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Abstract

When binary data exhibit the greater variation than expected, the statistical methods have

to account for extra-binomial variation. Possible explanations for extra-binomial variation

include intra-cluster dependence or the variability of binomial probabilities. Both of these

reasons lead to overdispersion of binomial counts and the resulting heterogeneity in their meta-

analysis. Variance stabilizing or normalizing transformations are often applied to binomial

counts to enable the use of standard methods based on normality. In meta-analysis, this is

routinely done for the inference on overall effect measure. However, these transformations

might result in biases in the presence of overdispersion. We study biases arising in the result

of transformations of binary variables in the random or mixed effects models. We demonstrate

considerable biases arising from standard log-odds and arcsine transformations both for single

studies and in meta-analysis. We also explore possibilities of bias correction. In meta-analysis,

the heterogeneity of the log odds ratios across the studies is usually incorporated by standard

(additive) random effects model (REM). An alternative, multiplicative random effects model

is based on the concept of an overdispersion. The multiplicative factor in this overdispersed

random effects model can be interpreted as an intra-class correlation parameter. This model

arises when one or both binomial distributions in the 2 by 2 tables are changed to beta-

binomial distributions. The Mantel-Haenzsel and inverse-variance approaches are extended to

this setting. The estimation of the random effect parameter is based on profiling the modified

Breslow-Day test and improving the approximation for distribution of Q statistic in Mandel-

Paule method. The biases and coverages from new methods are compared to standard methods

through simulation studies. The misspecification of the REM in respect to the mechanism of

its generation is an important issue which is also discussed in this thesis.
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Chapter 1

Introduction

Meta-analysis of binary data stratified into 2 × 2 contingency tables plays a significant role

in combining both retrospective and prospective studies such as case-control and randomized

controlled trials respectively. Randomized controlled trials are often used to assess the effec-

tiveness of a particular treatment within a given population by so-called effect measure. For

example in clinical trials, the main goal is to assess the effectiveness of a medical intervention.

In the meta-analysis of Randomized Controlled Trials (RCT), the effect measure for the binary

data is often based on two-sample statistics such as odds ratio, risk ratio, and risk difference.

Additionally, Cohen (1988) suggests an effect measure based on the difference between arcsine

transformations of the binomial proportions. Among these effect measures, the most popular

measure is the odds ratio (OR). The relative risk is also common, especially in observational

studies. The difference of arcsine transformations is an example of the effect measure with an

attractive property of stable variance. A good summary of these effect measures is presented

in the paper by Sánchez-Meca et al. (2003). All these measures are functions of probabilities

of success in binary data. The standard methods for combining such effect measures are well

described in the literature (Sutton et al., 2000).

The standard methods of meta-analysis are subdivided into fixed and random effects models.

Fixed effect model assumes a homogeneity of outcomes across the studies. As a generalization

of the fixed effect model, random effects model assumes some heterogeneity of outcomes across

studies. The choice of model and associated methods can be determined by prior assumptions
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of heterogeneity between studies or by tests of homogeneity. However, it is important to iden-

tify the sources of heterogeneity and attempt to explain the source by explanatory variables

using the meta-regression methods.

This research is motivated by problems arising in overdispersed binomial data. Assume that

in practice, there exist a correlation between Bernoulli variables that has to be taken into

account. This correlation is called an intra-cluster correlation. Previously, the intra-cluster

correlation has been studied in meta-analysis for both fixed and random effect models. In

fixed effects model, the within-study variance is adjusted for intra-cluster correlation by a cor-

rection factor and the homogeneity of effects is assumed. In random effects model, in addition

to adjustment for intra-cluster correlation, an extra between-study variance of a random effect

is added to the fixed effect model. When random effects model is assumed, the model has two

unknown variance components which have to be estimated. One corresponds to intra-cluster

correlation and another to the between-study variance. The heterogeneity induced by intra-

cluster correlation itself without an assumption of additional between-study variance has not

been discussed in previous studies throughout the literature.

In this research, we consider the influence of intra-cluster correlation on the inference in a

meta-analysis of binomial proportions in 2×2 contingency tables. Specifically, we concentrate

on transformations of binomial proportions arising from dependent binary data.

In this thesis, we firstly revise the standard methods for combining binary data from 2 × 2

contingency tables - Chapter 2. We consider the effect measures based on transformations

of proportions. Particularly, we are interested in normalizing and variance-stabilizing trans-

formations of proportions. Secondly, we examine the heterogeneity induced by intra-cluster

correlation between Bernoulli observations in each study. This results in the overdispersion of

summary binomial outcomes and therefore in a heterogeneity of estimates of effect measures

which are the functions of summary binomial outcomes.

Chapter 3 concentrates on the transformation bias in a single study and a meta-analysis of

binomial proportions. In Chapter 3, we show that the introduction of dependency between
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Bernoulli variables results in a bias of order 1/n for any non-linear transformation, where n is a

sample size. Bias corrections are proposed for the arcsine and log-odds transformations. How-

ever, for the log-odds transformation, the bias correction itself is biased due to the dependence

of weights on estimated proportions. Furthermore, we show that such biases of order 1/n have

an impact on the inference in a meta-analysis of transformed binary proportions. Chapter 4

introduces a multiplicative random effects model for the logarithmic transformation of odds

ratios. This model is based on the concept of overdispersion introduced by Kulinskaya and

Olkin (2014). In standard additive random effects model, the overdispersion is quantified by

an additional variance of the random effect. In our study, the intra-cluster correlation explains

the overdispersion. In addition, new methods for estimation of the random effect parameter

are developed. The validity of the new methods is studied through simulation with data

generated from standard additive and proposed multiplicative random effects models. Based

on the findings of Chapter 3 and Chapter 4, Chapter 5 studies the generalized linear mixed

effect models in meta-analysis. The main models of interest are the conditional generalized

linear mixed-effects models with an exact and an approximate likelihood. In these models, we

discovered the problems of misspecification resulting from assumptions of a standard additive

and a proposed multiplicative random effects models. Wrong assumptions lead to the wrong

estimation of the random effect component in methods of standard random effects model.

Therefore, in Chapter 6, we study the robustness of standard and new methods for estimation

of between-study variance through a simulation study. The simulation study is performed

across different types of generated data. In our simulation, we also include the recent bias-

corrected maximum likelihood estimate of between-study variance proposed by Kosmidis et al.

(2017). Chapter 7 summarizes the findings of Chapters 3-6, discusses the practical issues and

provides suggestions for future research on transformation biases in meta-analysis.

1.1 Thesis outline and research objectives

• Describe the normalising and variance stabilizing transformations of proportions



4

• Review of the methods for fixed and random effects models in meta-analysis

• Discuss the issues in univariate meta-analysis of binary data

• Review the “state of the art” methods for what have been done to resolve the present

issues

• Propose the multiplicative random effects model with a pair of beta-binomial distribu-

tions for overdispersed binary data

• Adjust the standard methods based on the additive random effects model for estimation

of intra-cluster correlation

• Develop new methods for an estimation of intra-cluster correlation in the multiplicative

random effects model

• Develop new methods for an estimation of between-study variance in the additive random

effects model

• Generalize the Mantel-Haenzsel and Inverse-Variance methods for combining odds ratios

to the setting of the multiplicative random effects model

• Study the impact of intra-cluster correlation in binary data causing heterogeneity in

contingency tables

• Study the effect of intra-cluster correlation on transformations of proportions

• Propose the bias correction for arcsine and log-odds transformations

• Study the transformation bias in generalized linear mixed effects models for meta-

analysis

• Study the transformation bias in maximum likelihood inference in meta-analysis
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• Study the robustness of standard and new methods for an estimation of between-study

variance in the meta-analysis of binary data

• Study the misspecification of random effects models

1.2 Terminology

Effect measure, bias of order 1/n, arcsine transformation, log-odds transformation, random ef-

fects model (REM), intra-cluster correlation, heterogeneity, mantel-haenzsel method, breslow-

day test, mandel-paule method, overdispersion model (ODM), beta-binomial distribution,

generalized linear mixed effects models (GLMM), maximum likelihood (ML), penalized max-

imum likelihood (PML) score function.



Chapter 2

Meta-analysis of binary data

2.1 Introduction

Meta-analysis is a statistical technique for synthesizing the outcomes from several studies.

Originally, the purpose of meta-analysis was to combine the evidence from published obser-

vational or experimental studies. At the present day, meta-analysis is also concerned with

exploring and explaining the heterogeneity between different studies. The earliest example

of meta-analysis is given by Simpson and Pearson (1904). They studied the effectiveness of

typhoid vaccine on mortality. In total 11 studies were included in their meta-analysis. The

correlation between the vaccine inoculation and typhoid mortality was the main parameter of

interest (the effect measure). Later, Tippett (1931) and Fisher (1932) discussed the method

for combining p-values from significance tests of a null hypothesis common to all studies. The

term meta-analysis was introduced to statistical theory by Glass (1976). Statistical founda-

tions of combining studies in a meta-analysis are discussed by Hedges and Olkin (1985). Apart

from combining summary statistics at the study level, the regression-based methods can be

used in a meta-analysis to explain the heterogeneity using possible predictors at the study

level.

The methods of meta-analysis are generally divided into the fixed or random effects models.

The fixed effect model assumes homogeneous effect measures across all studies. The random

effects model allow expected effect measures to differ from one study to another according to

some distribution. Cochran (1937) and Yates and Cochran (1938) discuss the similarities of

6
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meta-analysis with the analysis of variance (1-way ANOVA) developed by R.A. Fisher, where

the combined effect measure is the overall mean and within-study variance of each effect is

measured by residual variation. The only difference between the one-way analysis of variance

and meta-analysis is that in meta-analysis each study has its own within-study variance and

in the one-way analysis of variance, the variances are assumed to be homogeneous across re-

sponses.

A combined estimate of any effect measures and its estimated variance are primary interest in

a meta-analysis. For continuous data, an effect measure can be the difference between means

of control and treatment groups on testing a particular treatment. Absolute or relative differ-

ences in units of standard deviation can be used. The later is called the standardized mean

difference. In a meta-analysis of binary data, the effect measures are the functions of proba-

bilities for a particular event. The probabilities are known as “risks”. Using these risks, the

aim of meta-analysis is to compare the responses between control and treatment groups. Risk

difference, relative risk and the odds ratio are the main statistics for comparing two binary

outcomes from control and treatment arms in randomized controlled trials. Relative risk and

odds ratio statistics can be log transformed for normalization. Another popular transforma-

tion of risks is the arcsine transformation. The arcsine transformation helps to stabilize the

variance and therefore simplifies the weights in a meta-analysis. Comparing two outcomes,

the difference between arcsine transformed risks can be used as an effect measure. Rücker

et al. (2009) discusses the use of arcsine difference as a measure of intervention effect in the

meta-analysis of binary data.

One of the issues in the use of these measures are the studies reporting zero events. In this

case, the use of continuity corrections is usually suggested. The use of continuity corrections

should be undertaken with care since the choice of continuity correction might influence the

conclusions about the overall effect measure.
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Meta-analysis can be performed for comparative or non-comparative experiments. For com-

parative experiments, a comparative effect measure such as odds ratio is required. For non-

comparative experiments, each study may provide an estimate of the probability or the odds

of an event from a single treatment group and these probabilities or odds may be combined

on arcsine scale or on the log-scale.

Meta-analysis of the binary data has become popular in various research areas including epi-

demiology, medical and social research. The binary data from each study can be presented

as a contingency table. Meta-analytic methods allow combining several studies taking their

accuracy into account. Often, a single study does not have enough power to make general

inference about the tested intervention for dichotomous outcomes. Meta-analysis is about to

combine separate effects from underpowered studies and construct an overall effect measure

with adequate power.

In this chapter, we provide a review of statistical methods for combining data from contin-

gency tables. The log-odds and arcsine transformations are of the main interest to us.

2.2 Generation of binary data

Let Xijk be a Bernoulli random variable which takes on the values of 1 (success) or 0 (failure).

The subscript ijk refers to the Bernoulli variable k in particular group j of the study i in

the meta-analysis of binary data in the following subsections. Let the probability distribution

of Xijk be P (Xijk = 1) = 1 − P (Xijk = 0) = pij which can be re-expressed in general form

P (Xijk = r) = prij(1− pij)1−r for r = 0, 1. First two standard moments of Xijk are

E(Xijk) = pij and Var(Xijk) = pij(1− pij).

Now assume that there are nij Bernoulli variables < Xijk, k = 1, . . . , nij > with Xij successes,

i.e Xij =
nij∑
k=1

Xijk. Then, the expected value of Xij is

E(Xij) = E(

nij∑
k=1

Xijk) =

nij∑
k=1

E(Xijk) = nijpij,
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and the variance is

Var(Xij) = Var(

nij∑
k=1

Xijk) =

nij∑
k=1

Var(Xijk) +

nij∑
k=1

∑
k 6=k′

Cov(XijkXijk′). (2.2.1)

When Cov(XijkXijk′) = 0, Bernoulli variables < Xijk, k = 1, . . . , nij > are independent and

variance (2.2.1) reduces to

Var(Xij) =

nij∑
k=1

pij(1− pij) = nijpij(1− pij) (2.2.2)

and the probability distribution is the standard binomial distribution B(nij, pij):

P (Xij = k) =

(
nij
k

)
pkij(1− pij)nij−k.

The variance of Xij given by (2.2.2) depends on the mean with quadratic function which is

concave and symmetrical around pij = 0.5. The distribution of Xij is symmetric for pij = 0.5

and the variance is greatest in this case. Whenever the probability pij is either very high or

very low the distribution of Xij becomes negatively or positively skewed with low variance.

Considering the estimates for proportions of successes p̂ij, the expectation and variance of

these proportions are

E(p̂ij) = pij and Var(p̂ij) =
pij(1− pij)

nij
.

One of the difficulties with estimating proportions is that the responses are bounded between 0

and 1. Also, the variance of a binomially distributed random variable is not constant over the

range of P ∈ (0, 1). Due to these issues, variance stabilizing or normalizing transformations

are often applied prior to modelling the binomial counts with the good of using the methods

aimed at analysis of normally distributed data. The main objective of this research is to assess

the behaviour of these transformations in the case of dependent Bernoulli responses. Another

question that we consider is how this dependence induces the heterogeneity or overdispersion

in the standard analysis. We develop meta-analytic methods appropriate for dependent binary

data.
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2.2.1 Overdispersion in binary data

Binary data might exhibit a greater variation then expected. One of the possible explana-

tions for extra-binomial variation lies in intra-cluster dependence. This leads to overdispersion

of binomial counts and the resulting heterogeneity in their meta-analysis. Williams (1982),

Williams (1996) introduced a class of binomial mixture models to incorporate the overdisper-

sion in binary data. Collett (1991) provides a practical introduction to models considered by

Williams (1982) and Williams (1996). The latest overview of overdispersion theory is summa-

rized in the paper by Xekalaki (2014).

Dependent Bernoulli variables are widely used in analysis of studies with repeated measure-

ments on binary data. The most general assumptions about dependent Bernoulli variables

< Xijk, k = 1, . . . , nij > specify only the first two moments:

E(Xijk) = pijk, Var(Xijk) = pijk(1− pijk) (2.2.3)

and

Cov(Xijk, Xijk′) = ρkk′
√
pijk(1− pijk)pijk′(1− pijk′), (2.2.4)

where pijk is the probability of success for Xijk, k = 1, . . . , nij, and ρkk′ = corr(Xijk, Xijk′) is

the correlation of Xijk and Xijk′ , k 6= k′. The joint probability mass function for any two

Bernoulli variables Xijk and Xijk′ is

P (Xijk = 1, Xijk′ = 1) = pijkpijk′ + ρkk′
√
pijk(1− pijk)pijk′(1− pijk′);

P (Xijk = 1, Xijk′ = 0) = pijk(1− pijk′)− ρkk′
√
pijk(1− pijk)pijk′(1− pijk′);

P (Xijk = 0, Xijk′ = 1) = (1− pijk)pijk′ − ρkk′
√
pijk(1− pijk)pijk′(1− pijk′);

P (Xijk = 0, Xijk′ = 0) = (1− pijk)(1− pijk′) + ρkk′
√
pijk(1− pijk)pijk′(1− pijk′).

Since E(XijkXijk′) = P (Xijk = 1, Xijk′ = 1) and E(Xijk) = pijk,

Cov(Xijk, Xijk′) = P (Xijk = 1, Xijk′ = 1)− pijkpijk′ ,
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and the correlation is

ρkk′ =
P (Xijk = 1, Xijk′ = 1)− pijkpijk′√

pijk(1− pijk)pijk′(1− pijk′)
.

The probability mass functions above clearly show the relationship between the probabilities

and the intra-cluster correlation.

As Emrich and Piedmonte (1991) show, the correlation values are restricted by the interval

(
max

(
−
√
pijkpijk′

qijkqijk′
,−
√
qijkqijk′

pijkpijk′

)
,min

(√pijkqijk′

qijkpijk′
,

√
qijkpijk′

pijkqijk′

))
, (2.2.5)

where qij = 1 − pij. The above mentioned bounds for correlations do not need to apply if

the interest lies in an overdispersed binomial distribution for the number of successes, where

a generation mechanism is not necessarily restricted to a sum of dependent Bernoullis. The

intra-cluster correlation ρkk′ is a measure for the degree of similarity between any two Bernoulli

responses within the same group of Bernoulli variables.

We concentrate on the simple model with constant probabilities pijk = pij and correlations

ρkk′ = ρ. Assume that all pairs of responses have the same joint distribution for Xijk ·Xijk′ ,

then for k 6= k′

E(Xijk) = E(Xijk′) = pij, P (Xijk = Xijk′ = 1) = p2ij + pij(1− pij)ρ

P (Xijk = Xijk′ = 0) = (1− pij)2 + pij(1− pij)ρ

P (Xijk = 0, Xijk′ = 1) = P (Xijk = 1, Xijk′ = 0) = pij(1− pij)(1− ρ).

The restriction on ρ then reduces to max(−pij/qij,−qij/pij) < ρ < 1. Further restrictions

may arise from particular data-generating distribution and/or latent variables.

Gulliford et al. (2005) discusses a relationship between the intra-cluster correlation ρ and the

overall prevalence in dichotomous outcomes. Eldridge et al. (2009) provides a clear review

of intra-cluster correlation coefficient for continuous and dichotomous outcomes in cluster

randomized trials. In our case, dichotomous responses are our primary interest.
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2.2.2 Generation of dependent Bernoullis

Available generation mechanisms of dependent Bernoulli random variables (r.v.’s) include

normal or Archimedian copulas (Demirtas et al., 2009; Emrich and Piedmonte, 1991; Madsen

and Birkes, 2013), and the method by Lunn and Davies (1998). In addition to summing

dependent Bernoulli r.v.’s, generation mechanisms of overdispersed Binomial r.v.’s include

the beta-binomial distribution, other Binomial mixtures (Qaqish et al., 2012) and methods

based on sums of Poisson random variables (Demirtas et al., 2009).

Without further specification (beyond the first two moments), likelihood-based methods are

not available, and Generalised Estimating Equations can be used for analysis, (Chaganty and

Joe, 2004). A distribution needs to be specified to the third and forth moments to compare

asymptotic efficiency of various methods.

The three methods used in the rest of this thesis to generate the overdispersed binomial

data are described in more details below. These are the Gaussian Copula (GC) method by

Emrich and Piedmonte (1991), the method by Lunn and Davies (1998) and the beta-binomial

distribution.

Our main interest is not in the Bernoulli variables, but rather in their sums, i.e. total numbers

of successes out of n trials. The total numbers of successes out of n trials is contingent on

probabilities and correlations between Bernoulli variables. The dependence between variables

which takes values either 0 or 1 is described through the intra-cluster correlation. Assuming

Cov(Xijk, Xijk′) = pij(1− pij)ρ and using (2.2.1) the variance of Xij is

Var(Xij) = Var(

nij∑
k=1

Xijk) = nijpij(1− pij) + 2

(
nij
2

)
pij(1− pij)ρ =

= nijpij(1− pij) + nij(nij − 1)pij(1− pij)ρ = nijpij(1− pij)(1 + (nij − 1)ρ).

Comparing this variance to binomial variance (2.2.2), there is an additional inflation term

(1+(nij−1)ρ) for representation of overdispersion. The same results follows from the mixture

of distributions. The distributions are usually mixed in two stages. Consider random variables

Pij which has a continuous distribution on [0, 1] with E(Pij) = pij and Var(Pij) = φpij(1−pij).
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Conditional on Pij,

Xij|Pij ∼ Bin(nij, Pij).

This is a first stage of two stage model. The quantity Pij is known as unobservable random

variable or latent variable. Unconditionally,

E(Xij) = nijpij and Var(Xij) = nijpij(1− pij)(1 + (nij − 1)φ), (2.2.6)

where φ is in inflation parameter. This parameter may vary for different mixtures of dis-

tributions. For example, the beta-binomial (BetaBinom) distribution can be obtained as a

Binomial-Beta mixed distribution. Assuming Pij has a beta distribution with shape parame-

ters αij and βij. Then Xij has beta-binomial distribution with ρ as a function of these shape

parameters of beta distribution. Beta is the conjugate prior distribution for the parameter p if

the data are binomial. When Xij ∼ Bin(nij, pij) and pij ∼ Beta(α, β), then unconditionally,

Xij follows a beta-binomial distribution with parameters αij, βij and nij. The expected value

and variance of Xij are

E(Xij) =
nijαij
αij + βij

, Var(Xij) =
nijαβ(nij + αij + βij)

(αij + βij)2(αij + βij + 1)
.

It is more convenient to re-parametrize this distribution as BetaBinom(nij, pij, ρij) for pij =

αij/(αij + βij) and ρij = 1/(αij + βij + 1). Then the moments are

E(Xij) = nijpij, Var(Xij) = nijpij(1− pij)(1 + (nij − 1)ρij), (2.2.7)

so the beta-binomial is an overdispersed binomial distribution. The density function for beta-

distribution is

f(pij) =
Γ(αij + βij)

Γ(αij)Γ(βij)
p
αij−1
ij (1− pij)βij−1

and for binomial distribution conditional on pij is

f(Xij|pij;nij) =

(
nij
Xij

)
p
Xij

ij (1− pij)(nij−Xij).

The joint density function for Xij and pij is

f(Xij, pij;nij) = f(Xij|pij;nij)f(pij)
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f(Xij, pij;nij) =

(
nij
Xij

)
p
Xij

ij (1− pij)nij−Xij
Γ(αij + βij)

Γ(αij)Γ(βij)
p
αij−1
ij (1− pij)βij−1

Since, we do not need pij to be observable, pij has to be integrated out which produces marginal

density

f(Xij;αij, βij, nij) =

∫ 1

0

f(Xij|pij;nij)f(pij)dpij

f(Xij;αij, βij, nij) =

∫ 1

0

(
nij
Xij

)
p
Xij

ij (1− pij)nij−Xij
Γ(αij + βij)

Γ(αij)Γ(βij)
p
αij−1
ij (1− pij)βij−1dpij

f(Xij|nij, αij, βij) =

(
nij
Xij

)
Beta(αij +Xij, βij + nij −Xij)

Beta(αij, βij)
0 ≤ Xij ≤ nij. (2.2.8)

for beta-binomial distribution.

Williams (1982) discusses another possibility by assuming logistic-normal mixture distribution

for Xij. The logistic normal model is a two stage model

Xij ∼ Bin(nij, pij) and logit(pij) ∼ N(µ, τ 2)

where µ is the overall mean and τ 2 represents between-study variance. The general logistic

normal model with additive random effect bj in the linear predictor is

logit(pij) = µ+ bj

where logit(pij) is a linear predictor with continuous normal distribution and logit link function

(Hinde and Demétrio, 1998). The variance of Xij from logistic-normal mixture is

Var(Xij) = nijpij(1− pij)(1 + (nij − 1)pij(1− pij)τ 2) (2.2.9)

Letting ηij = logit(pij), the marginal density function of logistic-normal distribution is the

mixture of binomial and normal densities

f(Xij, µ, τ) =

∫ ∞
−∞

(
nij
Xij

)
exp(Xijηij)

(1 + exp(ηij))nij

1

τ
√

2p
exp(−(ηij − µ)2

2τ 2
)dηij

The logistic normal model is a generalized linear model from linear exponential family. Beta-

binomial and logistic normal models behave similarly for pij between 0.2 and 0.8. However,

out of this range when the probability is either close to 0 or 1, there exist some differences



15

between the skewness of the distributions. This is because the variance (2.2.9) has an extra

factor pij(1− pij) in comparison to (2.2.7).

The variance functions (2.2.7) and (2.2.9) from beta-binomial and logistic normal mixtures

are a particular case of a general variance function of an overdispersed binomial distribution

Var(Xij) = nijpij(1− pij)(1 + φ(nij − 1)δ1(pij(1− pij))δ2).

For δ1 = 1 and δ2 = 0, the general variance reduces to beta-binomial variance (2.2.7). For

δ1 = 1 and δ2 = 1, the general variance reduces to logistic-normal variance (2.2.9).

The estimation of parameters in the binomial mixture models is performed either by maximum

likelihood methods or using quasi-likelihood methods. Maximum likelihood methods can be

used in two stage models by assigning the distributions to unknown parameters. Quasi-

likelihood methods are used in models with general form of the variance function. Crowder

(1978) discusses full maximum likelihood estimation for the beta-binomial model. Prentice

(1986) overviews the extension of beta-binomial model to handle underdispersion.

Generation through Gaussian copula

A simple method for generation of correlated binary data is proposed by Emrich and Piedmonte

(1991). The aim is to generate nij Bernoulli r.v.’s < Xijk, k = 1, . . . , nij > with moments

(2.2.3). Let Z = (Zij1, ..., Zijnij
) be a vector of independent standard normal r.v.’s. Denote

by Σ the nij × nij covariance matrix such that

Σ = (1− ρ∗)Inij
+ ρ∗Jnij

,

where ρ∗ is the correlation (scalar), Jnij
is the matrix of 1’s and Inij

is the identity matrix

of size nij × nij. Let A be the lower triangular matrix resulting from a Cholesky decompo-

sition Σ = AAT , and let the random variables Yij1, ..., Yijnij
equal to Y = AZ. Finally, let

U = (Φ(Yij1), ...,Φ(Yijnij
)), where Φ denote the cumulative distribution function of a stan-

dard normal distribution. The binomial quantile transformation of the vector U with number

of trial 1 and true probability p produces nij correlated Bernoulli variables with correla-

tion ρ. The latter process is repeated for K studies. According to Emrich and Piedmonte
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(1991) and Demirtas et al. (2009), the value for ρ∗ can be obtained by solving the equation

Φ[z(pijk), z(pijk′); ρ
∗] = ρ(pijkqijk′pijk′qijk′)

1/2 +pijkpijk′ using the bisection method. Here, z(p)

denotes the pth quantile of the standard normal distribution, and Φ[x1, x2, ρ
∗] is the standard

bivariate normal cumulative distribution function with correlation coefficient ρ∗. This solu-

tion is unique as long as the restriction (2.2.5) for the correlation ρ holds. This method of

generation is called Gaussian copula (GC) model in subsequent sections.

