. It should be mentioned that the solubility parameter of the polymer is defined as the 

square root of the cohesive energy density at room temperature in its amorphous state as shown 

in Equation 1.1.  

δ = �����
�  ………………... Equation 1.1 

where δ is the solubility parameter at 298 K in (J/cm3)1/2 or (MJ/m3)1/2 or MPa1/2, Ecoh is the 

cohesive energy (J/mol) and V is the molar volume (cm3. mol -1). It should be mentioned that the 

Ecoh is determined for low molecular weight liquids by calculating the closely related molar heat 

of evaporation (∆Hvap) at constant temperature as seen in Equation 1.2.   

Ecoh ≈ ΔHvap − RT………….……... Equation 1.2 

where R is representing gas constant and T is the absolute temperature. 

The group contribution method was derived by Dunkel (1928) who considered the Ecoh of low 

molecular weight compounds as additive property. The same approach was applied to the 

polymers by other researchers like Hayes (1961), Di Benedetto (1963), Hoftyzer and Van 

Krevelen (1970) and Fedors (1974). Depending on the method used for estimating the cohesive 

energy, the values obtained are different between authors. It was found that the solubility of many 

amorphous polymers and other liquids are not only dependent on the dispersion forces between 

structural units as stated by Hildebrand, but also dependent on polar interactions and hydrogen 

bonding of interacting groups. Thus, the refined cohesive energy can be formally expressed as:  

Ecoh = Ed + EP + Eh ……………..... Equation 1.3 

where Ed is dispersive forces contribution, EP is polar forces contribution and Eh is hydrogen 

bonding forces contribution. Equation 1.3 can be expressed in terms of the solubility parameter 

based on the three contributing components as follow: 

   δ2 = δd2 + δp2 + δh2……………..... Equation 1.4 

Hoftyzer and Van Krevelen method was widely used to calculate the solubility parameters of the 

drug and polymer blends using Equations 1.5-1.8. 

                   δ = �δd2 + δp2+δh2……………..... Equation 1.5 
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                                                 δd = Ʃ Fdi
�  ……………..... Equation 1.6 

                                                 δp = �Ʃ F2 pi
�  ……………..... Equation 1.7      

                                                δh = �  Ʃ ���
�  ……………..... Equation 1.8      

where δ is solubility parameter (MJ/m3)½, Fdi is the dispersion component of the molar attraction 

constant (MJ/m3)½. mol-1, Fpi is the polar component of the molar attraction constant (MJ/m3). 

mol-1, Ehi is hydrogen bonding energy component J.mol-1 and V is molar volume cm3. mol -1.  The 

solubility parameters of the drug and other excipients are also calculated by Hoy group 

contribution method using Equations 1.9-1.11. 

δ = (Fi+ B)
# ……………..... Equation 1.9      

δ = (Fi+ B/%)
# ……………..... Equation 1.10      

n = 0.5/ΔT …………….....Equation 1.11     

where δ is total Solubility parameter (MJ/m3)½, Fi is molar attraction function (MJ/m3)½. mol-1, B 

is the base value (which is 277 in this case), n is the number of monomers per effective chain 

segment of the polymer, ∆T is Hoy correction for non-ideality for polymers and V is the molar 

volume cm3.mol -1.  

1.3.2 Melting point depression approach 

Melting point depression can also be used as an approach to investigate drug-polymer and 

polymer-polymer miscibilities as a preliminary step before solid dispersion preparation (85-87). 

This method is based on the fact that melting of compounds occurs at temperatures at which the 

chemical potential of the crystalline solid is equal to that of the molten state. If the drug and the 

polymer are miscible, the chemical potential of the mixture is expected to be less than that of pure 

amorphous form of the drug. In this case, the depression in melting temperatures of different 

drugs in the same polymer gives an indication of the miscibility of these drugs in that polymer 

(79, 85, 88). Thermodynamically, solubility can be an endothermic, athermic or exothermic event. 

Weak exothermic, athermic and endothermic mixing usually accompanied by small or no melting 
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point depressions. However, strong depressions are usually occurring with strong exothermic 

mixing. For immiscible drug-carrier blends, no depression in the onset of melting for the drug is 

expected to be observed as the melting of the drug is not affected by the presence or the absence 

of the carrier (79).  Depression of melting can be used to construct plots of Gibbs of free energy 

of mixing and phase diagrams for drug-polymer mixtures using the experimental data from DSC 

and some theoretical equations derived from Flory-Huggins (F-H) interaction theory (77, 78, 89). 

F-H theory is widely used to investigate polymer-polymer miscibility and polymer-solvent 

miscibility as a modification of the original solution theory. By considering the amorphous form 

of drugs as a solvent, F-H lattice theory provides a rational explanation for the thermodynamics 

of drug-polymer solubility (85). Based on this theory, the ∆Gmix can be expressed in Equations 

1.12-1.13 (77, 85, 87): 

ΔGmix = ΔHmix + TΔSmix ………………………………… Equation 1.12 

ΔGmix = RT (ɸdrug ln ɸdrug + (ɸpolymer/m) lnɸpolymer + χdrug-polymer ɸdrug ɸpolymer … Equation 1.13     

where ∆Gmix is the Gibbs free energy of mixing, ΔHmix is the enthalpy of mixing, T is the absolute 

temperature, ΔSmix is the entropy of mixing, R is the gas constant, ɸdrug is the drug volume fraction, 

ɸpolymer is the polymer volume fraction, m is the ratio of the volume of polymer chain to the volume 

of the drug molecule and χdrug-polymer is F-H drug-polymer interaction parameter. 

Depression of melting due to the presence of the polymer can be correlated to interaction 

parameter (χ) at specified temperature using the DSC data and Equation 1.14 (77-79, 85, 87, 88): 

(1/Tm depressed) - (1/Tm pure) = R/ΔHf [lnɸdrug +(ɸpolymer/m) lnɸpolymer + χdrug-polymer ɸ2polymer]… 

Equation 1.14 

where Tm depressed is the depressed melting temperature of the drug due to the presence of the 

polymer (sometimes expressed as the onset or offset of the melting peak), Tm pure is the melting 

temperature of pure drug and ∆Hf is the melting enthalpy of pure drug. The interaction parameter 

(χdrug-polymer) can be obtained by plotting (1/Tm depressed) - (1/Tm pure) * (∆Hf /-R) -  ln ɸdrug - (1- 1/m) 

ɸpolymer versus ɸ2
polymer using the DSC results of the drug-polymer binary physical mixtures with 

high drug loadings (more than 70% w/w drug loading) and slow heating rates (0.5-1 ̊C/min). The 

slope of the line is the interaction parameter at that temperature. The drug-polymer interaction 

parameter (χ) at room temperature can also be calculated from the solubility parameter using 

Equation 1.15 (77, 78, 85, 88): 
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χdrug-polymer = (V0/RT) (δdrug - δpolymer)2…………….....Equation 1.15      

where V0 is representing the volume of the lattice site, δdrug and δpolymer are the solubility 

parameters of the API and the polymer respectively. In order to calculate the drug-polymer 

interaction parameter (χ) at any temperature, the interaction parameters determined from the 

previous two approaches (solubility parameter using Equation 1.15 and melting point 

depression using Equation 1.14) can be substituted in the simplified Equation 1.16 to generate 

a series of interaction parameters at different temperatures (77, 85). 

χdrug-polymer = A +(B/T) …………….....Equation 1.16      

where A and B are values of the temperature-independent term (entropic contribution) and the 

value of the temperature dependent term (enthalpic contribution), respectively. Plots ∆Gmix/RT 

versus volume fraction of the drug (ɸdrug) using the calculated interaction parameters at different 

temperatures can be used as an indication about drug-polymer miscibility as a function of drug 

volume fraction. Negative values of ∆Gmix/RT give an indication about drug-polymer miscibility 

while positive values indicate immiscibility of the binary system. This can be further extended to 

constructing drug-polymer phase diagram using the calculated interaction parameters at different 

temperatures and drug concentrations as illustrated in Figure 1.10.    

 

Figure 1.10: Typical phase diagram for binary drug-polymer blends as a function of temperature 

and composition; adapted from reference (90) 

The phase diagram can provide predictions about the stability of drug-polymer mixtures with 

changes in temperature and composition during processing and storage. The binodal curve 

represents the phase boundary. Outside it, the system exists as a single phase molecularly miscible 

system in all compositions. This boundary can be determined using Equations 1.13 and 1.16 and 

depends on the favourable mixing based on ∆Gmix (negative value). In this case, even if the mixing 
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is not achieved at ambient temperature, the system can be molecularly dispersed at elevated 

temperature and/or at lower drug loading due to the changes in the thermodynamics of the system 

(77, 78, 85, 90). On the other hand, the spinodal boundary is determined by setting the second 

derivative of ∆Gmix equal to zero as shown in Equation 1.17 (77, 78, 85, 90). 

(1/ ɸdrug) + (1/ ɸpolymer) +2 χdrug-polymer = 0 …………….....Equation 1.17     

The system below the spinodal boundary is unstable leading to phase separation without any 

significant energy barriers. Despite the thermodynamically unfavourable mixing below the 

spinodal curve, the system may be still kinetically stabilised ‘trapped’ by the reduced molecular 

mobility caused by the glassy nature of the polymer (77, 78, 85). The zone between the spinodal 

and binodal curves representing the metastability zone. In the metastable region, the system is 

predicted to form drug-rich and polymer-rich domains without drug recrystallisation (77, 78, 85). 

1.4 Thermodynamics of solid dispersions  

1.4.1 Physical stability of solid dispersions 

Despite the valuable advantages of solid dispersions for improving the solubility and/or 

dissolution properties of poorly soluble drugs over the last 40 years, only a few number of these 

preparations have been translated into marketed products (27, 91-93). The most important reason 

behind this is their physical instability which may lead to drug recrystallisation resulting in a 

reduction in the dissolution profiles and bioavailability (27, 91-93). In order to fully understand 

the physical stability of solid dispersions, it is important to explain the key factors that affect 

physical behaviour of these preparations including glass transition temperature, molecular 

mobility, phase separation of the dispersed drug and/or the components of the carrier.  

1.4.1.1 Glass transition (Tg)  

Glass transition (Tg) is a physical property characteristic of amorphous materials which can be 

defined as a range of temperature degrees over which the material converts from its solid ‘glassy’ 

state to its liquid ‘rubbery’ state and vice versa. Typically, single phase amorphous system has 

single glass transition temperature (24). Unlike melting which is first order phase transition (the 

derivative of change in the free energy ∆G with respect to temperature is not equal to zero), the 
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Tg is a second order phase transition in which the second derivative of change in the free energy 

∆G with respect to temperature is not equal to zero while the first derivative is equal to zero. 

Using DSC, the Tg is seen as a step reflecting a transition in the heat capacity (∆Cp) during the 

heating or cooling cycles.  Figure 1.11 explains the possible pathways through which a crystalline 

material exists in a liquid state above melting converts into a solid state with crystalline or glassy 

properties passing through crystallisation or glass transition events respectively. When the cooling 

rate is slow enough, crystallisation process occurs at a temperature corresponding to melting point 

(assuming no supercooling happens). The formation of crystallised material (bottom line of 

Figure 1.11) shows a dramatic reduction in the thermodynamic parameters of the system (free 

volume ‘the difference between the total volume and the volume occupied by the individual 

molecules of the system’, enthalpy and entropy). The reduction in the free volume is attributed to 

the high order of arrangement of the molecules in the crystal lattice. However, when the cooling 

rate is too rapid for the crystallisation to occur, the liquid enters the super-cooled liquid ‘rubbery’ 

state without any discontinuity in the aforementioned thermodynamic parameters. Further cooling 

the rubbery state will lead to the glass transition step in which there is a loss of the kinetic 

equilibrium and the material becomes immobile as it acquires the characteristics of glass solid 

with a decrease the molecular mobility in a discontinuous manner. The Tg is a kinetic process 

affected by the cooling rate and therefore lower Tg values are expected for slow cooling rates as 

illustrated in Figure 1.11 (94, 95). It should be mentioned that the average time scale of molecular 

motion of < 100 s and viscosity between 10-3 and 1012 Pa.s for the rubbery state while for the 

glassy state, the mobility is hugely reduced with an increase in the viscosity >  1012 Pa.s (95-97).  

 

Figure 1.11: Schematic representation of glass transition (Tg) and comparison between the 

behaviours of crystalline and glass forming systems; adapted from reference (94) 
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The Tg of amorphous solid dispersion mixtures can be estimated using different theoretical and 

empirical equations like Fox and Gordon-Taylor (G-T) equations as a function of mixture 

composition. Compared to G-T equation, Fox equation assumes that the components of the 

amorphous blend have the same density and does not include the changes in thermal expansivity 

of the Tg in its expression. The two equations for binary drug-polymer mixture can be described 

in Equations 1.18-1.20 (24, 98): 

Fox equation:  

1/Tg mix =(wdrug/Tg drug) + (wpolymer/Tg polymer) …………….....Equation 1.18     

G-T equation:  

Tg mix = (wdrug × Tg drug) + (Kwpolymer × Tg polymer)/( wdrug + Kwpolymer) ………...Equation 1.19     

where Tg mix is the predicted Tg of drug-polymer blend, wdrug is the weight fraction of the drug, Tg 

drug is the Tg of the drug, wpolymer is the weight fraction of the polymer, Tg polymer is the Tg of the 

polymer, and K is a constant derived from the true densities (ρdrug and ρpolymer) and the change in 

thermal expansivity of Tg (∆αdrug and ∆αpolymer) of the two components of the mixture (24, 98). 

K = (ρdrug × Δαpolymer)/(ρpolymer × Δαdrug) …………….....Equation 1.20    

It should be mentioned that G-T equation assumes ideal volume additivity of both constituents 

and no specific interaction between them ‘ideal mixing behaviour’(24). Experimentally, ideal 

mixing between the different components of solid dispersions is expected to give comparable 

results to the predicted results estimated using G-T equation. However, positive or negative 

deviations from the predicted Tg values reflects non-ideality of mixing. Positive deviation results 

from the interaction between the components of the mixture. On the other hand, the diffusion of 

the small molecular weight drug inside the polymer leading to a higher free volume than the 

anticipated one in G-T equation and/or the weaker drug-polymer interactions compared to the 

original drug-drug interactions causes the negative deviation (24, 99).  

1.4.1.2 Molecular mobility 

An essential parameter that governs the physical stability of any molecular level solid dispersion 

is the molecular mobility of the drug in the dispersion (97, 100). It was reported that the overall 

molecular mobility of molecularly dispersed drug is the result of different kinds of molecular 
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rearrangements including global mobility (α-relaxation), local mobility (β-relaxation) and 

secondary relaxations due to self-association through hydrogen bonding depending on the storage 

temperature and the Tg temperature of the system. α-relaxation has been thought as an important 

factor that determines the physical stability of molecularly dispersed drugs in solid dispersions 

(96).  

Molecular mobility for amorphous systems is usually expressed in terms of the relaxation time 

(τ) and it may be caused by several processes including enthalpic relaxation, volume relaxation, 

dielectric relaxation and or spin-lattice relaxation (100-102). Molecular mobility as the reciprocal 

of relaxation time can be determined using a variety of methods like MTDSC, dielectric relaxation 

spectroscopy, and solid-state NMR spectroscopy. Using MTDSC, the relaxation time can be 

estimated using some empirical equations like the empirical Kohlrausch-William-Watts, Adam-

Gibbs and Vogel-Tammann-Fulcher equations (103, 104).  

1.4.2 Factors affecting physical stability of solid dispersions 

Physical instability of molecular level amorphous solid dispersions is most commonly happened 

above rather than below the Tg. This second order phase transition is usually considered as a 

benchmark for monitoring the stability of these systems. As a general rule, amorphous dispersions 

stored at temperatures 50 C̊ below their Tg are mostly considered as physically stable with 

negligible crystallisation tendency (24). Accordingly, the effect of storage temperature relative to 

Tg is recognised as important parameter and its impacts are complex because it can control the 

physical stability in different pathways with variable outcomes. As an example, storing 

amorphous solid dispersions at low temperature can decrease the recrystallisation rate of 

molecularly dispersed drug due to the increased viscosity of the dispersing phase leading to 

reduction in the mobility. At the same time, this may support the formation of new nucleation 

sites leading to more crystal growth (105). Taking into consideration that storing the samples at 

lower temperatures reduces the thermodynamic solubility of the dispersed drug in the carrier (24). 

Thus, and depending on the observed growth, it can be concluded which pathway is the dominant; 

the diffusion or the thermodynamic and based on that the storing temperature may have a positive 

or negative impacts on the physical stability of the system under investigation (105). 

It was observed that the presence of other excipients can affect the magnitude of α-relaxation 

process significantly. Global mobility was found to be directly proportional to the extent of the 

plasticising activity of the inactive components of the formulation. Water is one of the frequently 
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included excipients in the formulation either intentionally as a component of the preparation or 

accidently due to the entrapped moisture during processing and/or storage. In addition, it has low 

Tg and strong plasticising activity, therefore, it is shown to play a critical role in increasing the 

global mobility of the system and enhancing drug crystallisation from its dispersion (106, 107). 

In other words, the increased hygroscopicity of the formulation due to moisture uptake leads to 

increase the chemical potential of the dispersed drug and increase the degree of supersaturation 

and the thermodynamic driving force of crystallisation (108-110). On the other hand, some 

polymers with antiplasticising activity and/or hydrogen bonding ability help to maintain the 

physical stability of the dispersion and inhibit the recrystallisation process (111, 112).   

For solid dispersions containing semicrystalline excipients, physical stability studies followed 

different approach compared to molecular level amorphous solid dispersions. For these 

heterogeneous systems, monitoring physical stability usually conducted by investigating 

parameters like the stability of crystalline relative to amorphous domains and the possibility of 

crystal thickening. In addition, the tendency of these complex mixtures to undergo phase 

separation of the molecularly dispersed drug in the amorphous fraction and its relationship with 

the percentage of drug loading and the effect of external factors like storage temperature and 

relative humidity on the whole system. These studies also provide information about the physical 

stability changes in the carrier like the increase in the crystalline fraction of the semicrystalline 

carrier at the expense of the amorphous domain which is responsible about the solubilisation of 

poorly water-soluble drugs on the molecular level (48, 113-117).  

1.4.3 Phase separation 

Physical instability of solid dispersions generally leads to phase separation of their individual 

components resulting in a partial or complete lack of the dissolution enhancement (3, 24). The 

concept of phase separation has been used to describe different cases related to solid dispersions. 

It has been used to indicate the conversion of the active pharmaceuticals from molecularly 

dispersed status to separated amorphous domains or crystalline fractions (3, 24). In this case, the 

phase separation is dependent on the inherent recrystallisation tendency of the drug, Tg of the 

system relative to storage temperature, viscosity of the dispersing phase, the presence or absence 

of interaction between the dissolved drug and the carrier, storage temperature and relative 

humidity (3, 24). In addition, phase separation sometimes used to describe the miscibility between 

immiscible/partially miscible polymeric blend as illustrated in Figure 1.12. These multiphasic 

matrices were recently demonstrated their superiority to solubilise, stabilise the drug as a 
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molecularly dispersed multicompartmental system with more resistance to mechanical stress 

caused by further formulation processing (73). Phase separation in both meanings is discussed in 

details in Chapter 4 as a formulation strategy for improving the solubility of poorly water soluble 

drugs.  

 

Figure 1.12: Schematic representation of intentionally phase separated drug loaded polymeric blend; 

adapted from reference (73) 

1.4.4 Approaches developed to improve physical stability of solid 

dispersions 

Several strategies have been adapted to reduce the molecular mobility of dispersed drugs to 

improve their physical stability in their dispersion. The use of polymeric carriers with higher Tg 

relative to storage temperature can help to restrict the mobility of molecularly solubilised drugs 

by antiplasticising effect. This can lead to an increase in the viscosity of the matrix and reduction 

in the diffusion of the drug to form aggregates as a preliminary step that leads to the formation of 

drug crystal lattice (118-120). This approach has been found to be unreliable as the inherent 

recrystallisation tendency of the drug plays a critical role in the devitrification process in addition 

to the difference between the Tg of the system and the temperature of storage (24, 121, 122). Thus, 

another mechanism that can be used to stabilise the solubilised drug by effective interaction with 

the carrier component(s) through ionic, hydrogen, dipole-dipole and ion-dipole interaction have 

been proven as a successful approach to improve the miscibility and stability of solid dispersions 

(111, 123, 124). It should be mentioned that the majority of polymers used in the fabrication of 

solid dispersions have structural sites to interact with drugs’ molecules in the dispersions. 
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However, there are some examples of stable solid dispersions in which there is no specific 

interactions were detected between the dispersed drug and the carrier (120, 125).  

Physical stability of the molecularly dispersed drug is a critical factor not only in the solid state 

during the storage period of the shelf life of the product which may be affected by factors like 

relative humidity and temperature, but also after dissolution in the aqueous dissolution medium 

at the site of dissolution and absorption. The enhanced apparent solubility and dissolution rates 

by solid dispersions generate thermodynamically metastable supersaturated solutions which may 

cause the precipitation of the drug in the more stable crystalline form. Recrystallisation of the 

drug at the site of absorption is most likely will reduce the concentration of the drug available for 

absorption abolishing the gained advantage of dissolution enhancement via the solid dispersion 

approach. Drug recrystallisation can happen either before the liberation of the drug from the 

matrix after contact with the dissolution medium or after achieving supersaturated concentrations 

under non-sink conditions (126-128). It should be mentioned that the recrystallisation of poorly 

water soluble drugs from their supersaturated solutions is dependent on the drug loading 

percentage and the type of the polymer included in the formulation (129).   

In order to physically stabilise the drug in its supersaturated solution, several approaches have 

been used to inhibit drug recrystallisation through the use of different excipients like polymers, 

surfactants and cyclodextrins. Drugs recrystallisation involves several stages: formation of 

supersaturation, nucleation (formation of stable nuclei) and crystal growth. The formation of 

stable nuclei is the result of diffusion of drug molecules in the supersaturated state and collide to 

each other to form stable and effective nucleating cluster to start the growth process. The diffusion 

rate is an important parameter that controls the nucleation process (130, 131). Materials used to 

maintain supersaturation concentrations functions by different mechanisms that can inhibit the 

nucleation and/or crystal growth including (130, 131): 

1. Changing the properties of the dissolution medium like saturated solubility and surface 

tension. 

2. Altering crystal-medium adsorption layer interface. 

3. Blocking crystal growth by selective adsorption to the interface of the crystal. 

4. Disrupting surface growth layers by adsorption between these layers. 

5. Adsorption into rough growth surfaces making them smooth and flat. 

6. Changing crystal face surface energy which may alter the level of solvation. 
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It was found that polymers like PVP, PEG 400 and HPMC act as growth inhibitors by different 

mechanisms like hydrogen bonding, adsorption to the crystal and accumulating at the bulk crystal 

interface thus providing resistance to the diffusion of the molecules. Also, HPMC was found to 

act as crystal habit modifier by having different crystal faces adsorption capacities. The extent of 

adsorption is affected by the hydrogen bonding functional groups exposed at each face of the 

growing crystal (130-132). Furthermore, some polymers can prevent recrystallisation of certain 

drugs by increasing their saturated solubility and reduction in the level of supersaturation (133). 

Surfactants also have been shown to decrease the tendency to recrystallisation by micelles 

solubilisation and alteration the surface tension at the bulk crystal interface. They can also modify 

the habit and the size distribution of recrystallised materials (133-135). Additionally, the presence 

of surfactants during the recrystallisation of drugs from supersaturated solutions was shown to be 

the preferentially target the process into certain polymorphic forms by inhibiting the polymorphic 

transformation from metastable to stable polymorphic forms of drugs (136). It was reported that 

polymorph IV of celecoxib was generated from precipitated drug suspension in the presence of 

HPMC and Polysorbate 80. The formation of this polymorphic form was explained by changing 

in bulk diffusivity of drug molecules (bulk viscosity), surface tension and supersaturation induced 

by the presence of the two excipients. This leads to formulation controlled crystallisation 

(concentration and ratio dependent) which is thought as very important subject in pharmaceutical 

industry research investigations (137). Cyclodextrins also shown to play a role in inhibiting 

nucleation by the formation of inclusion complexes resulting in an enhancement in their 

solubility. These group of inclusion compounds were also reported to retard nucleation by non-

complexation mechanisms similar to that of the aforementioned for polymers (131). It should be 

mentioned that the existence of cyclodextrins in drugs’ supersaturated solutions can play a 

significant role in polymorphic transformation and crystal habit modifications (138, 139). 

1.4.5 Other drawbacks of solid dispersions 

 Solid dispersions with their valuable advantages of improving the apparent solubility and 

dissolution rate of poorly water soluble drugs have some drawbacks reflected directly on the 

limited number of marketed products (27, 91-93). These problems are most importantly related 

to the physical stability of the dispersed drug in the carrier matrix during processing, storage and 

dissolution at the site of absorption (discussed in the previous section). Besides, impacts of 

thermal degradation, residual of solvents, downstream processing during and after solid 

dispersions formulation into their final dosage forms and ability to scale up to manufacturing 
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levels are also critical factors in the development of these preparations into marketed medicines 

(18, 24, 32). 

1.4.5.1 Impacts of thermal degradation  

Solid dispersions can be prepared by different methods including melting, solvent or melting-

solvent methods. Depending on the method of preparation, there are some problems related to 

processing that hinder these preparations from reaching the marketing stage as safe, effective and 

convenient products. Preparation by melting methods sometimes involves the use of high 

temperatures to thermally incorporate the drug in the carrier(s) which may cause the thermal 

degradation of one or all the constituents of the mixture resulting from high shear forces and high 

processing temperatures (139). It was found that partially hydrolysed PVA polymers are more 

susceptible to thermo-mechanical degradation compared to fully hydrolysed PVA grades when 

exposed to multiple extrusions at an elevated temperature above 200 ̊C. The degradation was 

attributed to the presence of the vinyl acetate group in their structures (140). In addition, it was 

reported that spray drying can cause the degradation of drugs during the rapid drying from their 

slurries affecting the quality of the final product (141). Furthermore, some excipients like PEG 

and Tween 80 were reported to be liable to random chain scission resulting in a reduction in the 

chain length (molecular weight) due to thermal oxidative degradation (142-145). For PEG 

polymers, members of low molecular weights are more susceptible to degradation compared to 

higher molecular grades (144). The chemical stability of the excipients during processing and 

storage is an important parameter to be investigated as it may affect the quality and safety of the 

product and determine the suitable processing and storing conditions required to keep the 

formulation within the design requirements. The details of PEG and Tween 80 degradation is 

studied in details in Chapter 6.   

1.4.5.2 Impacts of residual solvents  

Preparation of solid dispersion by solvent evaporation methods involves solubilisation of the 

components in an organic solvent followed by evaporation of the solvent using a variety of 

techniques. The problems facing this approach are related to the entrapment of certain quantity of 

the organic solvents in the dispersions which might affect their suitability for therapeutic 

applications. Also, since organic solvents have reduced Tg temperatures, their entrapment in solid 

dispersions may have a plasticising effect which may criticise the physical stability of molecularly 
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dispersed drugs in the final products during storage. Thus, efficient solvent removal is one of the 

essential requirements for designing high-quality products based on solid dispersion approach 

(32, 146, 147).   

1.4.5.3 Impact of downstream processing  

Solid dispersions prepared via different processing methods are mostly intermediate products that 

need further processing to reach the final product stage (148-150). According to pharmacopoeias, 

each dosage form should meet certain quality control and compendial requirements to be 

approved for marketing as a commercial medicine. As an example, tablets should have certain 

physical specifications including weight, weight variation, drug content uniformity, thickness, 

hardness, disintegration time and dissolution profile in addition to the general features like 

diameter, size, shape and colour (151). Adding to that the difficulty to give the dosage form its 

desired functionality like orally disintegrating and floating dosage forms using conventional 

fabrication methods of solid dispersions (148, 149, 151, 152). This makes the production of solid 

dispersions as final dosage forms in a single processing technique is challenging process and not 

easy to be achieved for the vast majority of formulations reported in the literature. The problems 

encountered during the attempts to produce commercially successful dosage forms like tablets 

and capsules for clinical applications based on solid dispersions involve many difficulties like 

milling, sifting, poor flow and mixing properties, poor compressibility characteristics, and 

stability problems (18). It was reported that milling can destabilise supersaturated amorphous 

solid dispersion produced by hot melt extrusion by increasing the molecular mobility leading to 

phase separation (153). Also,  it was found that compression can increase the extent of 

crystallisation of amorphous indomethacin due to increase in the molecular mobility caused by 

mechanical deformation. The increased tendency of crystallisation was caused by the significant 

elevation of the heat of crystallisation (∆Hc) and the reduced onset of crystallisation (154). It was 

also reported that the force of compression induced the phase separation of naproxen-PVP K25 

and itraconazole-soluplus amorphous solid dispersions by plastic deformation that causes 

weakening and/or disruption of intermolecular hydrogen bonding between drug and polymer 

(155, 156). However, other study showed that compression force at and above a critical value 

(250 MPa) significantly affects the intrinsic dissolution rate (IDR) (defined as drug release per 

accessible area mg/cm2) of amorphous indomethacin compacts leading to significant change in 

the corresponding IDR of the drug containing solid dispersion. The reduction in the IDR was 

attributed to the change in the surface available for dissolution (157). Interestingly, compression 

force and dwell time of compression were found to improve the miscibility of supersaturated 



Chapter 1   Introduction  

 

29  School of Pharmacy / University of East Anglia 

 

phase separated amorphous solid dispersions prepared by spray drying. The improved miscibility 

of the double Tg phase system by the application of pressure is explained by the reduction in the 

drug-rich domain size of about 30 nm to lower size caused by stressful deformation of glassy 

polymer and glassy solid dispersion causing remixing of the phases and the formation of the more 

homogenous system (158).  

1.5 Manufacturing of solid dispersions  

Solid dispersions are prepared by three major methods namely melting (fusion), solvent 

evaporation and melting solvent methods. The first two methods are the most commonly used 

techniques for the preparation of solid dispersions (32). In thermal processing techniques like hot 

melt extrusion and injection moulding, the active pharmaceuticals and other formulation 

excipients are melted/softened and mixed at a temperature above the lowest melting/Tg of all or 

some ingredients of the mixture. After melting/softening and blending at elevated temperature, 

the melt is then cooled to the solid state using a variety of cooling techniques (32). Solvent 

evaporation can be achieved by using different methods like freeze drying  (159), rotary 

evaporation (160), spray drying (161), electrospinning (162), electrospraying (163) and 

supercritical fluid (SCF) process (164). Solid dispersions prepared using solvent evaporation 

methods by dissolving the drug and the carrier in an organic solvent (or a mixture of solvents) 

followed by the evaporation of the solvent (32). The quality of the solid dispersion prepared by 

this method is highly affected by the solvent system used and its removal rate (165). Different 

organic solvents were used in this approach such as ethanol (166-168), chloroform (169), 

methanol/chloroform mixture (126) or ethanol/dichloromethane mixture (170). The major 

advantage of this method over thermal processing techniques is the avoidance of subjecting the 

drug to thermal degradation especially for drugs that are sensitive to heat (171). However, 

complete solvent removal from the final products and the environmental issues caused by the use 

of large quantities of organic solvents is often problematic (165). This study focused on the use 

of thermal based hot melt extrusion in conjunction of injection moulding (HME-IM) and fused 

deposition modelling (FDM) 3D printing methods for preparing solid dispersions of poorly water 

soluble drugs.  
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1.5.1 Hot melt extrusion (HME) 

HME is a highly recognised technique in the fabrication of solid dispersions based formulations 

with high scalability and diversity of pharmaceutical applications. This method which is primarily 

used in plastic, rubber and food industries was first introduced in the early 1930s and then applied 

in the pharmaceutical field at the beginning of 1970s (30, 32, 172). HME has many advantages 

compared to other solid dispersions processing methods. In addition to improving the 

bioavailability of poorly water-soluble drugs via molecularly dispersing poorly soluble drugs in 

hydrophilic carriers, HME functions as a safe and environmentally friendly process that can 

exclude any organic solvents during preparation (30). Also, HME is anhydrous method thus 

aqueous hydrolytic pathway can be eliminated which may affect the integrity of the active 

ingredients (173). Furthermore, using HME, it can be possible to overcome the compressibility 

problems of poorly compactable drugs because dosage forms of these drugs can be made in 

different shapes and sizes using additional geometry designing techniques (173, 174). It should 

be mentioned that dosage forms produced by this method show a higher degree of content 

uniformity for low dose drugs compared to other methods of pharmaceutical products formulation 

(175). Depending on the processing temperature and residence time, it can be possible to load 

higher percentages of drug contents in solid dispersions compared to other methods (173). HME 

combined with injection moulding acts as a continuous process with minimum processing steps 

and high efficiency which means that it is time-consuming because it excludes the required time 

for drying when solvents are involved during the formulation (176). Due to the flexibility of using 

a variety of excipients and mixing proportions, this technique can be used to produce dosage 

forms with controlled or immediate release, floating, fast dissolving formulations (tablets, 

capsules, films, pellets and implants). These formulations can be utilised to deliver a variety of 

drugs through different sites like oral, transmucosal, transdermal and implantation routes of 

administration (32, 173, 177). 

There are two types of HME processes based on the addition of solvents to the mixture before 

the extrusion process: wet and dry HME processes. Wet HME involves the addition of certain 

solvent before processing to improve the quality of the product due to the softening and 

plasticising advantages of the added solvent (178). This process is also used to minimise the heat 

employed during extrusion to avoid the degradation of the components of the formulation. The 

dry HME process is the most commonly used method without the incorporation of any solvent 

(green process) and the extrusion process is entirely achieved by the use of heat (179). 
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1.5.1.1 Types of extruders 

Hot-melt extrudates are generally produced by two types of machines namely screw extruders 

and ram extruders. The difference between these two kinds of equipment is that the former 

contains a screw rotating in a heated barrel while the latter has a ram or piston capable of 

generating high pressure to pump the extrudate into the die (179). The main disadvantage of ram 

extrusion is the limited melting capacity which results in a poor thermal uniformity in all portions 

of the extrudate. On the other hand, high shearing stress and uniform mixing can be achieved by 

using screw extruder. Screw extruders are composed of three portions including a part for 

transport and mixing of the fed materials, a mould for forming, and downstream auxiliary 

equipment for solidification, milling and collection of the finished products. These types of 

extruders have a feeding hopper, heating barrel with controlled temperature, rotating screw, die, 

and heating and cooling systems. Also, the equipment may be provided with other parts like mass 

flow feeder to control the feeding rate, analytical devices to investigate the properties of the 

extrudates, liquid and solid side stuffers, vacuum pumps, pelletizers, and others (179).     

There are two types of screw extruders: single and twin screw extruders depending on the number 

of screws contained within the barrel (Figure 1.13 A and B). The most commonly used is the 

single screw extruder in which single screw ‘with various dimensions depending on the extruder’ 

rotating within the barrel for the feeding, mixing, melting and pumping of the extrudates. Single 

screw extruders are either flood fed or starve fed and most commonly they are of the flood feed 

type in which the rate of output can be controlled by the hopper over the feed throat and the speed 

of screw rotation. Melting of the fed materials can be brought about by the energy of the heaters 

and the shear caused by the screw. At the end of the process, the extrudates are produced by 

pumping the melted mixture into the die (178).  
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Figure 1.13: Types of hot melt extruders; A and B are single and twin screw extruders; C and D are 

the co-rotating and the counter rotating types; adapted from reference (30) 

There are two types of twin extruders depending on the design of the screws contained within the 

extruder: co-rotating and counter-rotating twin extruders (Figure 1.13 C and D). The second one 

is used when very high stress is needed, but they have several drawbacks like the potential 

entrapment of air, excessive pressure generation and low maximum screw speed and output. On 

the contrast, the co-rotating twin extruders can produce higher output rates because the rotation 

of the screws is higher than that of the counter-rotating type. In addition, they exhibit good mixing 

and mass transport characteristics. Furthermore, the wearing of the barrel and the screws is found 

to be lower than that of the other type. Twin screw extruders are further classified into non-

intermeshing and fully intermeshing where the latter is the most commonly used type because it 

provides self-wiping function thus preventing stasis of the soft mass which may lead to 

degradation (179). Twin-screw extruders may offer some advantages over the single-screw type 

involving including easier materials feeding, better dispersing abilities, substances processed are 

less subjected to overheating and shorter processing time. However, this type may be considered 

as more complicated compared to single screw extruders and more expensive (180). 

The geometry of the screws is variable and dependent on the individual equipment as seen in 

Figure 1.14.  
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Figure 1.14: General design of extruder screw; adapted from reference (181) 

The length and diameter are usually correlated and expressed as L/D ratio. It is important to note 

that the residence time within the extruder is also different and depends on many parameters such 

as the L/D ratio, the type of the device, the design of the screw(s) and the method of operation 

(179). Screws are designed to contain three distinct sections to perform the functions inside the 

barrel. The first region is responsible for the bulk transfer of the materials from the hopper to the 

barrel, while the next section is concerned to compression, softening and melting of the mixture. 

The melting of the feedstock is resulted by the energy generated from the shearing of the rotating 

screw (mechanical shearing stress) and the heating systems in the equipment by conduction 

(thermal stress). The diameter of the barrel cavity in the compression region is smaller than that 

of the conveying section to increase the pressure and remove any entrapped air bubbles within 

the melt. Finally, the metering section is responsible about the uniform pumping of the extrudate 

into the die which is attached to the end of the equipment. The final shape of the extrudates is 

determined by the shape and design of the dies. It should be mentioned that the size of the 

extrudate is not remained constant after cooling. This is attributed to the swelling in the cross-

section of the product resulting from the recovery or relaxation of the individual polymer chains 

after the deformation caused by screw rotation. This phenomenon is called die swell, and it 

depends on the polymer viscoelastic features. The extrudates are then solidified by different 

methods like using air, N2, stainless steel rolls or conveyors, or water (179).  

The main controlling parameters that can affect the extrusion process are the barrel temperature, 

feeding rate, screw rotation speed and motor load and the generated pressure of the molten mass. 
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Barrel temperature is usually set based on the melting or glass transition of the material(s) to be 

extruded. Increasing the feeding rate and screw speed affect the load applied to the motor and the 

pressure generated inside the barrel (182). It was reported that the design of extruder screws might 

significantly influence the efficiency of the extrusion process and the properties of the processed 

materials like crystallinity and dissolution properties (180, 183, 184). The residence time inside 

the extruder is also an important factor that affects the extrusion process (5 seconds to 10 minutes), 

and it depends on the L/D ratio, type of the extruder, screw design and how is it operating (179).  

1.5.1.2 Requirements of successful processing  

In order to produce successful extrudates, the following requirements should be considered (179, 

183, 185): 

1. Substances to be extruded should possess high levels of purity and safety and have the ability 

to melt/soften easily and solidify rapidly after the completion of the process. 

2. The mixture to be extruded should have good flowing characteristics, and this can be achieved 

by ensuring that the angle of the hopper is greater than the angle of repose of the mixture. 

This should be achieved to prevent the erratic flow of the feedstock in the extruder and the 

use of the force-feeding device can be used to fulfil this purpose. 

3. Efficient feedstock transfer is an important factor to maintain the pressure at the compression 

and metering zones. Failure to achieve uniform feeding may cause the surge phenomenon in 

which cyclical changes in the output rate, head pressure, and the quality of the product. 

4. The melting region should be within the temperature range 15-60 ˚C above the melting 

temperature of the semicrystalline polymer or the glass transition temperature (Tg) of the 

amorphous polymer. 

5. In order to obtain an efficient fusion processing, polymers having low melt viscosities and 

high thermal conductivities should be employed. 

6. Using screws with different designs may improve the melting process and also help to 

facilitate the transfer of feedstock through the extruder. 

7. Care should be taken to ensure the melting of all the solid matter to avoid the blockage of the 

extruder cavity and the formation of surge phenomenon. 

8. Excessive processing conditions can result in chain scission, depolymerisation or thermal 

degradation of the polymer. 

HME as a process should be carried out under certain conditions, and the selection of the proper 

conditions is dependent on many parameters including (179, 186): 
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1. The chemical stability and physical properties of the drug and the carrier. 

2. The viscosity of the melt. 

3. The molecular weight of the polymer. 

4. The Tg temperature of the amorphous polymers or the melting temperature (Tm) if it is 

semicrystalline.  

1.5.1.3 Suitable APIs candidates for HME 

Drugs liable to be processed by HME method should possess thermal, chemical and physical 

stability during and after the extrusion process (179). HME is widely used as thermal processing 

method to produce solid dispersions for water poorly soluble BCS class II drugs for the purpose 

of improving their bioavailability through dissolution enhancement (187). In addition, improving 

the dissolution BCS class IV drugs through fabrication as solid dispersions with hydrophilic 

excipients can be considered as an approach that may help to enhance their bioavailability (188-

190). Because HME is solvent-free processing technique, it is considered as a very attractive 

approach for drugs exhibiting hydrolysis pathways during processing using solvent systems like 

water or hydroalcoholic mixtures. It should be mentioned that some extruder systems can be 

operated in an oxygen-free processing environment making the technology suitable for drug 

candidates exhibiting oxidation during preparation (179). Furthermore, HME may offer an 

advantage of overcoming the poor compressibility problem of some drugs by extruding 

formulation mixtures followed by improving the compressibility through solid dispersions or 

directly moulding them into their final dosage form geometry (191, 192).   

1.5.1.4 Functional excipients used in HME solid dispersions  

In addition to the active ingredients, the following components may be used in the formulation of 

solid dispersions using HME (83, 179): 

1. Carriers 

2. Release-modifying agents 

3. Plasticisers  

4. Antioxidants 

5. Miscellaneous excipients like surfactants and bulking agents, 
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Carriers  

In order to disperse drugs as molecular level solid dispersions using HME, a wide range of carriers 

having different physicochemical properties have been used as single or blend of two or more 

carrier components. The main classes of excipients used as carriers used in solid dispersion 

approach with examples are illustrated in Table 1.1 (165). 

Table 1.1: Chemical classes of carriers with examples used as vehicles for solid dispersions 

preparation by HME; adapted from reference (165) 

Carrier type Examples 

Polymers PVP, Eudragit, PVA, PEG, Zein 

Sugars Sucrose, dextrose, mannitol 

Acids Citric, succinic 

Miscellaneous Pentaerythritol, urea, urethane, hydroxyalkyl xanthins, cyclodextrins 

 

These carriers are different in their melting and/or glass transition temperatures (Tg), crystallinity 

or amorphousness, water solubility, molecular weight, melt viscosity, thermoplasticity, and 

stability during and after processing. The following general characteristics were suggested as the 

general properties the carrier should possess (24, 29, 193): 

1. Suitable aqueous solubility and rapid intrinsic dissolution properties if the immediate 

release is required. 

2. Compatible and significantly interacting with the drug with complete miscibility to form 

single phase solid dispersion system. 

3. Can increase the water solubility/ dissolution rate of the dispersed drug. 

4. Ability to solubilise and stabilise the drug both in the solid and liquid states.  

5. Chemically, physically and thermally stable. 

6. Unable to form stable complexes that can retard the dissolution of the drug when fast 

dissolution is required. 

7. The carrier should melt/soften at low temperature and solidify very quickly to maintain 

the drug dispersed as molecular dispersion.   

8. Non-toxic within the pharmaceutical use limits. 
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9. It does not have any pharmacological activity. 

Release-modifying agents 

The release mechanism of drugs from solid dispersions designed for immediate release (to achieve 

maximum absorption) could be either drug or carrier dominant process. When the dispersions 

come into contact with aqueous medium, the carrier is either dissolves or swells to form a gel 

layer. In this case, the fraction of the drug in the solid dispersion relative to the carrier, ability of 

the drug to diffuse through the carrier layer and the layer viscosity are important factors that 

determine the carrier release controlling ability. However, if the drug is insoluble or sparingly 

soluble in the carrier’s gel layer, it can be released directly into the dissolution medium, and its 

release is dependent on the properties of the drug itself like polymorphic form, particle size and 

inherent solubility. These two scenarios are often happening simultaneously in which the release 

is partly drug controlled and the other part is carrier dominant through the formed gel layer (27, 

32). It was reported that the mechanism of release of felodipine from hydrophilic polymers like 

PEG and PVP is affected by many factors like the particle size of the drug, proportion of the drug, 

and the properties of the polymer in the dispersion. Concerning drug loading, carrier controlled 

release mechanism by diffusion through the polymer layer at low drug loadings and drug 

controlled release mechanism at high drug contents are the expected mechanisms of drug release 

from the different formulations (68).  

Due to the advances in this technology and its flexibility to process a wide range of excipients 

with different formulation functionalities, a recent trend of using this approach for controlling the 

release of drugs in addition to enhancing their solubility/dissolution characteristics (27). 

Controlling the release of APIs dispersed in solid dispersions offers a number of potential 

advantages over traditional formulations like achieving uniform and extended therapeutic effect, 

reducing dosing frequency, improving the bioavailability, reducing dose strength, reducing 

adverse effects and improve patients’ adherence to medications (66). Most commonly this 

formulation strategy can be achieved by a using a carrier with water insoluble or slowly dissolving 

properties instead of hydrophilic fast-dissolving ones. Depending on the characteristics of the 

prepared controlled release solid dispersions, the release mechanisms could be either diffusion, 

erosion or swelling followed by diffusion (32, 66). Examples of these release controlling agents 

are EC, HPMC, HPMC-AS, PVAc, chitosan, methacrylic acid copolymers and PEO which are 

widely used polymers to control the release of drugs (3, 194, 195).  It was reported that 

domperidone buccal films prepared by hot melt extrusion using PEO N750 and HPMC E5 LV 
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were successfully sustaining the release of the drug resulting in a 93.62 ± 2.84% drug release and 

63.36 ± 2.12% of drug permeation after 6 hours (196).  

Plasticisers  

Plasticisers are low molecular weight substances that have the ability to increase the free volume 

between the polymeric chains resulting in an increase in the entropy and mobility of the polymer 

chains and hence lowering the glass transition temperature (Tg) of plasticised polymers compared 

to non-plasticised ones. The increase in the mobility and entropy makes the polymer chains more 

flexible and the dispersion more diffusible which enables the dispersed drug to diffuse in higher 

rates depending on the concentration of the plasticiser (3, 187). The intermolecular forces of the 

secondary valence between the plasticiser and the polymer are responsible for this change in the 

characteristics of plasticised polymer (197). Examples of plasticising agents used in the process 

include triacetin, triethyl citrate, glycerol monostearate, diethyl phthalate, low molecular weight 

PEG, and surfactants (such as Tween 80, vitamin E TPGS and sodium docusate) (184, 198-201).  

 

HME as a thermal processing technique is characterised by high shearing stress and therefore the 

presence of plasticiser in the formulation is reported to make the extrusion process more efficient 

and at relatively lower processing temperature (202).  This potential advantage has an impact on 

reducing the thermal degradation of drugs and other formulation ingredients when processed at 

high temperatures (180). It was reported that plasticisers are effective in reducing the melt 

viscosity of viscous polymers resulting in extrudable mixtures at suitable processing 

temperatures. (203). They are also efficient in reducing the tensile strength of formulations 

prepared by hot melt extrusion compared to non-plasticised mixtures (203-205). 

 

Antioxidants 

Antioxidants are agents that protect the dispersed drug and any other formulation ingredient(s) 

from the oxidative degradation pathways (144). These agents are classified as preventive and 

chain-breaking antioxidants. The preventive antioxidants or oxygen scavengers act by preventing 

the initiation of a free radical chain reaction. Examples of such type are citric acid, ascorbic acid 

and EDTA. On the other hand, chain-breaking antioxidants act by blocking the oxidation reaction 
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and preventing their propagation. There are many examples of these agents like butylated 

hydroxyanisole, butylated hydroxytoluene, and vitamin E TPGS (179). 

It was reported that polymers like PEG and PEO undergo thermal oxidative degradation when 

exposed to processing at elevated temperatures in the presence of oxygen (145). The degradation 

was attributed to random chain scission resulting from the free radical attack which leads to the 

formation of different degradation products with low molecular weights and melting points. These 

polymers are susceptible to thermal degradation due to a reduction in the activation energy 

required for hydrogen abstraction caused by the high strains exists at the chain folds of their 

lamellar structure (145). Because these polymers are semicrystalline, the degradation is shown to 

occur in the amorphous domains rather than the crystalline fractions which indicates that highly 

crystalline fractions are less susceptible to this chemical instability problem. This is attributed to 

the oxygen diffusion to the amorphous fraction is significantly higher compared to the highly 

ordered crystalline domains (144). Also, Tween 80 was reported to be degraded by autoxidation 

and hydrolysis mechanisms. Thermally activated autoxidation leads to the formation of free 

radicals that cause the degradation (142, 143, 206).  

Vitamin E and its derivatives were found to possess antioxidant activity that can help to prevent 

the oxidation of drugs in their formulation. Vitamin E TPGS antioxidant micelles were found to 

solubilise and stabilise the new cytotoxic quinolinone derivatives against oxidation compared to 

cyclodextrins and other excipients contained in the formulations (207). It was also reported that 

vitamin E succinate and vitamin E TPGS are acting as stabilisers for PEO dispersions prepared 

by HME and their antioxidant activity is dependent on their hydrophilic character (144). 

1.5.2 Injection moulding (IM) 

Injection moulding (IM) is a rapid and versatile technique that introduced firstly in plastic 

manufacturing to produce objects with different geometries. This process entails the injection of 

the molten mass under specified conditions of temperature and pressure into a die with specific 

dimensions followed by cooling to achieve solidification then the final product is released from 

the mould (208). This technology was firstly patented to be used for the fabrication of medicines 

for oral administration by embedding drug(s) in a thermoplastic resinous material(s) suitable for 

injection moulding by Ciba-Geigy Corporation in 1969 (209). IM is also employed in the 

pharmaceutical field for the manufacturing of cosmetics, dosage form packaging and other 

advanced biomedical devices like scaffolds and microneedles (210, 211).  
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The advantages of using IM technology in the manufacturing of pharmaceutical products include: 

1. It is entirely automated and continuous process that can be scaled up easily (208). 

2. Dosage forms and other pharmaceutical devices can be produced in very defined shapes and 

geometries depending on the dimensions of the die used with higher composition uniformity 

(208).  

3. It is highly efficient and time-saving technology because it needs only short time to produce 

the dosages in their final forms (208). 

4. It excludes the use of solvents during processing which in turn lowers the cost of production 

and preserve the stability of drugs susceptible to degradation when manufactured in the 

presence of solvents (208). 

5. Processing conditions like the heat and pressure provide the opportunity to kill the microbes 

and help in making the dosage form auto-sterilised by IM compared to the other preparation 

techniques (212). 

6. IM produces solid dispersions with improved dissolution rates of poorly soluble drugs which 

may lead to enhancement in the bioavailability. It should be mentioned that improving drugs’ 

bioavailability may have a great impact on reducing drugs’ side effects by reducing the dose 

strength required to achieve the therapeutic effect (179, 213).  

7.  Using IM, the closure characteristics of capsules cap and body design can be modified to 

overcome problems associated with capsule manufacturing. Furthermore, IM can be used 

when dipping moulding is not suitable such as the case of manufacturing of capsules shells 

from non-gelatinous based sources (208). As it is known that some patients have certain 

restrictions regarding the use of gelatin shells due to dietary or religious reasons. The 

replacement of gelatin by other substances may exclude their manufacturing by dipping 

method, and IM can be an alternative method to produce gelatin free capsule shells (214, 

215).  

8. IM was used as a potential approach for the production of a variety of pharmaceutical 

products like matrix tablets (216-219), implants (220, 221) and intravaginal inserts (222). 

1.5.2.1 Injection moulding processing 

IM machines used for plastic and pharmaceutical application are consisting of two parts: 

plasticating/injecting unit and clamping unit with different configurations like horizontal or 

vertical (Figure 1.15). The plasticating/injecting unit has a design similar to that of the extruder 

where mixtures can be fed, mixed and melted by the actions of the rotating screw(s) and the 

heating systems present in the barrel of the system. The terminal portion of the IM machine is the 
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die which is generally composed of two halves that joined to form a 3D space that represents the 

final shape and size of the product. Moulds with many cavities can also be used to produce more 

than one unit in the same cycle. One of the two pieces of the mould is stationary, and the other is 

mobile to be easily coupled to form the closed die or separate to form the opened mould. The 

function of the clamping unit is to maintain the mould closed during the injection process. To 

achieve this purpose, the clamping force should be more than the injection force to prevent the 

opening of the mould during the injection process. After injection of the molten mixture, the 

mould is allowed to cool by the cooling system equipped with the device until the complete 

solidification of the matrix. The solidified product is then released by opening the die and ejected 

by pins present in the mobile half of the mould. Usually, IM process is a continuous process in 

which melting, injection, moulding, cooling and ejection of the final product are done in the same 

equipment. However, sometimes separated equipment can be used to achieve this purpose like 

the use of the extruder as the plasticating unit and then the matrix should be maintained at suitable 

conditions of temperature and transferred to another device where the injection process is to be 

completed (208). 

 

Figure 1.15: Injection moulding (IM) machine, adapted from reference (208) 
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1.5.2.2 Scale-up of solid dispersions to manufacturing level 

Despite the enormous number of research conducted in the field of solid dispersions for improving 

the dissolution properties of poorly water soluble drugs especially BCS class II drugs, only very 

little number of pharmaceutical products were commercialised as approved medicines (32, 177). 

The limited commercialisation of these preparations is partly attributed to problems in scaling up 

into marketed products. These problems may be related to the physical instability of the 

molecularly dispersed drug in the system, thermal degradation, solvent residuals and changes 

during downstream processing. Also, the fabrication technologies may also play a major role in 

the commercialisation process. Examples of products that have been commercialised using hot 

melt extrusion and its advanced version Meltrex™ include Cesamet® (nabilone -PVP), Rezulin® 

(troglitazone-HPMC), Kaletra® (Meltrex™) (lopinavir - ritonavir- PVPVA) tablets. This is an 

indication of scalability of this processing technique compared to other solvent evaporation 

methods such as electrospinning (32). 

1.5.3 Fused deposition modelling (FDM) 3D printing as a new method for 

fabricating solid dispersions   

The process of forming objects in 3D generally falls into one of three major categories; forming, 

subtractive and additive manufacturing. The first class involves reshaping the object into different 

geometry without subtraction or addition like vacuum moulding. Subtractive manufacturing is 

another class in which the unwanted parts of the objects can be removed using certain cutting tool 

which is one of the techniques used in 3D object production. 3D printing is an example of the 

additive manufacturing process in which rapid synthesis of precisely modelled objects can be 

achieved with the assistance of computer-based designs. 3D printing as advanced and rapidly 

growing technology can be performed using a variety of technologies, operation principles and 

materials as illustrated in Table 1.2 (223).   
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Table 1.2: Summary of 3D printing techniques, their operation principles and materials used in the 

fabrication of objects, adapted from reference (223) 

3D printing technology Principle of printing materials used 

Stereolithography apparatus (SLA) Optical polymer resin 

Digital light projection (DLP) Optical polymer resin 

Multijet /poly jet  Optical polymer resin 

Continuous liquid interface production (CLIP) Optical polymer resin 

Selective laser sintering (SLS) Optical polymer powder 

Selective heat sintering (SHS) chemical/ mechanical polymer powder 

Binder jetting chemical/ mechanical polymer powder 

Fused deposition modelling (FDM) Thermal polymer filament 

Laminated object manufacturing (LOM) Thermal polymer films 

 

Fused deposition modelling (FDM) or sometimes called fused filament fabrication (FFF) 3D 

printing was originally introduced during the 1980s as a branch of the additive manufacturing 

(AM) technology. FDM 3D printing is a thermal based 3D printing technique and has recently 

attracted the interest of researchers in many fields including pharmaceutical formulations design 

(224-226), food technology (227), and tissue engineering (228).  

1.5.3.1 FDM 3D printing process 

FDM 3D printing technology is an extension to the well-known hot melt extrusion (HME) or 

injection moulding (IM) techniques with the exception that the mould is not needed to get objects 

with specific and precise geometry (223, 229). The key element of FDM 3D printing is the 

extrusion process, which allows the thermally softened material strips to be deposited in a ‘writing’ 

mode. It principally works by converting a pre-designed software digital file coding the 3D object 

into a real object by adding a consecutive series of layers of molten or semi-liquid modelling 

material. Pre-made filaments with a specific diameter are needed for feeding into the printer. The 

modelling material in the printing state is pushed through a temperature-controlled 3D printing 

nozzle having a certain diameter at a pre-adjusted speed into a temperature controlled building 
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platform (Figure 1.16). Depending on the dimensions of the object, the printer nozzle moves in 

the X-Y plane in a particular pattern (determined by the shape of the object) creating the first layer. 

Successive layers are printed by moving either the nozzle or the platform through the Z plane 

with a distance equivalent to the layer thickness. The temperature of the platform is usually less 

than that of the extrusion head allowing the printed material to solidify between each layer. It 

should be mentioned that FDM printing can be performed using one or more printing heads 

depending on the design of the printer (223, 229).  

 

Figure 1.16: An illustration explains fused deposition modelling (FDM) 3D printing technology; 

adapted from reference (223) 

1.5.3.2 Pharmaceutical applications of FDM 3D printing technology  

An encouraging trend of using 3D printing in pharmaceutical manufacturing has been established 

by the approval of Spritam®, which is the first FDA-approved 3D printed oral dosage form. This 

first 3D printed commercial drug product used ZipDose® technology, which is a wet power 

deposition 3D printing method. There is a broad range of 3D printing technologies that operate 

via thermal or solvent evaporation mechanisms. Also, because FDM 3D printing is an advanced 

modification of HME and IM, it can be expected that the advantages mentioned for these two 



Chapter 1   Introduction  

 

45  School of Pharmacy / University of East Anglia 

 

techniques may apply to FDM 3D printing. The following advantages or applications can be 

achieved through the use of FDM 3D printing:    

1. Fabricating medicines as combination drug therapies for treating patients with diseases 

require multiple actives such as complex cardiovascular treatment regimens or for 

patients suffering from multiple diseases at the same time (230).    

2. Producing patients’ personalised medicines according to patients’ needs to improve the 

quality of treatment and consequently lead to higher percentages of patients’ adherence 

to medications (230). 

3. Using this technology with the advantages of flexibility in computer-aided design and the 

invention of multiple head 3D printers, it is possible to design products with different 

geometries and configurations. These products can be used to control the dissolution 

profiles of the incorporated drug(s) according to the desired effect (224). 

4. Reducing the cost of production by eliminating the unnecessary resources. This can be 

achieved by saving the cost of the quantities of the actives and the excipients over the 

need of the patients (231).    

5. This technology is fast for producing items such as prosthetics and implants compared to 

conventional methods which require milling, forging and long delivery time (232). 

6. It is very flexible in producing dosage forms and drug delivery systems with a wide 

variety of applications and administration sites like oral fast disintegrating, floating, 

colon-targeted, multiple phasic and implantable systems (233). 

7. Improving the solubility/dissolution of poorly water soluble drugs (especially BCS class 

II) via solid dispersion approach which leads to improved bioavailability of these drugs 

(233).  

Currently, FDM 3D printing is facing some limitations in the pharmaceutical field to develop 

more personalised medications. The suitability of pharmaceutically approved excipients for FDM 

3D printing purposes is one of the most important challenges. This is because nowadays 

commercially available filaments such as ABS, PVA, PLA and PCL filaments are either not 

suitable for pharmaceutical use or not flexible to fit with the broad field of FDM 3D printing 

application (233). In addition, thermal degradation may happen due to the use of high processing 

temperature required for FDM 3D printing which might cause the loss of the therapeutic activity 

of the APIs and the generation of the degradation products with the possibility of their harmful 

effects (230). Furthermore, the low and incomplete drug loading efficiency when drug loading 

performed by soaking of commercially available filaments (PVA) in saturated organic solutions 

of drugs  (226).  
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1.6 Drug delivery through peroral routes  

There are many different routes for drug administration to achieve the intended pharmacological 

activity. The most commonly used is the peroral route where the dosage form is administered 

through the oral cavity, and the drug is absorbed through the GI tract including the mouth cavity 

(234). This route offers a number of advantages compared to the other routes including its 

suitability for self-administration of drugs. Also, oral dosage forms do not need to be sterilised, 

and relatively larger amounts of drugs can be administered through the GI tract (9).  

The factors that affect drug absorption through the GI tract are varied according to the different 

regions of this system. For example, drugs absorbed from the intestine may be affected by the 

gastric emptying time, presence of food and the influence of gastric secretions. However, some 

parts of the GI tract like the mouth cavity may offer interesting opportunities to overcome certain 

obstacles encountered when drugs are passing through the other parts of GI tract like the stomach 

and small intestine. These drawbacks may be related to the failure to achieve the effective plasma 

concentration of medication, drug destruction by the enzymatic attack and extensive first-pass 

metabolism in the liver after absorption. These reasons motivate researchers to investigate the 

possibility of delivering drugs via the mouth cavity. The delivery of APIs through the mouth 

cavity can be divided into three types including sublingual, buccal and local (235). Sublingual 

drug delivery in which drugs are delivered to the systemic circulation through the mucosal 

membranes lining of the ventral surface of the tongue and the floor of the mouth. On the other 

hand, drugs can also be delivered systemically through the buccal mucosa lining the cheeks and 

the area between the gums and upper and lower lips. Periodontal, gingival and odontal drug 

delivery systems are used for local treatment of diseases of the oral cavity, main aphthous ulcers, 

bacterial and fungal infections and periodontal conditions (220). 

1.6.1 Buccal drug delivery 

1.6.1.1 Physiology of oral cavity 

The oral cavity is completely covered by membranes composed of relatively smooth mucus 

containing large number of small glands. It consists of the epithelium, basal lamina (links the 

epithelium to connective tissue), lamina propria (connective tissue) and submucosa (which 
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contains loose glandular or fatty connective tissue and main nerves and blood vessels) as 

illustrated in Figure 1.17 (236, 237): 

The epithelium is multilayered lining with various degrees of differentiation, and thus it differs 

from that of the GI which is simple and composed of a single layer of cells, (238). The outermost 

layer of the oral mucosa is composed of stratified squamous epithelium which has a mitotically 

active basal cell layer similar the stratified squamous epithelia present in the rest of the body. The 

differentiation is advancing as the layers become closer to the surface where cells are shed from 

the epithelium surface (239). It should be mentioned that most rodent models have keratinised 

outer layer while in humans, a non-keratinised buccal epithelium, much like other larger mammals 

including dog, pig and monkey (237). 

The thickness of the epithelium of the buccal mucosa is about 40-50 cell layer thick (500-800 

µm) while that of the sublingual region is somewhat thinner. The size of the epithelial cells is 

increased and the cells become flattened as they transfer from the basal layers to the surface of 

the epithelium. Also, the buccal epithelium has a turnover time estimated about 5-6 days. The 

composition of oral epithelium is different according to the various sites in the oral cavity. The 

epithelium of the gingiva and hard palate are keratinised and they are similar to that of the 

epidermis because these regions are more likely subjected to mechanical stress. However, a non-

keratinised epithelium is found in the soft palate, sublingual and buccal regions (240). 

 

Figure 1.17: Cross-section of the mucosa of the buccal cavity; adapted from reference (237) 
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Keratinised tissue is characterised by being robust, dehydrated and capable of resisting chemical 

damage and it covers a surface area of about 50% of the oral cavity. On the other hand, non-

keratinised tissue has higher flexibility, and it occupies approximately 30% of the total surface 

area. It should be mentioned that 60 to 75% of adults have sebaceous glands in their oral mucosa 

of the buccal mucosa and upper lip and they appear as pale yellow spots. In addition, small 

salivary glands openings can be seen in many areas. Concerning blood circulation, the oral 

mucosa has more blood vessels compared to the skin. The majority of the venous blood of the 

oral mucosa return circulates to the internal jugular vein. The lamina propria also contains 

lymphatic capillaries appear as blind cavities in the papillae (236).    

Concerning the biochemical composition, the oral mucosa is characterised by the presence of 

large quantities of a protein in the cells of all layers in both keratinised and non-keratinised types 

of epithelia. This protein is termed keratin, and it has a relative molecular mass ranging from 

40,000 to 70,000 g/mole. The lower molecular weight keratin is present in the non-keratinised 

cells mucosa. However, the higher keratins are predominantly present in the mucosa of the 

keratinised cells. It should be mentioned that keratinisation is a relative process, and the 

description noted above represents the extremes cases of keratinisation. It has been suggested that 

the water permeability of oral epithelium is related to its lipid content (241). The buccal mucosa 

is more permeable compared to other parts of oral cavity such as the gingiva and palate because 

it contains fewer quantities of acyl ceramides and ceramides. Epithelial cells are surrounded by 

material composed of carbohydrate-protein complexes. This intercellular ground substance is 

thought to be responsible for cells adhesion and serving as a lubricant to facilitate the movement 

of the cells relative to each other (241). The oral epithelium also contains some intercellular 

junctions such as gap junctions, tight junctions, and desmosomes and/or hemidesmosomes. The 

membranes of adjacent epithelial cell are separated by gap junctions of approximately 2-5 nm. 

These gaps are thought to be continuous which allow the passage of compounds having a 

molecular mass of several thousand daltons (240). 

Mucus 

Mucus is a gel-like complex aqueous mixture that covers the entire surface of the oral cavity. The 

function of this layer is providing protection to the underlying epithelial cells from the various 

environmental conditions and the effect of enzymes and other chemical substances. It is a viscous 

and elastic hydrogel composed mainly of water ~ 95%, 0.5-5% water-insoluble glycoproteins, 

together with small quantities of other substances like proteins, lipids, enzymes, electrolytes, 
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nucleic acid, sloughed epithelial cells and bacteria (242, 243). The constituents of mucus may 

differ depending on the site of secretion, the intended protective and mechanical function and the 

presence of illnesses (244).  

The major component of mucus is mucin which has two forms: soluble secretory mucin and 

membrane-bound mucin (245). The former is responsible for the formation of the gel-like 

structure of the mucus due to its higher molecular weight and its ability to form intermolecular 

linkages through the disulfide bridges. The membrane-bound mucin does not have the ability to 

form the intermolecular disulfide linkages, but it has a hydrophobic portion that binds the 

molecule to the plasma membrane of the epithelial cells (246-248). Mucin is composed of 

oligosaccharides (70-80% of their total weight) which are linked via O-glycosidic linkages to a 

peptide core which constitutes 10-30% of the total weight of the mucin (242). The 

oligosaccharides are varying in their length (2-15 sugar units) and they have a branched structure 

(249). In general, mucins differ according to their molecular size, the composition of their sugar 

moiety, sequence and the length of their chains (250, 251). Mucins isolated from the same glands 

are not identical, and they do not have the same molecular size (252). The protein core of mucins 

composed of high quantities amino acids such as serine, threonine, alanine, glycine, proline and 

low levels of aromatic amino acids (253). The most common monosaccharides attached to the 

protein core are N-acetylgalactosamine, N-acetylglucosamine, galactose, fucose and sialic acid  

(250). The net negative charge of the oligosaccharides and the entire mucins are due to the 

presence of sialic acid and other sulphate residues (242).  

Several studies demonstrated that mucous layer might act as a membrane that limits the absorption 

of drugs through the mucosa. On the contrary, this layer may provide an excellent mean for 

sustained or prolonged drug delivery by designing mucoadhesive drug delivery systems (243). 