Generation by the method of Lunn and Davies (1998)

Lunn and Davies (1998) consider the case of clustered binary variables

{Xijk, i = 1, · · · , K; j = 1, 2; k = 1, · · · , nij},

where i is the cluster in group j of the size nij. In order to generate correlated binary data

with correlations ρij within each cluster i, firstly generate nij independent Bernoulli random

variables {Yijk, k = 1, · · · , nij} and Zk from B(1, pk). Additionally, generate nij independent

Bernoulli variables Uijk from B(1,
√
ρij). The random variables Xijk = (1−Uijk)Yijk +UijkZk

for k = 1, · · · , nij are correlated binary random variables such that P (Xijk = 1) = pijk,

Var(Xijk) = pijk(1− pijk) and Cov(Xijk, Xijk′) = ρijpij(1− pij).

Large sample properties of the overdispersed binomial distributions

To better understand the properties of the overdispersed binomial distributions, we produced

the QQ plots exploring large-sample normality or lack thereof, for the arcsine-transformed

sample probabilities p̂ estimated from the data generated by a beta-binomial distribution,

method by Lunn and Davies (1998) and Gaussian Copula for K=1. The QQ plots were

generated for observations in a single study. The binomially distributed variables for each

plot were generated and arcsine transformed for a single arm. The true probabilities p = 0.1

and number of studies K = 1 are kept the same for all plots in Figure 2.1. For all three

methods, we performed 1000 repetitions with identical combination of sample sizes n and

intra-cluster correlation ρ for n = 20, 1000 and ρ = 0.1, 0.9. These QQ plots for several
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combination of sample sizes and correlation coefficients ρ are given in Figure 2.1. It is clear

that the Lunn-Davies model results in a much clumpier distribution. For small values of ρ, the

beta-binomial and Gaussian copula models are close to normality, but the Lunn-Davies model

is much less normal, it is almost dichotomous for large n. For large n and large ρ all three

distributions are almost dichotomous, but once more the Lunn-Davies much more so than

the other two models. As we shall see, this results in much worse coverage of the confidence

intervals based on the normal quantiles. In our further simulations, the Lunn-Davies model is

“the worst case scenario”.

2.3 Background information on meta-analysis

Meta-analysis of binary data combines studies from observational studies and randomized con-

trolled trials. There are different types of observational studies such as case-control studies,

cross-sectional studies, cohort studies and etc. Case - control and cohort studies are the two

most important study designs in observational studies for evaluation of association between

intervention and outcome. Observational studies usually make inference about effect of a treat-

ment from a small sample of large population, where subjects of studies are non-controlled by

any experimenter. In contrast, randomized controlled trials differ from observational studies

by having each subject being under the control of the experimenter. In randomized controlled

trials, experimenter assigns participants of study either to a treatment or a control group. The

simplest form of a randomized controlled trial is the trial with a single treatment and a single

control arm. However, there may exist a randomized controlled trial comparing a treatment to

several control arms. Observational studies and randomized controlled trials usually combine

the observed information in 2× 2 contingency tables.

Since a single study may not have enough power to make inference about a tested treatment,

meta-analytic methods have to be used. Meta-analytical methods assume either the homo-

geneity or heterogeneity of effect measures across the studies. The methods with assumption

of homogeneity are based on fixed effect model. The assumption of homogeneous odds ratios
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n = 20, ρ = 0
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(a) Beta-Binomial
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(b) Gaussian Copula model
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(c) Lunn-Davies model
n = 20, ρ = 0.1
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(d) Beta-Binomial

●

●

●

●●

●

●

● ●

●

●

● ●

●

●

● ●

●

●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●●

●

●

●

●●●

●●●●●

●●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●●●

●

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●●

●●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●●●●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●●●

●

●●●

●

●●●

●

●

●

●

●●

●

●

●●

●

●

●

●●●

●

●

●

●●

●

●

●●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●●●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

0.
5

1.
0

1.
5

2.
0

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

(e) Gaussian Copula model
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(f) Lunn-Davies model
n = 1000, ρ = 0.1
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(g) Beta-Binomial
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(h) Gaussian Copula model
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(i) Lunn-Davies model
n = 1000, ρ = 0.9
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(j) Beta-Binomial
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(k) Gaussian Copula model
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(l) Lunn-Davies model

Figure 2.1: QQ plots for arcsine-transformed (with Anscombe (1948) continuity correction)
sample probabilities in Beta-Binomial, Gaussian Copula and Lunn-Davies models
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or arcsine differences might be violated since each individual study might differ by its design

and structure (Higgins et al., 2009; Mosteller and Colditz, 1996). The assumption of hetero-

geneous effect measures based on either odds ratios or arcsine differences seems to be more

realistic. For example in clinical trials, testing the same treatment under different external

conditions or for different populations does not produce identical results. The effect measures

will differ for different experiments; the differences can be a result of sampling variability or

may be due to heterogeneity across studies in meta-analysis. The heterogeneity is usually

difficult to explain and quantify both in practice (Higgins and Thompson, 2002) and theory

(Thompson and Higgins, 2002). The standard way of explaining heterogeneity is by diversity

in populations or interventions. This is assumed to be accounted for in standard random

effects model. The drawback of standard random effects model is that it does not clarify the

heterogeneity according to individual variables. In general the sources of heterogeneity should

be investigated (Thompson, 1994).

In meta-analysis of binary data, before switching from fixed effect model to random effects

model, the presence of heterogeneity between the studies is often verified by an appropriate

statistical test. The heterogeneity can be tested by a number of well-known methods. These

methods include Breslow-Day test (Breslow and Day, 1980), Tarone score test (Tarone, 1985),

Cochran’s Q statistic (Cochran, 1937), conditional score test (Liang and Self, 1985), likelihood

ratio test based on mixed logistic models (Agresti and Hartzel, 2005) and score test statistic

based on full likelihood (Liang and Self, 1985). The Cochran’s Q statistic and Breslow-Day

test are discussed in details in section 2.5. The Breslow-Day and Tarone tests are designed for

both odds ratios and relative risk statistics in original non-transformed scale. The Cochran’s

Q statistic is a general test of heterogeneity applied on log-odds ratio and log-relative risk

scale. Likelihood based tests are based on normal or binomial-normal likelihood.

Heterogeneity can be explained by moderators through meta-regression. For example, higher

treatment doses, length and intensity may result in a higher treatment effect. Heterogene-

ity can also be explained by random differences between the effects. In that case, the effect
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measures are assumed to follow some distribution. The standard approach to quantify the

heterogeneity between studies is to consider some unexplained random effect. The random

effect accounts for heterogeneous effect measures by additional variance component across the

studies. In random effects model, the between-study variance explains the heterogeneity be-

tween effect measures. Estimation of between-study variance has a big influence on inference

within random effects model in meta-analysis.

In practice, quantifying the evidence by an effect measure might not always provide precise

estimates. Failures in inferences from meta-analysis can be explained by biases. The bias in

meta-analysis may arise from different sources. For example, publishing insignificant results

may result in publication bias. Studies with small sample sizes and low probabilities may

produce sparse data, where the continuity corrections have to be added in case of binary data.

This may produce a bias due to continuity corrections. This thesis mainly concentrate on

estimation biases. The bias might arise due to transformation of random variables from one

scale to another in standard and mixture models. We also consider the bias due to continuity

corrections in normalising and variance stabilizing transformations.

It is also possible to avoid the continuity corrections by using generalized linear mixed models

for meta-analysis. For the log-odds-ratio,Platt et al. (1999) discusses the generalized linear

mixed models (GLMM). Stijnen et al. (2010) proposes a conditional generalized linear mixed-

effects model with an exact likelihood for use in meta-analysis of binary data. They suggest

using the GLMM’s to overcome several potential issues in meta-analysis. These issues are

related to non accounting for the variances being estimated or non accounting for the depen-

dence between the estimate of effect and its variance. In generalized linear mixed models,

the approximately normal within study likelihood is replaced by exact or approximate likeli-

hood and no continuity corrections are required. Chapter 5 discusses generalized linear mixed

models in details.
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2.4 Standard Fixed Effect Model

Suppose we have K studies, each estimating the same effect. Assume that θi is the true effect

measure and θ̂i is the estimate of θi from study i. The fixed effect model (FEM) assumes a

homogeneity of effects across studies such that θi ≡ θ for i = 1, ..., K. Hence, each study is

estimating a single true effect.

The main goal of meta-analysis is to combine estimates from all studies to obtain an estimate

for true effect. The estimates are asymptotically normal such that (θ̂i − θi) ∼ N(0, σ2
i )

with unknown parameters θi and σ2
i . Large sample confidence interval coefficient 1 − α for

each estimate is θ̂i ± z1−α/2(σ̂2
i )

1/2 as σ̂2
i /σ

2
i → 1 in probability with assumption that σ̂2

i is a

consistent estimator of σ2
i (Kulinskaya et al., 2014). The simplest choice for an overall estimate

is the sample mean of θ̂i’s. However, averaging estimates ignores that each study might not

have the same size and/or precision. Variation of study sizes produces estimates with different

precision. The general fixed effect model combines effect measures by weighted estimates θ̂i

using the inverse-variance weights. Weighted average allows to weight each study depending

on its precision. Weights can be found as reciprocals of variances σ2
i . By weighting each

estimate, the inverse variance-weighted method for pooling estimates in fixed effect model is

θ̂FE =

K∑
i=1

wiθ̂i

K∑
i=1

wi

,

where weights wi are inversely proportional to the variance of individual effect measure such

as wi = Var(θ̂i)
−1

= σ−2i . Assuming that weights wi = σ−2i are known and θ̂i ∼ N(θi, σ
2
i ), the

large sample confidence interval for overall estimate is

θ̂FE ± zW−1/2 with W =
K∑
i=1

wi.

The presence of a non-zero effect, i.e H0 : θ̂FE = 0 vs alternative H1 : θ̂FE 6= 0 can be tested

by a Wald test by comparing W−1/2θ̂FE to critical values of z1−α from N(0, 1) distribution.

In reality, the weights of each study are estimated rather than known since the within-study
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variances are estimated. Hence an estimator ŵi is used instead of wi. Substitution of the

estimate ŵi leads to underestimation of W−1/2 as noted by Li et al. (1994) and Rukhin (2009).

This results in low coverage for the θ̂FE ± zŴ−1/2 and liberal Wald test Ŵ 1/2θ̂FE for testing

the hypothesis of no effect. The approximate large sample distribution of the combined effect

can be found either increasing the number of studies K or increasing the sample sizes of each

study or increasing both of them simultaneously. These three methods may result in different

limit distributions (Kulinskaya et al., 2014).

We concentrate on the effect measures based on odds ratio’s. Additionally to inverse-variance

method for LOR, effects can be combined by using Mantel-Haenszel method (Mantel and

Haenszel, 2004), Peto’s method (Yusuf et al., 1985), conditional logistic regression (Connolly

and Liang, 1988), conditional (Hauck, 1984) and unconditional likelihood- based methods

(Emerson, 1994; Hasselblad and McCrory, 1995; Sutton et al., 2000) and Bayesian methods of

estimation (Zelen and Parker, 1986). From this list, we concentrate our attention on Mantel-

Haenzsel method. The Mantel-Haenzsel method has advantages of fixed weights and it does

not require continuity corrections in case of sparse events. This method assumes homogeneity

of odds ratio across K studies. We intend to extend this method to random effects settings.

Originally, Mantel-Haenzsel method was introduced by Mantel and Haenszel (2004) to com-

bine odds ratios for stratified case-control studies or cohort studies. This method is known for

its efficiency and robustness. We will discuss the standard Mantel-Haenzsel method separately

in the following subsection (2.4.5).

2.4.1 The structure of 2× 2 contingency table

Assume that K studies report comparative binary outcomes. These outcomes can be written

as a series of K 2 × 2 contingency tables as shown in the table 2.1 below. Each of the

individual studies reports a pair of independent binomial variables Xi1 and Xi2 (numbers of
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Table 2.1: Contingency table

Event No event Total
Treatment Xi1 ni1 −Xi1 ni1

Control Xi2 ni2 −Xi2 ni2
Total xi ni − xi ni

harmful outcomes) from two samples of sizes ni1 and ni2 for treatment and control arms,

Xi1 ∼ Binom(ni1, pi1) and Xi2 ∼ Binom(ni2, pi2) for i = 1, ..., K

where pi1 is the risk in the treatment arm and pi2 is the baseline risk. Each binomial outcome

Xij is a sum of independent Bernoulli variables such that Xij =
nij∑
k=1

Xijk for j = 1, 2. In

reality, the Bernoulli variables Xijk for k = 1, ..., nij might be dependent within and between

arms of the same study so that corr(Xijk, Xijk′) 6= 0 and corr(Xi1, Xi2) 6= 0 respectively. The

dependence between arms was studied by Hwang and Biswas (2008) and Biswas and Hwang

(2010).

2.4.2 Odds and odds ratios

The odds of an outcome for group j in study i for j = 1, 2 and i = 1, . . . , K, is

ϕij =
pij

1− pij
estimated by ϕ̂ij =

Xij

nij −Xij

,

when Xij 6= 0. The odds ratio for individual table j is ψi = ϕi1/ϕi2. In terms of probabilities

the odds ratio is

ψi =
pi1(1− pi2)
pi2(1− pi1)

estimated by ψ̂i =
Xi1(ni2 −Xi2)

Xi2(ni1 −Xi1)
(2.4.1)

for Xij 6= 0. The natural logarithm of odds ratio denoted by log(ψ̂i) is often used since its

distribution is approximately normal. Let θi = log(ψi) and θ̂i = log(ψ̂i). The approximate

variance for estimated log-odds-ratio derived by delta method is

σ2
i = Var(θ̂i) = Var(log(ψ̂i)) =

1

ni1pi1(1− pi1)
+

1

ni2pi2(1− pi2)
,
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estimated by

σ̂2
i =

1

Xi1

+
1

Xi2

+
1

ni1 −Xi1

+
1

ni2 −Xi2

. (2.4.2)

The variance of θ̂i is based on Woolf’s variance estimator of the log-odds-ratio (Woolf et al.,

1955).

It is important to pay attention to the studies where some cells are empty. When there exist

empty cells, the estimate for the effect measure θi and its variance (2.4.2) become undefined.

This is a case with sparse event data. We will discuss this case in the Subsection 2.4.4.

Note that the estimate θ̂i and its estimated variance σ̂2
i are correlated. According to Berkey

et al. (1995) and Stijnen et al. (2010), this dependence might lead to estimation bias in com-

bining logarithmic odds ratios in meta-analysis. Berkey et al. (1995) suggested an alternative

estimator for σ2
j , which reduces the correlation between (2.4.1) and (2.4.2), improves the bias

and variance properties of (2.4.2). This estimator is

σ̂2
i =

[
(Xi1 +Xi2)

( K∑
i=1

(Xi1/(Xi1 +Xi2))/K
)]−1

+

+

[
(Xi1 +Xi2)

(
1−

K∑
i=1

(Xi1/(Xi1 +Xi2))/K
)]−1

+

+

[
((ni1 −Xi1) + (ni2 −Xi2))

( K∑
i=1

((ni1 −Xi1)/((ni1 −Xi1) + (ni2 −Xi2)))/K
)]−1

+

+

[
((ni1 −Xi1) + (ni2 −Xi2))

(
1−

K∑
i=1

((ni1 −Xi1)/((ni1 −Xi1) + (ni2 −Xi2)))/K
)]−1

.

However, this variance estimator is not popular in practice. Assuming normality of LOR, a

95 percent confidence interval for the log-odds-ratio θ̂i = log(ψ̂i) is

log(ψ̂i)± 1.96

√
Var(log(ψ̂i)).

Exponentiating the lower and upper bounds of the confidence interval for log(ψ̂i), a 95 percent

confidence interval for odds ratio ψi can be obtained.
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2.4.3 Arcsine transformation and the Cohen’s effect measure

Cohen (1988) proposed an effect measure based on difference between arcsine transformations

of the success proportions from treatment and control groups. This effect measure is given by

di = 2arcsin(
√
pi1)− 2arcsin(

√
pi2) (2.4.3)

and estimated by

d̂i = 2arcsin(
√
p̂i1)− 2arcsin(

√
p̂i2).

The variance of d̂i is

Var(d̂i) =
1

ni1
+

1

ni2
,

(Rosenthal, 1994). Arcsine is a variance stabilizing transformation for p̂ij, since the variance

of arcsine transformed proportions is constant and independent of pij. Rücker et al. (2008)

and Olkin and Gleser (2009) discuss the details on the use of arcsine differences as a measure

of intervention effect in meta-analysis of binary data. Sánchez-Meca et al. (2003) concludes

that the estimator d̂i is negatively biased with reference on the book by Lipsey and Wilson

(2001).

2.4.4 Continuity corrections in contingency tables

The continuity corrections are added in contingency tables when the probabilities of events

in binary endpoints are low. The low probabilities result in studies with zero events. The

extensive number of zero events affect the analysis of combining studies and obtaining the

overall effect measure. The zero events affect differently on different effect measures. According

to Bradburn et al. (2007) and Sweeting et al. (2004), the choice of continuity correction may

have a big influence on inference for the common effect measure in meta-analysis, especially in

the presence of rare events. When the data are sparse, the estimates of LOR become undefined

due to zero events. In order to overcome this problem, the continuity correction c is added to

each cell in order to make LORs and their variances estimable and to correct for the possible
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bias

p̂i1 =
Xi1 + c

ni1 + 2c
, p̂i2 =

Xi2 + c

ni2 + 2c
. (2.4.4)

Adding continuity correction c to number of events Xij for j = 1, 2 might cause bias in esti-

mating the probabilities and effect. According to Böhning and Viwatwongkasem (2005), the

bias of p̂ij for j = 1, 2 is c((1 − 2pij)/(nij + 2c)). Different continuity corrections c might

introduce bias in estimation of probabilities p̂i1 and p̂i2. For example, if c increases, p̂ij ob-

tains positive bias that increases for p < 1/2 and negative bias that decreases if p > 1/2.

For p = 1/2, the probabilities p̂i1 and p̂i2 become unbiased (Böhning and Viwatwongkasem,

2005). The bias in estimators of probabilities might result in estimation bias of effects and

its weights. For example in log-odds, the variance of log-odds depends on probabilities pij.

For LOR the most common choice of continuity correction is c = 1/2. In log-odds and LOR,

the continuity correction c = 1/2 eliminates the bias of order 1/n (Gart et al., 1985). One of

the earlier study for odds ratio is reported by Breslow (1981) when the data is sparse. Other

alternatives are discussed in Sweeting et al. (2004).

For arcsine transformation, Anscombe (1948) suggested to use c = 3/8 in (2.4.4). According

to Anscombe (1948), d̃i with c = 3/8 should have approximate normal distribution and reduce

the bias of d̂i. No changes are applied to the variance of d̃i since the arcsine transformation

removes the dependence of variance on probabilities.

If the number of studies is large and only few studies have the sparse data, the continuity

corrections does not have a strong effect on the combined effect measure. But, in case of

majority of studies having the sparse data, the choice of continuity correction is important.

According to Gart et al. (1985) there is no universal continuity correction for log(ψ̂i) in

weighted regression. For example, sometimes c = 1/2 might be the best, other times c = 1/4,

c = 0, c=−1/2 or intervening values might work better (Gart et al., 1985). Gart et al.

(1985) also states the following: “In the presence of even an optimal bias reducing continuity

correction, statistics based on empirical logits tend to be fitted less well by the normal or chi-

squared distribution than those based on binomial variates”. Friedrich et al. (2007) examined
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the changes in risk difference, odds ratio and relative risk when studies with zero events are

excluded. Friedrich et al. (2007) believes that for estimation of odds ratio, the inclusion of

studies with zero events is essential. This is the result of relatively small changes in the mag-

nitude of the overall effect measures with and without exclusion of studies with zero events.

In randomized controlled trials, the zero events might appear either in treatment or control

arms. It might be possible that both arms in a single study consist of zero events. In meta-

analysis, the studies with zero events in both arms are excluded when estimating the overall

effect measure (Whitehead and Whitehead, 1991; Sweeting et al., 2004). Böhning and My-

lona (2015) argues that the exclusion of studies with zero events should be avoided due to

availability of appropriate statistical methods. Alternatively, the continuity corrections are

added to every cell in contingency tables for zero events in one of the arms or both arms. In

general, the interpretation of results becomes problematic when either continuity corrections

are added to studies or studies with zero events in both arms are excluded from the analysis.

2.4.5 Mantel-Haenzsel method for combining odds ratios

Assume that we have K contingency tables with binary outcomes in the form of Table 2.1

and the natural logarithmic of odds ratio is estimated from each table. The fixed effect model

assumes homogeneity of LORs. For each study, the estimate of effect measure i.e the natural

logarithm of odds ratio can be written in the form

θ̂i = θ + εi, for i = 1, ..., K (2.4.5)

where θ is a common effect measure (in our case the common log-odds-ratio) and εi is a

sampling error of each estimate θ̂i that follows the normal distribution with mean 0 and

variance σ2
i .

For the binomial outcomes, the inverse-variance approach was mentioned earlier as the main

method for combining effect measures θ̂i from K tables. However, inverse-variance method

results in the following issues. Firstly, the estimated effect θ̂w and its estimated variance are
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biased. Secondly, the weights ŵi and the effects θ̂i are correlated. Also the baseline risks

may highly affect the inference. The inverse variance method fails when the numbers or the

probabilities are low and the sample sizes are unbalanced. Tang (2000) discusses the bias

introduced by weightening binary outcomes according to the inverse-variance.

Mantel and Haenszel (1959) suggested robust alternative to inverse-variance method which

combines the estimates of odds ratios ψ̂i themselves rather than the log transformations of

them. This method provides more conservative inference on combined effect measure. Mantel-

Haenzsel method assumes common odds ratio across K 2× 2 contingency tables, i.e the fixed

effect model. The Mantel-Haenzsel estimator for common odds ratio ψ̂ is

ψ̂MH =

K∑
i=1

Xi1(ni2 −Xi2)n
−1
i

K∑
i=1

Xi2(ni1 −Xi1)n
−1
i

. (2.4.6)

Alternatively, it can be written as a sum of weighted individual odds ratios

ψ̂MH =

K∑
i=1

w∗i ψ̂i

K∑
i=1

w∗i

with weights w∗i =
[
(ni1)

−1 + (ni2)
−1]−1(1 − p̂i1)p̂i2 for the odds ratio ψ̂i defined by (2.4.1)

when nij 6= 0. The advantage of Mantel-Haenzsel odds ratio is the ability to handle cases with

empty cells without additional continuity corrections (Bradburn et al., 2007). Also the fixed

weights n−1i in the numerator and denominator result in a better approximation of normality

for log(ψ̂MH). The Mantel-Haenzsel odds ratio ψ̂MH is consistent estimator of ψ when K is

small and ni → ∞ and when K → ∞ for fixed ni (Fleiss et al., 2003). Sutton et al. (2000)

recommends the Mantel-Haenzsel odds ratio ψ̂MH for large sample situation with large K and

small ni. One of the main advantage of Mantel-Haenzsel odds ratio is computability in case

of zero events. No continuity corrections are required in ψ̂MH . The continuity corrections are

only added in case of running the simulation study with low probabilities, where zero events

may appear in both arms simultaneously.
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Before considering the variance of ψ̂MH , note that different asymptotics is possible for com-

bining contingency tables. The first option is that K is increasing and ni is fixed. The second

scenario is when K is fixed and ni is increasing. These different scenarios result in different

estimators for the variance of odds ratio. Also, it is possible that both parameters K and

ni increase simultaneously. Different variance estimators for Mantel-Haenzsel odds ratio have

been proposed. One of the earliest candidate for the variance of Mantel-Haenzsel odds ratio

derived by Hauck (1979) for the case of ni →∞ is

VarH(ψ̂MH) = ψ2

K∑
i=1

w∗2i /vi

(
K∑
i=1

w∗i )
2

(2.4.7)

where v−1i = 1/(ni1pi1(1− pi1)) + 1/(ni2pi2(1− pi2)). Guilbaud and Hauck (1983) revised this

estimate for the variance of ψ̂MH correcting for sampling errors of weights, since weights are

usually estimated in practice rather than being known. The weakness of the Hauck’s variance

is that if any of the cell entries are zero, the variance is undefined. Also, the Hauck’s variance

is not valid for asymptotic cases with increasing K and fixed ni. Breslow (1981) proposed

several variances estimators for increasing K and fixed marginals ni. Given the conditional

distribution of data in each 2× 2 table

KVarC(ψ̂MH) =

K∑
i=1

Var(Ri − ψSi|xi;ψ)

[
K∑
i=1

E(Si|xi;ψ)/K]2
, (2.4.8)

where ψ is the true common odds ratio, Ri and Si are the numerator and denominator of

Mantel-Haenzsel odds ratio

Ri =
K∑
i=1

X1i(n2i −X2i)

ni
and Si =

K∑
i=1

Xi2(ni1 −Xi1)

ni
.

The variance estimator by Breslow (1981) is an empirical variance which estimates (2.4.8) as

KVarE(ψ̂MH) =

K∑
i=1

(Ri − ψ̂MHSi)
2/K

(
K∑
i=1

Si/K)2
. (2.4.9)
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According to Breslow (1981), these variance estimators provide accurate inference about es-

timated odds ratio when the data is sparse. Breslow and Liang (1982) suggested weighted

average of two variances (2.4.7) and (2.4.9). However, all these variance estimators above are

limited being not valid for different asymptotics of sample sizes and number of studies. The

most commonly used variance estimator for Mantel-Haenzsel odds ratio is suggested by Robins

et al. (1986) and Phillips and Holland (1987). They derived the variance for Mantel-Haenzsel

odds ratio for both sparse data and large-strata limiting models in the form

KVar(ψ̂MH) = K

[ K∑
i=1

PiRi

2(
K∑
i=1

Ri)2
+

K∑
i=1

(PiSi +QiRi)

2(
K∑
i=1

Ri)(
K∑
i=1

Si)

+

K∑
i=1

QiSi

2(
K∑
i=1

Si)2

]
(ψ̂MH)2

where Pi = (Xi1 + ni2 − Xi2)/ni, Qi = (ni1 − Xi1 + Xi2)/ni, Ri = (Xi1(ni2 − Xi2))/ni, and

Si = ((ni1−Xi1)Xi2)/ni. Due to correspondence of variances for odds ratio and log-odds-ratio,

the variance for log(ψ̂MH) is estimated by

Var(log(ψMH)) =

K∑
i=1

PiRi

2(
K∑
i=1

Ri)2
+

K∑
i=1

(PiSi +QiRi)

2(
K∑
i=1

Ri)(
K∑
i=1

Si)

+

K∑
i=1

QiSi

2(
K∑
i=1

Si)2
(2.4.10)

Using a normal approximation to log(ψ̂MH), the confidence interval for the overall odds ratio

can be obtained by

exp[log(ψ̂MH)− zα/2(Var(log(ψ̂MH))1/2)] ≤ ψMH ≤ exp[log(ψMH) + zα/2(Var(log(ψ̂MH))1/2)]

where zα/2 is the α/2 percentage point of a standard normal distribution. Recently, the simple

proof for the variance (2.4.10) was suggested by Silcocks (2005). Sato (1990) proposed a new

approximate confidence limit method for the common odds ratio based on the asymptotic dis-

tribution of the Mantel-Haenszel estimator. Leonard and Duffy (2002) describe the Bayesian

framework for the Mantel-Haenzsel model.
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2.5 Testing for presence of heterogeneity

The tests for homogeneity or equivalently for the presence of heterogeneity are performed to

assess the degree of similarity between studies in meta-analysis. These tests are sometimes

used to provide an indication about the choice of fixed effect or random effects model (discussed

later). The null hypothesis of these tests is

H0 : θ1 = ... = θK = θ or ψ1 = ... = ψK = ψ

versus alternative

H1 : θi 6= θ or ψi 6= ψ for at least some i=1,. . . ,K.

In order to assess these hypothesises, two popular tests for homogeneity between studies are

reviewed in this section. The first test is the popular Cochran’s Q statistic (Cochran, 1937).

The second test is the Breslow-Day test (Breslow and Day, 1980).

2.5.1 Cochran’s Q statistic

Testing the hypothesis of heterogeneity is a common practice in meta-analysis. The null

hypothesis is an absence of heterogeneity H0 : θi ≡ θ for fixed effect model or H0 : τ 2 = 0

for random effects model discussed further in the following subsections. In random effects

model, τ 2 is the between-study variance to account for heterogeneity across K studies. The

alternative hypothesis is the presence of heterogeneity, i.e τ 2 6= 0 . The most popular test

statistic for heterogeneity in meta-analysis is the Cochran’s Q statistic (Cochran, 1937). The

Cochran’s Q statistic is given by

Q =
K∑
i=1

ŵi(θ̂i − θ̂FE)2

with inverse variance weights ŵi and a weighted average θ̂FE =
K∑
i=1

ŵiθ̂i/
K∑
i=1

ŵi. In general,

the behaviour of the Q statistic might be not the same for different measures of the effect.

Initially, the Q statistic was applied for tests of heterogeneity when the effects were normally
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distributed sample means (Cochran, 1937, 1954; Welch, 1951; James, 1951). Later, Woolf

et al. (1955) and DerSimonian and Laird (1986) suggested using Q statistic for dichotomous

outcomes with effects given by difference of proportions or the logarithmic of odds ratios.

Under H0, it is conventional to assume that Q follows the chi-square distribution with K − 1

degrees of freedom without any assumption of the size of studies and the effect measure. If the

heterogeneity is present, then the value of Q will be greater than the critical value of the χ2-

distribution and the hypothesis of homogeneity is rejected (Demidenko, 2004). The chi-square

distribution is the exact distribution of Q statistic under the condition that the variances,

hence weights are assumed to be known and the effects are normally distributed (Kulinskaya

et al., 2014). For the logarithmic of odds ratio and other measures of effect, Kulinskaya et al.

(2011a); Kulinskaya and Dollinger (2015) show that the chi-square approximation for Q is

inaccurate. For the small sample sizes, Biggerstaff et al. (1997) approximated the distribution

of the Q statistics by a gamma distribution. Biggerstaff et al. (1997); Biggerstaff and Jackson

(2008); Jackson (2006) present results about the distribution for Q statistic with assumption of

known weights. Kulinskaya and Dollinger (2015) derive an approximation to make inferences

about homogeneity of the logarithmic of odds ratios.

When weights are estimated rather than being known, the distribution of Q statistic does

not follow an exact distribution. The known distribution of Q varies with the choice of effect

measure. Hedges and Olkin (1985) and Viechtbauer (2007) show in their simulations that

Q can be approximated by chi-square distribution for finite K and increasing ni, however,

for the case with increasing K and finite ni, the normal approximation of θi is discussed by

Demidenko (2004) for non-normal effect measures. Akritas and Papadatos (2004) discussed

an asymptotic approximations for small sample sizes and large number of studies. Several

approximations for Q statistic were proposed by James (1951); Welch (1951); Kulinskaya

et al. (2003). Kulinskaya et al. (2011a) and Kulinskaya et al. (2011b) suggest improvements

to the null distribution of Q statistic for risk difference and standardized mean difference

respectively. So far the approximations for distribution of Q statistic are obtained under null
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fixed effect model. The approximations for the non-null Q statistic and approximation to its

power under the random effects model have not been obtained yet.

2.5.2 Breslow-Day test statistic

Mantel-Haenzsel estimate for the common odds ratio is developed under the hypothesis that

odds ratios are equal across the studies. In order to test the homogeneity of odds ratios

between the studies, Breslow and Day (1980) introduced Breslow-Day test statistic. Breslow-

Day test is based on fixed margins of 2×2 contingency tables with estimated Mantel-Haenzsel

common odds ratio (Breslow and Day, 1980). The Breslow-Day statistic tests the hypothesis

that the odds ratios between studies are homogeneous.

Assuming fixed sample sizes for rows and columns in table 2.1, Xi1 follows a non-central

hypergeometric distribution with probability density function

Pr(Xi1 = xi1|Xi1 +Xi2 = xi, ψi) =

(
ni1

xi1

)(
ni2

xi2

)
ψxi1∑min(ni1,ni2)

i=max(0,N−ni2)

(
ni1

i

)(
ni2

xi−i

)
ψxii

,

or

Pr(Xi1 = xi1|Xi1 +Xi2 = xi, θi) =

(
ni1

xi1

)(
ni2

xi2

)
exp(θixi1)∑min(ni1,ni2)

j=max(0,N−ni2)

(
ni1

i

)(
ni2

xi−i

)
exp(θixi)

,

where max(0, ni − ni2) ≤ xi1 ≤ min(ni1, ni2). When ψ = 1, the distribution reduces to hy-

pergeometric distribution. The mean of non-central hypergeometric distribution E(Xi1|ψ̂MH)

can be obtained by the quadratic equation

E(Xi1|ψ̂MH)[ni − xi − ni1 + E(Xi1|ψ̂MH)]

[xi − E(Xi1|ψ̂MH)][ni1 − E(Xi1|ψ̂MH)]
= ψ̂MH , (2.5.1)

whereas the asymptotic variance Var(Xi1|ψ̂MH) is given by

Var(Xi1|ψ̂MH) =
[ 1

E(Xi1|ψ̂MH)
+

1

(xi − E(Xi1|ψ̂MH))
(2.5.2)

+
1

(n1i − E(X1i|ψ̂MH))
+

1

(ni − xi − n1i + E(X1i|ψ̂MH))

]−1
where xi = Xi1 + Xi2. The values of Xi1 should be close to E(Xi1|ψ̂MH) (the expected value

for Xi1 given ψ̂MH).
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The Breslow-Day test statistic based on assumption of non-central hypergeometric distribution

for events in treatment arm under the hypothesis of homogeneity of odds ratio ψ̂i = ψ̂MH ,

which is a conditional distribution for the Xi1 given that columns ni1, ni2 and rows xi, ni−xi

are fixed is

BD =
K∑
i=1

(Xi1 − E(Xi1|ψ̂MH))2

Var(Xi1|ψ̂MH)
(2.5.3)

where E(Xi1|ψ̂MH) and Var(Xi1|ψ̂MH) denote the expected number and the asymptotic vari-

ance of cases, respectively, given the Mantel-Haenzsel fitted odds ratio ψ̂MH under the assump-

tion of homogeneity. The exact Breslow-Day test BD has χ2
K−1 distribution with K−1 degrees

of freedom. Breslow-Day test is asymptotically equivalent to the logistic regression method

(Leonard and Duffy, 2002). Tarone (1985) proposed the correction factor for approximation

of Breslow-Day test statistic

T =
K∑
i=1

(Xi1 − E(Xi1|ψ̂MH))2

Var(Xi1|ψ̂MH)
−

[
K∑
i=1

Xi1 −
K∑
i=1

E(Xi1|ψ̂MH)]2

K∑
i=1

Var(Xi1|ψ̂MH)

,

arguing that the distribution of Breslow-Day test is stochastically larger than χ2
K−1 under the

hypothesis of homogeneity of odds ratios H0 : ψi = ψ. The Tarones Breslow-Day test T should

also follow χ2
K−1 distribution with K − 1 degrees of freedom. Adjustments to the variance of

a non-central hypergeometric distribution (2.5.2) were proposed by Levin (1984)

Var(Xi1|ψ̂MH) =
ni

ni − 1

[ 1

E(Xi1|ψ̂MH)
+

1

(xi − E(Xi1|ψ̂MH))
+ .

+
1

(ni1 − E(Xi1|ψ̂MH))
+

1

(ni − xi − ni1 + E(Xi1|ψ̂MH))

]−1
.

Alternative to Breslow-Day test is a conditional likelihood score test for homogeneity of odds

ratios. This test has a similar form to (2.5.3) apart from the conditional maximum likelihood

estimate of odds ratio used instead of Mantel-Haenzsel odds ratio. Alternative homogeneity

tests were suggested by Liang and Self (1985) for the case when the binomial data are sparse

and the number of tables is large.
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2.5.3 Comparison of Q and Breslow-Day test statistics

Paul and Donner (1989) compared nine tests for testing the homogeneity of odds ratios. Later,

Paul and Donner (1992) studied the performance of these tests for the small size studies. The

Q statistic is recommended for balanced studies by Paul and Donner (1989), however when

the studies are unbalanced the power of the Q statistic decreases.

The power of the Q statistic was investigated by Hedges and Pigott (2001) and Valentine et al.

(2010) and also discussed by Biggerstaff and Jackson (2008), Hardy and Thompson (1998) and

Jackson (2006). According to Takkouche et al. (1999) and Viechtbauer (2007), the Q statistic

outperforms other tests for the presence of heterogeneity. However, Hardy and Thompson

(1998) states that Q statistic has a low power. Hardy and Thompson (1998) studies how the

power of the heterogeneity test depends on the number of studies K.

Normand (1999) recommends relying on Q statistic for choosing between fixed effect and ran-

dom effects model. Higgins and Thompson (2002) proposed quantification of heterogeneity

by so called I2 measure which is an increasing function of Q, i.e I2 = (Q − (K − 1))/Q. If

τ 2 = 0 and assuming known weights, E(Q) = K − 1 and I2 ≈ 0. This is also approximately

true for large sample sizes. If τ 2 6= 0, then Q statistic increases with the total sample size

N =
∑K

i=1 ni and I2 → 1.

Bagheri et al. (2011) compares the empirical power and type I error of the Breslow-Day test

statistic, Q statistic and likelihood ratio test for testing the homogeneity of odds ratios among

K studies for unequal sizes of the arms within and between studies. For large equal sample

sizes Breslow-Day test statistic performs better than Q statistic and likelihood ratio test. In

terms of power the Breslow-Day test has shown the lowest reduction in the balanced case com-

pared to Q statistic and likelihood ratio test. The conclusion of Bagheri et al. (2011) is that

Breslow-Day test is the most appealing in terms of the type I error and power. According to

Jones et al. (1989) and O’Gorman et al. (1990), Breslow-Day test has lower power than tests

proposed by Liang and Self (1985), when the number of studies K is increasing and sample

size is fixed in sparse data. Thus, for K → ∞ and fixed sample sizes nij, the Breslow-Day
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test is invalid for testing the homogeneity of effects. However, in the simulations by Jones

et al. (1989), the Breslow-Day test performed the best for the large and intermediate stratum

setting with increasing nj and fixed K. Jones et al. (1989) and O’Gorman et al. (1990) only

recommend Breslow-Day test for non-sparse data. When the data are sparse, Liang and Self

(1985) examines five tests for homogeneity of odds ratios by using Monte Carlo experiments.

Gavaghan et al. (2000) compares five tests for homogeneity of dichotomous outcome measures

on the log-odds scale and the risk difference scale. Out of five tests for homogeneity, in terms

of power, Gavaghan et al. (2000) recommends Breslow-Day test based on Mantel-Haenzsel

odds ratio. Other alternatives for testing the homogeneity of odds ratios include Tarone’s

approximate score test (Tarone, 1985) and the likelihood ratio test (Hardy and Thompson,

1998).

Some improvements have been suggested for Q test by Lipsitz et al. (1998) for sparse data and

Kulinskaya et al. (2011a) under the null hypothesis for risk differences, Takkouche et al. (1999)

and Kulinskaya and Dollinger (2015) for odds ratio. Hardy and Thompson (1996) state that Q

test has a low power. The power of the Q statistic is discussed by Hedges and Pigott (2001),

Valentine et al. (2010), Biggerstaff and Jackson (2008), Hardy and Thompson (1998) and

Jackson (2006). Paul and Donner (1989) recommends Tarone’s approximate score test, based

on the Mantel-Haenszel estimator of the common odds ratio. Some of these tests for example

three-way interaction test in logistic regression has a low power (Thompson, 1994). Bagheri

et al. (2011) compares Dersimonian-Laird, Breslow-Day and likelihood ratio test in a mixed

logistic model. They show that in terms of power Breslow-Day test outperforms DerSimonian-

Laird and likelihood ratio test statistic. Also among the asymptotic tests Breslow-Day test was

recommended by Reis et al. (1999) due to simplicity of calculation. Kulinskaya and Dollinger

(2015) recommends Breslow-Day test for its superiocity in comparison to Q statistic.

These tests do not perform equally well for different types of effect measures. These tests an-

swer the question whether or not the observed estimates for effect measure are heterogeneous

between the studies. It might be more important to quantify the heterogeneity and explore
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what are the sources of the heterogeneity.

2.6 Standard Random Effects Model

The random effects model is an alternative to fixed effect model. It assumes that K studies are

randomly chosen from a population of studies. The random effects model was introduced by

DerSimonian and Laird (1986). Random effects model inflates standard errors and confidence

intervals for the overall effect measure in comparison to FEM. The models differ by the type of

variation taken into account to estimate the combined effect measure. Random effects model

introduces additional variance component for variation in effect measures between studies.

Hence, the homogeneity assumption is replaced with its heterogeneity counterpart. The het-

erogeneity of effect measures is explained by the fact that now the population effect measures

vary from study to study and are assumed to be random variables from some distribution.

The heterogeneity between studies can be taken into account and quantified by additional

variance component of random effects. Quantifying and explaining the heterogeneity plays a

significant role in systematic reviews. A general random effect model has a form

θ̂i ∼ F (θi, σ
2
i ) and θi ∼ G(θ, τ 2). (2.6.1)

The F and G distributions are commonly assumed to be normal. However, other combinations

of distributions are permissible. If the within study distribution for each data set is assumed

to be normal, then this assumption has to be justified by a choice of an appropriate effect

measure and size of data in each study. The between study distribution is commonly assumed

to be normal.

In some circumstances an assumption of normality for within study distribution might be

problematic. For example, if the majority of studies are dominated by sparse events, some

of the standard errors will be extremely variable or even become undefined (Stijnen et al.,

2010). Stijnen et al. (2010) proposed the models with corresponding exact likelihood instead
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of within study normal approximations. It is important to emphasize that F is a conditional

distribution which depends on parameter of interest θi and usually does not condition on

the within-studies variance σ2
i . Variance σ2

i might or might not depend on the parameter θi.

Assuming normal distributions for F and G, the resulting marginal random effects model with

unconditional distribution for estimated effect measure θ̂i in the i− th study is

θ̂i ∼ N(θ, σ2
i + τ 2), for i = 1, ..., K, (2.6.2)

where θ is the weighted overall effect measure, σ2
i represents the variance of error term or the

within-study variance of an effect measure θ̂i from each study and τ 2 is an unknown variance

of random effect which describes between study variability and the heterogeneity of effect

measures. Equivalently, the model can be defined in the form similar to fixed effect model

(2.4.5)

θ̂i = θi + εi,

with θi replacing the common θ due to assumption of heterogeneous effect measures instead

of homogeneous ones in the fixed effect model. Redefining the true effects as θi = θ + bi, the

random effects model is

θ̂i = θ + bi + εi (2.6.3)

with

bi ∼ N(0, τ 2) and εi ∼ N(0, σ2
i )

where bi is a random effect independent from εi that introduces heterogeneity quantified by

additional variance component τ 2. Also bi represents an error term by which each individual

effect measure θi differs from the common effect measure θ. In case of τ 2 = 0, the model

reduces to fixed effect model (2.4.5).

Usually in meta-analysis σ2
i is assumed to be known and includes the sampling size normal-

ization. However if σ2
i is unknown, the unbiased estimator for σ2

i is treated as a true value

ignoring any associated sampling errors. The problems with using the estimate for σ2
i might

occur in small studies, where the sampling error of the estimate for σ2
i might be large. Other
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issues are related to correlation between the estimate for effect measure and its variance, the

use of continuity corrections or studies with few events where normal approximation is invalid

(see Stijnen et al. (2010) for details). Another problem is that the assumption of normal dis-

tribution for log-odds-ratio might not be true for small studies. In our case, for the estimated

log-odds-ratio, the within study variance is given by (2.4.2). Substitution of estimates for

within-study variances can be problematic in studies with small sample sizes, because of low

accuracy for estimators of variances. The low accuracy in estimators for σ2
i results in either

positive or negative bias in σ̂2
i and in overall effect measure θ̂RE. Thus, the overall effect

measure will be wrongly centred from the true effect measure with higher or lower bias re-

spectively. Böhning and Sarol (2000) and Brockwell and Gordon (2001) discussed the danger

of the assumption of known variance σ2
i .

The main difficulty in random effects model lies in estimating the unknown between-studies

variance τ 2. When τ 2 is estimated by τ̂ 2, the overall estimate of an effect measure can be

estimated by the weighted mean

θ̂RE =

K∑
i=1

ŵi(τ̂
2)θ̂i

K∑
i=1

ŵi

with weights ŵi =
1

σ̂2
i + τ̂ 2

. (2.6.4)

The variance of θ̂RE is estimated by Var(θ̂RE) = 1/
K∑
i=1

wi(τ̂
2). This variance is obtained under

assumption of known between-study variance τ 2, within-study variances σ2
i and hence weights

of individual studies. The approximate large sample confidence interval for θ̂RE is obtained

as θ̂RE ± zW−1/2 with W =
K∑
i=1

(σ̂2
i + τ̂ 2)−1. A confidence interval for the pooled overall

effect measure can be obtained assuming to have its approximate normality. This is true

for either approximately normal effects or large number of studies K. In order to account for

uncertainty in τ 2, Higgins et al. (2009) suggests a t-distribution instead of normal for combined

effect measure θ̂RE. The distribution of the Wald statistic T = θ̂RE/ŜE(θ̂RE) is studied by

Raghunathan and Yoichi (1993), Berkey et al. (1995), Follmann and Proschan (1999) and

Hartung and Knapp (2001). The likelihood-based approaches to account for uncertainty in
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τ̂ 2 are available (Hardy and Thompson, 1996; Vangel and Rukhin, 1999). Sidik and Jonkman

(2002) proposed an alternative confidence interval for overall effect measure θ̂RE based on t

distribution.

Different estimators for τ 2 are discussed in this thesis. The accuracy of every estimator for

τ 2 depends on a method used for estimation and on how large number of studies K is. As

we mentioned previously, the value of τ 2 shows the degree of heterogeneity between studies.

We only assume the randomness of effect measures, i.e random effects model. τ 2 = 0 implies

that there exist no heterogeneity and the effect measures are homogeneous. In that case, the

random effects model reduces to fixed effect model.

In some cases, the estimators for τ 2 may take on negative values given that positive total

variance σ2
i + τ 2 > 0. However, the common approach is the truncation at zero since the τ 2

defines the variance, generally it cannot take negative values, (Rukhin, 2013).

Fixed effect model underestimates the standard error of an overall effect by ignoring the

variation between studies. In random effects model when τ 2 on ni tend to infinity, variances

σ2
i becomes small in comparison to τ 2 and the estimate for weighted average is

θ̂RE = lim

K∑
i=1

(σ2
i + τ 2)−1θ̂i

K∑
i=1

(σ2
i + τ 2)−1

=
1

K

K∑
i=1

θ̂i, when τ 2 →∞ or min(ni)→∞

i.e. the weighted least squares estimator results in a simple average, (Demidenko, 2004). Due

to bias in θ̂RE, Shuster (2010) recommends the unweighted estimator for the mean instead of

its weighted counterpart.

In the additive random effects model (2.6.2), τ 2 indicates the degree of heterogeneity. Thomp-

son and Sharp (1999) proposed the multiplicative random effects model in the form

θ̂i ∼ N(θ, φσ2
i ) (2.6.5)

where φ is a multiplicative random effects parameter to incorporate heterogeneity through

overdispersion. Parameter φ allows deflation and inflation in the variance of θ̂i. The new

version of random effects model based on overdispersion is proposed by Kulinskaya and Olkin
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(2014). In this paper, the multiplicative parameter φ is defined as φi = 1 + a(ni)γ where

a(ni) are functions linearly dependent on sample sizes ni. The key idea of this model is an

interpretation of nuisance parameter γ as an intra-cluster correlation or transformation of it.

In the same paper, for estimated two sample effect measure, the multiplicative random effects

model is

θ̂i ∼ N(θ,
vi(Ri)

ni
(1 + aiγ)) for γ>

−1

max(ai)

where Ri = ni1/ni2 is an allocation ratio of treatment to control group sizes and vi(Ri) is a

precision measure. More details are available in the paper by Kulinskaya and Olkin (2014).

Higgins et al. (2009) discusses the recent issues in standard two stage random effects model.

2.7 Point estimators for τ 2

Between study variance or heterogeneity variance τ 2 plays an important role in random effects

model. Once τ 2 is known, the pooled effect measure can be estimated by weighted average

of study specific estimates (2.6.4). Secondly, the value for τ 2 directly indicates the degree of

heterogeneity in effect measures between studies. In meta-analysis, the value for τ 2 is never

known. The standard practice is to substitute one of the estimators for τ 2 ignoring its variabil-

ity. Henmi and Copas (2010) discusses the effect of this on confidence intervals for publication

bias. Previously, several estimators for τ 2 have been proposed. The list of estimators for

τ 2 include estimators derived by Hunter and Schmidt (1990), Hedges (1983), DerSimonian

and Laird (1986), Mandel and Paule (1970) for interlaboratory studies, also likelihood-based

estimators which require numerical maximization such as maximum likelihood estimator and

restricted maximum likelihood estimator (Demidenko, 2004). One more class of estimators

are Bayesian estimators. From the previous list, we briefly discuss only unbiased and efficient

estimators for τ 2 with their moments, mean square errors and confidence intervals. Viecht-

bauer (2005) compared theoretically and through simulations estimators for τ 2 proposed by

Hunter and Schmidt (1990), Hedges (1983), DerSimonian and Laird (1986), and also maxi-

mum likelihood and the restricted maximum likelihood estimators for the unstandardized and
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the standardized mean difference as an effect measure.

2.7.1 Hedges Estimator

The unweighted method of moments estimator of τ 2 or an analysis of variance estimator for

τ 2 derived by Hedges (1983) is

τ̂ 2HE =

K∑
i=1

(θ̂i − θ̄uw)2

K − 1
− 1

K

K∑
i=1

σ̂2
i ,

where θ̄uw is an unweighted average of the estimated effect measures θ̂i for i = 1, .., K. This es-

timator is also known as minimum norm quadratic unbiased estimator (MINQUE Rao (2009),

Demidenko (2004))

The main advantage of estimator τ̂ 2HE for τ 2 is its unbiasness for both known σ2
i or with sub-

stituted unbiased estimates of σ2
i instead. The estimator τ̂ 2HE might yield negative values in

which case it has to be truncated to zero. The estimator τ̂ 2HE is unbiased before truncation as-

suming that the sampling variances σ̂2
i are known (Viechtbauer (2005); Veroniki et al. (2015)).

The estimator τ̂ 2HE is consistent when K →∞ since the variance τ̂ 2HE is of order (1/K). The

sampling variance of τ̂ 2HE is given by

Var(τ̂ 2HE) =
2

(K − 1)2

[
(1− 2

K
)

K∑
i=1

(σ2
i + τ 2)2 +

(
K∑
i=1

(σ2
i + τ 2))2

K2

]
,

(Friedman, 2000; Viechtbauer, 2007).

2.7.2 DerSimonian and Laird estimator

Non-iterative method, which gives an unbiased estimate of τ 2 for known σ2
i was proposed by

DerSimonian and Laird (1986) and later studied by Whitehead and Whitehead (1991). This

is the weighted method of moments estimator for τ 2. This method is based on Cochran’s Q

statistic

Q =
K∑
i=1

wi(θi − θFE)2 ∼ χ2
K−1



43

where wi are inverse variance weights and θFE is the weighted average of effect measures with

wi = σ−2i from fixed effect model, see Section (2.5.1) for details. The Der-Simonian and Laird

estimator for τ 2 is

τ̂ 2DL = [Q−K + 1]

/[ K∑
i=1

wi −

K∑
i=1

w2
i

K∑
i=1

wi

]
. (2.7.1)

The DerSimonian and Laird estimator is obtained by equating an estimate of expected value

of Q to its observed value. The DerSimonian and Laird estimator is unbiased and consistent

for K →∞ under assumption that σ2
i are known. It is possible to obtain negative values for

τ̂ 2DL, in that case it has to be truncated τ̂ 2DL = max(0, τ̂ 2DL). Due to truncation, the estimator

τ̂ 2DL obtains positive bias. According to Biggerstaff et al. (1997) and Viechtbauer (2005) the

sampling variance of τ̂ 2DL is approximated to order O(1/K) by

Var(τ̂ 2DL) =
2[ K∑

i=1

wi −
K∑
i=1

w2
i

K∑
i=1

wi

]
[ K∑
i=1

w2
i (σ

2
i + τ 2)2 − 2

K∑
i=1

w3
i (σ

2
i + τ 2)2

K∑
i=1

wi

+

( K∑
i=1

w2
i (σ

2
i + τ 2)

)2
( K∑
i=1

wi
)2

]
.

Friedman (2000) derived alternative form of the variance Var(τ̂ 2DL). Even though τ̂ 2DL is

unbiased and consistent for known σ2
i , it is common practice to substitute unbiased estimators

for σ2
i when the true values of within-study variance are unknown. Böhning et al. (2002)

discusses the issues of using estimated study-specific variances instead of theoretical values of

counterparts for σ2
i which can result in bias in estimating τ̂ 2DL.