The factors that affect the diffusion coefficient of the molecules through the mucous layer include 

the relative size of the drug molecule, the effective pore size of the of the mucus gel formed by 

the association of mucin macromolecules and any interaction between the drug and the 

components of the mucous membrane. As the molecule size of the drug increased the diffusion 

coefficient is decreased i.e. there is an inverse proportion between the molecular weight of the 

drug and the diffusion through the mucous membrane. The diffusion of small and uncharged 

molecules through the mucous layer seems not to be considerably affected by the mucous 

membrane compared to larger or charged (cationic) molecules. On the other hand, as the mesh 

size of the mucous network increase, the diffusivity of the drug is also increased (254). 

Furthermore, any interaction between the drug and the components of the mucous layer can 

reduce or prohibit the penetration of the drug through the mucous membrane (255-257). 
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Saliva 

Salivary fluid is excreted into the human mouth cavity (1-2 litres/ day) as a continuous and low 

basal secretion rate of 0.5 mL/min. Higher rates of secretions of more than 7 mL/min increased 

rapidly by the thought, smell and/or taste of food. The parasympathetic system is responsible for 

the control of salivary secretion. Saliva is characterised by being viscous, opalescent, colourless 

and hypotonic compared to plasma. The specific gravity of the salivary fluid is about 1.003, and 

its pH varies between 7.4 - 6.2 with lower pH at higher secretion rates. The salivary fluid is a 

mixture of water, proteins, mucus, mineral salts and amylase (236). Saliva also contains ions such 

as Na+, K+, Cl- and HCO3-. Na+ and Cl- are reabsorbed in the ducts of the salivary glands while 

K+ and HCO3- are secreted to control the electrolyte balance depending upon the rate of saliva 

secretion (236). Salivary fluid also contains enzymes such as α-amylase and ptyalin which can 

hydrolyze polysaccharides such as glycogen and starch to small molecules. Also, different 

esterases, mainly carboxylesterases also exist in the salivary fluid, and these may hydrolyse ester 

prodrugs or APIs containing susceptible ester groups (236, 258). 

1.6.2 Drug absorption through buccal route 

The absorption of APIs across the buccal mucosa involved two pathways: 1) intracellular (through 

the cells) and 2) intercellular or paracellular (between the cells). Both hydrophilic and lipophilic 

drug molecules can penetrate the buccal mucosa through these paths. The intracellular pathway 

offers a greater surface area for diffusion, but drugs passing by this mechanism may suffer from 

a significant diffusional resistance when they cross the aqueous and lipid compartments of the 

buccal epithelial cells. The mechanism by which water soluble compounds diffuse transcellularly 

involves the penetration of these molecules through the aqueous pores of the cell membrane. This 

is followed by the diffusion via the cytoplasm, and the process continued from cell to another 

across the epithelium (259). In addition, specialised transport mechanisms also participate in the 

absorption of drugs through the intracellular pathway (260-262). Lipophilic drugs can traverse by 

this pathway by partitioning through the lipid bi-layer of the cell envelope of the epithelial cells 

(259). On the other hand, drugs can also penetrate the buccal mucosa through the longer and 

tortuous pathway between the cells (intercellularly). In order to pass by this mechanism, the drug 

should have a certain affinity for and diffusivity in the intercellular fluid (240). Despite that this 

route offers a smaller surface area of diffusion compared to the intracellular one, this pathway 

appears as the most common route of penetration for most pharmacologically active compounds 
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(263). Several studies showed the uppermost 25-30% layer of the buccal epithelium is the limiting 

membrane for the absorption of many compounds like horseradish peroxidase (264), lanthanum 

(265), thyrotropin-releasing hormone (TRH) (266) and salicylic acid (267). 

1.6.3 Buccal formulation design  

Buccal drug delivery offers a number of valuable features such as the large surface area available 

for drug absorption (approximately 100 cm2) and providing a useful alternative to the intestinal 

route for drug absorption in situations where the GI route is unfeasible. In addition, delivering 

drugs to the systemic circulation is expected to bypass the hepatic metabolism that affects the 

plasma concentration of drugs susceptible to liver metabolism. Due to the relative permeability 

and rich in blood supply of the buccal mucosa, it serves as an absorption site that can promote 

rapid and efficient delivery of drugs to the systemic circulation. Also, drugs administered through 

the buccal mucosa are usually avoid the enzymatic degradation that they might subject to during 

their passage through the rest of the GI tract. This is an important issue for the delivery of proteins 

and peptides to the systemic circulation. It should be mentioned that the potential of irritation and 

irreversible damage to the mucosal lining and the buccal mucosa is not a problem because of the 

rapid recovery of the buccal mucosa after stress or damage. It was also reported that buccal route  

of adminstration is more acceptable to patients compared to other non-oral routes of 

administration such as intravenous and intramuscular injections because buccal formulations are 

non-invasive and cost effective. It should be noted that this route offers easy withdrawal or 

termination of medication by the patient which is an important issue in the case of emergencies 

like hypersensitivity to the drug or excipients contained within the formulation (235, 243, 259). 

Due to their smaller size and reduced thickness, buccal films are reported to have an improved 

patients’ compliance compared to tablets (268),  and lozenges (269) 

On the other hand, only potent drugs with poor absorption characteristics are suitable candidates 

for this route of drug delivery due to the limitations of dosage form size, residence time and the 

permeation through the buccal mucosa. Drugs with an effective plasma concentration within or 

less than ng/mL are considered as ideal candidates for buccal drug delivery. In addition, peptides 

and proteins may be subjected to the metabolic activity of the enzymes present in the oral cavity. 

This factor affecting these types of drugs to a lesser extent compared to the metabolic enzymatic 

activity in the GI tract. The mucus and salivary clearance can also decrease the retention time of 

drugs, and this may affect their absorption through the buccal mucosa. It should be mentioned 

that the mucus layer may act as a physical limiting membrane for the diffusion of APIs via the 
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buccal mucosa. Also, mucus may inhibit the penetration of drugs through the mucosa by binding 

with the drug (270). 

Buccal dosage forms should possess certain general requirements to be suitable for the delivery 

of drugs through the buccal mucosa. These formulations should have specific adhesive 

characteristics to maintain the system in contact with the buccal mucosa but not so adhesive as it 

may cause damage to the underlying tissue upon the removal of the system. Also, the components 

of these products should be biocompatible, non-toxic, non-irritating to the buccal mucosa, not 

cause excessive salivary secretion, palatable and not bitter tasting. In addition, they should be 

convenient when applied and inconspicuous after application on the buccal mucosa. Furthermore, 

their surface should be smooth and not rough. It should be mentioned that unidirectional release 

buccal systems are more preferable to achieve buccal absorption and prevent swallowing of the 

drug to the GI tract (234, 271). These dosage forms are either used for treating local conditions 

within the buccal cavity or to deliver the pharmacologically active ingredients to the systemic 

circulation.  Recently, many researchers have designed dosage forms that can deliver drugs 

through the buccal mucosa to overcome some problems related to their delivery by other routes 

or to get benefits from the advantages of this site. The most common dosage forms include matrix 

tablets, patches, lipophilic gels, and transfersomes (272). 

The size and the shape of the buccal drug delivery systems are different according to the type of 

the dosage form. The buccal tablet may have a size range 5-8 mm in diameter, whereas buccal 

patches with flexible characteristics may have a surface area in the range 10-15 cm2. It was 

reported that patients are more accepting buccal patches with an average size 1-3 cm2 compared 

to buccal tablets. Buccal drug delivery systems are also variable with respect to their shapes, and 

the ellipsoid shaped systems seem to be more preferable (243). Because of the size limitations of 

buccal patches, only drugs with daily dosage 25 mg or less are suitable candidates for this route 

of administration (239).  Buccal dosage forms should have a thickness not exceeds few 

millimetres and the maximum application time is expected to be within the time limit of 4-6 hours 

because food and/or liquid intake may restrict their application for longer periods (243, 273). 

Buccal dosage forms can be classified according to their design into (274): 

1) Reservoir systems: In which the drug is enveloped by a polymeric membrane that controls 

the rate of release. When the polymeric membrane is the rate limiting membrane, and there 

is an access of the drug, this system provides a constant release profile. 
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2) Matrix systems: In this system, there is a uniform distribution of the drug within the 

polymer. The release rate and profile are controlled by many factors including solubility of 

the polymer, polymer diffusivity, the thickness of the polymer diffusional path. In addition, 

the drug’s aqueous solubility, partition coefficient and aqueous diffusivity are also 

important factors in controlling the release profiles. Furthermore, the thickness of the 

hydrodynamic diffusion layer, the amount of the drug loaded in the system and the surface 

area of the dosage form play a major role in the release pattern and rate of the incorporated 

drug. 

1.6.3.1 Matrix tablets 

The matrix tablets have a monolithic and a two-layered matrix structure that can be used for local 

or systemic purposes. The design of the simplest model of these tablets is a mixture of the active 

drug and a swelling polymer with sustained release and mucoadhesive features to liberate the drug 

in a bidirectional mechanism. This system can be modified by certain methods to obtain the 

desired release characteristics like for example the outer or all sides may be coated with water 

impermeable material to get a unidirectional release. Furthermore, the drug may be loaded in a 

release rate controlling layer that controls the drug release towards the buccal mucosa while the 

water impermeable layer ensures that the release is preceding to the direction of mucosa only.  

Matrix tablets are used for the delivery of different drugs such as naloxone HCl, propranolol, 

timolol, metronidazole, metoclopramide, morphine sulphate, nitroglycerin and codeine. This type 

of dosage forms is also used for the delivery of peptides, such as insulin, calcitonin and glucagon-

like peptide (272, 275-277). 

1.6.3.2 Buccal patches  

Recently, several research approaches are focused on the formulation of buccal patches due to 

their patients’ higher acceptability and compliance compared to buccal tablets due to their higher 

flexibility and the reduced thickness which make them more comfortable compared to buccal 

adhesive tablets. Buccal patches can be designed as multi-layered systems that composed of an 

outer impermeable layer and an underlying layer containing the drug substance in addition to 

other excipients. The drug containing layer has adhesive properties, and through this layer, the 

release of the drug to the mucosa in a unidirectional way is happened (272). This type of dosage 
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forms used for the delivery of many drugs such as diclofenac, thyrotropin-releasing hormone, 

octreotide, oxytocin, buserelin, calcitonin and leuenkephalin (278, 279).    

1.6.4 Mucoadhesive drug delivery systems 

The term ‘bioadhesion’ refers to the adherence of synthetic or natural macromolecules to 

biological tissues. Mucoadhesion represents the attachment of various polymeric macromolecules 

to the mucous membrane lining the mucosal epithelium (280). It was noticed that the attachment 

of the gut bacteria to the GI mucosa represents a natural example of mucoadhesion through the 

linkage between the proteins on the surface of the bacterial cells and the mucus membrane lining 

the GI mucosa (280, 281). The earlier attempts to use the bioadhesive drug delivery systems dated 

back to 1947 when researchers tried to deliver penicillin through the oral mucosa using tragacanth 

gum and dental adhesive powders (282). This approach became more interesting for researchers 

in the field of controlled-release drug delivery in the early 1980s (283). After that, many 

researchers are focused on the investigation of various biopolymers with bioadhesive 

characteristics for the development of many products for different therapeutic purposes. 

Bioadhesive polymers can generally be classified into two types: specific (like fimbrin and 

lectins) and non-specific (such as polyacrylic acid and cyanoacrylates) bioadhesive polymers. The 

difference between these two groups is related to their ability to bind to the biological membranes 

where the former have the potential to form a sort of attachment to specific chemical structure 

while the latter have the ability to adhere to both the surface membrane and the mucus layer (284).  

Mucoadhesive systems are dosage forms that contain one or more mucoadhesive polymers that 

act as an essential part of their composition. They have the ability to adhere to the mucus layer by 

means of mucoadhesion, and they are useful for the targeted delivery of drugs where the drug 

retained at the site of absorption for extended periods (285). These systems were used to achieve 

sustained release purposes of medicines brought by the prolonged residence time on the ocular 

(286), nasal (287), vaginal (288) and buccal (289) mucosal membranes. More recently, 

bioadhesive drug delivery systems have gained a great interest for the delivery of peptides and 

proteins because the adhesive properties resulted from the use of bioadhesive polymers can 

provide an additional protection mechanism to the therapeutic drugs against enzymatic attack that 

may occur between the dosage form and mucosa (290, 291). Different kinds of forces are involved 

in binding the polymer with the biological tissue to promote bioadhesion which may include 

covalent (cyanoacrylate), hydrogen (carbopol, polycarbophil and acrylates) and weak 

electrostatic bonding (chitosan). Bioadhesion involves covalent bonding seems to be suitable if 
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the polymeric material is non-toxic. Several studies showed that most bioadhesive polymers are 

capable of forming weak polar or electrostatic interactions. To maintain the drug in contact with 

the biological tissue for the predetermined time period, there must be a relatively strong bonding 

between the polymer chemical group and the biological surface (292). Ideally, mucoadhesive 

polymers should promote mucoadhesion in different biological environments with different water 

contents. In addition, water and oil soluble drugs can be easily accommodated by the polymer for 

the controlled release purposes. Mucoadhesive polymers are also preferable if they possess 

additional properties such as the ability to inhibit local enzymes, help in enhancing the absorption 

of drugs, being safe, inert, biocompatible, provide excellent mechanical properties and being 

easily handled during the formulation and manufacturing processes (292, 293). 

Polymers with mucoadhesive features are either of natural or synthetic sources. Examples of the 

synthetic type including polyacrylic acid derivatives (such as polyacrylic acid) and cellulose 

derivatives (such as carboxymethyl cellulose). On the other hand, natural materials can also be 

used as bioadhesive excipients such as chitosan and various gums such as xanthan, pectin and 

alginates (294). 

1.6.5 Mechanisms of mucoadhesion 

Mucoadhesion as a process involves three steps, in the first step there is an intimate contact 

between the mucoadhesive polymer and the biological tissue followed by the interpenetration 

between the macromolecules then the formation of interfacial bonds (295). These bonds are 

relatively weak bonds of the secondary type like hydrogen bonds, van der Waals forces, 

electrostatic forces and hydrophobic interactions (296). Due to the large number of charged 

groups such as hydroxyl (-OH), carboxyl (-COOH), sulfuric acid (-SO3H), and amino (-NH2), 

electrostatic interactions and hydrogen bonds seem to play an important role in the process of 

mucoadhesion. On the other hand, hydrophobic interactions result from the association of non-

polar groups also participates in this process. The van der Waals binding energies between 

hydrophobic groups were estimated within the range 1-10 Kcal/mol, while the binding energy of 

hydrogen bonds between polar groups is about 6 Kcal/mol (297). 

The process of mucoadhesion can be explained by several theories including electronic, 

adsorption, diffusion, wetting and fracture theories. In a particular situation, the formation of 

bioadhesive bonds can be explained by one or more of these theories (239). 
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Electronic (electrostatic) theory 

This theory assumes the formation of an electrical double layer between the mucoadhesive 

material and the biological tissue. This electrical double layer is resulting from the electronic 

transfer between the two sides when they come in contact of each other as a result of their different 

electronic structures. The attractive forces across this electrical double layer are believed to be 

responsible about the mucoadhesion (298).  

Adsorption theory 

The adsorption theory states that the molecules of the biological tissue adsorbed at the surface of 

the mucoadhesive substrate resulting in a kind of interaction between these two systems (299, 

300).        

Diffusion theory 

The diffusion theory suggested that the interpenetration and entanglement of the mucoadhesive 

polymer are responsible about mucoadhesion. The concentration gradient across the interface 

between the two substrates is the driving force for the interpenetration of the polymer chains into 

the biological side and vice versa. It is believed that interpenetration between the two substrates 

of about 0.2-0.5 µm is essential to produce an effective adhesion (301). 

Wetting theory 

The wetting theory suggests that for mucoadhesion to take place, there must be a certain degree 

of spreadability or wettability between the mucoadhesive material and the biological substrate. 

According to this theory, the angle of contact Ɵ is the reflection of the wetting power of liquid on 

solid and mucoadhesion is predicted as a function of wettability between the two substrates (280, 

302, 303).  
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Fracture theory 

This theory describes the force needed for the separation of two surfaces after mucoadhesion. The 

fracture strength is equal to mucoadhesive strength as explained in Equation 1.21. This theory is 

useful for the study of mucoadhesion by tensile apparatus. 

                                     σ  =  (E × ε/L)1/2 …………….....Equation 1.21     

where σ is the fracture strength, E fracture energy, ɛ young modulus of elasticity, and L is the 

critical crack length (296). 

1.7 Objectives of this project 

Solid dispersions are most commonly prepared as binary drug-polymer models which are not 

necessarily reflecting the situation in real life complex pharmaceutical preparations. There is a 

lack of knowledge about the behaviour of complex solid dispersions with respect to the 

solubilisation of the drug, processing parameters, physical and chemical stability during and after 

preparation and the pharmaceutical properties of the fabricated products. This study aimed to 

prepare complex solid dispersions systems using a variety of blends of felodipine with different 

pharmaceutical excipients having various applications to produce final form products. These solid 

dispersions were designed using two different approaches with diversity in formulation 

objectives. The first approach was through the use of hot melt extrusion in conjunction with 

injection moulding (HME-IM) as a single step processing, environmentally friendly and efficient 

method to prepare felodipine buccal patches for enhancing the systemic bioavailability of 

felodipine via solubility/dissolution enhancement and avoidance of the extensive first pass effect 

of the drug. The second approach was the use of fused deposition modelling (FDM) 3D printing 

utilising various combinations of pharmaceutically approved excipients as a novel method of 

enhancing their printability. Successful preparation of dosage forms using FDM 3D printing is 

expected to play a major role towards more patient personalised medicines which in turn can 

improve patients’ adherence to medications and treatment efficiency. Also, this study used two 

novel characterisation techniques: thermal analysis by structural characterisation (TASC) and X-

ray micro computed tomography (XµCT) as a tool for investigating the heterogeneity and the 

spatial distribution of phases of the complex formulations prepared in this study.  

The specific aims of the study include: 
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1. Investigating the physicochemical properties of the raw materials and their compatibility 

with the model drug that are used throughout this study.  

2. Design, characterisation and evaluation of felodipine mucoadhesive buccal patches using 

HME-IM processing containing either Tween 80 or TPGS as surfactant-rich drug 

solubilisation and stabilisation phases.  

3. Using TASC and XµCT as novel techniques for the assessment of heterogeneity and the 

phase distribution of the complex solid dispersions prepared by HME-IM. 

4. Investigating the stability of the prepared HME-IM patches after storage at four different 

conditions of temperature and relative humidity and the impact of the role of surfactant 

type on the stability of the system and the recrystallisation of the incorporated drug.  

5. Exploring the approach of using polymeric mixtures to improve the FDM 3D printability 

of pharmaceutical solid dispersions. This also involves the development of oral felodipine 

solid dispersions discs using FDM 3D printing and investigating their microstructure, 

loading efficiency and their release characteristics as a personalised oral dosage form for 

felodipine. 
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2.1 Introduction 

In this study, the model drug selected was felodipine which was mixed with blends of a variety 

of pharmaceutical excipients including polyethylene glycol (PEG) 4000, polyethylene oxide 

(PEO), polyoxyethylene sorbitan monooleate (Tween) 80, d-α-tocopheryl polyethylene glycol 

1000 succinate (vitamin E TPGS), polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol 

graft copolymer (Soluplus), dimethylaminoethyl methacrylate-butyl methacrylate- methyl 

methacrylate copolymer (Eudragit E PO) and polyvinyl alcohol (PVA) in different combinations 

and loading percentages as solid dispersion based formulations. This chapter introduced the 

chemical and physical properties of these compounds and reviewed the current applications of 

these materials.   

Solid dispersions were prepared using either hot melt extrusion in conjunction with injection 

moulding (HME-IM) or fused deposition modelling (FDM) 3D printing. HME-IM was used to 

prepare buccal patches containing felodipine which would bypass its extensive hepatic 

metabolism when taken orally, improving its systemic bioavailability and allowing a minimum 

dose to be given through the buccal route. FDM 3D printing was used the potential of providing 

patients personalised formulations based on pharmaceutically approved excipients with improved 

dissolution profiles via a solid dispersions approach.  

In order to fully understand the characteristics of the HME-IM and FDM 3D printed products, it 

is essential to investigate the physicochemical properties of their individual components, 

intermediate blends, and finished products using a wide range of techniques. In this chapter, the 

characterisation tools used for the analytical purposes are introduced and discussed in details. 

These techniques include differential scanning calorimetry in standard (DSC) and modulated 

(MTDSC) modes, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-

FTIR), powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), element 

dispersive spectroscopy (EDS), X-ray micro computed tomography (XµCT), thermal analysis by 

structural characterisation (TASC), thermogravimetric analysis (TGA), dynamic vapour sorption 

(DVS), polarised-light hot stage microscopy (PL-HSM) and Fourier transform infrared (FTIR) 

imaging.  Furthermore, the techniques used to assess the in vitro performance of the formulations 

including stability testing, mucoadhesive study using texture analyser, and in vitro dissolution 

studies were also described in this chapter. 



Chapter 2   Materials and methods  

 

61  School of Pharmacy / University of East Anglia 

 

2.2 Materials  

2.2.1 Model drug 

In this study, felodipine as one of the potent calcium channel antagonists normally used to treat 

patients suffering from hypertension and for prevention of angina pectoris was used as the model 

drug. As a member of the dihydropyridine family, felodipine exerts its effect by selective 

relaxation of the vascular smooth muscles through inhibition of calcium influx via the slow 

channels (304, 305). Felodipine was used as the model drug to be formulated as buccal patches 

using HME-IM and personalised medicine prepared by FDM 3D printing. Felodipine was 

selected because: 

1. It is poorly water soluble drug (practically insoluble in water) and has high permeability 

through body membranes. It is classified as class II according to Biopharmaceutical 

Classification System (BCS) and therefore using solid dispersion technology is expected to 

improve its dissolution and bioavailability which potentially improve the therapeutic 

outcomes of the drug (306, 307). 

2. The drug is marketed as oral modified release tablets containing 2.5, 5, and 10 mg per tablet 

as single drug tablets and as combination film coated tablets with ramipril containing 2.5 and 

5 mg felodipine (308). The daily dose of felodipine is 5-10 mg (307) and its small molecular 

weight make this model drug as a typical candidate to be delivered through buccal mucosa 

where minimum drug absorption is expected to reach its therapeutic window (239, 309). In 

addition, the single daily dosing of the drug suits well with the frequency of dosing using 

buccal drug delivery.  

3. Felodipine shows an extensive first pass metabolism when absorbed through the 

gastrointestinal (GI) tract and approximately 84% of the administered dose deactivated 

through the liver (310). Therefore, buccal drug delivery is better alternative route of 

felodipine administration.  

2.2.1.1 Physicochemical and pharmacokinetic properties 

The chemical structure, physicochemical and pharmacokinetic properties of felodipine (ethyl 

methyl (4RS)-4-(2,3-dichlorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate) are 

shown in Figure 2.1 and Table 2.1 (311). 
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Figure 2.1: Chemical structure of felodipine, adapted from reference (312) 

The complete single crystal structure details of four polymorphic forms of felodipine reported in 

literature. Their melting peak onsets are 143.8 ± 0.2, 134.8 ± 0.2, 143.7 ± 0.2 and 145.7 ± 0.2 ̊C 

for forms I-IV, respectively (312-314). In addition, the FTIR data indicated that these 

polymorphic forms showed different strengths of intermolecular hydrogen bonds between the NH 

group and the C=O groups. The NH stretching in their IR spectra have been reported at 3372, 

3334, 3370, 3329 cm- 1 for the four crystalline polymorphic forms I-IV, respectively (313-315). 

Furthermore, the amorphous form showed NH stretching peak at ~ 3339 cm-1. The non-hydrogen 

bonded C=O group and the hydrogen-bonded C=O stretching peaks were detected at (1699 and 

1690 cm-1) for form I, (1698 and 1683 cm-1) and form II, (1703 and 1654 cm-1) for form IV and 

(1701 and 1682 cm-1) for the amorphous form (313, 314, 316-318). No data is found for the C=O 

stretching of form III in literature. It should be mentioned that the crystal habits of the different 

forms were found to be blocky shaped for polymorphs I and II and platy like crystals for form III 

(319). No available information about the crystal habit of polymorph IV of felodipine has been 

reported (319). 
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Table 2.1: Physicochemical and pharmacokinetic properties of felodipine 

 Property Details References 

CAS 72509-76-3 (311) 

Chemical formula C18H19Cl2NO4 (311) 

Molecular weight 384.254 g/mole 

Polymorphic forms 4  

 

(312, 314) 
Melting temperature onsets 
(Tm) 

Form I = 143.8 ± 0.2 ºC 

Form II = 134.8 ± 0.2 ºC 

Form III = 143.7 ± 0.2 ºC 

Form IV = 145.7 ± 0.2 ºC 

Glass transition temperature 
(Tg) 

43.5 ºC (320) 

Solubility in water Less than 0.5 mg/L (321, 322) 

PKa 5.71 (323) 

Log P 4  

(307) Oral dose 5-10 mg/day 

Cmax 12 ± 4 (nmol/L)  

 

(324)  
tmax 2.2 ± 1 (hrs) 

Vss 10.3 ± 3 (L) 

Cl  934 ± 210 (mL/min) 

Cloral  10.3 ± 3 (L/min) 

t1/2  13.6 ± 4 (hrs) 
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2.2.2 Excipients 

2.2.2.1 Polyethylene glycol (PEG) 4000 

Polyethylene glycols (PEG) are widely utilised as pharmaceutical excipients in the formulation 

of different dosage forms including parenteral, topical, ophthalmic, oral, and rectal products (325). 

They are used as vehicles in the preparation of solid dispersions because they have good 

solubilising properties, low melting temperatures, high solidification rates, economic cost, and 

low toxicity (62, 326, 327). As shown in Figure 2.2, PEG is a group of hydrophilic semicrystalline 

polymers that show both amorphous and crystalline regions at different proportions depending on 

their method of manufacturing and thermal history involved during preparation (328, 329). 

 

Figure 2.2: Schematic representation of the crystalline-amorphous structures of PEG, adapted from 

reference (329) 

The molecular formula of PEG is [H(-OCH2CH2-)nOH] where n represents the number of ethylene 

oxide (-OCH2CH2-) monomers within the polymer chain depending on its molecular weight (330). 

The chains of crystalline domains of PEG are composing of seven monomer units with two turns 

per fibre identity period (chain repetition distance) of 19.3 ̊A as illustrated in Figure 2.3a. It 

should be mentioned that the helical structures of PEG chain in their crystals was confirmed by 

using scanning tunneling microscopic (STM) imaging as shown in Figure 2.3b (331). 
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Figure 2.3: a) Molecular model representing single-stranded helix of PEG consisting of seven 

monomer units with two turns per repeat unit and b) STM image of single- and double-stranded 

helices of PEG; adapted from reference (331). Reproduced with permission from the publisher 

The crystallographic unit cell of the PEG composes of four molecular chains with a monoclinic 

crystal system in which a = 7.96 ̊A, b = 13.11 ̊A, c = 19.39 ̊A and β = 124.48 ̊ (332). The PEG 

single crystal has a flat or plate like structures named lamellae in which the helical chains extend 

perpendicular to the larger sides of the lamellae and the ends rejected to the surface of the crystal 

as illustrated in Figure 2.4a (332-334). The lamellae are organised in the spherulites in a way that 

the chains are oriented parallel to the tangential plane of the spherulite boundary which is 

responsible about the overall spherulitic morphology. The spherulites may be as big as 1 cm in 

diameter due to the slow nucleation rate of melt crystallisation (Figure 2.4b) (335).  
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Figure 2.4: a) Model illustrating single layer extended chain PEG crystal; adapted from reference 

(332) and b) polarised light hot stage microscope image of crystallised PEG 4000; adapted from 

reference (336) 

Inside each of the lamellae, the polymer chains are present in both the extended (stable) and the 

folded (metastable) forms in addition to the amorphous random coil fraction. The folded chains 

have lower melting points compared to the extended ones and are considered as the metastable 

form of the polymer. The melting point of the polymer is found to decrease as the number of folds 

in the chains increases. In addition, the kinetic stability of the metastable form increases as the 

molecular weight of the PEG increases (328, 330). The folded form may transform to the more 

stable extended form. The ordered helical structure of the polymer is converted completely into 

random coils on melting when the polymer melts (337).   

PEG 4000 used in this study with an average molecular weight (4060 g/mole) is solid at room 

temperature and has a melting point of (58.9) °C measured by DSC using a heating rate of 4 °C 

/min (335). It is well known that PEG 4000 crystalline forms were detected in its lamellae as a 

mixture of single folded form with the more stable extended form (328, 330). The thickness of 

the crystal is found to decrease as the number of folds increased and thus the volume to surface 
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ratio being the lowest for the single folded form making it the less stable form of the polymer 

(328, 330). The fraction of the unstable folded form of this polymer is greatly affected by the 

cooling rate of the polymer when cooled from its molten state. It was reported that as the rate of 

cooling of this polymer from its molten state increased, the fraction of the folded form generated 

increased too (338).  

PEG 4000 has been used widely as a carrier in the preparation of solid dispersions for enhancing 

the aqueous solubility and improving the bioavailability of many drugs (198, 339-342). It was 

found that the in vitro release profile of lonidamine was improved by formulating the drug with 

PEG 4000 and the extent of enhancement is dependent on the polymer content in the dispersion 

(340). In addition, the same polymer was reported to form solid dispersions with piroxicam with 

faster dissolution rate compared to simple physical mixtures resulting in a significant increase in 

the bioavailability of the drug in rabbits (341). Similarly, faster dissolution rate of extruded 

carbamazepine-PEG 4000 solid dispersions was achieved compared to simple physical mixtures 

with equivalent compositions (342). This polymer forms various kinds of solid dispersions in 

which the drugs might be either present as a molecular dispersion or as a nano amorphous 

aggregates dispersed in the amorphous phase of the polymer (343-345). In addition, monotectic 

solid dispersions of drugs with poor water solubility can also be produced using this polymer in 

which the eutectic temperature of the mixture is very close to one of the formulation components 

(PEG 4000) (38, 346). The stability of solid dispersions is dependent on many factors including 

the experimental conditions (temperature, humidity, duration of storage), nature of the dispersion 

components (drug and the carrier) and the physical characteristics of the dispersion formed. For 

example, it was found that PEG 4000 forms solid dispersion with oxazepam in which the 

dissolution behaviour was unchanged during the storage at room temperature for 6 months (47). 

On the other hand, the dissolution profile of the aged PEG 4000 dispersions of glyburide was 

found to be lower than that of the fresh samples due to the possible phase separation of the drug 

when aged at room temperature (339).  The mechanism of dissolution/solubility enhancement of 

water poorly soluble drugs from solid dispersions using PEG 4000 was shown to be due to the 

increase in surface area of the molecularly dispersed drug from solid solutions (126), formation 

of the metastable highly soluble amorphous form of the drugs (339), increased solubility of drugs 

in the fluids of the diffusion layer (44) and/or improvement the wettability of the drug by the 

carrier used (126). 
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2.2.2.2 Polyethylene oxide (PEO) 

Polyethylene oxide (PEO) is semi-crystalline, thermoplastic hydrophilic polymer has the same 

molecular formula as that of PEG [H(-OCH2CH2-)nOH]. The nomenclature of the two groups of 

polymers refers to the number of ethylene oxide monomers forming its chain. PEO polymer 

grades have a molecular weight range between 105 to 7 × 106 g/mole depending on the number of 

monomeric units included in its chain. These polymers are white to off-white, free-flowing 

powders with slight ammoniacal odour. They have a melting range of about 65–70 ˚C, true density 

1.3 g/cm3 and moisture content less than 1% w/w (347, 348).  In contrast to PEG which is existing 

as relatively viscous fluid to waxy like solids, PEO is a real thermoplastic polymer having the 

ability to form tough and moulded shapes. This difference in physical properties is related 

principally to the molecular mass between the two groups of polymers and most importantly the 

higher fraction of hydroxyl terminal group in PEG compared to PEO (349).  PEO has many 

applications in the formulation of various pharmaceutical products like sustained release tablets 

(350) matrix tablets (351), beads (352) and film dressing for wound healing (353). This polymer 

has many characteristic features including its excellent mucoadhesivness, good water solubility, 

high viscosity, good swelling capacity (higher molecular weight PEO), poorly absorbed by the 

GI tract, and low level of toxicity regardless the route of administration. This polymer is 

incompatible with strong oxidising agents (348).  

The molecular weights for PEO used in this study are 900,000 g/mole (PEO K900) for HME-IM 

and 100,000 g/mole (PEO K100) for FDM 3D printing. The number of polyethylene oxide units 

in the polymeric chains for both grades are approximately 20,000 and 2,275 monomers 

respectively (348). This class of polymers are used to control the release of drugs by forming a 

strong swellable matrix upon hydration that is less liable to erosion compared to the lower 

molecular weight PEO grades (354, 355). PEO polymers have been recognised as a successful 

carrier for the preparation of solid dispersions by HME method due to their thermoplastic nature 

(144, 356). When used to control the release of drugs using HME, this polymer offers a number 

of advantages including the possibility of incorporating drugs with liable to degradation when 

processed at high temperatures, zero-order release kinetics, and easy preparation. It was reported 

that this polymer offers great flexibility in adjusting the release profiles by altering various 

formulation and processing parameters like the molecular weight of the polymer used in the 

formulation as shown in Figure 2.5 (357). 
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Figure 2.5: Influence of PEO molecular weight on the release profile of theophylline from the hot 

melt extrudates in phosphate buffer pH 7.4; adapted from reference (357) 

As an example, this polymer was found to form a stable solid solution of chlorpheniramine 

maleate in which the drug is molecularly dispersed in the carrier polymer using low loading 

percentages. The release profile of the drug from the solid dispersion was sustained by polymeric 

erosion and the diffusion of the drug through the swollen layer formed at the surface of the tablet 

(356). 

The thermal stability of pure PEO was found to be dependent on the storage temperature and the 

molecular weight of the polymer. It was shown that as the molecular weight of the polymer 

increased, the thermal stability resulting from resistance to thermal oxidative degradation was 

increased (144). This has been explained this in terms of the thickness of polymer crystals rather 

than the degree of crystallinity of the polymers.  It was argued that the higher molecular weight 

polymers crystallise in thicker crystals which are less susceptible thermal oxidation compared to 

the thinner crystals formed by the polymer members of lower molecular weights (144). The 

stability of the practically insoluble drug clotrimazole in PEO N80 and PEO N750 (molecular 

weight 200,000 and 300,000 g/mole respectively) solid dispersions using HME method was 

investigated by Prodduturi and co-workers (358). It was found that the drug was more chemically 

stable in PEO N750 than in PEO N80 due to the lower water sorption capacity of the PEO N750 

polymer grade. Also, it was noticed that the physical stability of the extruded films was good as 

solid dispersions for 1 month at 25 ̊ C and 65% RH. However, the appearance of the characteristic 

PXRD peaks after 3 and 6 months indicated recrystallisation of the solubilised drug in the carrier 

polymer (358).  
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The bio/mucoadhesive properties of PEO polymers are very attractive for many researchers 

aiming to develop bioadhesive dosage forms with zero order release kinetics (358, 359). These 

polymers showed direct proportion between the molecular weight of the polymer and the 

adhesiveness and the work of adhesion of the prepared dosage forms. In this case, the 

mucoadhesion mechanism is explained according to the diffusion theory in which the magnitude 

of stickiness depends on the degree of penetration of the polymeric chains into the mucus 

glycoprotein chains (359). 

2.2.2.3 Polysorbate (Tween®) 80   

Polysorbate 80 (polyoxyethylene 20 sorbitan monooleate, molecular weight = 1310 g/mole) is a 

non-ionic surfactant commonly used in the production of cosmetics, food and pharmaceutical 

products. This surface active agent has an HLB value of 15 and used for its dispersing, 

emulsifying, solubilising, suspending, plasticising, penetration enhancing and wetting activities 

(360, 361). At 25 ˚C, it presents as yellow oily liquid miscible with water and ethanol and 

immiscible with vegetable and mineral oils. Tween 80 is regarded as hygroscopic material and 

should be stored in well-closed containers protected from light in a cool and dry place (360). In 

general, Tweens are stable compounds when mixed with electrolytes, weak acids and bases, 

however, they show gradual saponification with strong acids and bases and the oleic acid 

derivatives like Tween 80 were found to be sensitive to thermal autoxidation and hydrolysis. 

Tween 80 is moderately toxic when administered by intravenous (IV) route (LD50 = 4.5 g/kg) and 

mildly toxic after ingestion (LD50 = 25g/kg) in mouse (143, 360-362). Tween 80 has a CMC of 

0.012 mM in water at 25 ˚C (363). The chemical structure of Tween 80 is shown in Figure 2.6. 

 

Figure 2.6: Chemical structure of Tween 80 (x + y + z = 20); adapted from reference (364) 

Various surfactants were used in the preparation of solid dispersions for their plasticisation effect 

and their ability to improve the solubility of poorly soluble drugs in the carrier polymers. Many 

researchers demonstrated that these agents have the ability to enhance the solubility of drugs in 

their formulations by improving their wettability and the solubility. The capability of surfactants 
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to achieve this target is dependent on their HLB value, solubilisation power, and the possible 

interactions with both the drug and the carrier polymer (361, 365-368). Tween 80 has also been 

reported to act as a permeation enhancer to facilitate the penetration of various drugs into the 

systemic circulation across different biological membranes like the intestine (369), skin (370, 371) 

and buccal mucosa (372). Compared to anionic and cationic surfactants like sodium lauryl 

sulphate and cetyl trimethyl ammonium bromide, non-ionic surfactants were reported to be less 

damaging to the skin as permeation enhancers (373). It should be mentioned that the enhancement 

of drug penetration by using surfactants as chemical enhancers is variable because of its 

dependence on the type of the targeted membrane utilised in the experiment (373). Tween 80 is 

considered as an effective surfactant for stabilising and preventing the crystallisation of drugs 

from their supersaturated solid dispersions (374). 

2.2.2.4 D-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS, 

Kolliphor® TPGS)    

Vitamin E TPGS is a water soluble non-ionic surfactant obtained by esterification of vitamin E 

with polyethylene glycol (PEG) 1000. Due to its hydrophilic-lipophilic moieties represented by 

the fat soluble vitamin and the water soluble PEG, this surface active agent shows an amphiphilic 

character with an HLB value of 13.2 and critical micelle concentration of 0.02% w/w in water 

(375). This compound is waxy solid at room temperature and has a melting point peak 

approximately at 37-41 ̊C. The molecular weight of TPGS is 1513 g/mole (375). The chemical 

structure of vitamin E TPGS is illustrated in Figure 2.7. 

 

Figure 2.7: Chemical structure of vitamin E TPGS; adapted from reference (376) 
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TPGS has been widely used in pharmaceutical formulations for its valuable properties as 

solubilising (377, 378), plasticising (200), stabilising (379), antioxidant (144, 380), absorption 

enhancing (381), emulsifying agent (382), and as a nutritional supplement of vitamin E (383). For 

example, TPGS based formulations showed to significantly improve the solubility of poorly water 

soluble drug indomethacin over a wide range of pH values (377). Another case, the aqueous 

solubility of paclitaxel was found to be increased linearly as the concentration of TPGS increased 

(378).  It was also reported that mixing this compound with blends of polymers containing 

hydroxypropyl cellulose (HPC) and polyethylene oxide (PEO) revealed a decrease of more than 

11 ̊C in the Tg of the mixture indicating the plasticising action of TPGS (200). TPGS also showed 

to be able to solubilise and stabilise the amorphous form of itraconozole in solid dispersions 

prepared by microwave with the result of improving the dissolution properties of this poorly water 

soluble drug (384). The surfactant in a concentration of 1-2% solution was also reported to 

stabilise itraconozole in its supersaturated solutions compared to the drug alone (385). The TPGS 

needs to be hydrolysed to release the α-tocopherol succinate unit (vitamin E) which is well known 

to have free radical scavenger activity (386). Crowley and his co-workers showed that 

incorporating this surfactant successfully retarded the thermal oxidative degradation of PEO 

contained in chlorpheniramine maleate extrudates prepared by hot melt extrusion (144). In 

addition, this amphiphilic compound is shown to have a permeability enhancing effect by 

increasing the intraluminal amprenavir concentration in a concentration-dependent manner (387).   

2.2.2.5 Poly(butyl methacrylate-co-(2-dimethylaminoethyl)methacrylate-co-

methyl methacrylate) (Eudragit® E PO) 

Eudragit E PO is a cationic polymethacrylate copolymer used to provide gastric targeted release 

profiles due to its pH dependent solubility in acidic media (pH < 5). The E PO grade of this 

polymer is a white powder with a characteristic amine-like odour (388). The average molecular 

weight of this amorphous polymer is about 74,000 g/mole, and its Tg is 48.6 ̊C (389, 390). The 

chemical structure of Eudragit® E PO is illustrated in Figure 2.8. 
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Figure 2.8: Chemical structure of eudragit® E PO; adapted from reference (391) 

Eudragit® E PO has many applications in the pharmaceutical field including film coating (388), 

solid solution carrier to improve the dissolution properties of poorly water soluble drugs (392) 

and to mask the taste of bitter drugs (393). This copolymer has been used as a principle component 

of many formulations like solid dispersions (392), nanoparticles (394) and rapid disintegrating 

tablets (393). It has been used as a carrier in the preparation of solid dispersions using HME as a 

single polymer or as a polymeric blend to improve the dissolution properties of poorly water 

soluble drugs like felodipine and indomethacin (73, 389). This polymer has relatively low glass 

transition temperature which makes it as a good polymeric candidate for preparing solid 

dispersions for poorly water soluble drugs at an acceptable temperature. Eudragit E PO was found 

to significantly improve the dissolution properties of felodipine using 10% drug loadings as a 

binary and ternary mixture using PVPVA. Also, the concentration of Eudragit E PO in the 

dissolution medium of pH = 1.2 at 25 ̊C was found to solubilise felodipine in the aqueous solution 

to higher extent compared to corresponding concentrations of PVPVA and their polymeric blend 

(73).  The thermal dissolution of indomethacin in Eudragit E PO melt was reported to be 

convective and can be enhanced by increasing processing temperature and extruder screw speed 

(389). In addition, it was found that a stable supersaturated concentration of indomethacin over 

100 minutes of dissolution at pH 1.2 was achieved using a higher processing temperature 

indicating the formation of molecularly dispersed drug in the polymer matrix (389). It should be 

mentioned that due to the cationic character of this polymer, it can form strong interactions with 

anionic drugs resulting in stabilisation of their molecular level amorphous solid dispersions (395).  

In this study, Eudragit E PO was used as a principle polymer in the fabrication of felodipine solid 

dispersions using FDM 3D printing technology due to its reported use as a carrier for drug loaded 

solid dispersions processed using HME indicating its good thermoplastic, solubilising and 

stabilising properties. In addition, the pH dependent solubility of this polymer makes it as a 
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suitable pharmaceutically approved carrier for immediate release of felodipine from the designed 

formulations.  

2.2.2.6 Polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft 

copolymer (Soluplus)  

Soluplus is a novel amphiphilic graft copolymer designed specifically for improving the 

dissolution properties of poorly water soluble drugs (BCS class II) using HME. The copolymer 

performs this role by its interesting dual functionality of dispersing the drugs as molecularly 

dispersed in the polymeric matrix and its ability to form micelles in aqueous media (396).  This 

recently developed polymer has a white to slightly yellowish freely flowing granules with a 

molecular weight within the range of 90,000-140,000 g/mole. The copolymer is soluble in water, 

acetone (up to 50%), methanol (up to 45%), ethanol (up to 25%) and dimethylformamide (DMF) 

(up to 50%) at room temperature. The chemical structure of soluplus is illustrated in Figure 2.9 

(56). The measured critical micelle concentration (CMC) for soluplus and its extrudates were 

found to be 1.93 µg/mL and 4.24 µg/mL at 37 °C, respectively. The determination of two critical 

micelles values for soluplus was attributed to the partial splitting of chains of the polymer (397). 

It was reported that the presence of dissolved ions in the solution of hydrophilic polymers like 

soluplus which exhibit sol-gel behaviour can affect the solubility of the polymer (398, 399). 

Dissolved ions in the media have the ability to dehydrate this polymer by competing with it on 

the water of hydration resulting in precipitation of the polymer in a phenomenon called salting 

out (400). For these polymers, as the temperature increases, they start to precipitate and form a 

gel at the gelation temperature and thus the transmission of light will decrease due to precipitation. 

The temperature at which 50% of the transmission light is reduced is termed the cloud point (401). 

The presence of the dissolved ions was reported to reduce the cloud point and this phenomenon 

was also previously reported to happen in solutions of hydrophilic polymers like hypromellose 

(402), poloxamer (403) and soluplus (149). 
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Figure 2.9: Chemical structure of soluplus; adapted from reference (404) 

Soluplus is an amorphous polymer with a Tg of approximately 70 ̊C with excellent thermoplastic 

properties making it a suitable for HME as processing technique at relatively safe temperatures. 

This polymer was used principally as a solubiliser for BCS class II drugs for the production of 

amorphous solid dispersions using different fabrication techniques including HME, 

electrospining, spray drying and freeze drying, etc. (87, 396, 404). In addition, this amphiphilic 

copolymer showed an interesting absorption enhancing activity which can be used as additional 

functionality to improve the bioavailability of drugs through the biological membranes (405).  

This polymer was used effectively to improve the dissolution properties of drug like atorvastatin 

calcium (406), efavirenz (407) ezetimibe and lovastatin (408). It should be mentioned that this 

polymer was used as a single carrier or as a component of polymeric blend for the production of 

molecular level amorphous solid dispersions (118, 407). In this study, soluplus was used as the 

main polymer in a blend of excipient used for fabricating felodipine solid dispersions by FDM 

3D printing.  

2.2.2.7 Polyvinyl alcohol (PVA) 

PVA is one of the widely used synthetic pharmaceutical polymers because it is water soluble, 

thermally stable, it has low gas permeability, good adhesiveness, biocompatibility and 

biodegradability (409). It functions as a coating, lubricant, stabilising and viscosity increasing 

agent in different pharmaceutical dosage forms and drug delivery systems. This partially 

crystalline polymer occurs as an odourless white to creamy granular powder with variable degrees 

of hydrolysis and molecular weights. This polymer exists as wholly or partly hydrolysed with 

different degrees of hydrolysis. The partially hydrolysed form is a copolymer of vinyl alcohol and 

vinyl acetate units originally synthesised by polymerisation of polyvinyl acetate followed by 

alkaline aqueous hydrolysis (in the presence of sodium hydroxide) to substitute the acetate by a 
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hydroxyl group. The extent of hydrolysis ranging from 30-99% and the hydrolysis is dependent 

on the concentration of the catalyst, reaction temperature and time and the molecular weight of 

the polymer (410). The degree PVA hydrolysis affects the aqueous solubility of the polymer 

which increases with the increase in the degree of hydrolysis. Also, the crystallinity is reported to 

increase with increasing the extent of hydrolysis (410). The reported melting points for the fully 

and partially hydrolysed grades are 228 ̊C and 180-190 ̊C respectively. The water solubility is 

reported to be higher for highly hydrolysed grades compared to the grades with the lower 

percentage of hydrolysis (185, 411). The molecular structure of this polymer is shown in Figure 

2.10. 

 

Figure 2.10: Chemical structure of hydrolysed PVA; adapted from reference (412) 

PVA is considered as a component for the formulation of variety of pharmaceutical preparations 

such as hydrogels (413), solid dispersions (414) and nanoparticles (415).  

PVA was used as a thermoplastic hydrophilic polymer for solubilising and stabilising drugs in 

solid dispersions prepared by HME. Indomethacin was found to be partially miscible in the 

amorphous domains of the semicrystalline structure of PVA as revealed by the consistent results 

of thermal analysis using hot stage microscopy and DSC. The same study indicated immiscibility 

between PVA and lacidipine as indicated by the detection of two glass transition temperature 

belonging to the amorphous drug and the amorphous fraction of the semicrystalline PVA (416). 

Recently, it was reported that partially hydrolysed PVA grades with a degree of hydrolysis higher 

than 70% were able to solubilise celecoxib and hydrochlorothiazide with improved release 

profiles. The release profiles of the two drugs from the grades of the lower degree of hydrolysis 

were found to be influenced by the ionic strength of the dissolution medium. To overcome the 

degradation problems that may affect the stability of thermosensitive drugs due to the high 

processing temperature of the binary systems (180 ̊C), sorbitol was used as a plasticiser to reduce 

the extrusion temperature of PVA. The plasticised extrudate was cryomilled, mixed with 

celecoxib and re-extruded at relatively acceptable processing temperature (140 ̊C) with reduced 

mechanical shearing stress (screw speed reduced from 100 to 60 rpm). The dissolution profile of 

the ternary system for celecoxib was found to be superior in maintaining the supersaturation in 
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0.1 N HCl compared to the marketed product (Celebrex®) with highly comparable 

pharmacokinetic data (410). 

PVA is one of most commonly used polymers in the recently introduced FDM 3D printing to the 

pharmaceutical research field to produce formulations loaded with a variety of APIs as a 

promising approach in the direction of personalised medicine. The standard PVA filaments 

produced for general printing purposes were used in the literature to print tablets loaded with 

drugs like 5- aminosalicylic acid (5-ASA, mesalazine), 4-aminosalicylic acid (4-ASA) and 

prednisolone using FDM 3D printing at processing temperature higher than 200 C̊ (226, 417).  In 

order to load the prednisolone in PVA filaments, the filaments were incubated in a prednisolone 

saturated methanolic solution at 30 ̊C for 24 hours followed by drying at 40 ̊C and weighing the 

loaded filaments every hour until stable weight was achieved indicating evaporation of the organic 

solvent. It was found that PVA filaments loaded with prednisolone were able to be printed into 

regular ellipse-shaped tablets using this technology. The fabricated tablets with 1.9% w/w loading 

were able to extend the release of prednisolone to 24 hours (226). PVA was used as the benchmark 

polymer in this study because of its excellent thermoplasticity and good FDM 3D printability.  

 

2.3 Characterisation methods 

2.3.1 Thermogravimetric analysis (TGA) 

In principle, this technique uses the mass change of the sample under investigation (as a function 

of temperature or time) to identify and quantify chemical or, to a lesser extent, physical events 

(like sublimation) caused by the application of certain temperature program under defined 

atmosphere. The temperature range of the commercially available TGA equipments are from 

ambient to more than 1000˚C enabling this technique to perform many flexible analytical tasks. 

The gaseous environment employed varies depending upon the experimental requirements and it 

could be an inert (like nitrogen, helium, and argon), oxidising (such as air or oxygen) or reducing 

(8-10% hydrogen in nitrogen) gases. The most important part of any TGA is the thermobalance 

which is responsible about the measurement of the mass change as a function of temperature or 

time (94).  
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In pharmaceutical practice, TGA has many applications like estimation the thermal degradability 

and desolvation studies of different pharmaceutical materials (94). In this project, TGA was used 

to evaluate the thermal stability of the raw materials involved in the preparation of felodipine 

formulations to prove their ability to withstand the temperature used during the HME-IM and 

FDM 3D printing techniques. In addition, the moisture content of these materials was also 

investigated as this considered as an important factor that affects the physical stability of the drug 

in the final solid dispersed patches.       

In this study, TGA Q5000 (TA Instruments, Newcastle, USA) was used to evaluate the thermal 

stability of raw materials, physical mixtures and processed samples. In addition, TGA was used 

to assess the percentage of moisture entrapped within the samples under investigation.   

2.3.2 Differential scanning calorimetry (DSC) and modulated temperature 

differential scanning calorimetry (MTDSC) 

Differential scanning calorimetry (DSC) is an essential tool for the thermal analysis of materials 

in many fields including pharmaceutical product development. The principal of this analytical 

technique involves the detection heat changes accompanied thermal events like melting, 

crystallisation, glass transitions, and decomposition reactions induced by applying controlled 

temperature program (heating, cooling or isothermal) to the sample under a defined atmosphere 

(94).  There are two kinds of DSC machines, these are heat flux and power compensation. Heat 

flux DSC uses two pans (crucibles) for the sample and the reference in a single furnace. Both 

crucibles are heated under the same temperature program and the difference in temperature 

between the pans is detected and converted into energy. On the other hand, power compensation 

DSC uses two furnaces for both of the sample and the reference and both of them are heated and 

maintained at the same temperature. The difference in energy supply to maintain the sample and 

the reference temperatures identical during the DSC experiment is then measured as sample 

thermal event (94). In this study, heat flux type of DSC was used. 

Heat flow from the furnace to each crucible can be explained in Equation 2.1: 

dQ/dt = ΔT /R  …………….....Equation 2.1     

where dQ/dt represents heat flow, ∆T is the temperature difference between the furnace and the 

pan and R is the thermal resistance in the heat flow between the furnace and the crucible (94). 
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The other fundamental parameter involved in DSC analysis is the heat capacity of the sample (Cp) 

which is defined as the energy supplied to increase the temperature of the certain material by one 

degree Kelvin (1 K). This parameter generally gives an estimation of the sample capability to 

hold energy at specified conditions. In DSC practice, this function can be expressed by the 

Equation 2.2: 

dQ/dt = Cp . dT/dt  …………….....Equation 2.2     

where dT/dt is the heating rate of the program (94). 

Modulated temperature differential scanning calorimetry (MTDSC) is an extension of standard 

DSC in which the addition of sine waves to the temperature programme and a mathematical 

procedure are introduced for the purpose of separation (deconvolution) of various events that the 

sample might exhibit during the course of experiment. The deconvolution of these behaviours can 

be explained in Equation 2.3: 

dQ/dt = Cp . dT/dt + f(t,T)  …………….....Equation 2.3    

where f(t,T) is the time and temperature function that represents a response accompanying 

physical or chemical transitions. This equation separates between the reversible processes 

(processes in which the heat flows are correlated with the heat capacities of the samples) and 

irreversible processes (processes involve the contribution of the enthalpies of reactions) which 

cannot be separated using standard DSC. The temperature programme for MTDSC can be 

explained by Equation 2.4: 

T = T0  + bt + B . sin (ωt )  …………….....Equation 2.4     

where T represents the temperature at time t, T0 is the temperature at time zero, b is the heating 

rate, t is the time, B is the amplitude of oscillation, ω is the frequency of oscillation. Accordingly, 

the heat flow Equation 2.3 can be rewritten in the following expression: 

dQ/dt = Cp (b + Bω . cos(ωt))+  f (t,T) + C sin(ωt)  …………….....Equation 2.5     

where Bω . cos (ωt) represents the modulated heating rate, f(t,T) is the kinetic effect excluding 

the effect of modulation, and C is the amplitude of the kinetic response. The heating and cooling 

rates in MTDSC should be programmed in very slow rates for pharmaceuticals (1-3 ˚C/min) to 

prevent the appearance of artifacts into the reversing and non-reversing signals generated from 

the deconvolution of modulated heat flow signal (94). 
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In this study, thermal analysis of raw materials, their physical mixes, and processed formulations 

was conducted using the Q-2000 MTDSC (TA Instruments, Newcastle, USA) attached to RC90 

cooling unit. Full calibration was performed before samples measurements. DSC in both standard 

and temperature modulated modes was used to investigate the thermal properties of raw materials, 

physical mixtures and fabricated formulations. 

2.3.3 Thermal analysis by structural characterisation (TASC) 

TASC is a recently developed technique by Reading et al as an optical analogue of micro/nano 

thermal analysis. This new microscopic tool has many applications like thermal dissolution 

analysis, glass transition kinetics, analysis of melting behaviour, analysis of heterogeneity as T-

map mode and thermomechanical analysis (418, 419). This technique has the advantage of 

running the analysis in fast, easy and cheap cost in addition to its multiple applications. Figure 

2.11 represents the shape of the TASC signal corresponding to thermal events such as the melting 

of felodipine. 

 

Figure 2.11: Thermal analysis by structural characterisation (TASC) of felodipine melting at 10 °C/ 

min; A) selection of ROI and TA for TASC analysis and B) TASC signal corresponding to felodipine 

melting  
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During the TASC experiment, heating, cooling and/or isothermal temperature programs with 

different ranges and rates can be applied to the sample under investigation. The method of analysis 

by TASC consists of quantifying changes in successive micrographs while at the same time 

allowing for any movement by the sample during the ramps. As illustrated in Figure 2.12a, a 

region of the sample is selected that is designated the region of interest or ROI (within which lies 

the structure of interest). Also, a larger area (the target area or TA) over which the ROI is scanned 

is selected (in this case, the TA is the entire 7 × 7 pixels). Figure 2.12b shows the extracted ROI 

that is the template that is raster scanned over the TA. At each point, in the scan, the corresponding 

pixels are subtracted and the sum of the modulus of all differences is calculated. In this simplified 

representation, subtracting the same pixel values gives zero and subtracting different pixels gives 

1. After the scan is completed, it is the minimum value for the sum of all differences obtained 

during the course of the scan that is returned by the TASC algorithm. Figure 2.12c shows the 

start of the raster scan in the top left-hand corner. Because no structure is present in this part of 

the TA, when the ROI template is subtracted, the total sum of all subtractions is 1 (there is only 

one pixel where the ROI template is different from the selected region of the TA). The next step 

in the raster scan is to move the ROI template one pixel to the right as shown in Figure 2.12d; 

the value obtained is again 1. The ROI template is moved another pixel to the right, and the 

process continues until the entire TA has been scanned. The value zero is only obtained when the 

ROI template is in the centre of the TA as indicated in Figure 2.12a. This zero value is the 

minimum obtained during the course of the scan; thus, zero is returned by the TASC algorithm 

indicating no change. If the black pixel that represents the structure of interest moves as shown 

in Figure 2.12e, the value at the first point of the raster scan (such as the step illustrated in Figure 

2.12c) is now zero. At all other positions, the value is greater than zero. It follows that the 

minimum value returned by the TASC algorithm at the end of the scan is still zero indicating no 

change even though the structure has moved. When the black pixel disappears, i.e., the structure 

has changed, the value returned at all points during the raster scan is 1 and TASC returns the value 

1. Under this working principle, when the structure moves but does not change, the TASC value 

does not change, but when the structure changes, the TASC value increases. However, it is worth 

mentioning that for this to work the TA must be big enough so that the structure of interest does 

not travel outside of its limits. This is not difficult to achieve in practice simply by inspecting the 

first and last images.  

For real-life samples of the type studied here, as the sample is heated, it often softens and all 

apparent structures vanish giving rise to a featureless image. In a typical experiment of this kind, 

there is no further change beyond this point; i.e., the intensity difference values are unchanging. 
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Thus, the TASC value reaches a plateau (of course decomposition will occur if the temperature 

is taken very high but this was always avoided in this study). All the values calculated relative to 

this plateau are then normalised because the absolute TASC values change with the size of the 

ROI and lighting conditions. Variations due to slight differences in lighting conditions are best 

removed by normalizing. Similarly, comparisons between different sized ROIs are best achieved 

by comparing normalised values.  

 

Figure 2.12: Working principle of TASC a) represents an image of 7×7 pixels that is the Target Area 

(TA). The Region of Interest (ROI) is designated by the dashed box and the black pixel represents 

the only structure in the ROI. b) is the extracted ROI which acts as a template that is raster scanned 

over the TA. Under b) the results of subtracting the different values for the pixels are given; in this 

simplified case subtracting the same values gives zero and subtracting different pixels gives 1. The 

raster scan starts in the top left corner as shown in c) with the dashed line, the sum of all differences 

in this case is 1 (only one pixel is different). When the ROI is moved one pixel to the right as shown  

in d) (the next step in the raster scan) the same value is obtained. If the black pixel moves as shown 

in e) the value at the start of the raster scan is zero 

In this study, TASC was used as a novel thermal characterisation technique to investigate the 

heterogeneity of complex pharmaceutical solid dispersions prepared by HME-IM technology. 

The TASC system is composed of a Linkam MDSG600 automated temperature controlling 

(heating-cooling) stage (Linkam Scientific Instruments Ltd, Surry, UK), which is fixed to a 
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Linkam imaging station (Linkam Scientific Instruments Ltd, Surry, UK), and an imaging capture 

and analysis interface powered by TASC software provided by Cyversa (Cyversa, Norwich, UK). 

The microscope used in this study has a reflective LED light source and a lens with X10 

magnification. 

2.3.4 Dynamic vapour sorption (DVS) 

Dynamic vapour sorption is a gravimetric method that measures the rate and the extent of solvent 

(like water) absorption and desorption by the sample under specified conditions of temperature 

and relative humidity as a function of time. This technique is widely utilised in the development 

of pharmaceutical products using a variety of modes in which the relative humidity inside the 

chamber is either stepped (sorption isotherm), ramped (adsorption-desorption isotherm) or 

maintained constant at constant temperature (isohume experiments) (420). DVS is normally used 

for many applications including modelling the process of moisture uptake, characterisation of 

recrystallisation, stability and structural changes of pharmaceuticals (420-423).  

In this project, TGA Q5000 (TA Instruments, New Castel, USA) was used to measure the extent 

of moisture uptake by the raw materials and the impacts of processing techniques and the loading 

percentage of felodipine in the matrices. Isohume mode was used at constant relative humidity 

(RH) 75% and temperature 25 ˚C.  

2.3.5 Polarised-light hot stage microscopy (HSM) 

It is one of the thermoptometric methods in which the sample under investigation is analysed for 

its optical properties as a function of time or temperature using specific atmosphere. The recent 

advances in the design and applications of this analytical technique make it a very useful tool to 

understand the thermal behaviour of different compounds and mixtures (424). In this study, the 

system used consists of an AV camera attached to a microscope equipped with polarised light 

facility and the hot stage containing the sample on glass slide is placed on the stage of the 

microscope for visual observation. The main purpose of using this apparatus is to visualise 

thermal transitions like melting, thermal dissolution and crystallisation for raw materials and 

different forms of formulations as a complimentary analytical technique to support the results 

obtained by DSC. HSM experiments were conducted using a Mettler Toledo FP90 Central 
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Processor and an FP82HT Hot Stage, a Leica DM LS2 Microscope and a JVC digital colour video 

camera connected to a PC. 

2.3.6 Scanning electron microscopy (SEM) 

Scanning Electron Microscopy (SEM) is one of the most widely used technique for the analysis 

of microstructural properties of solid systems. The basic components of this versatile microscopic 

instrument are the lens system, electron gun, electron collector, cathode ray tubes for visual a 

photo recording and other related electronics. The electrons are generated and accelerated by the 

electron gun (tungsten hairpin) into small beam having an energy range (0.1-40 keV) which is 

then demagnetised and focused into the sample under investigation. SEM has many applications, 

but the most important use is to capture topographic images within the magnification range 10-

1000,000X (425).  

SEM used in this study was JSM 5900LV Field Emission Scanning Electron Microscope (Jeol 

Ltd, Japan) equipped with a tungsten hairpin electron gun. The purpose of the analysis was to 

scan the surfaces and cross-sections of the formulations to provide an understanding of the 

microstructure of the formulations as fresh and aged samples.  

2.3.7 Energy dispersive spectroscopy (EDS) 

EDS is one of the frequently used chemical characterisation techniques as an attachment to SEM 

or TEM. This tool offers a number of valuable advantages including rapid analysis, easy 

interpretation of results and good spatial resolution (426). The principle of this technique is the 

stimulation of the sample to emit characteristic X-rays by focusing high energy beam of photons, 

electrons or X-rays. The charged particles like the electrons cause the excitation of electron in an 

inner energy level and eject it creating an electron hole. This cause an electron from higher energy 

level to fill the hole and the energy difference between the outer and the inner energy levels may 

be released in the form of X-rays that can be detected and measured by the energy dispersive 

spectrophotometer. Because the difference in the energy levels is characteristic for the atomic 

structure of each emitting element, EDS can provide information (qualitative and quantitative) 

about the atomic composition of the sample spot under analysis (425). In order to confirm the 

identity of the detected crystal growth and taking advantage of the presence of the two chlorine 



Chapter 2   Materials and methods  

 

85  School of Pharmacy / University of East Anglia 

 

atoms in the structure of felodipine which serve as a chemical marker for the identification, EDS 

(INCA Energy manufactured by Oxford Instruments) combined with SEM was used in this study.  

2.3.8 Powder X-ray diffraction (PXRD) 

X-rays are high energetic electromagnetic radiations having an energy ranging from 200 eV to 1 

MeV which specifies their location in the spectrum between γ-rays and ultraviolet (UV) radiations 

(427). The principle of X-ray diffraction is explained by Bragg who noticed that atoms or 

molecules of crystals are arranged in a regular way in space and this arrangement can be described 

as parallel plates separated by certain distance d. When X-rays applied on crystals, the scattering 

centres in the plane act as a mirror for the incident beam of X-rays. A constructive interference 

results from the reflection of X-rays by two planes separated by certain distance. This 

phenomenon is explained by Bragg’s law (Equation 2.6): 

2d sin Ɵ = nλ …………….....Equation 2.6 

where d is the interplanar spacing of the diffracting planes, Ɵ is the incidence angle of X-rays, n 

is an integral number of wavelengths, and λ is the wavelength of the X-ray beam. 

Generally, X-ray diffraction is composed of three basic components including X-ray source, 

sample under investigation and the X-ray detector. These parts lie in the circumference of single 

circle known as the focusing circle and the angle between the X-ray source and the plane of the 

specimen is Ɵ while the angle between the X-ray projection and the detector is 2Ɵ. PXRD is 

considered as one of the fundamental methods for the analysis of crystalline structures in the 

pharmaceutical field. Because the majority of drugs are crystalline solids, this analytical technique 

has been used mainly for the determination of structural fingerprints of solid matter qualitatively 

and quantitatively (427, 428). The purpose of using PXRD (Thermo ARL Xtra X-ray 

diffractometer; Thermo Scientific, Switzerland) in this project is to investigate the presence or 

absence of crystalline felodipine and detecting the possible polymorphic transformation in 

different formulations.  

2.3.9 X-ray micro computed tomography (XμCT) 

XµCT is a 3D X-ray imaging technique that has been widely used in a diverse range of 

applications to study the microstructure of objects without causing damage to the original sample. 
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In contrast to X-ray diffraction methods, where X-rays are not absorbed but are reflected by an 

ordered array of matter, with a XµCT experiment it is the absorption of X-rays that results in the 

image, in a manner analogous to transmission microscopy. The differentiation of different phases 

by XµCT relies on the electron density differences that are characteristic of different elements. In 

the pharmaceutical industry, XµCT is used routinely to identify physical imperfections in solid 

dosage forms showing a high density contrast such as voids and cracks in tablets and coatings 

(429, 430). Therefore, the ability of the technique to distinguish materials with similar attenuation 

coefficients such as amorphous and crystalline forms of the same drug can be extremely limited 

(431) unless synchrotron radiation is used to improve the phase contrast (432, 433). However, for 

the conventional XµCT used in this study, in theory, if sufficient electron density differences are 

present between different phases contained within a sample, XµCT should be effective for 

resolving the distribution of these phases in 3D. The distribution of solid excipients in compressed 

tablets has been studied using XµCT based on this principle (434). However, it has not been 

widely used to investigate phase separation in solid dispersions. In this study, XµCT instruments 

have been used to investigate the heterogeneity and spatial distribution of different phases in 

felodipine solid dispersions with various drug loading percentages (0–30% w/w). Two types of 

XµCT equipment were used to achieve this objective; Phoenix v[tome]x m system (General 

Electric, Wunstorf, Germany) and SkyScan1172 high-resolution X-ray micro computed 

tomography (XµCT) scanner (Bruker-microCT, Kontich, Antwerp, Belgium). 