In general, the DerSimonian and Laird method underestimates the true value for between-

study variance τ 2, (Böhning et al., 2002; DerSimonian and Laird, 1986; DerSimonian and

Kacker, 2007). Also, Brockwell and Gordon (2001) shows some deficiencies of τ̂ 2DL in their

simulations for small values of K, such as K < 20. The large mean-squared error of τ 2DL is

obtained in the simulations by Malzahn et al. (2000), Jackson et al. (2010) and from theory

in Rukhin (2013).
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2.7.3 The Mandel-Paule estimator

The random effects model has also become popular in interlaboratory studies, where the

outcome θ̂i is an estimate of interlaboratory effect measure or so called consensus value with

estimated sample variance σ̂2
i . In order to obtain the weighted average θ̂RE of consensus values,

Mandel and Paule (1970) introduced the Mandel Paule algorithm for estimating the parameter

for between study variability in analysis of interlaboratoty studies by solving iteratively the

equation

Q(τ 2) =
K∑
i=1

(θi − θ̂RE)2

σ2
i + τ 2MP

= K − 1. (2.7.2)

The Mandel-Paule method for estimating τ 2 produces a moment type estimator. Function

Q(τ 2) for τ 2 is the Cochran’s Q statistic with weights including τ 2 under alternative hypothesis

about the presence of heterogeneity. It is a convex monotonically decreasing function of τ 2 > 0,

(Rukhin, 2009). The difference between Mantel-Paule and Der-Simonian and Laird method is

that Mandel-Paule algorithm uses weights wi = (τMP + σ̂2
i )
−1 instead of wi = (σ̂2

i )
−1. Rukhin

and Vangel (1998) and Rukhin et al. (2000) shows that (2.7.2) has at most one positive solution

for τ 2 and estimated τ 2MP can be interpreted as an approximation to REML estimator and as a

generalized Bayes estimator (Morris, 1983). The Mandel-Paule estimator for τ 2 was proposed

for use in meta-analysis by Rukhin (2003) and DerSimonian and Kacker (2007). Rukhin (2003)

compares theoretical properties of estimates for τ 2 by Mandel-Paule method and DerSimonian

and Laird method. Rukhin (2003) suggested the modified version of Mandel-Paule algorithm,

with K instead K − 1 in (2.7.2). For K = 2, the Mandel-Paule estimator of the between

studies variance coincides with Der-Simonian and Laird estimator and Hedges estimator as

τ̂ 2MP = τ̂ 2DL = τ̂ 2HE =
1

2
max[0, (θ1 − θ2)2 − σ̂2

1 − σ̂2
2].

2.7.4 Maximum likelihood estimator of θ and τ 2

The likelihood-based inference is possible under fixed effect and random effects models, since

we have distributional assumption for estimates of effect measures θ̂j between studies. For the
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normal G and F in (2.6.1), we discuss the method for estimation of θ and τ 2 by maximising

the log-likelihood function. The maximum likelihood-based estimators for random effects

model in meta-analysis were proposed by Hardy and Thompson (1996), Harville (1977) and

Raudenbush and Bryk (1985). The maximum likelihood estimators require iterative numerical

solution. For the model (2.6.1), the joint likelihood function of θ and τ 2 is

L(θ, τ 2) ∼
K∏
i=1

∞∫
−∞

Fi(·|θi)G(θi|θ, τ 2)dθi (2.7.3)

where Fi(·|θi) is a conditional likelihood function with a true unobserved effect θi. The choice

of distribution should be performed with care since the distribution might concern different

variables of the study. G(θi|θ, τ 2) is a function of true unobserved effect measure θi for normal

density with parameters θ and τ 2. This likelihood function is valid for likelihood-based infer-

ence about θ and τ 2. Examples of the joint likelihood Fi(·|θi) in (2.7.3) are normal distribution

or non-central hypergeometric distribution in case of combining the logarithms of odds ratios.

The normal distribution is applied to the estimators of the log-odds-ratio θ̂i. The non-central

hypergeometric distribution is the distribution of the number of events in treatment arm given

the fixed margins. The model with a non-central hypergeometric for Fi(·|θi) and normal dis-

tribution for G(θi|θ, τ 2) is discussed in Chapter 5.

Under assumption of normal distribution for F and G (2.6.1), the marginal distribution of θ̂i

is normal with mean θ and variance σ2
i + τ 2. The marginal density function for θ̂i is

f(θ̂i, θ, σ
2
i + τ 2) = (2π(σ2

i + τ 2))−
1
2 exp(−1

2

(θ̂i − θ)2

σ2
i + τ 2

).

The product of marginal likelihoods for K studies is

L =
K∏
i=1

f(θ̂i, θ, σ
2
i + τ 2).

Ignoring the constant term −1
2

K∑
i=1

log (2π), the log likelihood function for standard additive

random effects model with a mix of two normal distributions is

l(θ, τ 2) = −1

2
[
K∑
i=1

(log(σ2
i + τ 2) +

(θ̂i − θ)2

σ2
i + τ 2

)]. (2.7.4)
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The score functions for θ and τ 2 are

U(θ) =
dl(θ, τ 2)

dθ
=

K∑
i=1

(θ̂i − θ)
σ2
i + τ 2

= 0 U(τ 2) =
dl(θ, τ 2)

dτ 2
=

1

2

K∑
i=1

[
1

σ2
i + τ 2

− (θ̂i − θ)2

(σ2
i + τ 2)2

]
= 0.

The maximum likelihood estimators for θ and τ 2 are

θ̂ML =

K∑
i=1

(σ2
i + τ 2ML)−1θ̂i

K∑
i=1

(σ2
i + τ 2ML)−1

and τ̂ 2ML =

K∑
i=1

w2
i [(θ̂i − θ̂ML)2 − σ2

i ]

K∑
i=1

w2
i

, (2.7.5)

with wi = [τ̂ 2ML + σ2
i ]
−1. From the formula above, the maximum likelihood estimates for τ 2

and θ can be found iteratively. Firstly, τ 2 is treated as fixed and the value of θ maximising

the log-likelihood is calculated. Next, θ is treated as fixed and the value of τ 2 maximising

the log-likelihood is calculated. The iterations can be started from the method of moments

estimator for τ 2 or setting τ 2 = 0 (Erez et al., 1996). The iterations continue till convergence

of parameters. Second derivatives for θ and τ 2 are

∂2l(θ, τ 2)

∂θ2
= −

K∑
i=1

1

σ2
i + τ 2

,
∂2l(θ, τ 2)

∂θ∂τ 2
= −

K∑
i=1

θ̂i − θ
(σ2

i + τ 2)2
,

∂2l(θ, τ 2)

∂(τ 2)2
= −1

2

K∑
i=1

[
1

(σ2
i + τ 2)2

− 2(θ̂i − θ)2

(σ2
i + τ 2)3

]
Using the obtained derivatives, the Hessian matrix for the log likelihood function is

H(η) =

 ∂2l
∂θ2

∂2l
∂θ∂τ2

∂2l
∂τ2∂θ

∂2l
∂(τ2)2

= −


K∑
i=1

1
σ2
i +τ

2

K∑
i=1

θ̂i−θ
(σ2

i +τ
2)2

K∑
i=1

θ̂i−θ
(σ2

i +τ
2)2

1
2

K∑
i=1

[ 2(θ̂i−θ)
2

(σ2
i +τ

2)3
− 1

(σ2
i +τ

2)2
]

 .

The two most common methods for maximising the log-likelihood iteratively are Newton-

Raphson and Fisher scoring algorithms. The general Newton-Raphson algorithm for η =

(θ, τ 2) and score function U(η) = (U(θ), U(τ 2)) is

ηi+1 = ηj + [H(η)−1U(η)]i

where H(η) is the observed Hessian information matrix. The Newton-Raphson algorithm

might fail in maximising the log likelihood function for θi ∼ N(θ, σ2
i + τ 2), when the starting
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point is far from maximum. In order to obtain the convergence of the maximum likelihood

estimators for θ̂ML and τ̂ 2ML using the Newton-Raphson algorithm, the determinant of matrix

H(η) should remain positive, hence matrix H(η) should remain as positive definite matrix.

Taking the expectation of Hessian matrix and multiplying by −1, the Fisher information

matrix is written as

I(η) = −E(H(η)) =


K∑
i=1

1
σ2
i +τ

2 0

0 1
2

K∑
i=1

1
(σ2

i +τ
2)2

 .

The elements of information matrix are always positive, hence the matrix itself is positive-

definite. Thus, the Fisher scoring algorithm is more appropriate to use in this case than

Newton-Raphson algorithm. Inverting the information matrix, the asymptotic covariance

matrix is

I(η)−1 =

 (
K∑
i=1

1
σ2
i +τ

2 )−1 0

0 2(
K∑
i=1

1
(σ2

i +τ
2)2

)−1

 .

(2, 2)th term of the matrix I(η)−1 provides a large-sample approximation for the variance of

the estimated heterogeneity parameter.

The general Fisher score algorithm is a modified Newton-Raphson algorithm with expected

information matrix

ηi+1 = ηi + [I(η)−1U(η)]i.

The individual Fisher’s scoring algorithms for θML and τ 2 are

θ̂s+1 = θ̂s + (
K∑
i=1

1

τ̂ 2 + σ2
i

)−1
K∑
i=1

θi − θs
τ̂ 2 + σ2

i

and

τ̂ 2s+1 = τ̂ 2s + (
K∑
i=1

1

(τ̂ 2 + σ2
i )

2
)−1

K∑
i=1

[
θi − θs

(τ̂ 2 + σ2
i )

2
− 1

τ̂ 2 + σ2
i

],

with iteration index s (Demidenko, 2004). The algorithm starts with τ̂ 20 = 0. Demidenko

(2004) formulates in his book (Demidenko, 2004, page 253) a condition for the maximum
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likelihood estimate for τ 2 being positive as

K∑
i=1

(θi − θ̂ML)2

σ4
i

>
K∑
i=1

1

σ2
i

.

Assuming that the within-study variance of each study remains constant between the studies

i.e σ2
i = σ2, the closed form solution for the MLE of the between-study variance is

τ̂ 2 =
1

K

K∑
i=1

(θj − θ̂ML)2 − σ2.

Maximum likelihood estimator τ̂ 2ML has a downward bias (Viechtbauer, 2005), which affects

the hypothesis testing and confidence intervals of the effect measure θ̂ML. By taking the

inverse of the Fisher information matrix and assuming normality for τ̂ 2ML, we can find the

Wald-type confidence interval for τ 2. The asymptotic variance of maximum likelihood-based

estimator τ 2ML is

Var(τ̂ 2ML) = 2(
K∑
i=1

w2
i )
−1 for wi =

1

τ̂ 2ML + σ2
i

.

2.7.5 Restricted maximum likelihood estimator of θ and τ 2

The restricted or residual maximum likelihood (REML) is a modification of standard likelihood

using the generalized least square residuals. The REML is called restricted or residual due to

maximization of marginal log-likelihood function for the residuals from a (generalised) least

squares fit of the model. The REML is a function of variance components only. The main

advantage of using the REML is that it corrects for the downward bias of maximum likelihood

estimates for these components.

The restricted maximum likelihood for the model (2.6.2) is

l(θ, τ 2) = −1

2

K∑
i=1

[log(σ2
i + τ 2) +

(θi − θ)2

σ2
i + τ 2

+ log(
K∑
i=1

(σ2
i + τ 2)−1)] (2.7.6)

The difference between standard maximum likelihood and the restricted maximum likelihood

is the additional term log(
K∑
i=1

(σ2
i + τ 2)−1). The restricted maximum likelihood estimator for
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τ 2 is

τ̂ 2REML =

K∑
i=1

w2
i [(θi − θ̂REML)2 − σ2

i ]

K∑
i=1

w2
i

+
1

K∑
i=1

wi

. (2.7.7)

Similarly to maximum likelihood estimator, τ̂ 2REML can be estimated iteratively with the

starting point of either moment based estimator or τ̂ 20 = 0. The condition for the restricted

maximum likelihood estimate of τ 2 to stay positive is

K∑
i=1

σ−4i (θi − θ̂REML)2 >
K∑
i=1

σ−2i −

K∑
i=1

σ−4i

K∑
i=1

σ−2i

,

see (Demidenko, 2004, page 255). The restricted maximum likelihood estimate for a case of

constant within studies variance σ2
i = σ2 is

τ̂ 2 =
1

K − 1

K∑
i=1

(θi − θ̂REML)2 − σ2. (2.7.8)

The variance of τ̂ 2REML, obtained from inverted Fisher information matrix is

Var(τ̂ 2REML) = 2[
K∑
i=1

w2
i − 2

K∑
i=1

w3
i

K∑
i=1

wi

+

(
K∑
i=1

w2
i )

2

(
K∑
i=1

wi)2
].

with wi = 1
τ̂2REML+σ

2
i
. The approximation for restricted maximum likelihood estimator τ 2REML

is suggested by Morris (1983) in the Bayes setting.

The empirical evidence indicates that the restricted maximum likelihood estimator τ̂ 2REML is

approximately unbiased as opposed to negatively biased maximum likelihood estimator τ̂ 2ML.

The approximate unbiasedness of τ̂ 2REML is shown by Viechtbauer (2005). On the other hand,

REML estimator is less efficient than regular maximum likelihood estimator τ̂ 2ML, because it

has greater sampling variance, Viechtbauer (2005). However, among all unbiased estimators

for τ 2, Viechtbauer (2005) recommends to use τ̂ 2REML, because of its balance between approx-

imate unbiasedness and efficiency.
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2.7.6 Sidik-Johnkman estimator of τ 2

Sidik and Jonkman (2005) proposed a simple variance estimator

τ̂ 2SJ =

∑K
i=1 v̂i(θ̂i − θ̂RE)2

K − 1
(2.7.9)

where v̂i = ri + 1, ri = σ̂2
i /τ̂

2
0 , and τ̂ 20 is the initial naive estimator of between-study variance

τ 2 defined by

τ̂ 20 =

∑K
i=1(θ̂i − θ̂uw)2

K

where θ̂uw is the unweighted mean of effect measures across K studies. Sidik and Jonkman

(2005) compared the performance of τ̂ 2SJ and τ̂ 2DL by simulation study. For moderate to large

values of heterogeneity, Sidik and Jonkman (2005) conclude that τ̂ 2SJ is less biased than τ̂ 2DL.

However, for small values of τ̂ 2DL, τ̂ 2DL performs better than τ̂ 2SJ . τ̂ 2SJ is very simple estimator

of τ 2. Another advantage of τ̂ 2SJ is that it always produces non-negative value for τ 2. Thus,

no truncation at zero is required.

2.8 Confidence intervals for τ 2

It is important to provide information about the uncertainty about the τ 2. Therefore in this

section, we provide confidence intervals for τ̂ 2.

2.8.1 Wald-type confidence intervals

Using asymptotic normality property of ML and REML estimators, 95 % maximum likelihood

and restricted maximum likelihood Wald type confidence intervals for τ̂ 2 are

τ̂ML ± 1.96
√

Var(τ̂ML)

and

τ̂REML ± 1.96
√

Var(τ̂REML)
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2.8.2 Q profile confidence interval

Viechtbauer (2007) proposed a method for constructing confidence interval for the hetero-

geneity parameter τ 2 based on inverting the Q test statistic. Under random effects model, the

generalized Q-statistic for testing the heterogeneity is

Q(τ 2) =
K∑
i=1

(θi − θ̂RE)2

τ 2 + σ2
i

∼ χ2
K−1

where θ̂RE =
K∑
i=1

wiθi/
K∑
i=1

wi is the weighted average of effect measures and wi = 1
τ2+σ2

i
are the

weights. Since

P (χ2
K−1;0.025 ≤ Q(τ 2) ≤ χ2

K−1;0.975) = 0.95,

the 95 % Q profile confidence intervals for τ 2 can be found from lower and upper quantiles of

χ2
K−1 distribution

Q(τ 2L) = χ2
K−1;0.975 Q(τ 2U) = χ2

K−1;0.025 (2.8.1)

The upper and lower bounds for τ 2 can be calculated iteratively for increasing values of τ 2.

2.8.3 Profile likelihood confidence interval

The profile likelihood confidence interval is proposed by Hardy and Thompson (1996). The

confidence interval based on τ̂ 2REML can be estimated from the likelihood (2.7.6). A 95 per

cent confidence interval for τ 2 is given by set of values which satisfy

lR(τ̂ 2) > lR(τ̂ 2REML)− 1

2
C0.95(χ

2
1) (2.8.2)

where C0.95(χ
2
1) is the 0.95 quantile of the χ2

1 distribution and lR is the restricted likelihood

ratio test statistic. The distribution

−2 log(
lR(τ 2)

lR(τ 2REML)
)→ χ2

1 for K →∞

where lR(τ 2) is the restricted maximum likelihood function calculated at the τ 2 and τ 2REML.

The profile likelihood confidence interval might not be centred at τ 2REML due to absence of

symmetry.
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According to Hardy and Thompson (1998), the advantage of profile likelihood confidence

interval is that it takes into account the absence of known parameters and the uncertainty

of estimator for τ 2. Sørensen (2008) showed the correspondence between the distribution of

likelihood ratio test and τ 2. For the confidence interval with higher order asymptotic properties

see Sharma and Mathew (2011). An interval centred at the fixed effect model combined effect

and based on the conditional distribution of Q statistic is suggested by Henmi and Copas

(2010). Interval suggested by Henmi and Copas (2010) performs well when publication bias

is present.

2.8.4 Biggerstaff-Tweedie confidence interval for τ 2

According to Biggerstaff et al. (1997), the expected value and variance of Q statistic are given

by

E(Q) = (K − 1) + (S1 +
S2

S1

)τ 2

and

Var(Q) = 2(K − 1) + 4(S1 +
S2

S1

)τ 2 + 2(S2 − 2
S3

S2

+
S2
2

S2
1

)τ 4

where St =
K∑
i=1

wti . Hence, distribution of the Q statistic can be approximated by a gamma

distribution with the shape and scale parameters

γ(τ 2) =
(E(Q))2

Var(Q)
and φ(τ 2) =

Var(Q)

E(Q)
,

respectively. The lower and upper bounds for τ 2 can be found iteratively from

∞∫
Q/φ(τ2)

f(x|γ(τ 2))dx = 0.025 and

Q/φ(τ2)∫
0

f(x|γ(τ 2))dx = 0.025,

where f(x|γ(τ 2)) is the density function for a gamma distribution with shape parameters

γ(τ 2) and scale parameter 1. The obtained lower and upper bounds for τ 2 are constrained to

non-negative values.
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2.8.5 Sidik-Johnkman confidence interval

Using the estimator 2.7.9 for τ 2 derived by Sidik and Jonkman (2005) and the assumption

that (K − 1)τ̂ 2SJ/τ̂
2 ∼ χ2

K−1, the suggested 95 % confidence interval for τ 2 is(
(K − 1)τ̂ 2SJ
χ2
K−1;0.975

,
(K − 1)τ̂ 2SJ
χ2
K−1;0.025

)
Compared to moment based estimator of τ 2, the estimator τ̂ 2SJ is always positive. This implies

that the lower and upper bounds for τ 2 are also positive

2.8.6 Parametric and non-parametric bootstrap confidence interval

Viechtbauer (2007) described two methods of obtaining the confidence interval for τ 2 based

on parametric and non-parametric bootstrap. In parametric bootstrap method, K values of

θi for each iteration b = 1, . . . , B are generated from N(θ̂RE, σ
2 + τ̂ 2). Estimated values of

τ̂ 2b and θ̂RE can be obtained from any method providing a non-negative consistent estimator.

Repeating the bootstrap process B times, we obtain B values of τ̂ 2b . A 95 % parametric

bootstrap confidence interval is obtained by the 2.5th and 97.5th empirical percentiles of the

bootstrapped τ 2b values.

A non-parametric bootstrap confidence interval for τ 2b is obtained in a similar way. Firstly, B

estimates τ̂ 2b are obtained by re-sampling the K values of θi’s and corresponding σ2
i ’s. Then,

a 95 % parametric bootstrap confidence interval is given by the 2.5th and 97.5th empirical

percentiles of these bootstrapped τ̂ 2b values.

Any negative values for τ̂ 2b can be left unchanged or truncated to zero.

2.9 Summary

In this chapter, the methods for meta-analysis of binary data have been reviewed. These meth-

ods assume either homogeneity or heterogeneity of effects across studies. For homogeneous

effects, the methods were reviewed under fixed effect model. In particular, two main methods

are the inverse-variance and the Mantel-Haenzsel method. For the heterogeneous effects, the
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random effects model is an attractive alternative to fixed effect model. In random effects

model, the between-study variance needs to be estimated. The methods of point and interval

estimation of the between-study variance were discussed. For the point estimators of τ 2, Der-

Simonian and Laird moment-based method, Restricted maximum likelihood and Mandel-Paule

method produce the most reasonable results, (Viechtbauer, 2005). Der-Simonian and Laird

method is non-iterative as opposed to parametric estimators derived from likelihood-based

methods. DerSimonian and Kacker (2007) and Rukhin (2003) introduced to meta-analysis

the Mandel-Paule method which produces a reasonable approximation to REML estimator

(Rukhin et al., 2000). Friedman (2000) discusses Hedges and DerSimonian-Laird estimator,

with suggestion that for small heterogeneity τ 2DL is more efficient than τ 2HE while τ 2HE is more

efficient for large variations between studies. Other point estimators of between-study variance

include the estimators by Malzahn et al. (2000), Hartung and Makambi (2003), DerSimonian

and Kacker (2007) and the class of estimators proposed by Rukhin (2013).

A number of other estimators for τ 2 are biased and are not discussed here because of the pres-

ence of estimation bias, for example, Hunter-Schmidt estimator τ̂ 2HS (Schmidt and Hunter,

2014) is negatively biased, maximum likelihood estimator τ̂ 2ML underestimates τ 2 with neg-

atively biased variance (Viechtbauer, 2005). Bias may lead to wrong inference about the

heterogeneity of effect measures and their central tendency. Any bias in estimation of τ 2

affects to the accuracy of pooled effect measure and its sampling variance. If the sampling

variance of an estimate for τ 2 is positively or negatively biased, then it will result in over

or underestimated overall effect measure θ̂RE and its sampling variance. On the other hand,

when the unbiased estimate for τ 2 is substituted into the equation for estimation of overall

effect measure θ̂RE and its variance, this results in a negatively biased estimate for the vari-

ance of θ̂RE. Hence, in order to obtain a reasonable estimate for τ 2, the bias, efficiency and

mean-squared error of τ̂ 2 have to be assessed simultaneously in order to guarantee optimality

for the estimate of τ 2. There exist no uniformly optimal estimator of τ 2 (Kulinskaya et al.,

2014). We assess the performance of standard and new proposed estimators of between-study
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variance in Chapter 6.

The reviewed methods for interval estimation of between-study variance include Wald-type

confidence interval, inverted Q-profile confidence interval, Profile-likelihood confidence inter-

vals, Biggerstaff-Tweedie and Sidik-Jonkman confidence intervals. It is an important task to

be able to construct the confidence intervals for the heterogeneity parameter τ 2. By construct-

ing the confidence interval, we can identify the accuracy of our estimator. Through analysis

and simulation studies of different methods for interval estimation of τ 2, Viechtbauer (2007)

suggests Q-profile and Profile-likelihood confidence intervals. Sidik and Jonkman (2002) sug-

gested to replace of normal quantiles by tK−1 quantiles to account for variability in τ̂ 2. The

most recent review of the methods for estimation of between-study variance and its uncer-

tainty is summarised in Veroniki et al. (2015).

After estimation of between-study variance, the estimator of overall effect measure is obtained

usually by the inverse-variance method. The confidence interval for overall effect measure is

given by Wald statistic under an assumption of normal distribution. For the Wald statistic

based on the estimator θ̂DL, Higgins et al. (2009) suggested an approximation by t distribution

with degrees of freedom from K − 4 to K − 1.

The asymptotic properties of θ̂RE and τ 2 can be derived for three scenarios in a meta-analysis.

The first scenario is when the number of studies K is increasing and sample sizes are fixed.

The second scenario is when the number of studies K is fixed and sample sizes are increasing.

The last case is when the number of studies and sample sizes are increasing simultaneously.

For each asymptotic scenario, the inference in meta-analysis is different, since the approxima-

tions of exact distributions for the same statistic will be different (Kulinskaya et al., 2014).

In general, for asymptotic results to hold, for studies with large K, large sample sizes are

obligatory.

One of most important problem in the meta-analysis is the sparse data. We have discussed

the use of continuity corrections in case of rare events. However, the continuity corrections
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themselves might introduce a bias which results in wrong inference in a meta-analysis. Differ-

ent ways of inferences for sparse data with either continuity correction or avoidance of them in

meta-analysis have been discussed by many authors including Sankey et al. (1996), Zhou et al.

(1999), Sweeting et al. (2004), Shuster et al. (2007), Friedrich et al. (2007), Bradburn et al.

(2007), Rücker et al. (2009), Cai et al. (2010), Bhaumik et al. (2012), Böhning and Mylona

(2015), Kuss (2015). Kuss (2015) summarized all the most recent non-standard methods for

meta-analysis of binary data without using the continuity correction.

The continuity correction c = 1/2 still stays the most efficient correction in contingency ta-

bles. For arcsine, c = 3/8 is the most used continuity correction. For odds ratios, the Mantel-

Haenzsel method seems to solve the problem, since no continuity corrections are required in

this method. The Mantel-Haenzsel method under an assumption of fixed effect model is an

attractive alternative to an inverse-variance method. The Mantel-Haenzsel method estimators

are usually less biased than inverse-variance method estimators in the case of small sample

sizes and/or small risks. Breslow (1981) studies the standard fixed effect methods for com-

bining odds ratio. Breslow (1981) reports that for sparse data, the Mantel-Haenzsel-based

estimator of odds ratio has the good efficiency in comparison to inverse-variance approach

under fixed effect model. For Mantel-Haenzsel and DerSimonian-Laird method, the addition

of standard continuity correction c = 1/2 was compared to a method of combining results

without continuity correction by Sankey et al. (1996). The conclusion from simulations of

comparison of Mantel-Haenszel odds ratio and Dersimonian and Laird odds ratio was that

Mantel-Haenzsel odds ratio performs better in the presence of little heterogeneity without an

addition of continuity correction, whereas for moderate and large heterogeneity the addition

of continuity correction improves the coverage rates. Unfortunately, Mantel-Haenzsel method

is applicable only in fixed effect model. The Mantel-Haenzsel method combines odds ratios

themselves by inverse variance concept instead of using transformations into log scale. Trans-

formation of random variables into different scale might result in transformation biases. The
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issues of transformations biases are discussed in Chapter 3. Transformation of random vari-

ables is wide-spread in the meta-analysis. In randomised controlled trials, the effect is always

given as a function of prevalences.



Chapter 3

Transformation bias

3.1 Introduction

The main focus of this chapter is the bias that arises as a result of transformations of random

variables in random or mixed effects models and the deleterious effects of these biases on

inference in meta-analyses. At the start, the theoretical derivation of the transformation bias

is provided for the general transformation of single random variable. For a single sample, the

influential paper by Cox (1983) investigated transformations in some detail.

Suppose that Xn is an unbiased estimator based on a sample of size n for some real parameter

θ and furthermore that we are interested in the estimator f(Xn) of the transformed parameter

η = f(θ) for a nonlinear transformation f(·). The estimator f(Xn) will then exhibit a finite-

sample bias, but it retains consistency. If an unsuspected random effect is introduced, however,

the estimator loses its consistency, because the bias is enlarged by overdispersion.