2.3.10 Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) 

spectroscopy 

ATR-FTIR is considered as one of very common vibrational spectroscopic characterisation 

technique that has many applications in the pharmaceutical field basically for elucidating the 

chemical structure of different materials. Normally, this spectrophotometric tool uses the mid-

infrared electromagnetic radiation within the wavenumber range of (4000-400 cm-1) to stretch or 

bend the chemical bonds within the molecules absorbing these radiations resulting in a complex 

and unique fingerprint specific for the sample under investigation (435). 

The sampling in ATR-FTIR is based on contact mode in which a crystal of high reflective index 

and excellent IR transmittance features such as diamond is used. This method offers a number of 

advantages compared to the other methods because this technique is quick and there is no need 

for further processing (such as milling and mixing with other materials) which is required during 
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sample preparation prior to scanning using other methods. This has great impact on removal of 

the destructive effect of preparation which might change the characteristics of the sample. 

The basic principle of ATR accessory is depending on measuring the changes that occur in totally 

internally reflected infrared radiation when they come into contact with a sample. In order for the 

internal reflectance to occur, the angle of incidence of IR beam should be greater than a critical 

angle Ɵc (a function of the refractive indices between the sample and ATR crystal) as expressed 

in Equation 2.7.  

  Ɵc = sin -1(n2/n1)  …………….....Equation 2.7 

where n2 is the refractive index of the sample and n1 is the refractive index of the crystal. Moderate 

angles of incidence are obtained by using crystals like Ge, ZnSe, or diamond which have a much 

higher refractive index compared to that of organic compounds. As a result of the internal 

reflectance of the IR beam, the generation of an evanescent wave which extends behind the 

surface of the sample into the sample held into contact with the crystal. The effective penetration 

depth (dp) defined as the distance from the ATR crystal-sample interface to the depth at which 

the decay in the intensity of the evanescent wave reaches 37% of its original intensity and can be 

expressed by Equation 2.8: 

  dp = λ /2πnp (sin2Ɵ - nsp 2)1/2 …………….....Equation 2.8 

where λ is wave length of IR beam, np is the refractive index of the ATR crystal, Ɵ is the angle 

of incidence of IR radiation, and nsp= n2/n1 is the ratio of the refractive indices between the sample 

and the internal reflective element (crystal) (436). 

In this study ATR-FTIR was used to characterise felodipine solid dispersions prepared by HME-

IM and FDM 3D printing. The attention was focused on understanding the fingerprints of the raw 

materials, physical mixes and processed samples and investigating the possibility of polymorphic 

transformation of the model drug and its ability to interact with the components of the carrier 

mixtures. IFS 66/S FTIR spectrometer (Bruker Optics Ltd, Coventry, UK) fitted with a Golden 

Gate® ATR accessory with temperature controllable top plate (Specac, Orpington, UK) and 

diamond internal reflection element was used in this study. 
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2.3.11  Fourier transform Infrared (FTIR) imaging  

FT-IR imaging is a powerful characterisation techniques well suitable for investigating the 

distribution and the dynamics of different components in heterogeneous multicomponent 

formulations. In this method, the spatial resolution of individual components is achieved 

according to the spectral response of each detection element. The collected spectra are used to 

build up a chemical map of the sample under investigation (437, 438). This technique is operating 

in different methods including absorption, transmission or reflection modes (the last two modes 

through the use of ATR as complimentary accessary). ATR-FTIR imaging has many advantages 

over the original FTIR imaging including the minimal sample preparative procedures which may 

be useful to maintain the integrity of the sample and suitability for samples having high spectral 

absorption properties like water containing systems. Generally, ATR- FTIR imaging has many 

pharmaceutical applications including studying dynamic systems (tablets dissolution, water 

sorption, crystallisation and polymer dissolution in organic solvents) and the chemical distribution 

of heterogeneous samples (439).  In this study, the heterogeneity of the surface composition was 

assayed with a Nicolet iN10MX infrared microscope operating in reflection mode.  

2.3.12 Laser diffraction (LD) particle size analysis 

Particle size is a critical formulation parameter that affects many physicochemical and 

biopharmaceutical properties of drugs in their final dosage forms like release profile, absorption 

rate, flow properties, mixing and segregation of powders and irritability of ophthalmic 

preparations. There are different methods used for the analysis of particle size including: 

microscopy and image analysis, laser diffraction, dynamic light scattering, coulter counter, etc. 

with different principles of operation and applications. Among these techniques, laser diffraction 

is widely used in pharmaceutical industry due to its fast analysis, robustness, reproducibility and 

precision of results and suitability for broad spectrum of products like liquid, solid, and gaseous 

dispersions. The principle of operation for laser diffraction is based on the relationship between 

the particle size and the angle and the intensity of the diffracted laser light. The detected 

information about the intensity and the angle of diffracted light is then processed using an 

algorithm based on Mie scattering theory that transform these data into particle size results (440). 

In this study, laser diffraction (Helos/Rodos 1636, Sympatec GmbH, Germany) was used to 

measure the particle size of felodipine form different batches as received from the supplier to 

investigate the impact batch to batch particle size variability on the formulation process. 
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Felodipine particles were dispersed in a filtered saturated aqueous solution of felodipine under 

sonication and stirring inside 50 mL quartz cuvette. Five replicates for each sample were analysed. 

2.4 Evaluation methods 

2.4.1 In vitro release profiles 

In vitro drug release is a critical evaluation test to provide quantitative and kinetic information 

about the ability of the dosage form to liberate the drug and make it available at the site of 

absorption. For HME-IM patches designed for buccal administration, unidirectional dissolution 

studies to simulate the release profile for systemic buccal administration were conducted using 

the paddle over disc method (similar to USP apparatus 5) as illustrated in Figure 2.13 using a 

dissolution apparatus (Caleva 8ST, Germany). 

 

Figure 2.13: Schematic representation of the paddle over disc apparatus used for dissolution profile 

study; adapted from reference (441) 

Under sink and non sink conditions, patch samples having the equivalent of the maximum daily 

dose of felodipine (10 mg) attached to a glass disc using double adhesive tape were immersed in 

900 mL of phosphate buffer saline pH 6.8 (simulated salivary fluid) at 37 ± 0.5°C and 100 rpm 

paddle rotation. At different pre-determined time intervals, 5 mL samples were withdrawn and 

filtered using a 0.45 um filter unit (Minisart NML single use syringe, Sartorius, UK). The filtered 

samples were then diluted with an equal volume of absolute ethanol and the samples were 

analysed using a UV-VIS spectrophotometer (Perkin Elmer lambda 35, USA) at 363 nm. Samples 
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withdrawn were substituted with dissolution media at the same temperature after each sample was 

taken. All drug release studies were conducted in triplicate.   

The in vitro drug release profiles for felodipine FDM 3D printed discs were measured in 

dissolution testing apparatus (Caleva 8ST, Germany) using the paddle method (USP apparatus 1). 

A paddle rotation speed of 100 rpm and 900 mL of pH 1.2 HCl or phosphate buffer pH 6.8 at 37 

± 0.5 ̊C were used for all experiments. The pure crystalline drug (approximately 5 mg in powder 

form) and disc shaped dispersions containing the equivalent of the daily dose (5 mg) of the drug 

were used in this study. Under non-sink conditions, 5 mL dissolution samples were withdrawn at 

pre-determined time intervals. The samples were directly filtered through a membrane filter with 

0.45 µm pore size (Minisart NML single use syringe, Sartorius, UK). The filtered sample solutions 

were diluted with equal volume of ethanol. 5 mL of fresh pre-warmed (37 ± 5 C̊) dissolution 

media was added to the dissolution vessel after each sampling. The samples were analysed using 

a UV–VIS spectrophotometer (Perkin Elmer lambda 35, USA) at 363 nm. All dissolution tests 

were performed under non-sink conditions with no addition of surfactants in the media in order 

to minimise the effect of polymer-surfactant interactions on the drug release behaviour from the 

formulations. All drug release studies were conducted in triplicate. 

2.4.2 Determination of drug loading efficiency 

Accurately weighed drug loaded FDM 3D printed discs of different formulations were dissolved 

in a beaker containing 200 mL of 50:50 simulated gastric fluid pH 1.2 and absolute ethanol. The 

beaker was covered with a parafilm tape to minimise solvent evaporation during dissolution. The 

medium was stirred using magnetic stirrer at room temperature. After complete dissolution, 5 mL 

samples were withdrawn and filtered using 0.45 µm pore size (Minisart NML single use syringe, 

Sartorius, UK). The filtered samples then scanned for their content of felodipine using a UV–VIS 

spectrophotometer (Perkin Elmer lambda 35, USA) at 363 nm. The loading efficiency 

measurements for the loaded discs were carried out in triplicate. 

2.4.3 In vitro mucoadhesion study 

Mucoadhesion is considered as a critical parameter for the successful delivery of drugs from 

buccal patches to the systemic circulation. The description of mucoadhesion is generally related 

to the degree of interaction between the polymers with adhesive properties with the epithelium of 
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the site of application. Mucoadhesivness of buccal patches can be estimated by measuring the 

force required to detach the patch from substrate and work of adhesion or which give insights for 

the retention pattern of these patches at the application surface (441). There are many approaches 

for quantitative determination of mucoadhesion force based on measuring the shear strength to 

evaluate the force mucoadhesion (442-444). Measuring the tensile strength is the most widely and 

accurate method to assess the mucoadhesivness of buccal films especially after the development 

of benchtop texture analyser (441). 

In this study, the mucoadhesive measurements were carried out on felodipine buccal patches 

prepared by HME-IM technique using a TA-XT2 Texture Analyser (Stable Micro Systems, 

Surrey, U.K.) fitted with a 5 kg load cell in tension mode. Felodipine loaded buccal patches (n = 

5) having an area of 1.56 cm2 were attached to the cylindrical perspex probe (1.2 cm diameter and 

4.5 cm length) using double-sided adhesive tapes. Aqueous gelatin solution in a concentration of 

6.67% w/v was allowed to set as solid gel in a Petri dish (diameter 88 mm), which was used to 

simulate the adhesion of buccal mucosa. Prior to each measurement, the gelatinous substrates 

were equilibrated with 1 mL of 2% w/v porcine mucin solution (pH of 6.8) and fixed on the 

platform of the texture analyser. For all tests, the probe moved at a pretest speed of 0.5 mm/s, a 

test speed of 0.5 mm/s, and a post-test speed of 1 mm/s, with an applied force of 0.5 kg, a return 

distance of 10 mm, and a contact time of 60 s. During the post-test period, the probe was lifted 

automatically with 0.05 kg force. 
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3.1 Introduction 

The production of solid dispersions by thermal processing such as HME and FDM 3D printing is 

considered as an efficient approach to improve the dissolution properties of poorly water-soluble 

drugs (8, 445-447). Preformulation studies are essential part for the development of any 

pharmaceutical product as they provide the scientific basis needed during the formulation and 

evaluation processes. These studies involve physical and chemical characterisation of the drug(s) 

under investigation together with the pharmaceutical excipients needed for the fabrication of the 

intended product. These investigations use a wide variety of physicochemical characterisation 

techniques, prediction methods and evaluation studies to be used as a framework during the next 

stages of drug development process (151).  In this chapter, the physicochemical properties of 

felodipine and the other excipients presented in Chapter 2 were characterised using different 

thermal and spectroscopic characterisation techniques including ATR-FTIR, DSC, MTDSC, 

PXRD, DVS and SEM. These tools were used to provide information about the thermal properties 

of the drug and the excipients including melting, glass transition (Tg), recrystallisation, thermal 

history, crystallinity, thermal stability and moisture uptake of the formulation components. In 

addition, spectroscopic methods were used to provide details about crystalline and amorphous 

transformations, detecting functional groups that may be involved in intermolecular interactions 

and morphological properties. Furthermore, DSC was used to investigate the suitable blends of 

the excipients to be used for the development of the loaded formulations. Estimating drug-

excipient(s) miscibility using solubility parameter based on group contribution (Hoftyzer and Van 

Krevelen and Hoy) and melting point depression methods were used to predict the miscibility of 

the components as explained in Chapter 1 (83, 84).  

Research Objectives: 

1. To investigate the physicochemical properties of the raw and physical mixtures of drug-

excipients materials used in the formulation of solid dispersions. 

2. To study the thermal properties of PEG/PEO blends and how the addition of surfactants 

could affect their behaviour. 

3. To estimate the solubility parameters of felodipine and other formulation components in 

order to predict their miscibilities. 
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3.2 Materials and Methods 

3.2.1 Materials 

Felodipine (MWT =384.25 g/mole) (batch no. FP140602) was purchased from Afine Chemicals 

Ltd (Hangzhou, China). Polyethylene glycol (PEG) 4000 (average MWT = 4060 g/mole) and 

polysorbate (Tween®) 80 (MWT = 1310 g/mole) were purchased from Sigma-Aldrich (Dorset, 

UK). Vitamin E TPGS (MWT = 1513 g/mole) and two grades of polyethylene oxide (PEO K900) 

WSR 1105 (MWT= 900,000 g/mole) and (PEO K100) WSR N10 LEO (MWT= 100,000 g/mole) 

were kindly donated by BASF (Ludwigshafen, Germany) and Colorcon Ltd (Dartford, UK) 

respectively. Soluplus (average MWT 116000 g/mole), eudragit® E PO (average MWT 116000 

g/mole) and 33-38% partially hydrolysed polyvinyl alcohol (PVA LM 25) (MWT = 18,000-

25,000) were kindly donated by BASF (Ludwigshafen, Germany), Evonik Industries (Darmstadt, 

Germany) and Kuraray Co., Ltd.  (Tokyo, Japan), respectively.   

3.2.2 Methods 

3.2.2.1 Preparation of amorphous felodipine 

Amorphous felodipine was prepared by melting the drug in an aluminium weighing dish using a 

preheated hot plate at 160 C̊ using melt-cool method.  

3.2.2.2 Preparation of binary and ternary excipients’ extrudates 

PEG 4000/PEO K900 extrudates with or without surfactants (Tween 80 or TPGS) were prepared 

using co-rotating twin screw mini-extruder (HAAKE™ MiniLab II Micro Compounder, Thermo 

Electron, Karlsruhe, Germany). The physical mixtures of different binary and ternary 

combinations were mixed using mortar and pestle for at 2 minutes before feeding into the extruder. 

The extrusion process was performed at 65 °C, 100 rpm for 5 minutes. After the specified 

residence time, excipients extrudates were flushed and collected for characterisation.  



Chapter 3   Characterisation of raw materials 

  

95  School of Pharmacy / University of East Anglia 

 

3.2.2.3 Physicochemical characterisation of raw materials  

3.2.2.3.1 Thermogravimetric analysis (TGA) 

In order to investigate the thermal stability of felodipine and other excipients and estimate the 

suitability of these materials to processing conditions, TGA analyses were conducted. A Q5000 

(TA Instruments, Newcastle, USA) TGA equipment was used to analyse the samples (5-10 mg) 

by applying a temperature program of 10 ºC/min over the temperature range 25-500 ºC. 2-3 

replicates for each sample were tested and Universal Analysis software was used to analyse the 

obtained results. 

3.2.2.3.2 Differential scanning calorimetry (DSC) and modulated temperature DSC 

(MTDSC) 

In this study, Q-2000 MTDSC equipped with an RC90 cooling unit (TA Instruments, Newcastle, 

USA) was used to detect the thermal transitions of raw and processed samples. Before analysis, 

baseline temperature and heat capacity calibrations were performed. The samples were prepared 

using standard aluminium pans and lids (TA Instruments, Newcastle, USA). Dry nitrogen gas was 

used as the purge gas with a flow rate of 50 mL/min. For standard DSC mode, temperature 

programs at a heating rate of 10 ˚C/min in a range of temperatures between -80 to 180 ˚C 

(depending on the individual experimental settings) were used to scan the samples for heating, 

cooling and/or reheating cycles. For MTDSC experiments, a temperature program with an 

amplitude of ± 0.318˚C, a period of 60 second and a scanning rate of 2 ˚C/min from -80 ˚C to 180 

˚C was used. Three replicates of each sample were measured. Universal Analysis software was 

utilised for the analysis of the collected thermograms. 

3.2.2.3.3 Dynamic vapour sorption (DVS) 

DVS was used to measure the extent of moisture uptake by the raw materials used in the 

fabrication of felodipine solid dispersions using HME-IM. Isohume mode was used at constant 

relative humidity (RH) 75% and temperature 25 ˚C. Raw materials and freshly prepared samples 

were loaded in a previously tared pan of the DVS (TGA Q5000) (TA Instruments, Newcastle, 

USA). For each experiment, a drying step is initially conducted to remove the already existing 
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water in the samples by holding the sample at 0% relative humidity (RH) at 25 ˚C for 2880 

minutes or when the percentage of weight loss is ≤ 0.01% for 30 minutes indicating reaching 

equilibrium with complete removal of moisture. After that, an isohumic step is initiated at 75% 

relative humidity (RH) and 25 ˚C for 2880 minutes or when the percentage of weight gain is ≤ 

0.01% for 30 minutes indicating reaching a plateau with the maximum percentage of moisture 

absorption by the sample. The analysis was conducted for each sample as triplicate, and the 

collected data were analysed using the Universal Analysis software.  

3.2.2.3.4 Attenuated total reflectance-Fourier transform infrared spectroscopy 

(ATR-FTIR) 

Raw and processed samples were scanned using an IFS 66/S FTIR spectrometer (Bruker Optics 

Ltd, Coventry, UK) fitted with a Golden Gate® ATR accessory (Specac, Orpington, UK) equipped 

with diamond internal reflection element. All ATR-FTIR spectra were obtained using a scanning 

resolution of 2 cm-1 with 32 repeated scans in absorbance mode in the range of wavenumbers of 

4000-550 cm-1. Opus software was used for analysing the collected results. All measurements 

were performed in triplicates.  

3.2.2.3.5 Scanning electron microscopy (SEM) 

The SEM images for felodipine particles was conducted using JSM 5900LV Field Emission 

Scanning Electron Microscope (Jeol Ltd, Japan) equipped with a tungsten hairpin electron gun. 

Felodipine particles were spread over the double adhesive of the SEM stubs using double adhesive 

tape and then coated with gold using a Polaron SC7640 sputter gold coater (Quorum Technologies, 

Laughton, UK) before imaging.  

3.2.2.3.6 Powder X-ray diffraction (PXRD) 

The diffraction patterns of felodipine and all other excipients were collected using Thermo ARL 

Xtra X-ray diffractometer (Thermo Scientific, Switzerland) equipped with a copper X-ray Tube 

(λ =1.540562 Å). All samples were measured using an X-ray beam with a voltage of 45 kV and a 

current of 40 mA. The measurements were performed using an angular scan range (5 ˚ < 2Ɵ < 60 

˚), step scan mode with a step width of 0.01˚ and scan speed of 1 sec/step. 
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3.2.2.3.7 Solubility measurements 

The saturated solubility of felodipine in Tween 80 was measured by adding an excess amount of 

felodipine to 40 mL of Tween 80. The mixture was incubated at room temperature for 72 hours 

with continuous shaking at 200 rpm using a shaking incubator (MaxQ 4000, Thermo Scientific, 

USA) to facilitate the dissolution of the crystalline drug in Tween 80. After 72 hours, the 

supernatant was filtered using a 0.45 µm Millipore filter pore size membrane filters (Minisart 

NML single use syringe, Sartorius, U.K.) and 0.5 mL of the filtered solution was diluted to 100 

mL with phosphate buffer saline PBS pH 6.8. Due to the high concentration of felodipine which 

gives higher absorbance values, the solution was further diluted to 2000 mL using PBS pH 6.8 

containing 0.5% v/v Tween 80. The saturated solubility of felodipine in Tween 80 was determined 

by UV-VIS spectrophotometer (Perkin-Elmer Lambda 35, USA) at λmax 363 using the same 

standard curve constructed for measuring the solubility of felodipine in phosphate buffer saline 

(PBS) pH 6.8 containing 0.5% v/v Tween 80 (Appendix 2).  All measurements were repeated 

three times. 

3.3 Results  

3.3.1 Physicochemical characterisation of raw materials 

3.3.1.1 Felodipine 

Figure 3.1a illustrates the percentage and derivative of weight loss signals of felodipine heated 

at 10 ̊ C / min using TGA. The thermal degradation of felodipine occurred as a single step process 

with an onset at approximately 166 ̊ C and complete decomposition at 280 ̊ C. Standard DSC 

results show that felodipine form I has a melting peak at 144.6 ± 0.1 ̊C and ∆Hf about 81.66 ± 

1.64 J/g using 10 ̊ C / min (Figure 3.1b). Amorphous felodipine Tg and ∆Cp measured using 

MTDSC were 46.5 ± 0.2 ̊C and 0.34 ± 0.07 J/g.°C respectively at a heating rate of 2  ̊C / min, 

0.318 amplitude and 60 sec period as shown in Figure 3.1c. Due to the hydrophobic nature of 

felodipine, this drug has low tendency (0.21 ± 0.02% w/w) for moisture uptake as shown in 

Figure 3.2. 
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Figure 3.1: a) TGA analysis of felodipine using heating program of 10 ̊ C / min from ambient to 300 

°C (n=2); b) standard DSC thermogram of crystalline felodipine form I using 10 ̊ C / min heating 

ramp (n=3); c) reverse signal of MTDSC thermogram showing amorphous felodipine glass transition 

(Tg) using 2 ̊ C / min, 0.318 amplitude and 60 sec.s period (n=3) 
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Figure 3.2: Moisture uptake capacity of pure crystalline felodipine form I at 25 ̊C and 75% RH (n=3) 

The NH stretching vibrations in the IR spectra has been reported at 3372, 3334, 3370, 3329 cm- 1 

for the four crystalline polymorphic forms I-IV of felodipine, respectively (313-315, 318). 

Furthermore, the amorphous form shows an NH stretching peak at ~ 3339 cm-1 and peaks at 1701 

and 1682 cm-1 corresponding to the non-hydrogen bonded C=O group and the hydrogen-bonded 

C=O group respectively. The ATR-FTIR spectra for crystalline felodipine form I used in this study 

and amorphous form prepared from it by rapid cooling of the melt are shown in Figures 3.3a and 

b respectively which are consistent with data reported in the literature (315, 317). The most 

important difference between the spectra of form I and the amorphous form of felodipine are the 

peaks associated with the NH stretching, C=O stretching and CN stretching which reflects 

different strengths of intermolecular hydrogen bonding (448). Table 3.1 shows the characteristic 

absorption peaks of crystalline felodipine form I, amorphous felodipine and all other excipients 

used in this study.  
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Figure 3.3: ATR-FTIR spectrum of a) pure crystalline felodipine form I and b) amorphous felodipine 

(n=3) 
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Table 3.1: Characteristic ATR-FTIR absorption peaks of crystalline and amorphous felodipine  

Compound Chemical group Peak wavenumber (cm-1) 

Crystalline felodipine form I 

 

 

 

 

 

 

 

 

 

 

NH Stretching 3367 

aromatic CH stretching  3071 

CH stretching  2949 

C=O stretching 1688 

NH Bending 1643 

C = C ring stretching  1619, 1492 and 1445 

CN stretching 1202 

C-O-C stretching 1095 

Substituted benzene ring 725 and 800  

Cl stretching 561 

Amorphous felodipine NH stretching  3333 

aromatic CH stretching 3105 

CH stretching for CH3  2979  

CH stretching for CH2 2948 

C=O stretching 1697  

CN stretching  1206 

 

Since the determination of felodipine form I crystal structure in 1986, several studies have been 

published reporting new polymorphic forms (II-IV) obtained from various solvents (312-315, 318, 

319). The PXRD patterns of these forms are shown in Figure 3.4.  
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Figure 3.4: PXRD diffractograms of crystalline felodipine forms I-IV; adapted from reference (312) 

In this study, crystalline felodipine with the characteristics PXRD patterns of form I was used in 

the preparation of felodipine solid dispersions using HME-IM and FDM 3D printing as illustrated 

in Figure 3.5.  

 

Figure 3.5: PXRD pattern of pure crystalline felodipine form I used in this study  

It should be mentioned that the crystal habits of the polymorphs were reported to be block-shaped 

for polymorphs I (recrystallised from grown from methanol, ethanol or acetonitrile) and II 

(recrystallised in the presence of succinic acid, malonic acid or isonicotinamide in methanol). For 

form III (recrystallised in the presence of maleic acid or 4-hydroxybenzoic acid in acetonitrile), 
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plate-like crystals were reported (312, 319). However, there is no available information about the 

crystal habit of polymorph IV (recrystallised by slowly evaporation of methanol and NaOH 

mixture pH =10.0) of felodipine (319) is available. SEM image of felodipine particles is shown 

in Figure 3.6.  

 

Figure 3.6: SEM image of pure crystalline felodipine form I particles 

3.3.1.2 PEG 4000 

In this study, PEG 4000 was used as the main polymer for preparing the solid dispersions of 

felodipine using HME-IM. It was also used as one of the polymeric blend mixtures for preparing 

felodipine matrices using FDM 3D printing technique. In order to understand the basic 

physicochemical properties of PEG 4000, characterisation using TGA, DSC, ATR-FTIR and 

PXRD techniques was performed. The TGA analysis of PEG 4000 is shown in Figure 3.7a. A 

single-step degradation process was observed with extrapolated degradation onset of 376.3 ± 

5.0 ̊C. The moisture uptake capacity of this hydrophilic partially crystalline polymer was shown 

in Figure 3.7b. The results revealed that the equilibrium water absorption capacity is 1.18 ± 0.02 

using 25 ̊C and 75% RH. This low percentage of moisture uptake may be due to the small 

amorphous fraction of this polymer available for occupying moisture in addition to its high 

crystalline properties.  
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Figure 3.7: a) TGA analysis of PEG 4000 using heating program of 10 ̊C / min from ambient 

temperature to 450 ̊C (n=2) and b) the moisture uptake capacity of PEG 4000 at 25 C̊ and 75% RH 

(n=3)  

DSC analysis of PEG 4000 using standard mode is shown in Figures 3.8a-c. This polymer has a 

melting onset and peak at 55.4 ± 0.2 and 59.0 ± 0.2 ̊C respectively using heating rate of 10 ̊C/min 

as seen in Figure 3.8a. This makes this polymer as a good candidate for preparing solid 

dispersions of poorly water soluble drugs at relatively low processing temperature (38, 341, 343). 

The % crystallinity was calculated based on the results obtained from the DSC experiments (∆Hf 

=187.9 ± 4.9) and the ∆Hf of the 100% crystalline form of PEG 4000 reported in literature (449) 

which is 214.6 J/g. Using Equation 3.1, the % crystallinity of the raw material can be calculated 

as 87.6%. 
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% Crystallinity = ( Δ Hf raw / Δ Hf 100% crystalline) × 100% …………….....Equation 3.1 

 

Figure 3.8: Partial standard DSC thermograms showing semicrystalline PEG 4000 melting (a), 

crystallisation (b) and re-melting (c) transitions using 10 ̊ C / min heating and cooling ramps (n=3) 
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In addition, PEG 4000 also shows a recrystallisation peak at 40.9 ± 0.7 ̊C and ∆Hc =173.1 ± 1.2 

J/g on cooling at a rate of 10 ̊C / min from 80 ̊C as shown in Figure 3.8b. The immediate reheating 

cycle (Figure 3.8c) of the recrystallised PEG after cooling revealed the presence of two partially 

separate peaks representing the single folded and the extended crystalline forms of PEG in 

addition to a shoulder indicating twice folded form (38, 328, 450-452).  The metastable single 

folded and the stable extended forms show melting peaks at 58.2 ± 0.1 and 61.7 ± 0.1 ̊C, 

respectively. It should be mentioned that the reported Tg for PEG 4000 is -61 ̊C (449, 453).   

The ATR-FTIR spectrum of PEG 4000 is shown in Figure 3.9a and characteristic peaks 

summarised in Table 3.2 which are consistent to the reported assigned peaks (454). For PXRD, 

due to the highly semicrystalline nature of PEG 4000, it shows a characteristic diffraction patterns 

associated with the crystal lattice arrangements as seen in Figure 3.9b. 

 

Figure 3.9: a) ATR-FTIR spectrum (n=3) and b) PXRD PEG 4000 
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Table 3.2: Characteristic ATR-FTIR absorption peaks of PEG 4000, PEO K900 and PEO K100 

Compound Chemical group Peak wavenumber (cm-1) 

PEG 4000, PEO K900 and 
PEO K100 

OH stretching  3413 

CH stretching 2883 

C–O–C stretching 1145, 1096 and 1059  

crystal peak of PEO moiety 959 

C–C–O  841  

 

3.3.1.3 PEO WSR 1105 (PEO K900) 

PEO K900 was used in the fabrication of felodipine solid dispersions using HME-IM method. As 

mentioned in Chapter 2, this polymer has high molecular weight (900,000 g/mole) and good 

thermoplastic, drug release controlling and mucoadhesive properties (356-359). TGA, DSC, 

MTDSC, ATR-FTIR and PXRD techniques were used to investigate the basic physicochemical 

properties of this polymer.  Figure 3.10a illustrates the thermal stability profile of PEO using 

10 ̊C / min ramp from ambient temperature to 500 ̊C. The degradation of PEO occurred as a single 

step process with an extrapolated degradation onset at 356.3 ± 0.3 ̊C. The Tg of PEO K900 was 

found to be -53.9 ± 1.9 ̊C with ∆Cp of 0.01 ± 0.00 J/g. ̊C measured using MTDSC using heating 

rate of 2 ̊ C / min, 0.318 amplitude and 60 sec. period as shown in Figure 3.10b. The capacity of 

moisture uptake of PEO K900 was measured using DVS and found to be 1.80 ± 0.03% w/w after 

incubation at 25  ̊C and 75% RH as shown in Figure 3.10c.  
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Figure 3.10: a) TGA analysis of PEO K900 using heating program of 10 ̊ C / min from room 

temperature to 500 ̊ C (n=2); b) MTDSC thermogram showing PEO K900 glass transition (Tg) using 

2 ̊ C / min, 0.318 amplitude and 60 sec.s period (n=3) and c) moisture uptake capacity of PEO K900 

at 25 ̊C and 75% RH (n=3) 
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Due to the difference in their molecular weights, PEG/PEO polymers exist in different physical 

states with different physical properties. Members with molecular weights 300-600 g/mole are 

liquids, 1500 g/mole is semisolid, 3000-20000 are semicrystalline solids and polymers with 

molecular weight higher than 100000 have resinous nature. The difference in their molecular 

weight is also reflected on their melting, crystallisation, crystallinity and their existence in single 

or multiple crystal forms. It was reported that the melting temperatures of PEG.s increase with 

increasing the molecular weight up to 6000 g/mole above which the melting point remains 

practically constant as the melting is dependent on the thickness of the lamellae rather than the 

molecular weight of the polymer (452).  The melting, crystallisation and re-melting of PEO K900 

are shown in Figure 3.11a-c. PEO K900 showed a folded form melting peak at 70.2 ± 0.3 ̊C with 

a ∆Hf of 172.4 ± 3.9 J/g using a heating rate of 10 ̊C/min (Figure 3.11a). This indicates that the 

% crystallinity of the raw polymer is 84.1% using 205 J/g as melting enthalpy for the 100% 

crystalline form reported in literature (455, 456). The polymer shows a crystallisation temperature 

at 50.3 ± 0.1 ̊C with a ∆Hc of 97.4 ± 3.0 J/g using 10 ̊C/min cooling ramp as shown in Figure 

3.11b. Furthermore, the immediately reheating cycle (Figure 3.11c) indicated lower melting 

temperature (66.0 ± 0.1 ̊C) and heat of fusion (∆Hf = 117.6 ± 2.3 J/g) compared to the first heating 

cycle using the same heating rate. This indicates that the recrystallised polymer in the reheating 

cycle is more folded (thinner lamellae) and metastable relative to the first cycle (452).  

 



Chapter 3   Characterisation of raw materials 

  

110  School of Pharmacy / University of East Anglia 

 

 

Figure 3.11: Partial standard DSC thermograms show semicrystalline PEO K900 melting (a), 

crystallisation (b) and re-melting (c) transitions using 10 ̊ C / min heating and cooling ramps (n=3) 
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The ATR-FTIR spectrum of PEO K900 (Figure 3.12a) shows the same characteristic IR peaks 

like those of PEG 4000 (Table 3.2) because both polymers are composed of the same monomeric 

ethylene oxide units as mentioned in Chapter 2. In addition, Figure 3.12b shows the PXRD 

diffraction patterns of PEO K900 polymer with its characteristics peaks indicating its 

semicrystalline structure.  

 

Figure 3.12: a) ATR-FTIR spectrum (n=3) and PXRD pattern of PEO K900 

3.3.1.4 Tween 80 

Tween 80 was used as solubilisation non-ionic surfactant for preparing felodipine solid 

dispersions using HME-IM and 3D FDM printing. This compound was selected for its 

solubilisation, plasticisation and absorption enhancing effects as mentioned in Chapter 2.  The 

physicochemical properties of this surfactant were investigated using TGA, MTDSC, DVS and 

ATR-FTIR. The TGA profile for Tween 80 (Figure 3.13a) illustrated that Tween 80 has an 
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extrapolated degradation temperature onset of 372.4 ± 0.8 ̊C as a single step degradation process. 

Using MTDSC, the melting, crystallisation and glass transition (Tg) of Tween 80 were found to 

be -10.2 ± 2.3, -44.6 ± 1.2 and -64.2 ± 0.6 ̊C, respectively (Figure 3.13b). In addition, this 

hydrophilic liquid surfactant has high tendency for moisture uptake estimated as 14.44 ± 0.89% 

w/w using DVS as shown in Figure 3.13c. This is an important parameter that may play a 

significant role in the physical stability of formulated solid dispersions exposed to high relative 

humidity environment.   
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Figure 3.13: a) TGA analysis of Tween 80 using heating program of 10  ̊C / min from ambient to 

500 ̊C (n=2); b) MTDSC thermogram showing the thermal events (glass transition Tg, crystallisation 

and melting) of Tween 80 using temperature program of 2 ̊ C / min, 0.318 amplitude and 60 sec.s 

period (n=3) and c) moisture uptake capacity of Tween 80 at 25 ̊C and 75% RH (n=3) 
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The ATR-FTIR spectrum (Figure 3.14) shows the characteristic FTIR bands of Tween 80 which 

are listed in Table 3.3.   

 

Figure 3.14: ATR-FTIR spectrum of Tween 80 (n=3) 

 

Table 3.3: Characteristic ATR-FTIR absorption peaks of Tween 80 

Compound Chemical group Peak wavenumber (cm-1) 

Tween 80 OH stretching  3493  

CH stretching for CH3  2922 

CH stretching for CH2 2857 

C=O stretching 1735  

C–O–C stretching 1096 

3.3.1.5 TPGS 

Vitamin E TPGS was used in this study as a semisolid surfactant to illustrate the impacts of 

surfactant physical state on the solubility and stability of felodipine solid dispersions. TPGS 

showed an extrapolated degradation onset at 353.4 ± 1.1 ̊C (Figure 3.15a). TPGS has high ability 

to uptake moisture despite its semicrystalline structure and semisolid state. The equilibrium 
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moisture absorption capacity of this hydrophilic surfactant is 12.80 ± 0.72 % w/w measured using 

DVS which is only slightly less but much slower compared to Tween 80 (Figure 3.15b). 

 

 

Figure 3.15: a) TGA analysis of TPGS using heating program of 10 ̊ C / min from ambient to 500  ̊C 

(n=2) and b) moisture uptake capacity of TPGS at 25 ̊C and 75% RH (n=3) 

TPGS is a semicrystalline non-ionic surfactant that has an asymmetric melting peak at 37.2 ± 

0.2 ̊C and ∆Hf of 100.01 ± 1.09 J/g using 10 ̊C/min temperature program as shown in Figure 

3.16a. The surfactant recrystallised in two peaks at 0.3 ± 1.2 and -15.9 ± 0.2 ̊C as shown in Figure 

3.16b. The asymmetric melting and the two distinct recrystallisation peaks suggest the presence 

of small fractions of the di-ester form of vitamin E TPGS in addition to the main mono-esterified 

form with free residuals of PEG 1000 (56, 457, 458). The reheating cycle indicates that the 

surfactant re-melted at 38.3 ± 0.4 ̊C and ∆Hf of 104.00 ± 1.3 J/g. The Tg of TPGS was measured 
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using the immediate reheating cycle at 10 C̊ after cooling at the same rate of standard DSC and 

found to be -20.0 ± 0.9 ̊C with ∆Cp of 0.32 ± 0.06 J/g. ̊C as shown in Figure 3.16c. 

 

Figure 3.16: Partial standard DSC thermograms showing semicrystalline TPGS melting (a), 

crystallisation (b) and glass transition (Tg) with re-melting (c) events using 10 ̊ C / min heating and 

cooling ramps (n=3) 
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The ATR-FTIR spectrum of TPGS indicated the presence of bands characteristics of polyethylene 

oxide (PEO) and vitamin E moieties in addition to the C=O band at 1735 cm-1 of the succinate 

group as shown in Figure 3.17a and Table 3.4. The PXRD pattern of TPGS (Figure 3.17b) 

revealed the presence of the diffraction peaks of the crystalline polyethylene oxide moiety 

especially those at 19.4° and 23.5° 2Ɵ indicating the semicrystalline nature of this surfactant 

(385). 

 

Figure 3.17: a) ATR-FTIR spectrum (n=3) and b) PXRD pattern of TPGS 
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Table 3.4: Characteristic ATR-FTIR absorption peaks of TPGS 

Compound Chemical group Peak wavenumber (cm-1) 

TPGS OH stretching 3428 

CH stretching for CH3  2885 

C=O  1735 

C–O–C stretching 1147, 1105 and 1060 

crystal peak of PEO moiety 969 

 

3.3.1.6 PEO WSR N10 LEO (PEO K100) 

PEO K100 was used as a constituent of the polymeric blend utilised in the fabrication of 

felodipine solid dispersions by FDM 3D printing. PEO K100 shows a single step degradation with 

extrapolated onset of 369.3 ± 0.3 ̊C as illustrated in Figure 3.18.  

 

Figure 3.18: TGA analysis of PEO K100 using heating program of 10  ̊C / min from room temperature 

to 475 ̊ C (n=2) 
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Thermal analysis using standard DSC revealed an intermediate melting peak between those of 

PEG 4000 and PEO K900 at 65.6 ± 0.1 ̊C with ∆Hf of 180.3 ± 4.4 J/g using 10 ̊C/min temperature 

program as shown in Figure 3.19a. This grade of PEO shows a recrystallisation peak at 41.9 ± 

0.4 ̊C with ∆Hc of 133.6 ± 10.2 J/g using 10 ̊C/min cooling rate as shown in Figure 3.19b. In 

addition, using the same heating rate, the immediate reheating cycle showed an asymmetric 

melting peak of the polymer having peak at 62.4 ± 0.1 ̊C with ∆Hf of 143.0 ± 8.6 J/g revealing 

more folding and thinner crystals as shown in Figure 3.19c (328). 
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Figure 3.19: Partial standard DSC thermograms show semicrystalline PEO K100 melting (a), 

crystallisation (b) and re-melting (c) events using 10 ̊ C / min heating and cooling ramps (n=3) 
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The ATR-FTIR spectrum and PXRD pattern for PEO K100 are shown in Figures 3.20a and 

3.20b respectively.  Due to the similarity in the monomeric unit of this polymer and PEG 4000 

and PEO K900, this polymer showed similar IR absorption bands and diffraction peaks as 

summarised in Table 3.2. 

 

Figure 3.20: a) ATR-FTIR spectrum (n=3) and b) PXRD pattern of PEO K100 

3.3.1.7 Eudragit E PO 

Eudragit E PO is a copolymer used as a main constituent of felodipine solid dispersions prepared 

by FDM 3D printing. This polymer is degraded in a two steps process at 253.0 ± 2.8 and 362.4 ± 

4.9 ̊C as shown in Figure 3.21a. Eudragit E PO is an amorphous polymer has a Tg at 46.7 ± 1.0 ̊C 

and ∆Cp of 0.40 ± 0.02 J/g. ̊C as shown in Figure 3.21b using 2 ̊ C / min, 0.318 amplitude and 60 

sec.s period MTDSC program. 
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Figure 3.21: a) TGA analysis of eudragit E PO using heating program of 10 ̊ C / min from ambient 

temperature to 500 ̊ C  (n=2) and b) reverse signal of MTDSC thermogram showing eudragit E PO 

glass transition (Tg) using 2 ̊ C / min, 0.318 amplitude and 60 sec.s period (n=3) 

The ATR-FTIR spectrum of Eudragit E PO is shown in Figure 3.22a reveals the characteristic IR 

peaks which are listed in Table 3.5. The PXRD pattern of eudragit E PO indicates the amorphous 

nature of this copolymer as illustrated in Figure 3.22b. 
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Figure 3.22: a) ATR-FTIR spectrum (n=3) and b) PXRD pattern of eudragit E PO 
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Table 3.5: Characteristic ATR-FTIR absorption peaks of eudragit E PO 

Compound Chemical group Peak wavenumber (cm-1) 

Eudragit E PO CH stretching for CH3 2949 

CH stretching for CH2 2821  

CH stretching for CH 2770  

C=O stretching 1723  

CH bending 1453  

C-O stretching 1388 

C-O-C stretching 1268 and 1239  

C-C stretching 1144  

 

3.3.1.8 Soluplus 

Soluplus is also a copolymer used in this study as the main polymer for preparing felodipine solid 

dispersions using FDM 3D printing. The TGA of soluplus indicated the degradation in two step 

processes with extrapolated onsets at 282.7 ± 0.3 and 370.4 ± 1.1 ̊C as shown in Figure 3.23a. 

MTDSC thermogram using 2 ̊ C / min, 0.318 amplitude and 60 sec.s period indicated the 

amorphous character of soluplus with a Tg of 74.1 ± 0.3 ̊C and ∆Cp of 0.42 ± 0.04 J/g  ̊C as shown 

in Figure 3.23b.  
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Figure 3.23: a) TGA analysis of soluplus using heating program of 10  ̊C / min from room temperature 

to 500 ̊ C (n=3) and b) reverse signal of MTDSC thermogram showing soluplus glass transition (Tg) 

using 2 ̊ C / min, 0.318 amplitude and 60 sec.s period (n=3) 

The ATR-FTIR spectrum of soluplus is shown in Figure 3.24a revealing its absorbance peaks 

listed in Table 3.6. The PXRD pattern of this copolymer Figure 3.24b indicates its amorphous 

character due to the absence of any diffraction peaks. 
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Figure 3.24: a) ATR-FTIR spectrum (n=3) and b) PXRD pattern of soluplus 
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Table 3.6: Characteristic ATR-FTIR absorption peaks of soluplus 

Compound Chemical group Peak wavenumber (cm-1) 

Soluplus OH stretching  3447  

CH stretching for CH3 2926  

CH stretching for CH2 2857  

C=O stretching 1732  

O-C-N stretching 1630  

CH bending 1477  

C-O stretching 1370  

C-O-C stretching 1234 

C-C stretching 1195  

 

3.3.1.9 Polyvinyl alcohol (PVA) 

PVA was used as a benchmark FDM 3D printing polymer for fabricating felodipine solid 

dispersions due to the reported good printability properties. In order to understand the properties 

of this polymer, TGA, MTDSC, ATR-FTIR and PXRD techniques were used to investigate its 

physicochemical properties. The TGA of PVA is shown in Figure 3.25a revealing degradation 

in two-step degradation process due to the partial hydrolysis state of this polymer. Also, this grade 

of PVA is completely amorphous due to the absence of any melting peak and the presence of 

single Tg at 46.1 ± 0.2 ̊C with ∆Cp of 0.60 ± 0.02 J/g  ̊C as shown in Figure 3.25b. 
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Figure 3.25: a) TGA analysis of PVA using heating program of 10 ̊ C / min from room temperature 

to 500 ̊ C (n=3) and b) reverse signal of MTDSC thermogram showing PVA glass transition (Tg) using 

2 ̊ C / min, 0.318 amplitude and 60 sec.s period (n=3) 

The ATR-FTIR spectrum of PVA is shown in Figure 3.26a revealing the characteristic IR peaks 

listed in Table 3.7. The PXRD pattern of PVA (Figure 3.26b) indicates the absence of any 

crystalline diffraction peaks revealing the amorphous nature of this grade of PVA. 
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Figure 3.26: a) ATR-FTIR spectrum (n=3) and PXRD pattern of PVA 

Table 3.7: Characteristic ATR-FTIR absorption peaks of PVA 

Compound Chemical group Peak wavenumber (cm-1) 

PVA 

 

OH stretching 3424  

CH stretching for CH2 2823  

C=O stretching 1730  

CH bending 1432  

C-O stretching 1372 

C-O-C stretching 1230 

C-C stretching 1095  
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3.3.2 Theoretical calculations of the solubility parameters of the ingredients 

The calculations of solubility parameters of felodipine and other excipients (chemical structure 

are shown in Chapter 2) using Hoftyzer and Van Krevelen and Hoy methods can be found in 

Appendix 1. Table 3.2 summarises the results of the calculations by averaging of the solubility 

parameters determined by the two approaches as recommended in literature to ensure the accuracy 

of prediction (459).  

 

Table 3.8: Summary of solubility parameter predictions calculated using group contribution methods 

Compound  δ Van Krevelen δ Hoy δ  average  δ difference* 

Felodipine 20.60 21.08 20.84 - 

PEG 4000 

PEO K900 

PEO K100 

22.00 21.44 21.72 0.88 

Tween 80 20.90 22.71 21.81 0.97 

TPGS 20.38 21.18 20.78 0.06 

Eudragit E PO 18.80 18.55 18.68 2.17 

Soluplus 18.94 24.34 21.64 0.80 

PVA 30.53 28.79 29.66 8.82 

* (difference between the solubility parameters of the drug and each one of the excipients) 

Based on the results obtained from these prediction methods, the miscibility of felodipine in the 

individual excipients at room temperature can be ranked in the following order: TPGS > soluplus 

> (PEG 4000, PEO K900, PEO K100) > Tween 80 > eudragit E PO > PVA. The rule of thumb for 

estimating miscibility reported in literature is a difference in solubility parameter (∆δ) of less than 

7 (MJ/m3)½ indicates that the substances are miscible; a ∆δ value more than 10 (MJ/m3)½ predicts 

unfavourable interaction and immiscibility between the components of the blend leading to phase 

separation. A ∆δ value of 7-10 (MJ/m3)½  indicates partial miscibility of the ingredients (60, 361). 

Based on this, all excipients used in this study are expected to possess good miscibility at room 
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temperature with felodipine except PVA which is predicated to form a partially miscible binary 

mixture with the model drug. 

3.3.3 Experimental estimation of the miscibility of PEG 4000 and PEO K900 

using DSC 

PEG 4000 and PEO K900 are the main constituents used for preparing felodipine mucoadhesive 

buccal patches using HME-IM because they provide solubilisation, mucoadhesion, low 

temperature processing properties and most importantly their easy removal after moulding 

making them suitable candidate excipients for IM processing (151).  Due to the difference in the 

molecular weights of these two grades and the inability of the theoretical methods to predict their 

miscibility due to the similarity in their monomeric units and molecular configurations, it is 

important to investigate their behaviour in order to select the most suitable combination blend. 

Thermal properties of the two polymers at different proportions using 10% w/w increments of 

PEG 4000 relative to PEO K900 were analysed using DSC. The results of the first heating cycle 

of the physical mixtures show both melting peaks and the magnitude of each peak is 

corresponding to the proportions of their mixing ratios as seen in Figure 3.27a.  This indicates 

their immiscibility within the timescale and conditions of the DSC run. On cooling, the molten 

mixtures with the higher ratios of PEO K900 (PEG:PEO 1:9, PEG:PEO 2:8, and PEG:PEO 3:7) 

show two partially resolved crystallisation peaks corresponding to the crystallisation of the two 

polymers (Figure 3.27b). On the other hand, as the percentage of PEG 4000 increased the mixture 

started to form single crystallisation peak shifted to lower temperature as the amount of PEG 4000 

increased in the mixture. However, the reheating cycles indicate the presence of two partial 

overlapped melting peaks shifted to lower temperatures compared to the first heating cycle as 

shown in Figure 3.27c.   The appearance of two peaks during the heating, cooling and reheating 

cycles of the DSC runs with more peak separation for the mixtures containing high proportions 

of PEO K900 either indicates partial miscibility of the two polymers and/or the high viscosity of 

PEO K900 prevents the complete mixing between the two polymers inside the sealed DSC pans.  
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Figure 3.27: Standard DSC thermogram showing the a) heating cycle melting peaks; b) cooling cycle 

crystallisation peaks and c) reheating cycle melting peaks of PEG 4000 and PEO K900 physical 

mixtures with different proportions using 10 ̊ C / min heating and cooling ramps (n=3) 
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In order to further understand the effect of preparing processes on the miscibility and crystallinity 

of PEG 4000 /PEO K900, extruded blends of mixtures with different mixing proportions (3:7, 4:3 

and 7:3) were investigated using DSC after HME processing at 65 °C. The results revealed single 

asymmetric melting peaks for 7:3 and 4:3 and partially separated two melting peaks for 3:7 

PEG/PEO extruded blends as shown in Figure 3.28. Compared to physical mixtures with same 

mixing proportions, HME processing significantly enhances the miscibility of the two polymers 

especially for mixtures contain higher percentage of PEG 4000. The observation of two melting 

peaks for the 3:7 PEG 4000 /PEO K900 mixture indicates their partial miscibility after processing 

using HME experimental conditions. No significant difference in the melting temperatures of the 

blends showing single melting peaks was observed. The resultant single melting peaks’ 

temperatures are lower than that of PEO K900 and higher than that of PEG 4000. This may 

indicate that mixing different grades with different melting temperatures of this polymer can 

produce a miscible semicrystalline mixture with intermediate melting points depending on the 

proportion of mixing. 

 

Figure 3.28: Standard DSC thermogram showing melting peaks of PEG 4000 and PEO WSR 1105 

extrudates using 10 ̊ C / min heating ramp (n=3) 

The mixture of PEG/PEO K900 in a proportion of 4:3 was selected as the suitable blend that gives 

a maximum reduction in polymer crystallinity (maximum amorphous fraction available for drug 

solubilisation) and expected to provide balancing effect of poorly water soluble drug 

solubilisation and mucoadhesion by the two polymers.  
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Figures 3.29a and b show the MTDSC thermograms of adding Tween 80 to the polymer blend 

as a physical mixture and HME extrudates respectively. As it is evident from the data, the 

transitions of the three excipients are present before processing. However, the miscibility between 

the ingredients is significantly improved after HME processing as indicated by the presence of 

single melting peak for PEG/PEO K900 blend the reduced melting peak of Tween 80. The 

presence of Tween 80 melting peak reflects the partial miscibility between this surfactant and the 

polymers. In addition, the presence of endothermic shoulder before the melting of PEG/PEO 

K900 blend (Figure 3.29b) may be due to the formation of folded form of PEG/PEO K900 

polymers representing their metastable polymorphic forms (328, 330).   

 

Figure 3.29: MTDSC thermogram showing transitions of PEG 4000- PEO K900-Tween 80 (4:3:3) 

physical mixture (a) and extrudate (b) using 2 ̊ C / min, 0.318 amplitude and 60 sec.s period (n=3) 
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The addition of TPGS to the polymeric blend as a physical mixture or extrudates is shown in 

Figures 3.30a and b. The results indicate that processing also improves the miscibility of 

PEG/PEO K900 blend as revealed by the appearance of single melting peak of the two polymers. 

However, the observation of TPGS melting peak in the physical mixture and the extrudate of this 

blend indicates its partial miscibility with the polymeric blend.  

 

Figure 3.30: MTDSC thermogram showing transitions of PEG 4000- PEO K900-TPGS (4:3:3) 

physical mixture (a) and extrudate (b) using 2 ̊ C / min, 0.318 amplitude and 60 sec.s period (n=3) 
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3.3.4 Estimation of the miscibility of felodipine and excipients used in HME-

IM formulations 

Standard DSC was used to investigate the miscibility of felodipine with the different excipients 

used in the fabrication of felodipine solid dispersions using HME-IM. The depression in the 

melting onset of felodipine was used as indicators for the miscibility of the drug in the excipients 

(Figure 3.31) (57, 87, 416, 460). The results indicate that greater depression was in the onset of 

melting in the mixture with PEG compared to other excipients using 0.6-0.8 w/w felodipine 

fractions. The depression of felodipine melting was the lowest for the mixtures containing PEO 

K900 in all proportions. Also, TPGS causes greater depression in the onset of felodipine melting 

compared to Tween 80 using felodipine fractions higher than 0.7.  It should be mentioned that the 

experimentally measured solubility of felodipine in Tween 80 using UV-VIS spectrophotometry 

was 100.24 ± 0.001 mg/mL at room temperature. 

 

Figure 3.31: Depression in the extrapolated onset of melting of felodipine in different excipients as a 

function of felodipine weight fraction (n=3) 

3.4 Discussion 

This chapter aimed to investigate the thermal and spectroscopic properties of the raw materials 

used in this study as a preformulation step in order to facilitate formulations development. TGA 

results showed that all excipients utilised in the different formulations were more thermally stable 
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compared to felodipine which is more susceptible to thermal degradation at approximately 166 ̊C. 

This may suggest a maximum processing temperature of 150 ̊C for safe processing of this model 

drug using HME-IM and FDM 3D printing. Processing PEG 4000 with PEO K900 using HME 

at 65 ̊C for 5 minutes using different proportions shows mixing improvement of the two polymers 

compared to physical mixtures. The two polymers with 4:3 and 7:3 blends of PEG 4000 and PEO 

K900 respectively show single melting peaks indicating the formation of single semicrystalline 

structure. In order to provide good solubilisation and mucoadhesion properties for the intended 

felodipine buccal patches formulations, PEG 4000-PEO K900 4:3 blend was selected as it shows 

good mixing properties between the two polymers. 

 

Tween 80 and TPGS are non-ionic surfactants with semicrystalline properties. Due to the partial 

miscibility between these two surfactants with PEG-PEO K900 polymer blend, the phase 

separated surfactant domains will be used as a solubilisation compartments to solubilise and 

stabilise felodipine as an embedded molecular dispersion within the matrix. According to 

solubility parameter predictions and the depression of onset of melting, TPGS has higher 

solubilisation capacity for felodipine compared to Tween 80. This is expected to play a significant 

role in the solubilisation and stabilisation of felodipine in the formulations. In addition, TPGS has 

higher temperatures of melting, crystallisation and Tg compared to Tween 80. Due to its melting 

at approximately 37 ̊C, TPGS is not expected to be 100% available for felodipine solubilisation 

as Tween 80 (liquid at room temperature) assuming no depression in its melting occurs when 

mixed with the drug. This may affect the extent of felodipine solubilisation by TPGS. On the 

other hand, the semisolid nature of TPGS may act as stabilisation parameter that restrict the 

diffusion of molecularly dispersed felodipine to form aggregates leading to phase separation.  

 

DSC results indicate that the melting temperature and crystallinity of polyethylene oxide polymer 

grades are affected by thermal treatment. The reduction in the melting points and crystallinity 

indicates the conversion of part of the polymer to the less stable and more folded forms. Changes 

in crystallinity of the polymers can be considered as an important parameter that may affect the 

solubilisation capacity of the carrier mixture. Reduction in crystallinity (increasing amorphous 

fraction) of the carrier polymers is expected to increase the solubilisation capacity for the drug. 

On the other hand, the stability of the amorphous and crystalline domains of the carrier mixtures 

can play a critical role in the stability of the prepared solid dispersions. Instability of the 

amorphous domains and the tendency of the polymer to increase its crystallinity may act as a 

contributing factor for drug phase separation. Therefore, monitoring the physical stability of 

semicrystalline excipients used for preparing solid dispersions is necessary.    
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As mentioned in Chapter 1, FDM 3D printing technology is recently introduced to the 

pharmaceutical field as a promising technique to provide patients individualised medicine (224-

226). Due to the limited number of pharmaceutically approved excipients are only available to 

use for fabricating formulations using this method, the use of excipient blends is suggested as an 

approach to improve the printability of excipients and provide different functionalities for 

formulations using this technique. Soluplus and eudragit E PO are widely used polymers for 

preparing solid dispersions of poorly soluble drugs using HME due to their good thermoplastic 

and solubilisation properties (73, 87, 149, 461). Blending these two polymers with polymers like 

PEG, PEO K100 and/or Tween 80 is expected to form miscible mixtures based on solubility 

parameter calculations. As mentioned in Chapter 2, PEG, PEO K100 and Tween 80 possess good 

plasticising and drug solubilisation properties that can help to reduce the processing temperature 

of FDM 3D printing and solubilise the incorporated drug.   

3.5 Conclusion 

Preformulation studies conducted in this chapter aimed to provide an insight into the fundamental 

physicochemical properties of the raw materials (model drug and excipients) and their mixing 

behaviour prior to their incorporation in the formulation using HME-IM and FDM 3D printing. 

Thermal, spectroscopic and imaging characterisation techniques were used to achieve this 

purpose. Prediction studies using group contribution and the depression in the melting onset were 

used to provide an estimation about the miscibility of the excipients with felodipine. Theoretical 

calculations revealed that felodipine is expected to have good miscibility with all excipients 

except with PVA.  The various excipients have a solubility parameter differences (from lower to 

higher) relative to felodipine with an order of magnitude ranked as TPGS > soluplus > (PEG 4000, 

PEO K900, PEO K100) > Tween 80 > eudragit E PO > PVA.  The addition of Tween 80 and 

TPGS surfactants as plasticisers to PEG/PEO K900 polymeric blend leads to the formation of 

surfactant phase in addition to the two phases of the semicrystalline polymeric blend. The 

surfactant phase separate domains can provide a solubilisation compartments for the poorly water 

soluble model drug used in this study. This will be used as a formulation strategy as illustrated in 

Chapter 4. Finally, polymer blends are suggested as an approach to improve the printability of 

pharmaceutical excipients to produce personalised medicines using FDM 3D printing technology.  
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4.1 Introduction 

Poor aqueous solubility and/or dissolution of many active pharmaceutical ingredients (APIs) 

including BCS class II drugs like felodipine is a challenging problem that affects their systemic 

absorption due to slower dissolution compared to permeation leading to inter- and intra-patient 

pharmacokinetics and absorption variations (1, 2, 462). Felodipine is widely used calcium channel 

antagonist as a potent antihypertensive and for prevention of angina pectoris. However, this drug 

is extensively metabolised in the liver (84%) into inactive metabolites which further reduce its 

systemic bioavailability (310, 462).  

As discussed earlier in Chapter 1, solid dispersion technology is considered as an effective 

formulation-based method used to overcome the poor dissolution problem with high flexibility in 

processing techniques and excipients’ choices (25, 31, 177). Fabricating transmucosal solid 

dispersions to be delivered via the buccal route processed by HME-IM offers a number of 

potential advantages including avoiding hepatic first pass effect and improving the dissolution 

profile of this poorly water soluble drug which was suggested as an approach to improve its 

systemic bioavailability (372, 463-466). HME-IM is a single step, environmentally friendly and 

cost-effective processing technique capable of producing final dosage forms with uniform content 

and thickness and much defined shape and geometry compared to the conventional solvent casting 

and direct compression methods normally used to prepare buccal formulations (208, 372, 467).  

In order to prepare solid dispersions to be used as buccal patches for delivering felodipine, two 

matrices composed of PEG 4000 and PEO K900 polymeric blend with either liquid (Tween 80) 

or waxy solid (vitamin E TPGS) non-ionic surfactants were used as carrier mixtures (abbreviated 

as CM1 for Tween 80 and CM2 for TPGS containing formulations) in this study. The excipients 

used in the fabrication of felodipine buccal patches were selected to provide solubilisation, 

stabilisation, plasticisation and promote mucoadhesive functionality to the formulations with easy 

peel-off from the IM mould (62, 151, 326, 327, 355, 360, 361, 373, 468). The theoretical and 

experimental approaches to assess the miscibility between the different constituents of the 

formulations were discussed in details in Chapter 3. Based on the miscibility predictions, the 

hypothesis of the phase behaviour of the formulation can be generated. The hypothesis behind the 

solubilisation and stabilisation of the carrier matrices is based on creating surfactant-rich 

solubilisation compartments via phase separation between the components of the carrier mixtures. 

Within this chapter, the effects of the type of surfactants used in the dispersion patches on the 
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physicochemical properties and in vitro performance of the patches were compared and discussed 

in order to gain insights into how to choose the suitable surfactants for such formulations.   

Research Objectives: 

1. To design and manufacture felodipine mucoadhesive buccal patches containing 

surfactant-rich solubilisation compartments that function to solubilise and stabilise 

felodipine using HME-IM as a single step processing at low temperature (65 ̊C).  

2. To investigate the phase separation behaviour and microstructure of the designed buccal 

patches using a range of thermal, microscopic and spectroscopic characterisation 

techniques including DSC, MTDSC, SEM, EDS, ATR-FTIR, PXRD and IR imaging.  

3. To evaluate the enhancement in the in vitro release profiles compared to crystalline 

felodipine and investigate the mucoadhesion properties of the fabricated patches. 

4.2 Materials and Methods 

4.2.1 Materials 

The selected API for this project, felodipine (batch no. FP140602), was purchased from Afine 

Chemicals Ltd (Hangzhou, China). Polysorbate (Tween® 80) MWT is 1310 g/mole was ordered 

from Sigma-Aldrich (Dorset, UK). Polyethylene glycol (PEG) 4000 average MWT is 4060 

g/mole was supplied from Sigma-Aldrich (Poole, UK). Polyethylene Oxide (PEO) WSR 1105 

(average MWT= 900,000 g/mole) was kindly donated by Colorcon Ltd (Dartford, UK). Vitamin 

E TPGS MWT is 1513 g/mole was kindly donated by BASF (Ludwigshafen, Germany). 

4.2.2 Felodipine loaded buccal patches prepared by HME-IM 

Felodipine loaded in CM1 (Tween 80 containing carrier mixture) and CM2 (TPGS containing 

carrier mixture) buccal patches were prepared using HME-IM with mixing proportions as shown 

in Table 4.1.  
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Table 4.1: Composition of felodipine loaded CM1 and CM2 buccal patches produced by HME-IM 

technique  

Formulation 
Felodipine 

(w/w) 
PEG 4000 

(w/w) 

PEO K900 

(w/w) 

Tween 80 
(w/w) 

TPGS 
(w/w) 

Placebo CM1 ----- 40% 30% 30% ----- 

10% w/w CM1 10% 36% 27% 27% ----- 

20% w/w CM1 20% 32% 24% 24% ----- 

30% w/w CM1 30% 28% 21% 21% ----- 

Placebo CM2 ----- 40% 30% ----- 30% 

10% w/w CM2 10% 36% 27% ----- 27% 

20% w/w CM2 20% 32% 24% ----- 24% 

30% w/w CM2 30% 28% 21% ----- 21% 

 

The buccal patches were prepared using a co-rotating twin screw mini-extruder (HAAKE™ 

MiniLab II Micro Compounder, Thermo Electron, Karlsruhe, Germany) connected to injection 

moulding apparatus (HAAKE™ MiniJet System, Thermo Electron Corporation, Karlsruhe, 

Germany). Felodipine and Tween 80 or TPGS (melted at 65 ̊C) were pre-mixed before being 

blended with PEG and PEO using mortar and pestle for approximately 2 minutes. The physical 

mixtures were fed into the extruder and extruded at 65˚C with a screw speed of 100 rpm and 5 

minutes of residence time. The reason for selecting 65˚C for HME-IM in this study was to 

minimise any possible thermally induced degradation (oxidation) of PEG and PEO K900 and still 

provide complete melting and sufficient mixing of the excipients. After HME, the extruded 

materials were directly flushed into the reservoir of the IM machine for producing the final buccal 

patches. The reservoir and mould temperatures were set at 65˚C for the IM process with 300 bars 

of moulding pressure for 20 seconds. After the injection process, the mould with an inner film-

shaped cavity dimension of 25 mm × 25 mm × 0.5 mm, was removed from the apparatus and 

allowed to cool at room temperature for 1 hour followed by the disassembly of the mould and the 

collection of the final HME-IM patches. The relative w/w ratios of the components of the carrier 

mixtures remain constant for all formulations with different drug loading. Images for the prepared 

patches were presented in Figure 4.1. 
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Figure 4.1: Images of the felodipine loaded HME-IM extrudates and buccal patches: A and C are 

placebo CM1 and CM2 extrudates respectively, B and D are placebo CM1 and CM2 buccal patches 

respectively, E and G are 10% w/w felodipine CM1 and CM2 extrudates respectively, F and H are 

10% felodipine CM1 and CM2 buccal patches respectively, I and K are 20% w/w felodipine CM1 

and CM2 extrudates respectively, J and L are 20% felodipine CM1 and CM2 buccal patches 

respectively, M and O are 30% w/w felodipine CM1 and CM2 extrudates respectively and N and P 

are 30% felodipine CM1 and CM2 buccal patches respectively 
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4.2.3 Physicochemical characterisation and evaluation of CM1 and CM2 

formulations 

4.2.3.1 Differential scanning calorimetry (DSC) and modulated temperature 

DSC (MTDSC) 

All samples investigated in this study using standard DSC and MTDSC were analysed using the 

same parameters as described in Chapter 3, section 3.2.2.2.2. 

4.2.3.2 Scanning electron microscopy (SEM) and energy dispersive 

spectroscopy (EDS)  

A JSM 5900LV Field Emission Scanning Electron Microscope (Jeol Ltd, Japan) equipped with a 

tungsten hairpin electron gun was used to visualise the surfaces and the cross-sections of placebo 

and felodipine loaded buccal patches. For the surface investigation, samples were used directly 

with care to avoid damaging their surfaces, while for cross-section examinations the samples were 

cut immediately after dipping the samples into liquid nitrogen. The samples were attached to SEM 

specimen stubs by double-side tape and coated with gold using Polaron SC7640 sputter gold 

coater (Quorum Technologies, Laughton, UK) before imaging. Elemental analysis imaging using 

EDS was performed to understand the uniformity of drug distribution on the flat surface of the 

patches by tracking the chlorine (Cl) atoms present in the structure of felodipine. EDS (INCA 

Energy manufactured by Oxford Instruments, Abingdon, UK) connected to the SEM was used to 

map the distribution of drug clusters using Cl in felodipine as the marker. Samples were tested 

using mapping mode. 

4.2.3.3 Powder X-ray diffraction (PXRD) 

PXRD parameters as mentioned in Chapter 3, section 3.2.2.2.6 were utilised to analyse all samples 

investigated in this study using this characterisation technique. 



Chapter 4   Formulation of felodipine HME-IM patches 

 

145  School of Pharmacy / University of East Anglia 

 

4.2.3.4 Attenuated total reflectance-Fourier transform infrared spectroscopy 

(ATR-FTIR) 

ATR-FTIR scanning for all samples was carried out using the same experimental parameters as 

mentioned in Chapter 3, section 3.2.2.2.4. 

4.2.3.5 Fourier transform infrared microscopy imaging  

The heterogeneity of the surface composition was assayed with a Nicolet iN10MX infrared 

microscope. (Thermo Fisher Scientific, Madison, WI, USA) with 25 µm spatial resolution in 

reflection mode, using an aluminium mirror as a reference. Fast maps were acquired with 1 scan 

at 16 cm-1 resolution per pixel, and detailed maps with 64 scans at 4 cm-1 resolution. Principal 

component analysis (PCA) of the spectra data in the 1800-900 cm-1 region was used to 

deconvolute the spectra in order to map the distribution of the individual components. 

4.2.3.6 In vitro mucoadhesion study 

The in vitro mucoadhesive measurements were carried out on felodipine buccal patches using a 

TA-XT2 Texture Analyser (Stable Micro Systems, Surrey, UK) fitted with a 5 kg load cell in 

tension mode (442, 469, 470). Felodipine loaded buccal patches (n=5) having an area of 1.56 cm2 

were attached to the cylindrical perspex probe (1.2 cm diameter and 4.5 cm length) using double-

sided adhesive tapes. Aqueous gelatin solution in a concentration of 6.67% w/v was allowed to 

set as solid gel in a petri-dish (diameter 88 mm), which was used to simulate the adhesion of 

buccal mucosa. Before each measurement, the gelatinous substrates were equilibrated with 1 mL 

of 2% w/v porcine mucin solution (pH of 6.8) and fixed on the platform of the texture analyser. 

For all tests, the probe moved at a pre-test speed of 0.5 mm/s, a test speed of 0.5 mm/s and a post-

test speed of 1 mm/s, with an applied force of 0.5 Kg and a return distance of 10 mm and a contact 

time of 60 s. During the post-test period, the probe was lifted automatically with 0.05 Kg force. 

4.2.3.7 In vitro drug release studies 

The in vitro drug release profiles were measured in dissolution testing apparatus (Caleva 8ST, 

Germany) using paddle over disc method (similar to USP apparatus 5) in which a unidirectional 

release is achieved to simulate the situation inside the buccal cavity. A paddle rotation speed of 
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100 rpm and 900 mL of phosphate buffer saline pH 6.8 (simulated salivary fluid) at 37 ± 0.5 ˚C 

was used for all measurements.  Patches containing 10 mg of the drug were fixed to glass disks 

(5 cm in diameter) using double adhesive tape to allow complete immersion of these patches into 

the dissolution media. For sink condition dissolution tests, 0.5% (v/v) Tween 80 was added to the 

dissolution media. For the non-sink condition dissolution tests, no additional surfactant was added 

into the dissolution media. 5mL of the dissolution samples were withdrawn at pre-determined 

time intervals. The samples were directly filtered through a membrane filter with 0.45 µm pore 

size (Minisart NML single use syringe, Sartorius, UK). For the non-sink condition tests, the 

filtered sample solutions were diluted with equal volume of ethanol. 5 mL of fresh pre-warmed 

(37 ± 0.5 ˚C) dissolution media was added to the dissolution vessel after each sampling. The 

samples were measured using a UV–VIS spectrophotometer (Perkin-Elmer Lambda 35, USA) at 

363 nm. The measured absorbance values for the dissolution samples at different time intervals 

were converted to concentration values using the calibration curves described in Appendix 1. All 

drug release studies were conducted in triplicates.  

4.3 Results  

4.3.1 Physicochemical characterisation of placebo and felodipine loaded 

HME-IM buccal patches 

4.3.1.1 Thermal characterisation of CM1 and CM2  

In this Chapter, DSC and MTDSC were used to investigate the solubilisation limits of CM1 and 

CM2 matrices for felodipine different loadings, felodipine physical state in the different 

formulations and the impacts of felodipine loading on the behaviour of CM1 and CM2 phases 

before and after HME-IM processing. Preformulation studies indicated that CM1 and CM2 are 

partially miscible with detectable Tween 80 and TPGS surfactant phases even after processing 

using HME. As PEG and PEO K900 are semi-crystalline polymers, in literature APIs have been 

claimed to be solubilised in the amorphous regions of these two polymers for the drugs having 

favourable interactions with them (471-474). Therefore, this study takes the assumption that the 

formation of amorphous molecular dispersion with felodipine largely occurs in the amorphous 

regions of CM1 and CM2 blends as suggested in the literature (471-474).  
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CM1 patches 

For CM1 system, as mentioned in Chapter 2, felodipine has an experimentally measured solubility 

of 100.24 ± 0.001 mg/mL in Tween 80 at room temperature. Based on the prediction of the drug 

containing binary systems, Tween 80 has more solubilisation capacity for felodipine, followed by 

PEG and PEO K900 due to the low proportion of amorphous content in these polymers. Therefore, 

one could predict that an under-saturated drug dispersion containing all these materials should 

contain three types of domains of Tween 80-felodipine, amorphous PEG-PEO -felodipine and 

crystalline PEG-PEO K900, with Tween 80-felodipine domains having the higher drug content 

than PEG-PEO-felodipine domains. However, this prediction is based on the assumption of 

minimal interaction between Tween 80 and PEG-PEO K900 phases. Within the thermodynamic 

solubility between all ingredients, domains with complex compositions containing more than two 

ingredients may also present. Altering the concentration of any one of the ingredients in the 

quaternary system could lead to dynamic changes in the phase separation behaviour of the system. 

Figure 4.2 shows there is no melting of crystalline felodipine was detected in the physical 

mixtures and HME-IM CM1 patches loaded with 10-30% felodipine. The disappearance of drug 

melting peak in all loaded formulations is due to thermal dissolution of crystalline felodipine 

fraction in samples loaded with 20-30% drug loading during DSC ramps in the lower melting 

excipients forming CM1 blend as confirmed by other characterisation techniques like SEM, EDS, 

ATR-FTIR and PXRD shown later in this chapter.   
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Figure 4.2: Standard DSC (10ºC/min scanning rate) thermograms of CM1 physical mixtures and 

drug loaded patches with 10-30% loading (n=3) 

It is also noted that the onset and peak temperatures of the melting transitions PEG-PEO K900 of 

all felodipine loaded CM1 matrices are lower than the ones of the placebo patches (Figure 4.2 

and Table 4.2). It can be seen that with increasing the drug load from placebo to 20%, the melting 

peak temperatures depressed by approximately 3.6 ̊ C. The depression in the melting of crystalline 

PEG-PEO K900 is likely to be associated with the dissolution of felodipine in the amorphous 

fractions of the mixture, which leads to reduced degree of order and possibly smaller size of 

crystalline regions of the polymers (475). Increasing the loading percentage to 30% causes less 

depression in melting temperatures compared to lower loading percentages. This may be 

attributed to the saturation of felodipine in the PEG-PEO K900 phase (as evidenced by the 

presence of the crystalline drug in these patches). Thus no additional drug is dissolved in PEG-

PEO K900 phase to cause further melting depression. The melting enthalpy values can be used as 

a measure of the crystallinity level of the polymers. There is no significant reduction in the 

crystallinity of the polymers are observed after drug incorporation up to 20% loading considering 

the proportion of the two polymers in the different mixtures. However, samples loaded with 30% 

felodipine show 8.2% reduction in crystallinity compared to placebo sample. The decrease in 

crystallinity of 30% loaded samples may be attributed to the presence of the crystalline fraction 
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of felodipine leading to defective crystallisation of PEG-PEO K900 blend reflected as a reduction 

in crystallinity.  

Table 4.2: Melting Temperature (Tm) depression of PEG-PEO K900 and surfactant phases caused 

by drug loading in different CM1 HME-IM patches using DSC at 10°C/ min (n=3; average ± SD) 

Formulation PEG-PEO 
K900 Tm Peak 

(˚C) 

PEG-PEO 
K900 

∆Hf (J/g) 

Tween 80 Tm 
Peak (˚C) 

Tween 80 ∆Hf 
(J/g) 

Placebo CM1 63.6 ± 0.3 125.3 ± 0.4 -10.3 ± 0.2 6.2 ± 0.1 

10% CM1 61.8 ± 0.1 112.0 ± 3.9 --- --- 

20% CM1 60.0 ± 0.1 98.9 ± 1.8 --- --- 

30% CM1 59.7 ± 0.1 80.5 ± 0.9 --- --- 

 

Compared to placebo CM1 patch, the melting of Tween 80 almost disappeared in the non-

reversing signals of all felodipine-loaded CM1 patches as seen in Figure 4.3. The fact that during 

the pre-mixing and HME-IM process, crystalline felodipine was pre-dispersed and some 

proportion was dissolved in the Tween 80 is possibly responsible for the absence of the melting 

of Tween 80 in these systems. The dissolved felodipine in the Tween 80 could significantly disrupt 

and even prevent the crystallisation of Tween 80. In addition, the incorporation of the hydrophobic 

drug in the mixture could improve the miscibility of Tween 80 and PEG-PEO K900, as the drug 

could better mix with the hydrophobic tail group of Tween 80 and allow better interaction of the 

hydrophilic head group of Tween 80 with PEG-PEO K900. This again can prevent the 

crystallisation of Tween 80; thus no melting of Tween 80 was observed. This may suggest the 

creation of single Tween 80- rich amorphous phase which can act as a solubilisation domains for 

felodipine.  
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Figure 4.3: Non-reversing heat flow signal of the MTDSC results of CM1 physical mixes and buccal 

patches of placebo and patches loaded with 10% - 30% w/w felodipine (n=3) 

The Tg values of PEO K900, Tween 80 and TPGS were measured as -53.9 ± 1.9, -64.2 ± 0.6 and 

-20.0 ± 0.9 ºC, respectively. The Tg values for PEG was reported in the literature as -61 (449, 453). 

Drug incorporation also led to the changes in the Tg of CM1 patches. As seen in Figure 4.4 and 

Table 4.3, although PEG and PEO K900 are semi-crystalline polymers, a single Tg of the 

amorphous portions of their mixture with Tween 80 can be clearly detected indicating single 

amorphous phase for three compounds within the detection limits of the DSC. For CM1 patches 

with 10 and 20% drug loading, the amorphous content of the matrices increased by approximately 

20% and 52% (w/w), respectively compared to physical mixtures using the ∆Cp values as shown 

in Table 4.3. This may indicate the increase in miscibility between the PEG-PEO K900 and Tween 

80 caused by drug solubilisation in the amorphous fraction. There is no significant increase in 

amorphous fraction after HME-IM in the patches with 30% felodipine loading compared to the 

physical mixture. 

By comparing the ∆Cp values of the physical mixtures (without pre-heating) at the glass transition, 

it is noted that adding a crystalline drug to the physical mixture of PEG-PEO-Tween 80 leads to 
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increase in ∆Cp values. This increase in ∆Cp could be explained by the dissolution of felodipine 

in PEG-PEO-Tween 80 amorphous phase during mixing.  

 

Figure 4.4: MTDSC Reversing heat flow signals of CM1 physical mixes and buccal patches of placebo 

and patches loaded with 10% - 30% w/w felodipine (n=3) 

It should be borne in mind that the formation of molecular dispersions of felodipine in the matrix 

should shift the Tg to a higher temperature, as the Tg of amorphous felodipine is 46.5 ± 0.2 ºC 

(measured by MTDSC as shown in Chapter 3). The increases in the Tg temperatures (by up to 

approximately 6.7 ± 0.3 ºC) of the physical mixtures with felodipine in comparison to the placebo 

physical mixture further confirm the hypothesis of felodipine being dissolved into the Tween 80 

rich phase. Further increases of Tg values are clearly observed for all CM1 HME-IM drug-loaded 

patches indicating higher level of molecular mixing of felodipine into the Tween 80-PEG-PEO 

K900 amorphous phase. However, with 30% drug loading the Tg of the patches shifted to similar 

temperature as 10% loaded systems, indicating similar amount drug to the 10% systems was 

molecularly dispersed in the matrices. This effect of drug loading on the ternary blend of Tween 

80-PEG-PEO K 900 can be clearly seen in Table 4.3 and Figure 4.5 in the changes in both the Tg 

temperature and ∆Cp values at Tg with drug loading. Table 4.3 shows the detailed measurements 

of the values of ∆Cp and Tg of the glass transition regions of all physical mixtures and patches. It 

can be clearly seen that placebo mixtures and patches have the lowest Tg and the incorporation of 
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felodipine increases the Tg of the mixtures and patches. With increasing the drug loading from 0-

20%, the Tg and ∆CP values increase indicating the increased amount of amorphous material in 

CM1 patches. However, further increasing the drug loading to 30% led to the presence of the 

crystalline drug in the formulation and this is also reflected by the reduced Tg and ∆CP values in 

comparison to the values of the samples with 20% drug loading. These results indicate that 20% 

drug loaded patches are likely to be supersaturated with dissolved drug.  

Table 4.3: Tg and ∆Cp values of placebo and felodipine loaded CM1 physical mixtures and HME-IM 

patches (10% - 30% w/w) measured using MTDSC (n=3; average ± SD)   

Drug loading Tg (˚C) mid-point ∆CP (J/g.°C) 

Placebo CM1 PM -62.1 ± 0.5 0.18 ± 0.03 

Placebo CM1 patch -60.8 ± 0.6 0.13 ± 0.01 

10% CM1 PM -56.4 ± 0.1 0.25 ± 0.03 

10% CM1 patch -51.0 ± 0.2 0.30 ± 0.02 

20% CM1 PM -55.4 ± 0.3 0.23 ± 0.01 

20% CM1 patch -38.7 ± 0.2 0.35 ± 0.03 

30% CM1 PM -55.9 ± 0.0 0.25 ± 0.00 

30% CM1 patch -51.3 ± 0.5 0.24 ± 0.02 
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Figure 4.5: Tg and ∆Cp values of the CM1 samples plotted against felodipine loading percentage (10% 

- 30% w/w) using MTDSC (n=3; average ± SD) 

CM2 patches 

The predicted miscibility of felodipine with different excipients used in CM2 revealed that TPGS 

has better solubilisation properties for felodipine compared PEG-PEO K900 polymeric blend. In 

addition, the miscibility of felodipine in TPGS is also predicted to be higher than that of Tween 

80. On the other hand, TPGS has shown to have lower miscibility with PEG and PEO K900. All 

these preformulation predictions may provide an indication that the phase behaviour of CM2 will 

be different compared to CM1 formulations. After felodipine had been incorporated in the CM2 

patches, no crystalline felodipine melting was detected by DSC in any patches as seen in Figure 

4.6. As earlier, the ATR-FTIR and PXRD results indicated that crystalline felodipine was present 

in at least in the 30% drug loaded patches, this result suggests that thermal dissolution of 

crystalline felodipine in the molten excipients occurred during DSC runs. These results are also 

confirmed by the absence of felodipine melting peak in felodipine 10-30% w/w loaded CM2 

physical mixtures. 
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Figure 4.6: Standard DSC (10ºC/min scanning rate) thermogram of CM2 physical mixtures and drug 

loaded patches with 10-30% loading (n=3) 

For CM2 felodipine loaded HME-IM samples, Figure 4.6 and Table 4.4 indicate that the TPGS 

crystalline phase is detectable in all samples with different drug loadings. The melting transitions 

of TPGS and PEG-PEO K900 in the drug loaded patches shifted to lower temperatures than those 

observed for the placebo CM2 patches. These melting point depressions of the excipients are 

likely caused by the dissolved felodipine in the TPGS and PEG-PEO K900 phases during the 

HME-IM process which may lead to higher level of crystal defects compared to the placebo CM2 

formulation (476). In addition, no significant reduction in the crystallinity of the PEG-PEO K900 

polymers is observed after drug incorporation up to 20% loading. However, samples loaded with 

30% felodipine show 4.5% reduction in crystallinity compared to placebo CM2 sample. This 

slight reduction in crystallinity may be attributed to the presence of the crystalline fraction of 

felodipine leading to defective crystallisation of PEG-PEO K900 blend. The melting transition 

temperatures show drug-loading dependence, as seen in Figure 4.6 and Table 4.4. It was noted 

that the lowest melting points of TPGS and PEG-PEO K900 were obtained in the patches with 

20% drug loading. This may indicate that the 20% patches contain most solubilised drug in the 

matrices which approaches the saturation or even potentially supersaturation of the drug in the 

polymer matrices. Further increasing the drug loading to 30% leads to the presence of 

undissolved/recrystallised crystalline drug accompanied by a shift in the melting peaks of TPGS 

to higher temperatures than were observed in the 10 and 20% loaded patches. However, the 
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melting temperatures of TPGS are still lower than those of the placebo suggesting the presence 

of solubilised drug in the matrices. 

Table 4.4: Melting temperature (Tm) depression of PEG-PEO K900 and surfactant phases caused by 

drug loading in different CM2 HME-IM patches DSC 10°C/ min (n=3, average ± SD) 

Formulation PEG-PEO 
K900 Tm Peak 

(˚C) 

PEG-PEO 
K900 

∆Hf (J/g) 

TPGS Tm 
Peak (˚C) 

TPGS 

∆Hf (J/g) 

Placebo CM2 64.1 ± 0.3 124.7 ± 2.1 37.5 ± 0.1 22.2 ± 1.0 

10% CM2 62.1 ± 0.3 105.5 ± 5.6 28.9 ± 0.3 15.2 ± 0.9 

20% CM2 59.6 ± 0.1 96.8 ± 3.0 20.4 ± 0.4 6.2 ± 0.4 

30% CM2 58.4 ± 0.3 83.9 ± 0.3 24.9 ± 1.5 5.6 ± 1.0 

 

For CM2 formulations, due to the high semi-crystalline nature of PEG, PEO K900 and TPGS, no 

Tg was detected for the placebo samples using standard and MTDSC modes of the DSC for both 

the physical mixture and the HME-IM samples. In addition, no Tg also was detected for the 

physical mixtures of all felodipine loaded mixtures as seen in Figure 4.7 indicating limited 

miscibility between TPGS and PEG-PEO K900 phases and limited miscibility of felodipine in 

the phase separated domains. However, loading felodipine in the HME-IM CM2 matrices causes 

the appearance of Tg events close to the detected Tg of TPGS at -20.0 ± 0.9 ºC. As seen in Figure 

4.7, the Tg for the 10, 20 and 30% w/w were detected at -23.7 ± 0.4, -22.2 ± 0.4 and -21.4 ± 0.8 

ºC respectively. The detection of the Tg values close to that of pure TPGS together with depression 

in the melting of this surfactant strongly suggests felodipine solubilisation in TPGS phase. Slight 

shifting the Tg values to higher temperature reveals the antiplasticising effect of the drug. The 

measured ∆Cp values for the 10,20 and 30% w/w were 0.24 ± 0.04, 0.33 ± 0.02 and 0.29 ± 0.02 

J/ g.°C respectively indicating more amorphous fraction present following this order: 20% > 30% 

> 10% drug loading. The increase in the felodipine -TPGS amorphous fraction is attributed to the 

reduction in the crystallinity of TPGS and the solubilisation of felodipine in the created 

solubilisation amorphous compartment of TPGS. 



Chapter 4   Formulation of felodipine HME-IM patches 

 

156  School of Pharmacy / University of East Anglia 

 

 

Figure 4.7: Standard DSC results of CM2 physical mixes and buccal patches of placebo and patches 

loaded with 10% - 30% w/w felodipine (n=3) 

A brief comparison between CM1 and CM2 mixtures can be concluded based on the observed 

thermal events of the two series of mixtures. Felodipine was solubilised in the PEG-PEO K900-

Tween 80 amorphous phase of CM1 HME-IM patches while in case of CM2 formulations, the 

drug was mostly dispersed in the TPGS phase. The melting peak of TPGS was detected in all 

placebo and felodipine loaded CM2 patches, while in CM1 formulations, the Tween 80 phase was 

only detected in placebo CM1 sample. This indicates that loading felodipine enhances the 

miscibility of Tween 80 with PEG-PEO K900 blend in CM1 loaded formulations. For CM2, drug 

loading did not show any observable improvement in the miscibility of CM2 carrier components. 

In addition, drug loading was found to antiplasticise the amorphous phase of CM1 patches to 

greater extent compared to the antiplasticisation effect of the drug on the TPGS phase. This is 

indicated by the larger increase in the Tg of the solubilising phase in CM1 compared to CM2 

mixtures. It should be mentioned that the ∆Hf values of the PEG-PEO K900 in CM1 and CM2 

formulations with the same loading percentages were comparable. 
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4.3.1.2 Comparisons of morphological properties of CM1 and CM2 patches  

As seen in Figure 4.8, SEM images of placebo and felodipine loaded CM1 patches show similar 

elongated micron-pore structures at the surfaces and cross-sections with the exception of the clear 

presence of particles with defined edges and 10-20 µm in diameter in the patches with 30% drug 

loading. In addition, SEM images captured for CM2 placebo and loaded patches (Figure 4.9) 

revealed that the surfaces of the solid dispersion patches, except for those with 20% drug loading, 

show the presence of small cracks and air voids and increased roughness with increasing the drug 

loading. The cross-sectional images of the patches show increased roughness in the interior in 

comparison to the surfaces and a clear porous character for all samples. Large air pockets between 

100-300 µm in diameter and particles (often with defined edges) with diameters of 10-20 µm, can 

be observed only in the patches with 30% drug loading.  
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Figure 4.8: SEM images surfaces (a, c, e, g) of CM1 placebo and patches with 10%, 20% and 30% 

felodipine loading and their corresponding cross-sections (b, d, f, h) 
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Figure 4.9: SEM images surfaces (a, c, e, g) of CM2 placebo and patches with 10%, 20% and 30% 

felodipine loading and their corresponding cross-sections (b, d, f, h) 

Using the chlorine (Cl) in felodipine molecules as a chemical marker, the elemental analysis 

performed by EDS for the SEM images of both CM1 and CM2 loaded samples confirmed these 

particles being highly concentrated felodipine clusters (Figure 4.10). This leads to the conclusion 

that these clusters being crystal felodipine due to the absence of chlorine in the structures of the 

other excipients used in fabricating CM1 and CM2 HME-IM patches. This is also confirmed by 

the PXRD and ATR-FTIR data shown later.  
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Figure 4.10: Scanning electron microscopic (left) and elemental analysis images (right) of the surfaces 

of CM1 and CM2 patches with different drug loadings 
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4.3.1.3 PXRD and IR characterisation of CM1 and CM2 patches 

As seen in Figure 4.11 A and B, clear crystalline felodipine form I diffraction peaks at 9.3 ̊, 10.2 ̊, 

16.3 ̊ and 16.6 ̊  can be identified in the diffraction pattern of the patches with 30% drug loading 

for both formulations (312). For all drug-loaded CM1 and CM2 patches, no significant changes 

of matrix excipient related peaks were observed. Knowing the presence of crystalline felodipine 

in 30% loaded patches, the absence of crystalline felodipine melting in the DSC results shown in 

Figures 4.2 and 4.6 indicates the felodipine dissolved in the molten matrices at temperatures 

above the polymers melting points during the DSC runs. Therefore, only the melting transitions 

of PEG-PEO K900 matrices were observed.  

 

Figure 4.11: PXRD patterns of A) raw materials, CM1 placebo and 10-30% (w/w) felodipine loaded 

felodipine patches and B) raw materials, CM2 placebo and 10-30% (w/w) felodipine loaded felodipine 

patches 
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ATR-FTIR spectra of CM1 and CM2 HME-IM patches are shown in Figures 4.12 a and b. 

Patches with 30% drug loading revealed an NH peak at 3367 cm-1 which is assigned to crystalline 

felodipine form I. This is also confirmed by the results obtained from the PXRD. The detection 

of the NH stretching of felodipine in the spectrum of 30% loaded samples confirming the presence 

of crystalline felodipine in these patches.  

 

Figure 4.12: Partial ATR-FTIR spectra of felodipine NH stretching region of CM1 (a) and CM2 (b) 

HME-IM patches with different drug loadings in comparison to crystalline and amorphous 

felodipine. The dotted lines highlight the signature crystallisation and amorphous felodipine peaks 

(n=3) 

It should also be mentioned that the shape of the NH peak of 30% loaded CM2 patches is 

asymmetric, with absorbance in a region corresponding to amorphous felodipine, indicating the 

coexistence of amorphous and crystalline materials (108, 316, 317). However, CM1 loaded with 

30% w/w felodipine samples show a more symmetric NH stretching peak indicating less 

amorphous and more crystalline felodipine existing in the patch compared to 30% CM2 



Chapter 4   Formulation of felodipine HME-IM patches 

 

163  School of Pharmacy / University of East Anglia 

 

formulation. This is also confirming the higher solubilisation capacity of CM2 compared to CM1 

mixtures. For the patches with 10% and 20% drug loading, no crystalline felodipine NH peak was 

observed (Figure 4.12).  

The analysis of the spectra of carbonyl region of felodipine between 1800 and 1400 cm-1 for CM1 

and CM2 patches is shown in Figures 4.13a and b respectively. The C=O peaks of crystalline 

felodipine detected at 1688 cm-1 (dotted line) are upshifted to 1697cm-1 for the patches with 10 

and 20% drug loading of both CM1 and CM2 formulations. This perfectly aligns with the C=O 

peak of the amorphous felodipine indicating the amorphous nature of the drug in patches with 

20% drug loaded patches due to the stronger amorphous felodipine-felodipine intermolecular 

hydrogen bonding (448). In addition, this also may indicate the formation of hydrogen bonds 

between the NH group of felodipine and the -C-O-C backbone of ethylene oxide moieties of the 

other formulation components especially for samples with a drug loading of 10% w/w (68). A 

shift to lower wavenumber towards the C=O of crystalline felodipine for CM1 and CM2 patches 

with 30% drug loading at 1693 cm-1 and 1695 cm-1 respectively may be a result of the presence of 

both crystalline and amorphous felodipine (108, 316, 317).  
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Figure 4.13: Partial ATR-FTIR spectra of felodipine C=O carbonyl region of CM1 (a) and CM2 (b) 

HME-IM patches with different drug loadings in comparison to crystalline and amorphous 

felodipine (n=3) 

The interpretation of the CN region is shown in Figures 4.14a and b for CM1 and CM2 patches 

respectively. The CN peak of pure amorphous felodipine shifted to 1206 cm-1 (dotted line) in 

comparison to the 1202 cm-1 CN peak of crystalline felodipine indicating stronger intermolecular 

H-bonding in the amorphous state (448). The CN peak further shifted further to 1210 cm-1 for the 

patches with 10% and 20% drug loading of both formulations, indicating the presence of 

additional hydrogen bonding between the drug and the ethylene oxide chains which may 

contribute to the formation of a molecular dispersion of felodipine in amorphous fractions of CM1 

and CM2 carriers. However, the CN peak of the CM1 and CM2 patches with 30% loading was 

observed at 1206 cm-1. This is consistent with the presence of crystalline together with amorphous 
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and/or  molecularly dispersed felodipine interacting with the other excipients (448). It should be 

mentioned that there is no change in the position of the C=O stretching groups of both Tween 80 

and TPGS indicating the absence of felodipine hydrogen bonding with these groups of the 

surfactants. 

 

Figure 4.14: Partial ATR-FTIR spectra of felodipine CN stretching region of CM1 and CM2 HME-

IM patches with different drug loadings in comparison to crystalline and amorphous felodipine (n=3)   

4.3.1.4 Investigation of heterogeneity HME-IM patches using IR imaging 

IR imaging was utilised in the first instance to rapidly screen compositional heterogeneity of CM1 

and CM2 HME-IM patches and confirm the phase separation being drug loading dependent. 

Increased compositional heterogeneity was observed with increasing the drug loading. As it was 

preliminary fast screening, the IR imaging was constructed based on both compositional and light 
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reflectivity difference at the surface of the samples. The combinations of these differences were 

analysed using principle component analysis (PCA) to construct the IR map seen in Figure 4.15.  

It can be seen that the IR spectra of the areas with red, green and blue are distinctively different, 

indicating areas with different colours are also with different chemical composition (Figure 

4.15a). The IR images of the surfaces of the placebo and 10% CM1 loaded patches are dominated 

by red colour with a spectrum containing a little contribution of drug spectrum loading indicating 

a lower level of heterogeneity (Figure 4.15b and c). At 10% drug loading, most of the surface 

was dominated by PEG-PEO K900. Increased heterogeneity of the colour differences is observed 

in the patches with higher drug loadings. With 20% CM1 HME-IM (Figure 4.15d) the surface 

showed a few isolated domains which appeared to be drug-rich and the rest of the surface had 

similar IR features as the patches with 10% loading. However, the spectra of the surfaces of the 

patches with 30% drug loading (Figure 4.15e), were interpreted as a patchwork of small PEG-

PEO K900-rich and Tween 80-rich areas, the latter showing small bands which may indicate the 

presence of dissolved felodipine. It was noticed that the sizes of the separated domains are larger 

for 20% than for 30% patches. In addition, many domains with spectra in the 30% loaded patches 

indicating high crystalline drug loading can be seen.  
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Figure 4.15: (a) IR reflectance spectra are coding for the composition of different colours in the IR 

images. Red spectrum indicates areas containing drug as molecularly dispersed or amorphous form; 

green spectrum indicating areas indicating areas rich with the drug (supersaturated matrix which 

may contain very tiny crystals); purple spectrum indicating areas with crystalline drug); correlation 

IR map (left), optical image (right) and the IR spectrum of the point of interest (bottom) of the 

surfaces of CM1 HME-IM patches with (b) placebo, (c) 10%, (d) 20% and (e) 30% felodipine loading 

IR imaging (Figure 4.16) shows that CM2 patches with up to 20% w/w loadings have a very 

homogenous composition (no heterogeneity within the limits of the scrutiny of the instrument). 

For example, comparing the red with the green spots in the 10 and 20% w/w loadings shows 

identical spectra. Differences in correlation coefficients are probably only due to physical effects 

such as reflection and/or surface roughness indicating no microscale phase separation on the 

surface of these samples. However, the 30% loading patches show the presence of the blue spots 
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with different spectrum indicating the phase separation of the crystalline drug on the surface of 

the sample. 

 

Figure 4.16: Correlation IR maps for placebo (a), 10% (b), 20% (c) and 30% (d) CM2 HME-IM 

patches; (e) is the IR reflectance spectra for the different areas of the maps  
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4.3.2 Influence of drug loading and phase separation on mucoadhesion  

The mucoadhesion properties of CM1 and CM2 HME-IM patches were estimated using standard 

adhesion testing (477). As the focus of this study is to investigate the effect of phase separation 

on the in vitro performance of the patches, mucoadhesion results presented here are purely for 

comparison purpose between different formulations. Figure 4.17 shows representative 

mucoadhesion analysis using TA-XT2 Texture Analyser for placebo CM1 patch.  As seen in Table 

4.5, no significant difference is seen in the mucoadhesivness of the placebo and 10% drug loaded 

CM1 patches. This indicates that 10% drug loading as molecular dispersion did not significantly 

affect the surface hydrophobicity and overall mucoadhesive properties of the patches. However, 

with increasing the drug loading the mucoadhesivness of the patches reduces. It should be borne 

in mind that the content of the main mucoadhesive material, PEO K900, reduced by 22% (w/w) 

from 10% loaded patches to 30% loaded patches. However, the mucoadhesion force reduced by 

40% and 39% for CM1 and CM2 respectively indicating the effect is not only related to the 

lowered mucoadhesive material content. The increased amount of hydrophobic drug could also 

increase the overall hydrophobicity of the surface of the patches and reduce the wetting and 

mucoadhesion of the patches. The presence of phase-separated Tween 80 and PEG-PEO K900 

areas may also lead to the patch surface with discontinuous adhesive areas which also contributed 

to the reduced adhesion of the patches. 

Compared to CM1, CM2 placebo and 10% w/w loaded patches showed an insignificant reduction 

in their mucoadhesive properties revealing that changing surfactant type has no effect on these 

properties below the saturation limits of the two systems. However, the mucoadhesion of 20% 

w/w loaded patches were found to be significantly lower than that of the corresponding CM1 

matrices. This may be due to the lower miscibility of TPGS phase compared to Tween 80 phase 

with the PEG-PEO K900 polymeric blend and the depressed melting of TPGS by the dissolved 

drug. The molten TPGS phase at room temperature on the surface of the patches may decrease 

the adhesion properties of the system. Additionally, phase separation of 30% w/w felodipine 

loaded CM2 patches together with the presence of the crystalline fraction of felodipine may be 

the causes for the reduction in the mucoadhesive properties of the formulation.     
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Figure 4.17: Mucoadhesion analysis for placebo CM1 sample using TA-XT2 Texture Analyser 

 

Table 4.5: In vitro mucoadhesion measurements of CM1 and CM2 placebo and felodipine loaded 

HME-IM buccal patches (n = 5, average ± SD) 

Formulation Peak adhesive force (N) Total work of adhesion 
(N.mm) 

Placebo CM1 0.825 ± 0.115 0.159 ±0.030 

10% w/w CM1 0.927± 0.149 0.194± 0.046 

20% w/w CM1 0.775± 0.090 0.158± 0.027 

30% w/w CM1 0.536± 0.040 0.100± 0.005 

Placebo CM2 0.992 ± 0.340 0.211 ±0.087 

10% w/w CM2 0.882 ± 0.304 0.205 ± 0.079 

20% w/w CM2 0.393 ± 0.090 0.086 ± 0.016 

30% w/w CM2 0.345 ± 0.171 0.076 ± 0.028 
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4.3.3 Influence of drug loading and phase separation on the in vitro 

felodipine release profiles from the HME-IM patches  

Figure 4.18 shows the in vitro unidirectional drug release behaviour of CM1 and CM2 patches 

under sink (PBS pH = 6.8 containing 0.5% v/v Tween 80) and non-sink (PBS pH = 6.8 only) 

conditions. The release profile of CM1 patches under sink condition (Figure 4.18a), with the 

presence of surfactants in the dissolution media, no significant difference in the release profiles 

of felodipine from the HME-IM patches with different loading percentages can be identified. The 

release is dominated by zero-order kinetics. This indicates that the dissolution is not controlled or 

affected by the phase separation and presence of the crystalline drug. In this case, it is likely that 

the dissolution of the matrix is the rate-limiting factor of the drug release.  

The in vitro release of CM1 under non-sink condition was conducted to eliminate the impact of 

the sink condition promoting surfactant on the release profile of different mucoadhesive patches. 

The supersaturation of felodipine in the dissolution media had a clear impact on the release 

profiles of the patches.  As seen in Figure 4.18b, the patches with 30% drug loading show similar 

dissolution behaviour as pure crystalline felodipine, indicating the dissolution of the crystalline 

drug is the rate-limiting factor in this case. The patches with 10 and 20% drug loadings showed 

higher dissolution rates and better maintained supersaturation state of felodipine in dissolution 

media than the patches with 30% drug loading.  

The unidirectional felodipine release profile from CM2 patches with different drug loading tested 

under non-sink conditions are shown in Figure 4.18c. For the 10% and 20% patches, 10-15 fold 

increases in maximum drug release were achieved within 2-2.25 hours in comparison to the 

crystalline drug alone. This may be attributed to the fact that the majority of the drug in these two 

formulations is in the molecularly dispersed and the amorphous states, which led to faster 

dissolution. However, with increasing the drug loading to 30%, the increase in drug release 

reduced to only 2-fold increase in comparison to the pure crystalline drug. The presence of phase 

separated crystalline drug in the patches is likely to be responsible for this result. The dissolution 

results indicate that the phase-separated carrier systems that contain no crystalline drug can 

significantly improve drug release. Even with only one side of the intact patches in contact with 

the dissolution media, this dissolution enhancement is comparable with other binary solid 

dispersion systems reported in the literature where milled extrusion powders with a much higher 

total surface area for dissolution were used (73). 
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The two mixtures show approximately similar release percentages at the corresponding loading 

fraction of felodipine. The only difference noticed between the two formulations is the higher 

ability of CM2 patches loaded with 20% felodipine to stabilise the dissolved felodipine in the 

dissolution media compared to CM1 constituents. These self-emulsified drug delivery systems 

are assumed to prevent the after dissolution crystallisation of felodipine. Knowing that the 

proportions and the constituents of the two mixtures at this loading percentage are the same except 

the type of the surfactants, this difference in felodipine stabilisation in the dissolution media is 

more likely due to the more stabilisation effect of TPGS compared to Tween 80. It should be 

mentioned that the concentrations of both surfactants in the dissolution medium after their 

dissolution is less than their CMC reported in the literature (363, 375).  
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Figure 4.18: In vitro release profiles of felodipine from HME-IM buccal mucoadhesive patches; a) 

CM1 patches under sink conditions, a) CM1 patches under non-sink conditions and c) CM2 patches 

under non-sink conditions (n=3; average ± SD) 
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4.4 Discussion 

Formulating solid dispersions of poorly water soluble drugs like felodipine using HME-IM as 

single step processing is an attractive approach for improving their dissolution properties with 

fast and environmentally friendly processing. However, in order to achieve the desired 

formulation features of the product such as systemic delivery via the buccal cavity in this study 

to avoid the extensive liver inactivation of 84% of the drug in addition to dissolution enhancement, 

it requires the inclusion of a number of excipients resulting in an increase in the complexity of 

the system. The primary objective of this chapter was to design and investigate the 

physicochemical properties of felodipine quaternary solid dispersions using carefully selected 

excipients to solubilise and stabilise the dispersed drug in the matrices. Liquid (Tween 80) and 

waxy solid (vitamin E TPGS) surfactants were used as intentionally created solubilisation 

compartments. In addition, the excipients also chosen to permit processing at low temperature (65 

ºC) with easy to peel off from the mould after cooling which cannot be achieved for the vast 

majority of excipients used in HME due to the requirement of high processing temperature and 

stickiness to the mould after moulding which interferes with the purpose of using this processing 

technique.  

The binary miscibility between excipients was first estimated in order to establish the preliminary 

understanding of the complex phase separation of the quaternary dispersions. Crystalline 

felodipine showed good solubility in Tween 80 and TPGS surfactants. The partial miscibility of 

Tween 80 and TPGS with PEG-PEO K900 was indicated by the thermal method leads to the 

formation of phase-separated systems. Felodipine was predicted be to miscible with PEG-PEO 

K900 by solubility parameter method but was experimentally proven to be very low due to the 

low amorphous content of PEG-PEO K900 at the stated processing parameters. The ability of 

semi-crystalline PEG-PEO K900 mixture to solubilise poorly water-soluble drugs is generally 

governed by the kinetics of crystallisation of the drug and the presence of favourable interactions 

between the drug and the polymers below their saturation capacity. Dissolved drugs are normally 

occupying the amorphous fraction of the polymeric blend. Drugs with weak interactions with 

these polymers or strong devitrification tendencies are most likely translocate to the interfibrillar 

or interspherulitic regions. The magnitude of drug solubilisation has significant impact on the size 

of the amorphous fraction and consequently their overall crystallinity (88).  

Thermal and spectroscopic characterisation techniques like DSC, MTDSC, SEM, EDS, ATR-

FTIR and PXRD were used to characterise the prepared HME-IM matrices. SEM, EDS and 
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PXRD revealed that dispersions with up to 10% CM1 and 20% CM2 are free of crystalline 

fraction of felodipine. Samples with 20% CM1 and 30% CM2 loading clearly showed the 

presence of crystalline felodipine form I as indicated by the identified felodipine crystals on the 

surface and interface of the samples using SEM and EDS and the appearance of the characteristics 

diffraction peaks of form I using PXRD. Using ATR-FTIR, the physical state of the drug in the 

different dispersions was revealed. Broadening of the NH stretching peak of felodipine in the 10% 

loading most likely indicating that the drug is molecularly dispersed in the phase separated. The 

appearance of felodipine NH stretching in 3333 cm-1 suggesting the presence of the drug as 

amorphous domains in the matrix. The asymmetric NH stretching peak detected at 3367 cm-1 in 

the spectrum of the 30% loading indicate that felodipine exists as crystalline and amorphous 

fractions in the mixture. These results also supported by changes in the CN stretching of the drug. 

IR imaging revealed the same conclusion obtained from the other techniques indicating 

microscale heterogeneity of 30% loaded patches.  

DSC analysis provided more information about the miscibility of the PEG-PEO K900 and Tween 

80 or TPGS phases and the impact of drug loading on the phase separation in the different HME-

IM buccal patches. As revealed from melting point depression approach in Chapter 3, TPGS has 

higher solubilisation capacity for felodipine than PEG-PEO K900 blend and Tween 80. The phase 

separated Tween 80 phase detected in placebo CM1 patches is completely absent by felodipine 

loading revealing improved miscibility of the phases by drug solubilisation. The high 

semicrystalline nature of TPGS and the presence of vitamin E moiety in its structure limits its 

miscibility with the hydrophilic PEG-PEO K900 polymer blend. Dispersing felodipine in CM2 

phase separated system is strongly depressing the melting of TPGS compared to PEG-PEO K 900 

up to 20% loading supporting that TPGS acts as semisolid phase separated solubilisation 

compartments embedded in the patches. This is also clearly reflected in the Tg region analysis. 

Due to the high semi-crystalline character of TPGS and PEG-PEO K 900 phases and their limited 

miscibility, the Tg of either of them was undetectable in the placebo CM2 sample. Interestingly, 

as the loading percent of the drug increase, a clear Tg in a temperature very close to the Tg of 

TPGS was detected indicating an increase in the amorphous fraction of TPGS by felodipine 

solubilisation. It should be mentioned that felodipine has less antiplasticising effect on TPGS 

phase of CM2 formulations compared to CM1 loaded patches. In addition, the dissolved drug in 

TPGS seems has no effect on increasing the miscibility of the separate phases compared to CM1 

formulations.   

It was found that the saturation limit and the concentration of the drug affecting the mucoadhesion 

parameters of the fabricated HME-IM patches of CM1 and CM2 blends. Samples below the 
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saturation (10% loading) revealed similar mucoadhesion properties, however, increasing drug 

loading to 20-30% loading significantly reduced the force and work of adhesion may be due to 

the presence of a crystalline fraction of felodipine and/or lowering the melting of the surfactant 

phase. The designed felodipine loaded CM1 and CM2 mucoadhesive buccal patches also showed 

an enhancement in the dissolution properties of felodipine with 10% loading being the maximum 

with approximately 60% drug release after 2.5 hours under non-sink conditions compared to the 

crystalline drug. This significant enhancement in the solubility/dissolution properties of 

felodipine using the HME-IM fabricated patches together with using the buccal route for systemic 

delivery of felodipine is expected to improve the bioavailability of the drug under investigation.   

4.5 Conclusion 

Formation of phase separated compartments in-situ with different functionalities that can improve 

the bioavailability of poorly soluble drugs was the main formulation strategy presented in this 

chapter. The characterisation results presented in this chapter confirmed the formation of the 

phase-separated systems with the drug being solubilised predominately in the Tween 80 and 

TPGS rich phases. The results of this chapter have also demonstrated the feasibility of using 

HME-IM as a simple pharmaceutical process to produce patches that are suitable for the buccal 

route of administration which can provide the advantage of avoiding the first-pass metabolism. 

Using the solubility difference between the excipients and drug, Tween 80-rich or TPGS-rich 

compartments with the primary function of solubilising drug and PEG-PEO-rich phase with the 

main function of providing mucoadhesion and acting as a hydrophilic carrier for easing 

dissolution were successfully created in-situ. To be able to formulate such phase separated 

systems requires a clear understanding of the miscibility between ingredients. Successfully 

designed mucoadhesive patches show good mucoadhesive properties and maximum in vitro 

release profile with matrices loaded with 10% felodipine. With this information, formulations 

with the desired level and type of phase separation can be designed and produced by varying the 

composition of the different ingredients in the mixtures. However, despite the clear indications of 

the phase separation in the patches, it is not possible to obtain detailed information on the spatial 

distribution of the separate phases. This characterisation challenge is addressed in Chapter 5. 
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5.1 Introduction 

The heterogeneity of material in a complex formulation is often a key parameter that requires 

monitoring during quality control of pharmaceutical products. In multi-component formulations, 

which is the case for most pharmaceutical products, the uniformity of the distribution of excipients 

and active therapeutic drugs across the dosage form is extremely important for ensuring the 

quality such as physical stability over shelf-life and in vivo performance such as drug release rate, 

which are critically responsible for the overall therapeutic efficiency of the product (175). 

However, to characterise and assess heterogeneity within a single formulation often requires the 

use of multiple off-line localised analytical techniques, which is time-consuming and costly 

process. In the case of the solid dispersion based patches produced in this project, the multi-

components also phase separate in the patches. The understanding of how these separate phases 

distribute across the patches is important for further investigation and modification of the in vitro 

stability and drug release behaviour of the patches.   

Traditionally, solid dispersions have been often loosely classified into single-phase molecular 

dispersions and phase separated systems with varying degrees of structural complexity (474, 478, 

479). Phase separation in solid dispersions is the result of the diversity in the physicochemical 

properties of the drugs and excipients used in the formulations which affects their miscibility. 

Normally, phase separation of drug from the excipients has often been considered as an indication 

of instability or incompatibility between the drug and excipients and therefore been avoided in 

industrial formulation development (480, 481). The most commonly detected phase separation 

behaviour in solid dispersions is the separation of the dispersed drug from the carrier matrix (8, 

24) as either amorphous or crystalline domain (129, 482, 483). However, in this project phase 

separation was intentionally used as a strategy to improve stability and modulate the drug release 

profile. As described in Chapter 4, for both CM1 and CM2, the conventional characterisation 

results indicated that the excipients used showed partial miscibility which led to phase separation 

of the excipients. Each separate excipient phase contained different amount of solubilised drug.   

Although conventional characterisation techniques such as DSC, MTDSC, PXRD and 

spectroscopic methods including IR, Raman and terahertz spectroscopy often allow the 

confirmation of the presence of phase separation, understanding the phase separation behaviour 

in solid dispersions can still be challenging. The overlapping diffraction patterns or spectra from 

different phases or the thermal dissolution of one phase into another during heating in the DSC 

often lead to the difficulty in accurate data interpretation (385, 484, 485). Many excipients and 
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active ingredients are organic materials which make SEM analysis in combination with EDS 

powerless for identifying detailed phase separation due to the lack of elemental variability 

between samples. In addition, the conventional characterisation methods mentioned above have 

not been able to effectively provide information on two important aspects of phase separation in 

formulations, heterogeneity and the 3D spatial distribution of different phases. Addressing these 

two aspects of phase separated solid dispersions will advance our understanding of how to control 

the formation and kinetics of phase separation behaviour in complex solid formulations and in 

turn enable the rapid development of phase separated dispersions which may be used for the 

delivery of multiple active pharmaceutical ingredients in one formulation. It should be mentioned 

that micro/nano thermal analysis using a heated probe in a scanning probe microscope can provide 

information on sample heterogeneity using either local thermal analysis or photothermal IR 

spectroscopy (486-488). However, it is slow and can take over an hour for a single high spatial 

resolution image using TTM (489).  

This chapter introduces the use of two non-conventional methods, thermal analysis by structural 

characterisation (TASC) and X-ray micro computed tomography (XµCT), as novel techniques for 

studying phase separation in complex pharmaceutical products designed by HME-IM. The 

potential of these techniques has been evaluated for characterising heterogeneity and spatial 

distribution of phases in the prepared samples. TASC uses conventional and user-friendly hot 

stage microscopy with a novel algorithm for quantifying changes in successive micrographs of 

the samples during heating or cooling. The detailed working principle of TASC has been 

explained previously in Chapter 2. The subtle changes in the appearance of the sample during 

heating or cooling detected by TASC can then be converted into thermal transition graphs. XµCT 

used as a non-invasive method to investigate the 3D internal microstructure of the patches and to 

estimate the size, shape and spatial distribution of the phases in situ. In this technique, the 

absorption of X-rays results in the generation of series of images in a manner similar to 

transmission microscopy. Different phases having different electron densities depending on the 

characteristics of their elements can be differentiated by XµCT and represented as 3D models. In 

this chapter, the same series of complex solid dispersions studied in Chapter 4 (placebo and 10-

30% w/w felodipine loaded CM1 and CM2 HME-IM mucoadhesive buccal patches) were 

analysed using TASC and XµCT.   
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Research objectives   

1. To use TASC as a new, fast and cheap thermal characterisation technique for detecting 

heterogeneity in complex solid dispersions prepared by HME-IM technique. 

2. To compare the data generated by TASC with results obtained by standard DSC in order 

to observe the possible additional advantages of TASC analysis like detecting thermal 

dissolution, providing localised analysis and impacts of the rate of heating and cooling 

ramps during thermal analysis.      

3. To investigate the ability of XµCT to detect heterogeneity and spatial distribution of phase 

separation in the prepared solid dispersions at micron-scale. 

4. To assess the use of XµCT for providing quantitative/semi-quantitative information about 

the phase separation of drug above the saturation limits of the carrier mixture.  

5.2 Materials and Methods 

5.2.1 Materials 

Same batches of the HME-IM patches studied in Chapter 4 were prepared and characterised using 

TASC and XµCT. 

5.2.2 Methods 

5.2.2.1 Thermal analysis by structural characterisation (TASC) 

The TASC system was composed of a temperature controlled heating/cooling Linkam MDSG600 

automated stage fixed to a Linkam imaging station that was attached to a microscope working in 

reflective mode (LED light source and X10 magnification lens) and was equipped with a digital 

camera to capture images that correspond to thermal events as a function of temperature. For 

cooling ramps, the temperature of the stage is controlled using a cooling unit that operates by 

purging liquid nitrogen into the stage.  

For all samples analysed, thin slices of the prepared patches (0.6 - 1.2 mm × 0.6 mm × 0.2 mm) 

were cut using a sharp blade and placed in standard DSC pans (TA Instruments, Newcastle, USA). 

A pre-designed temperature program (10 °C/min) for heating, cooling and reheating cycles with 
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an isothermal period of 1 minute separating the ramps was applied to the prepared samples within 

the range of -10 to 150 °C. Before starting the experiments, the image-capturing mode was 

activated at an image acquisition rate of 1 frame/ ˚C. The captured images were then collected 

and analysed using the TASC software provided by Cyversa (Norwich, UK). The results obtained 

were statistically analysed by using one way analysis of variance (ANOVA). Statistical 

significance was accepted at the p ≤ 0.05 level.   

5.2.2.2 Differential scanning calorimetry (DSC) and modulated temperature 

DSC (MTDSC) 

All samples investigated in this study using standard DSC were analysed using the same 

parameters as described in Chapter 3, section 3.2.2.2.2.  Heating only MTDSC experiments were 

also performed (at 2 ºC/min scanning rate, 40 sec period and 0.212 ºC amplitude) to investigate 

the hidden melt-recrystallisation behaviour of the patches. All samples analysed have a weight of 

about 2-3 mg and standard TA crimped pans (TA Instruments, Newcastle, USA) were used. All 

analyses were performed in triplicates. 

5.2.2.3 Variable temperature attenuated total reflectance Fourier transform 

infrared spectroscopy (VT-ATR-FTIR)  

All experiments were conducted using an IFS 66/S FTIR spectrometer (Bruker Optics Ltd, 

Coventry, UK) fitted with a Golden Gate® ATR accessory with a temperature-controllable top 

plate (Orpington, UK) equipped with diamond internal reflection element. ATR-FTIR spectra, in 

absorbance mode, were obtained using a scanning resolution of 2 cm-1 and 32 scans for each 

sample. The system was connected to a high stability temperature controller (Specac, USA) and 

the VT-ATR-FTIR spectra were collected using heat-cool-heat program with a heating rate of 

2ºC/min. All spectra were analysed using OPUS software.  

5.2.2.4 X-ray micro computed tomography (XμCT) 

Two XµCT types of equipment were used to investigate CM1 and CM2 buccal patches designed 

using HME-IM. XµCT images for the placebo and felodipine loaded CM1 patches were 

characterised using a Phoenix v[tome]x m system (General Electric, Wunstorf, Germany). 3D 

images of the formulations were reconstructed from a large series of two-dimensional 
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radiographic images taken around a single axis of rotation. The following settings were applied: 

voxel size: 4µm, number of images: 1500, Voltage 60 kV, Current 100 µA and timing 500: ms.  

For CM2 samples, CM2 felodipine solid dispersions with different drug loading percentages were 

analysed using SkyScan1172 high-resolution X-ray micro computed tomography (XµCT) 

scanner (Bruker-microCT, Kontich, Antwerp, Belgium). The analysed samples were imaged 

using an aluminium filter to cut-off high energy X-rays at an isotropic voxel resolution of 3 µm 

over a total of 20 min acquisition time and a subsequent image reconstruction time took 

approximately 20 min per sample, using the NRecon program (version 1.6.8.0, Bruker-microCT). 

The reconstructed images were analysed using CTan and CTvol software in which the images for 

a small section (designated as a region of interest ROI) for each sample are converted to binary 

images followed by thresholding each component according to differences in density and 

represented in 3D models. CM2 Powder compacts made of the physical mixtures of crystalline 

felodipine and the rest of the excipients with consistent compositions to those used in the HME-

IM formulations were prepared for the quantitative studies. The compacts (13 mm in diameter) 

were prepared by compressing (500 mg) of the premixed physical blends into flat-faced disks 

using an IR press (Specac, Kent, UK) with 10 kN pressure held for 5 minutes.  

5.3 Results  

5.3.1 TASC analysis of the phase separation of the HME-IM patches 

5.3.1.1 Fast detection of heterogeneity in solid dosage forms 

The TASC software is designed to track changes in the sample during heating or cooling ramps 

and any change in the structure as seen by the microscope can be detected. Samples frequently 

move when heated or cooled, but TASC tracks these movements and compensates for them, so 

only structural changes are measured.  As seen in Figure 5.1, the blue frame is the region of 

interest (ROI) while the red square defines the target area (TA) scanned by the centre of the ROI 

thus movement over this range is compensated for. TASC tracks these movements by fixing on 

an optical feature.  
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Figure 5.1: Light microscopic image of an example slice of 10% w/w CM1 felodipine mucoadhesive 

buccal patch analysed by TASC software 

Sequences of images were collected during the heating or cooling of patches using TASC. Initially, 

the ROI was selected as shown in Figure 5.1. TASC follows the subtle changes of structure of 

the selected ROI and converts this information into phase transition signals plotted against 

temperature. The detailed algorithm of TASC is described in chapters 2. Figure 5.2 shows an 

example for the thermal events detected by TASC algorithm. 

 

Figure 5.2: Thermal events of placebo CM2 sample detected by TASC at different points (-10°C, 

40°C, and 80°C) during the heating ramp at 10 °C/ min 
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Compared to DSC, TASC detected the of thermal transitions of placebo CM1 and CM2 for the 

heating -cooling and reheating cycles in temperatures comparable to DSC as shown in Figure 5.3. 

TASC detected the offset of melting transitions of PEG-PEO K900 and TPGS at similar 

temperatures for all cycles. Similar results are also obtained for the onset and offset of 

crystallisation events during the cooling cycles. However, the detection of the onset of melting 

transitions is delayed in the heating cycles because the method of detection by TASC is different 

from that of DSC. TASC detects the change on the top surface of the sample, which means that 

when the lower part of the sample in contact with the pan starts to melt (onset of melting in DSC) 

no TASC signal can be detected until the change appears on the top surface where the algorithm 

is scanning for the ROI change. This is the case when the sample under investigation is opaque 

as the matrices used in this study due to the semicrystalline nature of some of the excipients used 

in this study. This leads to a temperature gradient sometimes appears as a delay in the TASC signal 

compared to DSC.   
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Figure 5.3: TASC compared to standard DSC averaged thermograms of placebo CM1 during the 

heating (A and B), cooling (C and D) and reheating (E and F) cycles and placebo CM2 during the 

heating (G and H), cooling (I and J) and reheating (K and L) cycles at 10 °C/ min for all cycles (n=3; 

average ± SD) 
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For CM1 and CM2 placebo and patches with up to 20% w/w drug loading, the results obtained 

from TASC were more reproducible (low standard deviation for 3-5 repeated tests) for the heating, 

cooling and reheating cycles than the data obtained from the system with 30% drug loading 

(Figures 5.3-5.5). This low inter-sample variation indicates a low level of heterogeneity, at least 

at this scale of scrutiny, of the formulations with drug loadings at and below 20% loading. This is 

confirmed by the SEM results of the internal microstructure of the patches as seen in Chapter 4. 

The reproducibility of the TASC results of the patches with 30% felodipine was much lower as 

reflected by the high variation of the TASC data for the initial heating cycle of the patches (Figure 

5.6), note that regions of similar area were used for all of the samples. As TASC is a form of local 

thermal analysis, each testing area is different from another (such as containing different amount 

of crystalline/amorphous material or structural features). Therefore, the high inter-sample 

variation (with statistically significance P < 0.5) in the 30% patches should be an indication of 

high heterogeneity of the sample with average testing areas of (2500-10000 µm2). 

 

Figure 5.4: TASC thermograms of 10% felodipine in CM1 during the heating (A), cooling (C) and 

reheating (E) cycles; and 10% felodipine in CM2 during the heating (B), cooling (D) and reheating 

(F) cycles using 10 °C/ min for all cycles (n=3; average ± SD) 
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Figure 5.5: TASC thermograms of 20% felodipine in CM1 during the heating (A), cooling (C) and 

reheating (E) cycles; and 20% felodipine in CM2 during the heating (B), cooling (D) and reheating 

(F) cycles using 10 °C/ min for all cycles (n=3; average ± SD) 

The TASC results of CM2 patches with 30% w/w felodipine content (Figure 5.6B) show a 

complex triple transition. The melting peak of TPGS can be clearly seen at approximately 33ºC 

which is in agreement with the DSC data. Two further melting transitions were detected at 60 and 

76ºC followed by the absence of the plateau region seen in the placebo and 10% loaded samples. 

DSC data of the 30% loaded patches only show the melting of the PEG-PEO K900 phase at 60ºC 

(Figure 5.7B). However, it is known from the other characterisation methods in Chapter 4 that 

there were crystalline drug particles present in the 30% patches. Therefore, the 76ºC transition 

detected by TASC is likely to be associated with the thermal dissolution of the remaining 

crystalline drug into the molten matrix. The absence of a plateau region indicates the continuous 

changes captured by TASC were not completed at 90 ºC.  The poorer reproducibility of data in 

the high temperature region was also noted in comparison to the results of the samples with lower 

drug loadings. It should be mentioned that the 30% CM2 loaded patches show better 
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reproducibility compared to the corresponding CM1 patches confirming the results of better 

solubilisation capacity of CM2 for felodipine compared to CM1.  

 

Figure 5.6: TASC thermograms of 30% felodipine in CM1 during the heating (A), cooling (C) and 

reheating (E) cycles; and 30% felodipine in CM2 during the heating (B), cooling (D) and reheating 

(F) cycles using 10 °C/ min for all cycles (n=3; average ± SD) 

The high heterogeneity of the patches with 30% load is confirmed by the rich variety of interior 

features of the patches seen by SEM (Chapter 4; Figures 4.4g and h and Figure 4.5g and h) 

including the presences of air pockets and non uniform distribution of particles with 5-20µm in 

average diameter and defined edges which are likely to be felodipine crystals.  

As seen in Figure 5.7, this sensitivity to the heterogeneity of the sample is absent in the DSC 

results which provide only global information. The significant difference in weight of sample 

analysed by the two methods may contribute to the difference in their detective sensitivities. The 

calculated weight range of the analysed areas by TASC (the area framed by the blue square 

indicated in Figure 5.2) was estimated to be 0.6-3.7 µg in comparison to 2-3 mg sample size used 
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in the DSC experiments. As a consequence of this, as seen in Figure 5.7B and D, the 30% loaded 

samples analysed by DSC showed high reproducibility.  

 

Figure 5.7: TASC and DSC results of the heating cycle of CM1 (A and B) and CM2 (C and D) placebo 

and felodipine loaded mucoadhesive buccal patches with 10, 20 and 30% w/w loading (n=3; average 

± SD) 

The low reproducibility and failure to reach a plateau with the individual replicates of the 30% 

w/w loaded CM1 and CM2 formulations were further investigated by altering the size of ROI and 

increasing the terminal temperature of the analysis to above the melting point of crystalline 

felodipine. As seen in Figure 5.8, the reproducibility of the data collected by analysing small 

areas (ROIs, approximately between 2.5 × 10-3 and 10 × 10-3 mm2) is lower than that obtained 

from larger areas (between 40 × 10-3 and 90 × 10-3 mm2). The results obtained using larger tested 

areas often overlooks the differences present locally on a micro scale (heterogeneity). This is 

demonstrated by the highly reproducible DSC data in which the samples were tested as a bulk 

material with no localised information being obtainable (Figure 5.7B and D). The poor 

reproducibility of the TASC results obtained from small ROIs indicates a high variability in the 

thermal transitions detected locally. The size of drug crystals detected by SEM is approximately 
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10-20 µm in diameter which is smaller than the smallest ROI used in this analyses. The thermal 

properties detected for each ROI is the average of all materials within the area which should, 

therefore, be a mixture of drug crystals, excipients and amorphous dispersions of drug dissolved 

in the excipients. The variation of the thermal properties is likely to represent differing amounts 

of drug crystals, excipients and amorphous drug dispersions being present in each ROI. This was 

not observed in placebo and samples with 10% drug loading (Figure 5.9). This is a clear 

indication of the high heterogeneity of the distribution of the separate phases in the patches with 

30% drug loading at the micron scale. The attempt of validating such finding by XµCT is 

described later in this chapter.  

 

Figure 5.8: Comparison of the TASC results of the heating cycle of CM1 (left) and CM2 (right) 30% 

w/w felodipine patches using (A, B) small sampling spots (to provide localise thermal analysis), (C 

and D) larger sampling spots; (E and F) extended heating to 150ºC to demonstrate that the drug 

dissolution/melting occurred in the 30% drug loaded samples as the TASC signal reaches the plateau 

at higher temperature above 100 °C (n=3; average ± SD)  
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Figure 5.9: The TASC results of the heating cycle of 10% (A and B) and 30% (C and D) CM2 

felodipine loaded patches using a small sampling area (A and C) and a larger sampling area (B and 

D). It can be seen that there is no obvious difference in the error bars of the data collected from the 

two areas with different sizes for 10% indicating the high homogeneity of the samples with low drug 

loading compared to 30% loading (n=3; average ± SD) 

It was also noticed that TASC was able to detect the double crystallisation in CM2 placebo sample 

at a temperature comparable to that of the DSC as seen in Figure 5.10. There is also a reduction 

of the crystallisation temperatures with increasing drug loading of all CM1 and CM2 which can 
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be explained by the incorporation of drug in the different phases (although not necessarily in equal 

proportions) which disrupted the crystallisation of the excipients. However, only a single phase 

can be seen in the TASC and DSC results of the cooling cycles of the patches with 30% CM2 

drug loaded patches. This may indicate that TPGS did not crystallise due to the presence of the 

dissolved drug in these patches.  

 

Figure 5.10: TASC and DSC results of the cooling cycle of CM1 (A and B) and CM2 (C and D) 

placebo and felodipine loaded mucoadhesive buccal patches with 10, 20 and 30% w/w loading (n=3; 

average ± SD) 

5.3.1.2 Detection of thermal dissolution of crystalline drug in excipients  

The presence of crystalline felodipine in the patches cannot be detected using DSC because the 

drug crystals are thermally dissolved in the molten carrier matrices.  TASC results of the samples 

with 30% CM1 and CM2 drug loadings have shown clear indication of a process occurs above 

the melting temperatures of PEG-PEO K900 blend. As seen in Figure 5.7A and C, in the initial 

heating cycle the TASC signals reach a plateau at higher temperatures as the drug load increases. 
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This effect is particularly significant for the patches with 30% felodipine. As seen in Figure 5.8E 

and F, a reproducible TASC signals of the 30% patches only reaches the plateau when the 

temperature is close to the melting temperature of crystalline felodipine (100-140 ºC). This result 

suggests the dissolution process of felodipine in the molten excipients’ blends can be detected by 

TASC. 

The dissolution of the crystalline drug into the molten carrier mixture during heating was 

confirmed by the variable-temperature ATR-FTIR. As seen in Figure 5.11, the disappearance of 

the NH stretching peak characteristic of crystalline felodipine at 3367cm-1 during heating between 

60-70 ºC indicating the loss of drug crystallinity and the dissolution of the drug into the molten 

carrier matrix.  

 

 

Figure 5.11: VT- ATR-FTIR (a) 2D and (b) 3D spectra of demonstrating the dissolution of the 

crystalline drug in CM1 matrix in the patches with 30% drug loading during heating 
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5.3.1.3 Sensitivity to the presence of metastable form of PEG 

For all samples, the transition temperatures detected by TASC during the first heating and cooling 

cycles are highly comparable with the DSC data. However, double transitions are clearly detected 

by TASC during the reheating cycle as seen in Figure 5.12A and C. The detection of the double 

transitions seen as a shouldered peak is highly reproducible indicating the occurrence of a true 

thermal event. The double transitions may be associated with the melting of the folded and 

extended forms of the PEG 4000 as the transition temperature is just below the melting of 

PEG/PEO K900 (328, 330, 337). However, this bimodality is not detected by conventional DSC 

(as seen in Figure 5.12B and D) using the same scanning rate which is 10ºC/min in this case. The 

changes seen by TASC are subtle while simple inspection of the images does not suggest complex 

behaviour as illustrated in Figure 5.13 for CM1 as representative results. In addition, these two 

evident thermal events tend to overlap as the percentage of drug loading increased as indicated 

by the reduction in the temperature range between them due to drug solubilisation inside the 

matrix. It should be mentioned that CM1 placebo sample does not show this shoulder which may 

be attributed to the low fraction of the folded form present in this sample. 
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Figure 5.12: TASC and DSC results of the reheating cycle of CM1 (A and B) and CM2 (C and D) 

placebo and felodipine loaded mucoadhesive buccal patches with 10, 20 and 30% w/w loading 

showing the detection of metastable folded form of PEG by TASC (n=3; average ± SD) 
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Figure 5.13: Enhanced sensitivity for the detection of hidden thermal transitions. Optical images at 

different temperatures of the TASC measurement during heating of the PEG/PEO K900 based CM1 

patch with 10% drug loading. The areas with no specular effect were chosen for the measurements 

In order to further investigate the details of the samples’ structure, MTDSC and VT-ATR-FTIR 

were used. The MTDSC data of the reheating cycle of the patch with 10% drug loading, shown 

in Figure 5.14, unambiguously confirms bimodal behaviour in both reversing and non-reversing 

signals at a temperature between 45 to 58 ºC, which are below the main melting of PEG-PEO 

K900 (62ºC). In the non-reversing signal, an endothermic (melting) followed by an exothermic 

(recrystallisation) peak can be clearly seen.  

Frame no. 50 

Frame no. 10 

Frame no. 35 

Frame no. 65 

Frame no. 30 

Frame no. 42 
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Figure 5.14: MTDSC results of the melting region of CM1 patches with 10% drug loading indicating 

the present of solid form transformation of PEG at the transition temperature identified by TASC 

during the reheating cycle (n=3) 

The first heating cycle of the VT-ATR-FTIR data (Figure 5.15a) shows the melting of crystalline 

PEG-PEO K900 blend that agrees well with the spectra reported in the literature for these semi-

crystalline polymers (328, 332). However, the spectra of the reheating cycle following the cooling 

of the first heating cycle, shown in Figure 5.15b (highlighted by the dash-line box and a red 

arrow), demonstrate the appearance of an additional peak at 1106 cm-1. The intensity of this new 

peak decreases with increasing temperature during heating and disappears when the temperature 

reaches above 70°C when PEO K900 melts (Figure 5.15c). It suggests that the material created 

by the cooling cycle is different from the as-received material, something that is clearly indicated 

by TASC but is not immediately obvious from the DSC results. Although in literature there is no 

report of this particular IR band being associated with a metastable form of PEG, the thermal 

behaviour of the PEG detected by MTDSC matches the documented thermal events related to the 

metastable PEG (328, 332, 490). All these data confirm the presence of a metastable form of PEG 

after heating followed by immediately cooling which support the TASC data. It follows that in 

this case at least, TASC is sensitive to an event that conventional DSC does not clearly detect 

using the same heating rate at 10ºC/min. DSC shows only one process because the two melting 

events are broad and overlap. The reversing signal from the MTDSC experiment detected a two-

stage process because it is sensitive to re-arrangement, in effect it is more directly influenced by 

the kinetics of the melting process than the total signal. It is reasonable to infer that these kinetics 

will influence the softening process; as melting starts there is an increase in fluidity but this is 

arrested because at least some recrystallisation occurs as the more stable form is created before it, 
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in turn, melts. In this way, TASC can follow the consequences of changing the structure on a 

length scale it cannot directly interrogate. 