If the overdispersion is small and undetectable in the data, it may still severely affect the

inference on transformed effects in a meta-analysis. Combining studies using meta-analytic

methods are increasingly popular in biomedical applications. In epidemiology, studies are often

based on routinely collected administrative unit level data, such as prevalence or incidence

of a disease or condition in a population. Cluster randomised trials are motivated by the

convenience of group-level treatment allocation. Meta-analyses aim to combine evidence from

the existing studies. Requisite statistical methods are essentially the same; they are based on

random or mixed effects models, and are well established, especially so in meta-analysis.

58



59

We illustrate our findings with the comparatively simple example of overdispersed binomial

data, where overdispersion arises as a result of an intra-cluster correlation (ICC) ρ between

Bernoulli random variables in cluster-randomised trials or within studies in meta-analyses.

The most general assumptions about dependent Bernoulli variables are discussed in Chapter

2. Our general findings are based on the examples of biases from arcsine and logit (log-odds)

transformations in single studies and in meta-analysis concentrating on the small values of

the ICC ρ < 0.1. These transformations are very popular in analysis of binomial proportions

(Kulinskaya et al., 2008, Ch.18) and they are also used in the other popular effect measures for

binary data, such as the log-odds ratios or the differences of arcsine-transformed proportions

(Hedges and Olkin, 1985; Rücker et al., 2009). The small value of intra-cluster correlation

is chosen, since small ρ’s commonly appear in bio-medical applications, where the number of

clusters K is moderate to large. Clustering is mostly due to the same healthcare provider

(health practitioner, general practice, clinic, etc.). Gulliford et al. (2005) analysed the data

on 188 ICCs obtained from the General Practice Research Database (GPRD) for variation of

outcomes and performance between United Kingdom general practices and 136 results from

a Health Technology Assessment (HTA) review for a range of outcomes in community and

health services settings. In the GPRD, the median prevalence p was 13.1% (interquartile range

IQR 3.5 to 28.4%) and median ICC was 0.051 (IQR 0.011 to 0.094%). In the HTA review,

the median prevalence was 6.5% (IQR 0.4% to 20.7%) and median ICC 0.006 (IQR 0.0003

to 0.036). Similarly, the paper by Littenberg and MacLean (2006) calculated the ICC for 62

binary variables measured as part of the Vermont Diabetes Information System, a cluster-

randomized study of adults with diabetes from 73 primary care practices in Vermont, USA

and surrounding areas. The median ICC was 0.022; IQR (0.006, 0.040). Prevalence of some

comorbidities and complications and certain aspects of quality of life varied much more across

patients with only small correlation within practices (ICC< 0.001). Eldridge et al. (2004)

provided a systematic review of 152 publised and 47 unpublished cluster randomized trials in

primary health care, published between 1997 and 2000. The median number of clusters in
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the published trials was 29, and in the unpublished trials it was 32. Our findings apply both

to the standard additive random effects model (REM) of meta-analysis (Hedges and Olkin,

1985), and to the multiplicative version of REM (Kulinskaya and Olkin, 2014).

The structure of this chapter is as follows. The transformation bias is introduced in Section

3.2. Section 3.3.1 explores the consequences of the transformation bias when combining results

in meta-analysis, and Section 3.5 applies our methodology to two examples of meta-analyses

of prevalence of a disease or a condition. Final comments and discussion are given in Section

3.6. This Chapter represents the novel work of this thesis.

3.2 Theoretical derivation of transformation bias

Consider a real-valued statistic X, an estimator of a real parameter based on a sample of size

n. Let gτ (x) denote the density of X, where τ ≥ 0 is an overdispersion parameter. When

τ = 0, we have the null or “fixed effect” model with density g(x) = g0(x), and for τ > 0 we

have a “random effects” model (REM). Denote the expected value and the central moments

of X by xτ = Eτ (X) and µj(τ) = Eτ ((X − xτ )
j), j > 1, respectively. We assume that all

moments µj(τ), j > 1 of X exist for values of τ close to zero, and that the variance is of

order O(1/n) and the higher moments are o(1/n). When we state ”the variance is of order

O(1/n)”, this is one of the assumptions that we make about a real valued statistic X . We are

mostly interested in statistics related to binary data. For example, in meta-analysis of binary

data, pi1 and pi2 are the means of Bernoulli variables Xi1k and Xi2k and therefore variance is

of order O(1/n). Any effect measure such as log-odds ratio which is the transformation of pi1

and pi2 has the variance which has order O(1/n). The same is true for relative risk and risk

difference. This setting is similar to that of Cox (1983). Let f(X) be a transformation of X

such the derivatives of all orders exist. Think of X as an estimator of x0 and of τ as an effect

that is not part of the model used by the statistician. The expected value of the transformed
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variable is

Eτ (f(X)) =

∫
f(x)gτ (x)dx = f(x0) +

∞∑
j=1

1

j!

djf(x)

dxj

∣∣∣
x0

Eτ ((X − x0)j) . (3.2.1)

The first two terms of this series collect all the terms up to order O(1/n) at the model τ = 0

Eτ (f(X))− f(x0) =
df(x)

dx

∣∣∣
x0

Eτ (X − x0) +
1

2

d2f(x)

dx2

∣∣∣
x0

Eτ (X − x0)2 + remainder . (3.2.2)

The left-hand side is the bias of f(X) as an estimator of f(x0). The first term on the right-

hand side measures the influence of the bias, and the second term the one of the mean squared

error of X introduced by the “random effects” model. The formula shows that f(X) is an

unbiased estimator of f(x0) to order O(1/n) only if X remains unbiased even under the REM,

i.e. xτ = x0, and if furthermore the transformation is linear.

The bias to order O(1/n) can be calculated directly if the first two moments of X under the

density gτ (x) are known:

f ′(x)
∣∣∣
x0

(xτ − x0) +
1

2
f ′′(x)

∣∣∣
x0

(µ2(τ) + (xτ − x0)2) .

Further, setting τ = 0 shows that for a nonlinear transformation, f(X) is in general not an

unbiased estimator of f(x0). Now consider a similar expansion for the variance. Using (3.2.1)

for f 2(X), and subtracting the relevant order terms from [Eτ [f(X)]2], we obtain

Varτ (f(X)) = Var0(f(X)) + [f ′(x)|x0 ]2[µ2(τ)− µ2(0)]

+2[f ′(x)|x0 ][f(x0)− E0(f(X))][xτ − x0]

+1
2
[f ′′(x)|x0 ][f(x0)− E0(f(X))][µ2(τ)− µ2(0)]

−[f ′′(x)|x0 ][xτ − x0]2 + · · · .

(3.2.3)

If τ omit itself of order O(1/
√
n), only the terms in the first line are of order O(1/n), and the

rest can be neglected.

Example 1: Transformation of a normal random variable

Consider a random variableX from a normal distribution with density gτ (x) = ϕ(x0, σ
2/n+ τ 2),
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where ϕ(µ, σ2) is the normal density with mean µ and variance σ2. Here xτ = x0, so X is

unbiased for x0 even under the REM, and the variance is σ2/n+τ 2. The first term in equation

(3.2.2) is zero for x0 = E0(X), and the variance of X is σ2 + τ 2. Therefore,

Eτ (f(X)) = f(x0) +
σ2 + τ 2

2

d2f(x)

dx2
|x0 + o(1/n)

or

Eτ (f(X)) = f(x0) +
1

2
(Var0(X) + τ)

d2f(x)

dx2
|x0 + o(1/n). (3.2.4)

In case of fixed effects, usually the second order term is neglected. However, under the as-

sumption of random effects, the second order term consists of the random effect variance τ 2

in addition to Var0(X), which is assumed to be non-zero. Hence, the overdispersion is of size

τ and in a non-linear transformation it causes an added bias of size 0.5τ 2f ′′(x)|x0 . This does

not tend to 0 with n→∞.

Example 2: Standard random effects model for log-odds

In meta-analysis, the following standard additive REM for the empirical log-odds is used

routinely: θ̂ = X ∼ N(θ, [np(1− p)]−1 + τ 2), where p is the probability of an event of interest.

We are interested in going from the logit scale θ to the probability scale p. This transformation

is

p = f(θ) = [1 + exp(−θ)]−1,

and let its estimate p̂ be the same function of θ̂. Therefore, p̂ is biased in the standard REM

model:

Eτ (p̂)− p =
1

2
f ′′(θ){[np(1− p)]−1 + τ 2} =

1

2
p(1− p)(1− 2p)

[
1

np(1− p)
+ τ 2

]
,

since f ′(θ) = f(θ)− f(θ)2, and

f ′′(θ) =
exp(−θ)(exp(−θ)− 1)

(1 + exp(−θ))3
= p(1− p)(1− 2p).
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p̂ is biased unless p = 1/2. For p = 0.1, this bias is 0.4/n + 0.036τ 2; and for p = 0.2,

it is 0.3/n + 0.048τ 2. This is not a large bias but it matters in meta-analysis, as we shall

see later. Note again the dramatic effect of the REM parameter τ . The similar expansion

of p̂ under the logistic-normal model is discussed in Hinde and Demétrio (1998). However,

Hinde and Demétrio (1998) does not account for the second order terms which introduces a

transformation bias.

Example 3: Overdispersed binomial model for log-odds

Consider the sample log-odds in any overdispersed binomial model, i.e. a model for a number of

successes X out of n dependent Bernoulli variables. We denote the overdispersion parameter in

this model by ρ instead of τ , as this corresponds to correlation between each pair of underlying

Bernoulli variables. The transformation of interest is f(p) = log(p/(1 − p)). The derivatives

are f ′(p) = [p(1−p)]−1 and f ′′(p) = (2p−1)/[p(1−p)]2. When the log-odds transformation is

applied to p̂ = X/n, the equation (3.2.2) is used with the first two moments of an overdispersed

binomial distribution µρ(p̂) = p and Varρ(p̂) = n−1p(1− p)[1 + (n− 1)ρ] to obtain

Eρ(log( p̂
1−p̂)) = Eρ(log( X

n−X )) = log( p
1−p ) + (2p−1)

2p2(1−p)2 Varρ(p̂) + · · ·

= log( p
1−p )− (1−2p)(1+(n−1)ρ)

2np(1−p) + · · ·
.

Therefore, the sample log-odds has a bias term linear in ρ and of order O(ρ) in the overdis-

persed binomial model. For p = 0.1, this bias is −4.4(4)[1 + (n− 1)ρ]/n; and for p = 0.2, this

bias is −1.875[1 + (n− 1)ρ]/n.

The standard continuity correction for log-odds is to add 1/2 to numerator and denomina-

tor, i.e. equivalently to use p̃ = (X + 1/2)/(n + 1) when estimating log-odds. As is well

known, this continuity correction takes care of the 1/n bias term of the log-odds under the

fixed effects, i.e. for ρ = 0. When using this correction, the bias term f ′(p)E(p̂ − p) =

[p(1− p)]−1(1− 2p)/[2(n+ 1)] + O(n−2) is added in the equation (3.2.2), and the variance is

multiplied by [n/(n+ 1)]2. We are left with

Eρ(log(
p̃

1− p̃
)) = Eρ(log(

X + 1/2

n −X + 1/2
)) =
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log(
p

1− p
) +

(1− 2p)

2p(1− p)(n+ 1)
− (1− 2p)n(1 + (n − 1)ρ)

2p(1− p)(n+ 1)2
+ · · · .

To assess the precision of these two-moment approximations to bias with and without the

continuity correction, we performed 10000 simulations for p = 0.1 at each value of ρ =

0(0.01)0.1 for various n values from 10 to 1000, generating overdispersed Binomial variables

from Beta-Binomial distribution, GC model by Emrich and Piedmonte (1991) and from the

model by Lunn and Davies (1998). The results are given in Figure 3.1. The values of p and

ρ were assumed known in these simulations. It can be seen that the approximation is not too

bad for small values of ρ in the case of Beta-Binomial and GC models, but works much worse

for the Lunn-Davies model. Thus the knowledge of just two moments of a distribution does

not provide sufficient information on the magnitude of bias.

3.2.1 Variance-stabilizing transformations in over-dispersed fami-
lies

Variance-stabilizing transformations (v.s.t.’s) are used when the variance (under the fixed

effect model) is a function of the mean: Var0(X) = h(E0(X)). The aim of a v.s.t. is to achieve

Var0(f(X)) ≈ 1. To be a v.s.t. when τ = 0, a transformation f(X) needs to satisfy

[f ′(E0(X)]2 = [Var0(X)]−1,

see Kulinskaya et al. (2008) for details and examples. Substituting this expression in equation

3.2.3, we obtain that, up to terms of smaller order,

Varτ [f(X)] =
Varτ (X)

Var0(X)
. (3.2.5)

It follows that for an additive REM, where under gτ (x) the variance Varτ (X) = Var0(X) + τ 2,

the null v.s.t. f(x) does not stabilise the variance for τ 6= 0. On the other hand, for any over-

dispersed family with Varτ (X) = Var0(X)φ(τ), the null v.s.t. f(x) would achieve variance

stabilization with Varτ [f(X)] = φ(τ).
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Figure 3.1: Bias on log-odds scale in overdispersed binomial model for p = 0.1 (log(p/(1 −
p)) = 2.20) and 0 ≤ ρ ≤ 0.1. 10000 simulations for each value of ρ from the beta-binomial
distribution (black, circles); from the Lunn and Davies model Lunn and Davies (1998) model
(red, squares); from the Gaussian copula Emrich and Piedmonte (1991) (green, triangles),
with and without the Gart Gart et al. (1985) continuity correction (solid and dashed lines,
respectively), and the first order linear bias term given by the first two terms of equation
(3.2.1) using known values of p and ρ (blue). Light grey line at zero.
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Example 4: arcsine transformation for over-dispersed binomial

As an example, consider the estimated probability of success p̂ = X/n based on the sum of n

dependent Bernoulli variables X. Then Varρ(X/n) = n−1p(1− p)[1 + (n− 1)ρ]. The arcsine

transformation is routinely used to variance-stabilize binomial variables. (Kulinskaya et al.,

2008, Ch. 18, p.139) recommend using the Anscombe (1948) transformation 2arcsin(
√
p̃)

for p̃ = (X + 3/8)/(n + 3/4). Then f(p̃) = 2arcsin(
√
p̃) has the mean E0(f(p̃)) = f(p) =

2arcsin(
√
p). Consider, first, the arcsine transform without continuity correction. The deriva-

tives are f ′(p) = [p(1 − p)]−1/2 and f ′′(p) = −(1/2)[p(1 − p)]−3/2(1 − 2p). The bias under

overdispersion ρ > 0 is

Eτ [2arcsin(
√
p̂)]− 2arcsin(

√
p) = −1

4

(1− 2p)√
p(1− p)

[1 + (n− 1)ρ]

n
, (3.2.6)

and the variance is n−1[1 + (n− 1)ρ]. With Anscombe’s continuity correction, we need to add

the first order bias term in the above formula. Using p̃ = (np̂+ 3/8)/(n+ 3/4), the bias is

Eτ [2arcsin(p̃)]− 2arcsin(p) =
3(1− 2p)

2
√
p(1− p)(4n+ 3)

− (1− 2p)√
p(1− p)

4n[1 + (n− 1)ρ]

(4n+ 3)2
. (3.2.7)

For p = 0.1, the bias is −(2/3)[1 + (n−1)ρ]/n and the additional bias from the overdispersion

is −(2/3)ρ; and for p = 0.2, the bias is −0.375[1 + (n − 1)ρ]/n with an additional bias of

−0.375ρ.

To assess the bias of the arcsine transform and the precision of our two-moment approxi-

mation to the bias for p = 0.1, we performed 10000 simulations for p = 0.1 at each value

of ρ = 0(0.01)0.1 for various n values from 10 to 1000, generating overdispersed Binomial

variables from the Beta-Binomial distribution, from the model by Lunn and Davies (1998)

and from the GC model, Emrich and Piedmonte (1991). The results are given in Figure 3.2.

The linear bias term was plotted for known values of p and ρ. Overall, the bias of the arcsin

transformation is rather small. The approximation provides correct slope but not the inter-

cept of a linear trend for smaller values of n. For larger n, the approximation is very good for

the Beta-Binomial and for the GC, but not for the Lunn-Davies model unless ρ ≤ .01. For

larger ρ, the bias of the arcsin transform in the Lunn-Davies model is clearly not linear. The
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Anscombe’s continuity correction reduces bias for all values of n, though it does not matter

much for larger n. In this case the Lunn-Davies model results in a somewhat smaller bias

than the Beta-Binomial and the GC models.

We also studied the coverage of the confidence intervals for p based on the normal approxi-

mation with the variance [1 + (n− 1)ρ] for known ρ, to the arcsine transformation of the p̂ for

the three models. The results are given in Figure (3.3).

Overall the coverage in the Beta-binomial and the GC models in case of the continuity cor-

rection is pretty good. It becomes increasingly conservative with increasing ρ. The coverage

deteriorates for larger sample sizes in the Lunn-Davies model. This is due to its asymptotic

non-normality, as was discussed in Section (2.2.2).

3.3 Transformation bias in meta-analysis

3.3.1 Small biases in meta-analysis

In meta-analysis, a relation between average sample size n and the number of studies K is

important for the quality of the inference for the combined effect. In our context, if a statistic

X estimating some parameter µ has a bias of order 1/n, the mean (weighted or not) of K such

statistics has the bias of the same order, but its variance is of order 1/K. So keeping n fixed

and increasing K results in a diminishing coverage of µ as the narrow confidence intervals

are centered on a biased estimator. This observation was originally made in Kulinskaya et al.

(2014). In the current setting, a minor bias from a transformation used under REM may result

in sub-standard coverage of the combined effect, as is demonstrated for the arcsine transform

in Section 3.3.2. Therefore in meta-analysis we cannot afford even small biases in a case of a

large number of studies K.

Denote by ni, i = 1, · · · , K the sample sizes and by n̄ the “average” sample size of the

K studies, and let the total sample size be N = n̄K. Denote by Xi a summary statistic

from the study i, and denote its expectation and variance by µ and σ2
i . Let the bias of the

combined weighted mean X̄ be c/n̄, so the combined mean is centered at µ+c/n̄. If the inverse
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Figure 3.2: Bias on the arcsine scale of the arcsine transformation in overdispersed binomial
model for p = 0.1 and 0 ≤ ρ ≤ 0.1. 10000 simulations for each value of ρ from the beta-
binomial distribution (black), from the Lunn and Davies (1998) model (red) and from the
Gaussian copula Emrich and Piedmonte (1991) (green) with and without the continuity cor-
rection (solid and dashed lines, respectively). Also the first order bias terms given by the first
two terms of equation (3.2.1) and plotted for known p and ρ (solid or dashed blue lines).
Light grey line at zero.
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Figure 3.3: Coverage (for a known value of ρ) at the nominal 95% level of the true value of p
using the acrsine transformation in overdispersed binomial model for p = 0.1 and 0 ≤ ρ ≤ 0.1.
10000 simulations for each value of ρ from the beta-binomial distribution (black lines), from
the Lunn and Davies (1998) model (red lines) and from the Gaussian copula Emrich and
Piedmonte (1991) (green) with and without the continuity correction (solid and dashed lines,
respectively). Light grey line at 0.95.
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variance weights wi are used to obtain the combined mean, its variance is approximated by

[
∑
wi]
−1 = [Kw̄]−1 = O(1/K), where w̄ is the average weight. Denote by σ2 = w̄−1 = O(1/n̄)

the “average” variance of the within-studies summary statistics Xi. The half-width of the

confidence interval (CI) for the combined mean of K studies is z1−α/2σ/
√
K. For the CI for

the combined effect to reliably cover the mean µ, the requirement is

z1−α/2σ/
√
K >> |c|/n̄.

This may not be satisfied when the number of studies K is too large, or the sample size n̄ is

too small. To achieve a good coverage of the combined effect, given biased estimates from the

individual trials whose bias is of rough order 1/n̄ = K/N , the following relationship between

the number of studies K and the overall sample size N should hold:

K = O(N2/3−γ) for γ > 0.

This means that the sample sizes of the individual studies in meta-analysis cannot be too small

in relation to the number of studies. In practice, as the constant c is not known, particular

caution is required in the case of a large number of comparatively small studies. A similar

complication arises, for instance, when combining penalised GLM regressions (which are in-

tentionally somewhat biased) on subsamples of a big dataset. The even stronger restriction

K < N1/5 is require in that case in order for the combined result to be equivalent to the

regression on the full dataset, Chen and Xie (2014).

3.3.2 Arcsine transformation

We have studied by simulation the bias and the coverage of the parameter 2arcsin(p) when the

data is generated from an overdispersed binomial distribution with the correlation coefficient

ρ ≤ 0.1, the estimated probabilities p̂i, i = 1, · · · , K from individual studies are arcsine-

transformed and the meta-analysis is performed on the variance-stabilized scale. We varied

sample sizes n from 10 to 1000 and the number of studies K from 10 to 80. We assumed known

probability p and in these simulations. Inverse-variance weights on the variance-stabilized scale
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wi = ni/[1 + (ni − 1)ρ] with known ρ were used in meta-analysis.

A representative selection of these simulation results when p = 0.1 is given in Figures 3.4

and 3.5 for the bias and the coverage (with the known ρ in weights), respectively, of the

combined mean of the arcsine-transformed estimated probabilities from K studies. Results

for p = 0.2 and p = 0.4 are given in A.1 - A.4 in the Appendix A. The coverage of the

combined mean when the parameter ρ is estimated is explored in Section 3.4.1. The bias in

meta-analysis is exactly the same as in one study. Fact that the confidence intervals were

inflated by known value os the standard deviation (1 + (n− 1)ρ)1/2 on the variance-stabilizing

scale. This may differ from actual variance inflation, becoming unacceptable from n = 80 for

ρ ≥ .01. This happens because the confidence intervals are [sin(arcsin(
√
p̂) ± 1.96/(2

√
n))]2,

and their width is quickly reducing with n, whereas the mean-square-error of arcsine-based

estimate p̂ is comparatively large due to bias.

Bias in Figure 3.4 does not much depend on the number of studies and is very similar to that

for one study, see Figure 3.2. The coverage given in Figure 3.5 is considerably worse than that

for one study, given in Figure 3.3. See Section 3.3.1 for explanation of these findings.

It can be seen that the continuity correction substantially reduces the bias and improves the

coverage. For each sample size, the coverage deteriorates when the number of studies K

increases. The reason for this is that the bias, though small, becomes non-negligible for large

K, as discussed in Section 3.3.1. Interestingly, for large n (starting from n = 80), there is a

substantial difference in coverage between the beta-binomial and GC models, on one hand, and

the Lunn-Davies model on the other hand. The coverage in the Lunn-Davies model is close

to nominal, whereas in the previous two models, the coverage deteriorates quite dramatically.

For p = 0.2 and p = 0.4 the above overall patterns also apply but on a milder scale, especially

for p = 0.4, see A.1 - A.4 in the Appendix.
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Figure 3.4: Bias on the arcsine scale of the meta-analysis of arcsine transformations from K
studies in overdispersed binomial model for p = 0.1 and 0 ≤ ρ ≤ 0.1. 10000 simulations
for each value of ρ from the beta-binomial distribution (black), from the Lunn and Davies
(1998) model (red) and from the GC model by Emrich and Piedmonte (1991) (green) with
and without the continuity correction (solid and dashed lines, respectively). Also the first
order bias terms given by the first two terms of equation (3.2.1) and plotted for known p and
ρ (solid or dashed blue lines). Light grey line at zero.
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Figure 3.5: Coverage (for a known value of ρ) at the nominal 95% level of the true value of
p using the meta-analysis of acrsine transformation from K studies in overdispersed binomial
model for p = 0.1 and 0 ≤ ρ ≤ 0.1. 10000 simulations for each value of ρ from the beta-
binomial distribution (black lines), from the Lunn and Davies (1998) model (red lines) and
from the GC model by Emrich and Piedmonte (1991) (green) with and without the continuity
correction (solid and dashed lines, respectively). Light grey line at 0.95.
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3.3.3 Log-Odds transformation

In meta-analysis of the log odds log(p/(1 − p)) from an overdispersed binomial distribution

with correlation ρ, the weight of an estimated log-odds is given by the inverse estimated

variance w = [σ2]−1 = [(1 + (n − 1)ρ)/np(1 − p)]−1. In contrast to arcsine transformation,

the weights of log odds depend on the unknown probabilities. Estimation of the probabilities

affects the bias of the log-odds, and even its sign.

Trikalinos et al. (2013) studied by simulation the log, logit and arcsine transformations for

overdispersed binomial data. They rightly point out that “All these functions are concave

for proportions between 0, 0.50, and therefore introduce a negative bias: The mean in the

transformed scale will be smaller than the transformation of the mean in the proportion

scale.” However, this theoretical finding is reversed when the probabilities p are estimated.

Figures 3.6 and 3.7 show the bias and coverage of log odds in the meta-analysis of K studies

using known probabilities p and intra-cluster correlation ρ in the weights. Here the first order

bias term given by the first two terms of equation (3.2.1) approximates the bias of the log-odds

transformation reasonably well. Compare these results to those in Figures 3.8 and 3.9 showing

the bias and coverage when the weights include estimated probabilities p̂ and a known value

of ρ. The coverage in the meta-analysis of log odds is pretty dismal in both settings. However,

the sign of the bias changes from negative to positive with substitution of p̂ in the weights.

New terms taking the random weights into account are required to estimate the bias. It is

therefore considerably more difficult to provide bias correction for meta-analysis of log-odds,

and we do not pursue this further.

3.4 Theory of bias-correction

In the previous section, we have shown that there exist a bias from the transformation of a

random variable in case of a random effects model. The random effect can be either additive

or multiplicative. In this section, we correct the bias of O(1/n) adding the second order bias

correction term to the given transformations. For general transformation f(X), the new bias
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Figure 3.6: Bias on log-odds scale in the meta-analysis of log-odds from K studies in overdis-
persed binomial model for p = 0.1 (log(p/(1− p)) = 2.20) and 0 ≤ ρ ≤ 0.1 with known p and
ρ in the weights. Simulations (10000 for each values of ρ) from the beta-binomial distribution
(black); from the Lunn and Davies (1998) model (red); from the GC model by Emrich and
Piedmonte (1991) (green); and the first order bias term given by the first two terms of equa-
tion (3.2.1) and plotted for known values of p and ρ (blue) with and without the continuity
correction (solid and dashed lines, respectively).



76

 Intra−cluster correlation ρ

C
ov

er
ag

e
● ● ● ● ● ● ● ● ● ●

n = 20 , K = 10

● ● ● ● ● ● ● ● ● ●

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

 Intra−cluster correlation ρ

C
ov

er
ag

e

●
●

●
●

●
●

●
●

● ●

n = 80 , K = 10

●
●

●
●

● ● ● ●
● ●

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

0.
80

0.
90

1.
00

 Intra−cluster correlation ρ

C
ov

er
ag

e

●
●

●
●

●

●
●

●
●

●

n = 250 , K = 10

●
●

●
●

●

●
●

●
●

●

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

0.
80

0.
90

1.
00

 Intra−cluster correlation ρ

C
ov

er
ag

e

●
●

●
●

●
●

●
●

●
●

n = 1000 , K = 10

●
●

●
●

●

●
●

●
●

●

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

0.
80

0.
90

1.
00

 Intra−cluster correlation ρ

C
ov

er
ag

e

● ●
●

● ●
●

● ●

● ●

n = 20 , K = 30

● ●
●

● ●
●

● ●

● ●

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

 Intra−cluster correlation ρ

C
ov

er
ag

e

●

●

●

●

●

●

●

●

●
●

n = 80 , K = 30

●

●

●
●

●

●
●

●

●
●

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

0.
80

0.
90

1.
00

 Intra−cluster correlation ρ

C
ov

er
ag

e

●

●

●

●

●

●

●

●

●
●

n = 250 , K = 30

●

●

●

●

●

●

●

●

●
●

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

0.
80

0.
90

1.
00

 Intra−cluster correlation ρ

C
ov

er
ag

e

●

●

●

●

●

●

●

●

●

●

n = 1000 , K = 30

●

●

●

●

●

●

●

●
●

●

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

0.
80

0.
90

1.
00

 Intra−cluster correlation ρ

C
ov

er
ag

e

●
●

●

●

●

●

●

●

●

●

n = 20 , K = 80

●
●

●

●

●

●

●

●

●

●

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

 Intra−cluster correlation ρ

C
ov

er
ag

e

●

●

●

●

●

●

●
●

●
●

n = 80 , K = 80

●

●

●

●

●

●

●
●

●
●

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

0.
80

0.
90

1.
00

 Intra−cluster correlation ρ

C
ov

er
ag

e

●

●

●

●

●

●

●
● ● ●

n = 250 , K = 80

●

●

●

●

●
●

●
● ● ●

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

0.
80

0.
90

1.
00

 Intra−cluster correlation ρ

C
ov

er
ag

e

●

●

●

●

●

●

●
●

● ●

n = 1000 , K = 80

●

●

●

●

●

●
●

● ● ●

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

0.
80

0.
90

1.
00

Figure 3.7: Coverage of the combined effect on log-odds scale in the meta-analysis of log-
odds from K studies in overdispersed binomial model for p = 0.1 (log(p/(1− p)) = 2.20) and
0 ≤ ρ ≤ 0.1 using known p and ρ in the weights. 10000 simulations for each value of ρ from the
beta-binomial distribution (black); from the Lunn and Davies (1998) model (red) and from
the GC model by Emrich and Piedmonte (1991) (green line), with and without the continuity
correction (solid and dashed lines, respectively).
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Figure 3.8: Bias on log-odds scale in the meta-analysis of log-odds from K studies in overdis-
persed binomial model for p = 0.1 (log(p/(1 − p)) = 2.20) and 0 ≤ ρ ≤ 0.1 using estimated
p and known ρ in the weights. 10000 simulations for each value of ρ from the beta-binomial
distribution (black); from the Lunn and Davies (1998) model (red); from the GC model by
Emrich and Piedmonte (1991) (green) and the first order bias term given by the first two
terms of equation (3.2.1) and plotted for known values of p and ρ (blue), with and without
the continuity correction (solid and dashed lines, respectively).
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Figure 3.9: Coverage of the combined effect on log-odds scale in the meta-analysis of log-
odds from K studies in overdispersed binomial model for p = 0.1 (log(p/(1 − p) = 2.20) and
0 ≤ ρ ≤ 0.1 using estimated p and known ρ in the weights. 10000 simulations for each value
of ρ from the beta-binomial distribution (black); from the Lunn and Davies (1998) model
(red) and from the GC model by Emrich and Piedmonte (1991) (green), with and without the
continuity correction (solid and dashed lines, respectively).
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corrected estimator is

f(X) +
1

2

d2f(x)

dx2
|x0Eτ (X − x0)2.

In case of using the continuity correction in estimated probabilities, the bias correction should

include the first order bias term so that

f(X) +
df(x)

dx
|x0Eτ (X − x0) +

1

2

d2f(x)

dx2
|x0Eτ (X − x0)2.

For example, bias corrected estimator for arcsine transformation without continuity correction

is

2arcsin(
√
p̂) +

1

4

(1− 2p)√
p(1− p)

[1 + (n− 1)ρ]

n
.

With continuity correction 3/8 in p̃ adding the first order term to the bias correction, the

corrected estimator of 2arcsin(
√
p) is

2arcsin(p̃)− 3(1− 2p)

2
√
p(1− p)(4n+ 3)

+
(1− 2p)√
p(1− p)

4n[1 + (n− 1)ρ]

(4n+ 3)2

The bias correction depends on probability p and intra-cluster correlation ρ. Both of these

parameters are unknown and have to be estimated. Therefore the bias correction itself may

become biased as it includes non-linear function of estimated probabilities.

3.4.1 Bias correction for arcsine transformation

In this Section we aim to correct the biases in the arcsine transformation with and with-

out the Anscombe (1948) continuity correction p̃ = (np̂ + 3/8)/(n + 3/4) by taking out the

first order bias terms given by equations (3.2.6) and (3.2.7). The bias terms depend on

(1− 2p)/
√
p(1− p) and ρ. The bias correction using known values of p and ρ substantially

improves both bias and coverage, see A.5 - A.7 in Appendix A. Substituting an estimate p̂ in the

expressions for bias results in an additional bias in the expected value of (1− 2p̂)/
√
p̂(1− p̂).

This bias is minimised when the Gart et al. (1985) continuity correction p̂ = (X+0.5)/(n+1)

is used in the bias term.

For the intra-cluster correlation coefficient ρ, different estimators were reviewed by Ridout
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et al. (1999). Among all the estimators, the analysis of variance (AOV) estimator and an

estimator based on a weighted average of Pearson correlation coefficients between pairs of

observations within each group, denoted by ρ̂PPR by Ridout et al. (1999) perform the best in

terms of bias. Our own simulations show that the AOV estimator, ρ̂AOV , defined in Appendix

A, is superior to the PPR estimator, see 3.12.

The analysis of variance (AOV) estimator for intra-cluster correlation is

ρ̂AOV =
MSb −MSw

MSb + (n0 − 1)MSw
,

where MSw and MSb are the within and between group mean squares for a one-way analysis

of variance applied to Bernoulli r.v.’s, and where

n0 =
1

K − 1
[N −

K∑
i=1

n2
i

N
], with N =

K∑
i=1

ni.

For binary outcomes, the within and between group mean squares are

MSb =
1

K − 1
[
K∑
i=1

X2
i

ni
− 1

N
(
K∑
i=1

Xi)
2]

and

MSw =
1

N −K
[
K∑
i=1

Xi −
K∑
i=1

X2
i

ni
],

respectively.

We have studied by simulation the changes to bias and coverage of arcsin(p) when the bias-

correction based on the estimated first-order bias term is applied to arcsine transformation

and meta-analysis is performed on the variance-stabilized scale. A representative selection of

these simulation results when p = 0.1 is given in Figures 3.10 and 3.11 for the bias and the

coverage, respectively. The intra-class correlation was estimated by ρ̂AOV , and the standard

1/2 continuity correction was applied to p̂ in the bias term. We varied sample sizes n from

10 to 1000 and the number of studies K from 10 to 80. In meta-analysis, inverse variance

weights on the variance-stabilized scale were used: wi = ni/[1 + (ni − 1)ρ̂AOV ].

Comparing Figure 3.10 to Figure 3.4, we see that the bias correction reduced the bias, espe-

cially for small values of the intra-class correlation ρ < 0.06. For larger values of ρ, the bias
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correction results in a positive bias, compared to negative bias without the correction. Bias

increases for large values of ρ.

Comparing Figure 3.11 to Figure 3.5, it is clear that the bias correction improves the coverage

in the beta-binomial and the GC models for ρ < 0.06 and K ≥ 30. The coverage deteriorates

for larger values of ρ̂. For K = 10 the bias correction results in coverage at about 90% at

nominal 95% level. The reason is the inferior estimation of ρ for small values of K. For the

Lunn-Davies model, coverage is considerably lower than in the beta-binomial and the GC

models.
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Figure 3.10: Bias on the arcsine scale in the meta-analysis of bias-corrected arcsine transfor-
mations from K studies in overdispersed binomial model for p = 0.1 and 0 ≤ ρ ≤ 0.1 with
estimated probabilities p̂j and ρ̂AOV in the bias correction terms. 10000 simulations for each
value of ρ from the beta-binomial distribution (black), from the Lunn and Davies (1998) model
(red) and from the GC model by Emrich and Piedmonte (1991) (green) with and without the
continuity correction (solid and dashed lines, respectively). Light grey line at zero.
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Figure 3.11: Coverage at the nominal 95% level of the true value of p in the meta-analysis
of bias-corrected acrsine transformations from K studies in overdispersed binomial model for
p = 0.1 and 0 ≤ ρ ≤ 0.1 with estimated probabilities p̂j and ρ̂AOV in the bias correction
terms. 10000 simulations for each values of ρ from the beta-binomial distribution (black
lines), from the Lunn and Davies (1998) model (red lines) and from the GC model by Emrich
and Piedmonte (1991) (green) with and without the continuity correction (solid and dashed
lines, respectively). Light grey line at 0.95.
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3.5 Examples

An important application of our methodology is to meta-analyses of prevalence of a disease or a

condition. In this section, we consider the severity of transformation bias and the usefullness

of our correction to this bias on two examples of meta-analyses of prevalence. The first

example is that of syndromal depression in chronic kidney disease (Palmer et al. (2013)),

and the second is the prevalence of HIV infection in homeless people (Beijer et al. (2012)).

For both examples we obtained the results using the standard meta-analytic methods for

the arcsine-transformed prevalences, and also our bias-correcting methods. These varying

techniques result in somewhat different estimates of prevalence. To evaluate which method

is likely to provide a correct inference, we have performed three simulation studies for each

example, using the three methods for generation of overdispersed binomial outcomes, the GC,

the BB and the LD methods. In all simulations we used the sample mean prevalence p̄ and the

estimated correlation ρAOV as the true values, and simulated 1000 new meta-analytic data-sets

with the same number of studies and their sample sizes as in the original meta-analyses. For

each simulation, we estimated the combined prevalence using the arcsine transformation with

and without the Anscombe (1948) continuity correction, and also with and without our bias

correction.

3.5.1 Prevalence of syndromal depression for paients on dialysis

A meta-analysis of forty-one studies by Palmer et al. (2013) evaluated the prevalence of syn-

dromal depression in chronic kidney disease (CKD). We consider the subset of 28 studies with

N = 2855 patients in total undergoing dialysis for CKD. According to Palmer et al. (2013),

the dialysis stage has the highest rate of depressive symptoms. These data are provided in Ta-

ble 3.1. The Table 3.1 also includes estimated prevalences, their arcsine transformations and

corresponding variances. The sample sizes in these 28 studies are unbalanced and the range

of the estimated prevalences is (0.0808, 0.5484). The results of meta-analysis of these data

by various meta-analytic techniques are summarized in Table 3.2. The Cochran’s Q statistic
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Study No of events No of participants p̂ Var(p̂) 2arcsin(
√
p̂) Var(2arcsin(

√
p̂))

Craven et al., 1987 8 99 0.0808 0.0008 0.5765 0.0101
Moura et al., 2006 21 244 0.0861 0.0003 0.5955 0.0041
Cohen et al., 2002 2 22 0.0909 0.0038 0.6126 0.0455
Preljevic et al., 2011 3 25 0.12 0.0042 0.7075 0.04
Jouet et al., 1994 5 40 0.125 0.0027 0.7227 0.025
Huang et al.,1995 15 107 0.1402 0.0011 0.7675 0.0093
Alsuwaida et al., 2006 4 26 0.1538 0.005 0.8061 0.0385
Preljevic et al., 2011 13 84 0.1548 0.0016 0.8086 0.0119
Chan et al., 2011 23 141 0.1631 0.001 0.8315 0.0071
Lowry et al., 1980 15 83 0.1807 0.0018 0.8782 0.012
Eltayeb et al., 2010 55 300 0.1833 0.0005 0.8849 0.0033
Wuerth et al., 2005 70 380 0.1842 0.0004 0.8872 0.0026
Birmele et al., 2012 53 238 0.2227 0.0007 0.9829 0.0042
Chilcot et al., 2008 9 40 0.225 0.0044 0.9884 0.025
Chen et al., 2010 47 200 0.235 0.0009 1.0122 0.005
Soykan et al., 2004 12 50 0.24 0.0036 1.0239 0.02
Hinrichsen et al., 1989 30 124 0.2419 0.0015 1.0285 0.0081
Kalender et al., 2007 11 42 0.2619 0.0046 1.0745 0.0238
Hedayati et al., 2006 26 98 0.2653 0.002 1.0822 0.0102
Drayer et al., 2006 17 62 0.2742 0.0032 1.1022 0.0161
Cukor et al., 2008 20 70 0.2857 0.0029 1.1279 0.0143
Kweon et al., 2011 15 50 0.3 0.0042 1.1593 0.02
Taskapan et al., 2003 9 30 0.3 0.007 1.1593 0.0333
Loosman et al., 2010 21 62 0.3387 0.0036 1.2423 0.0161
Hong et al., 2006 22 64 0.3438 0.0035 1.253 0.0156
Cruz et al., 2010 25 70 0.3571 0.0033 1.281 0.0143
Ceyhun et al., 2010 22 42 0.5238 0.0059 1.6184 0.0238
Koo et al., 2003 34 62 0.5484 0.004 1.6677 0.0161

Table 3.1: Data for Example 1: Prevalence of syndromal depression diagnosed by clinical
interview with chronic kidney disease at the stage of dialysis , Palmer et al. (2013)

value is Q = 142.5, at K − 1 = 27 degrees of freedom, indicating significant heterogeneity.

In the standard random effects model for the arcsine-transformed data, the DerSimonian and

Laird estimate of the between-studies variance τ̂ 2DL = 0.043 and the combined estimate of

prevalence of 0.227. The beta-binomial model provides an estimated intra-cluster correlation

of ρ̂AOV = 0.046, and a very similar combined estimate of prevalence. The Anscombe correc-

tion increases this estimate to 0.230 for both models. The proposed bias correction increases it

further to 0.236 when used both with or without the Anscombe correction, but the Anscombe

correction does not seem to matter when the bias correction is used. The value of ρ = 0.046,

and the sample mean prevalence of p̄ = 0.2367 were used in further simulations, summarised

in Table 3.3. In tables 3.2 and 3.3, beta-binomial model assumes a beta-binomial distribution

for number of events across K studies. In this model, intra-cluster correlation is estimated



86

Table 3.2: Combined estimates of prevalence of syndromal depression and their confidence
intervals for the data by Palmer et al. (2013)

model continuity correction p̂w p̂L p̂U
Fixed effects model(FE) None 0.2060 0.1914 0.2211

3/8 0.2081 0.1934 0.2232
Random effects model(REM) None 0.2267 0.1904 0.2652

3/8 0.2299 0.1937 0.2682
Beta-binomial model (BB) None 0.2269 0.1900 0.2661
without bias correction 3/8 0.2302 0.1931 0.2696
Beta-binomial model (BB) None 0.2357 0.1982 0.2753
with bias correction 3/8 0.2356 0.1982 0.2752

by analysis of variance method. After estimation of intra-cluster correlation, this estimator

ρ̂ is substituted into the variances of arcsine transformations (1 + ρ(ni − 1))/ni and arcsine

transformations are combined using the inverse-variance method.

Table 3.3: Quality of estimation of prevalence in meta-analyses using the arcsine transfor-
mation and estimated or theoretical value of ρ in weights evaluated from 1000 simulated
meta-analyses of 28 studies with the value of ρ = 0.046, and the prevalence of p = 0.23 with
sample sizes from Palmer et al. (2013)

Generation Continuity Bias Estimated ρ Known ρ
method correction Correction 2arcsin(

√
p̂) Bias of vst p̂ Coverage 2arcsin(

√
p̂) Bias of vst p̂ Coverage

Beta-binomial None NO 0.9967 -0.0194 0.2285 0.9020 0.9974 -0.0187 0.2288 0.9170
3/8 NO 1.0051 -0.0110 0.2320 0.9200 1.0059 -0.0102 0.2323 0.9370
None YES 1.0157 -0.0004 0.2365 0.9400 1.0195 0.0034 0.2381 0.9630
3/8 YES 1.0157 -0.0004 0.2365 0.9410 1.0196 0.0034 0.2381 0.9630

Lunn Davies None NO 0.9983 -0.0178 0.2291 0.8850 1.0013 -0.0148 0.2304 0.9540
3/8 NO 1.0061 -0.0100 0.2324 0.9030 1.0092 -0.0069 0.2337 0.9590
None YES 1.0180 0.0019 0.2375 0.9250 1.0184 0.0023 0.2376 0.9790
3/8 YES 1.0179 0.0018 0.2374 0.9260 1.0182 0.0021 0.2375 0.9790

Gaussian Copula None NO 0.9974 -0.0187 0.2287 0.9100 0.9980 -0.0181 0.2290 0.9170
3/8 NO 1.0057 -0.0104 0.2322 0.9210 1.0063 -0.0098 0.2325 0.9400
None YES 1.0148 -0.0013 0.2361 0.9310 1.0158 -0.0003 0.2365 0.9690
3/8 YES 1.0148 -0.0013 0.2361 0.9320 1.0158 -0.0003 0.2365 0.9710

Overall, the bias of the arcsine transformation is reduced by bias correction, and the coverage

is noticeably improved. Known ρ results in somewhat higher, and the estimated ρ in some-

what lower than nominal coverage, but the differences are within 2 percentage points in both

cases when the bias correction is used. Once more, the Anscombe’s correction does not seem

to be needed when the bias correction is used.
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3.5.2 Prevalence of HIV in homeless people

A meta-analysis of the data on N = 10, 886 participants in sixteen studies by Beijer et al.

(2012) evaluated prevalence of HIV infection in homeless people. These data are provided in

Table 3.4. The main feature of these data is low prevalences across the studies, varying from

0 to 0.13. The results of meta-analysis by various meta-analytic techniques after the arcsine

transformation are summarized in Table 3.5.

Country Study Study size p̂ Var(p̂) 2arcsin(
√
p̂) Var(2arcsin(

√
p̂))

USA Zolopa et. al., 1994 1005 0.1 0.0000896 0.6435011 0.0009950
USA Paris et. al., 1996 331 0.11 0.0002958 0.6761305 0.0030211
USA Magura et. al., 2000 90 0.13 0.0012567 0.7377260 0.0111111
USA Hahn et. al., 2004 639 0.01 0.0000155 0.2003348 0.0015649
USA Robertson et. At., 2004 1958 0.12 0.0000539 0.7074832 0.0005107
France Brouqui et al., 2005 848 0 0.0000000 0.0000000 0.0011792
USA Grimpley et. al.,2006 285 0.01 0.0000347 0.2003348 0.0035088
Brazil Brito et al, 2007 267 0.02 0.0000734 0.2837941 0.0037453
India Talukdar et. Al, 2007 493 0.05 0.0000963 0.4510268 0.0020284
Sweden Burstrom et, al, 2007 123 0.08 0.0005984 0.5735131 0.0081301
Sweden Beijer, 2007 1757 0.02 0.0000112 0.2837941 0.0005692
USA Forney et. Al. 2007 161 0.05 0.0002950 0.4510268 0.0062112
Iran Vahdani et al 2009 2002 0.07 0.0000325 0.5355267 0.0004995
France Laporte et al 2010 402 0.01 0.0000246 0.2003348 0.0024876
France Colson et al 2011 220 0.01 0.0000450 0.2003348 0.0045455
USA Wenzel et al 2011 305 0.08 0.0002413 0.5735131 0.0032787

Table 3.4: Data for Example 2: estimated prevalence of HIV infection in homeless people,
Beijer et al. (2012)

Cochran’s Q statistic value is 536.40 at K − 1 = 15 degrees of freedom, indicating significant

heterogeneity. The standard random effects model for the arcsine-transformed data provides

the DerSimonian and Laird estimate of between study variance τ̂DL = 0.054 and combined

estimate of prevalence of 0.043. The beta-binomial model provides the estimated intra-cluster

correlation of ρ̂AOV = 0.037, and the same combined prevalence value. The beta-binomial

model assumes beta-binomial distributions for number of events across K studies, where ρ̂AOV

is analysis of variance estimator of ρ. The Anscombe corrections increase these estimates to

0.045 and 0.044, respectively, for the two models. The proposed bias correction increases es-

timated prevalence to 0.059 when used both with or without the Anscombe correction.
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The value of ρ = 0.037, and the sample mean prevalence of p̄ = 0.054 were used in further

simulations, summarised in Table 3.6. Overall, the negative bias of the arcsine transforma-

Table 3.5: Combined estimates of prevalence of HIV in homeless people and their confidence
intervals for the data by Beijer et al. (2012)

Continuity correction p̂w p̂L p̂U
Fixed effects model (FEM) None 0.0482 0.0442 0.0523

3/8 0.0495 0.0455 0.0536
Random effects model (REM) None 0.0429 0.0223 0.0697

3/8 0.0445 0.0241 0.0708
Beta-binomial model (BB) None 0.0427 0.0252 0.0645
without bias correction 3/8 0.0444 0.0265 0.0666
Beta-binomial model (BB) None 0.0587 0.0379 0.0836
with bias correction 3/8 0.0590 0.0382 0.0841

Table 3.6: Quality of estimation of prevalence in meta-analyses using the arcsine transfor-
mation and estimated or theoretical value of ρ in weights evaluated from 1000 simulated
meta-analyses of 16 studies with the value of ρ = 0.037, and the prevalence of p = 0.054 with
sample sizes from Beijer et al. (2012)

Generation Continuity Bias Estimated ρ Known ρ
method correction Correction 2arcsin(

√
p̂) Bias of vst p̂ Coverage 2arcsin(

√
p̂) Bias of vst p̂ Coverage

Beta-binomial None NO 0.4303 -0.0404 0.0456 0.8000 0.4264 -0.0443 0.0448 0.8600
3/8 NO 0.4381 -0.0326 0.0472 0.8300 0.4346 -0.0361 0.0465 0.8990
None YES 0.4823 0.0116 0.0570 0.9070 0.4855 0.0148 0.0578 0.9630
3/8 YES 0.4836 0.0129 0.0573 0.9110 0.4867 0.0160 0.0581 0.9630

Lunn Davies None NO 0.4491 -0.0216 0.0496 0.5790 0.4533 -0.0174 0.0505 0.9890
3/8 NO 0.4532 -0.0175 0.0505 0.5830 0.4587 -0.0120 0.0517 0.9860
None YES 0.4790 0.0083 0.0563 0.5170 0.4945 0.0238 0.0599 0.9680
3/8 YES 0.4790 0.0083 0.0563 0.5170 0.4945 0.0238 0.0599 0.9670

Gaussian Copula None NO 0.4317 -0.0390 0.0459 0.8050 0.4380 -0.0327 0.0472 0.9140
3/8 NO 0.4387 -0.0320 0.0473 0.8450 0.4454 -0.0253 0.0488 0.9410
None YES 0.4820 0.0113 0.0570 0.9050 0.4859 0.0152 0.0579 0.9640
3/8 YES 0.4829 0.0122 0.0572 0.9070 0.4868 0.0161 0.0581 0.9630

tion is reduced and becomes positive due to bias correction, and the coverage is noticeably

improved. Known ρ results in somewhat higher, and the estimated ρ in considerably lower

than nominal coverage, reaching 91% at 95% nominal level for the BB and the GC generated

data as compared to 96-97% for all generation mechanisms when ρ is known and the bias

correction is used. Unfortunately, for the LD generation the estimation of ρ by ρAOV clearly

does not work, resulting in abysmal coverage with or without the bias correction. Once more,

the Anscombe correction does not seem to be of much benefit when the bias correction is
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used. To summarise, low prevalence is considerably more challenging to estimate correctly.

The perils of routine use of transformations are very clear in this example, and the proposed

bias correction is of much benefit.

Bias in the estimation of intra-class correlation ρ by ρAOV and ρPPR is plotted in Figure 3.12.
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Figure 3.12: Bias of ρ from K studies in overdispersed binomial model for p = 0.1. Simula-
tions (10000 for each values of ρ) from the beta-binomial distribution (black); from the Lunn
and Davies (1998) model (red); from the Gaussian Copula model by Emrich and Piedmonte
(1991) (green); the bias term plotted from ρ̂AOV and ρ̂PPR estimators (solid and dashed lines,
respectively).
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3.6 Summary

We have investigated bias arising in the estimation of transformed probabilities under the

assumptions of random or mixed effects models, and its deleterious effects on inference in a

meta-analysis. We demonstrated and quantified these effects in the examples of arcsine and

log-odds transformations for overdispersed binomial data. In the standard additive REM of

meta-analysis, the random effect is modeled as the between-study variance component τ 2. In

the overdispersion model (Kulinskaya and Olkin, 2014)), the overdispersion parameter can be

interpreted as the intra-cluster correlation coefficient. Both models can be described in the

common framework of overdispersion.

Let Y1, . . . , Yn be identically and independently distributed variables with cumulative den-

sity function F (Yi, µ). Alternatively, assume an overdispersed model with Yi ∼ F (Yi, µ) and

µ ∼ G(µ, τ 2/n). Cox (1983) compared ML estimates µ̂ and µ̂+ for the original and the

overdispersed model, respectively, under contiguous alternatives gτ (x). He found that µ̂+ − µ̂

is proportionate to τ unless the parametrization is chosen to eliminate the bias of order n−1

in µ. The model specification is important in this context: “if the log linear model speci-

fies a Poisson distribution for Yi with log E(Yi) = xTi β, the overdispersed model should have

E(Yi) = exp(xTi β), with Var(Yi) > E(Yi). An overdispersed model in which Yi is considered

to have a Poisson distribution with log E(Yi) = xTi β+ εi, where εi in turn is a random variable

of expectation zero, would, however, lead to the inconsistencies...” (Cox, 1983, p. 273).

In the same vein, we have demonstrated in Section 3.2 that for close alternatives to the fixed

effect model, any nonlinear transformation of an overdispersed random variable has a bias

that is linear in τ . We have seen in simulations, both for log-odds and arcsine transformation,

that the reduction in bias of a transformation under the fixed effect model reduces bias under

the REM. We have used the Gart et al. (1985) and Anscombe (1948) continuity corrections to

this end. Unfortunately, this, in general, is not sufficient to correct the bias under the REM.

Additionally, the continuity correction is more complicated in regression setting.

Gart et al. (1985) discuss the bias reduction for the logit. Let the empirical logit be La(X) =
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log(X + a)/(n−X + a).“It is not possible to recommend a universal correction a for La(x) in

weighted linear regression; sometimes a = 1/2 is best, other times 1/4, 0, 1/2, or intervening

values are appropriate. The estimation of its variance also presents problems of bias and cor-

relation.” (Gart et al., 1985, p. 187).