 

Figure 5.15: VT- ATR-FTIR spectra of the heating a and c reheating cycle of the CM1 10% loaded 

patches indicating the crystallisation and melting of the metastable form of PEG; and (d) the ATR-

FTIR spectra intensity changes of the additional peak at 1106 cm-1 with temperature indicating the 

presence of metastable form PEG 
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5.3.1.4 Scanning rate effects on the detection sensitivity  

Resolving events that have similar transition temperatures is typically more easily achieved at 

slow heating rates. This is particularly true when the events take place over a wide temperature 

interval and overlap. When using conventional DSC, low heating rates can improve resolution 

but decrease sensitivity; they also increase the time taken for the analysis. In Figure 5.16 DSC 

results are shown in a variety of heating rates, they reflect the range typically used for routine 

DSC work, 10 to 40 ºC/min. In no case is a bimodal event detected. The TASC results detect the 

bimodal character of the sample’s behaviour during the reheating segment even at the fastest 

heating rate. This suggests TASC is suitable for routine rapid analysis such as that often required 

for quality control without any reduction in sensitivity and resolution. 

 

Figure 5.16: Influence of heating rate on TASC response in comparison to conventional DSC. CM1 

patches loaded with 10% felodipine were tested using TASC and DSC at 10, 20 and 40ºC/min. First 

heating and reheating cycle were recorded and compared (n=3; average ± SD) 



Chapter 5                      Characterisation of felodipine HME-IM patches using TASC and XµCT  

 

200  School of Pharmacy / University of East Anglia 

 

5.3.2 XμCT analysis of phase separations in the HME-IM patches 

5.3.2.1 XμCT analysis of internal microstructure and spatial distribution of 

phase separations 

It is well known in the literature that the surface and interior of many extruded samples exhibit 

significantly different features (483, 491). Therefore, XµCT was further used as a non-invasive 

method to study the 3D microstructure of the patches and to estimate the size, shape and spatial 

distribution of the phases in the prepared formulations. It is important to bear in mind that the 

spatial resolution of XµCT is limited to micron scale (which is 4 µm in this case). Thus nanoscale 

phase separation cannot be detected by this technique. Two XµCT types of equipment were used 

in the investigation of CM1 and CM2 formulations as mentioned in the experimental part of this 

chapter. The XµCT images of CM1 placebo and the patches with 10% drug loading (Figure 

5.17a-d) revealed some dark and light blue colour distributed in the matrices of these samples. 

This effect is within the noise level of the measurement thus not a true feature of the samples. 

Therefore, no micron-scale phase separation is detected using micro-CT under the limit of 

detection of XµCT. 

 

Figure 5.17: XµCT images of CM1 placebo surface and cross-section images (a, b) and CM1 10% 

surface and cross-section images (c, d) 
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With increasing the drug loading to 20% (w/w), large clusters (approximately 100 µm in diameter) 

and small (approximately 5-20 µm in diameter) particles with higher density (red dots and clusters) 

can be observed being predominately distributed at the surface and interior of the patches, 

respectively, as seen in Figure 5.18. The small particles are likely to be crystalline felodipine as 

crystalline material has higher density than the molecularly dispersed state and chlorine in the 

chemical structure of felodipine also provides improved electron density thus gives higher 

contrast in comparison to PEG, PEO K900 and Tween 80 (492). The presence of drug particles in 

the matrices agrees well with the SEM results shown in Chapter 4. The fact that significant amount 

of dense drug areas at the surface of the patches may be associated with the faster cooling rate at 

the surface after HME-IM, which promote the phase separation of drug from the matrix. This 

surface crystallisation phenomenon is also reported to present in other drug-polymer extrudates 

in the literature (483, 491). This important 3D spatial distribution of the phase separated drug 

particles cannot be observed using other conventional characterisation methods.  

 

Figure 5.18: XµCT images of CM1 HME-IM patches containing 20% (w/w) felodipine 
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The XµCT images of the HME-IM patches with 30% drug loading (Figure 5.19) revealed rich 

interior features including evenly distributed air pockets and dense drug particles with a larger 

particle size (approximately at or below 150 µm) than the ones observed in the patches with 20% 

loading. It is also possible to distinguish phases with different densities (discontinuous light blue 

having a lower density and dark blue having a higher density). It is interesting to note that the 

dense drug particles are mostly distributed in the dark blue phases and many located at the edges 

of air pockets. According to literature data, the true density of PEG and PEO K900 are 1.15-

1.21g/mL and 1.3g/mL at 25°C, respectively, whereas Tween 80 has a true density of 1.064g/mL 

(348, 493, 494). Taking into account the previous results indicating the low miscibility of Tween 

80 and PEG-PEO K900, it is reasonable to argue that the light blue phases, with an average 

diameter of 250-750 µm are Tween 80 rich phases and the dark blue areas are PEG-PEO K900 

rich phases. As the solubility of felodipine in PEG-PEO K900 is limited by the low quantity of 

amorphous polymer, it is possible that the drug dissolved in the PEG-PEO-rich phase during melt 

extrusion at an elevated temperature above the melting of PEG-PEO K900 and crystallised out 

when the patches cooled and equilibrated at room temperature.  

 

Figure 5.19: XµCT images HME-IM CM1 patches containing 30% (w/w) felodipine. 
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XµCT analysis of CM2 placebo patches revealed that they are pore-free with little interior 

microstructure at the resolution used in XµCT (Figure 5.20) 

 

Figure 5.20: XµCT analysis of CM2 placebo sample; A) an example of a reconstructed binary image; 

B) selected Region of Interest (ROI) for analysis C) 3D object representing the different components 

according to their densities present in the selected ROI   

 At 10 and 20% drug loading, some internal air pockets are evident as seen in Figure 5.21. These 

occasional air pockets have no defined structure. With increasing the drug loading, the volume 

fraction of the patches occupied by the air voids was also increased. The few particles with high 

density shown as bright spots in the matrix were identified as silicone dioxide (SiO2) (with a 

density of 2.65 g/mL), which is an inorganic material present in the powder of PEO K900 at a 

concentration of 0.8-3 % w/w as a powder flowability enhancer (495).  
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Figure 5.21: (a) XµCT reconstruction of binary image of 10% CM2 loaded sample with selected 

Region of Interest (ROI) for analysis; b) 3D object representing the different components according 

to their densities present in the selected ROI; (c) XµCT reconstruction of binary image of 20% CM2 

loaded patches with selected Region of Interest (ROI) for analysis; d) 3D object representing the 

different components according to their densities present in the selected ROI 

No other phase separation can be observed in these patches with 10 and 20% drug loading. 

Although DSC and TASC confirmed the presence of separate TPGS and PEG-PEO K900 phases, 

both are organic materials with similar elemental composition in their structure which provide no 

electron density contrast that can be used in XµCT to resolve the different phases. Felodipine has 

chlorine atoms in its structure which have higher electron density compared to the elements in the 

excipients. When felodipine dissolved in the excipients as a molecular dispersion, the overall 

electron density of the local area will be elevated by the presence of felodipine. The fact that no 

isolated drug clusters can be identified using XµCT for these two patches indicates that felodipine 

is relatively evenly distributed across the patches. It should also be mentioned that the spatial 

resolution of XµCT used in this study is within the micron range. Therefore, if any drug clusters 

occur with sizes smaller than few microns, they would not be detectable by XµCT.  

As seen in Figure 5.22, the XµCT images of the CM2 patches with 30% drug loading show the 

presence of clear drug clusters and air voids with well-defined spherical shape. As PXRD and 

ATR-FTIR spectroscopy results (as mentioned in Chapter 4) indicated the presence of the 

crystalline drug, it can be stated with some confidence that these drug clusters, represent the 

crystalline felodipine particles and be described as crystalline drug particles in the following 

discussions. The crystalline drug particles are 10-20 µm in diameter, which is similar to the 
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crystals observed using SEM in Chapter 4.  

 

Figure 5.22: XµCT analysis of CM2 30% loaded sample; a) an example of reconstructed binary image 

with selected Region of Interest (ROI) for analysis b) 3D object representing the air pockets 

entrapped in the sample; c) 3D object representing the phase separated crystalline felodipine 

particles; d) 3D object representing the matrix  

As seen in Figure 5.22a, the crystals (light spots) are more frequently distributed at the interfaces 

between the air voids and the matrix. This is an interesting feature which was not detected by any 

other characterisation method used in this study. The DSC results indicate that felodipine has a 

higher miscibility with TPGS than PEG-PEO K900 and hence drug crystallisation after reaching 

supersaturation is more likely to occur in PEG-PEO K900-rich domains than in TPGS-rich 

domains. Therefore, it is reasonable to speculate that these crystalline felodipine-rich areas around 

the air pockets are also PEG-PEO K900 rich regions. 

5.3.2.2 XμCT analysis as a potential semi-quantitative method to study 

crystalline drug content   

In order to further explore the possibility of using XµCT as a quantitative method for 

characterising phase separation in solid dispersions, compressed compacts of CM2 physical mixes 

of crystalline felodipine with known drug content (the same drug content as was used in CM2 

patches) were prepared and analysed. As seen in Figure 5.23, crystalline felodipine particles are 

evenly distributed across the matrices. The volume fraction of the space occupied by the 
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crystalline drug particles can be measured and the values for the compacts with 10-60% 

crystalline drug loading were plotted against their known drug contents (Figure 5.23d). It was 

noted that the linearity of the correlation was not ideal (with a regression R2 of 0.92). Therefore, 

these results should be regarded as semi-quantitative. It was noted that the compacts were much 

softer after compression than normal solid tablets and the surfaces of the compacts were slightly 

tacky. This softening indicates the lowered melting point of the mixture which could be caused 

by solubilisation of crystalline drug in the low melting excipients such as TPGS during the high-

pressure compression process. This may explain why the 60% drug loaded physical mixture 

shows more deviation from the linear correlation in comparison to results obtained from the 10-

40% drug loaded physical mixtures. Using systems that do not have dissolution or physical form 

changes of the drug during compaction with excipients may improve the accuracy and linear 

correlation between drug loading and XµCT measured volume. Nevertheless, the attempt of using 

the correlation as a calibration curve was made to estimate the amount crystalline drug in the 

HME-IM CM2 patches with 30% drug loading.  
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Figure 5.23: Representative 3D XµCT images of the distribution of crystalline felodipine in the 

compacts made of the physical mixes of crystalline felodipine-TPGS-PEG-PEO K900 with (a) 10%; 

(b) 30%; and (c) 60% crystalline felodipine loadings. (d) the correlation between crystalline drug 

content in these compacts and measured volume fraction of felodipine in their 3D XµCT images, 

which was used as a calibration curve for the quantitative estimation of crystalline felodipine in 

HME-IM patches with 30% drug loading  

The volume fraction of the crystalline drug particles in the 30% CM2 patches observed in Figure 

5.22 is 0.078. Using the linear correlation shown in Figure 5.23d the weight fraction of the 

crystalline drug can be calculated as 10.3% (w/w). This indicates that 19.7% felodipine was 

molecularly dispersed in the matrices in the HME-IM CM2 patches with 30% drug loading. As 

no crystalline drug was detected in the HME-IM patches with 20% drug loading, it indicates that 

the 20% is close to the saturation of the solubility of felodipine in the matrices. Therefore, for the 

patches with 30% loading, approximately 10% w/w drug should be phase separated as a 

crystalline drug. The XµCT quantitative estimation agrees well with this. 
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5.3.3 Comparison of heterogeneity assessment by XμCT and TASC 

The heterogeneity of CM2 patches with 30% drug loading was studied using XµCT in order to 

make a comparison with the measurements on heterogeneity performed by TASC. The same 

methodology used with TASC for measuring heterogeneity was adapted, and areas of interests 

(ROI) with various sizes were taken from 2D XµCT images. Using the quantitative calibration 

described above, the amount of crystalline felodipine in each ROI were calculated. As shown in 

Figure 5.24a, a single XµCT slice (grey scale image) was used and 6 small (100 × 100 µm 

equivalent to 10 × 10-3 mm2) ROIs and 6 large ROIs (300 × 300 µm equivalent to 90 × 10-3 mm2) 

were randomly selected and analysed. These areas are similar in size to the ones used in TASC 

measurements. Same thresholding procedure was adapted for the estimation of the volume 

fraction of phase separated crystalline felodipine in all of these ROIs. It can be seen in Figure 

5.24b that the amounts of crystalline felodipine measured in larger ROIs have a lower standard 

deviation in comparison to those measured in the smaller ROIs indicating the high heterogeneity 

at the scale of 100 × 100 µm.  These findings agree well with the results obtained by TASC and 

confirm that integrating large areas reduces the sensitivity to heterogeneity and explained why 

heterogeneity is not detected by DSC analysis.  

 

Figure 5.24: Estimation of heterogeneity by XµCT: (a) Illustration of the selection of a range of ROIs 

with different sizes on a representative 2D XµCT image of CM2 patches with 30% drug loading; (b) 

the comparison of the calculated volume fraction of crystalline felodipine in the ROIs with large 

(300×300 µm) and small (100×100 µm) areas 
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5.4 Discussion 

Formulating solid dispersions of poorly water soluble drugs using HME-IM as single step 

processing is an attractive approach for improving their dissolution properties with fast and 

environmentally friendly processing. However, in order to achieve the desired formulation 

features of the product such as systemic delivery via the buccal cavity in this study, it requires the 

inclusion of a number of excipients resulting in an increase in the complexity of the system. In 

Chapter 4, two sets of HME-IM mucoadhesive buccal patches were designed and characterised 

using conventional characterisation techniques like DSC, MTDSC, ATR-FTIR, SEM, EDS, 

PXRD and IR imaging. Due to the nature of the fabricated systems being intentionally phase 

separated to provide surfactant-rich solubilisation and stabilisation domains for felodipine, it is 

important to further investigate the heterogeneity of the different phases and their microstructure 

spatial distribution. This chapter investigated the effect of drug-excipient miscibility on the 

heterogeneity and spatial distribution of phase separation in pharmaceutical solid dispersions at a 

micron-scale using two novel and complementary characterisation techniques, TASC and XµCT, 

to provide complimentary information in conjunction with conventional characterisation methods 

used in Chapter 4. 

As a recently developed characterisation technique, TASC was used to assess the heterogeneity 

of placebo and felodipine loaded HME-IM patches. As a rapid and cheap technique, TASC 

revealed the melting transitions of the PEG-PEO K900 and/or TPGS separate phases in the 

different CM1 and CM2 formulations. CM1 samples up to 20% w/w loading have homogeneous 

microstructure compared to 30% w/w loading. In addition, increasing the loading percentage of 

the drug in CM2 blend up to 20%, the TPGS phase is reduced in intensity and shifted to lower 

temperature compared to the PEG-PEO K900 phase. This may indicate the solubilisation of the 

drug in TPGS phase is more than that in PEG-PEO K900 phase. However, increasing the loading 

percentage to 30% in CM2 mixture resulting in an increase in the intensity of the TPGS peak 

revealing the phase separation of the crystalline fraction of felodipine from this phase.  

Due to the low melting transitions of the components of both CM1 and CM2 HME-IM mixtures, 

melting transition of the crystalline fraction cannot be detected using standard DSC experiments 

due to the thermal dissolution during the heating ramp. However, using TASC, it was possible to 

detected thermal dissolution due to the ability to detect changes before reaching equilibrium. 

Reaching the plateau with TASC signal indicates that the system in a state of equilibrium. Placebo 

and 10% loaded CM1 and CM2 samples reach the sharp plateau revealing that equilibrium was 
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achieved after the melting of PEG-PEO K900 polymer blend. The less sharp plateau was detected 

with 20% loading of both mixtures indicates the small fraction of crystalline drug present in the 

formulations. However, failure to achieve the equilibrium compared to lower loadings 

significantly indicate the presence of considerable amount of crystalline drug in the matrices of 

both CM1 and CM2 blends. Using this analysis, it would be possible to detect the thermal 

dissolution of the drug in the molten carrier and consequently assess the saturation limits of the 

carrier for a particular drug. This hidden thermal dissolution can be easily detected using this 

technique compared to DSC as the complete dissolution of felodipine is only achieved when the 

TASC signal reaches the plateau which is also confirmed by VT-ATR-FTIR using 30% CM1 

sample. In addition, because TASC can perform microscale thermal analysis for the sample using 

single experiment with multiple data-based analysis which can be considered as time and cost 

saving approach, it could be possible to detect microscale heterogeneity of the samples. 

Reproducibility of TASC signal indicates microscale homogeneity as seen in the case of placebo 

and loaded patches up to 20% loading. However, the signals of the 30% loading were 

irreproducible resulting in large error bars representing intra- and inter- sample variations. The 

heterogeneous distribution of crystalline fraction is more likely the cause of the lack of 

reproducibility of the samples. The detected heterogeneity of 30% CM1 patches was higher 

compared to CM2 reflected by the lower reproducibility of former than the later indicating more 

drug phase separation and lower solubilisation capacity in CM1 compared to CM2 blend.  

Furthermore, the reheating cycles of TASC analysis were sensitive for the detection of metastable 

folded forms of PEG 4000 which is not observable using DSC using the same heating rate. It 

should be mentioned that the results collected by TASC analysis are not affected by the heating 

rate indicating the potential of this thermal analysis technique for achieving the same results as 

DSC at shorter time without a decrease in the sensitivity.  

Using previous characterisation techniques revealed valuable information about the 

microstructure of the samples. However, the spatial distribution of phases cannot be revealed by 

any of the aforementioned techniques. XµCT was used as a novel technique to detect and simulate 

the distribution of phase separate solid dispersions using the difference in their electron densities. 

The distribution of crystalline felodipine predominately in the PEG-PEO K900-rich phase is not 

detected by any other characterisation methods but XµCT. This observation can be explained by 

the difference in the solubility values of felodipine in Tween 80 and semi-crystalline PEG-PEO 

K900. XµCT results not only confirmed the findings from the thermal and spectroscopic methods 

but also allowed the estimations of the size, shape and spatial distribution of different phases and 

revealed the distinct interior microstructure difference between dispersions with different drug 
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loadings. Due to the similarity in density between the PEG-PEO K900 and TPGS phases and the 

possible nanoscale phase separation, XµCT was unable to detect the phase separation of the 

different phases of the carrier. However, the high electron density of felodipine compared to the 

other components of the carrier mixture, crystalline drug fraction in 30% loaded samples can be 

thresholded and represented in 3D views together with some processing malfunctions such as the 

presence of air voids and heavy metal impurities. In addition, this study also explored the use of 

felodipine physical mixtures compacted discs loaded with 0-60% w/w that can be used as a 

calibration curve of the crystalline fraction of felodipine. Using this method, the fraction of 

crystalline felodipine in 30% loaded patches was estimated semiquantitatively and found to be 

10.3% w/w.  

5.5 Conclusion 

This chapter introduces the use of two novel characterisation methods for studying phase 

separation behaviour in pharmaceutical solid dispersions, TASC and XµCT. The characterisation 

techniques were challenged by the set of complex multi-component solid dispersions studied in 

Chapter 4. The results confirmed that both techniques not only could provide complementary 

information to conventional characterisation tools, including DSC, MTDSC, PXRD, ATR-FTIR, 

SEM and EDS to reveal the correlation between drug-excipient miscibility and phase separation 

but also are able to provide a new and important understanding of the heterogeneity and 

distribution of separate phases in the systems. TASC allowed rapid identification of heterogeneity 

in the dispersions containing phase separation but does not have the capability of analysing the 

spatial distribution of the phases. As a non-destructive technique, XµCT analysis provided the 3D 

microstructure of the interior of the patches and the spatial distribution of the separated phases. 

This detailed understanding of the dispersions will provide confidence in product quality of 

dispersions formulations. However, it should be highlighted that XµCT cannot be used as 

identification method on its own for distinguishing crystalline and amorphous drug domains. The 

first attempt of using XµCT as a quantitative method to estimate phase separated drug clusters 

(identified as crystalline drug with confirmation by PXRD and ATR-FTIR) in processed 

formulations indicated its potential application for such purposes. However, the results reported 

here can only be regarded as semi-quantitative. Further studies are needed to validate XµCT as a 

quantitative method.  
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6.1 Introduction 

Surfactants, such as Tween 80 and TPGS, have been suggested in the literature for use as 

plasticisers for HME based solid dispersions (200, 329, 361, 496, 497). In Chapter 4, the addition 

of a significant amount of surfactant was adapted as a strategy aiming to improve the solubility 

of the poorly soluble drugs in the matrix via creating phase separated surfactant concentrated drug 

solubilisation compartments (498, 499). However, it was reported that surfactants can destabilise 

the drug and cause crystallisation of drug from the dispersions during storage (93, 201, 385, 500). 

The mechanism of this destabilising effect has been mainly attributed to the low Tg of such 

materials. It should be mentioned that the benefit of facilitating processing was described as often 

outweighing the minimal amount of destabilisation, thus the addition of surfactants is often 

recommended (201, 385, 501). However, there is no fully developed guidance for surfactant 

selection and how to minimise their destabilising effects in the literature.  

This chapter aimed to contribute to a fuller understanding of the destabilisation effect of the use 

of surfactants in hot melt extruded formulations by investigating the stability of two types 

surfactant-containing hot melt injection moulded patches. CM1 and CM2 placebo and 10-30% 

w/w felodipine loaded HME-IM patches were used as surfactant containing solid dispersions in 

this chapter. Due to their complex phase behaviour resulting from the differences in the 

miscibilities between the individual constituents, their stabilities can be affected by storage 

temperature and relative humidity. Both of these storing conditions can affect molecular mobility 

in the formulations (97, 100). For the well-studied molecular dispersions of a binary polymer-

drug system, a single global mobility is generally reflected by a single Tg. Water has a strong 

plasticising activity and moisture uptake from humid environment during storage is known to 

increase the global mobility of the system enhancing phase separation of the drug from its 

dispersion (106-110). In terms of storage temperature, as a general rule amorphous dispersions 

are stored at temperatures 50 ̊C below their Tg to minimise the crystallisation tendency of the drug 

(24). However, the effects of storage temperature are often more complex. For example, storing 

amorphous polymeric based solid dispersions at low temperatures can decrease the 

recrystallisation rate of the molecularly dispersed drug because of reduced molecular mobility. 

However, at lower temperatures, the miscibility of the polymer and drug is usually decreased 

leading to increased risks of increasing the degree of saturation of the drug in the dispersions (24, 

105). When the supersaturation is reached, if the molecular mobility allows, the drug could still 

crystallise even at low temperatures. Therefore, the storage temperature may have a positive or 
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negative impact on the physical stability of the system under investigation depending on the 

balance between the speed of diffusion of the drug molecules and the thermodynamics of the 

mixing between the drug and the polymers.  

In this study, the effects of humidity and/or temperature on the individual phases and overall 

stability of placebo and felodipine loaded CM1 and CM2 HME-IM patches was examined in 

order to provide an insight into the how the complex interplay of the effect of surfactants, the 

stability of the semi-crystalline carrier material and the degree of drug saturation in the 

formulation can impact on the stability of the entire dispersions.  

Research objectives   

1. To investigate the impacts of storing temperature and relative humidity on the stability of 

CM1 and CM2 placebo and 10-30% w/w felodipine patches.   

2. To understand the effect of surfactants on the stability of different formulations. 

3. To compare the two formulations to provide good understanding of the selection criteria 

that governs the suitability of surfactants for solid dispersions prepared by HME-IM 

technique. 

4.  To assess the crystallisation tendency of felodipine from formulations at different 

conditions and evaluating the most important parameters that control the crystallisation 

process.  

6.2 Materials and Methods 

6.2.1 Materials 

The raw materials used for the fabrication of placebo and felodipine loaded CM1 and CM2 HME-

IM buccal patches were the same as those mentioned in Chapter 4, section 4.2.1 except for using 

different batch no. of felodipine (20100601) from the same supplier. Phosphorus pentoxide (P2O5) 

99.0 % was ordered from Sigma-Aldrich (Dorset, UK) and NaCl extra pure (≥ 99.0 %) was 

purchased from Thermo Fisher Scientific (Geel, Belgium).  
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6.2.2 Methods 

6.2.2.1  Storage conditions for HME-IM patches and amorphous felodipine 

After the preparation of the placebo and drug loaded HME-IM patches (as described in Chapter 

4, section 4.2.2), they were immediately stored at four different conditions of temperature and 

relative humidity (%RH): room temperature and 0% RH (condition A), room temperature and 

75 % RH (condition B), 40 C̊ and 0% RH (condition C) and 40 ̊C and 75% RH (condition D). The 

conditions selected are the most likely used conditions for investigating the stability of 

pharmaceutical products. Storing jars containing phosphorus pentoxide (P2O5) were used to 

represent the 0% RH while supersaturated NaCl solution was used to provide the 75% RH. In 

order to investigate the dual effect of relative humidity and the temperature, two sets of the 

humidity conditioned jars (0 and 75%) were stored either at room temperature or incubated in an 

incubator (Genlab incubator, Genlab Ltd, Cheshire, UK) operating at 40 ̊C. The stored samples 

were characterised to investigate the stability of the system especially the crystallisation tendency 

of felodipine. After incubation for 3 months, the samples were analysed to monitor the changes 

in each sample resulting from aging at each storing condition. Amorphous felodipine samples 

were immediately stored at 40 ̊C and 75% RH for 7 days after preparation (as described in Chapter 

3, section 3.2.2.1) before characterisation using different techniques. 

6.2.3 Characterisation of HME-IM aged solid dispersions 

The HME-IM patches and amorphous felodipine were characterised using the SEM, DSC, ATR-

FTIR, PXRD and TGA using the same methods previously described in Chapters’ sections 3.2 

and 4.2. EDS characterisation was performed using the same method described in Chapter 4.2 

except for using single point X-ray acquisition mode (at least 3 points were analysed for each 

morphological feature such as crystals, matrix surface, matrix cross-section) instead of the 

mapping mode. The results obtained using DSC were statistically analysed using (ANOVA). 

Differences of p < 0.05 were considered to be significant. 
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6.3 Results  

6.3.1 Effect of surfactant on the stability of semi-crystalline carrier in placebo 

patches 

The addition of surfactant to a semicrystalline mixture of PEG and PEO K900 contains two phases: 

an amorphous phase and a crystalline phase may result in the formation of an extra phase(s) 

depending on the physical state of the surfactant and its miscibility in the amorphous fraction of 

the blend. As seen in Figure 6.1 and 6.2, in the fresh placebos both Tween and TPGS were phase 

separated as indicated by their detectable melting endothermic peaks at -10.3 ± 0.2 and 37.5 ± 0.1 

°C, respectively. This implies that CM1 contains a liquid Tween surfactant phase at ambient 

temperature whereas CM2 contains a solid TPGS phase. The melting enthalpy values of pure 

Tween 80 and TPGS are known to be 45.53 ± 0.59 and 100.01 ± 1.09 J/g, respectively, it is 

possible to estimate the degree of crystallinity of the two surfactants in the freshly prepared 

placebo patches. These are for Tween in CM1 45.5% which is significantly less than the one of 

TPGS in CM2 (74.1%) with considering the fraction of each surfactant incorporated in the 

formulations. This result indicates that higher weight percentage of Tween is mixed with PEG-

PEO K900 in the CM1 than TPGS in CM2. This difference in the physical state of the phase 

separated surfactant domains may affect the stability as the diffusion rate of drug molecules in the 

liquid state in general is faster than in solid and semi-solid environments which may promote 

faster nucleation and crystallisation of drug. The melting peaks of raw PEG and PEO K900 are 

59.3 ± 0.3 and 70.2 ± 0.3 while their crystallinity are 87.6% and 84.1% calculated by dividing the 

melting enthalpy of studied samples by the melting enthalpy of fully crystalline polymers values 

obtained from the literature (449, 455, 456), which are 214.6 J/g and 205 J/g respectively. The 

PEG-PEO K900 melting points of the fresh placebo CM1 and CM2 samples are 63.6 ± 0.2 and 

64.1 ± 0.3 respectively. The proportion of PEG to PEO K900 in both mixtures is 4:3 which means 

that the theoretical % of crystallinity is 86.1% assuming no interaction between the two polymers. 

The calculated % of crystallinity based on experimental results of PEG-PEO K900 polymers in 

placebo CM1 and CM2 were found to be 59.5% and 59.2% indicate a significant reduction in 

their crystallinity. 

The DSC results of placebo CM1 samples are shown in Figure 6.1. It was noticed that all aged 

samples maintain their solid structures except the patches stored at 40°C/75%RH. Placebo CM1 

patches stored at 40°C/75%RH lost their solid structure ‘liquefied’ after storage at condition D. 
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The liquefied samples show complex behaviour: a recrystallisation peak at about the 

crystallisation temperature of Tween 80. However, the enthalpy of the peak is 39.3 J/g which is 

much higher than 7.9 J/g the expected crystallisation enthalpy for Tween 80. A single endothermic 

phase transition at 33.5°C is also observed. There are no melting peaks of Tween and PEG-PEO 

K900. This indicates the presence of low molecular weight degradation products of PEG-PEO 

K900 which crystallise and form complexes with Tween at a lower temperature and subsequently 

melt at 33.5°C (144, 145, 502-505). 

DSC investigation indicates that good physical stability of CM2 placebo under conditions A, B 

and C, but some changes after 3-month ageing under 40°C/75%RH (Figure 6.2). There are no 

significant changes in the TPGS phase. Two additional shoulder peaks at 55 and 59.5 °C are 

observed at the melting of PEG-PEO K900 phase which may be attributed to a small extent of 

degradation of PEG-PEO K900. The significantly less degradation of CM2 is highly likely to be 

associated with antioxidant nature of TPGS which protected PEG-PEO K900 from extensive 

oxidation (144, 207, 386, 387). 

 

Figure 6.1: DSC thermograms of placebo CM1 fresh and aged samples using 10 ̊C/ min (n=3) 
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Figure 6.2: DSC thermograms of placebo CM2 fresh and aged samples using 10 ̊C/ min (n=3) 

After ageing, SEM images revealed no significant morphological changes for both placebo CM1 

and CM2 at different ageing conditions (Figures 6.3-4) except for CM1 patches which lost their 

original shape and liquefied under 40ºC/75% RH (condition D).  
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Figure 6.3: SEM images for CM1 placebo fresh and 3 months aged samples; (a and b) are surface 

and cross-section of fresh sample, (c and d) are surface and cross-section of sample stored at condition 

A, (e and f) are surface and cross-section of sample stored at condition B and (g and h) are surface 

and cross-section of sample stored at condition C 
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Figure 6.4: SEM images for CM2 placebo fresh and 3 months aged samples; (a and b) are surface 

and cross-section of fresh sample, (c and d) are surface and cross-section of sample stored at condition 

A, (e and f) are surface and cross-section of sample stored at condition B, (g and h) are surface and 

cross-section of sample stored at condition C, and (i and j) are surface and cross-section of sample 

stored at condition D 
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As mentined in Chapter 3, isohume (at 75%RH) DVS studies of Tween 80 and TPGS revealed 

that they could take up to 14.44 ± 0.89 % and 12.80 ± 0.72% w/w moistures, respectively, whereas 

PEG and PEO K900 only could take up less than 2% w/w moisture when reached equilibrium. 

Using these data, it is possible to estimate the theoretical moisture uptake of the two placebos 

(assuming of the ingredients have complete phase separation) being 5.35 ± 0.28 and 4.85 ± 0.23 

% (w/w) for CM1 and CM2, respectively. As seen in Figure 6.5 and Table 6.1, a significant 

amount of weight loss up to 100 °C (14.48 ± 1.28 % w/w) during TGA measurement was observed 

in the liquefied CM1 placebo after 3-month storage under 40ºC/75%RH. This is more than the 

theoretical amount of moisture uptake capacity estimated using the individual ingredient data. It 

is also noted that the weight loss of the 40ºC/75%RH aged CM1 placebo sharply increased by 

5.44 % up to 150 °C. It is well-known in literature that Tween and PEG-PEO K900 exhibits 

thermally initiated autoxidation (143, 145, 206, 506, 507). Thus, this continued weight loss at 

temperature below the thermal decomposition temperatures of the constituents of the mixture 

(which are 376.3 ± 5.0, 369.3 ± 0.3 and 372.4 ± 0.8 °C for PEG, PEO and Tween 80, respectively) 

is likely to be attributed to the loss of low molecular weight degradation products during heating. 

It should be mentioned that the apparent weight gain at 0% RH samples is more likely due to 

moisture uptake in handling after removal of from the storage. The moisture uptake of CM2 

placebo after 3-month at 40ºC/75%RH shows close to the theoretical estimation indicates TPGS 

exhibited its full capacity. 

 

Figure 6.5: TGA results of 3-month aged CM1 placebo patches (n=3) 
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Table 6.1: Percentage of weight loss of the formulations measured by TGA after three months ageing 

(n=3, average ± SD) 

Formulation Condition A Condition B Condition C Condition D 

 

Placebo CM1 0.12 ± 0.00 2.6 ± 0.52 0.18 ± 0.10 14.48 ± 1.28 

10% CM1 0.08 ± 0.04 5.00 ± 0.33 0.10 ± 0.05 3.40 ± 0.12 

20% CM1 0.10 ± 0.01 2.99 ± 0.38 0.05 ± 0.03 3.32 ± 0.22 

30% CM1 0.04 ± 0.00 2.48 ± 0.11 0.03 ± 0.00 2.43 ± 0.07 

Placebo CM2 0.11 ± 0.03 3.02 ± 0.00 0.12 ± 0.03 3.40 ± 0.12 

10% CM2 0.05 ± 0.01 2.67 ± 0.08 0.15 ± 0.06 3.37 ± 0.13 

20% CM2 0.04 ± 0.01 2.14 ± 0.05 0.05 ± 0.01 2.73 ± 0.17 

30% CM2 0.02 ± 0.02 1.74 ± 0.04 0.03 ± 0.00 1.90 ± 0.07 

 

This is also supported by the ATR-FTIR spectrum of the sample seen in Figure 6.6a and b. The 

placebo CM1 sample after three months shows a broad band centred around 3409 cm-1 and new 

peaks at 1645 and 1750 cm-1. The peaks at 1750 and 1645 cm-1 were assigned to water and 

carbonyl respectively. The broad peak is from water and hydroxyl groups. There is also a loss of 

resolution across the whole spectrum consistent with degradation and loss of crystallinity (145, 

506). 
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Figure 6.6: A) The high wavenumber and B) is the low wavenumber ATR-FTIR spectra of placebo 

CM1 fresh and aged samples (n=3) 

6.3.2 Effect of drug loading on semi-crystalline carrier 

The morphologies of the surfaces and cross-sections of the patches after drug incorporation (10-

30% w/w) in both CM1 and CM2 blends can be seen in Figure 6.7-12. With increasing the drug 

loading for both formulations, the roughness of the samples increased. These figures will be used 

explain the crystallisation tendency of felodipine from aged samples later in this chapter.   
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Figure 6.7: SEM images for 10% CM1 fresh and 3 months aged samples; (a and b) are surface and 

cross-section of fresh sample, (c and d) are surface and cross-section of sample stored at condition A, 

(e and f) are surface and cross-section of sample stored at condition B, (g and h) are surface and 

cross-section of sample stored at condition C, and (i and j) are surface and cross-section of sample 

stored at condition D 
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Figure 6.8: SEM images for 10% CM2 fresh and 3 months aged samples; (a and b) are surface and 

cross-section of fresh sample, (c and d) are surface and cross-section of sample stored at condition A, 

(e and f) are surface and cross-section of sample stored at condition B, (g and h) are surface and 

cross-section of sample stored at condition C, and (i and j) are surface and cross-section of sample 

stored at condition D 
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Figure 6.9: SEM images for 20% CM1 fresh and 3 months aged samples; (a and b) are surface and 

cross-section of fresh sample, (c and d) are surface and cross-section of sample stored at condition A, 

(e and f) are surface and cross-section of sample stored at condition B, (g and h) are surface and 

cross-section of sample stored at condition C, and (i and j) are surface and cross-section of sample 

stored at condition D 
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Figure 6.10: SEM images for 20% CM2 fresh and 3 months aged samples; (a and b) are surface and 

cross-section of fresh sample, (c and d) are surface and cross-section of sample stored at condition A, 

(e and f) are surface and cross-section of sample stored at condition B, (g and h) are surface and 

cross-section of sample stored at condition C, and (i and j) are surface and cross-section of sample 

stored at condition D 
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Figure 6.11: SEM images for 30% CM1 fresh and 3 months aged samples; (a and b) are surface and 

cross-section of fresh sample, (c and d) are surface and cross-section of sample stored at condition A, 

(e and f) are surface and cross-section of sample stored at condition B, (g and h) are surface and 

cross-section of sample stored at condition C, and (i and j) are surface and cross-section of sample 

stored at condition D 
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Figure 6.12: SEM images for 30% CM2 fresh and 3 months aged samples; (a and b) are surface and 

cross-section of fresh sample, (c and d) are surface and cross-section of sample stored at condition A, 

(e and f) are surface and cross-section of sample stored at condition B, (g and h) are surface and 

cross-section of sample stored at condition C, and (i and j) are surface and cross-section of sample 

stored at condition D 
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The phase behaviour of the patches can be analysed using the DSC. For CM1 loaded samples 

(Figures 6.13-15), in contrast to the placebo samples, no melting of Tween was observed. A 

shoulder at the onset of the melting of PEG-PEO K900 is developed with increasing the drug load 

above 10%. At 30% drug loading, a separate melting at 87 °C can be seen. This is assigned to the 

depressed melting of crystalline felodipine, indicating the presence of significant amount of 

crystalline felodipine in CM1 patches with 30% drug loading. The detection of felodipine melting 

peak in the 30% CM1 loading fresh sample (Figure 6.15) was attributed to the difference in 

particle size between the two batches of pure felodipine used in this study. The characterisation 

of the two batches of the pure drug is shown in Appendix 3.  

 

Figure 6.13: DSC thermograms of 10% CM1 fresh and three months aged samples using 10 ̊C/ min 

heating ramp (n=3) 
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Figure 6.14: DSC thermograms of 20% CM1 fresh and three months aged samples using 10 ̊C/ min 

heating ramp (n=3) 

 

Figure 6.15: DSC thermograms of 30% CM1 fresh and three months aged samples using 10 ̊C/ min 

heating ramp (n=3) 
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Investigating the Tg regions (Figures 6.16-18) revealing the detection of single Tg temperatures 

for all drug loaded fresh CM1 patches at -49.0 ± 0.6, -38.0 ± 0.3 and -46.6 ± 0.5 °C for 10, 20 and 

30% w/w drug loadings, respectively. As shown in Chapter 4, the presence of felodipine in the 

Tween 80/PEG/PEO K900 system results in a single amorphous phase consisting of four 

components. The increase of Tg for 20% CM1 patches indicates the increased amount of 

molecularly dispersed drug in the Tween rich phase. The decrease of Tg of 30% CM1 is consistent 

with the increased amount of crystalline drug in the samples indicating drug phase separation.  

 

Figure 6.16: Part of DSC thermograms samples showing the Tg regions of 10% CM1 fresh and three 

months aged samples using 10 ̊C/ min heating rate (n=3) 
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Figure 6.17: Part of DSC thermograms samples showing the Tg regions of 20% CM1 fresh and three 

months aged samples using 10 ̊C/ min heating rate (n=3) 
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Figure 6.18: Part of DSC thermograms samples showing the Tg regions of 30% CM1 fresh and three 

months aged samples using 10 ̊C/ min heating rate (n=3) 

As seen in Figures 6.19-21, drug loaded fresh CM2 patches show the separate melting peaks of 

the TPGS phase at 28.9 ± 0.3, 20.4 ± 0.4 and 24.9 ± 1.5 °C for 10, 20, and 30% w/w drug loaded 

systems, respectively. The drug solubilised in TPGS phase would cause the significant depression 

of the TPGS melting compared to the pure TPGS. Assuming the lowering of melting point is an 

indicator of drug solubility it is clear that 20% drug loaded systems had more drug dissolved in 

the TPGS than 10 and 30% loaded systems. For the 30% drug loaded system, in comparison CM1, 

no depressed drug melting is detected indicating the higher drug solubilisation capacity of the 

CM2 carrier than CM1. In contrast to CM1, no melting of felodipine is seen in the 30% loaded 

sample of CM2 although there is evidence from FTIR and PXRD that crystals exist. It was 

assumed therefore that on heating crystalline felodipine dissolves in the molten TPGS phase. 
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Figure 6.19: DSC thermograms of 10% CM2 fresh and three months aged samples using 10 ̊C/ min 

heating ramp (n=3) 

 

Figure 6.20: DSC thermograms of 20% CM2 fresh and three months aged samples using 10 ̊C/ min 

heating ramp (n=3) 
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Figure 6.21: DSC thermograms of 30% CM2 fresh and three months aged samples using 10 ̊C/ min 

heating ramp (n=3) 

As mentioned in Chapter 4, DSC analysis of Tg regions of fresh1 0, 20 and 30% drug loaded CM2 

formulations indicated the detection of single Tg at -23.7 ± 0.4, -22.2 ± 0.4  and -21.4 ± 0.8 ºC 

respectively. The impacts of different storing conditions on CM2 formulations are shown in 

Figures 6.22-24 and will be discussed in the next sections.  
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Figure 6.22: Part of DSC thermograms samples showing the Tg regions of 10% CM2 fresh and three 

months aged samples using 10 ̊C/ min heating rate (n=3) 

 

Figure 6.23: Part of DSC thermograms samples showing the Tg regions of 20% CM2 fresh and three 

months aged samples using 10 ̊C/ min heating rate (n=3) 
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Figure 6.24: Part of DSC thermograms samples showing the Tg regions of 30% CM2 fresh and three 

months aged samples using 10 ̊C/ min heating rate (n=3) 

6.3.3 Carrier stability of drug loaded patches aged under 0%RH 

The changes of the drug loaded patches on ageing were monitored by examination of four 

transition regions in the DSC experiments: the Tg region and the melting regions associated with 

Tween, TPGS and PEG-PEO K900. Results are summarised in Table 6.2.  
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Table 6.2: Summary of the changes of thermal properties of the aged patches in comparison to the 

properties of the fresh patches 

Thermal 

Tra

nsiti

on 

Storing 

condition 

Formulations 

CM1(Tween 80) CM2 (TPGS) 

  0% 10% 20% 30% 0% 10% 20% 30% 

 

 

Tg 

 

A ↔ ↔ ↓ ↓ ↔ ↓ ↓ ↓ 

B ↔ ↔ ↓ ↓ ↔ ↓ ↓ ↓ 

C ↔ ↔ ↓ ↓ ↔ ↔ ↓ ↓ 

D ↔ ↔ ↓ ↓ ↔ ↓ ↓ ↓ 

 

 

∆C
p
 

A ↔ ↔ ↔ ↔ ↔ ↓ ↓ ↓ 

B ↔ ↔ ↓ ↔ ↔ ↔ ↓ ↓ 

C ↔ ↔ ↓ ↑ ↔ ↔ ↓ ↓ 

D ↔ ↔ ↓ ↔ ↔ ↔ ↓ ↓ 

 

 

PEG/PEO 

T
m
 

A ↑ ↑ ↑ ↑ ↔ ↔ ↑ ↑ 

B ↑ ↑ ↑ ↑ ↔ ↔ ↑ ↑ 

C ↑ ↑ ↑ ↑ ↑ ↔ ↑ ↑ 

D * ↔ ↑ ↑ ↑ ↔ ↑ ↑ 

 

 

PEG/PEO 

∆H
f
 

A ↑ ↔ ↔ ↑ ↑ ↑ ↔ ↑ 

B ↑ ↔ ↔ ↑ ↑ ↔ ↔ ↔ 

C ↑ ↑ ↑ ↑ ↑ ↔ ↑ ↑ 

D * ↔ ↑ ↔ ↑ ↔ ↔ ↔ 

 

 

Surfactant  

T
m
 

A ↑ X ↔ X ↑ ↑ ↑ ↑  

B ↑ X X X ↔ ↓ ↑ ↑ 

C ↑ X X X ↑ ↑ ↑ ↑ 

D * ↔ X X ↔ ↓ ↑ ↑ 

 

 

Surfactant 

∆H
f
 

A ↑ ↑ ↔ ↑ ↔ ↔ ↑ ↑ 

B ↓ ↑ ↑ ↑ ↑ ↔ ↑ ↑ 

C ↑ ↑ ↑ ↑ ↑ ↔ ↑ ↑ 

D * ↔ ↑ ↑ ↔ ↔ ↑ ↑ 

(*) Stands for the sample liquefied after three months storage and not testable 

(↑) Value increased in comparison to fresh samples 

(↓) Value decreased in comparison to fresh samples 
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(↔) Value showed no significant change in comparison to fresh samples 
(X) Detection of Tween 80 melting peak 

For placebo CM1 and CM2 samples, no changes in the Tg regions were observed, and there was 

a significant increase in the melting temperature and corresponding heat of fusion of PEG-PEO 

K900. This is attributed to the removal of moisture from the patches leading the formation of 

more crystals. For 10% drug loaded, CM1 samples stored at both room temperature and 40 °C 

ageing resulted in the appearance of Tween melting transitions in these samples. There was also 

increase in the crystallinity of the PEG-PEO K900 reflected by the increase in the melting point 

and/or ∆Hf. On the other hand, only 10% CM2 samples stored at room temperature showed a 

decrease in Tg and ∆Cp with an increase in PEG-PEO K900 crystallinity. However, both samples 

stored at room temperature and 40 °C revealed a significant increase in TPGS melting with no 

change in ∆Hf as illustrated in Table 6.2. 

For the aged CM1 and CM2 patches with 20 and 30% drug loadings, both Tg and associated ∆Cp 

tended to be reduced. As discussed above, the observation of a single Tg in the system implies 

that the glassy material is a mixture of the surfactant and the amorphous PEG/PEO K900 with 

drug dissolved in it.  As the drug behaves as an antiplasticiser, the decreases in Tg values after 

ageing are an indication of a reduction in the amount of drug in the surfactant-rich phases. For 

both CM1 and CM2, the changes much more greater for patches with 20% drug loading than the 

30% samples. This may be attributed to the supersaturation of 20% loaded samples and the lower 

content of solubilised felodipine in 30% compared to 20% patches.  

In the PEG-PEO K900 melting region, peak shape changes are observed. As seen in Figures 6.14, 

6.15, 6.20 and 6.21 the shoulder before the onset of PEG-PEO K900 melting for 20 and 30% 

CM1 and CM2 samples stored at 0% RH and 40 °C is absent indicating unfolding of the folded 

form of PEG-PEO K900 polymers. For 30% drug loaded CM1 samples, stored at room 

temperature and 40 °C, clearly partially separated depressed melting of crystalline felodipine with 

melting peak ranging at temperatures 81-89 °C can be identified suggesting a significant amount 

of crystalline felodipine present.   

For the 20 and 30% CM1 samples, the melting of Tween is detectable for all aged samples except 

the 20% aged at room temperature and 0%RH. There was a slight difference in Tween melting 

peak temperatures and heat of fusion between the aged samples. In CM2 patches, the melting 

peak of TPGS moved to a higher temperature closer to the melting point of pure TPGS with 

increased melting enthalpy values. This indicates drug phase separation and increased the degree 

of crystallinity of TPGS after ageing. The enthalpy of melting of the TPGS in the 30% sample is 
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greater than that of the 20% sample. This implies more drug dissolved in the TPGS in the 20% 

sample than the 30% sample. It should be mentioned that storing 20 and 30% CM2 patches at 

40 °C leads to greater increases in the melting enthalpy values of the surfactant than room 

temperature. In addition, this melting enthalpy increases of the surfactant phases are more 

profound for CM2 compared to CM1. Once the surfactants are phase separated in their crystalline 

form, it is likely that drug is no longer solubilised in the surfactant phases. This suggests that more 

crystalline drug is likely to be present in 30% drug loaded samples under 40 °C and 0% RH. 

6.3.4 Carrier stability of drug loaded patches under 75%RH 

Under 40 °C/75%RH, the development of multiple peaks on the shoulder of the peak of the 

melting of PEG-PEO K900 were observed in all samples. These peaks were assigned to the 

melting of degradation products of PEG-PEO K900 due to the random chain scission of the two 

polymers caused by oxidative thermal degradation (144, 145, 502-505). Except this feature, little 

significant changes as indicated in Table 6.2 were seen for 10% loaded CM1 and CM2. The 

depression of Tg of the surfactant phase is greater for 20 and 30% drug loaded samples compared 

to 10% loading. However, there is a significantly higher degree of Tg shift for 20-30% samples 

stored at 75% RH in comparison to the samples aged under 0% RH. The increases in the melting 

peak points of PEG-PEO K900 (compared to fresh samples) showed no significant difference to 

the aged samples under 0%RH. For 30% drug loaded CM2 samples, depressed melting of 

felodipine can be detected under both room temperature and 40 °C which were absent in the 

samples aged under 0%RH. This indicates that high humidity led to more drug crystallisation in 

TPGS containing samples. 

6.3.5 Effect of surfactant on crystallisation tendency and crystal growth of 

felodipine on ageing 

As mentioned in Chapters 2 and 3, the flexibility of felodipine molecular structure is responsible 

about the appearance of its polymorphic forms (312, 508). Four polymorphic forms (I-IV) were 

obtained by precipitation from various solvents (312-315, 318, 319). This part of the study focuses 

on the felodipine crystallisation within the aged samples and the identification of the polymorphs 

formed. SEM was used to study the crystal growth of felodipine in the patches. Using chlorine as 

a marker for felodipine, it is possible to identify the grown crystals in the formulations using EDS. 
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Table 6.3 summarises the drug crystallisation tendency and crystal habits after three months 

ageing under the four different conditions. The SEM data of the fresh samples indicates that CM2 

is better at solubilising felodipine than CM1 as no drug crystals were observed in any patches 

with 10-30% loading. This highlights the better drug solubilisation capacity of TPGS than Tween 

as discussed earlier. As seen in Figures 6.7-12, drug recrystallisation at the surfaces during ageing 

occurred to all formulations, except 20% CM1 under condition C (40 ̊ C and 0% RH) and 10% 

CM2 under condition D (40 ̊ C and 75 % RH). Generally, more drug crystallisation was observed 

on the surface of the patches and the interior of the air pockets than the bulk matrix of the samples. 

This is likely to be due to the surface being the hydrophobic (air exposed) interface experiencing 

highest temperature and humidity at least at the initial few hours of the ageing process. These 

results are consistent with data reported in literature revealing faster surface to bulk drug 

crystallisation (509, 510). There are three main types of felodipine crystal habits observed, blocks, 

plate and needles arranged in spherulitic pattern as illustrated in Figures 6.7-12. In the literature 

the crystal habits of the polymorphs were reported to be blocks shaped for polymorphs I and II 

and plate-like crystals for form III, but no available information about the crystal habit of 

polymorph IV of felodipine is available (319). In this study the spherulitic crystals only tend to 

growth either in the interior or after ageing under 40 °C. The blocks and plate crystals are more 

common than the needle crystals and their growths are promoted by ageing on the surfaces and 

interior of most formulations as summerised in Table 6.3.  

Table 6.3: Summary of surface morphology and crystal growth of the 3-month aged HME-IM 

patches  

Drug 
loading 

Formulation CM1 (with Tween 80) CM2 (with TPGS) 

Location Surface Cross-section Surface Cross-section 

Ageing 
condition 

A B C D A B C D A B C D A B C D 

10% 
w/w 

Fresh - - - - 

Aged B B B+S S - - - - P B P - - - - - 

20% 
w/w 

Fresh P - - - 

Aged P P - S - - - - B B P S - - - S 

30% 
w/w 

Fresh B P+S - - 

Aged B B S S S B+S S S B B B S B B B S 



Chapter 6                                               Physicochemical stability of felodipine HME-IM patches  

 

243  School of Pharmacy / University of East Anglia 

 

(S) Spherulitic crystals; (B) Blocky crystals; (P) Plate crystals and (-) No crystals were detected 
 

In order to further identify the polymorphic form of the recrystallised felodipine, PXRD and ATR-

FTIR were used to characterise the aged samples. No clear drug PXRD crystallisation peaks were 

observed in any of CM1 and CM2 10% drug loaded patches (Figures 6.25-26).  

 

Figure 6.25: PXRD patterns of 10% w/w fresh and three months aged CM1 drug loaded patches 

 

Figure 6.26: PXRD patterns of 10% w/w fresh and three months aged CM2 drug loaded patches 
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As seen in Figure 6.27 for 20% w/w CM1 patch, the appearance of diffraction peaks in the pattern 

of the aged sample stored in condition A indicates the presence of form I which are consistent 

with those of raw felodipine pattern and with the reported data in the literature (312). This is 

consistent with the SEM results as form I is the usually present in the block-shaped habit (319). 

The PXRD results of the CM1 sample stored in condition B indicate the presence of a mixture of 

form I and II. New peaks at 9.3 ̊ and 12.4 ̊ are observed in the diffraction patterns of the sample 

stored in condition C and D. These diffraction peaks do not match with any known polymorphs 

of felodipine in the literature, suggesting the presence of unknown new polymorph growth.  

 

Figure 6.27: PXRD patterns of 20% w/w fresh and three months aged CM1 drug loaded patches 

For 20% w/w CM2 samples (Figure 6.28), fewer recrystallisation diffraction peaks were 

identified compared to the corresponding CM1 loaded samples owing to the higher solubilisation 

capacity and stabilisation ability of TPGS containing matrix compared to Tween 80. The 

diffraction peaks at 9.3 ̊, 10.2 ̊ (form I) and 12.4 ̊ are all visible in all CM2 samples stored at all 

conditions indicating the mixture of form I and the new form and the crystallisation of the new 

polymorph favoring the TPGS containing matrices.   
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Figure 6.28: PXRD patterns of 20% w/w fresh and three months aged CM2 drug loaded patches 

For the 30% w/w drug loaded samples (Figure 6.29-30), it is noted that there are form I drug 

crystals present in both the fresh CM1 and CM2 samples. The diffraction patterns of the 30% w/w 

CM1 samples indicate the coexistence of the new form and form I. However, it is noted that 

regardless of the humidity, room temperature storage resulted in the formation of more form I 

than the new form. However, at 40 °C more of new form than form I was formed. For 30% w/w 

CM2 formulations stored in the conditions A, B, C, diffraction patterns of the crystallised drug 

indicated the presence of form I; whereas the sample stored in condition D (40°C 75% RH) 

formed needle felodipine crystals showing diffraction peaks of both form I and the new form. The 

30% loaded samples contain crystallised drug immediately after extrusion. The presence of these 

crystals favour the formation of form I. However high temperature and humidity can initiate the 

formation of the new form. It should be mentioned that felodipine undergoes form I to metastable 

form II polymorphic transformation in the presence or absence of polymeric additives at different 

temperatures (511, 512).  
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Figure 6.29: PXRD patterns of 30% w/w fresh and three months aged CM1 drug loaded patches 

 

Figure 6.30: PXRD patterns of 30% w/w fresh and three months aged CM2 drug loaded patches 

As mentioned in Chapter 3, the NH stretching vibration in the infrared has been reported at 3372, 

3334, 3370, 3329 cm- 1 for the four crystalline polymorphic forms I-IV, respectively (313-315, 

318). Furthermore, the amorphous form showed an NH stretching peak at ~ 3339 cm-1 and peaks 

at 1701 and 1682 cm-1 corresponding to the non-hydrogen bonded C=O group and the hydrogen-

bonded C=O group respectively (316, 317). Using these signature peaks, it is possible to facilitate 
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the identification of the polymorphic forms detected by PXRD. Figures 6.31-34 illustrate the 

ATR-FTIR spectra for CM1 and CM2 10% loaded samples before and after ageing at different 

conditions. 

 

Figure 6.31: The NH stretching region of the ATR-FTIR spectra of CM1 10% fresh and aged samples  

(n=3) 

 

Figure 6.32: Partial ATR-FTIR spectra of CM1 10% fresh and aged samples for the low wavenumber 

range (n=3) 
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As seen in Figure 6.31-32, only sample stored at room temperature and 75% RH clearly shows 

the characteristic NH stretching at 3367 cm-1, the C=O stretching is more similar to that of the 

raw crystalline felodipine (form I), the appearance of other peaks at 865 and 725 cm-1 indicating 

recrystallisation of felodipine into form I. For 10% CM2 samples (Figures 6.33-34), no 

significant changes in the spectra of the aged samples compared to freshly prepared samples. 

 

Figure 6.33: The NH stretching region of the ATR-FTIR spectra of CM2 10% fresh and aged samples 

(n=3) 

 

Figure 6.34: Partial ATR-FTIR spectra of CM2 10% fresh and aged samples for the low wavenumber 

range (n=3) 
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20 and 30% w/w CM1 samples stored at 40 ̊C and CM2 samples stored at all conditions revealed 

the NH stretching at 3321 cm-1 which is not related any known polymorphs or the amorphous 

form (Figures 6.35-42).  

 

Figure 6.35: The NH stretching region of the ATR-FTIR spectra of CM1 20% fresh and aged samples 

(n=3) 

 

Figure 6.36: Partial ATR-FTIR spectra of CM1 20% fresh and aged samples for the low wavenumber 

range (n=3) 
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Figure 6.37: The NH stretching region of the ATR-FTIR spectra of CM2 20% fresh and aged samples 

(n=3) 

 

Figure 6.38: Partial ATR-FTIR spectra of CM2 20% fresh and aged samples for the low wavenumber 

range (n=3) 
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Figure 6.39: The NH stretching region of the ATR-FTIR spectra of CM1 30% fresh and aged samples 

(n=3) 

 

Figure 6.40: Partial ATR-FTIR spectra of CM1 30% fresh and aged samples for the low wavenumber 

range (n=3) 
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Figure 6.41: The NH stretching region of the ATR-FTIR spectra of CM2 30% fresh and aged samples 

(n=3)  

 

Figure 6.42: Partial ATR-FTIR spectra of CM2 30% fresh and aged samples for the low wavenumber 

range (n=3) 

As the PXRD results indicated that the growth of the new form is favoured at 40 ̊C, it is reasonable 

to suggest that the NH stretching peak at 3321 cm-1 is a possible signature peak for a new 
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polymorphic crystal form of felodipine. The ATR-FTIR results show good agreement with PXRD 

data. 

In summary, it is clear that the growth of the new polymorphic form favours TPGS containing 

dispersions when the drug loading at the border of being saturated. When form I already present 

in the fresh samples, the growth of the new form is more in favoured by higher storage temperature 

but not sensitive to humidity. 

6.3.6 Characterisation of felodipine recrystallised from its glassy state under 

stressful conditions of temperature and humidity 

 In order to provide better understanding of the crystallisation of felodipine from its solid 

dispersion matrices especially those with the higher loading percentage and investigate the impact 

of other excipients on the process, amorphous felodipine was prepared  from crystalline felodipine 

form I melt by quench cooling and subsequent storage at 40 ̊C and 75% RH as this condition is 

the most likely driving the drug in its formulation to recrytallise in its spherulitic (needle) pattern 

having different characterisation properties as seen above. Images of the prepared glassy 

felodipine samples before (A) and after recrystallisation at 40 ̊C and 75% RH (B) are shown in 

Figure 6.43.   

 

Figure 6.43: Images of felodipine in its glassy state (A) and after recrystallisation at 40 ̊C and 75% 

RH (B) 

SEM images (Figure 6.44) illustrated that the upper surface of the recrystallised drug shows a 

spherulitic pattern while this pattern is absent in the lower surface (in contact with the Aluminium 

dish). This indicates that the spherulitic growth is more likely to occur in free surfaces exposed 

to high humidity air at a temperature close to the Tg of felodipine.   
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Figure 6.44: SEM images of felodipine after recrystallisation at 40 ̊C and 75% RH; A is the upper 

surface and (B) is the lower surface of the sample 

In addition, DSC analysis (Figure 6.45) shows an interesting finding related to the melting of 

felodipine compared to the formulations where its melting is absent due to thermal dissolution in 

the molten excipients during the DSC heating ramp. The melting peak onset of raw pure 

crystalline felodipine form I used in this study is 140.9 ± 0.1 ̊C. However, pieces of the 

recrystallised drug without milling shows the appearance of two partially separated melting peaks 

having onsets at 118.3 ± 0.1 ̊C for the smaller peak and 136.0 ± 0.9 ̊C for the larger peak. These 

results clearly indicate that at least the lower melting peak is belonging to a new polymorphic 

crystal growth of felodipine. Milling the recrystallised sample using mortar and pestle shows 

significant reduction in the intensity of the lower melting peak indicating polymorphic 

transformation into the more stable form aided by milling and/or exposure to air. It should be 

mentioned that the melting onset of the higher melting peak of the milled recrystallised sample is 

139.5 ± 0.1 ̊C which may suggest the melting point depression of this peak by the lower melting 

fraction of felodipine. 
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Figure 6.45: DSC thermograms illustrating melting transition of pure felodipine form I and 

recrystallised felodipine at 40 ̊C and 75% RH before and after milling (n=3) 

In addition, PXRD results (Figure 6.46) show changes in the patterns of the recrystallised sample 

at 40 ̊C and 75% RH as small peaks at 9.3̊ and 12.6̊ as peaks of low intensity may be due to the 

small fraction of the new polymorphic growth. 

 

Figure 6.46: PXRD patterns of pure felodipine form I and recrystallised felodipine at 40 ̊C and 75% 

RH before and after milling   
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The ATR-FTIR data shown in Figure 6.47 do not reveal any differences in the spectra for the 

lower surface, upper surface and the milled recrystallised sample compared to the raw pure 

crystalline felodipine form I. These results may suggest that the new growth is more likely in the 

bulk of the sample and the detection is out of the penetration depth limits of the instrument used 

in the analysis. 

 

Figure 6.47: Partial ATR-FTIR spectra of pure felodipine form I and recrystallised felodipine at 40 ̊C 

and 75% RH before and after powdering; A and B are high and low wavenumber ranges respectively 

(n=3) 
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6.4 Discussion 

From the data three general observations can be summarised: 

1) For both 0% and 75% RH, it is clear that 40 °C led to a higher degree of phase changes than 

room temperature. 

2) For both CM1 and CM2, drug loading has a significant impact on the ageing behaviour of the 

carrier materials. The CM1 and CM2 patches with 20% drug loading, which is at the boundary of 

reaching saturation of drug in the carrier materials, showed the highest drug phase separation 

activity and microstructural changes of the patches. The patches with drug loadings below and 

above the saturation showed less phase separation activities highlighting the important 

relationship between the degree of saturation and stability.  

3) TPGS demonstrates better formulation and drug stabilising effects on ageing than Tween 80.  

The more significant effect of temperature on the physical stability than humidity can possibly be 

explained by molecular mobility. Although in the fresh drug loaded samples the drug was 

solubilised in the surfactant-rich phases, the Tg values of the drug containing phases are ranging 

from -49.0 ± 0.6 °C (10% CM1) to -24.9 ± 1.5 °C (30% CM2) for CM1 and CM2 patches. The 

difference between these Tg values and the storing temperatures for each formulation is higher for 

samples stored at 40 °C compared to room temperature. The bigger the temperature gap between 

the storing condition temperature and the Tg of the system is expected to exhibit lower drug 

physical stability for systems having Tg values lower than the storing temperatures. Thus, samples 

stored at 40 °C is expected to have higher degree of felodipine crystallisation (lower physical 

stability) compared to samples aged at room temperature. It should be mentioned that the viscosity 

of the solubilising phase is also expected to play a role in felodipine crystallisation process. 

Storing the samples at 40 °C also may result in a decrease in the viscosity of the dispersing phase 

leading to higher rate of drug diffusion and more crystallisation compared to room temperature 

(24, 105). In addition, the difference between Tg of the formulations and the stability testing 

temperatures (either at room temperature or 40 °C) is greater for CM1 than CM2. Therefore, the 

mobility of drug in the Tween phase is higher than the ones in the TPGS phase. The higher 

molecular mobility of the drug led to higher amount of drug recrystallised in CM1 patches than 

CM2 patches within the same time scale of ageing. The presence of the depressed melting of the 

crystalline drug between 80-90 °C seen in all 30% aged CM1 patches confirms this; whereas only 

the CM2 with 30% aged under 75%RH show this peak. This is also evidenced by the depression 
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of the Tg of the surfactant phase and the PXRD results. Using the diffraction peaks within the 9-

13° as the markers, it can be seen that less intensities of these peaks for aged CM2 than CM1 

samples with 20 % drug loading. Therefore, during formulation development of solid dispersions 

containing surfactants, the thermal properties of the surfactants should be carefully considered.  

The more profound changes of the 20% loaded samples on ageing demonstrated the importance 

of the relationship between drug-carrier solubility and stability. Boundary solubility should be 

avoided to minimise the instability associated with drug recrystallisation. The higher solubility of 

the drug in TPGS led to better drug stabilisation capacity of TPGS than Tween again indicates 

that impact of surfactant selection on the formulation stability.  

In addition, the chemical stability of the PEG/PEO based carrier material should also be carefully 

considered during formulation. In comparison to Tween containing CM1 samples, TPGS 

containing CM2 samples is much less vulnerable to degradation owing to the antioxidant activity 

of TPGS (144, 207, 386, 387). For drug loaded CM1 patches, fewer signs of degradation of PEG-

PEO K900 were observed under high temperature and high humidity environments in comparison 

to placebos suggesting the drug incorporation also had a protective effect on the carrier material 

from degradation, most likely to be antioxidation (513).  

6.5 Conclusions 

This chapter has investigated the effect of surfactants on the stability of multi-component 

dispersions which were intentionally formulated being phase separate. Semi-solid surfactant 

TPGS showed better stabilising effect on the drug than the liquid surfactant Tween 80. The higher 

Tg and semi-solid nature of TPGS which provides higher viscosity in the dispersion are believed 

to contribute to its higher stabilising effect of the model drug. However, such stabilising effect is 

only valid for the systems with drug loading below the saturation of drug in the carrier. With drug 

loading at the border and above the saturation, the stabilisation advantage is significantly reduced.  

In addition, a new polymorphic form of felodipine was observed in the aged samples. The 

crystallisation of the new form is more sensitive to temperature than humidity. 
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7.1 Introduction 

3D printing as a recently emerging technology in the pharmaceutical field has been identified as 

holding future promise for developing individualised medicines which in turn are expected to 

improve the efficacy of treatment and patients’ compliance (224-226, 514, 515). FDM 3D printing 

can play an important role in reducing the complexity of drug regimens through the incorporation 

of multiple drugs into a ‘polypill’ type of formulations. It can also be used to achieve the required 

drug release profile by changing the geometry and the structure of the dosage form or through 

using various carriers having different release characteristics (224, 514). Although industrial scale 

3D printing is used in other sectors, until now its applications in pharmaceutical research have 

been limited to the laboratory scale. One of the significant constraints for the development of 

pharmaceutical 3D printing is the extremely limited number of FDM printable materials currently 

available. In most reported cases, the printing of proposed solid dosage forms was performed 

using mostly PVA, PLA and PCL (224, 514, 516, 517). This chapter presents an approach of using 

polymer blends to overcome this problem and open the possibility of using pharmaceutically 

approved polymers in FDM printing of oral solid dosage forms. In addition, this study also 

demonstrates that the blends can be used to control the disintegration and drug release of the FDM 

printed solid dispersions.   

The nature of the current state-of-art FDM printing technique leads to three significant barriers to 

exploiting its application in pharmaceutical solids production: (1) pre-made filaments are required 

as an additional process step and currently available filament extruders are largely single screw 

extruders which may not be able to provide sufficient compounding and mixing between the 

active ingredients and the excipients. Therefore, some researchers have used either a 

commercially available single screw filament maker or twin screw hot melt extrusion to produce 

the filaments for printing (224, 514, 516-519). (2) Currently, there is no effective extrusion 

element in commercially available FDM 3D printers instead they rely on rollers at the top of the 

printer to push the molten materials to the printer nozzle. Rheologically this requires the material 

used to have a low melt viscosity at the printing temperature. (3) The molten materials need to 

solidify rapidly to allow the rapid deposition and accurate buildup of the 3D object according to 

the pre-set digital design (229). This requires the printing materials to be highly thermoplastic 

whereas most pharmaceutical grade polymers are not thermoplastic.  

The last two limitations of the technology can be overcome by selecting appropriate polymers. 

Polymers such as PVA, PLA and PCL have sufficient thermoplasticity to make them suitable for 
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FDM 3D printing. However, many printable grades of these polymers are not pharmaceutical 

grade excipients. In addition, use of these few polymers often provides little flexibility in tailoring 

the drug release profiles and limits the application of any delivery system produced from them. 

Recently the addition of plasticisers to improve the processability of controlled release polymers 

such as HPC and eudragit RL and RS during FDM printing has been reported (517, 518). However, 

to the best of our knowledge so far there is no report on the use of polymer blends to FDM print 

solid dispersions for the dissolution enhancement for poorly soluble drugs.  

Formulations fabricated using FDM 3D printing are mostly solid dispersion based formulations 

(224, 514, 516, 519). This explores the feasibility of using FDM 3D orienting to produce 

felodipine solid dispersions. PVA was used as the benchmark polymer in this study because of its 

excellent thermoplasticity and FDM printability (224, 226). Eudragit E PO and soluplus both have 

been widely used in pharmaceutical HME indicating their good thermostability and extrudability. 

However, they are not FDM printable on their own. They were selected as the two model polymers 

which were compounded with an adjustable mixture of PEG-PEO K100 and/or Tween 80. PEG 

has low melt viscosity and was used to adjust the printability of the blends. As a result of its high 

molecular weight, PEO K100 provides mechanical flexibility to the filaments to allow easy 

feeding into the FDM printer. Tween 80 was used primarily as a plasticiser in order to lower the 

processing temperature to safe temperatures and to overcome degradation issues for the drug 

under investigation. The secondary functions of PEG, PEO K100 and Tween 80 are associated 

with their good solubilising properties for poorly water soluble drugs and plasticising 

characteristics for solid dispersion mixtures (361, 498, 520).  

Research objectives   

1. To design felodipine solid dispersions using FDM 3D printing. 

2. To characterise the FDM 3D printed discs. 

3. To evaluate the in vitro release profiles of the FDM 3D printed discs. 

7.2 Materials and Methods 

7.2.1 Materials 

Felodipine, the model drug was purchased from Afine Chemicals Ltd (Hangzhou, China) (batch 

no. 20100601). Polyethylene glycol (PEG) (average MWT = 4000) was purchased from Sigma-
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Aldrich (Poole, UK). Polysorbate (Tween® 80) was purchased from Acros Organics (Geel, 

Belgium), Polyethylene oxide (POLYOX WSR N10 LEO) MWT= 100,000, soluplus, eudragit® 

E PO and 33-38% partially hydrolysed polyvinyl alcohol (PVA) MWT= 18,000-25,000 were 

kindly donated by Colorcon Ltd. (Dartford, UK), BASF (Ludwigshafen, Germany), Evonik 

Industries (Darmstadt, Germany) and Kuraray Co., Ltd.  (Tokyo, Japan), respectively.  The 

chemical structures of the materials are illustrated in Chapter 2. 

7.2.2 Preparation of placebo and felodipine loaded FDM filaments using HME 

Placebo and 10% w/w felodipine FDM filaments consisting of three sets of excipient mixtures 

(compositions are shown in Table 7.1) were prepared using a co-rotating twin-screw extruder 

(Haake MiniLab II Micro Compounder, Thermo Electron, Karlsruhe, Germany). The 

formulations containing eudragit E PO, soluplus and PVA as the main matrix materials are 

labelled with the abbreviations of CME, CMS and CMV, respectively. All ingredients were 

accurately weighed and premixed using a mortar and pestle for 2 minutes. For each extrusion 

experiment, 7 g of the pre-mixed blend was fed into the extruder and 3 g was kept for the 

characterisation of the physical mixtures.  

Table 7.1: Composition of placebo and 10% w/w felodipine loaded FDM dispersions. Proportions are 

expressed as % w/w 

Mixture  Felodipine Eudragit  Soluplus PVA Tween 80 PEG  PEO K100  

Placebo CME ----- 55.56 ----- ----- 11.10 16.67 16.67 

10% w/w CME 10 50 ----- ----- 10 15 15 

Placebo CMS ----- ----- 55.56 ----- 16.67 11.10 16.67 

10% w/w CMS 10 ----- 50 ----- 15 10 15 

Placebo CMV ----- ----- ----- 75 25 ----- ----- 

10% w/w CMV 10 ----- ----- 67.5 22.5 ----- ----- 

 

The extrusion was performed at the specified extrusion temperature (Table7.2) with 5 minutes 

retention time and 100 rpm screw speed. After decreasing the rotation speed of the screws to 25 

rpm, the extruded soft mass of the blends was flushed directly through a metal attachment with a 
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circular die of a diameter 1.75 mm onto a conveyor belt to produce placebo and 10% w/w 

felodipine loaded filaments.  

Table 7.2: HME-3D printing processing parameters of placebo and 10% w/w loaded felodipine 

filaments and 3D printed discs   

Mixture Code HME temp. (˚C) FDM printing temp. 
(˚C) 

Extrusion torque 
(N.cm) 

Placebo CME 100 150 24 

10% w/w CME 100 150 18 

Placebo CMS 120 150 7 

10% w/w CMS 120 150 8 

Placebo CMV 130 150 1 

10% w/w CMV 130 150 1 

 

7.2.3  Using FDM 3D printing to fabricate solid dispersions 

A MakerBot Replicator II desktop 3D printer (New York, USA) equipped with two thermal 

extruding nozzles (diameter 400 µm) was used for printing the prepared placebo and medicated 

filaments. The digital file for the selected 3D shape in STL (stereolithography) format was 

designed using Blender software (521) and printed using MakerBot MakerWare™. In this study, 

a model disc shape with dimensions of 12 mm diameter and 0.6 mm thickness and was used as a 

standard shape to compare the characteristics of different mixtures. Printing was performed using 

an extrusion temperature of 150 ˚C without heating the platform. The 3D object was printed using 

standard mode with 0.2 mm layer thickness and 100% infill. The time required to complete 

printing each disc was 24.7 ± 0.1 seconds. The images of the produced 3D printed discs with their 

corresponding filaments are shown in Figure 7.1.  
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Figure 7.1: Images of the prepared HME filaments and FDM 3D printed discs 

7.2.4 Characterisation and evaluation of FDM 3D printed solid dispersions 

7.2.4.1 Thermal gravimetric analysis (TGA) 

The same experimental setting parameters of TGA as mentioned in Chapter 3, section 3.2.2.2.1 

were used to scan the samples in this study. 

7.2.4.2 Differential scanning calorimetry (DSC) and temperature modulated 

DSC (MTDSC) 

All samples investigated in this study using standard DSC were analysed using the same 

parameters as described in Chapter 3, section 3.2.2.2.2. MTDSC experiments were also performed 

using a 2 ºC/min heating rate, 60 sec period and 1 ºC or 0.318 ºC amplitude (depending on the 

samples) with proper MTDSC calibration to detect the Tg temperatures of the different 

formulations. Sample weights were 2-3 mg contained in an aluminium standard TA crimped pans 

and lids (TA Instruments, Newcastle, USA). Universal Analysis software was used to analyse the 

obtained results. All analyses were performed with 2-3 replicates for each sample. 
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7.2.4.3 Attenuated total reflectance Fourier transform infrared spectroscopy 

(ATR-FTIR) 

ATR-FTIR scanning for all samples was carried out using the same experimental parameters as 

mentioned in Chapter 3, section 3.2.2.2.4. 

7.2.4.4 Scanning electron microscopy (SEM)  

The same experimental parameters of SEM as mentioned in Chapter 4, section 4.2.3.2 were used 

to scan the samples used in this study. 

7.2.4.5 Powder X-ray diffraction (PXRD) 

PXRD parameters as mentioned in Chapter 3, section 3.2.2.2.6 were utilised to analyse all samples 

investigated in this study using this characterisation technique. 

7.2.4.6 X-ray micro-computed tomography (XμCT) 

A SkyScan1172 high-resolution X-ray micro computed tomography (XµCT) scanner (Bruker-

microCT, Kontich, Antwerp, Belgium) was used to 3D visualise the microstructure of the most 

promising blend (eudragit E PO based filaments and FDM 3D printed discs). Placebo and 10% 

w/w loaded samples were scanned using an aluminium filter to cut-off high energy X-rays at an 

isotropic voxel resolution of 3 µm over a total of 20 min acquisition time and a subsequent image 

reconstruction time of approximately 20 min per sample, using the NRecon program (version 

1.6.8.0, Bruker-microCT). The collected data were then analysed using CTan and CTvol software 

in which the images for a small section (designated as a region of interest ROI) of each sample 

are converted to binary images followed by thresholding areas of different electron densities and 

represented in 3D models (499). 

7.2.4.7 Determination of drug loading efficiency 

Accurately weighed drug loaded FDM printed discs of different formulations were dissolved in a 

beaker containing 200 mL of 50:50 simulated gastric fluid pH 1.2 and absolute ethanol. The 
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beaker was covered with a parafilm tape to minimise solvent evaporation during dissolution. The 

medium was stirred using magnetic stirrer at room temperature. After complete dissolution, 5 mL 

samples were withdrawn and filtered using 0.45 µm pore size (Minisart NML single use syringe, 

Sartorius, UK). The filtered samples then scanned for their content of felodipine using a UV–VIS 

spectrophotometer (Perkin-Elmer Lambda 35, USA) at 363 nm. The loading efficiency 

measurements for the loaded discs were carried out in triplicate. 

7.2.4.8 In vitro drug release studies 

The in vitro drug release profiles were measured in dissolution testing apparatus (Caleva 8ST, 

Germany) using the paddle method (USP apparatus 1). A paddle rotation speed of 100 rpm and 

900 mL of pH 1.2 HCl (simulated gastric fluid without enzymes) or phosphate buffer pH 6.8 

(simulated intestinal fluid without enzymes) at 37 ± 0.5 ˚C were used for all measurements.  The 

pure crystalline drug and disc-shaped dispersions containing the equivalent of the daily dose (5 

mg) of the drug were used in this study. Under non-sink conditions, 5 mL dissolution samples 

were withdrawn at pre-determined time intervals. The samples were directly filtered through a 

membrane filter with 0.45 µm pore size (Minisart NML single use syringe, Sartorius, UK). The 

filtered sample solutions were diluted with equal volume of ethanol. 5 mL of fresh pre-warmed 

(37 ± 0.5 ˚C) dissolution media was added to the dissolution vessel after each sampling. The 

samples were analysed using a UV–VIS spectrophotometer (Perkin-Elmer Lambda 35, USA) at 

363 nm. All drug release studies were conducted in triplicate.  

7.3 Results  

7.3.1 FDM 3D printing processability of placebo and drug loaded solid 

dispersions  

The calculations of solubility parameters using group contribution methods for the individual 

compounds used in this chapter and their differences relative to that of felodipine were presented 

in Chapter 3 and Appendix 1. The solubility parameters for soluplus and the processing aid 

materials, PEG, PEO K100 and Tween 80, are nearly identical, indicating excellent miscibility of 

all excipients in CMS placebo. The ∆δ value is less than 4 for eudragit E PO with PEO K100, 

PEG and Tween 80 which also indicates good miscibility between excipients used in CME 
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dispersions. However, the ∆δ value of PVA with Tween 80 is greater than 7 suggesting partial 

miscibility of these two excipients for CMV formulations. Based on the ranking of the ∆δ values, 

the highest miscibility of felodipine with the individual excipients is expected to be in the order 

of soluplus > PEG 4000 = PEO K100 > Tween 80> eudragit E PO > PVA. This leads to the 

predicted the rank of the miscibility of felodipine in FDM printed formulations being CMS > 

CME > CMV. 

Eudragit E PO and soluplus have been widely reported for the preparation of HME solid 

dispersions for enhancing the dissolution of poorly soluble drugs (83, 119, 139, 522). Although 

both polymers on their own are HME extrudable, neither of them were FDM printable even with 

the addition of drug. After blending with PEG, PEO K100 and Tween 80, both polymers were 

FDM printable. However, due to the higher melting viscosity and lower Tg of eudragit E PO than 

soluplus, a greater quantity of PEG and reduced amount of Tween 80 were added to the CME 

blends in comparison to CMS blends (Table 7.1). The PVA used in this study was 33-38% 

hydrolysed, and the HME filament was brittle and not suitable for FDM printing. Therefore, 

Tween 80 was added to plasticise this material and improve the flexibility of the filaments which 

made feeding of the FDM printer easier.  

The PVA-based filaments are highly thermoplastic. As seen in Table 7.2, the low extrusion 

torques during HME indicating low melt viscosity of the materials, but readily formed the 

required shape upon cooling (Figure 7.1). For eudragit E PO based blends, the addition of 

felodipine plasticised the mixtures and reduced the extrusion torque during HME which allowed 

FDM printing. For soluplus based blends, the plasticisation effect of the drug is not significant 

and may be masked by the higher Tween 80 content in these blends in comparison to eudragit E 

PO based blends. Although both eudragit E PO and soluplus based blends gave higher extrusion 

torque during HME, the mixtures were FDM printable. Moreover, no clear deformation of the 

shape at a micron scale can be observed using SEM (Figure 7.2).  
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Figure 7.2: SEM images for 10% w/w felodipine loaded FDM 3D printed discs. CME (a) surface and 

(b) cross-section; CMS (c) surface and (d) cross-section; CMV (e) surface and (f) cross-section. The 

dotted lines indicate the widths of filaments strips after FDM printing 

The surface roughness at the edges of each deposited strips of CMS is slightly higher than CME 

and CMV. This may be attributed to the combination of suitable viscosity for FDM deposition but 

poor thermoplasticity. The edge of each printed strip of the materials can be easily identified. It is 

noted that for all three formulations the road width of each strip is approximately 370 ± 10 µm 

instead of 400 µm which is the diameter of the printing nozzle. The uniformity of the small 

shrinkage of the road width of the printed materials indicates the similar thermal flow behaviour 

of the three blends.  

XµCT was used to study the morphology and internal microstructure of the FDM samples at the 

hundreds of microns to the mm scale. Representative XµCT results for the placebo and 10% 

loaded filaments and FDM printed discs of CME blend show some level of micron scale surfaces 

roughness, which matches the SEM observations (Figure 7.3).  
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Figure 7.3: Representative XµCT reconstructed 3D images of CME placebo and 10% w/w felodipine 

loaded CME discs. HME filaments (left) and FDM 3D printed discs (right). The phase separate 

particles are likely to be metal contaminations introduced during HME and FDM printing and/or 

some inorganic additives included in the raw polymers (499) 

The road width of the individual FDM strip also matches those observed in the SEM images. 

Small air pockets distributed inside the FDM printed discs can be seen which is absent in the 

HME filaments. The small air pockets are likely to be introduced during the deposition of each 

layer of strips. It was noted that for both HME filaments and FDM printed discs; some phase 

separated particles with high electron density are observed. It can be confirmed that they are not 

drug particles as they are also present in the placebo filaments and discs. They may be metal 

contamination introduced during the extrusion/3D printing processes and/or some inorganic 

additives included in the raw polymers (499). 

7.3.2 Loading efficiency of FDM 3D printed felodipine solid dispersions 

The weights of the designed placebo and felodipine 10% w/w loaded discs are summarised in 

Table 7.3.  
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Table 7.3: Weights of placebo and 10% w/w felodipine loaded FDM printed discs (n=3; average ± 

SD) 

Mixture Code Weights of 3D printed discs (mg) 

Placebo CME 61.48 ± 8.16 

10% W/W CME 61.33 ± 3.88 

Placebo CMS 64.82 ± 1.46 

10% W/W CMS 60.34 ± 3.27 

Placebo CMV 56.93 ± 7.41 

10% W/W CMV 55.34 ± 4.00 

 

It was reported in the literature that the drug loading efficiency of the FDM 3D printed samples 

prepared by passive diffusion of the drug from its organic solution into the ready-made placebo 

PVA filaments was often lower than the theoretical value by more than 15% (224, 417, 523). 

Using a high printing temperature also can lead to unsatisfactory loading efficiency due to the 

thermal degradation of the drug (224, 417, 523). A temperature of 150 ˚C was used in this study 

during the FDM printing. The loading efficiencies of felodipine in the 3D printed CMS, CME and 

CMV discs were 95.75± 0.66%, 94.62 ± 0.56% and 86.23 ± 0.83%, respectively. This suggests 

that processing the mixtures using HME with subsequent FDM 3D printing at a suitable 

temperature can produce solid dispersions with high loading efficiency (175). In addition, this 

result also indicates that the 3D printing process at 150 ˚C led to no thermal degradation of the 

active drug which was confirmed by the results obtained by TGA (Figures 7.4). The lower loading 

efficiency for 10% CMV than CME and CMS may be attributed to the large particle size of PVA 

granules used during preparation which led to poor mixing with the Tween 80 and the drug. 
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Figure 7.4: Thermal degradation of placebo and 10% w/w felodipine loaded physical mixture, 

filament and 3D printed discs. A) CME, B) CMS and C) CMV mixtures (n=3) 
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7.3.3 Physical characterisation of the FDM 3D printed solid dispersions 

Thermal transitions for the raw materials used in the various formulations were measured using 

DSC and are illustrated in Chapter 3. The Tg of eudragit E PO, soluplus, PVA, and Tween 80 were 

identified at 46.7 ± 1.0, 74.1 ± 0.3, 46.1 ± 1.7, and -64.2 ± 0.6, respectively. The melting peaks of 

other blend excipients including Tween 80 (after crystallisation at -44.6 ± 1.2 ˚C), PEG and PEO 

K100 and the model drug can also be identified at -10.2 ± 2.3, 59.3 ± 0.3, 65.6 ± 0.1 and 144.6 ± 

0.1 ˚C, respectively. The physical mixtures of the CME and CMS show melting of PEG and PEO 

K100, but no melting of the model drug (Figure 7.5). This is likely to be due to the thermal 

dissolution effect of the crystalline drug in the polymer mixtures (498). The melting of felodipine 

is evident in the DSC results of the physical mixtures of CMV. This confirms the partial 

miscibility between felodipine and PVA predicted previously. 

 

Figure 7.5: DSC thermograms illustrating different thermal events for physical mixtures and FDM 

3D printed discs of placebo and 10% w/w felodipine loaded CME, CMS and CMV (n=3) 

MTDSC was used to further investigate the Tg region of the samples. As seen in Figure 7.6a, the 

MTDSC results of the physical mixtures of CME show no detectable Tg. A Tg at approximately   

-55 ˚C can be detected for the physical mixtures of CMS which probably arises from the mixture 

of PEG/PEO K100/Tween 80 (Figure 7.6b). Two Tg temperatures can be clearly seen at -55.4 ± 

0.2 and 39.4 ± 4.3 ̊ C in the MTDSC results of the physical mixtures of CMV blends (Figure 7.7). 

As the first Tg is higher than the Tg of pure Tween and the second is lower than the Tg of pure 

PVA, they are likely to be the Tg events of Tween-drug and PVA-moisture phases, respectively. 
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These Tg events are shifted to higher temperatures (-51.8 ± 0.3 ˚C and 42.9 ± 4.4.5 ˚C) in the 

reheating cycle which may be caused by the further mixing of Tween 80 and PVA and moisture 

loss of the main PVA phase, respectively (Figure 7.7). 

 

Figure 7.6: MTDSC thermograms showing the Tg events of (a) CME formulations using temperature 

program of 1.0 ˚C amplitude, 60 sec period and 2 ˚C/ min heating rate and (b) CMS mixtures using 

a heat only temperature program of 0.318 ˚C amplitude, 60 sec period and 2 ˚C/ min heating rate 

(n=3) 
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Figure 7.7: MTDSC thermograms showing the Tg events of CMV mixtures using a heat only 

temperature program of 0.318 ˚C amplitude, 60 sec period and 2 ˚C/ min heating rate (n=3) 

In FDM printed CME and CMS discs containing 10% felodipine, DSC shows the joint melting 

of crystalline PEG and PEO K100. The melting enthalpy values of the crystalline PEG-PEO K100 

were similar in CME and CMS. However, it should be mentioned that there was 30% w/w PEG-

PEO K100 in CME and 25% in CMS. This indicates that a greater amount of the crystalline PEG-

PEO K100 phase was present in CMS in comparison to CME (Table 7.4).  

It was also noted that the melting point of the PEG-PEO K100 shifted to lower temperatures in 

comparison to those observed in the results of their physical mixtures.  The solubilisation of other 

excipients and felodipine may be responsible for this melting depression of the crystalline PEG-

PEO K100 phase in the printed dispersions.  
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Table 7.4: Experimental % crystallinity of PEG-PEO polymers in CME and CMS blends compared 

to the 100% theoretical values (n=3; average ± SD) 

Material  1
st
 Melting 
(˚C) 

2
nd

 Melting 
(˚C) 

∆H
f
 (J/(g) total Experimental 

% crystallinity 

Placebo CME PM 58.45± 0.15 65.41± 0.33 53.48± 5.70 87.14± 9.29 

Placebo CME filament 59.56± 0.50 

 

49.56± 0.44 80.75± 0.72 

Placebo CME 3D disc 57.50± 0.66 

 

49.56± 2.55 80.75± 4.15 

10% CME PM 59.90± 1.03 66.18± 0.61 50.38± 6.26 91.23± 11.34 

10% CME filament 58.15± 0.09 

 

45.53± 1.90 82.44± 3.44 

10% CME 3D disc 54.61± 0.14 

 

46.57± 0.49 84.33± 0.89 

Placebo CMS PM 56.99 ±0.65 62.75 ±0.83 55.32 ±18.49 108.67± 36.32 

Placebo CMS filament 56.76 ±0.56 

 

44.94 ±1.25 88.28± 2.46 

Placebo CMS 3D disc 56.37 ±0.14 

 

45.08 ±1.39 88.55± 2.73 

10% CMS PM 58.25 ±0.25 63.43 ±0.29 43.04 ±2.00 93.91± 13.66 

10% CMS filament 56.23 ±0.23 

 

41.09 ±3.03 89.66± 6.61 

10% CMS 3D disc 57.62 ±0.19 

 

43.18 ±1.16 94.22± 2.53 

 

For the drug loaded CME, the theoretical Tg of the blend calculated using Fox equation as 

described in Chapter 1, Table 7.5 and Appendix 4 is 18.9 ˚C. This is higher than the Tg of the 

FDM printed CME discs measured by MTDSC which is a broad transition at approximately -6 

˚C (Figure 7.6a). This negative deviation from the predicted Tg value reflects non-ideality of 

mixing which may result from the reduced crystallinity of the semicrystalline polymers by 

processing, increase in the free volume caused by the diffusion of the drug inside the polymer 

and/or the weaker drug-polymer interactions compared to the original drug-drug interactions (24, 

99). The detection of a single Tg is a good indicator of the formation of a molecular dispersion of 

the drug and the excipients in CME. For drug loaded CMS samples, the Tg of Tween 80 

disappeared and no clear joint Tg can be detected by MTDSC (Figure 7.6b). No drug melting was 

detected in the DSC and MTDSC results of CMV processed dispersions. Two Tg events are 

present in the MTDSC results of the CMV dispersions (Figure 7) indicating the phase separation 
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in printed CMV dispersions. The Tg of the PVA phase shifts to a lower temperature (25.7 ± 1.3 

˚C) in the FDM printed dispersions in comparison to the physical mixture. As the Tg of PVA is 

lower than amorphous felodipine and higher than Tween 80, this may indicate enhanced mixing 

of Tween with PVA after processing. The separate Tg at -51.6 ± 2.7 ˚C can be assigned to the 

Tween rich phase. It is likely that felodipine is molecularly dispersed in both PVA-rich and Tween 

80-rich phases.  

Table 7.5: Fox equation predicted Tg temperatures for different formulations   

Sample Fox equation Tg (˚C) 

Placebo CME 14.87 

10% w/w CME 18.91 

Placebo CMS 23.20 

10% w/w CMS 25.99 

Placebo CMV 3.83 

10% w/w CMV 7.57 

 

ATR-FTIR and PXRD were used to further confirm the physical states of felodipine in the solid 

dispersions. As seen in Figure 7.8 the NH stretching peak of crystalline felodipine form I at 3367 

cm-1 is visible in the physical mixtures. This peak transforms into a broad peak with low intensity 

in the spectra of the FDM printed CME, CMS and CMV discs. This broadening may be caused 

by a combination of the formulation of molecular dispersion of felodipine and the small quantity 

(less than 3% w/w) of moisture present in the printed discs as shown in the TGA results (Figure 

7.9).  
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Figure 7.8: Partial ATR-FTIR spectra of the physical mixtures (PM) and felodipine loaded FDM 

printed discs. The NH stretching peak of crystalline felodipine is highlighted with the dashed line 

(n=3)  

 

Figure 7.9: Moisture content of different FDM 3D printed discs using TGA at 10 ºC/min (n=3) 
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A few signature diffraction peaks of the crystalline felodipine are present in the PXRD diffraction 

patterns of the physical mixes for the three blends (Figure 7.10). Because both CME and CMS 

contain semi-crystalline PEG and PEO K100, the main diffraction peaks of these two polymers 

can be seen in the PXRD patterns of the FDM printed discs. The crystalline drug related peaks 

completely disappear in all patterns of the 10% w/w loaded printed discs. Taking into account of 

the miscibility prediction of felodipine and the excipients, the phase separation of amorphous 

felodipine is unlikely and the results indicate the formation of felodipine molecular dispersions at 

the detection limit of PXRD. These results agree well with the DSC results and confirm felodipine 

was molecularly dispersed in all three matrices. 

 

Figure 7.10: PXRD Diffraction patterns of physical mixtures and 10% w/w felodipine loaded FDM 

printed CME, CMS and CMV discs  

7.3.4 In vitro disintegration and drug release study of FDM printed felodipine 

dispersions 

A significant enhancement of the dissolution profile of felodipine from CME discs in comparison 

to crystalline model drug alone was obtained when pH 1.2 HCl was used as the dissolution media 

(Figure 7.11a). The rapid release of approximately 84.3% of the drug load was achieved within 

30 minutes. This dissolution improvement may be attributed to the formation of the molecular 

drug dispersion and the high solubility of eudragit E PO in pH 1.2 HCl. The rapid disintegration 
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of the CME discs can be observed within the first 5 minutes of the dissolution experiments 

(Figure 7.12). 

 

Figure 7.11: Felodipine release profile of FDM 3D printed discs using a) pH 1.2 HCl (simulated 

gastric fluid without enzyme) and b) pH 6.8 phosphate buffer saline (PBS) (n=3; average ± SD)   
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Figure 7.12: Visual appearances of felodipine loaded FDM printed CME discs during dissolution in 

pH 1.2 HCl and pH 6.8 PBS. The dash circles represent the diameters of freshly prepared dry CME 

discs  

Eudragit E PO is insoluble at pH 6.8, thus little drug release from the CME was expected. 

However, a delayed but 100% drug release of felodipine from the CME discs in pH 6.8 PBS was 

obtained (Figure 7.11b). Less than 8% drug release occurred in the first 90 minutes. However, 

from 90 minutes onwards, a linear zero-order release profile with 100% drug release by 6 hours 

was observed. The images of the discs during the dissolution in pH 6.8 PBS show the slow bulk 

erosion and disintegration of the discs which was completed by 6 hours (Figure 7.12). A minor 

level of swelling of the discs prior to the complete disintegration and dissolution was observed.  

CMS discs showed significantly slower drug release profile in pH 1.2 HCl than CME discs 

(Figure 7.11a). However, it is interesting to note that some improvement in drug dissolution in 

comparison to the crystalline drug alone was still observed from 1 hour onwards and the release 

follows a linear release pattern. The maximum release of 28% was achieved after 6 hours in vitro 

dissolution. Although soluplus has been reported to be a water-soluble polymer, the addition of 

the inorganic salts in the dissolution medium can depress the cloud point of the polymer and 

reduce the solubility of the polymer in the media (149). Figure 7.13 captures the start of the 

disintegration process of CMS discs between 60 to 90 minutes into the dissolution test. A closer 

examination of the images reveals the sequence of the disintegration of CMS discs into segments 

of printed strips which is significantly different from the disintegration of CME in pH 6.8 PBS. 
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Between 60-90 minutes, the individual printed polymer strips at the outer edge of the FDM discs 

started to unravel into single long strands. There were three printed layers stacked together to 

form the discs; the outer printed layer unravelled first to reveal the middle layers. This was 

followed by a further breakdown of the longer polymer strips into smaller segments. This unique 

disintegration process contributed to the increased release of drug and led to the observed increase 

in the amount of drug released from 1 hour onwards (Figure 7.11a).  

 

 

Figure 7.13: Visual appearances of the felodipine loaded FDM printed CMS discs during the 

dissolution tests in (a) pH 1.2 HCl and (b) pH 6.8 PBS. The dash circles in (a) and (b) represent the 

diameters of the dry and freshly prepared CMS discs 

This indicates that the disintegration process may be the limiting step for initiating the drug release 

from CMS in HCl. The linear release profile also suggests that the release kinetics of felodipine 

from disintegrated CMS strips is close to zero-order. In pH 6.8 PBS, CMS discs show no 

dissolution enhancement of felodipine despite the formation of the molecular dispersions of the 

drug by HME and FDM 3D printing (Figure 7.11b). It was noted that no disintegration occurred 

in any FDM printed discs during the period of the dissolution tests in pH 6.8 PBS. The increased 

amount of inorganic salt in the PBS may contribute to further limit the solubility of soluplus in 

the media. No significant swelling was observed through the 6 hours of dissolution and a minimal 

disintegration started by 6 hours (Figure 7.13b).  

In order to further understand the release behaviour, segments of the CMS samples after 6 hours 

dissolution were studied using ATR-FTIR and DSC. The ATR-FTIR results (Figure 7.14) show 

no changes of the drug and excipient peaks in comparison to the dry freshly prepared discs after 

6 hours dissolution in both media.  
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Figure 7.14: Partial ATR-FTIR spectra of CMS discs taken out of the media and dried after 6 hours 

dissolution. The dash lines in (c) highlight the felodipine related IR peaks and arrows highlight the 

changes of PEG/PEO K100 related peaks labelled with * before dissolution (n=3)  

This confirms that the drug was still in amorphous dispersion with the polymer matrix. These 

results are consistent with the transparency of the dried matrices and the absence of drug crystals 

in the SEM data of these samples (Figure 7.15). However, the peaks associated with PEG, PEO 

K100 and Tween 80, such as the peaks between 1500 - 850 cm-1, have shown significant changes 

in peak intensity and shape as observed in Figure 7.14 indicating dissolution of these excipients 

during the dissolution experiments.  
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Figure 7.15: Images (A and C) and SEM images (B and D) of 10% CMS samples after dissolution for 

6 hours and drying.  A and B in SGF pH 1.2, while C and D in PBS pH 6.8 

DSC detected much smaller PEG-PEO K100 melting peaks in the post-dissolution discs in 

comparison to the fresh dry sample (Figure 7.16), indicating the leaching of PEG-PEO K100 

during dissolution. The first heating cycle showed an overlapped peak of the Tg of soluplus and 

dehydration of the matrix. However, the second heating cycle revealed the Tg of soluplus. These 

results imply that the remaining segments after dissolution are largely soluplus which retains the 

unreleased drug.  

 

Figure 7.16: DSC thermographs of CMS discs taken out of the media and dried after 6 hours 

dissolution (n=3) 
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No significant release improvement of felodipine from CMV discs was observed in either pH 1.2 

HCl or pH 6.8 PBS in comparison to the crystalline drug (Figures 7.11a and b). The PVA used 

in this study was a low hydrolysis grade which led to the poor aqueous solubility of the polymer. 

In addition, the effect of ionic strength of the dissolution medium may also play a role in this case, 

reducing the dissolution of PVA in the media (410). For both cases, a degree of gelling of the discs 

during dissolution can be seen in Figures 7.17a and b. The gelation of CMV discs can be 

attributed to the hydrogel formation ability of PVA reported in the literature (524, 525). The discs 

in pH 1.2 HCl show significant softening that led to the folding of the wetted discs (which appears 

as a reduction in size), whereas there was no change in the size of the discs tested in pH 6.8 PBS.  

 

Figure 7.17: Visual appearances of the felodipine loaded FDM printed CMV discs during the 

dissolution tests in (a) pH 1.2 HCl and (b) pH 6.8 PBS 

The ATR-FTIR results of the dried CMV samples are shown in Figure 7.18. No changes can be 

observed in comparison to the dry freshly prepared discs indicating that there was no change in 

the state of the drug in the CMV solid dispersions after 6 hours exposure in both media. The DSC 

results of the dried discs after 6 hours dissolution reveal the absence of a Tg of Tween 80 which 

was present in the freshly prepared discs (Figure 7.19). This indicates the leaching of Tween 80 

during dissolution. 
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Figure 7.18: Partial ATR-FTIR spectra of CMV discs taken out of the media and dried after 6 hours 

dissolution. The arrows highlight felodipine related IR peaks (n=3) 

 

Figure 7.19: DSC thermographs of CMV discs taken out of the media and dried after 6 hours 

dissolution (n=3) 
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7.4 Discussion  

7.4.1 Linking phase behaviour with FDM printability of the dispersions 

Polymer blending is a widely used formulation strategy in the polymer and plastic industries to 

improve the processability of materials. This study tackled the FDM printability issues of two 

FDA approved and widely used pharmaceutical polymers, soluplus and eudragit E PO, by 

blending the polymers with a mixture of PEG, PEO K100 and Tween 80. Although both polymers 

have wide applications in preparation of pharmaceutical HME dispersions, they are not printable 

by conventional FDM 3D printers due to their high melt viscosity and poor fluidity. The addition 

of the mixture of PEG, PEO K100, Tween 80 as well as the model drug significantly improved 

the viscosity of the polymers during printing. As a result, these mixtures matched the printing 

performance of the PVA-based system that is one of the main matrix materials used currently in 

FDM 3D printing. This improved the thermal and mechanical properties allowing the felodipine-

loaded dispersions to be printed into disc shaped, triple layered matrices. A clear understanding 

of the phase behaviour of the printed system is crucial for further interpretation of the mechanism 

of formulation stabilisation and drug release. As a result of the large number of ingredients used 

in the printed discs, characterisation of the phase behaviour of the systems is complex. This study 

took the simplified approach of ranking the miscibilities between excipients in order to gain some 

insight into the phase behaviour of the blend matrices and the miscibility of felodipine with 

different polymer blends to allow the prediction of the likelihood of the formation of molecular 

dispersions of the drug with polymers. The prediction revealed soluplus and eudragit E PO were 

miscible with PEG-PEO K100 and Tween 80; whereas PVA is only partially miscible with Tween 

80. Therefore, the mechanism by which the printability of soluplus and eudragit E PO is improved 

by the addition of these excipients is probably the combination of improved melt viscosity and 

plasticisation of the polymers. Results indicated the formation of a molecular dispersion of 

felodipine at 10% loading in FDM printed CME and CMS dispersions. Therefore, drug 

incorporation further contributed to the plasticisation of the polymer matrices. The addition of 

Tween 80 reduced the stiffness of the PVA filaments and eased the printing process. The 

weakening of the stiffness may be attributed to the formation of discontinuous Tween 80 phases 

in PVA dispersions, as the two are partially miscible. The addition of felodipine further plasticised 

the polymer. 
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7.4.2 Linking phase behaviour with in vitro disintegration and dissolution 

performance 

The phase behaviour of the printed discs is important for understanding the differences in the drug 

release rates of the formulations. The slower drug release from the CMS system compared to 

CME blend is a result of the combination of lower solubility of soluplus than eudragit E PO in 

the media and the physical state of the excipients in the dispersions. Although both formulations 

were confirmed to be molecular dispersions of felodipine, their crystalline PEG-PEO K100 

contents are different. The higher crystalline PEG-PEO K100 content in the CMS compared to 

CME may contribute to the slower drug release from CMS discs. This is because that the 

crystalline PEG-PEO K100 required a wetting and hydration prior to dissolution; whereas these 

may not occur for the molecularly mixed PEG-PEO K100 in the polymer matrices. The reason 

for the higher crystalline content may be associated with the higher melt viscosity of eudragit E 

PO than soluplus as suggested by the HME processing torque values. As HME and FDM printing 

both were performed at temperatures above the melting point of the crystalline PEO K100 and 

PEG, higher melt viscosity of the matrix polymer would be more effective in limiting the diffusion 

of PEG and PEO K100 molecules to form large crystalline domains during recrystallisation on 

cooling (post-FDM printing). However, despite the fact that PEO K100 is a well-known 

controlled release matrix excipient which hydrates and swells once it is in contact with aqueous 

media (526-529), the limited amount of swelling observed in CME and CMS discs during 

dissolution, indicated that the dissolution of PEG-PEO K100 in the dispersions is the more 

dominant process in these blends. The intimate mixing between PEG-PEO K100 and soluplus 

and eudragit E PO may contribute to this observed behaviour.   

Another interesting feature of the dissolution behaviour of these FDM 3D printed discs is the 

difference in their disintegration behaviour, which in the case of CMS in pH 1.2 HCl and CME 

in pH 6.8 PBS led to the ‘switching on’ effect of the drug release (Figure 7.11). It indicates that 

the disassembly of the bulky 3D object that was fabricated by micron-size polymeric strips may 

be used as a novel mechanism of the drug release performance. Therefore, a clear understanding 

of the disintegration behaviour of the formulation is of vital importance. In the literature, the 

disintegration process of FDM printed 3D matrices is still poorly understood. The results of this 

study revealed the unravelling of the printed strips of CMS formulation and bulk erosion 

behaviour of CME discs. The exact mechanism for this difference is not clear, but (1) the degree 

of fusion between the printed strips and layers and (2) the speed of dissolution of the matrix 

polymer may be relevant. As seen in Figure 7.2, the edges of the printed strips of CMS are much 
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rougher than CME discs. This may be an indication of the low melt viscosity of the materials and 

rapid solidification of the materials after deposition. This should lead to the better-defined 

interfaces between strips and layers which may contribute to the observed ‘peeling’ effect of strip 

by strip during the disintegration of CMS. The higher solubility of eudragit E PO at pH 1.2 than 

soluplus is believed to responsible for the rapid disintegration and dissolution of CME in pH 1.2. 

For CMS, the drug release results strongly indicated that disintegration is the limiting step for 

drug release. Following disintegration, controlled release of drug following zero-order kinetics 

was observed. The zero-order release of CMS in pH 1.2 media may be explained by the small 

diameter of each strip segment, which contributes to the short diffusion path length of the drug 

molecules. This short path length led to the negligible effect of changes in diffusion length during 

dissolution. In addition, the continuous slow breakdown into shorter segments can provide a 

constantly increasing release surface for the drug molecules and led to the observed zero-order 

like release profile. This brings insight into the potential of controlling the drug release rate via 

manipulation of the disintegration behaviour of the bulky solid formulation. This study has 

demonstrated that this is achievable using FDM printing technology, with careful selection of 

excipients.  

Finally, the phase behaviour can also be used to explain why the prevention of drug 

recrystallisation in the formulations that have no drug dissolution enhancement (CMS and CMV). 

For CMV, as the solubility study suggested the separation of a Tween 80 rich phase and a PVA 

rich phase, one may expect the leaching of Tween during dissolution, which would liberate some 

drug. However, as extremely limited drug release was observed, it indicates that although the 

leaching of Tween may lead to some drug release, the majority of the drug is still held as a 

molecular dispersion in PVA matrices. This was confirmed by the DSC and ATR-FTIR results of 

the post-dissolution dried samples. The fact that no significant drug crystallisation occurred 

during the period of dissolution indicates that the polymer to drug ratio is efficient in stabilising 

and preventing crystallisation of the remaining drug in the matrices. This also applies to the CMS 

systems in which no drug recrystallisation was observed during 6 hours of dissolution.   

7.5 Conclusion 

This chapter demonstrated the use of polymer blends to overcome the poor printability of 

pharmaceutical polymers during FDM 3D printing. The solid dispersions of felodipine with 

eudragit E PO and soluplus were successfully prepared using FDM printing after blending with 

the process and drug release aids, PEG, PEO K100 and Tween 80. Distinctively different 
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disintegration behaviour of the 3D discs with different polymer blends allowed the manipulation 

of the rate of drug release. The results demonstrated the effect of the complex interplay between 

the miscibility of the excipients in the blends, the solubility of the polymer in the media and the 

formation of interfaces between printed strips during the FDM printing on drug release behaviour 

of the dispersions. This brings new insights into the design principles for controlled release 

formulations manufactured using FDM 3D printing by using different geometries and internal 

structures during the formulation development process. 
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8.1 Conclusions 

8.1.1 Preformulation studies 

This study introduced the use of HME-IM as a single step, solvent-free processing technique for 

designing mucoadhesive buccal patches for systemic delivery of felodipine with defined shape 

and geometry. In addition, part of the study focused on the use of FDM 3D printing for fabricating 

felodipine oral solid dispersions using polymeric blends as a strategy for improving the 

printability of pharmaceutical excipients. As a preformulation step, Chapter 3 investigated the 

physicochemical properties of the raw materials (felodipine and all other excipients) used 

throughout the different stages of the study before starting formulation development stage. This 

also involved the careful selection of the suitable excipients used for fabricating the formulations 

using these two methods. In addition, the chapter provided some theoretical and experimental 

predictions for the miscibility between the different excipients and the drug under investigation. 

Several characterisation techniques used to investigate the properties of the raw materials 

including DSC, MTDSC, TGA, DVS, ATR-FTIR, PXRD, SEM and EDS.  

8.1.2 Formulation development strategies of felodipine HME-IM buccal 

patches 

Several key formulation strategies were adapted to ensure the success of the formulation process 

using HME-IM. As the precision of product geometry is one of the major advantages of HME-

IM over other methods like solvent casting for fabricating buccal and transdermal patches, the 

prepared patches should be easily removed from the mould after melt injection to ensure the 

integrity of the designed delivery systems. In order to achieve this, the excipients were selected 

for preparing felodipine dispersions in this study were non-sticky to the metal mould of the IM 

machine which facilitated the easy removal of the prepared patches after moulding. This function 

was provided by including PEG 4000 and PEO K900 polymeric blend as the main component of 

the patches. This polymeric blend provided easy peel off patches after cooling down the mould 

after HME-IM. Therefore, excipients should be selected carefully as sticky materials to IM 

moulds may be not suitable for preparing dosage forms using HME-IM.  
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Thermal degradation is the primary drawback for solid dispersions preparation by fusion methods 

in general including HME-IM. The formulation strategy to avoid thermal decomposition of 

formulative ingredients was through the selection of a range of excipients having low melting 

points which permitted processing at low and safe processing temperature (65 °C). The excipients 

used in the HME-IM study have melting temperatures ranging from -65 to 70°C. Thus, thermal 

degradation can be avoided by selecting carrier(s) having low melting points/Tg values to enable 

processing at safe temperatures.   

The main purpose of the study using HME-IM was to design formulations (solid dispersions) for 

delivering felodipine to the systemic circulation via the buccal route to improve its bioavailability 

by solubility/dissolution enhancement and avoiding extensive liver metabolism (84%). In order 

to fulfil all these formulation objectives, tertiary carrier mixtures composed of PEG/ PEO K900 

and either Tween 80 or TPGS blends were used as multi-functionality mixtures to provide drug 

solubilisation, mucoadhesion, stabilisation and absorption enhancing properties. The resultants 

mixtures were complex systems and they reflected the actual state of final pharmaceutical 

products which is rarely investigated as a strategy for preparing solid dispersion dosage forms 

using HME-IM.      

Physical stability of molecularly solubilised drugs in solid dispersions is one of the most 

challenging problems in the development of successful formulations. This study adapted a 

strategy of creating surfactant-rich drug solubilisation and stabilisation compartments for 

felodipine. The created solubilisation domains were formed due to the different miscibilities of 

components of the CM1 and CM2 mixtures as represented in Figure 8.1.      

 

Figure 8.1: Proposed schematic illustration of felodipine loaded phase separated solubilisation 

compartments created by HME-IM  
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The investigations for the HME-IM patches presented in Chapter 4 proved that felodipine 

solubilisation improved the miscibility between PEG/PEO K900 polymer blend and Tween 80 as 

indicated by the disappearance of Tween 80 melting peak. This led to the formation of PEG-PEO 

K900-Tween 80 solubilisation phase for felodipine. However, for CM2 matrices, felodipine 

loading did not seem to improve the miscibility between TPGS and PEG-PEO K900 blend and 

the drug was most likely solubilised in the TPGS phase. In addition, felodipine was completely 

solubilised in both CM1 and CM2 at 10% w/w loading as molecularly dispersed form. The drug 

was dispersed in PEG-PEO K900- Tween 80 amorphous fraction for CM1 and most likely 

distributed in TPGS phase for CM2. The absence of felodipine crystals in the surfaces and cross-

sections of the patches, broadening of felodipine NH stretching and absence of felodipine PXRD 

characteristic peaks indicated this. It was also found that increasing the loading percentage to 20% 

w/w led to more drug solubilisation in the surfactant-rich domains as revealed by the increase in 

the Tg of the mixtures and the ∆Cp values. Further increase in felodipine concentration to 30% 

w/w resulted in the detection of felodipine crystalline fraction by ATR-FTIR, SEM, EDS, PXRD, 

but not revealed by DSC and MTDSC due to the thermal dissolution of the crystalline drug in the 

molten carrier during the DSC runs. The 10% w/w loaded HME-IM patches revealed the 

maximum improvement in the dissolution profile of felodipine with approximately 10-12 times 

increase in the in vitro release after 2.5 hours compared to crystalline felodipine form I powder.  

It should be mentioned that loading felodipine at 10% w/w did not significantly affect the in vitro 

mucoadhesion properties of the HME-IM patches compared to placebo for both CM1 and CM2 

mixtures. However, increasing the loading to 20-30% w/w drug loading reduced the 

mucoadhesion force not only because of the reduced proportion of PEO K900 but also due to 

saturation of the mixtures with felodipine and impacts of crystalline drug fraction in the 

formulations.      

8.1.3 Characterisation challenges for investigating the microstructures of 

HME-IM patches 

Conventional characterisation techniques such as DSC, MTDSC, SEM, EDS, ATR-FTIR and 

PXRD provided qualitative and quantitative information about the microstructure of the prepared 

HME-IM patches as shown in Chapter 4. However, due to the complexity of these systems and 

the presence of phase separation domains, it was important to understand the degree of 

heterogeneity in the different formulations and the impacts of drug loading on the spatial 
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distribution of phases. Therefore, TASC and XµCT were used to achieve this target as explained 

in Chapter 5.  

TASC detected TPGS and PEG-PEO K900 for both CM1 and CM2 samples in comparable 

temperatures to standard DSC with slight variations related to the principle of detection of both 

techniques. DSC measures the heat flow accompanying thermal events while TASC detects 

changes in the appearance of the top surface of the sample under investigation. For CM1 and 

CM2 placebo HME-IM patches, TASC revealed that the different phases in the placebo and 10-

20% w/w loaded samples were uniformly distributed within the microscale detection limits of the 

technique using the localised thermal analysis function for TASC. However, the 30% w/w 

loadings were heterogeneous reflecting microscale heterogeneity of the samples. The 

heterogeneity represented by the different in composition of the analysed areas using TASC 

algorithm. It was also found that analysing large areas of 30% w/w loaded patches reduced the 

heterogeneous character of these samples due to the averaging effect which in turn explained the 

high reproducibility of the DSC results. Unlike DSC, TASC was able to detect the thermal 

dissolution of the crystalline fraction of felodipine in the 30% w/w loaded samples. Placebo and 

10% w/w loaded samples readily reached the plateau after the melting of PEG-PEO K900 blend. 

20% w/w loaded HME-IM reached the plateau in a less sharp way compared to lower loadings. 

However, 30% w/w drug loading failed to reach the plateau indicating the presence of real thermal 

event ‘thermal dissolution of crystalline felodipine’ occurred after the melting of PEG-PEO K900 

blend. These results complement the findings obtained by VT-ATR-FTIR. TASC also detected 

the unfolding of the folded form of PEG 4000 in the reheating cycle of the TASC experiments. 

This hidden event was unobservable using standard DSC at the same heating rate. The 

transformation of the folded to the more stable extended form is detected using MTDSC and VT-

ATR-FTIR. In addition to be fast and cheap thermal analysis technique, TASC proved that its 

sensitivity is not affecting by changing the rate of heating and cooling ramps which was 

considered as an advantage for TASC over DSC.  Thus, increasing the heating rate does not seem 

to reduce the resolution of analysis using TASC compared to DSC. 

Since XµCT has a micron scale, phase separations between the components of CM1 and CM2 in 

the placebo and 10% w/w felodipine loaded samples were undetectable. The presence of a 

crystalline fraction of felodipine in the 20-30% w/w loadings and because the drug has higher 

electron density compared to other formulation ingredients, the ability of XµCT to detect and 

threshold crystalline felodipine clusters permitted the simulation of the spatial distribution of this 

phase in the higher loaded formulations. In addition, XµCT was used to provide semi-quantitative 

data about the concentration of felodipine in the 30% w/w felodipine loaded CM2 HME-IM 



Chapter 8                                                                              Concluding remarks and future work 

 

295  School of Pharmacy / University of East Anglia 

 

patches using a series of CM2 physical mixture discs loaded with 0-60% w/w felodipine. The 

results revealed the presence of 10.3% w/w crystalline felodipine in the 30% w/w CM2 patches. 

It was also found that thresholding small areas in the CM2 sample loaded with 30% w/w loading 

revealed a high degree of heterogeneity for crystalline felodipine compared to thresholding large 

areas. These results confirmed the localised analysis performed using TASC. XµCT was also 

found to be unique not only to simulate the distribution of crystalline drug fraction if it has enough 

electron density to perform thresholding but also to detect processing defects like the presence of 

air pockets and heavy metal additives because these two have very high contrast difference to be 

thresholded and simulated as 3D models. 

8.1.4 Evaluations of physical stabilities of the HME-IM patches and their 

implications in formulation optimisation 

After completing the formulation stage of felodipine HME-IM buccal patches using different 

mixtures and drug loadings, the stability of the designed preparations was investigated under four 

different storing conditions with respect to temperature and relative humidity for 3 months. The 

stability follow-up for placebo and felodipine loaded CM1 and CM2 patches was explained in 

details in Chapter 6. The studies conducted indicated no significant changes in the morphology 

and the microstructure of CM1 and CM2 placebo patches stored under all conditions except 

placebo CM1 sample stored at condition D (40°C and 75%RH) which lost its solid structure 

‘liquefied’ during ageing. Using different characterisation techniques such as TGA and ATR-FTIR, 

this loss of solid structure was attributed to random scission oxidative degradation of PEG-PEO 

K900 blend and Tween 80. However, placebo CM2 samples were more resistant to oxidative 

degradation due to the antioxidant properties of TPGS which provided partial protection against 

the random polyethylene oxide chain degradation. Therefore, the prepared drug delivery system 

should be protected against high temperature and relative humidity conditions. 

Felodipine crystallisation was detected in all loaded formulations, however, the extent of 

crystallisation was found to be drug concentration dependent. 10% w/w CM2 loaded HME-IM 

stored at condition C (40 °C and 0% RH) and condition A (room temperature and 0% RH) revealed 

the lowest extent of felodipine recrystallisation with only few surface crystals detected on the 

surface with very slight changes in the different phase separated domains. Stability investigations 

for 10% w/w CM1patches also showed good felodipine stabilising properties, however, they were 

less stable compared to corresponding CM2 formulations. These results indicated that 10% w/w 



Chapter 8                                                                              Concluding remarks and future work 

 

296  School of Pharmacy / University of East Anglia 

 

CM2 HME-IM patches are the most likely suitable formulation for the next stage of product 

development. Interestingly, it was found that felodipine recrystallised from formulations as a 

plate, block or spherulitic needle habits as observed under SEM. This phenomenon was more 

prominent in the higher loading formulations (20-30% w/w loadings) compared to 10% w/w 

loading. All habits were identified as felodipine crystals using EDS. The spherulitic needle-

shaped crystals were grown on the surfaces (including the interior air pockets’ surfaces) of the 

patches of all loaded samples stored at condition D (40°C and 75% RH) except 10% w/w CM2 

patch and also seen in some of the patches aged under condition C (40°C and 0%RH). 

Characterisation of formulations contained the spherulitic crystals using ATR-FTIR and PXRD 

revealed different signatures compared to the already four identified polymorphic forms of 

felodipine. Most importantly, the detection of felodipine NH stretching peak at 3321 cm-1 in 

formulation loaded with 20-30% w/w loading is not related any known polymorphs or the 

amorphous form of the drug. In addition, the results of PXRD indicated new diffraction peaks at 

9.3 ̊ and 12.4 ̊ do not match with any known polymorphs of felodipine. These observations 

suggested that felodipine recrystallised as spherulitic needle shaped crystals from formulations 

stored at 40°C with or without 75% RH is more likely new form of felodipine. The general 

illustration for the stability study of the HME-IM patches is shown in Figure 8.2. 

 

 

 

Figure 8.2: An illustration showing the impacts of storing temperature and relative humidity on the 

stability of felodipine loaded HME-IM patches   

Crystallisation of felodipine from the glassy state under 40°C and 75% RH was also investigated 

and the results indicated the presence of new melting peak having an onset at 118.3 ± 0.1 ̊C in 
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addition to the main peak with onset detected at 136.0 ± 0.9 ̊C. In addition, PXRD of the 

recrystallised drug revealed peaks with low intensity at 9.3 ̊ and 12.6 ̊as peaks may be due to the 

small fraction of the new polymorphic growth. However, the ATR-FTIR did not show any change 

in the spectra of different regions of the crystallised drug compared to the raw pure crystalline 

felodipine form I which may be due to presence of the small fraction in the bulk of the sample 

which is out of the detection limits of the instrument.  

8.1.5 Using polymer blends as a strategy to improve FDM 3D printability of 

pharmaceutical solid dosage forms 

FDM 3D printing has recently attracted the attention of researchers working in pharmaceutical 

formulation field as a potential method for providing more personalised medicines, drug 

combination dosage forms and flexibility to design products with different structures, shapes and 

geometries. All these advantages are expected to improve patients’ adherence to medications 

which in turn lead to better therapeutic outcomes. However, the major challenge currently is the 

poor printability of the vast majority of pharmaceutically approved excipients. Chapter 7 explored 

the possibility of using of polymer blends as a formulation strategy to overcome this limitation. 

Felodipine as a model drug with a range of excipients normally processed by HME (eudragit E 

PO, soluplus, PVA, PEG 4000, PEO K100 and Tween 80) were used to develop felodipine 10% 

w/w FDM 3D printed oral discs.  

HME filaments and 3D printed formulation were successfully prepared using CME, CMS and 

CMV blends using acceptable HME and FDM 3D printing temperatures without affecting the 

chemical stability of all formulation ingredients. The physicochemical characterisation studies 

revealed that felodipine was solubilised in the three mixtures as no drug crystals were detected 

using SEM, the characteristics PXRD peaks were absent, and the NH stretching was very 

broadened using ATR-FTIR revealing molecularly dispersed drug in the systems. Felodipine was 

more likely dissolved in CME (eudragit E PO- PEG-PEO K100 -Tween 80) and CMS (soluplus- 

PEG-PEO K100 -Tween 80) amorphous phases. However, due to phase separation between PVA 

and Tween 80, the drug was molecularly dispersed in both PVA-rich and Tween 80-rich phases. 

The loading efficiency of felodipine in the different systems were 95.75 ± 0.66%, 94.62 ± 0.56% 

and 86.23 ± 0.83% for CME, CMS and CMV 10% w/w loaded discs, respectively. These results 

revealed good mixing achieved during HME processing for CME and CMS formulations, 

however, the large granules of PVA resulted in poor mixing with felodipine and Tween 80 and 
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reduced the loading efficiency of this mixture. The in vitro dissolution studies of felodipine 

showed significant enhancement in the solubility/dissolution properties of the drug from CME 

using 1.2 HCl as the dissolution medium. A maximum release of approximately 84.3% of loaded 

felodipine was achieved within the first 30 minutes which was attributed to the formation of the 

molecular drug dispersion and the high solubility of eudragit E PO in pH 1.2 HCl medium. In 

addition, the same formulation slowly but completely released in pH 6.8 PBS medium. The 

release of felodipine from CMS in pH 1.2 HCl medium was slightly improved and revealed an 

interesting fragmentation of the 3D object into the individual printing strips. However, no 

enhancement in the dissolution profile of felodipine was observed from CMS in pH 6.8 PBS and 

CMV in both media due to the entrapment of felodipine in the main insoluble polymers.    

8.2 Future outlook  

The conducted studies presented in this project provided information about the design, 

characterisation and in vitro evaluation of different formulations using HME-IM and FDM 3D 

printing. However, the most promising preparations need more investigation to ensure their 

suitability as candidates which may be developed to pharmaceutical products. One of most 

important areas to that require further investigation is the diffusion of felodipine from the most 

promising HME-IM buccal patches (10% w/w felodipine in CM1 and CM2 patches) through 

buccal mucosa from animal models or cultured buccal mucosa such as EpiOral™. These studies 

will provide critical information about the permeation of the drug through biological membranes 

to ensure the systemic delivery of felodipine. In addition, conducting an in vivo mucoadhesion 

study of the most successful formulation using buccal mucosa from animal models is also 

important to correlate the in vitro with the in vivo results. 

According to the results obtained using different characterisation techniques, 10% w/w loaded 

CM1 and CM2 formulations were well below the saturation limits of the carriers. However, the 

stability studies revealed the presence of very few crystals on the surfaces of the patches. Thus, it 

is important to investigate the causes behind felodipine crystallisation in these patches and the 

impacts of the slight drug phase separation on its release profiles. It is also important to consider 

formulating felodipine at lower loading percentage such as 5% w/w to avoid crystallisation 

problem if this loading can provide the therapeutic dosage. Also, conducting long-term stability 

monitoring (9-12 months) for the most successful formulations to make sure that their 

physicochemical properties and structures are comparable to fresh samples. Furthermore, deep 

investigation is required for identifying the new polymorphic form of felodipine recrystallised 
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from formulations stored at 40 °C and 75% RH and understanding its properties using different 

characterisation techniques especially single crystal XRD.    

In this project, the main concern behind the FDM 3D printing studies was to use excipients 

mixtures to enhance processing using this technique. This area needs to be expanded more to 

provide standard rules for selecting the suitable excipients candidates for FDM 3D printing. In 

addition, the prepared formulations using this technique also need to be studied further by using 

more sophisticated geometries, incorporating drug combinations and most importantly providing 

a clear vision about the future use of 3D printed medications as personalised products for patients 

at the care unit.  

Because TASC is a very flexible and recently developed characterisation technique with many 

interesting applications, developing more applications for this tool in the pharmaceutical field is 

very crucial and provide useful information in different areas such as drug-polymer compatibility, 

polymorphism and thermal rheology. XµCT was found as a useful technique for understanding 

the spatial distribution of phases. This study provided semi-quantitative results for the crystalline 

fraction of felodipine as a novel method for estimating the saturation limits of the carrier. Thus, 

more research is required to validate the method as quantitatively used for this purpose. In 

addition, the spatial resolution for the experiments conducted in this project was 3-4 µm; it could 

be very useful if the investigation will expand to the use of higher instrument sensitivity to detect 

phase separation within the nanoscale. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

References 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



                                                                                                                                                        

References 

 

301  School of Pharmacy / University of East Anglia 

 

References 

 

1. Fahr A, Liu X. Drug delivery strategies for poorly water-soluble drugs. Expert Opinion 
on Drug Delivery. 2007;4(4):403-16. 

2. Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral 
bioavailability of poor water soluble drugs. Drug Discovery Today. 2007;12(23–24):1068-75. 

3. Martin AN, Sinko PJ, Singh Y. Martin's Physical Pharmacy and Pharmaceutical Sciences: 
Physical Chemical and Biopharmaceutical Principles in the Pharmaceutical Sciences: Lippincott 
Williams & Wilkins; 2011. 

4. Davit BM, Kanfer I, Tsang YC, Cardot J-M. BCS Biowaivers: Similarities and 
Differences Among EMA, FDA, and WHO Requirements. The AAPS Journal. 2016;18(3):612-
8. 

5. FDA. Guidance for Industry, Waiver of in vivo bioavailability and bioequivalence studies 
for immediate-release solid oral dosage forms based on a biopharmaceutics classification system. 
2015 17/10/2016]. Available from: 
http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/u
cm070246.pdf  

6. Bergström CAS, Andersson SBE, Fagerberg JH, Ragnarsson G, Lindahl A. Is the full 
potential of the biopharmaceutics classification system reached? European Journal of 
Pharmaceutical Sciences. 2014;57:224-31. 

7. Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S. Formulation design for poorly 
water-soluble drugs based on biopharmaceutics classification system: Basic approaches and 
practical applications. International Journal of Pharmaceutics. 2011;420(1):1-10. 

8. Song Y, Wang L, Yang P, Wenslow Jr RM, Tan B, Zhang H, et al. Physicochemical 
Characterization of Felodipine-Kollidon VA64 Amorphous Solid Dispersions Prepared by Hot-
Melt Extrusion. Journal of Pharmaceutical Sciences. 2013;102(6):1915-23. 

9. Aulton ME, Taylor K. Aulton's Pharmaceutics: The Design and Manufacture of 
Medicines. 2nd ed: Churchill Livingstone/Elsevier; 2004. 219 p. 

10. Mitsuru H, Shinji N, Hisako K, Nobuyoshi K. Effect of lipid solubility on hepatic first-
pass metabolism of barbiturates in rabbits. International Journal of Pharmaceutics. 1984;20(1):73-
85. 

11. Serajuddin ATM. Salt formation to improve drug solubility. Advanced Drug Delivery 
Reviews. 2007;59(7):603-16. 

12. Loftsson T, Brewster ME. Pharmaceutical Applications of Cyclodextrins. 1. Drug 
Solubilization and Stabilization. Journal of Pharmaceutical Sciences. 1996;85(10):1017-25. 



                                                                                                                                                        

References 

 

302  School of Pharmacy / University of East Anglia 

 

13. Blagden N, de Matas M, Gavan PT, York P. Crystal engineering of active pharmaceutical 
ingredients to improve solubility and dissolution rates. Advanced Drug Delivery Reviews. 
2007;59(7):617-30. 

14. Pawar VK, Singh Y, Meher JG, Gupta S, Chourasia MK. Engineered nanocrystal 
technology: In-vivo fate, targeting and applications in drug delivery. Journal of Controlled 
Release. 2014;183:51-66. 

15. Gao L, Liu G, Ma J, Wang X, Zhou L, Li X, et al. Application of Drug Nanocrystal 
Technologies on Oral Drug Delivery of Poorly Soluble Drugs. Pharmaceutical Research. 
2013;30(2):307-24. 

16. Kapsi SG, Ayres JW. Processing factors in development of solid solution formulation of 
itraconazole for enhancement of drug dissolution and bioavailability. International Journal of 
Pharmaceutics. 2001;229(1–2):193-203. 

17. Kestur US, Ivanesivic I, Alonzo DE, Taylor LS. Influence of particle size on the 
crystallization kinetics of amorphous felodipine powders. Powder Technology. 2013;236:197-
204. 

18. Serajuddin ATM. Solid dispersion of poorly water-soluble drugs: Early promises, 
subsequent problems, and recent breakthroughs. Journal of Pharmaceutical Sciences. 
1999;88(10):1058-66. 

19. Rumondor ACF, Dhareshwar SS, Kesisoglou F. Amorphous Solid Dispersions or 
Prodrugs: Complementary Strategies to Increase Drug Absorption. Journal of Pharmaceutical 
Sciences. 2016;105(9):2498-508. 

20. Mu H, Holm R, Müllertz A. Lipid-based formulations for oral administration of poorly 
water-soluble drugs. International Journal of Pharmaceutics. 2013;453(1):215-24. 

21. Jannin V, Musakhanian J, Marchaud D. Approaches for the development of solid and 
semi-solid lipid-based formulations. Advanced Drug Delivery Reviews. 2008;60(6):734-46. 

22. Pouton CW, Porter CJH. Formulation of lipid-based delivery systems for oral 
administration: Materials, methods and strategies. Advanced Drug Delivery Reviews. 
2008;60(6):625-37. 

23. Hauss DJ. Oral lipid-based formulations. Advanced Drug Delivery Reviews. 
2007;59(7):667-76. 

24. Baird JA, Taylor LS. Evaluation of amorphous solid dispersion properties using thermal 
analysis techniques. Advanced Drug Delivery Reviews. 2012;64(5):396-421. 

25. Vasconcelos T, Marques S, das Neves J, Sarmento B. Amorphous solid dispersions: 
Rational selection of a manufacturing process. Advanced Drug Delivery Reviews. 2016;100:85-
101. 

26. Faisal W, Ruane-O’Hora T, O’Driscoll CM, Griffin BT. A novel lipid-based solid 
dispersion for enhancing oral bioavailability of Lycopene – In vivo evaluation using a pig model. 
International Journal of Pharmaceutics. 2013;453(2):307-14. 



                                                                                                                                                        

References 

 

303  School of Pharmacy / University of East Anglia 

 

27. Craig DQM. The mechanisms of drug release from solid dispersions in water-soluble 
polymers. International Journal of Pharmaceutics. 2002;231(2):131-44. 

28. Chiou WL. Pharmaceutical Applications of Solid Dispersion Systems: X-Ray Diffraction 
and Aqueous Solubility Studies on Griseofulvin-Polyethylene Glycol 6000 Systems. Journal of 
Pharmaceutical Sciences. 1977;66(7):989-91. 

29. Baghel S, Cathcart H, O'Reilly NJ. Polymeric Amorphous Solid Dispersions: A Review 
of Amorphization, Crystallization, Stabilization, Solid-State Characterization, and Aqueous 
Solubilization of Biopharmaceutical Classification System Class II Drugs. Journal of 
Pharmaceutical Sciences. 2016;105(9):2527-44. 

30. Jani R, Patel D. Hot melt extrusion: An industrially feasible approach for casting 
orodispersible film. Asian Journal of Pharmaceutical Sciences. 2015;10(4):292-305. 

31. Paudel A, Worku ZA, Meeus J, Guns S, Van den Mooter G. Manufacturing of solid 
dispersions of poorly water soluble drugs by spray drying: Formulation and process 
considerations. International Journal of Pharmaceutics. 2013;453(1):253-84. 

32. Vo CL-N, Park C, Lee B-J. Current trends and future perspectives of solid dispersions 
containing poorly water-soluble drugs. European Journal of Pharmaceutics and 
Biopharmaceutics. 2013;85(3, Part B):799-813. 

33. Abramov YA. Computational Pharmaceutical Solid State Chemistry: Wiley; 2016. 

34. Rodríguez-Spong B, Acciacca A, Fleisher D, Rodríguez-Hornedo N. pH-Induced 
Nanosegregation of Ritonavir to Lyotropic Liquid Crystal of Higher Solubility than Crystalline 
Polymorphs. Molecular Pharmaceutics. 2008;5(6):956-67. 