We have seen that depending on the way the REM is defined, the primary statistic may be

unbiased but any transformation of this statistic is biased unless the transformation is a linear

function of the primary statistic. Thus, the linear models are bias-free, but the Generalised

Linear Mixed Models (GLMMs) are not, because they involve a transformation. Other popular

classes of transformations which are affected are the variance stabilizing and the normalizing

transformations. This may have important implications in data analysis, where these kinds

of transformations are routinely performed. In section 3.3.1, we demonstrated how large an

effect of these small biases may be in the context of meta-analysis, and explained the reasons

for these findings.

Model misspecification bias in meta-analysis of rates and proportions is discussed in (Trikalinos

et al., 2013, p.81). The authors studied by simulation the log, log-odds and arcsine transforma-

tions of the estimated probability p under beta-binomial and binomial-uniform (i.e. discrete

uniform) distributions. They noted very small bias of the arcsine transformation as compared

to log-odds and log transformations, and recommended the use of inference based on the arc-

sine transformation without Anscombe continuity correction in meta-analysis. Our results

show that this recommendation cannot be accepted without reservations. They also noticed

that for both the log-odds and arcsine transformations “coverage appears to become worse

with increasing K, and more so for scenarios where heterogeneity is large,” but failed to ex-

plain this pattern.

Our simulations confirm that the bias of log-odds and arcsine transformations are linear in ρ

for small values of intra-cluster correlation. These biases do not depend on the sample sizes or

the number of studies in meta-analysis and result in abysmal coverage of the combined effect

for large K. As a remedy, we proposed a plug-in bias correction for the arcsine transformation
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in meta-analysis. For a large number of studies K ≥ 30, and for well-behaved overdispersed

binomial distributions such as the beta-binomial or the GC model, this correction improves

the coverage and reduces the bias for ρ < 0.06. For ρ > 0.06, the coverage still deteriorates.

For the log-odds transformation of proportions, it is more difficult to provide a similar bias

correction due to the dependence between the probabilities of the outcome and the weights.

Random effects models are often written without any details on how the overdispersion is

generated. However, we demonstrated that knowing just two moments of a distribution is

not sufficient. When meta-analysis includes just a few studies, the mechanism of randomness

is difficult to ascertain. In such cases, our examples show that it will be nearly impossible

to get a realistic bias correction for large ICC. How to safeguard against misspecification of

the REM and which method to use in a meta-analysis is an open question. If the REM is

specified on the original scale X, the transformed effect measure f(X) is biased. It appears

to be safer to specify the REM on the transformed scale when the inference on this scale is

preferable. These considerations may apply in the context of a meta-analysis, where the REM

is rather artificial to start with, and therefore there is some freedom on how to define it. Such

a freedom is not ordinarily present in the analysis of real data, where the correct model is

paramount.



Chapter 4

Multiplicative random effects model
for binary data

4.1 Introduction

In chapter 2, we discussed the standard models of meta-analysis: the fixed effect model (FEM)

and the random effects model (REM) for log-odds ratios (see Chapter 2 for details). The for-

mer assumes that the LORs θi, i = 1, · · · , K, do not differ across the studies, i.e. θi ≡ θ;

the latter assumes that the LORs θ̂i themselves are a random sample from, usually, normal

distribution, θi ∼ N(θRE, τ
2) with the between-studies variance τ 2. Further, for large sample

sizes, estimated LORs are approximately normally distributed, θ̂i ∼ N(θi, σ
2
i ). Therefore, the

REM considers that θ̂i ∼ N(θRE, σ
2
i + τ 2), and the FEM follows for τ 2 = 0. Importantly, the

variances σ2
i are of order O(1/ni) for sample sizes ni, i = 1, · · · , K of the studies. Standard

inference concerns the combined effect θ̂, estimated as the weighted mean of the individual

effects from (2.6.4) with weights equal to inverse estimated variances, wi = σ̂−2i in FEM, and

wi = (σ̂2
i + τ̂ 2)−1 in REM. The distribution of the combined effect θ̂RE is customarily approxi-

mated by a normal distribution, N(θRE, (
∑K

i=1wi)
−1). Estimated within-studies variances σ̂2

i

are often assumed to be known. Establishing an effect of treatment corresponds to testing the

null hypothesis θRE = 0, and a confidence interval calculation in REM requires an estimate of

the between-studies variance τ 2, which is also of interest for quantifying heterogeneity.

The shortcomings of the inverse-variances method, as described above, in meta-analysis in

94
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general, and in its application to the LORs are well known. They include the bias in es-

timation of the combined effect, underestimation of its variance, and poor coverage of the

obtained confidence intervals, especially for sparse data and/or small sample sizes, see Kulin-

skaya et al. (2014) for discussion and further references. Under FEM, a considerably better

way to combine odds ratios is the Mantel and Haenszel (1959) method. Unfortunately, there

is no analogue to this method under the REM. Van Houwelingen et al. (1993) proposed

the random-effects conditional logistic model with the natural generalization of the Mantel-

Haenszel method to random-effects models. However, the assumption of our model and the

model by Van Houwelingen et al. (1993) are slightly different. We assume a pair of beta-

binomial distributions across K studies. Van Houwelingen et al. (1993) assume standard

binomially distributed events within each study and normally distributed random effects be-

tween K studies (see Van Houwelingen et al. (1993) for details).

Further, the most popular method of estimating the between-studies variance τ 2 is the Der-

Simonian and Laird (1986) method based on the approximate chi-square moments of the

Cochran’s Q statistic, Cochran (1937), and this method is not satisfactory both in general,

and in application to the heterogeneity estimation of LORs, see Hoaglin (2016); Kulinskaya and

Dollinger (2015, 2016). Kulinskaya and Dollinger (2015) recommend the use of the Breslow-

Day test (Breslow and Day, 1980) for testing the heterogeneity of ORs, and also provide a

new gamma-based approximation to distribution of Q.

Alternative approaches to REM include the use of fixed weights (Shuster, 2010; Shuster and

Walker, 2016) and the overdispersion model (ODM) introduced by Kulinskaya and Olkin

(2014). The ODM allows the interpretation of overdispersion through intra-cluster correlation

ρ or its transformation.

In this chapter we further develop the ODM for odds ratios, using a pair of independent beta-

binomial distributions to describe the variability in both arms. This model includes binomial

distributions for positive responses in both arms, conditional on the probabilities, and allows

beta-distributed variation of the probabilities across the studies. For the log odds ratios from
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a pair of beta-binomial distributions, the normal approximation has been suggested by Zelen

and Parker (1986) and Ashby et al. (1993). To obtain the combined effect, we study the

standard inverse-variance method and a version of the Mantel-Haenszel method adjusted for

clustering, based on the work by Donner et al. (2001) and Chen (2012). Both methods require

estimation of the intra-cluster correlation ρ. We study several methods of estimating ρ, includ-

ing two new methods, one based on the profiling of the Breslow-Day test, and another based

on the gamma approximation to the distribution of Q by Kulinskaya and Dollinger (2015).

The structure of this chapter is as follows. The proposed beta-binomial model for meta-

analysis of odds ratios and the Mantel-Haenzsel-inspired estimation of the combined odds

ratio are introduced in Section 4.2 and 4.3. Five methods of estimation of an overdispersion

parameter, ρ, including a new method based on the BD test, are given in 4.4. An example is

provided in Section 4.5. A large simulation study is described in Section 4.6. Discussion and

conclusions are in Section 4.7. This Chapter represents the novel work of this thesis.

4.2 Odds ratio under beta-binomial model

In the paper by Kulinskaya and Olkin (2014), the idea of proposed overdispersion model comes

from taking into account an intra-cluster correlation between observations of normal and

binomial data in each study. Similarly, by accounting for the intra-cluster correlation between

observations in 2 × 2 contingency tables, we propose a version of random effects model for

the Mantel-Haezsel odds ratio. The standard Mantel-Haenzsel method for odds ratios given

by (2.4.6) is applied under assumption of the fixed effect model. In fixed effect model, Xi1

and Xi2, i = 1, . . . , K are assumed to be independent binomial random variables. Each of

the binomial random variables is the sum of Bernoulli variables such that Xij =
nij∑
k=1

Xijk for

j=1,2. Fixed effect model assumes that odds ratios ψi or logarithms of odds ratio log(ψi)

are homogeneous across K 2 × 2 contingency tables. In practice, studies might differ due to

environmental or experimental factors and may produce contradictory results. The random

effects model which includes an assumption of heterogeneity between studies is more realistic.
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Applying the standard random effects model for logarithms of odds ratios, a heterogeneity of

studies or an inflation in the variance of overall effect measure is explained by variation of log

odds ratios between studies. This variation is usually quantified by an extra between-study

variance τ 2 in the additive model (2.6.2). In terms of overdispersion, the additive random

effects model (2.6.2) is overdispersed whenever τ 2 6= 0 and multiplicative model (2.6.5) is

overdispersed for φ > 1. When, the opposite is true (τ 2 = 0 or φ = 1), the models reduce to

fixed effect model. In general the random effects models for meta-analysis are overdispersed

relative to fixed effect model.

In this Section we propose a new version of multiplicative random effects model (2.6.2) which

can be used with the Mantel-Haenzsel method for combining K odds ratios. In this model,

inflation in the variance is also explained by overdispersion. The overdispersion in the random

effect model can be explained by the intra-cluster correlation between Bernoulli observations.

Usual fixed effect model assumes no dependence between Bernoulli observations. In our case,

this dependence between Bernoulli observations is considered for meta-analysis of contingency

tables. Dependence may occur for example due to repeated measurements on the same patient

as noted by Zhang and Boos (1997). Overdispersion on the data from 2 × 2 tables can also

be referred to as heterogeneity of log odds ratio θ̂i according to Liu and Pierce (1993).

In order to introduce a new version of random effects model, consider the model where the

distribution of group level sums are

Xi1 ∼ Bin(ni1, pi1) and Xi2 ∼ Bin(ni2, pi2)

with probabilities under a common beta distribution

pi1 ∼ Beta(αi1, βi1) and pi2 ∼ Beta(αi2, βi2) (4.2.1)

with parameters αij, βij for j = 1, 2 such that αij > 0, βij < 1. The beta distribution

is chosen due to conjugacy requirement. In the Bayesian language, beta distribution is a

prior distribution for pij that ensures that the posterior distribution for Xij belongs to beta-

distribution.
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In the standard fixed effect model, the probabilities pij are assumed fixed. In our case, we let

probabilities pi1 and pi2 vary across the studies according to independent beta distributions.

The variation of pi1 and pi2 corresponds to heterogeneity in the meta-analysis, since it affects to

variation of logarithms of odds ratios. From above, marginally we have a pair of beta-binomial

distributions

Xi1 ∼ BetaBinom(ni1, αi1, βi1) and Xi2 ∼ BetaBinom(ni2, αi2, βi2)

instead of usual pair of binomial distributions for Xi1 and Xi2. The variance (2.2.7) for

observed number of positive responses Xij shows that we also have a multiplicative linear factor

1 + (nij − 1)ρij which allows the deflation and inflation in the variance of Xij and therefore in

the variance for log odds ratio discussed further. The parameters of beta-binomial distribution

αij and βij are expressed in terms of a single parameter ρij = 1/(1 +αij +βij). Beta-binomial

model is the true random effects model as it is a mixture model. Beta-binomial model allows

variance inflation for Xi1 and Xi2 relative to binomial distribution. In meta-analysis we have

variance inflation relative to fixed effect model. Thus, we have an over-dispersed random

effects model with pair of beta-binomial distributions relative to fixed effect model with pair

of binomial distributions. The presence of over-dispersion in binomial outcomes hence in log

odds ratios can be explained by heavier tails of a distribution with clustering in comparison

to the distribution without clustering (Crowder, 1979). In synthesising multiple studies, beta-

binomial distribution is widely used in combining overdispersed data for event rates, see, for

example Young-Xu and Chan (2008).

For a pair of beta-binomial distributions, the odds ratio (2.4.1) has the same form as before.

However, assuming a common intra-cluster correlation ρij = ρ across groups within K studies,

the variance of individual log transformed odds ratio has to be adjusted for intra-cluster

correlation ρ and is given by

Var(log(ψ̂i)) =
1 + (ni1 − 1)ρ

ni1pi1(1− pi1)
+

1 + (ni2 − 1)ρ

ni2pi2(1− pi2)
(4.2.2)
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with restrictions for ρ

ρ > max1≤i≤K

{
− 1

ni1 − 1
, − 1

ni2 − 1

}
.

A standard delta method can be used for derivation. For ρ = 0 this model is the standard fixed

effect model for binomially distributed data. By the correspondence between the variance of

logarithms of odds ratio and the variance of odds ratio, the variance of a logarithms of odds

ratio is also given by (4.2.2) with restrictions mentioned above. We are mostly interested in

the variance of LOR, because the distribution of estimated LORs is approximately normal.

Assuming a normal distribution for estimated log-odds-ratio θ̂i = log(ψ̂i) i = 1, ...K, the fixed

effect model with usual binomial distributions in treatment and control arms is

θ̂i ∼ N(θ, σ2
i )

where with substitution of (2.4.2)

σ2
i = Var(θ̂i) =

1

ni1pi1(1− pi1)
+

1

ni2pi2(1− pi2)
.

Re-parametrizing the variance of log odds ratio

Var(θ̂i) =
1

ni1

[
1

pi1
+

1

1− pi1

]
+

1

ni2

[
1

pi2
+

1

1− pi2

]
or

Var(θ̂i) =
1

ni2

ni2
ni1

[
1

pi1
+

1

1− pi1

]
+

1

ni2

[
1

pi2
+

1

1− pi2

]
taking the common factor n−1i2 out of the brackets, we obtain

Var(θ̂i) =
1

ni2

[
ni2
ni1

(
1

pi1
+

1

1− pi1

)
+

(
1

pi2
+

1

1− pi2

)]
or

Var(θ̂i) =
1

ni1 + ni2

ni1 + ni2
ni2

[
ni2
ni1

(
1

pi1
+

1

1− pi1

)
+

(
1

pi2
+

1

1− pi2

)]
.

Denote ni = ni1 + ni2 and Ri = ni1/ni2, the allocation ratio, the variance can be rewritten as

a function of ni and Ri as

Var(θ̂i) =
vi(Ri)

ni
≈ ni

−1(Ri + 1)(R−1i (p−1i1 + (1− pi1)−1) + p−1i2 + (1− pi2)−1).
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Now the fixed effect model for pair of binomials is

θ̂i ∼ N(θ,
vi(Ri)

ni
).

Var(θ̂i) = vi(Ri)/ni is the alternative form for variance (2.4.2) with the overall sample size

ni = ni1 + ni2 and Ri = ni1/ni2 as an allocation ratio, i = 1, .., K. This results agrees with

the result in the paper by Kulinskaya and Olkin (2014).

Opening the brackets in (4.2.2), variance of LOR for overdispersed binomial data is

Var(θ̂i) =
vi(Ri)

ni
+

[
(ni1 − 1)

ni1pi1(1− pi1)
+

(ni2 − 1)

ni2pi2j(1− pi2)

]
ρ

or

Var(θ̂i) =
1

ni1pi1(1− pi1)
+

1

ni2pi2(1− pi2)
+
[ ni1 − 1

ni1pi1(1− pi1)
+

ni2 − 1

ni2pi2(1− pi2)
]
ρ.

This variance is clearly inflated in comparison with the standard variance (2.4.2). Inflation

term is of order O(1) and increases with ICC, it also may be large for probabilities in each

arm close to 0 or 1.

Defining

τi =

[
(ni1 − 1)

ni1pi1(1− pi1)
+

(ni2 − 1)

ni2pi2(1− pi2)

]
ρ, (4.2.3)

it is clear that when the variance component τi does not depend on i, the beta-binomial model

results in the same two first moments of the LORs θ̂i as the standard REM, for appropriate

choice of ρ and τ 2. This holds when the probabilities in the treatment and control arms do

not differ pij ≡ pi and the sample sizes are all equal, or, at least approximately, when the

sample sizes are all large, i.e. when (nij − 1)/nij ≈ 1.

The reformulated variance under beta-binomial model can be written as

Var(θ̂i) =
1

ni1
(

1

pi1
+

1

(1− pi1)
) +

1

ni2
(

1

pi2
+

1

(1− pi2)
)+

+
[(ni1 − 1)(p−1i1 + (1− pi1)−1)

ni1
+

(ni2 − 1)(p−1i2 + (1− pi2)−1)
ni2

]
ρ
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The first term is the standard within-study variance, which can be re-written exactly the same

as before for fixed effects model. Hence defining the first term in alternative form and taking

out of the brackets the factor 1/ni1, we have

Var(θ̂i) =
1

ni2
(
ni2
ni1

(
1

pi1
+

1

1− pi1
) + (

1

pi2
+

1

1− pi2
))+

+
1

ni2

[(ni1 − 1)ni2(p
−1
i1 + (1− pi1)−1)
ni1

+ (ni2 − 1)(p−1i2 + (1− pi2)−1)
]
ρ

which is the same as

Var(θ̂i) =
1

ni2
(
ni2
ni1

(
1

pi1
+

1

1− pi1
) + (

1

pi2
+

1

1− pi2
))(1 + aiρ)

for

ai =
(ni1 − 1)R−1i (p−1i1 + (1− pi1)−1) + (ni2 − 1)(p−1i2 + (1− pi2)−1)

R−1i (p−1i1 + (1− pi1)−1) + (p−1i2 + (1− pi2)−1)
(4.2.4)

Thus, the variance of logarithmic of odds ratio for a pair of beta-binomials is

Var(θ̂i) =
1

ni2
(
ni2
ni1

(
1

pi1
+

1

1− pi1
) + (

1

pi2
+

1

1− pi2
))(1 + aiρ)

or introducing the total sample size term nj = n1j + n2j, the variance is

Var(θ̂i) =
1

ni1 + ni2

ni1 + ni2
ni2

(
ni2
ni1

(
1

pi1
+

1

1− pi1
) + (

1

pi2
+

1

1− pi2
))(1 + aiρ)

which can be expressed as a function of ni and Ri

vi(Ri)

ni
φi = ni

−1(Ri + 1)(R−1i (p−1i1 + (1− pi1)−1) + (p−1i2 + (1− pi2)−1))(1 + aiρ).

The overdispersed random effects model with a pair of beta-binomial distributions is

θ̂i ∼ N(θ,
vi(Ri)

ni
φi), (4.2.5)

where φi = (1 + aiρ) and ai is given by (4.2.4). Alternatively, the term ai is

ai = a(ni, Ri, pi1, pi2) = nivi(Ri)
−1
[

1

pi1(1− pi1)
+

1

pi2(1− pi2)

]
− 1.
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Thus, ai is a linear function of ni and has the same order as ni. Reparametrising ai as a

function of the control arm probability pi2 and the odds ratio ψi, ai can be written as

ai =
niRi[(1− pi2(1− ψi))2 + ψi]

(Ri + 1)[(1− pi2(1− ψi))2 +Riψi]
− 1.

For balanced studies Ri = 1, and ai simplifies to ai = ni/2− 1.

Alternative model is to consider overdispersion only in the treatment arm:

Xi1 ∼ BetaBinom(ni1, αi1, βi1) Xi2 ∼ Bin(ni1, pi1)

This is perhaps closer to the standard random effects model which usually has a random effect

only in the treatment arm (Thompson and Sharp, 1999)). In this case, the variance for odds

ratio is

Var(ψ̂i) =
1 + (ni1 − 1)ρ

ni1pi1(1− pi1)
+

1

ni2pi2(1− pi2)
.

which is still inflated, in comparison to the FEM variance, by the term

[(ni1 − 1)/(ni1pi1(1− pi1))]ρ. Subsequent methods are easily adapted to this version of the

ODM, and we do not pursue this model further. Later, Section 6.2.3 of chapter 6 studies

the correspondence of heterogeneity parameters between standard and novel overdispersed

random effects models.

4.3 Adjusted Mantel-Haenzsel method for combining

odds ratios

Applying the Standard Mantel-Haenzsel method to clustered binary data produces wrong Type

I error and downward bias for the p-values associated with χ2
MH according to Darlington and

Donner (2007). χ2
MH is the Mantel-Haenzsel test statistic for testing if odds ratio ψ = 1. In

the paper by Donner and Klar (2002) and Darlington and Donner (2007) an adjusted version

of the Mantel-Haenszel test and related estimator of the odds-ratio (OR) appropriate for

the meta-analysis of cluster-randomised trials are introduced. Darlington and Donner (2007)

compared several methods including the Adjusted Mantel-Haenszel method for combining
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the binary data from contingency tables by Monte-Carlo simulations. Other methods for

combining clustered binary data include: a ratio procedure based on the idea of design effect

suggested by Scott and Holt (1982), the general inverse variance approach provided by the

Cochrane Collaboration and the Woolf procedure suggested by Woolf et al. (1955).

In the paper by Darlington and Donner (2007) about cluster-randomised trials, each arm j

of trial i contains mij clusters of size nij, and there is an intra-class correlation ρi common

for all clusters in the trial i. This can be adapted to a case of one cluster in each arm,

which is equivalent to the over-dispersion based random effects model (or ODM) introduced

in Kulinskaya and Olkin (2014). The resulting statistic is as follows. The correction factor for

the Mantel-Haenszel odds ratio is

Cij = 1 + (nij − 1)ρ̂i for j = 1, 2; i = 1, · · · , K, (4.3.1)

where ρ̂i is the estimated intra-class correlation ρi. The correction factors are referred to

design effects by Scott and Holt (1982). For the Mantel-Haenzsel odds ratio, defining the

adjusted weights

WiC =
[Ci1
ni1

+
Ci2
ni2

]−1
(1− p̂i1)p̂i2.

the corrected Mantel-Haenzsel odds ratio for intra-cluster correlation is

ψ̂CMH =

∑K
i=1WiCψ̂i∑K
i=1WiC

for ψ̂i =
(1− p̂i2)p̂i1
(1− p̂i1)p̂i2

. (4.3.2)

This is the Mantel-Haenzsel odds ratio which can be used in the multiplicative random effects

model. When there is no intra-cluster correlation (ρi = 0), then Cij = 1 and the expression

(4.3.2) reduces to standard Mantel-Haenzsel odds ratio (2.4.6) for fixed effects model in meta-

analysis.

When ρ→ −1/max(ai), then

ψ̂CMH →
∑

ni1=ni2=max(ni)
ni1ni2pi1(1− pi2)/(ni1 + ni2)∑

ni1=ni2=max(ni)
ni1ni2pi2(1− pi1)/(ni1 + ni2)

, (4.3.3)

which is the standard Mantel-Haenzsel odds ratio without corrections (4.3.1). In (4.3.3),

ni1 = ni2 = max(ni) is the maximum values sample sizes across K studies. The proof is
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provided in B.2 of Appendix B.

To obtain the asymptotic variance of ψ̂CMH , we adjusted for overdispersion the asymptotic

variance of Mantel-Haenzsel odds ratio derived by Robins et al. (1986) and Phillips and Holland

(1987):

Var(ψ̂CMH) =

K∑
i=1

RiPi

2R2
+

K∑
i=1

(PiSi +QiRi)

2RS
+

K∑
i=1

SiQi

2S2
,

where

Pi =
Ci1(ni2 −Xi2) + Ci2Xi1

Ci1ni2 + Ci2ni1
, Ri =

(ni2 −Xi2)Xi1

Ci1ni2 + Ci2ni1
,

Qi =
Ci2(ni1 −Xi1) + Ci1Xi2

Ci1ni2 + Ci2ni1
, Si =

(ni1 −Xi1)Xi2

Ci1ni2 + Ci2ni1
,

and R =
∑K

i=1Ri and S =
∑K

i=1 Si.

The variance for logarithms of Mantel-Haenzsel odds ratio can be obtained by correspondence

between ψ and log(ψ). The confidence interval for adjusted logarithms of common odds ratio

log(ψ̂MH) can be obtained as

log(ψ̂MH)± Zα/2[Var(log(ψMH))1/2]

where Zα/2 is the (1−α)100 two sided critical value of the standard normal distribution. The

confidence interval for ψ is obtained by inverting the interval above from logarithmic to odds

ratio scale.

4.4 Estimation of ρ

To be able to evaluate the corrected MH odds-ratio (4.3.2) and an estimate of LOR from

the inverse-variance method in ODM (4.2.5), an estimate of the intra-cluster correlation ρ

is required. We consider two modifications of established methods, namely a moment esti-

mator based on Cochran’s Q statistic similar to DerSimonian and Laird (1986) estimator of

τ 2, and a restricted maximum likelihood (REML) estimator. We also consider related confi-

dence intervals: an interval based on profiling the Q statistic as in Viechtbauer (2007) and a

REML-based interval. Both approaches were proposed in Kulinskaya and Olkin (2014) but
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were not explored by simulation. As an alternative, we propose to invert the Breslow and Day

(1980) (BD) test for both point and interval estimation. The point estimation is based on an

adaptation of the Mandel and Paule (1970) method, and the interval estimation is achieved

through profiling the modified BD test. We also propose a point and interval estimator similar

to Mandel-Paule point estimator and Q-profile interval estimator of ρ based on the approxi-

mation of Q statistic by gamma distribution (Kulinskaya and Dollinger, 2015).

4.4.1 Q-statistic based estimation of ρ

Cochran’s Q statistic is Q =
∑K

i=1wi(θ̂i− θ̄w)2, for the inverse variance weights wi = σ−2i and

θ̄w =
∑K

i=1wiθ̂j/
∑K

i=1wi. Under the null hypothesis of no over- or underdispersion ρ = 0,

the Q-statistic is approximately chi-square distributed with K− 1 degrees of freedom, so that

E(Q) = K − 1. Under the ODM,

E(Q) = E

[ K∑
i=1

wi(θ̂i − θ̄w)2
]
→ E(Q) =

K∑
i=1

E

[
wi(θ̂i − θ̄w)2

]
Assuming wi and (θ̂i − θ̄w)2 are independent and weights wij are known

E(Q) =
K∑
i=1

E(wi)E(θ̂i − θ̄w)2 =
K∑
i=1

wiE(θ̂i − θ̄w)2

with

E(θ̂i − θ̄w)2 = Var(θ̂i)− 2Cov(θ̂i, θ̄w) + Var(θ̄w)

or

E(θ̂i − θ̄w)2 =
1 + aiρ

wi
− 2(1 + aiρ)

W
+

(1 + āwρ)

W

since

Cov(θ̂i − θ̄, θ̂j − θ̄) = δij
1 + aiρ

wi
− (1 + aiρ)

W
− (1 + ajρ)

W
+

(1 + āwρ)

W

where δij is the Kronecker delta (Kulinskaya and Olkin, 2014). Hence, the expected value of

Q statistic is

E(Q) =
K∑
j=1

(1 + aiρ)− 2
∑K

i=1wi(1 + aiρ)

W
+

∑K
i=1wi(1 + āwρ)

W
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E(Q) = K − 1 +
K∑
i=1

aiρ−
2
∑K

i=1wiaiρ

W
+ āwρ

which results in

E(Q) = K − 1 + (Kā− āw)ρ, (4.4.1)

where ā =
∑K

i=1 ai/K, āw =
∑K

i=1wiai/W , and W =
∑K

i=1wi (Kulinskaya and Olkin, 2014).