35. Lee EH. A practical guide to pharmaceutical polymorph screening &amp; selection. 
Asian Journal of Pharmaceutical Sciences. 2014;9(4):163-75. 

36. Chiou WL, Riegelman S. Pharmaceutical applications of solid dispersion systems. 
Journal of Pharmaceutical Sciences. 1971;60(9):1281-302. 

37. Banker GS, Siepmann J, Rhodes C. Modern Pharmaceutics, Fourth Edition: CRC Press; 
2002. 156 p. 

38. Lloyd GR, Craig DQM, Smith A. An Investigation into the Melting Behavior of Binary 
Mixes and Solid Dispersions of Paracetamol and PEG 4000. Journal of Pharmaceutical Sciences. 
1997;86(9):991-6. 

39. Vippagunta SR, Wang Z, Hornung S, Krill SL. Factors Affecting the Formation of 
Eutectic Solid Dispersions and Their Dissolution Behavior. Journal of Pharmaceutical Sciences. 
2007;96(2):294-304. 

40. Gala U, Chuong MC, Varanasi R, Chauhan H. Characterization and Comparison of 
Lidocaine-Tetracaine and Lidocaine-Camphor Eutectic Mixtures Based on Their Crystallization 
and Hydrogen-Bonding Abilities. AAPS PharmSciTech. 2015;16(3):528-36. 



                                                                                                                                                        

References 

 

304  School of Pharmacy / University of East Anglia 

 

41. Yong CS, Oh Y-K, Jung SH, Rhee J-D, Kim H-D, Kim C-K, et al. Preparation of 
ibuprofen-loaded liquid suppository using eutectic mixture system with menthol. European 
Journal of Pharmaceutical Sciences. 2004;23(4–5):347-53. 

42. Aroso IM, Silva JC, Mano F, Ferreira ASD, Dionísio M, Sá-Nogueira I, et al. Dissolution 
enhancement of active pharmaceutical ingredients by therapeutic deep eutectic systems. European 
Journal of Pharmaceutics and Biopharmaceutics. 2016;98:57-66. 

43. Otsuka M, Maeno Y, Fukami T, Inoue M, Tagami T, Ozeki T. Solid dispersions of 
efonidipine hydrochloride ethanolate with improved physicochemical and pharmacokinetic 
properties prepared with microwave treatment. European Journal of Pharmaceutics and 
Biopharmaceutics. 2016;108:25-31. 

44. Chiou WL, Riegelman S. Preparation and dissolution characteristics of several fast-
release solid dispersions of griseofulvin. Journal of Pharmaceutical Sciences. 1969;58(12):1505-
10. 

45. Goldberg AH, Gibaldi M, Kanig JL. Increasing dissolution rates and gastrointestinal 
absorption of drugs via solid solutions and eutectic mixtures I. Theoretical considerations and 
discussion of the literature. Journal of Pharmaceutical Sciences. 1965;54(8):1145-8. 

46. Anguiano-Igea S, Otero-Espinar FJ, Vila-Jato JL, Blanco-Méndez J. The properties of 
solid dispersions of clofibrate in polyethylene glycols. Pharmaceutica Acta Helvetiae. 
1995;70(1):57-66. 

47. Ginés JM, Arias MJ, Moyano JR, Sánchez-Soto PJ. Thermal investigation of 
crystallization of polyethylene glycols in solid dispersions containing oxazepam. International 
Journal of Pharmaceutics. 1996;143(2):247-53. 

48. Duong TV, Van Humbeeck J, Van den Mooter G. Crystallization Kinetics of 
Indomethacin/Polyethylene Glycol Dispersions Containing High Drug Loadings. Molecular 
Pharmaceutics. 2015;12(7):2493-504. 

49. Schachter DM, Xiong J, Tirol GC. Solid state NMR perspective of drug–polymer solid 
solutions: a model system based on poly(ethylene oxide). International Journal of Pharmaceutics. 
2004;281(1–2):89-101. 

50. Urbanova M, Gajdosova M, Steinhart M, Vetchy D, Brus J. Molecular-Level Control of 
Ciclopirox Olamine Release from Poly(ethylene oxide)-Based Mucoadhesive Buccal Films: 
Exploration of Structure–Property Relationships with Solid-State NMR. Molecular 
Pharmaceutics. 2016;13(5):1551-63. 

51. Van Duong T, Van den Mooter G. The role of the carrier in the formulation of 
pharmaceutical solid dispersions. Part I: crystalline and semi-crystalline carriers. Expert Opinion 
on Drug Delivery. 2016;13(11):1583-94. 

52. Ford JL. The use of Thermal Analysis in the Study of Solid Dispersions. Drug 
Development and Industrial Pharmacy. 1987;13(9-11):1741-77. 

53. Sun CC. Novel co-crystals between polyethylene glycols and 5-phenylpyrazolyl-1-
benzenesulfonamides. Google Patents; 2006. 



                                                                                                                                                        

References 

 

305  School of Pharmacy / University of East Anglia 

 

54. Yang X, Zhong Z, Huang Y. The effect of PEG molecular weights on the thermal stability 
and dissolution behaviors of griseofulvin-PEG crystalline inclusion complexes. International 
Journal of Pharmaceutics. 2016;508(1–2):51-60. 

55. Zhong Z, Guo C, Chen L, Xu J, Huang Y. Co-crystal formation between poly(ethylene 
glycol) and a small molecular drug griseofulvin. Chemical Communications. 2014;50(48):6375-
8. 

56. Kolter K, Karl M, Nalawade S, Rottmann N. Hot-Melt Extrusion with BASF Pharma 
Polymers. Ludwigshafen, Germany: BASF, The Chemical Company; 2011. 

57. Yee CS. The development of PVP-based solid dispersions using hot melt xtrusion for the 
preparation of immediate release formulations. School of Pharmacy: University of East Anglia; 
2013. 

58. Xie T, Taylor LS. Dissolution Performance of High Drug Loading Celecoxib Amorphous 
Solid Dispersions Formulated with Polymer Combinations. Pharmaceutical Research. 
2016;33(3):739-50. 

59. Jackson MJ, Kestur US, Hussain MA, Taylor LS. Dissolution of Danazol Amorphous 
Solid Dispersions: Supersaturation and Phase Behavior as a Function of Drug Loading and 
Polymer Type. Molecular Pharmaceutics. 2016;13(1):223-31. 

60. Prasad D, Chauhan H, Atef E. Amorphous Stabilization and Dissolution Enhancement of 
Amorphous Ternary Solid Dispersions: Combination of Polymers Showing Drug–Polymer 
Interaction for Synergistic Effects. Journal of Pharmaceutical Sciences. 2014;103(11):3511-23. 

61. Chen Z, Liu Z, Qian F. Crystallization of Bifonazole and Acetaminophen within the 
Matrix of Semicrystalline, PEO–PPO–PEO Triblock Copolymers. Molecular Pharmaceutics. 
2015;12(2):590-9. 

62. Bartsch SE, Griesser UJ. Physicochemical properties of the binary system glibenclamide 
and polyethylene glycol 4000. Journal of Thermal Analysis and Calorimetry. 2004;77(2):555-69. 

63. Huang Y, Zu Y, Zhao X, Wu M, Feng Z, Deng Y, et al. Preparation of inclusion complex 
of apigenin-hydroxypropyl-β-cyclodextrin by using supercritical antisolvent process for 
dissolution and bioavailability enhancement. International Journal of Pharmaceutics. 
2016;511(2):921-30. 

64. Ouerghemmi S, Degoutin S, Tabary N, Cazaux F, Maton M, Gaucher V, et al. Triclosan 
loaded electrospun nanofibers based on a cyclodextrin polymer and chitosan polyelectrolyte 
complex. International Journal of Pharmaceutics. 2016;513(1–2):483-95. 

65. Thiry J, Krier F, Ratwatte S, Thomassin J-M, Jerome C, Evrard B. Hot-melt extrusion as 
a continuous manufacturing process to form ternary cyclodextrin inclusion complexes. European 
Journal of Pharmaceutical Sciences. 

66. Tran PH-L, Tran TT-D, Park JB, Lee B-J. Controlled Release Systems Containing Solid 
Dispersions: Strategies and Mechanisms. Pharmaceutical Research. 2011;28(10):2353-78. 

67. Doherty C, York P. Mechanisms of dissolution of frusemide/PVP solid dispersions. 
International Journal of Pharmaceutics. 1987;34(3):197-205. 



                                                                                                                                                        

References 

 

306  School of Pharmacy / University of East Anglia 

 

68. Karavas E, Georgarakis E, Sigalas MP, Avgoustakis K, Bikiaris D. Investigation of the 
release mechanism of a sparingly water-soluble drug from solid dispersions in hydrophilic carriers 
based on physical state of drug, particle size distribution and drug–polymer interactions. European 
Journal of Pharmaceutics and Biopharmaceutics. 2007;66(3):334-47. 

69. Mennini N, Furlanetto S, Cirri M, Mura P. Quality by design approach for developing 
chitosan-Ca-alginate microspheres for colon delivery of celecoxib-hydroxypropyl-β-
cyclodextrin-PVP complex. European Journal of Pharmaceutics and Biopharmaceutics. 
2012;80(1):67-75. 

70. Zerrouk N, Chemtob C, Arnaud P, Toscani S, Dugue J. In vitro and in vivo evaluation of 
carbamazepine-PEG 6000 solid dispersions. International Journal of Pharmaceutics. 2001;225(1–
2):49-62. 

71. Zhong Z, Guo C, Yang X, Guo B, Xu J, Huang Y. Drug Molecule Diflunisal Forms 
Crystalline Inclusion Complexes with Multiple Types of Linear Polymers. Crystal Growth & 
Design. 2016;16(3):1181-6. 

72. Policianova O, Brus J, Hruby M, Urbanova M, Zhigunov A, Kredatusova J, et al. 
Structural Diversity of Solid Dispersions of Acetylsalicylic Acid As Seen by Solid-State NMR. 
Molecular Pharmaceutics. 2014;11(2):516-30. 

73. Yang Z, Nollenberger K, Albers J, Craig D, Qi S. Microstructure of an Immiscible 
Polymer Blend and Its Stabilization Effect on Amorphous Solid Dispersions. Molecular 
Pharmaceutics. 2013;10(7):2767-80. 

74. Cheng A, Merz KM. Prediction of Aqueous Solubility of a Diverse Set of Compounds 
Using Quantitative Structure−Property Relationships. Journal of Medicinal Chemistry. 
2003;46(17):3572-80. 

75. Gupta J, Nunes C, Vyas S, Jonnalagadda S. Prediction of Solubility Parameters and 
Miscibility of Pharmaceutical Compounds by Molecular Dynamics Simulations. The Journal of 
Physical Chemistry B. 2011;115(9):2014-23. 

76. Meng F, Xu W. Drug permeability prediction using PMF method. Journal of Molecular 
Modeling. 2013;19(3):991-7. 

77. Tian Y, Booth J, Meehan E, Jones DS, Li S, Andrews GP. Construction of Drug–Polymer 
Thermodynamic Phase Diagrams Using Flory–Huggins Interaction Theory: Identifying the 
Relevance of Temperature and Drug Weight Fraction to Phase Separation within Solid 
Dispersions. Molecular Pharmaceutics. 2013;10(1):236-48. 

78. Tian B, Wang X, Zhang Y, Zhang K, Zhang Y, Tang X. Theoretical Prediction of a Phase 
Diagram for Solid Dispersions. Pharmaceutical Research. 2015;32(3):840-51. 

79. Marsac PJ, Li T, Taylor LS. Estimation of Drug–Polymer Miscibility and Solubility in 
Amorphous Solid Dispersions Using Experimentally Determined Interaction Parameters. 
Pharmaceutical Research. 2008;26(1):139. 

80. Greenhalgh DJ, Williams AC, Timmins P, York P. Solubility parameters as predictors of 
miscibility in solid dispersions. Journal of Pharmaceutical Sciences. 1999;88(11):1182-90. 



                                                                                                                                                        

References 

 

307  School of Pharmacy / University of East Anglia 

 

81. Dahan A, Beig A, Ioffe-Dahan V, Agbaria R, Miller JM. The Twofold Advantage of the 
Amorphous Form as an Oral Drug Delivery Practice for Lipophilic Compounds: Increased 
Apparent Solubility and Drug Flux Through the Intestinal Membrane. The AAPS Journal. 
2013;15(2):347-53. 

82. Janssens S, Van den Mooter G. Review: physical chemistry of solid dispersions. Journal 
of Pharmacy and Pharmacology. 2009;61(12):1571-86. 

83. Sarode AL, Sandhu H, Shah N, Malick W, Zia H. Hot melt extrusion (HME) for 
amorphous solid dispersions: Predictive tools for processing and impact of drug–polymer 
interactions on supersaturation. European Journal of Pharmaceutical Sciences. 2013;48(3):371-
84. 

84. Liu X, Lu M, Guo Z, Huang L, Feng X, Wu C. Improving the Chemical Stability of 
Amorphous Solid Dispersion with Cocrystal Technique by Hot Melt Extrusion. Pharmaceutical 
Research. 2012;29(3):806-17. 

85. Baghel S, Cathcart H, O’Reilly NJ. Theoretical and experimental investigation of drug-
polymer interaction and miscibility and its impact on drug supersaturation in aqueous medium. 
European Journal of Pharmaceutics and Biopharmaceutics. 2016;107:16-31. 

86. Pina MF, Zhao M, Pinto JF, Sousa JJ, Craig DQM. The Influence of Drug Physical State 
on the Dissolution Enhancement of Solid Dispersions Prepared Via Hot-Melt Extrusion: A Case 
Study Using Olanzapine. Journal of Pharmaceutical Sciences. 2014;103(4):1214-23. 

87. Djuris J, Nikolakakis I, Ibric S, Djuric Z, Kachrimanis K. Preparation of carbamazepine–
Soluplus® solid dispersions by hot-melt extrusion, and prediction of drug–polymer miscibility by 
thermodynamic model fitting. European Journal of Pharmaceutics and Biopharmaceutics. 
2013;84(1):228-37. 

88. Marsac PJ, Shamblin SL, Taylor LS. Theoretical and Practical Approaches for Prediction 
of Drug–Polymer Miscibility and Solubility. Pharmaceutical Research. 2006;23(10):2417. 

89. Li S, Tian Y, Jones DS, Andrews GP. Optimising Drug Solubilisation in Amorphous 
Polymer Dispersions: Rational Selection of Hot-melt Extrusion Processing Parameters. AAPS 
PharmSciTech. 2016;17(1):200-13. 

90. Purohit HS, Taylor LS. Miscibility of Itraconazole–Hydroxypropyl Methylcellulose 
Blends: Insights with High Resolution Analytical Methodologies. Molecular Pharmaceutics. 
2015;12(12):4542-53. 

91. Wlodarski K, Sawicki W, Kozyra A, Tajber L. Physical stability of solid dispersions with 
respect to thermodynamic solubility of tadalafil in PVP-VA. European Journal of Pharmaceutics 
and Biopharmaceutics. 2015;96:237-46. 

92. Forster A, Hempenstall J, Rades T. Characterization of glass solutions of poorly water-
soluble drugs produced by melt extrusion with hydrophilic amorphous polymers. Journal of 
Pharmacy and Pharmacology. 2001;53(3):303-15. 

93. Wang X, Michoel A, Van den Mooter G. Solid state characteristics of ternary solid 
dispersions composed of PVP VA64, Myrj 52 and itraconazole. International Journal of 
Pharmaceutics. 2005;303(1-2):54-61. 



                                                                                                                                                        

References 

 

308  School of Pharmacy / University of East Anglia 

 

94. Craig DQM, Reading M. Thermal Analysis of Pharmaceuticals. New York: CRC Press 
Taylor & Francis Group; 2007. 

95. Ediger MD, Angell CA, Nagel SR. Supercooled Liquids and Glasses. The Journal of 
Physical Chemistry. 1996;100(31):13200-12. 

96. Bhattacharya S, Suryanarayanan R. Local Mobility in Amorphous Pharmaceuticals—
Characterization and Implications on Stability. Journal of Pharmaceutical Sciences. 
2009;98(9):2935-53. 

97. Hancock BC, Zografi G. Characteristics and significance of the amorphous state in 
pharmaceutical systems. Journal of Pharmaceutical Sciences. 1997;86(1):1-12. 

98. Barmpalexis P, Koutsidis I, Karavas E, Louka D, Papadimitriou SA, Bikiaris DN. 
Development of PVP/PEG mixtures as appropriate carriers for the preparation of drug solid 
dispersions by melt mixing technique and optimization of dissolution using artificial neural 
networks. European Journal of Pharmaceutics and Biopharmaceutics. 2013;85(3, Part B):1219-
31. 

99. Nair R, Nyamweya N, Gönen S, Martı ́nez-Miranda LJ, Hoag SW. Influence of various 
drugs on the glass transition temperature of poly(vinylpyrrolidone): a thermodynamic and 
spectroscopic investigation. International Journal of Pharmaceutics. 2001;225(1–2):83-96. 

100. Hancock BC, Shamblin SL, Zografi G. Molecular Mobility of Amorphous 
Pharmaceutical Solids Below Their Glass Transition Temperatures. Pharmaceutical Research. 
1995;12(6):799-806. 

101. Duer MJ. Solid State NMR Spectroscopy: Principles and Applications: Wiley; 2001. 

102. Alie J, Menegotto J, Cardon P, Duplaa H, Caron A, Lacabanne C, et al. Dielectric study 
of the molecular mobility and the isothermal crystallization kinetics of an amorphous 
pharmaceutical drug substance. Journal of Pharmaceutical Sciences. 2004;93(1):218-33. 

103. Graeser KA, Patterson JE, Zeitler JA, Gordon KC, Rades T. Correlating thermodynamic 
and kinetic parameters with amorphous stability. European Journal of Pharmaceutical Sciences. 
2009;37(3–4):492-8. 

104. Marsac PJ, Konno H, Taylor LS. A Comparison of the Physical Stability of Amorphous 
Felodipine and Nifedipine Systems. Pharmaceutical Research. 2006;23(10):2306-16. 

105. Kestur US, Lee H, Santiago D, Rinaldi C, Won Y-Y, Taylor LS. Effects of the Molecular 
Weight and Concentration of Polymer Additives, and Temperature on the Melt Crystallization 
Kinetics of a Small Drug Molecule. Crystal Growth & Design. 2010;10(8):3585-95. 

106. Johari GP, Astl G, Mayer E. Enthalpy relaxation of glassy water. The Journal of Chemical 
Physics. 1990;92(1):809-10. 

107. Velikov V, Borick S, Angell CA. The Glass Transition of Water, Based on 
Hyperquenching Experiments. Science. 2001;294(5550):2335-8. 



                                                                                                                                                        

References 

 

309  School of Pharmacy / University of East Anglia 

 

108. Konno H, Taylor LS. Ability of Different Polymers to Inhibit the Crystallization of 
Amorphous Felodipine in the Presence of Moisture. Pharmaceutical Research. 2008;25(4):969-
78. 

109. Marsac PJ, Konno H, Rumondor AC, Taylor LS. Recrystallization of nifedipine and 
felodipine from amorphous molecular level solid dispersions containing poly(vinylpyrrolidone) 
and sorbed water. Pharm Res. 2008;25(3):647-56. 

110. Rumondor ACF, Stanford LA, Taylor LS. Effects of Polymer Type and Storage Relative 
Humidity on the Kinetics of Felodipine Crystallization from Amorphous Solid Dispersions. 
Pharmaceutical Research. 2009;26(12):2599-606. 

111. Taylor LS, Zografi G. Spectroscopic characterization of interactions between PVP and 
indomethacin in amorphous molecular dispersions. Pharm Res. 1997;14(12):1691-8. 

112. Thybo P, Kristensen J, Hovgaard L. Characterization and physical stability of tolfenamic 
acid-PVP K30 solid dispersions. Pharm Dev Technol. 2007;12(1):43-53. 

113. Bley H, Fussnegger B, Bodmeier R. Characterization and stability of solid dispersions 
based on PEG/polymer blends. International Journal of Pharmaceutics. 2010;390(2):165-73. 

114. Damian F, Blaton N, Kinget R, Van den Mooter G. Physical stability of solid dispersions 
of the antiviral agent UC-781 with PEG 6000, Gelucire® 44/14 and PVP K30. International 
Journal of Pharmaceutics. 2002;244(1–2):87-98. 

115. Dordunoo SK, Ford JL, Rubinstein MH. Physical Stability of Solid Dispersions 
Containing Triamterene or Temazepam in Polyethylene Glycols. Journal of Pharmacy and 
Pharmacology. 1997;49(4):390-6. 

116. Papageorgiou GZ, Bikiaris D, Karavas E, Politis S, Docoslis A, Park Y, et al. Effect of 
physical state and particle size distribution on dissolution enhancement of nimodipine/PEG solid 
dispersions prepared by melt mixing and solvent evaporation. The AAPS Journal. 
2006;8(4):E623-E31. 

117. Weuts I, Kempen D, Verreck G, Decorte A, Heymans K, Peeters J, et al. Study of the 
physicochemical properties and stability of solid dispersions of loperamide and PEG6000 
prepared by spray drying. European Journal of Pharmaceutics and Biopharmaceutics. 
2005;59(1):119-26. 

118. Alshahrani SM, Lu W, Park J-B, Morott JT, Alsulays BB, Majumdar S, et al. Stability-
enhanced Hot-melt Extruded Amorphous Solid Dispersions via Combinations of Soluplus® and 
HPMCAS-HF. AAPS PharmSciTech. 2015;16(4):824-34. 

119. Jijun F, Lishuang X, Xiaoli W, Shu Z, Xiaoguang T, Xingna Z, et al. Nimodipine (NM) 
tablets with high dissolution containing NM solid dispersions prepared by hot-melt extrusion. 
Drug Development and Industrial Pharmacy. 2011;37(8):934-44. 

120. Van den Mooter G, Wuyts M, Blaton N, Busson R, Grobet P, Augustijns P, et al. Physical 
stabilisation of amorphous ketoconazole in solid dispersions with polyvinylpyrrolidone K25. 
European Journal of Pharmaceutical Sciences. 2001;12(3):261-9. 



                                                                                                                                                        

References 

 

310  School of Pharmacy / University of East Anglia 

 

121. Dukeck R, Sieger P, Karmwar P. Investigation and correlation of physical stability, 
dissolution behaviour and interaction parameter of amorphous solid dispersions of telmisartan: A 
drug development perspective. European Journal of Pharmaceutical Sciences. 2013;49(4):723-
31. 

122. Qian F, Huang J, Zhu Q, Haddadin R, Gawel J, Garmise R, et al. Is a distinctive single 
Tg a reliable indicator for the homogeneity of amorphous solid dispersion? International Journal 
of Pharmaceutics. 2010;395(1–2):232-5. 

123. Mistry P, Mohapatra S, Gopinath T, Vogt FG, Suryanarayanan R. Role of the Strength of 
Drug–Polymer Interactions on the Molecular Mobility and Crystallization Inhibition in 
Ketoconazole Solid Dispersions. Molecular Pharmaceutics. 2015;12(9):3339-50. 

124. Saerens L, Dierickx L, Lenain B, Vervaet C, Remon JP, Beer TD. Raman spectroscopy 
for the in-line polymer–drug quantification and solid state characterization during a 
pharmaceutical hot-melt extrusion process. European Journal of Pharmaceutics and 
Biopharmaceutics. 2011;77(1):158-63. 

125. Weuts I, Kempen D, Decorte A, Verreck G, Peeters J, Brewster M, et al. Physical stability 
of the amorphous state of loperamide and two fragment molecules in solid dispersions with the 
polymers PVP-K30 and PVP-VA64. European Journal of Pharmaceutical Sciences. 2005;25(2–
3):313-20. 

126. Ahuja N, Katare OP, Singh B. Studies on dissolution enhancement and mathematical 
modeling of drug release of a poorly water-soluble drug using water-soluble carriers. European 
Journal of Pharmaceutics and Biopharmaceutics. 2007;65(1):26-38. 

127. Duret C, Wauthoz N, Sebti T, Vanderbist F, Amighi K. Solid dispersions of itraconazole 
for inhalation with enhanced dissolution, solubility and dispersion properties. International 
Journal of Pharmaceutics. 2012;428(1–2):103-13. 

128. Xie T, Taylor LS. Improved Release of Celecoxib from High Drug Loading Amorphous 
Solid Dispersions Formulated with Polyacrylic Acid and Cellulose Derivatives. Molecular 
Pharmaceutics. 2016;13(3):873-84. 

129. Wyttenbach N, Janas C, Siam M, Lauer ME, Jacob L, Scheubel E, et al. Miniaturized 
screening of polymers for amorphous drug stabilization (SPADS): Rapid assessment of solid 
dispersion systems. European Journal of Pharmaceutics and Biopharmaceutics. 2013;84(3):583-
98. 

130. Raghavan SL, Trividic A, Davis AF, Hadgraft J. Crystallization of hydrocortisone 
acetate: influence of polymers. International Journal of Pharmaceutics. 2001;212(2):213-21. 

131. Vandecruys R, Peeters J, Verreck G, Brewster ME. Use of a screening method to 
determine excipients which optimize the extent and stability of supersaturated drug solutions and 
application of this system to solid formulation design. International Journal of Pharmaceutics. 
2007;342(1–2):168-75. 

132. Kumar D, Thipparaboina R, Modi SR, Bansal AK, Shastri NR. Effect of HPMC 
concentration on crystal habit of nifedipine. CrystEngComm. 2015;17(7):1615-24. 



                                                                                                                                                        

References 

 

311  School of Pharmacy / University of East Anglia 

 

133. Strickley RG. Solubilizing Excipients in Oral and Injectable Formulations. 
Pharmaceutical Research. 2004;21(2):201-30. 

134. Canselier JP. The effect of surfactants and crystallization phenomena. Journal of 
Dispersion Science and Technology. 1993;14(6):625-44. 

135. Kumar D, Thipparaboina R, Modi SR, Bansal AK, Shastri NR. Effect of surfactant 
concentration on nifedipine crystal habit and its related pharmaceutical properties. Journal of 
Crystal Growth. 2015;422:44-51. 

136. Garti N, Zour H. The effect of surfactants on the crystallization and polymorphic 
transformation of glutamic acid. Journal of Crystal Growth. 1997;172(3):486-98. 

137. Lu GW, Hawley M, Smith M, Geiger BM, Pfund W. Characterization of a novel 
polymorphic form of celecoxib. Journal of Pharmaceutical Sciences. 2006;95(2):305-17. 

138. Iohara D, Yoshida K, Yamaguchi K, Anraku M, Motoyama K, Arima H, et al. 
Cyclodextrin-Induced Change in Crystal Habit of Acetylsalicylic Acid in Aqueous Solution. 
Crystal Growth & Design. 2012;12(4):1985-91. 

139. Kalivoda A, Fischbach M, Kleinebudde P. Application of mixtures of polymeric carriers 
for dissolution enhancement of oxeglitazar using hot-melt extrusion. International Journal of 
Pharmaceutics. 2012;439(1–2):145-56. 

140. Alexy P, Lacı ́k I, Šimková B, Bakoš D, Prónayová Na, Liptaj T, et al. Effect of melt 
processing on thermo-mechanical degradation of poly(vinyl alcohol)s. Polymer Degradation and 
Stability. 2004;85(2):823-30. 

141. Corrigan OI. Thermal analysis of spray dried products. Thermochimica Acta. 
1995;248:245-58. 

142. Kishore RSK, Kiese S, Fischer S, Pappenberger A, Grauschopf U, Mahler H-C. The 
Degradation of Polysorbates 20 and 80 and its Potential Impact on the Stability of Biotherapeutics. 
Pharmaceutical Research. 2011;28(5):1194-210. 

143. Kishore RSK, Pappenberger A, Dauphin IB, Ross A, Buergi B, Staempfli A, et al. 
Degradation of Polysorbates 20 and 80: Studies on Thermal Autoxidation and Hydrolysis. Journal 
of Pharmaceutical Sciences. 2011;100(2):721-31. 

144. Crowley MM, Zhang F, Koleng JJ, McGinity JW. Stability of polyethylene oxide in 
matrix tablets prepared by hot-melt extrusion. Biomaterials. 2002;23(21):4241-8. 

145. Han S, Kim C, Kwon D. Thermal degradation of poly(ethyleneglycol). Polymer 
Degradation and Stability. 1995;47(2):203-8. 

146. Meng J, Levina M, Rajabi-Siahboomi AR, Round AN, Reading M, Craig DQM. The 
Development of Thermal Nanoprobe Methods as a Means of Characterizing and Mapping 
Plasticizer Incorporation into Ethylcellulose Films. Pharmaceutical Research. 2012;29(8):2128-
38. 



                                                                                                                                                        

References 

 

312  School of Pharmacy / University of East Anglia 

 

147. Patel BB, Patel JK, Chakraborty S, Shukla D. Revealing facts behind spray dried solid 
dispersion technology used for solubility enhancement. Saudi Pharmaceutical Journal. 
2015;23(4):352-65. 

148. Barmpalexis P, Kachrimanis K, Georgarakis E. Solid dispersions in the development of 
a nimodipine floating tablet formulation and optimization by artificial neural networks and 
genetic programming. European Journal of Pharmaceutics and Biopharmaceutics. 
2011;77(1):122-31. 

149. Hughey JR, Keen JM, Miller DA, Kolter K, Langley N, McGinity JW. The use of 
inorganic salts to improve the dissolution characteristics of tablets containing Soluplus®-based 
solid dispersions. European Journal of Pharmaceutical Sciences. 2013;48(4–5):758-66. 

150. Modi A, Tayade P. Enhancement of dissolution profile by solid dispersion (kneading) 
technique. AAPS PharmSciTech. 2006;7(3):E87. 

151. Allen L. Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems: Wolters 
Kluwer Health; 2014. 263-98 p. 

152. Rahman Z, Zidan AS, Khan MA. Risperidone solid dispersion for orally disintegrating 
tablet: Its formulation design and non-destructive methods of evaluation. International Journal of 
Pharmaceutics. 2010;400(1–2):49-58. 

153. Yang Z, Nollenberger K, Albers J, Qi S. Molecular Implications of Drug–Polymer 
Solubility in Understanding the Destabilization of Solid Dispersions by Milling. Molecular 
Pharmaceutics. 2014;11(7):2453-65. 

154. Ayenew Z, Paudel A, Rombaut P, Van den Mooter G. Effect of Compression on Non-
isothermal Crystallization Behaviour of Amorphous Indomethacin. Pharmaceutical Research. 
2012;29(9):2489-98. 

155. Ayenew Z, Paudel A, Van den Mooter G. Can compression induce demixing in 
amorphous solid dispersions? A case study of naproxen–PVP K25. European Journal of 
Pharmaceutics and Biopharmaceutics. 2012;81(1):207-13. 

156. Singh A, Bharati A, Frederiks P, Verkinderen O, Goderis B, Cardinaels R, et al. Effect 
of Compression on the Molecular Arrangement of Itraconazole–Soluplus Solid Dispersions: 
Induction of Liquid Crystals or Exacerbation of Phase Separation? Molecular Pharmaceutics. 
2016;13(6):1879-93. 

157. Löbmann K, Flouda K, Qiu D, Tsolakou T, Wang W, Rades T. The Influence of Pressure 
on the Intrinsic Dissolution Rate of Amorphous Indomethacin. Pharmaceutics. 2014;6(3):481. 

158. Singh A, Van Humbeeck J, Van den Mooter G. A New Twist in the Old Story-can 
Compression Induce Mixing of Phase Separated Solid Dispersions? A Case Study of Spray-Dried 
Miconazole-PVP VA64 Solid Dispersions. Pharmaceutical Research. 2014;31(11):3191-200. 

159. Xu W-J, Xie H-J, Cao Q-R, Shi L-L, Cao Y, Zhu X-Y, et al. Enhanced dissolution and 
oral bioavailability of valsartan solid dispersions prepared by a freeze-drying technique using 
hydrophilic polymers. Drug Delivery. 2016;23(1):41-8. 



                                                                                                                                                        

References 

 

313  School of Pharmacy / University of East Anglia 

 

160. Bennett RC, Brough C, Miller DA, O’Donnell KP, Keen JM, Hughey JR, et al. 
Preparation of amorphous solid dispersions by rotary evaporation and KinetiSol Dispersing: 
approaches to enhance solubility of a poorly water-soluble gum extract. Drug Development and 
Industrial Pharmacy. 2015;41(3):382-97. 

161. Wlodarski K, Tajber L, Sawicki W. Physicochemical properties of direct compression 
tablets with spray dried and ball milled solid dispersions of tadalafil in PVP-VA. European 
Journal of Pharmaceutics and Biopharmaceutics. 2016;109:14-23. 

162. Tipduangta P, Belton P, Fábián L, Wang LY, Tang H, Eddleston M, et al. Electrospun 
Polymer Blend Nanofibers for Tunable Drug Delivery: The Role of Transformative Phase 
Separation on Controlling the Release Rate. Molecular Pharmaceutics. 2016;13(1):25-39. 

163. Jahangiri A, Barzegar-Jalali M, Javadzadeh Y, Hamishehkar H, Adibkia K. 
Physicochemical characterization of atorvastatin calcium/ezetimibe amorphous nano-solid 
dispersions prepared by electrospraying method. Artificial Cells, Nanomedicine, and 
Biotechnology. 2016:1-8. 

164. Potter C, Tian Y, Walker G, McCoy C, Hornsby P, Donnelly C, et al. Novel Supercritical 
Carbon Dioxide Impregnation Technique for the Production of Amorphous Solid Drug 
Dispersions: A Comparison to Hot Melt Extrusion. Molecular Pharmaceutics. 2015;12(5):1377-
90. 

165. Vadnere MK. Coprecipitates and melts. In: Swarbrick J, Boylan JC, editors. 
Encyclopedia of pharmaceutical technology. 2nd ed. New York: Marcel Dekker; 2002. p. 779. 

166. Yoshihashi Y, Iijima H, Yonemochi E, Terada K. Estimationof physical stability of 
amorphous solid dispersion using differential scanningcalorimetry. Journal of Thermal Analysis 
and Calorimetry. 2006;85(3):689-92. 

167. Karavas E, Georgarakis E, Bikiaris D. Application of PVP/HPMC miscible blends with 
enhanced mucoadhesive properties for adjusting drug release in predictable pulsatile 
chronotherapeutics. European Journal of Pharmaceutics and Biopharmaceutics. 2006;64(1):115-
26. 

168. Karavas E, Ktistis G, Xenakis A, Georgarakis E. Effect of hydrogen bonding interactions 
on the release mechanism of felodipine from nanodispersions with polyvinylpyrrolidone. 
European Journal of Pharmaceutics and Biopharmaceutics. 2006;63(2):103-14. 

169. Majerik V, Charbit G, Badens E, Horváth G, Szokonya L, Bosc N, et al. Bioavailability 
enhancement of an active substance by supercritical antisolvent precipitation. The Journal of 
Supercritical Fluids. 2007;40(1):101-10. 

170. Tanaka N, Imai K, Okimoto K, Ueda S, Tokunaga Y, Ohike A, et al. Development of 
novel sustained-release system, disintegration-controlled matrix tablet (DCMT) with solid 
dispersion granules of nilvadipine. Journal of Controlled Release. 2005;108(2–3):386-95. 

171. Won D-H, Kim M-S, Lee S, Park J-S, Hwang S-J. Improved physicochemical 
characteristics of felodipine solid dispersion particles by supercritical anti-solvent precipitation 
process. International Journal of Pharmaceutics. 2005;301(1–2):199-208. 



                                                                                                                                                        

References 

 

314  School of Pharmacy / University of East Anglia 

 

172. Patil H, Tiwari RV, Repka MA. Hot-Melt Extrusion: from Theory to Application in 
Pharmaceutical Formulation. AAPS PharmSciTech. 2016;17(1):20-42. 

173. Wen H, Park K. Oral Controlled Release Formulation Design and Drug Delivery: Theory 
to Practice: Wiley; 2011. 266 p. 

174. Narang AS, Boddu SHS. Excipient Applications in Formulation Design and Drug 
Delivery: Springer International Publishing; 2015. 598 p. 

175. Park J-B, Kang C-Y, Kang W-S, Choi H-G, Han H-K, Lee B-J. New investigation of 
distribution imaging and content uniformity of very low dose drugs using hot-melt extrusion 
method. International Journal of Pharmaceutics. 2013;458(2):245-53. 

176. Descamps M. Disordered Pharmaceutical Materials: Wiley; 2016. 477 p. 

177. Démuth B, Nagy ZK, Balogh A, Vigh T, Marosi G, Verreck G, et al. Downstream 
processing of polymer-based amorphous solid dispersions to generate tablet formulations. 
International Journal of Pharmaceutics. 2015;486(1–2):268-86. 

178. Ghebre-Selassie I, Martin C. Pharmaceutical Extrusion Technology: Taylor & Francis; 
2003. 36-90 p. 

179. Crowley MM, Zhang F, Repka MA, Thumma S, Upadhye SB, Kumar Battu S, et al. 
Pharmaceutical Applications of Hot-Melt Extrusion: Part I. Drug Development and Industrial 
Pharmacy. 2007;33(9):909-26. 

180. McGinity JW, Repka MA, Zhang F, Koleng JJ. Hot-melt extrusion technology. In: 
Swarbrick J, Boylan JC, editors. Encyclopedia of pharmaceutical technology. 2nd ed. New York: 
Marcel Dekker; 2002. p. 203–66. 

181. Breitenbach J. Melt extrusion: from process to drug delivery technology. European 
Journal of Pharmaceutics and Biopharmaceutics. 2002;54(2):107-17. 

182. Chokshi RJ, Zia H. Hot-melt extrusion technique: a review. Iran J Pharm Res 2004;3:3-
16. 

183. Nakamichi K, Nakano T, Yasuura H, Izumi S, Kawashima Y. The role of the kneading 
paddle and the effects of screw revolution speed and water content on the preparation of solid 
dispersions using a twin-screw extruder. International Journal of Pharmaceutics. 
2002;241(2):203-11. 

184. Verhoeven E, De Beer TRM, Van den Mooter G, Remon JP, Vervaet C. Influence of 
formulation and process parameters on the release characteristics of ethylcellulose sustained-
release mini-matrices produced by hot-melt extrusion. European Journal of Pharmaceutics and 
Biopharmaceutics. 2008;69(1):312-9. 

185. Lang B, McGinity JW, Williams RO. Hot-melt extrusion – basic principles and 
pharmaceutical applications. Drug Development and Industrial Pharmacy. 2014;40(9):1133-55. 

186. Van den Mooter G. The use of amorphous solid dispersions: A formulation strategy to 
overcome poor solubility and dissolution rate. Drug Discovery Today: Technologies. 
2012;9(2):e79-e85. 



                                                                                                                                                        

References 

 

315  School of Pharmacy / University of East Anglia 

 

187. LaFountaine JS, McGinity JW, Williams RO. Challenges and Strategies in Thermal 
Processing of Amorphous Solid Dispersions: A Review. AAPS PharmSciTech. 2016;17(1):43-
55. 

188. Fule R, Amin P. Development and evaluation of lafutidine solid dispersion via hot melt 
extrusion: Investigating drug-polymer miscibility with advanced characterisation. Asian Journal 
of Pharmaceutical Sciences. 2014;9(2):92-106. 

189. Maniruzzaman M, Rana MM, Boateng JS, Mitchell JC, Douroumis D. Dissolution 
enhancement of poorly water-soluble APIs processed by hot-melt extrusion using hydrophilic 
polymers. Drug Development and Industrial Pharmacy. 2013;39(2):218-27. 

190. Visser MR, Baert L, Klooster Gvt, Schueller L, Geldof M, Vanwelkenhuysen I, et al. 
Inulin solid dispersion technology to improve the absorption of the BCS Class IV drug TMC240. 
European Journal of Pharmaceutics and Biopharmaceutics. 2010;74(2):233-8. 

191. Liu J, Zhang F, McGinity JW. Properties of lipophilic matrix tablets containing 
phenylpropanolamine hydrochloride prepared by hot-melt extrusion. European Journal of 
Pharmaceutics and Biopharmaceutics. 2001;52(2):181-90. 

192. Troy DB, Remington JP, Beringer P. Remington: The Science and Practice of Pharmacy: 
Lippincott Williams & Wilkins; 2006. 928 p. 

193. Turton R, Cheng XX. Cooling Processes and Congealing. In: Swarbrick J, Boylan JC, 
editors. Encyclopedia of pharmaceutical technology. 2nd ed. New York: Marcel Dekker; 2002. 
p. 761–74. 

194. Giri TK, Kumar K, Alexander A, Ajazuddin, Badwaik H, Tripathi DK. A novel and 
alternative approach to controlled release drug delivery system based on solid dispersion 
technique. Bulletin of Faculty of Pharmacy, Cairo University. 2012;50(2):147-59. 

195. Ozeki T, Yuasa H, Kanaya Y. Controlled release from solid dispersion composed of 
poly(ethylene oxide)–Carbopol® interpolymer complex with various cross-linking degrees of 
Carbopol®. Journal of Controlled Release. 2000;63(3):287-95. 

196. Palem CR, Dudhipala NR, Battu SK, Repka MA, Rao Yamsani M. Development, 
optimization and in vivo characterization of domperidone-controlled release hot-melt-extruded 
films for buccal delivery. Drug Development and Industrial Pharmacy. 2016;42(3):473-84. 

197. Aharoni SM. Increased glass transition temperature in motionally constrained 
semicrystalline polymers. Polymers for Advanced Technologies. 1998;9(3):169-201. 

198. Schilling SU, McGinity JW. Novel application of hot-melt extrusion for the preparation 
of monolithic matrices containing enteric-coated particles. International Journal of 
Pharmaceutics. 2010;400(1–2):24-31. 

199. Ghalanbor Z, Körber M, Bodmeier R. Protein release from poly(lactide-co-glycolide) 
implants prepared by hot-melt extrusion: Thioester formation as a reason for incomplete release. 
International Journal of Pharmaceutics. 2012;438(1–2):302-6. 



                                                                                                                                                        

References 

 

316  School of Pharmacy / University of East Anglia 

 

200. Repka MA, McGinity JW. Influence of Vitamin E TPGS on the properties of hydrophilic 
films produced by hot-melt extrusion. International Journal of Pharmaceutics. 2000;202(1–2):63-
70. 

201. Ghebremeskel AN, Vemavarapu C, Lodaya M. Use of Surfactants as Plasticizers in 
Preparing Solid Dispersions of Poorly Soluble API: Stability Testing of Selected Solid 
Dispersions. Pharmaceutical Research. 2006;23(8):1928-36. 

202. Repka MA, Shah S, Lu J, Maddineni S, Morott J, Patwardhan K, et al. Melt extrusion: 
process to product. Expert Opinion on Drug Delivery. 2012;9(1):105-25. 

203. Maru SM, de Matas M, Kelly A, Paradkar A. Characterization of thermal and rheological 
properties of zidovidine, lamivudine and plasticizer blends with ethyl cellulose to assess their 
suitability for hot melt extrusion. European Journal of Pharmaceutical Sciences. 2011;44(4):471-
8. 

204. Schilling SU, Lirola HL, Shah NH, Waseem Malick A, McGinity JW. Influence of 
plasticizer type and level on the properties of Eudragit® S100 matrix pellets prepared by hot-melt 
extrusion. Journal of Microencapsulation. 2010;27(6):521-32. 

205. Repka MA, Gerding TG, Repka SL, McGinity JW. Influence of Plasticizers and Drugs 
on the Physical-Mechanical Properties of Hydroxypropylcellulose Films Prepared by Hot Melt 
Extrusion. Drug Development and Industrial Pharmacy. 1999;25(5):625-33. 

206. Kerwin BA. Polysorbates 20 and 80 Used in the Formulation of Protein Biotherapeutics: 
Structure and Degradation Pathways. Journal of Pharmaceutical Sciences. 2008;97(8):2924-35. 

207. Cagno Md, Stein PC, Styskala J, Hlaváč J, Skalko-Basnet N, Bauer-Brandl A. 
Overcoming instability and low solubility of new cytostatic compounds: A comparison of two 
approaches. European Journal of Pharmaceutics and Biopharmaceutics. 2012;80(3):657-62. 

208. Zema L, Loreti G, Melocchi A, Maroni A, Gazzaniga A. Injection Molding and its 
application to drug delivery. Journal of Controlled Release. 2012;159(3):324-31. 

209. Speiser P. Injection-moulded oral medicament in solid form. Google Patents; 1969. 

210. Gomes ME, Ribeiro AS, Malafaya PB, Reis RL, Cunha AM. A new approach based on 
injection moulding to produce biodegradable starch-based polymeric scaffolds: morphology, 
mechanical and degradation behaviour. Biomaterials. 2001;22(9):883-9. 

211. Sammoura F, Kang J, Heo Y-M, Jung T, Lin L. Polymeric microneedle fabrication using 
a microinjection molding technique. Microsystem Technologies. 2007;13(5):517-22. 

212. König C, Ruffieux K, Wintermantel E, Blaser J. Autosterilization of biodegradable 
implants by injection molding process. Journal of Biomedical Materials Research. 
1997;38(2):115-9. 

213. Repka MA, Majumdar S, Kumar Battu S, Srirangam R, Upadhye SB. Applications of 
hot-melt extrusion for drug delivery. Expert Opinion on Drug Delivery. 2008;5(12):1357-76. 

214. Eith L, Stepto RFT, Tomka I, Wittwer F. The Injection-Moulded Capsule. Drug 
Development and Industrial Pharmacy. 1986;12(11-13):2113-26. 



                                                                                                                                                        

References 

 

317  School of Pharmacy / University of East Anglia 

 

215. Kenyon CJ, Cole ET, Wilding IR. The effect of food on the in vivo behaviour of enteric 
coated starch capsules. International Journal of Pharmaceutics. 1994;112(3):207-13. 

216. Eggenreich K, Windhab S, Schrank S, Treffer D, Juster H, Steinbichler G, et al. Injection 
molding as a one-step process for the direct production of pharmaceutical dosage forms from 
primary powders. International Journal of Pharmaceutics. 2016;505(1–2):341-51. 

217. Quinten T, Beer T, Vervaet C, Remon J. Evaluation of injection moulding as a 
pharmaceutical technology to produce matrix tablets. European Journal of Pharmaceutics and 
Biopharmaceutics. 2009;71(1):145-54. 

218. Quinten T, De Beer T, Onofre FO, Mendez-Montealvo G, Wang YJ, Remon JP, et al. 
Sustained-release and swelling characteristics of xanthan gum/ethylcellulose-based injection 
moulded matrix tablets: in vitro and in vivo evaluation. Journal of Pharmaceutical Sciences. 
2011;100(7):2858-70. 

219. Quinten T, Gonnissen Y, Adriaens E, Beer TD, Cnudde V, Masschaele B, et al. 
Development of injection moulded matrix tablets based on mixtures of ethylcellulose and low-
substituted hydroxypropylcellulose. European Journal of Pharmaceutical Sciences. 2009;37(3–
4):207-16. 

220. Cheng L, Guo S, Wu W. Characterization and in vitro release of praziquantel from poly(ɛ-
caprolactone) implants. International Journal of Pharmaceutics. 2009;377(1–2):112-9. 

221. Rothen-Weinhold A, Besseghir K, Vuaridel E, Sublet E, Oudry N, Kubel F, et al. 
Injection-molding versus extrusion as manufacturing technique for the preparation of 
biodegradable implants. European Journal of Pharmaceutics and Biopharmaceutics. 
1999;48(2):113-21. 

222. Rathbone M. Development of an injection molded poly(ε-caprolactone) intravaginal 
insert for the delivery of progesterone to cattle. Journal of Controlled Release. 2002;85(1-3):61-
71. 

223. Stansbury JW, Idacavage MJ. 3D printing with polymers: Challenges among expanding 
options and opportunities. Dental Materials. 2016;32(1):54-64. 

224. Goyanes A, Wang J, Buanz A, Martínez-Pacheco R, Telford R, Gaisford S, et al. 3D 
Printing of Medicines: Engineering Novel Oral Devices with Unique Design and Drug Release 
Characteristics. Molecular Pharmaceutics. 2015;12(11):4077-84. 

225. Khaled SA, Burley JC, Alexander MR, Roberts CJ. Desktop 3D printing of controlled 
release pharmaceutical bilayer tablets. International Journal of Pharmaceutics. 2014;461(1–
2):105-11. 

226. Skowyra J, Pietrzak K, Alhnan MA. Fabrication of extended-release patient-tailored 
prednisolone tablets via fused deposition modelling (FDM) 3D printing. European Journal of 
Pharmaceutical Sciences. 2015;68:11-7. 

227. Godoi FC, Prakash S, Bhandari BR. 3d printing technologies applied for food design: 
Status and prospects. Journal of Food Engineering. 2016;179:44-54. 



                                                                                                                                                        

References 

 

318  School of Pharmacy / University of East Anglia 

 

228. Laura R-C, Andrew G, Callum F, Joel S, Kevin S, Jing Y. Characterisation of the surface 
structure of 3D printed scaffolds for cell infiltration and surgical suturing. Biofabrication. 
2016;8(1):015016. 

229. Chua CK, Leong KF, Lim CS. Rapid Prototyping: Principles and Applications: World 
Scientific; 2003. 124 p. 

230. Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ. 3D printing of five-in-one 
dose combination polypill with defined immediate and sustained release profiles. Journal of 
Controlled Release. 2015;217:308-14. 

231. Ursan ID, Chiu L, Pierce A. Three-dimensional drug printing: A structured review. 
Journal of the American Pharmacists Association. 2013;53(2):136-44. 

232. Banks J. Adding Value in Additive Manufacturing : Researchers in the United Kingdom 
and Europe Look to 3D Printing for Customization. IEEE Pulse. 2013;4(6):22-6. 

233. Yu DG, Zhu L-M, Branford-White CJ, Yang XL. Three-Dimensional Printing in 
Pharmaceutics: Promises and Problems. Journal of Pharmaceutical Sciences. 2008;97(9):3666-
90. 

234. James CM, Carmel MH. Drug delivery: Buccal route. In: Swarbrick J, Boylan JC, editors. 
Encyclopedia of pharmaceutical technology. 2nd ed. New York: Marcel Dekker; 2007. p. 1071–
228. 

235. Shojaei AH. Buccal mucosa as a route for systemic drug delivery: a review. Journal of 
pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical 
Sciences, Societe canadienne des sciences pharmaceutiques. 1998;1(1):15-30. 

236. Washington N, Washington C, Wilson C. Physiological Pharmaceutics: Barriers to Drug 
Absorption: CRC Press; 2002. 

237. Montenegro-Nicolini M, Morales JO. Overview and Future Potential of Buccal 
Mucoadhesive Films as Drug Delivery Systems for Biologics. AAPS PharmSciTech. 
2017;18(1):3-14. 

238. Rathbone MJ, Hadgraft J. Absorption of drugs from the human oral cavity. International 
Journal of Pharmaceutics. 1991;74(1):9-24. 

239. Gandhi RB, Robinson JR. Oral cavity as a site for bioadhesive drug delivery. Advanced 
Drug Delivery Reviews. 1994;13(1–2):43-74. 

240. Harris D, Robinson JR. Drug Delivery via the Mucous Membranes of the Oral Cavity. 
Journal of Pharmaceutical Sciences. 1992;81(1):1-10. 

241. Wertz PW, Cox PS, Squier CA, Downing DT. Lipids of epidermis and keratinized and 
non-keratinized oral epithelia. Comparative Biochemistry and Physiology Part B: Comparative 
Biochemistry. 1986;83(3):529-31. 

242. Khanvilkar K. Drug transfer through mucus. Advanced Drug Delivery Reviews. 
2001;48(2-3):173-93. 



                                                                                                                                                        

References 

 

319  School of Pharmacy / University of East Anglia 

 

243. Salamatmiller N, Chittchang M, Johnston T. The use of mucoadhesive polymers in buccal 
drug delivery. Advanced Drug Delivery Reviews. 2005;57(11):1666-91. 

244. Shi L. Mucin as biological surfactant to protect biomaterial surfaces. University of Utah: 
University of Utah; 1999. 

245. Johnson LR. Physiology of the gastrointestinal tract: editor-in-chief, Leonard R. Johnson 
; associate editors, James Christensen ... [et al.]: Raven Press; 1987. 

246. Filipe MI. Mucins in the human gastrointestinal epithelium: a review. Investigative & 
cell pathology. 1979;2(3):195-216. 

247. Roussel P, Lamblin G, Lhermitte M, Houdret N, Lafitte J-J, Perini J-M, et al. The 
complexity of mucins. Biochimie. 1988;70(11):1471-82. 

248. Strous GJ, Dekker J. Mucin-Type Glycoproteins. Critical Reviews in Biochemistry and 
Molecular Biology. 1992;27(1-2):57-92. 

249. Oates MDG, Rosbottom AC, Schrager J. Further investigations into the structure of 
human gastric mucin: The structural configuration of the oligosaccharide chains. Carbohydrate 
Research. 1974;34(1):115-37. 

250. Carlson DM. [24] Phosphoacetylglucosamine mutase from pig submaxillary gland. 
Methods in Enzymology: Elsevier BV; 1966. p. 179-82. 

251. Spiro RG. Glycoproteins. Annual Review of Biochemistry. 1970;39(1):599-638. 

252. Gibbons RA. Polydispersity. Nature. 1963;200(4907):665-6. 

253. Dekker J, Van Beurden-Lamers WMO, Oprins A, Strous GJ. Isolation and structural 
analysis of rat gastric mucus glycoprotein suggests a homogeneous protein backbone. 
Biochemical Journal. 1989;260(3):717-23. 

254. Saltzman WM, Radomsky ML, Whaley KJ, Cone RA. Antibody diffusion in human 
cervical mucus. Biophysical Journal. 1994;66(2):508-15. 

255. Niibuchi J-J, Aramaki Y, Tsuchiya S. Binding of antibiotics to rat intestinal mucin. 
International Journal of Pharmaceutics. 1986;30(2-3):181-7. 

256. Komiya I, Park JY, Kamani A, Ho NFH, Higuchi WI. Quantitative mechanistic studies 
in simultaneous fluid flow and intestinal absorption using steroids as model solutes. International 
Journal of Pharmaceutics. 1980;4(3):249-62. 

257. Franz JM, Vonderscher JP, Voges R. Contribution to the intestinal absorption of ergot 
peptide alkaloids. International Journal of Pharmaceutics. 1980;7(1):19-28. 

258. Lindqvist L, Nord CE, Sôder PO. Origin of esterases in human whole saliva. Enzyme. 
1977;22(3):166-75. 

259. Rathbone MJ, Tucker IG. Mechanisms, barriers and pathways of oral mucosal drug 
permeation. Advanced Drug Delivery Reviews. 1993;12(1-2):41-60. 



                                                                                                                                                        

References 

 

320  School of Pharmacy / University of East Anglia 

 

260. Sadoogh-Abasian F, Evered DF. Absorption of vitamin C from the human buccal cavity. 
British Journal of Nutrition. 1979;42(01):15. 

261. McMullan JM, Manning AS, Evered DF. Effect of Calcium Ions on the Uptake of Sugars 
through the Human Buccal Mucosa. Biochemical Society Transactions. 1977;5(1):129-30. 

262. Evered DF, Sadoogh-Abasian F, Patel PD. Absorption of nicotinic acid and nicotinamide 
across human buccal mucosa. Life Sciences. 1980;27(18):1649-51. 

263. Dowly ME, Knuth KE, Robinson JR. Enzyme characterization studies on the rate-
limiting barrier in rabbit buccal mucosa. International Journal of Pharmaceutics. 1992;88(1-
3):293-302. 

264. Squier CA, Fejerskov O, Jepsen A. The permeability of a keratinizing squamous 
epithelium in culture. Journal of Anatomy. 1978;126(Pt 1):103-9. 

265. Squier CA, Rooney L. The permeability of keratinized and nonkeratinized oral 
epithelium to lanthanum in vivo. Journal of Ultrastructure Research. 1976;54(2):286-95. 

266. Dowty ME, Knuth KE, Irons BK, Robinson JR. Pharmaceutical Research. 
1992;09(9):1113-22. 

267. Gandhi R, Robinson J. Mechanisms of penetration enhancement for transbuccal delivery 
of salicylic acid. International Journal of Pharmaceutics. 1992;85(1-3):129-40. 

268. Lee Y, Chien YW. Oral mucosa controlled delivery of LHRH by bilayer mucoadhesive 
polymer systems. Journal of Controlled Release. 1995;37(3):251-61. 

269. Wong C, Yuen K, Peh K. Formulation and evaluation of controlled release Eudragit 
buccal patches. International Journal of Pharmaceutics. 1999;178(1):11-22. 

270. Hillery AM, Lloyd AW, Swarbrick J. Drug Delivery and Targeting: For Pharmacists and 
Pharmaceutical Scientists: Taylor & Francis; 2002. 168-89 p. 

271. Smart JD. Drug delivery using buccal-adhesive systems. Advanced Drug Delivery 
Reviews. 1993;11(3):253-70. 

272. Rossi S, Sandri G, Caramella CM. Buccal drug delivery: A challenge already won? Drug 
Discovery Today: Technologies. 2005;2(1):59-65. 

273. Rathbone MJ, Drummond BK, Tucker IG. The oral cavity as a site for systemic drug 
delivery. Advanced Drug Delivery Reviews. 1994;13(1):1-22. 

274. Mitra AK, Alur HH, Johnston TP. Peptides and Proteins: Buccal Absorption. In: 
Swarbrick J, Boylan JC, editors. Encyclopedia of pharmaceutical technology. 2nd ed. New York: 
Marcel Dekker; 2007. p. 2664-77. 

275. Veuillez F, Kalia YN, Jacques Y, Deshusses J, Buri P. Factors and strategies for 
improving buccal absorption of peptides. European Journal of Pharmaceutics and 
Biopharmaceutics. 2001;51(2):93-109. 



                                                                                                                                                        

References 

 

321  School of Pharmacy / University of East Anglia 

 

276. Guggi D, Kast CE, Bernkop-Schnürch A. In Vivo Evaluation of an Oral Salmon 
Calcitonin-Delivery System Based on a Thiolated Chitosan Carrier Matrix. Pharmaceutical 
Research. 2003;20(12):1989-94. 

277. Alqurshi A, Kumar Z, McDonald R, Strang J, Buanz A, Ahmed S, et al. Amorphous 
Formulation and in Vitro Performance Testing of Instantly Disintegrating Buccal Tablets for the 
Emergency Delivery of Naloxone. Molecular Pharmaceutics. 2016;13(5):1688-98. 

278. Lueßen HL, de Leeuw BJ, Pérard D, Lehr C-M, de Boer AG, Verhoef JC, et al. 
Mucoadhesive polymers in peroral peptide drug delivery. I. Influence of mucoadhesive excipients 
on the proteolytic activity of intestinal enzymes. European Journal of Pharmaceutical Sciences. 
1996;4(2):117-28. 

279. Modi P, Mihic M, Lewin A. The evolving role of oral insulin in the treatment of diabetes 
using a novel RapidMist? System. Diabetes/Metabolism Research and Reviews. 
2002;18(S1):S38-S42. 

280. Peppas NA, Buri PA. Surface, interfacial and molecular aspects of polymer bioadhesion 
on soft tissues. Journal of Controlled Release. 1985;2:257-75. 

281. Hörstedt P, Danielsson A, Nyhlin H, Stenling R, Suhr O. Adhesion of Bacteria to the 
Human Small-Intestinal Mucosa. Scandinavian Journal of Gastroenterology. 1989;24(7):877-85. 

282. Scrivener. D.D.S CA, Schantz CW. Penicillin: New Methods for its Use in Dentistry. The 
Journal of the American Dental Association. 1947;35(9):644-7. 

283. Smart JD. An m vitro assessment of some mucosa-adhesive dosage forms. International 
Journal of Pharmaceutics. 1991;73(1):69-74. 

284. Harding SE, Davis SSB, Deacon MP, Fiebrig I. Biopolymer Mucoadhesives. 
Biotechnology and Genetic Engineering Reviews. 1999;16(1):41-86. 

285. Mathias NR, Hussain MA. Non-invasive Systemic Drug Delivery: Developability 
Considerations for Alternate Routes of Administration. Journal of Pharmaceutical Sciences. 
2010;99(1):1-20. 

286. Hornof M, Weyenberg W, Ludwig A, Bernkop-Schnürch A. Mucoadhesive ocular insert 
based on thiolated poly(acrylic acid): development and in vivo evaluation in humans. Journal of 
Controlled Release. 2003;89(3):419-28. 

287. Tafaghodi M, Tabassi SAS, Jaafari M-R, Zakavi SR, Momen-nejad M. Evaluation of the 
clearance characteristics of various microspheres in the human nose by gamma-scintigraphy. 
International Journal of Pharmaceutics. 2004;280(1-2):125-35. 

288. Perioli L, Ambrogi V, Pagano C, Scuota S, Rossi C. FG90 chitosan as a new polymer for 
metronidazole mucoadhesive tablets for vaginal administration. International Journal of 
Pharmaceutics. 2009;377(1-2):120-7. 

289. Korbonits M, Slawik M, Cullen D, Ross RJ, Stalla G, Schneider H, et al. A Comparison 
of a Novel Testosterone Bioadhesive Buccal System, Striant, with a Testosterone Adhesive Patch 
in Hypogonadal Males. The Journal of Clinical Endocrinology & Metabolism. 2004;89(5):2039-
43. 



                                                                                                                                                        

References 

 

322  School of Pharmacy / University of East Anglia 

 

290. Bernkop-Schnurch A, Paikl C, Valenta C. Novel bioadhesive chitosan-EDTA conjugate 
protects leucine enkephalin from degradation by aminopeptidase N. Pharm Res. 1997;14(7):917-
22. 

291. Lehr CM. Bioadhesion technologies for the delivery of peptide and protein drugs to the 
gastrointestinal tract. Critical reviews in therapeutic drug carrier systems. 1994;11(2-3):119-60. 

292. Lee JW, Park JH, Robinson JR. Bioadhesive-Based Dosage Forms: The Next Generation. 
Journal of Pharmaceutical Sciences. 2000;89(7):850-66. 

293. Khutoryanskiy VV. Advances in Mucoadhesion and Mucoadhesive Polymers. 
Macromolecular Bioscience. 2011;11(6):748-64. 

294. Zhang J, Bunker M, Parker A, Madden-Smith CE, Patel N, Roberts CJ. The stability of 
solid dispersions of felodipine in polyvinylpyrrolidone characterized by nanothermal analysis. Int 
J Pharm. 2011;414(1-2):210-7. 

295. Duchěne D, Touchard F, Peppas NA. Pharmaceutical and Medical Aspects of 
Bioadhesive Systems for Drug Administration. Drug Development and Industrial Pharmacy. 
1988;14(2-3):283-318. 

296. Gu JM, Robinson JR, Leung SH. Binding of acrylic polymers to mucin/epithelial 
surfaces: structure-property relationships. Critical reviews in therapeutic drug carrier systems. 
1988;5(1):21-67. 

297. Longer MA, Robinson JR. Fundamental aspects of bioadhesion. Pharmacy International. 
1986;7(5):114-7. 

298. Derjaguin BV, Smilga VP. Electronic Theory of Adhesion. Journal of Applied Physics. 
1967;38(12):4609-16. 

299. Good RJ. Surface free energy of solids and liquids: Thermodynamics, molecular forces, 
and structure. Journal of Colloid and Interface Science. 1977;59(3):398-419. 

300. Asane GS, Nirmal SA, Rasal KB, Naik AA, Mahadik MS, Rao YM. Polymers for 
Mucoadhesive Drug Delivery System: A Current Status. Drug Development and Industrial 
Pharmacy. 2008;34(11):1246-66. 

301. Jiménez-castellanos MR, Zia H, Rhodes CT. Mucoadhesive Drug Delivery Systems. 
Drug Development and Industrial Pharmacy. 1993;19(1-2):143-94. 

302. Baszkin A, Proust JE, Monsenego P, Boissonnade MM. Wettability of polymers by 
mucin aqueous solutions. Biorheology. 1990;27(3-4):503-14. 

303. Mikos AG, Peppas NA. Measurement of the surface tension of mucin solutions. 
International Journal of Pharmaceutics. 1989;53(1):1-5. 

304. Blychert E, Wingstrand K, Edgar B, Lidman K. Plasma concentration profiles and 
antihypertensive effect of conventional and extended-release felodipine tablets. Br J Clin 
Pharmacol. 1990;29(1):39-45. 



                                                                                                                                                        

References 

 

323  School of Pharmacy / University of East Anglia 

 

305. Walton T, Symes LR. Felodipine and isradipine: new calcium-channel-blocking agents 
for the treatment of hypertension. Clin Pharm. 1993;12(4):261-75. 

306. Pagar KP, Vavia PR. Felodipine beta-cyclodextrin complex as an active core for time 
delayed chronotherapeutic treatment of hypertension. Acta Pharm. 2012;62(3):395-410. 

307. Patil PR, Biradar SV, Paradkar AR. Extended Release Felodipine Self-Nanoemulsifying 
System. AAPS PharmSciTech. 2009;10(2):515-23. 

308. Committee JF. British National Formulary. 61 ed. London, UK: BMJ Group and 
Pharmaceutical Press; 2011. 121,30 p. 

309. Edgar B, Regardh CG, Lundborg P, Romare S, Nyberg G, Ronn O. Pharmacokinetic and 
pharmacodynamic studies of felodipine in healthy subjects after various single, oral and 
intravenous doses. Biopharm Drug Dispos. 1987;8(3):235-48. 

310. Edgar B, Regardh CG, Johnsson G, Johansson L, Lundborg P, Lofberg I, et al. Felodipine 
kinetics in healthy men. Clin Pharmacol Ther. 1985;38(2):205-11. 

311. Office TS. British Pharmacopoeia. London, UK: The Stationery Office; 2016. 

312. Surov AO, Solanko KA, Bond AD, Perlovich GL, Bauer-Brandl A. Crystallization and 
Polymorphism of Felodipine. Crystal Growth & Design. 2012;12(8):4022-30. 

313. Lou B, Boström D, Velaga SP. Polymorph Control of Felodipine Form II in an Attempted 
Cocrystallization. Crystal Growth & Design. 2009;9(3):1254-7. 

314. Wang L, Song Y, Yang P, Tan B, Zhang H, Deng Z. Preparation and thermodynamic 
properties of Felodipine form IV. Journal of Thermal Analysis and Calorimetry. 
2015;120(1):947-51. 

315. Srčič S, Kerč J, Urleb U, Zupančič I, Lahajnar G, Kofler B, et al. Investigation of 
felodipine polymorphism and its glassy state. International Journal of Pharmaceutics. 
1992;87(1):1-10. 

316. Konno H, Taylor LS. Influence of Different Polymers on the Crystallization Tendency of 
Molecularly Dispersed Amorphous Felodipine. Journal of Pharmaceutical Sciences. 
2006;95(12):2692-705. 

317. Tang XC, Pikal MJ, Taylor LS. A Spectroscopic Investigation of Hydrogen Bond 
Patterns in Crystalline and Amorphous Phases in Dihydropyridine Calcium Channel Blockers. 
Pharmaceutical Research. 2002;19(4):477-83. 

318. Rollinger JM, Burger A. Polymorphism of racemic felodipine and the unusual series of 
solid solutions in the binary system of its enantiomers. Journal of Pharmaceutical Sciences. 
2001;90(7):949-59. 

319. Mishra MK, Desiraju GR, Ramamurty U, Bond AD. Studying Microstructure in 
Molecular Crystals With Nanoindentation: Intergrowth Polymorphism in Felodipine. 
Angewandte Chemie International Edition. 2014;53(48):13102-5. 



                                                                                                                                                        

References 

 

324  School of Pharmacy / University of East Anglia 

 

320. Kestur US, Taylor LS. Evaluation of the Crystal Growth Rate of Felodipine Polymorphs 
in the Presence and Absence of Additives As a Function of Temperature. Crystal Growth & 
Design. 2013;13(10):4349-54. 

321. Abrahamsson B, Johansson D, Torstensson A, Wingstrand K. Evaluation of solubilizers 
in the drug release testing of hydrophilic matrix extended-release tablets of felodipine. Pharm 
Res. 1994;11(8):1093-7. 

322. Kerč J, Srčič S, Kofler B, Šmid-Korbar J. Molar solubility of felodipine in different 
aqueous systems. International Journal of Pharmaceutics. 1992;81(1):R1-R4. 

323. Pandey MM, Jaipal A, Kumar A, Malik R, Charde SY. Determination of pKa of 
felodipine using UV–Visible spectroscopy. Spectrochimica Acta Part A: Molecular and 
Biomolecular Spectroscopy. 2013;115:887-90. 

324. Landahl S, Edgar B, Gabrielsson M, Larsson M, Lernfelt B, Lundborg P, et al. 
Pharmacokinetics and Blood Pressure Effects of Felodipine in Elderly Hypertensive Patients. 
Clinical Pharmacokinetics. 1988;14(6):374-83. 

325. Mohl S, Winter G. Continuous release of rh-interferon α-2a from triglyceride matrices. 
Journal of Controlled Release. 2004;97(1):67-78. 

326. Craig DQM. Polyethyelene Glycols and Drug Release. Drug Development and Industrial 
Pharmacy. 1990;16(17):2501-26. 

327. Smikalla MM, Urbanetz NA. The influence of povidone K17 on the storage stability of 
solid dispersions of nimodipine and polyethylene glycol. European Journal of Pharmaceutics and 
Biopharmaceutics. 2007;66(1):106-12. 

328. Buckley CP, Kovacs AJ. Melting behaviour of low molecular weight poly (ethylene-
oxide) fractions. Colloid and Polymer Science. 1976;254(8):695-715. 

329. Morris KR, Knipp GT, Serajuddin ATM. Structural properties of polyethylene glycol—
polysorbate 80 mixture, a solid dispersion vehicle. Journal of Pharmaceutical Sciences. 
1992;81(12):1185-8. 

330. Craig DQM. Pharmaceuticals and Thermal AnalysisA review of thermal methods used 
for the analysis of the crystal form, solution thermodynamics and glass transition behaviour of 
polyethylene glycols. Thermochimica Acta. 1995;248:189-203. 

331. Yang R, Yang XR, Evans DF, Hendrickson WA, Baker J. Scanning tunneling microscopy 
images of poly(ethylene oxide) polymers: evidence for helical and superhelical structures. The 
Journal of Physical Chemistry. 1990;94(15):6123-5. 

332. Buckley CP, Kovacs AJ. Melting behaviour of low molecular weight poly (ethylene-
oxide) fractions.  Polymere Aspekte. Darmstadt: Steinkopff; 1975. p. 44-52. 

333. Bailey Jr FE, Koleske JV. Chapter 6 - PROPERTIES OF POLY(ETHYLENE OXIDE).  
Poly (ethylene Oxide): Academic Press; 1976. p. 105-49. 



                                                                                                                                                        

References 

 

325  School of Pharmacy / University of East Anglia 

 

334. Kovacs AJ, Straupe C, Gonthier A. Isothermal growth, thickening, and melting of 
polyethylene oxide) single crystals in the bulk. II. Journal of Polymer Science: Polymer 
Symposia. 1977;59(1):31-54. 

335. Price FP, Kilb RW. The morphology and internal structure of poly(ethylene oxide) 
spherulites. Journal of Polymer Science. 1962;57(165):395-403. 

336. Li Y, Ma Q, Huang C, Liu G. Crystallization of Poly (ethylene glycol) in Poly (methyl 
methacrylate) Networks. Materials Science. 2013;19(2):147-51. 

337. Koenig JL, Angood AC. Raman spectra of poly(ethylene glycols) in solution. Journal of 
Polymer Science Part A-2: Polymer Physics. 1970;8(10):1787-96. 

338. Craig DQM, Newton JM. Characterisation of polyethylene glycols using differential 
scanning calorimetry. International Journal of Pharmaceutics. 1991;74(1):33-41. 

339. Betageri GV, Makarla KR. Enhancement of dissolution of glyburide by solid dispersion 
and lyophilization techniques. International Journal of Pharmaceutics. 1995;126(1):155-60. 

340. Palmieri GF, Cantalamessa F, Di Martino P, Nasuti C, Martelli S. Lonidamine Solid 
Dispersions: In Vitro and In Vivo Evaluation. Drug Development and Industrial Pharmacy. 
2002;28(10):1241-50. 

341. Pan R-N, Chen J-H, Chen RR-L. Enhancement of Dissolution and Bioavailability of 
Piroxicam in Solid Dispersion Systems. Drug Development and Industrial Pharmacy. 
2000;26(9):989-94. 

342. Perissutti B, Newton JM, Podczeck F, Rubessa F. Preparation of extruded carbamazepine 
and PEG 4000 as a potential rapid release dosage form. European Journal of Pharmaceutics and 
Biopharmaceutics. 2002;53(1):125-32. 

343. Fernández M, Carmen Rodríguez I, Margarit MV, Cerezo A. Characterization of solid 
dispersions of piroxicam/polyethylene glycol 4000. International Journal of Pharmaceutics. 
1992;84(2):197-202. 

344. Kanaze FI, Kokkalou E, Niopas I, Georgarakis M, Stergiou A, Bikiaris D. Dissolution 
enhancement of flavonoids by solid dispersion in PVP and PEG matrixes: A comparative study. 
Journal of Applied Polymer Science. 2006;102(1):460-71. 

345. Karavas E, Georgarakis M, Docoslis A, Bikiaris D. Combining SEM, TEM, and micro-
Raman techniques to differentiate between the amorphous molecular level dispersions and 
nanodispersions of a poorly water-soluble drug within a polymer matrix. International Journal of 
Pharmaceutics. 2007;340(1–2):76-83. 

346. Vélaz I, Sánchez M, Martín C, Martínez-Ohárriz MC. Effect of PEG 4000 on the 
dissolution rate of naproxen. European Journal of Drug Metabolism and Pharmacokinetics. 
1998;23(2):103-8. 

347. Crowley MM, Fredersdorf A, Schroeder B, Kucera S, Prodduturi S, Repka MA, et al. 
The influence of guaifenesin and ketoprofen on the properties of hot-melt extruded polyethylene 
oxide films. European Journal of Pharmaceutical Sciences. 2004;22(5):409-18. 



                                                                                                                                                        

References 

 

326  School of Pharmacy / University of East Anglia 

 

348. Maximilien JS. Polyethylene Oxide. In: R. C. Rowe, P. J. Shesky, Quinn ME, editors. 
Handbook of Pharmaceutical Excipients. London UK and Washington USA: Pharmaceutical 
Press and American Pharmacists Association; 2009. p. 522-5. 

349. Bailey Jr FE, Koleske JV. Chapter 1 - Introduction.  Poly (ethylene Oxide): Academic 
Press; 1976. p. 1-4. 

350. Quinten T, De Beer T, Almeida A, Vlassenbroeck J, Van Hoorebeke L, Remon JP, et al. 
Development and evaluation of injection-molded sustained-release tablets containing 
ethylcellulose and polyethylene oxide. Drug Development and Industrial Pharmacy. 
2011;37(2):149-59. 

351. Tajiri T, Morita S, Sakamoto R, Suzuki M, Yamanashi S, Ozaki Y, et al. Release 
mechanisms of acetaminophen from polyethylene oxide/polyethylene glycol matrix tablets 
utilizing magnetic resonance imaging. International Journal of Pharmaceutics. 2010;395(1–
2):147-53. 

352. Mallipeddi R, Saripella KK, Neau SH. Use of coarse ethylcellulose and PEO in beads 
produced by extrusion–spheronization. International Journal of Pharmaceutics. 2010;385(1–
2):53-65. 

353. Boateng JS, Pawar HV, Tetteh J. Polyox and carrageenan based composite film dressing 
containing anti-microbial and anti-inflammatory drugs for effective wound healing. International 
Journal of Pharmaceutics. 2013;441(1–2):181-91. 

354. Kim C-J. Drug release from compressed hydrophilic POLYOX-WSR tablets. Journal of 
Pharmaceutical Sciences. 1995;84(3):303-6. 

355. Maggi L, Segale L, Torre ML, Ochoa Machiste E, Conte U. Dissolution behaviour of 
hydrophilic matrix tablets containing two different polyethylene oxides (PEOs) for the controlled 
release of a water-soluble drug. Dimensionality study. Biomaterials. 2002;23(4):1113-9. 

356. Zhang F, McGinity JW. Properties of Sustained-Release Tablets Prepared by Hot-Melt 
Extrusion. Pharmaceutical Development and Technology. 1999;4(2):241-50. 

357. Cantin O, Siepmann F, Danede F, Willart JF, Karrout Y, Siepmann J. PEO hot melt 
extrudates for controlled drug delivery: Importance of the molecular weight. Journal of Drug 
Delivery Science and Technology. 2016;36:130-40. 

358. Prodduturi S, Manek RV, Kolling WM, Stodghill SP, Repka MA. Solid-state stability 
and characterization of hot-melt extruded poly(ethylene oxide) films. Journal of Pharmaceutical 
Sciences. 2005;94(10):2232-45. 

359. Thumma S, ElSohly MA, Zhang S-Q, Gul W, Repka MA. Influence of Plasticizers on 
the Stability and Release of a Prodrug of ∆(9)-Tetrahydrocannabinol Incorporated in Poly 
(Ethylene Oxide) Matrices. European journal of pharmaceutics and biopharmaceutics : official 
journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2008;70(2):605-14. 

360. Zhang D. Polyoxyethylene Sorbitan Fatty Acid Esters. In: R. C. Rowe, P. J. Shesky, 
Quinn ME, editors. Handbook of Pharmaceutical Excipients. London UK and Washington USA: 
Pharmaceutical Press and American Pharmacists Association; 2009. p. 549-53. 



                                                                                                                                                        

References 

 

327  School of Pharmacy / University of East Anglia 

 

361. Ghebremeskel AN, Vemavarapu C, Lodaya M. Use of surfactants as plasticizers in 
preparing solid dispersions of poorly soluble API: Selection of polymer–surfactant combinations 
using solubility parameters and testing the processability. International Journal of Pharmaceutics. 
2007;328(2):119-29. 

362. Siegel IA, Gordon HP. Surfactant-induced increases of permeability of rat oral mucosa 
to non-electrolytes in vivo. Arch Oral Biol. 1985;30(1):43-7. 

363. Fotaki N, Brown W, Kochling J, Chokshi H, Miao H, Tang K, et al. Rationale for 
selection of dissolution media: Three case studies. Dissolution Technologies. 2013;20(3):6-13. 

364. Varade D, Ushiyama K, Shrestha LK, Aramaki K. Wormlike micelles in Tween-
80/CmEO3 mixed nonionic surfactant systems in aqueous media. Journal of Colloid and Interface 
Science. 2007;312(2):489-97. 

365. Mura P, Faucci MT, Manderioli A, Bramanti G, Parrini P. Thermal Behavior and 
Dissolution Properties of Naproxen From Binary and Ternary Solid Dispersions. Drug 
Development and Industrial Pharmacy. 1999;25(3):257-64. 

366. Mura P, Moyano JR, González-Rodríguez ML, Rabasco-Alvaréz AM, Cirri M, Maestrelli 
F. Characterization and Dissolution Properties of Ketoprofen in Binary and Ternary Solid 
Dispersions with Polyethylene Glycol and Surfactants. Drug Development and Industrial 
Pharmacy. 2005;31(4-5):425-34. 

367. Oh DH, Park Y-J, Kang JH, Yong CS, Choi H-G. Physicochemical characterization and 
in vivo evaluation of flurbiprofen-loaded solid dispersion without crystalline change. Drug 
Delivery. 2011;18(1):46-53. 

368. Wang L, Cui F-D, Sunada H. Improvement of the Dissolution Rate of Nitrendipine Using 
a New Pulse Combustion Drying Method. Chemical and Pharmaceutical Bulletin. 
2007;55(8):1119-25. 

369. Zhang H, Yao M, Morrison RA, Chong S. Commonly used surfactant, Tween 80, 
improves absorption of P-glycoprotein substrate, digoxin, in rats. Archives of Pharmacal 
Research. 2003;26(9):768-72. 

370. Sarpotdar Pp, Zatz JL. Percutaneous Absorption Enhancement by Nonionic Surfactants. 
Drug Development and Industrial Pharmacy. 1986;12(11-13):1625-47. 

371. Sarpotdar PP, Zatz JL. Evaluation of Penetration Enhancement of Lidocaine by Nonionic 
Surfactants Through Hairless Mouse Skin In Vitro. Journal of Pharmaceutical Sciences. 
1986;75(2):176-81. 

372. Sudhakar Y, Kuotsu K, Bandyopadhyay AK. Buccal bioadhesive drug delivery — A 
promising option for orally less efficient drugs. Journal of Controlled Release. 2006;114(1):15-
40. 

373. Williams AC, Barry BW. Penetration enhancers. Advanced Drug Delivery Reviews. 
2004;56(5):603-18. 

374. Kim J-H, Choi H-K. Effect of additives on the crystallization and the permeation of 
ketoprofen from adhesive matrix. International Journal of Pharmaceutics. 2002;236(1–2):81-5. 



                                                                                                                                                        

References 

 

328  School of Pharmacy / University of East Anglia 

 

375. Guo Y, Luo J, Tan S, Otieno BO, Zhang Z. The applications of Vitamin E TPGS in drug 
delivery. European Journal of Pharmaceutical Sciences. 2013;49(2):175-86. 

376. Shah AR, Banerjee R. Effect of d-α-tocopheryl polyethylene glycol 1000 succinate 
(TPGS) on surfactant monolayers. Colloids and Surfaces B: Biointerfaces. 2011;85(2):116-24. 

377. Raut S, Karzuon B, Atef E. Using in situ Raman spectroscopy to study the drug 
precipitation inhibition and supersaturation mechanism of Vitamin E TPGS from self-emulsifying 
drug delivery systems (SEDDS). Journal of Pharmaceutical and Biomedical Analysis. 
2015;109:121-7. 

378. Varma MVS, Panchagnula R. Enhanced oral paclitaxel absorption with vitamin E-TPGS: 
Effect on solubility and permeability in vitro, in situ and in vivo. European Journal of 
Pharmaceutical Sciences. 2005;25(4–5):445-53. 

379. Hong C, Dang Y, Lin G, Yao Y, Li G, Ji G, et al. Effects of stabilizing agents on the 
development of myricetin nanosuspension and its characterization: An in vitro and in vivo 
evaluation. International Journal of Pharmaceutics. 2014;477(1–2):251-60. 

380. Yan A, Von Dem Bussche A, Kane AB, Hurt RH. Tocopheryl polyethylene glycol 
succinate as a safe, antioxidant surfactant for processing carbon nanotubes and fullerenes. Carbon. 
2007;45(13):2463-70. 

381. Ostacolo C, Caruso C, Tronino D, Troisi S, Laneri S, Pacente L, et al. Enhancement of 
corneal permeation of riboflavin-5′-phosphate through vitamin E TPGS: A promising approach 
in corneal trans-epithelial cross linking treatment. International Journal of Pharmaceutics. 
2013;440(2):148-53. 

382. Bernabeu E, Chiappetta DA. Vitamin E TPGS Used as Emulsifier in the Preparation of 
Nanoparticulate Systems. Journal of Biomaterials and Tissue Engineering. 2013;3(1):122-34. 

383. Sokol RJ, Heubi JE, Butler-Simon N, McClung HJ, Lilly JR, Silverman A. Treatment of 
vitamin E deficiency during chronic childhood cholestasis with oral d-α-tocopheryl polyethylene 
glycol-1000 succinate. Gastroenterology. 1987;93(5):975-85. 

384. Moneghini M, De Zordi N, Solinas D, Macchiavelli S, Princivalle F. Characterization of 
solid dispersions of itraconazole and vitamin E TPGS prepared by microwave technology. Future 
Med Chem. 2010;2(2):237-46. 

385. Janssens S, Nagels S, Armas HNd, D’Autry W, Van Schepdael A, Van den Mooter G. 
Formulation and characterization of ternary solid dispersions made up of Itraconazole and two 
excipients, TPGS 1000 and PVPVA 64, that were selected based on a supersaturation screening 
study. European Journal of Pharmaceutics and Biopharmaceutics. 2008;69(1):158-66. 

386. Carini R, Poli G, Dianzani MU, Maddix SP, Slater TF, Cheeseman KH. Comparative 
evaluation of the antioxidant activity of α-tocopherol, α-tocopherol polyethylene glycol 1000 
succinate and α-tocopherol succinate in isolated hepatocytes and liver microsomal suspensions. 
Biochemical Pharmacology. 1990;39(10):1597-601. 

387. Brouwers J, Tack J, Lammert F, Augustijns P. Intraluminal drug and formulation 
behavior and integration in in vitro permeability estimation: A case study with amprenavir. 
Journal of Pharmaceutical Sciences. 2006;95(2):372-83. 



                                                                                                                                                        

References 

 

329  School of Pharmacy / University of East Anglia 

 

388. Chang R, Peng Y, Trivedi N, Shukla A. Polymethacrylates. In: R. C. Rowe, P. J. Shesky, 
Quinn ME, editors. Handbook of Pharmaceutical Excipients. London UK and Washington USA: 
Pharmaceutical Press and American Pharmacists Association; 2009. p. 525-33. 

389. Liu H, Wang P, Zhang X, Shen F, Gogos CG. Effects of extrusion process parameters on 
the dissolution behavior of indomethacin in Eudragit® E PO solid dispersions. International 
Journal of Pharmaceutics. 2010;383(1–2):161-9. 

390. Qi S, Gryczke A, Belton P, Craig DQM. Characterisation of solid dispersions of 
paracetamol and EUDRAGIT® E prepared by hot-melt extrusion using thermal, microthermal 
and spectroscopic analysis. International Journal of Pharmaceutics. 2008;354(1–2):158-67. 

391. Moustafine RI, Bukhovets AV, Sitenkov AY, Kemenova VA, Rombaut P, Van den 
Mooter G. Eudragit E PO as a Complementary Material for Designing Oral Drug Delivery 
Systems with Controlled Release Properties: Comparative Evaluation of New Interpolyelectrolyte 
Complexes with Countercharged Eudragit L100 Copolymers. Molecular Pharmaceutics. 
2013;10(7):2630-41. 

392. Kojima T, Higashi K, Suzuki T, Tomono K, Moribe K, Yamamoto K. Stabilization of a 
Supersaturated Solution of Mefenamic Acid from a Solid Dispersion with EUDRAGIT® EPO. 
Pharmaceutical Research. 2012;29(10):2777-91. 

393. Khan S, Kataria P, Nakhat P, Yeole P. Taste masking of ondansetron hydrochloride by 
polymer carrier system and formulation of rapid-disintegrating tablets. AAPS PharmSciTech. 
2007;8(2):E127-E33. 

394. Khachane P, Date AA, Nagarsenker MS. Eudragit EPO Nanoparticles: Application in 
Improving Therapeutic Efficacy and Reducing Ulcerogenicity of Meloxicam on Oral 
Administration. Journal of Biomedical Nanotechnology. 2011;7(4):590-7. 

395. Shah N, Sandhu H, Choi DS, Chokshi H, Malick AW. Amorphous Solid Dispersions: 
Theory and Practice: Springer New York; 2014. 136 p. 

396. Shamma RN, Basha M. Soluplus®: A novel polymeric solubilizer for optimization of 
Carvedilol solid dispersions: Formulation design and effect of method of preparation. Powder 
Technology. 2013;237:406-14. 

397. Zhong Y, Jing G, Tian B, Huang H, Zhang Y, Gou J, et al. Supersaturation induced by 
Itraconazole/Soluplus® micelles provided high GI absorption in vivo. Asian Journal of 
Pharmaceutical Sciences. 2016;11(2):255-64. 

398. Bahadur P, Pandya K, Almgren M, Li P, Stilbs P. Effect of inorganic salts on the micellar 
behaviour of ethylene oxide-propylene oxide block copolymers in aqueous solution. Colloid and 
Polymer Science. 1993;271(7):657-67. 

399. Silva RCd, Loh W. Effect of Additives on the Cloud Points of Aqueous Solutions of 
Ethylene Oxide–Propylene Oxide–Ethylene Oxide Block Copolymers. Journal of Colloid and 
Interface Science. 1998;202(2):385-90. 

400. Pygall SR, Kujawinski S, Timmins P, Melia CD. Mechanisms of drug release in citrate 
buffered HPMC matrices. International Journal of Pharmaceutics. 2009;370(1–2):110-20. 



                                                                                                                                                        

References 

 

330  School of Pharmacy / University of East Anglia 

 

401. Sarkar N. Thermal gelation properties of methyl and hydroxypropyl methylcellulose. 
Journal of Applied Polymer Science. 1979;24(4):1073-87. 

402. Li CL, Martini LG, Ford JL, Roberts M. The use of hypromellose in oral drug delivery. 
Journal of Pharmacy and Pharmacology. 2005;57(5):533-46. 

403. Pandit NK, Wang D. Salt effects on the diffusion and release rate of propranolol from 
poloxamer 407 gels. International Journal of Pharmaceutics. 1998;167(1–2):183-9. 

404. Nagy ZK, Balogh A, Vajna B, Farkas A, Patyi G, Kramarics Á, et al. Comparison of 
electrospun and extruded soluplus®-based solid dosage forms of improved dissolution. Journal 
of Pharmaceutical Sciences. 2012;101(1):322-32. 

405. Linn M, Collnot E-M, Djuric D, Hempel K, Fabian E, Kolter K, et al. Soluplus® as an 
effective absorption enhancer of poorly soluble drugs in vitro and in vivo. European Journal of 
Pharmaceutical Sciences. 2012;45(3):336-43. 

406. Ha E-S, Baek I-h, Cho W, Hwang S-J, Kim M-S. Preparation and Evaluation of Solid 
Dispersion of Atorvastatin Calcium with Soluplus® by Spray Drying Technique. Chemical and 
Pharmaceutical Bulletin. 2014;62(6):545-51. 

407. Lavra ZMM, Pereira de Santana D, Ré MI. Solubility and dissolution performances of 
spray-dried solid dispersion of Efavirenz in Soluplus. Drug Development and Industrial 
Pharmacy. 2016:1-13. 

408. Riekes MK, Engelen A, Appeltans B, Rombaut P, Stulzer HK, Van den Mooter G. New 
Perspectives for Fixed Dose Combinations of Poorly Water-Soluble Compounds: a Case Study 
with Ezetimibe and Lovastatin. Pharmaceutical Research. 2016;33(5):1259-75. 

409. Tretinnikov ON, Zagorskaya SA. Determination of the degree of crystallinity of 
poly(vinyl alcohol) by FTIR spectroscopy. Journal of Applied Spectroscopy. 2012;79(4):521-6. 

410. De Jaeghere W, De Beer T, Van Bocxlaer J, Remon JP, Vervaet C. Hot-melt extrusion 
of polyvinyl alcohol for oral immediate release applications. International Journal of 
Pharmaceutics. 2015;492(1–2):1-9. 

411. AbuBaker O. Polyvinyl Alcohol. In: R. C. Rowe, P. J. Shesky, Quinn ME, editors. 
Handbook of Pharmaceutical Excipients. London UK and Washington USA: Pharmaceutical 
Press and American Pharmacists Association; 2009. p. 564-5. 

412. Buwalda SJ, Boere KWM, Dijkstra PJ, Feijen J, Vermonden T, Hennink WE. Hydrogels 
in a historical perspective: From simple networks to smart materials. Journal of Controlled 
Release. 2014;190:254-73. 

413. Singh B, Sharma V. Design of psyllium–PVA–acrylic acid based novel hydrogels for use 
in antibiotic drug delivery. International Journal of Pharmaceutics. 2010;389(1–2):94-106. 

414. Knopp MM, Chourak N, Khan F, Wendelboe J, Langguth P, Rades T, et al. Effect of 
polymer type and drug dose on the in vitro and in vivo behavior of amorphous solid dispersions. 
European Journal of Pharmaceutics and Biopharmaceutics. 2016;105:106-14. 



                                                                                                                                                        

References 

 

331  School of Pharmacy / University of East Anglia 

 

415. Shagholani H, Ghoreishi SM, Mousazadeh M. Improvement of interaction between PVA 
and chitosan via magnetite nanoparticles for drug delivery application. International Journal of 
Biological Macromolecules. 2015;78:130-6. 

416. Forster A, Hempenstall J, Tucker I, Rades T. Selection of excipients for melt extrusion 
with two poorly water-soluble drugs by solubility parameter calculation and thermal analysis. 
International Journal of Pharmaceutics. 2001;226(1–2):147-61. 

417. Goyanes A, Buanz ABM, Hatton GB, Gaisford S, Basit AW. 3D printing of modified-
release aminosalicylate (4-ASA and 5-ASA) tablets. European Journal of Pharmaceutics and 
Biopharmaceutics. 2015;89:157-62. 

418. Cyversa. Thermal analysis by structural characterisation (TASC). [online] 2016 
[Available from: http://cyversa.com/tasc-explained/. 

419. Reading M, Antonijevic M, Grandy D, Hourston D, Lacey A. New Methods of Thermal 
Analysis and Chemical Mapping on a Micro and Nano Scale by Combining Microscopy with 
Image Analysis.  Microscopy: advances in scientific research and education. 2. Badajoz, Spain: 
Formatex; 2014. p. 1083-9. 

420. Qi S, Belton P, McAuley W, Codoni D, Darji N. Moisture Uptake of Polyoxyethylene 
Glycol Glycerides Used as Matrices for Drug Delivery: Kinetic Modelling and Practical 
Implications. Pharmaceutical Research. 2013;30(4):1123-36. 

421. Hunter NE, Frampton CS, Craig DQM, Belton PS. The use of dynamic vapour sorption 
methods for the characterisation of water uptake in amorphous trehalose. Carbohydrate Research. 
2010;345(13):1938-44. 

422. Lafontaine A, Sanselme M, Cartigny Y, Cardinael P, Coquerel G. Characterization of the 
transition between the monohydrate and the anhydrous citric acid. Journal of Thermal Analysis 
and Calorimetry. 2013;112(1):307-15. 

423. Li W, Buckton G. Using DVS-NIR to assess the water sorption behaviour and stability 
of a griseofulvin/PVP K30 solid dispersion. International Journal of Pharmaceutics. 
2015;495(2):999-1004. 

424. Craig DQM, Reading M. Thermal Analysis of Pharmaceuticals: CRC Press; 2006. 1-218 
p. 

425. Goldstein J, Newbury DE, Echlin P, Joy DC, Romig AD, Lyman CE, et al. Scanning 
Electron Microscopy and X-Ray Microanalysis: A Text for Biologists, Materials Scientists, and 
Geologists: Springer US; 2012. 292-7 p. 

426. Ngo PD. Energy Dispersive Spectroscopy. In: Wagner LC, editor. Failure Analysis of 
Integrated Circuits: Tools and Techniques. Boston, MA: Springer US; 1999. p. 205-15. 

427. Suryanarayana C, Norton MG. X-Ray Diffraction: A Practical Approach: Springer US; 
1998. 63-94 p. 

428. Brittain HG. X-ray diffraction III: pharmaceutical applications. Spectroscopy. 
2001;16(7):14-8. 



                                                                                                                                                        

References 

 

332  School of Pharmacy / University of East Anglia 

 

429. Otsuka M, Ibe K, Tokudome Y, Ohshima H. Nano- and macro-geometrical structural 
change of caffeine and theophylline anhydrate tablets during hydration process by using X-ray 
computed tomography. Colloids and Surfaces B: Biointerfaces. 2009;73(2):351-9. 

430. Perfetti G, Casteele EVd, Rieger B, Wildeboer WJ, Meesters GMH. X-ray micro 
tomography and image analysis as complementary methods for morphological characterization 
and coating thickness measurement of coated particles. Advanced Powder Technology. 
2010;21(6):663-75. 

431. Kak AC, Slaney M, Medicine IEi, Society B. Principles of Computerized Tomographic 
Imaging: IEEE Press; 1988. 

432. Alvarez-Murga M, Bleuet P, Hodeau J-L. Diffraction/scattering computed tomography 
for three-dimensional characterization of multi-phase crystalline and amorphous materials. 
Journal of Applied Crystallography. 2012;45(6):1109-24. 

433. Cloetens P, Pateyron-Salomé M, Buffiere J, Peix G, Baruchel J, Peyrin F, et al. 
Observation of microstructure and damage in materials by phase sensitive radiography and 
tomography. Journal of Applied Physics. 1997;81(9):5878-86. 

434. Tokudome Y, Ohshima H, Otsuka M. Non-invasive and rapid analysis for observation of 
internal structure of press-coated tablet using X-ray computed tomography. Drug development 
and industrial pharmacy. 2009;35(6):678-82. 

435. Watson DG. Pharmaceutical Analysis,A Textbook for Pharmacy Students and 
Pharmaceutical Chemists,3: Pharmaceutical Analysis: Elsevier Churchill Livingstone; 2012. 115-
35 p. 

436. Larkin P. Chapter 3 - Instrumentation and Sampling Methods.  Infrared and Raman 
Spectroscopy. Oxford: Elsevier; 2011. p. 27-54. 

437. Coutts-Lendon CA, Wright NA, Mieso EV, Koenig JL. The use of FT-IR imaging as an 
analytical tool for the characterization of drug delivery systems. Journal of Controlled Release. 
2003;93(3):223-48. 

438. Kazarian S, Kong K, Bajomo M, Van der Weerd J, Chan K. Spectroscopic imaging 
applied to drug release. Food and bioproducts processing. 2005;83(2):127-35. 

439. Kazarian SG, Chan KLA. Applications of ATR-FTIR spectroscopic imaging to 
biomedical samples. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2006;1758(7):858-
67. 

440. Shekunov BY, Chattopadhyay P, Tong HHY, Chow AHL. Particle Size Analysis in 
Pharmaceutics: Principles, Methods and Applications. Pharmaceutical Research. 2007;24(2):203-
27. 

441. Nair AB, Kumria R, Harsha S, Attimarad M, Al-Dhubiab BE, Alhaider IA. In vitro 
techniques to evaluate buccal films. Journal of Controlled Release. 2013;166(1):10-21. 

442. Ayensu I, Mitchell JC, Boateng JS. Development and physico-mechanical 
characterisation of lyophilised chitosan wafers as potential protein drug delivery systems via the 
buccal mucosa. Colloids and Surfaces B: Biointerfaces. 2012;91:258-65. 



                                                                                                                                                        

References 

 

333  School of Pharmacy / University of East Anglia 

 

443. Guo J-H, Cooklock KM. Bioadhesive Polymer Buccal Patches for Buprenorphine 
Controlled Delivery: Solubility Consideration. Drug Development and Industrial Pharmacy. 
1995;21(17):2013-9. 

444. Ramesha Chary RB, Vani G, Rao YM. In Vitro and In Vivo Adhesion Testing of 
Mucoadhesive Drug Delivery Systems. Drug Development and Industrial Pharmacy. 
1999;25(5):685-90. 

445. Abu-Diak OA, Jones DS, Andrews GP. An Investigation into the Dissolution Properties 
of Celecoxib Melt Extrudates: Understanding the Role of Polymer Type and Concentration in 
Stabilizing Supersaturated Drug Concentrations. Molecular Pharmaceutics. 2011;8(4):1362-71. 

446. Deng W, Majumdar S, Singh A, Shah S, Mohammed NN, Jo S, et al. Stabilization of 
fenofibrate in low molecular weight hydroxypropylcellulose matrices produced by hot-melt 
extrusion. Drug Development and Industrial Pharmacy. 2013;39(2):290-8. 

447. Okwuosa TC, Stefaniak D, Arafat B, Isreb A, Wan K-W, Alhnan MA. A Lower 
Temperature FDM 3D Printing for the Manufacture of Patient-Specific Immediate Release 
Tablets. Pharmaceutical Research. 2016;33(11):2704-12. 

448. Suknuntha K, Jones DS, Tantishaiyakul V. Properties of felodipine-poly 
(vinylpyrrolidone) solid dispersion films and the impact of solvents. ScienceAsia. 2012;38:188-
95. 

449. Ferrarezi MMF, de Oliveira Taipina M, Escobar da Silva LC, Gonçalves MdC. 
Poly(Ethylene Glycol) as a Compatibilizer for Poly(Lactic Acid)/Thermoplastic Starch Blends. 
Journal of Polymers and the Environment. 2013;21(1):151-9. 

450. Unga J, Matsson P, Mahlin D. Understanding polymer–lipid solid dispersions—The 
properties of incorporated lipids govern the crystallisation behaviour of PEG. International 
Journal of Pharmaceutics. 2010;386(1–2):61-70. 

451. Ginés JM, Arias MJ, Rabasco AM, Novák C, Ruiz-Conde A, Sánchez-Soto PJ. Thermal 
characterization of polyethylene glycols applied in the pharmaceutical technology using 
differential scanning calorimetry and hot stage microscopy. Journal of thermal analysis. 
1996;46(1):291-304. 

452. Chatham S. Characterisation of molten filled hard gelatin capsules. London, UK: 
University of London 1985. 

453. Bogdanov B, Vidts A, Van Den Buicke A, Verbeeck R, Schacht E. Synthesis and thermal 
properties of poly(ethylene glycol)-poly(ϵ-caprolactone) copolymers. Polymer. 1998;39(8):1631-
6. 

454. Feng L, Zhao W, Zheng J, Frisco S, Song P, Li X. The shape-stabilized phase change 
materials composed of polyethylene glycol and various mesoporous matrices (AC, SBA-15 and 
MCM-41). Solar Energy Materials and Solar Cells. 2011;95(12):3550-6. 

455. Shieh Y-T, Liu G-L, Hwang KC, Chen C-C. Crystallization, melting and morphology of 
PEO in PEO/MWNT-g-PMMA blends. Polymer. 2005;46(24):10945-51. 



                                                                                                                                                        

References 

 

334  School of Pharmacy / University of East Anglia 

 

456. Zhou C, Chu R, Wu R, Wu Q. Electrospun Polyethylene Oxide/Cellulose Nanocrystal 
Composite Nanofibrous Mats with Homogeneous and Heterogeneous Microstructures. 
Biomacromolecules. 2011;12(7):2617-25. 

457. Otun S. Characterisation and performance assessment of semi-solid dispersions using 
surface active lipidic carriers Norwich, UK: University of East Anglia 2011. 

458. Reintjes T. Solubility enhancement with BASF pharma polymers. Ludwigshafen, 
Germany: BASF, The Chemical Company; 2011. 

459. Van Krevelen DW, Te Nijenhuis K. Properties of polymers. 4th ed. Oxford, UK: Elsevier 
Scientific Publication; 2009. 189-227 p. 

460. Chadha R, Bhandari S. Drug–excipient compatibility screening—Role of 
thermoanalytical and spectroscopic techniques. Journal of Pharmaceutical and Biomedical 
Analysis. 2014;87:82-97. 

461. Ng YC, Yang Z, McAuley WJ, Qi S. Stabilisation of amorphous drugs under high 
humidity using pharmaceutical thin films. European Journal of Pharmaceutics and 
Biopharmaceutics. 2013;84(3):555-65. 

462. Blychert E, Edgar B, Elmfeldt D, Hedner T. A population study of the pharmacokinetics 
of felodipine. Br J Clin Pharmacol. 1991;31(1):15-24. 

463. Gupta P, Thilagavathi R, Chakraborti AK, Bansal AK. Role of Molecular Interaction in 
Stability of Celecoxib−PVP Amorphous Systems. Molecular Pharmaceutics. 2005;2(5):384-91. 

464. Li B, Harich K, Wegiel L, Taylor LS, Edgar KJ. Stability and solubility enhancement of 
ellagic acid in cellulose ester solid dispersions. Carbohydrate Polymers. 2013;92(2):1443-50. 

465. Li M, Gogos CG, Ioannidis N. Improving the API dissolution rate during pharmaceutical 
hot-melt extrusion I: Effect of the API particle size, and the co-rotating, twin-screw extruder 
screw configuration on the API dissolution rate. International Journal of Pharmaceutics. 
2015;478(1):103-12. 

466. Lindfors L, Forssén S, Westergren J, Olsson U. Nucleation and crystal growth in 
supersaturated solutions of a model drug. Journal of Colloid and Interface Science. 
2008;325(2):404-13. 

467. Morales JO, McConville JT. Manufacture and characterization of mucoadhesive buccal 
films. European Journal of Pharmaceutics and Biopharmaceutics. 2011;77(2):187-99. 

468. Tran PH, Tran TT, Park JB, Lee BJ. Controlled release systems containing solid 
dispersions: strategies and mechanisms. Pharm Res. 2011;28(10):2353-78. 

469. Giovino C, Ayensu I, Tetteh J, Boateng JS. An integrated buccal delivery system 
combining chitosan films impregnated with peptide loaded PEG-b-PLA nanoparticles. Colloids 
and Surfaces B: Biointerfaces. 2013;112:9-15. 

470. Ayensu I, Mitchell JC, Boateng JS. Effect of membrane dialysis on characteristics of 
lyophilised chitosan wafers for potential buccal delivery of proteins. International Journal of 
Biological Macromolecules. 2012;50(4):905-9. 



                                                                                                                                                        

References 

 

335  School of Pharmacy / University of East Anglia 

 

471. Mahlin D, Ridell A, Frenning G, Engström S. Solid-State Characterization of PEG 
4000/Monoolein Mixtures. Macromolecules. 2004;37(7):2665-7. 

472. Unga J, Tajarobi F, Norder O, Frenning G, Larsson A. Relating solubility data of parabens 
in liquid PEG 400 to the behaviour of PEG 4000-parabens solid dispersions. European Journal of 
Pharmaceutics and Biopharmaceutics. 2009;73(2):260-8. 

473. Zhu Q, Harris MT, Taylor LS. Time-Resolved SAXS/WAXS Study of the Phase 
Behavior and Microstructural Evolution of Drug/PEG Solid Dispersions. Molecular 
Pharmaceutics. 2011;8(3):932-9. 

474. Zhu Q, Taylor LS, Harris MT. Evaluation of the Microstructure of Semicrystalline Solid 
Dispersions. Molecular Pharmaceutics. 2010;7(4):1291-300. 

475. Flory PJ. Principles of Polymer Chemistry: Cornell University Press; 1953. 563-76 p. 

476. Huang Y, Wang J, Liu X-B, Zhang H-L, Chen X-F, Zhuang W-C, et al. Crystallization, 
melting, and morphology of a poly(ethylene oxide) diblock copolymer containing a tablet-like 
block of poly{2,5-bis[(4-methoxyphenyl)oxycarbonyl]styrene}. Polymer. 2005;46(23):10148-
57. 

477. Grabovac V, Guggi D, Bernkop-Schnürch A. Comparison of the mucoadhesive 
properties of various polymers. Advanced Drug Delivery Reviews. 2005;57(11):1713-23. 

478. Naima Z, Siro T, Juan-Manuel G-D, Chantal C, René C, Jerome D. Interactions between 
carbamazepine and polyethylene glycol (PEG) 6000: characterisations of the physical, solid 
dispersed and eutectic mixtures. European Journal of Pharmaceutical Sciences. 2001;12(4):395-
404. 

479. Sun DD, Lee PI. Probing the mechanisms of drug release from amorphous solid 
dispersions in medium-soluble and medium-insoluble carriers. Journal of Controlled Release. 
2015;211:85-93. 

480. Rumondor ACF, Taylor LS. Effect of Polymer Hygroscopicity on the Phase Behavior of 
Amorphous Solid Dispersions in the Presence of Moisture. Molecular Pharmaceutics. 
2010;7(2):477-90. 

481. Yang Z, Nollenberger K, Albers J, Moffat J, Craig D, Qi S. The effect of processing on 
the surface physical stability of amorphous solid dispersions. European Journal of Pharmaceutics 
and Biopharmaceutics. 2014;88(3):897-908. 

482. Qi S, Belton P, Nollenberger K, Clayden N, Reading M, Craig DM. Characterisation and 
Prediction of Phase Separation in Hot-Melt Extruded Solid Dispersions: A Thermal, Microscopic 
and NMR Relaxometry Study. Pharmaceutical Research. 2010;27(9):1869-83. 

483. Qi S, Belton P, Nollenberger K, Gryczke A, Craig DM. Compositional Analysis of Low 
Quantities of Phase Separation in Hot-Melt-Extruded Solid Dispersions: A Combined Atomic 
Force Microscopy, Photothermal Fourier-Transform Infrared Microspectroscopy, and Localised 
Thermal Analysis Approach. Pharmaceutical Research. 2011;28(9):2311-26. 



                                                                                                                                                        

References 

 

336  School of Pharmacy / University of East Anglia 

 

484. Lloyd GR, Craig DQM, Smith A. An investigation into the production of paracetamol 
solid dispersions in PEG 4000 using hot stage differential interference contrast microscopy. 
International Journal of Pharmaceutics. 1997;158(1):39-46. 

485. Qi S, Moffat JG, Yang Z. Early Stage Phase Separation in Pharmaceutical Solid 
Dispersion Thin Films under High Humidity: Improved Spatial Understanding Using Probe-
Based Thermal and Spectroscopic Nanocharacterization Methods. Molecular Pharmaceutics. 
2013;10(3):918-30. 

486. Dai X, Moffat JG, Mayes AG, Reading M, Craig DQM, Belton PS, et al. Thermal Probe 
Based Analytical Microscopy: Thermal Analysis and Photothermal Fourier-Transform Infrared 
Microspectroscopy Together with Thermally Assisted Nanosampling Coupled with Capillary 
Electrophoresis. Analytical Chemistry. 2009;81(16):6612-9. 

487. Harding L, Wood J, Reading M, Craig DQM. Two- and Three-Dimensional Imaging of 
Multicomponent Systems Using Scanning Thermal Microscopy and Localized 
Thermomechanical Analysis. Analytical Chemistry. 2007;79(1):129-39. 

488. Moffat JG, Mayes AG, Belton PS, Craig DQM, Reading M. Compositional Analysis of 
Metal Chelating Materials Using Near-Field Photothermal Fourier Transform Infrared 
Microspectroscopy. Analytical Chemistry. 2010;82(1):91-7. 

489. Dai X, Moffat JG, Wood J, Reading M. Thermal scanning probe microscopy in the 
development of pharmaceuticals. Advanced Drug Delivery Reviews. 2012;64(5):449-60. 

490. Lisowski MS, Liu Q, Cho J, Runt J, Yeh F, Hsiao BS. Crystallization Behavior of 
Poly(ethylene oxide) and Its Blends Using Time-Resolved Wide- and Small-Angle X-ray 
Scattering. Macromolecules. 2000;33(13):4842-9. 

491. Bruce CD, Fegely KA, Rajabi-Siahboomi AR, McGinity JW. The influence of 
heterogeneous nucleation on the surface crystallization of guaifenesin from melt extrudates 
containing Eudragit® L10055 or Acryl-EZE®. European Journal of Pharmaceutics and 
Biopharmaceutics. 2010;75(1):71-8. 

492. Stock SR. MicroComputed Tomography: Methodology and Applications: CRC Press; 
2008. 85-114 p. 

493. Graca M, Bongaerts JHH, Stokes JR, Granick S. Friction and adsorption of aqueous 
polyoxyethylene (Tween) surfactants at hydrophobic surfaces. Journal of Colloid and Interface 
Science. 2007;315(2):662-70. 

494. Wallick D. Polyoxyethylene Glycol. 2009. In: In Handbook of Pharmaceutical Excipients 
[Internet]. London UK: Pharmaceutical Press; [518]. 

495. York P. Application of powder failure testing equipment in assessing effect on glidants 
on flowability of cohesive pharmaceutical powders. J Pharm Sci. 1975;64(7):1216-21. 

496. Goddeeris C, Willems T, Houthoofd K, Martens JA, Van den Mooter G. Dissolution 
enhancement of the anti-HIV drug UC 781 by formulation in a ternary solid dispersion with TPGS 
1000 and Eudragit E100. European Journal of Pharmaceutics and Biopharmaceutics. 
2008;70(3):861-8. 



                                                                                                                                                        

References 

 

337  School of Pharmacy / University of East Anglia 

 

497. Repka MA, McGinity JW. Bioadhesive properties of hydroxypropylcellulose topical 
films produced by hot-melt extrusion. Journal of Controlled Release. 2001;70(3):341-51. 

498. Alhijjaj M, Bouman J, Wellner N, Belton P, Qi S. Creating Drug Solubilization 
Compartments via Phase Separation in Multicomponent Buccal Patches Prepared by Direct Hot 
Melt Extrusion–Injection Molding. Molecular Pharmaceutics. 2015;12(12):4349-62. 

499. Alhijjaj M, Yassin S, Reading M, Zeitler JA, Belton P, Qi S. Characterization of 
Heterogeneity and Spatial Distribution of Phases in Complex Solid Dispersions by Thermal 
Analysis by Structural Characterization and X-ray Micro Computed Tomography. 
Pharmaceutical Research. 2016:1-19. 

500. Galop M. Study of Pharmaceutical Solid Dispersions by Microthermal Analysis. 
Pharmaceutical Research. 2005;22(2):293-302. 

501. Mosquera-Giraldo LI, Trasi NS, Taylor LS. Impact of surfactants on the crystal growth 
of amorphous celecoxib. International Journal of Pharmaceutics. 2014;461(1–2):251-7. 

502. Glastrup J. Degradation of polyethylene glycol. A study of the reaction mechanism in a 
model molecule: Tetraethylene glycol. Polymer Degradation and Stability. 1996;52(3):217-22. 

503. Han S, Kim C, Kwon D. Thermal/oxidative degradation and stabilization of polyethylene 
glycol. Polymer. 1997;38(2):317-23. 

504. Voorhees KJ, Baugh SF, Stevenson DN. An investigation of the thermal degradation of 
poly(ethylene glycol). Journal of Analytical and Applied Pyrolysis. 1994;30(1):47-57. 

505. Pielichowski K, Flejtuch K. Non-oxidative thermal degradation of poly(ethylene oxide): 
kinetic and thermoanalytical study. Journal of Analytical and Applied Pyrolysis. 2005;73(1):131-
8. 

506. Lai W-C, Liau W-B. Thermo-oxidative degradation of poly(ethylene glycol)/poly(l-lactic 
acid) blends. Polymer. 2003;44(26):8103-9. 

507. Ha E, Wang W, John Wang Y. Peroxide formation in polysorbate 80 and protein stability. 
Journal of Pharmaceutical Sciences. 2002;91(10):2252-64. 

508. Akune Y, Gontani H, Hirosawa R, Koseki A, Matsumoto S. The effects of molecular 
flexibility and substituents on conformational polymorphism in a series of 2,5-diamino-3,6-
dicyanopyrazine dyes with highly flexible groups. CrystEngComm. 2015;17(30):5789-800. 

509. Wu T, Yu L. Surface Crystallization of Indomethacin Below T g. Pharmaceutical 
Research. 2006;23(10):2350-5. 

510. Zhu L, Wong L, Yu L. Surface-Enhanced Crystallization of Amorphous Nifedipine. 
Molecular Pharmaceutics. 2008;5(6):921-6. 

511. Kestur US, Taylor LS. Role of polymer chemistry in influencing crystal growth rates 
from amorphous felodipine. CrystEngComm. 2010;12(8):2390-7. 



                                                                                                                                                        

References 

 

338  School of Pharmacy / University of East Anglia 

 

512. Tian Y, Jones DS, Andrews GP. An Investigation into the Role of Polymeric Carriers on 
Crystal Growth within Amorphous Solid Dispersion Systems. Molecular Pharmaceutics. 
2015;12(4):1180-92. 

513. Sugawara H, Tobise K, Kikuchi K. Antioxidant Effects of Calcium Antagonists on Rat 
Myocardial Membrane Lipid Peroxidation. Hypertension Research. 1996;19(4):223-8. 

514. Goyanes A, Robles Martinez P, Buanz A, Basit AW, Gaisford S. Effect of geometry on 
drug release from 3D printed tablets. International Journal of Pharmaceutics. 2015;494(2):657-
63. 

515. Jonathan G, Karim A. 3D printing in pharmaceutics: A new tool for designing customized 
drug delivery systems. International Journal of Pharmaceutics. 2016;499(1–2):376-94. 

516. Holländer J, Genina N, Jukarainen H, Khajeheian M, Rosling A, Mäkilä E, et al. Three-
Dimensional Printed PCL-Based Implantable Prototypes of Medical Devices for Controlled Drug 
Delivery. Journal of Pharmaceutical Sciences. 

517. Melocchi A, Parietti F, Loreti G, Maroni A, Gazzaniga A, Zema L. 3D printing by fused 
deposition modeling (FDM) of a swellable/erodible capsular device for oral pulsatile release of 
drugs. Journal of Drug Delivery Science and Technology. 2015;30, Part B:360-7. 

518. Pietrzak K, Isreb A, Alhnan MA. A flexible-dose dispenser for immediate and extended 
release 3D printed tablets. European Journal of Pharmaceutics and Biopharmaceutics. 
2015;96:380-7. 

519. Sandler N, Salmela I, Fallarero A, Rosling A, Khajeheian M, Kolakovic R, et al. Towards 
fabrication of 3D printed medical devices to prevent biofilm formation. International Journal of 
Pharmaceutics. 2014;459(1–2):62-4. 

520. Regardh CG, Edgar B, Olsson R, Kendall M, Collste P, Shansky C. Pharmacokinetics of 
felodipine in patients with liver disease. Eur J Clin Pharmacol. 1989;36(5):473-9. 

521. Adamkiewicz M, Rubinsky B. Cryogenic 3D printing for tissue engineering. 
Cryobiology. 2015;71(3):518-21. 

522. Liu J, Cao F, Zhang C, Ping Q. Use of polymer combinations in the preparation of solid 
dispersions of a thermally unstable drug by hot-melt extrusion. Acta Pharmaceutica Sinica B. 
2013;3(4):263-72. 

523. Goyanes A, Buanz ABM, Basit AW, Gaisford S. Fused-filament 3D printing (3DP) for 
fabrication of tablets. International Journal of Pharmaceutics. 2014;476(1–2):88-92. 

524. Jensen BEB, Dávila I, Zelikin AN. Poly(vinyl alcohol) Physical Hydrogels: Matrix-
Mediated Drug Delivery Using Spontaneously Eroding Substrate. The Journal of Physical 
Chemistry B. 2016;120(26):5916-26. 

525. Jiang S, Liu S, Feng W. PVA hydrogel properties for biomedical application. Journal of 
the Mechanical Behavior of Biomedical Materials. 2011;4(7):1228-33. 



                                                                                                                                                        

References 

 

339  School of Pharmacy / University of East Anglia 

 

526. Colombo P, Bettini R, Santi P, Peppas NA. Swellable matrices for controlled drug 
delivery: gel-layer behaviour, mechanisms and optimal performance. Pharmaceutical Science & 
Technology Today. 2000;3(6):198-204. 

527. Li H, Hardy RJ, Gu X. Effect of Drug Solubility on Polymer Hydration and Drug 
Dissolution from Polyethylene Oxide (PEO) Matrix Tablets. AAPS PharmSciTech. 
2008;9(2):437-43. 

528. Ma L, Deng L, Chen J. Applications of poly(ethylene oxide) in controlled release tablet 
systems: a review. Drug Development and Industrial Pharmacy. 2014;40(7):845-51. 

529. Maggi L, Bruni R, Conte U. High molecular weight polyethylene oxides (PEOs) as an 
alternative to HPMC in controlled release dosage forms. International Journal of Pharmaceutics. 
2000;195(1–2):229-38. 

 



 

 

 

 

 

 

 

Appendices 

 

 

 

 

  

 

 

 

 

 

 



                                                                                                                              

Appendices 

 

341  School of Pharmacy / University of East Anglia 

 

Appendix 1:  Solubility parameter calculations using group 

contribution methods  

The calculated solubility parameters of felodipine (chemical structure shown in Chapter 2) using 

Hoftyzer and Van Krevelen and Hoy methods the are presented in Tables 1 and 2. 

Table (1): Hoftyzer and Van Krevelen group contribution calculations used for the estimation of 

felodipine solubility parameter 

Structural Group   No. of 
groups 

Fdi (MJ/m3)½ . 
mol-1 

Fpi
2 (MJ/m3) . 

mol-2 
Ehi J . mol-1 

CH3 4 1680 0 0 

CH2 1 270 0 0 

COO 2 780 480200 14000 

tri-substituted benzene 
ring 

1 1270 12100 0 

=C< 4 280 0 0 

CH 1 200 0 0 

NH 1 160 44100 3100 

Cl 2 900 605000 800 

Ring 1 190 0 0 

Ʃ 

 

5730 1141400 17900 

 

V = 304.77 cm3. mol -1   

δd = 
Ʃ Fdi

�  = 18.80 (MJ/m3)½  

δp = √Ʃ F2 
pi

�  = 3.51 (MJ/m3)½ 

δh = � Ʃ Ehi

V
 = 7.66 (MJ/m3)½ 
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δ = �δd
2 + δp

2+δh
2 = 20.60 (MJ/m3)½ 

 

Table (2): Hoy group contribution calculations used for the estimation of felodipine solubility 

parameter  

Structural Group   No. of groups Ft (MJ/m3)½ . mol-1 V cm3. mol -1 

CH3 4 1214 86.2 

CH2 1 269 15.55 

COO 2 1280 47.4 

C ar 1 1407 51.94 

CH ar 4 964 53.68 

NH 1 368 11 

Cl 1 660 39 

6 ring 2 -48 0 

Ortho 1 20.2 0 

Meta 1 13.5 0 

Ʃ 

 

6147.7 304.77 

 

V = 304.77 cm3. mol -1   

δt = 
(Fi+ B)

�  = 21.08 (MJ/m3)½  

For PEG and PEO polymer grades (molecular formulas are shown in Chapter 2), the calculated 

solubility parameters calculated by both methods are presented in Tables 3 and 4. 
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Table (3): Hoftyzer and Van Krevelen group contribution calculations used for the estimation of 

PEG & PEO solubility parameters 

Structural Group 
  

No. of 
groups 

Fdi (MJ/m3)½ . 
mol-1 

Fpi
2 (MJ/m3) . 

mol-2 
Ehi J . mol-1 

CH2 2 540 0 0 

O 1 100 160000 3000 

Ʃ 

 

640 160000 3000 

 

V = 37.55 cm3 . mol -1. 

δd = 
Ʃ Fdi

�  = 17.04 (MJ/m3)½ 

δp = 
�Ʃ F2 pi

�  = 400 (MJ/m3)½ 

δh = �Ʃ ���
�  = 106.52 (MJ/m3)½ 

δ = �δd
2 + δp

2+δh
2 = 22.00 (MJ/m3)½ 

Table (4): Hoy group contribution calculations used for the estimation of PEG and PEO solubility 

parameters 

V = 37.55 cm3. mol -1   

n = 0.5/∆T = 8.62 

δt = 
(Fi+ B/Q)

�  = 21.44 (MJ/m3)½  

Structural 
Group  

No. of groups Ft (MJ/m3)½. mol-

1 
∆T V cm3. mol -1 

CH2 2 538 0.02 15.55 

O 1 235 0.018 6.45 

Ʃ  773 0.058 37.55 
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For Tween 80 (chemical structure is shown in Chapter 2), the calculated solubility parameters 

calculated by both methods are presented in Tables 5 and 6. 

Table (5): Hoftyzer and Van Krevelen group contribution calculations used for the estimation of 

Tween 80 solubility parameter 

Structural Group No. of 
groups 

Fdi (MJ/m3)½ . 
mol-1 

Fpi
2 (MJ/m3) . 

mol-2 
Ehi J . mol-1 

CH 4 320 0 0 

CH2 58 15660 0 0 

O 41 4100 6560000 123000 

5 Ring 1 190 0 0 

OH 3 630 750000 60000 

COO 1 390 240100 7000 

CH3 1 420 0 0 

Ʃ 

 

21710 7550100 190000 

 

V = 1287.19 cm3. mol -1   

δd = 
Ʃ Fdi

�  = 16.87 (MJ/m3)½ 

δp = √Ʃ F2 
pi

�  = 2.13 (MJ/m3)½ 

δh = � Ʃ Ehi

V
 = 12.15 (MJ/m3)½ 

δ = �δd
2 + δp

2+δh
2 = 20.90 (MJ/m3)½ 

 

 



                                                                                                                              

Appendices 

 

345  School of Pharmacy / University of East Anglia 

 

Table (6): Hoy group contribution calculations used for the estimation of Tween 80 solubility 

parameter  

 

V = 1287.19 cm3. mol -1   

δt = 
(Fi+ B)

�  = 22.71 (MJ/m3)½  

For TPGS (chemical structure is shown in Chapter 2), the calculated solubility parameters 

calculated by both methods are presented in Tables 7 and 8. 

 

 

 

 

 

 

 

Structural Group   No. of groups Ft (MJ/m3)½ . mol-1 V cm3. mol -1 

CH 4 704 38.24 

CH2 58 15602 901.9 

O 41 9635 264.45 

5 Ring 1 43 0 

OH 3 2025 37.35 

COO 1 640 23.7 

CH3 1 303.5 21.55 

Ʃ 

 

28952.5 1287.19 
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Table (7): Hoftyzer and Van Krevelen group contribution calculations used for the estimation of 

TPGS solubility parameter 

Structural Group No. of 
groups 

Fdi (MJ/m3)½ . 
mol-1 

Fpi
2 (MJ/m3) . 

mol-2 
Ehi J . mol-1 

C 1 -70 0 0 

CH 3 240 0 0 

CH2 56 15120 0 0 

O 23 2300 3680000 69000 

6 Ring 1 190 0 0 

OH 1 210 250000 20000 

COO 2 780 480200 14000 

CH3 8 3360 0 0 

Ʃ 

 

23400 4422300 103000 

 

V = 1283.64 cm3. mol -1   

δd = 
Ʃ Fdi

�  = 18.23 (MJ/m3)½ 

δp = √Ʃ F2 
pi

�  = 1.64 (MJ/m3)½ 

δh = � Ʃ Ehi

V
 = 8.96 (MJ/m3)½ 

δ = �δd
2 + δp

2+δh
2 = 20.38 (MJ/m3)½ 
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Table (8): Hoy group contribution calculations used for the estimation of TPGS solubility parameter 

V = 1280.08 cm3. mol -1   

δt = 
(Fi+ B)

�  = 21.18 (MJ/m3)½  

For eudragit E PO (chemical structure is shown in Chapter 2), the calculated solubility parameters 

calculated by both methods are presented in Tables 9 and 10. 

 

 

 

 

 

Structural Group   No. of groups Ft (MJ/m3)½ . mol-1 V cm3. mol -1 

C 1 65.5 3.56 

C aromatic  6 1206 44.52 

CH 3 582 28.68 

CH2 56 15064 870.8 

O 23 5405 148.35 

6 Ring 1 -48 0 

OH 1 675 12.45 

COO 2 1280 47.4 

CH3 8 2428 172.4 

Benzene ring substitutions 
(ortho, meta, para) 

1 231.4 0 

Ʃ 

 

26834.9 1280.08 
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Table (9): Hoftyzer and Van Krevelen group contribution calculations used for the estimation of 

eudragit E PO solubility parameter. 

Structural Group No. of 
groups 

Fdi (MJ/m3)½ . 
mol-1 

Fpi
2 (MJ/m3) . 

mol-2 
Ehi J . mol-1 

>C< 3 -210 0 0 

CH2 7 1890 0 0 

N 1 20 640000 5000 

COO 3 1170 720300 21000 

CH3 7 2940 0 0 

Ʃ  5810 1360300 26000 

V = 150.85 cm3 . mol -1. 

δd = 
Ʃ Fdi

�  = 16.41 (MJ/m3)½ 

δp = 
�Ʃ F2 pi

�  = 3.29 (MJ/m3)½ 

δh = �Ʃ ���
�  = 8.57 (MJ/m3)½ 

δ = �δd
2 + δp

2+δh
2 = 18.80 (MJ/m3)½ 
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Table (10): Hoy group contribution calculations used for the estimation of eudragit E PO solubility 

parameter 

V = 354.08 cm3. mol -1   

n = 0.5/∆T = 0.87 

δt = 
(Fi+ B/Q)

�  = 18.55 (MJ/m3)½  

 

 

 

 

 

 

 

 

 

 

Structural Group No. of groups Ft (MJ/m3)½. mol-1 ∆T V cm3. mol -1 

>C< 3 196.5 0.12 10.68 

CH2 7 1883 0.14 108.85 

N 1 125 0.009 12.6 

COO 3 1920 0.15 71.1 

CH3 7 2124.5 0.154 150.85 

Ʃ  6249 0.573 354.08 
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For soluplus (chemical structure is shown in Chapter 2), the calculated solubility parameters 

calculated by both methods are presented in Tables 11 and 12: 

Table 11: Hoftyzer and Van Krevelen group contribution calculations used for the estimation of 

soluplus solubility parameter 

 Structural Group 
  

No. of 
groups 

Fdi (MJ/m3)½ . 
mol-1 

Fpi
2 (MJ/m3) . 

mol-2 
Ehi J . 
mol-1 

CH 3 240 0 0 

CH2 9 2430 0 0 

O 1 100 160000 3000 

N 1 20 640000 5000 

7 membered ring 1 190 0 0 

COO 1 390 240100 7000 

CH3 2 840 0 0 

CO 1 290 592900 2000 

Ʃ  4500 1633000 17000 

V = 271.78 cm3 . mol -1. 

δd = 
Ʃ Fdi

�  = 16.56 (MJ/m3)½ 

δp = 
�Ʃ F2 pi

�  = 4.70 (MJ/m3)½ 

δh = �Ʃ ���
�  = 7.91 (MJ/m3)½ 

δ = �δd
2 + δp

2+δh
2 = 18.94 (MJ/m3)½ 
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Table 8.12: Hoy group contribution calculations used for the estimation of soluplus solubility 

parameter 

V = 271.78 cm3. mol -1   

n = 0.5/∆T = 1.29 

δt = 
(Fi+ B/Q)

�  = 24.34 (MJ/m3)½  

For PVA (chemical structure shown in Chapter 2), the calculated solubility parameters calculated 

using both methods are presented in Tables 13 and 14. 

Table (13): Hoftyzer and Van Krevelen group contribution calculations used for the estimation of 

PVA solubility parameter 

Structural Group No. of 
groups 

Fdi (MJ/m3)½ . 
mol-1 

Fpi
2 (MJ/m3) . 

mol-2 
Ehi J . mol-

1 

CH2 1 270 0 0 

OH 1 210 250000 20000 

CH 1 80 0 0 

Ʃ  560 250000 20000 

Structural Group No. of groups Ft (MJ/m3)½. mol-1 ∆T V cm3. mol 
-1 

CH 3 528 0.039 28.68 

CH2 9 2421 0.18 139.95 

O 1 235 0.018 6.45 

N 1 125 0.009 12.6 

7 membered ring 1 92 0.007 0 

COO 1 640 0.05 23.7 

CO 1 538 0.04 17.3 

Ʃ  6400 0.387 271.78 
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V = 37.56 cm3 . mol -1 

δd = 
Ʃ Fdi

�  = 14.91 (MJ/m3)½ 

δp = 
�Ʃ F2 pi

�  = 13.31 (MJ/m3)½ 

δh = �Ʃ ���
�  = 23.08 (MJ/m3)½ 

δ = �δd
2 + δp

2+δh
2 = 30.53 (MJ/m3)½ 

 

Table (14): Hoy group contribution calculations used for the estimation of PVA solubility parameter 

 

 

 

 

 

V = 37.56 cm3. mol -1   

n = 0.5/∆T = 6.10 

δt = 
(Fi+ B/Q)

�  = 28.79 (MJ/m3)½  

 

 

 

 

 

Structural 
Group  

No. of groups Ft (MJ/m3)½. 
mol-1 

∆T V cm3. mol -1 

CH2 1 269 0.02 15.55 

OH 1 591 0.049 12.45 

CH 1 176 0.013 9.56 

Ʃ  1036 0.082 37.56 
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Appendix 2:  UV-Visible scans and standard calibration curves of 

felodipine in different dissolution media 

The UV-VIS scan for felodipine in PBS pH =6.8 indicated that the drug has λmax at 363 nm as 
shown in Figure 1. 

 

Figure (1): UV-Visible scan showing the λmax of felodipine (n=3) 

The calibration curves of felodipine in the different dissolution media are shown in Figures 2-4.  

 

Figure (2): Calibration curve of felodipine in phosphate buffer saline (pH = 6.8) containing 0.05% (V/V) 

Tween 80 at 363 nm (n=3) 
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Figure (3): Calibration curve of felodipine in phosphate buffer saline (PBS) (pH = 6.8) with absolute 

ethanol 50:50 measured at 363 nm (n=3) 

 

Figure (4): Calibration curve of felodipine in HCl simulated gastric fluid (SGF) without enzymes (pH 

= 1.2) with absolute ethanol 50:50 measured at 363 nm (n=3)  

 

 

 

y = 0.0164x

R² = 0.999

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50

A
b

so
rb

a
n

ce
 (

A
) 

Concentration (µg/mL)

y = 0.0195x

R² = 0.9998

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50 55

A
b

so
rb

a
n

ce
 (

A
)

Concentration µg/mL



                                                                                                                              

Appendices 

 

355  School of Pharmacy / University of East Anglia 

 

Appendix 3:  Characterisation of different batches of pure 

felodipine samples 

Two batches of felodipine were used in this study: sample 1 (batch no.  FP140602) and sample 2 

(batch no. 20100601). DSC, ATR-FTIR, PXRD, SEM and LD were used for characterising these 

samples. 

 

Figure (5): Standard DSC thermograms showing the melting of the two samples of felodipine using 

10 °C/min heating rate (n=3)    
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Figure (6): ATR-FTIR spectra of the two samples of felodipine scanned at 2 cm-1 and 32 repeated 

scans in absorbance mode (n=3)   

  

 

Figure (7): PXRD patterns of the two samples of felodipine scanned using the same method 

mentioned in Chapter 3, section 3.2.2.3.6 
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Figure (8): SEM images of the two samples of felodipine scanned using the same method mentioned 

in Chapter 3, section 3.2.2.3.4 
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Figure (9): LD particle size analysis of the two samples of felodipine scanned using the same method 

mentioned in Chapter 2, section 2.3.12 (n=6) 
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Appendix 4:  Calculation of Tg using Fox equation 

Fox equation was used to calculate the Tg for the different blends utilised in the fabrication of 

solid dispersions by FDM 3D printing (Chapter 7). The following method was adapted in the 

determination of these values: 

Fox equation for 10% w/w CME blend: 

1/Tg mix = (wfelodipine/Tg felodipine) + (wPEG/Tg PEG) + (wPEO/Tg PEO) + (weudragit E PO/Tg eudragit E PO) + (wTween 

80/Tg Tween 80) 

The Tg values and weight fractions of the different compounds (after normalisation based on the 

amorphous fraction of PEG and PEO) are: 

wfelodipine = 0.1358; Tg = 319.6 K 

wPEG = 0.0246; Tg = 212.2 K 

wPEO = 0.0250; Tg = 223.4 K 

weudragit E PO = 0.6788; Tg = 319.9 K 

wTween 80 = 0.1358; Tg = 209.2 K 

 

Tg mix = 292.1 K = 18.9 °C 