The estimate of ρ from equation (4.4.1) should satisfy the condition ρ̂ > −1/max(ai).

The estimator in the spirit of random effects estimates of variance (e.g., DerSimonian and

Laird, 1986) proposed by Kulinskaya and Olkin (2014) is

ρ̂M = max

(
Q− (K − 1)

Kā− āw
,− 1

amax

)
; (4.4.2)

underdispersion is present for Q < K − 1. If only positive values of ρ are acceptable, then ρ̂

can be truncated at zero.

Related confidence interval is obtained by inverting the Q test. When the correct weights w∗i =

wi(ρ) = wi/(1 + aiρ) are used, the corrected Q statistic given by Q∗(ρ) =
∑K

i=1w
∗
i (θ̂i − θ̄w∗)2

has approximately the χ2
K−1 distribution. The confidence interval is constructed as{
ρ > −1/amax : χ2

K−1;α/2 ≤ Q∗(ρ) ≤ χ2
K−1;1−α/2

}
. (4.4.3)

Viechtbauer (2007) shows that the standard random effects model confidence intervals for

τ 2 based on this approach, named Q-profile, perform very well, better than the restricted

maximum likelihood confidence intervals described next.

4.4.2 Restricted maximum likelihood based estimation of ρ

The restricted likelihood for the normal distribution with mean θ and variances vi(1 +aiρ)/nj

is

lR(ρ, θ) = −1

2
log(

K∑
i=1

w∗i )−
1

2

K∑
i=1

w∗i (θi − θ)2 +
1

2

K∑
i=1

log(w∗i ), (4.4.4)

for inverse-variance weights w∗i = wi/(1 + aiρ). Following Kulinskaya and Olkin (2014), the

REML equation for ρ is

(W ∗)−1
K∑
i=1

w∗i
ai

1 + aiρ
+

K∑
i=1

w∗i (θi − θ)2
ai

1 + aiρ
=

K∑
i=1

ai
1 + aiρ

, (4.4.5)
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where W ∗ =
∑K

i=1w
∗
i . The mean θ̂REML is obtained as θ̂REML =

∑K
i=1w

∗
i θ̂i/W

∗, and an

iterative procedure readily yields a solution.

The REML confidence intervals are given by all values of ρ which satisfy

lR(ρ) ≥ lR(ρ̂REML)− χ2
1;1−α/2, (4.4.6)

where χ2
1;1−α is the (1−α) percentage point of chi-square distribution with 1 degree of freedom.

4.4.3 Mandel-Paule estimation of ρ

The Mandel-Paule method of estimation of between-studies variance τ 2 in the standard REM

was introduced by Mandel and Paule (1970) and studied subsequently by Rukhin (2003) and

DerSimonian and Kacker (2007). This method uses the first moment of the approximate chi-

square distribution of the Cochran’s Q statistic under homogeneity to find an estimate of τ 2.

In ODM, under the alternative hypothesis ρ 6= 0, the Q statistic with adjusted weights w∗i (ρ) =

wi/(1 + aiρ) is

Q∗(ρ) =
K∑
i=1

(θ̂i − θ̄w∗(ρ))2

σ2
i (1 + aiρ)

.

The unique estimate of ρ can be obtained iteratively by Mandel and Paule (1970) method

from equation Q∗(ρ) = K − 1 given that a solution exist. This method is based on the Q∗(ρ)

has an approximately chi-square distribution with K − 1 degrees of freedom. Thus the first

moment of Q∗(ρ) is K − 1.

4.4.4 Corrected Q-statistic based estimation of ρ

According to Kulinskaya and Dollinger (2015), the distribution of Q statistic can be better

approximated by a gamma distribution with shape and scale parameters

r(ρ) =
E(Q)2

Var(Q)
and λ(ρ) =

Var(Q)

E(Q)
.

The expected value and variance of Q statistic for log odds ratio can be estimated from the

relations

(K − 1)− E(Q) = 0.678[(K − 1)− Eth(Q)] (4.4.7)
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and

Var(Q) = 4.74(K − 1)− 12.17E[Q] + 9.42E[Q]2/(K − 1), (4.4.8)

where Eth(Q) is the theoretical approximation to the mean of Q for log odds ratio (Kulinskaya

and Dollinger, 2015). The Mandel-Paule estimate of ρ based on moments (4.4.7) and (4.4.8) of

Q statistic is Q∗(ρ) = E(Q) given that a solution exist, where E(Q) is the solution of equation

(4.4.7).

The related confidence interval based on gamma approximation of distribution for Q statistic

can be obtained from

{
ρ > −1/amax : Γr(ρ),λ(ρ);α/2 ≤ Q∗(ρ) ≤ Γr(ρ),λ(ρ);1−α/2

}
, (4.4.9)

where Γr(ρ),λ(ρ);α/2 and Γr(ρ),λ(ρ);1−α/2 are the quantiles of gamma distribution with r(ρ) and

λ(ρ) as shape and scale parameters.

4.4.5 Breslow-Day based estimation of ρ

The chi-square distribution is a poor approximation to the distribution of Q statistic for LORs

(Kulinskaya and Dollinger, 2015), and the Breslow-Day (BD) test is an attractive alternative

for testing the heterogeneity of ORs. In the Section we propose a new method of estimation

of ρ based on modification of the BD test for the overdispersed data.

The Breslow-Day test is based on the statistic

X2
BD =

K∑
i=1

(Xi1 − E(Xi1|ψ̂MH))2

Var(Xi1|ψ̂MH)
∼ χ2

K−1, (4.4.10)

where E(Xi1|ψ̂MH) and Var(Xi1|ψ̂MH) denote the expected number and the asymptotic vari-

ance, respectively, of the number of cases in the treatment arm under the assumption of

homogeneity of odds ratios, given the fitted Mantel-Haenzsel odds ratio ψ̂MH . The expected

value E(Xi1|ψ̂MH) in (4.4.10) is obtained from the quadratic equation

E(Xi1|ψ̂MH)[Ni − xi − ni1 + E(Xi1|ψ̂MH)]

[xi − E(Xi1|ψ̂MH)][ni1 − E(Xi1|ψ̂MH)]
= ψ̂MH , (4.4.11)
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where xi = Xi1 + Xi2. Its asymptotic variance Var(Xi1|ψ̂MH) is a particular case, for ρ = 0,

of the variance of Xi1 under overdispersion given by (Song, 2004):

Var(Xi1|ψ̂CMH) =
[ 1

E(Xi1|ψ̂CMH)Ci1
+

1

(xi − E(Xi1|ψ̂CMH))Ci2
+ (4.4.12)

1

(ni1 − E(Xi1|ψ̂MH))Ci1
+

1

(Ni − xi − ni1 + E(Xi1|ψ̂MH))Ci2

]−1
,

where Cij terms are given by (4.3.1). The asymptotic variance given above is not defined when

any of the cells of the i-th 2 by 2 table are empty. In these cases, a continuity correction of

0.5 is added to each cell of such a table.

The Breslow-Day statistic X2
BD = X2

BD(ρ) is now a function of ρ and X2
BD(ρ̂) has an approx-

imately χ2
K−1 distribution under the homogeneity of odds ratios given that the value of ρ is

estimated correctly. Equating the BD statistic to its first moment K − 1,
K∑
i=1

(Xi1 − E(Xi1|ψ̂MH))2

Var(Xi1|ψ̂MH)
= K − 1, (4.4.13)

and solving this estimating equation for ρ̂, provide a Mandel-Paule type estimator ρ̂BD, which

can be used for the calculation of odds ratio ψ̂CMH given by (4.3.2).

The range of values for overdispersion parameter ρ is constrained to an interval

(max{−1/amax,−1/max(nij − 1)}, 1).

When ρ → −1/(nij − 1), the variance in the denominator of X2
BD(ρ) converges to zero and

Breslow-Day statistic tends to infinity. When X2
BD(ρ = 0) < K − 1, the solution of equation

(4.4.13) always exists. On the other hand, ρ = 1 provides the lower limit for Breslow-Day

statistic, so if this lower limit of X2
BD(ρ = 0) > K − 1, the equation (4.4.13) does not have a

solution; in this case we set ρ̂ = 1.

The confidence interval for ρ can be obtained by profiling the Breslow-Day test, similarly

to confidence interval for τ 2 obtained by profiling Cochran’s Q under REM by Viechtbauer

(2007). The confidence interval with 95 percent coverage probability for the intra-cluster

correlation parameter ρ based on the modified Breslow-Day test is given by{
1 > ρ > max{− 1

amax
,− 1

max(nij − 1)
} : χ2

K−1,0.025 ≤ X2
BD(ρ) ≤ χ2

K−1,0.975

}
. (4.4.14)
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Table 4.1: Data for effects of diuretics on pre-eclampsia

e.T e.C n.T n.C p.T p.C
1 14 14 131 136 0.10 0.10
2 21 17 385 134 0.05 0.13
3 14 24 57 48 0.24 0.50
4 6 18 38 40 0.15 0.45
5 12 35 1011 760 0.01 0.05
6 138 175 1370 1336 0.10 0.13
7 15 20 506 524 0.03 0.04
8 6 2 108 103 0.05 0.02
9 65 40 153 102 0.42 0.39

4.5 Example: effects of diuretics on pre-eclampsia

A well-known meta-analysis of nine trials which include the total of 6942 patients, evaluated

an effect of diuretics on pre-eclampsia (Collins et al., 1985). These data have been studied

repeatedly, as for example in Hardy and Thompson (1996), Biggerstaff and Tweedie (1997),

Viechtbauer (2007) and Kulinskaya and Olkin (2014). The basic data with odds ratios, and

their logs are provided in (Kulinskaya and Olkin, 2014, Table 2a) and are reproduced in

table 4.1. These data demonstrate considerable heterogeneity in incidence of pre-eclampsia

in both the treatment and the control groups, Kulinskaya and Olkin (2014), suggesting that

the BB model may be appropriate. There is also considerable heterogeneity in effect sizes.

The overall incidence of pre-eclampsia varies from 0.015 in study 6 to 0.412 in study 9. The

odds ratios of effect of diuretics vary from 0.229 in study 4, a study with high incidence of

0.308, to 2.971 in study 8, a study with low incidence of 0.038. The Cochran’s Q-statistic

value is Q = 27.265, and the total sample size N = 6942. Estimated values of τ 2 for standard

REM, and of ρ assuming the BB model and using various estimating methods are provided

in Table 4.2. The Der-Simonian-Laird estimate of the variance component in standard REM

is τ 2DL = 0.23, and τ 2REML = 0.30. In beta-binomial model, five methods of estimation provide

estimates of ρ̂ varying from 0.008 for the moment estimator, to 0.019 for the Breslow-Day

based estimator. Confidence interval for ρ is the shortest for REML, and the longest for

the BD estimator. These values are directly interpretable as the estimated ICCs and their
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Table 4.2: Values and confidence intervals for ρ, for log odds ratios and for odds ratios for
diuretics on pre-eclampsia example; FEM is the fixed effect, REM is the random effects, and
BB is the beta-binomial model. Heterogeneity parameter estimated is τ 2 in REM, and ρ in
BB model. L and U are the lower and upper limits of the respective confidence intervals (CIs).

Model Method Hetero L U LOR L U length OR L U
geneity of CI

FEM 0.000 -0.398 -0.553 -0.223 0.530 0.672 0.564 0.800
REM DL 0.230 0.072 2.202 -0.517 -0.916 -0.117 0.799 0.596 0.400 0.889
REM REML 0.300 0.043 1.475 -0.518 -0.956 -0.080 0.876 0.596 0.384 0.923
BB M&IV 0.008 0.002 0.095 -0.436 -0.792 -0.080 0.712 0.647 0.453 0.923

M&MH -0.427 -0.775 -0.080 0.695 0.652 0.461 0.923
BB REML&IV 0.010 0.001 0.060 -0.447 -0.835 -0.059 0.776 0.640 0.434 0.942

REML&MH -0.431 -0.809 -0.053 0.756 0.650 0.445 0.949
BB MP&IV 0.017 0.002 0.095 -0.469 -0.920 -0.018 0.902 0.626 0.399 0.982

MP&MH -0.459 -0.898 -0.020 0.879 0.632 0.407 0.981
BB CMP&IV 0.018 0.003 0.094 -0.474 -0.942 -0.007 0.936 0.623 0.390 0.993

CMP&MH -0.472 -0.927 -0.016 0.911 0.624 0.396 0.984
BB BD&IV 0.019 0.003 0.107 -0.475 -0.944 -0.006 0.938 0.622 0.389 0.994

BD&MH -0.463 -0.920 -0.021 0.899 0.630 0.399 0.980

confidence limits. To see the effect of these estimates of heterogeneity on the inference about

the odds ratio, we compare the corresponding estimates for LOR and OR, and their confidence

intervals, in the same table. The odds ratio is the highest (0.672) in the fixed effect model,

and, not surprisingly, its confidence interval is the shortest. The OR is the lowest (0.596) in

the standard REM, and various estimators based on the inverse-variances or the MH method

provide intermediate values of OR, the one based on the MH and method of moments estimator

ρM providing the highest value of OR, 0.652. For each estimator of ρ, the MH estimation of

OR results in a somewhat higher value of OR than the inverse-variances based estimation,

with a somewhat shorter confidence interval for OR. The sample sizes are reasonably large

in all included studies, and based on the results of simulations reported in Section 4.6, we

recommend to use the estimated ICC ρ̂BD = 0.019 and corresponding value of the pooled OR

ψ̂IV = 0.622 with confidence interval (0.389, 0.994).
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4.6 Simulation study

In this Section we provide a simulation study to access the performance of point and interval

estimators of overdispersion parameter ρ and the combined LOR θ in beta-binomial model of

meta-analysis. We assess five point estimators of ρ in respect to their bias: the moment method

(4.4.2), the Mandel-Paule inspired method ρMP , the corrected Mandel-Paule estimator based

on the gamma approximation to Q distribution ρCMP , the REML method (4.4.5) and the BD-

based method (4.4.13). We also assess four related confidence intervals for ρ (4.4.3), (4.4.9),

(4.4.6) and (4.4.14) in respect to their coverage at the 95% confidence level. Additionally, we

compare two estimation methods for obtaining point and interval estimators of the combined

odds ratio or its log, the inverse-variance method θ̂w =
∑
wi(ρ)θ̂i/

∑
wi(ρ) and the modified

Mantel-Haenszel method (4.3.2). We combine five above-mentioned point estimators of ρ with

these two methods of obtaining combined effect θ̂, resulting in ten possible combinations, and

we assess these estimators of θ̂ for bias and for coverage.

Typically, small values of ρ, below 0.1, appear in bio-medical applications, Gulliford et al.

(2005), Littenberg and MacLean (2006). Overdispersion is mostly due to clustering by the

same healthcare provider. However our range of values of ρ up to 0.3 is comparable to τ 2 values

of up to 5 in the standard REM for our choice of values of probabilities and LORs provided

below. This correspondence between heterogeneity in the additive REM and beta-binomial

model is given by equation (4.2.3).

4.6.1 Simulation design

Sizes of the control and treatment groups were taken equal ni1 = ni2 = ni and were generated

from a normal distribution with mean n and variance n/4 rounded to the nearest integer and

left truncated at 5. For a given probability pi2, the number of cases in the control group

Xi2 was simulated from a beta-binomial (ni2, pi2, ρ) distribution using the R package emd-

book (Bolker, 2011). The number of cases in the treatment group Xi1 was generated from a

beta-binomial (ni1, pi1, ρ) distribution with pi1 = pi2 exp(θ)/(1 − pi2 + pi2 exp(θ)) for a given
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LOR value of θ. When ρ = 0, the numbers of events for treatment and control arm Xij were

generated from binomial distributions with sample size nij and probabilities pij, preserving

the above relationship between the probabilities in the treatment and control arms.

The following configurations of parameters were included in the simulations. The number of

studiesK = (10, 20, 30, 50, 80); average sample sizes in each arm are n = (10, 20, 40, 80, 160, 250,

640, 1000); overdispersion parameter ρ varies between 0 and 0.1 (small to moderate heterogene-

ity) with steps 0.01, and between 0.1 and 0.3 in steps 0.05 (moderate to large heterogeneity).

The values of LOR θ vary from 0 to 3 in steps of 1. The probability in the control group pi2

takes values 0.1, 0.2, 0.4. A total of 10000 simulations were produced for each combination.

4.6.2 Simulation results

Figures 4.1 and 4.2 show the bias and coverage of ρ estimated by the five methods mentioned

above for different combinations of K and n for the case of pi2 ≡ 0.1 and θ = 0 and varying

values of 0 ≤ ρ ≤ 0.3. The bias and coverage of true log odds ratio θ estimated by the

inverse-variance (θIV ) for values of θ = 0, 1, 2, are shown in Figures 4.3 - 4.6, respectively.

Similar figures for bias and coverage of θ by the modified Mantel-Haenzsel method (ψMH) are

given in Appendix, B.25 – B.28.

Bias and coverage in estimation of intra-cluster correlation ρ

Bias of estimated ICC ρ is negative and it clearly increases in ρ, Figure 4.1 for pi2 = 0.1, B.1

and B.2 in Appendix for pi2 = 0.2 and 0.4. For small number of studies K combined with small

sample sizes (n ≤ 50), ρ̂CMP estimation appears to be the best option. However, for larger

sample sizes (n ≥ 100), the BD-based estimator ρ̂BD is the clear winner. Still, its negative

bias increases almost linearly with ρ and is acceptable only for ρ < 0.1. Coming to coverage

of ρ (Figure 4.2 and B.3, B.4 in Appendix), once more, the Breslow-Day based estimation

appears to be the safest option apart from the case of very small sample sizes n ≤ 50, where

the gamma-based approximation appears to provide better coverage for K ≥ 10. Both bias

and coverage improve when the probabilities in both arms are farther from the edges. B.5 and
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B.6 in the Appendix provide the bias and coverage in estimation of ρ for different values of θ

and increasing sample size n, keeping ρ = 0.1 fixed. Similar plots of bias and coverage of ρ

for pi2 ≡ 0.2 and pi2 ≡ 0.4 are given in B.7 - B.10 in Appendix. Breslow-Day based estimator

ρBD remains the best estimator of ρ for all scenarios for n ≥ 100, though it acquires a small

positive bias when pi2 = 0.4 and θ = 3, the case corresponding to pi1 = 0.93.

Bias in estimation of odds-ratio ψ

Bias of estimated odds ratio ψ̂ was practically the same regardless of a method used for

estimation of intra-class correlation ρ. This may be due to similarity of sample sizes across

studies in our simulations, as the inflation terms (1 + (ni − 1)ρ) in the normalized individual

weights “almost” cancel. Without loss of generality, we plotted the results for bias of ψ̂

obtained when using the moment estimator ρ̂M in Figure 4.3 for values of log-odds θ = 0, 1

and 2. There is no bias when θ = 0, i.e. when the probabilities of an event in two arms are

the same, but the bias clearly increases with increasing values of θ, and/or ρ. Still the bias

for the inverse variance weights is within 10% for ρ ≤ 0.1 or θ ≤ 2, which would cover the

major part of values of these parameters in practice, as θ = 2 corresponds to the odds ratio

of 7.39, and the values of ICC ρ are usually small. An explanation of this bias is provided in

Section 4.6.2. Unfortunately, the bias is substantially higher for the modified Mantel-Haenszel

method, especially for small number of studies K and large values of ρ and n, and the coverage

deteriorates accordingly, see B.25 – B.34 in Appendix), and therefore we do not pursue this

estimator further.

Bias of sample log-odds ratio under beta-binomial model

The bias of a number of popular effect measures used for binary data under random effects

models was discussed in Chapter 3. For log-odds, it is well known that the sample log odds

ratio

θ̂ = log(
p̂1

1− p̂1
)− log(

p̂2
1− p̂2

),
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where the probabilities of events p1 and p2 in treatment and control groups are estimated by

sample frequencies p̂i = Xi/ni, i = 1, 2, has a bias of order 1/n under the fixed effects model

ρ = 0. The standard bias correction due to Gart et al. (1985) adds 1/2 to Xi and to ni −Xi,

i.e., uses p̃i = (Xi+1/2)/(ni+1) when estimating the log-odds to eliminate the 1/n bias term

at the null model ρ = 0.

Expanding the log odds by Taylor series for a general ρ, and taking expectations, see Chapter

3 for details of derivation,

Eρ(log(
p̂

1− p̂
)) = log(

p

1− p
)− (1− 2p)(1 + (n − 1)ρ)

2np(1− p)
+ · · · ,

where, importantly, the second term includes a bias of order O(1) when ρ 6= 0. Therefore, the

bias of the sample log odds ratio θ̂ is

bias(θ̂) = −(1− 2p1)(1 + (n1 − 1)ρ)

2n1p1(1− p1)
+

(1− 2p2)(1 + (n2 − 1)ρ)

2n2p2(1− p2)
.

When log odds ratio θ = 0, i.e. when the probabilities in both arms are equal, the biases

for sample log-odds in each arm cancel out. Thus, the estimate θ̂ is unbiased to order 1/n.

However, when θ 6= 0 and the probabilities in both arms are not equal, the sample odds

ratio is biased to order O(1), and this bias is not ameliorated by the continuity correction. For

example, when p1 = 0.1 and p2 = 0.4, i.e. θ = −1.791, the main bias term is (−4.444+0.417)ρ,

increasing linearly with the intra-class correlation ρ. B.35 in Appendix illustrates quality of

this linear approximation to bias. It works well for small values of ρ, but the bias increases

and higher order terms become of more importance for larger values of ρ.

In meta-analysis with fixed weights, it would be possible to correct the resulting bias of the

overall effect measure for small values of ρ, but the use of inverse variance weights also affects

the bias and makes such a correction much more difficult. Luckily, the resulting bias is not

very large, as we have seen in Section 4.6.2. We believe that the origin of the higher bias in

the corrected Mantel-Haenszel method is the combination of the transformation bias with the

bias in estimation of ρ, and the consequences of these biases are graver.
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Coverage of odds-ratio ψ

The method used for estimation of intra-class correlation ρ is of utmost importance for correct

estimation of variance, and therefore the coverage of the odds-ratio ψ, presented for pi2 = 0.1

in Figures 4.4–4.6 for θ = 0, 1 and 2, respectively. Overall, exactly like in the case of bias, the

modified Mandel-Paule estimator ρ̂CMP results in the best coverage for small sample sizes up

to 50, and the ρBD provides superior coverage for n ≥ 100. All other estimators of ρ result

in inferior coverage, especially for large values of ρ. However, there are important differences

in coverage when using the best estimators of ρ due to differences in true value of the odds

ratio. For the small number of studies K = 5, the coverage is too low for all values of θ, but it

drifts from about 90% to about 87% even when the best estimator of ρ is used. Starting from

K = 10, the coverage is good for θ = 0, but becomes lower than nominal when θ increases.

It is still reasonable, at about 93%, for θ = 1, but reaches 90% or even somewhat lower

for ρ̂BD used with large sample sizes n = 1000. This is due to the increasing biases in the

estimation of ψ combined with the “improved” precision for larger sample sizes. Similar plots

of coverage for pi2 = 0.2 and 0.4 when θ = 0 are given in Appendix (B.17, B.18). B.19 -

B.24 in Appendix present the bias and coverage when estimating θ by θ̂IV for different values

of pi2 and increasing sample size n, keeping the value of θ fixed. These figures clearly show

the biases and reduced coverage of OR due to transformation bias discussed in the previous

Section. Coverage achieved when ρ̂BD is used in the weights is superior for moderate to large

sample sizes.
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Figure 4.1: Bias of the estimated from K studies intra-cluster correlation ρ in beta-binomial
model for pi2 = 0.1, θ = 0 and 0 ≤ ρ ≤ 0.3. Estimation methods: circles – Moment estima-
tor ρ̂M , squares – Corrected Mandel-Paule estimator ρ̂CMP ), diamonds – ρ̂REML), triangles-
Breslow-Day estimator based ρ̂BD), reverse-triangles – Mandel-Paule estimator ρ̂MP ). Light
grey line at 0.
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Figure 4.2: Coverage at the nominal confidence level of 0.95 of the intra-cluster correlation ρ
estimated from K studies in beta-binomial model for pi2 = 0.1, θ = 0 and 0 ≤ ρ ≤ 0.3. Interval
estimation methods: circles – Q-profile confidence interval for ρ based on χ2 distribution,
squares – Q-profile confidence interval for ρ based on Γr(ρ),λ(ρ) distribution), diamonds – Profile
likelihood confidence intervals, triangles – Breslow-Day-Profile confidence intervals. Light grey
line at 0.95.
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Figure 4.3: Bias of overall odds ratio ψIV obtained from K studies by the inverse-variance
method with the moment estimator ρ̂M in the weights, for pi2 = 0.1, and 0 ≤ ρ ≤ 0.3. The
biases are given for θ = 0 (circles), θ = 1 (circle plus), and θ = 2 (circle cross). Light grey line
at 0.
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Figure 4.4: Coverage at the nominal confidence level of 0.95 of the overall odds ratio ψ obtained
from K studies by the inverse-variance method, for pi2 = 0.1, θ = 0 and 0 ≤ ρ ≤ 0.3. The
inverse-variance weights use the following estimators of ρ: circles – ρ̂M , squares – Corrected
Mandel-Paule estimator ρ̂CMP , diamonds – restricted maximum likelihood estimator ρ̂REML,
triangles – Breslow-Day estimator ρ̂BD and reverse-triangles (Mandel-Paule estimator ρ̂MP ).
Light grey line at 0.95.
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Figure 4.5: Coverage at the nominal confidence level of 0.95 of the overall odds ratio ψ obtained
from K studies by the inverse-variance method, for pi2 = 0.1, θ = 1 and 0 ≤ ρ ≤ 0.3. The
inverse-variance weights use the following estimators of ρ: circles – ρ̂M , squares – Corrected
Mandel-Paule estimator ρ̂CMP , diamonds – restricted maximum likelihood estimator ρ̂REML,
triangles – Breslow-Day estimator ρ̂BD and reverse-triangles (Mandel-Paule estimator ρ̂MP ).
Light grey line at 0.95.
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Figure 4.6: Coverage at the nominal confidence level of 0.95 of the overall odds ratio ψ obtained
from K studies by the inverse-variance method, for pi2 = 0.1, θ = 2 and 0 ≤ ρ ≤ 0.3. The
inverse-variance weights use the following estimators of ρ: circles – ρ̂M , squares – Corrected
Mandel-Paule estimator ρ̂CMP , diamonds – restricted maximum likelihood estimator ρ̂REML,
triangles – Breslow-Day estimator ρ̂BD and reverse-triangles (Mandel-Paule estimator ρ̂MP ).
Light grey line at 0.95.
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4.7 Summary

In this chapter we developed theory of meta-analysis of odds ratios based on the beta-binomial

model. This model is a natural alternative to the standard random effects model based on

normality of random effects. Of course, other combinations of distributions are possible for

meta-analysis of binomially distributed data. Stijnen et al. (2010) suggest using exact hyper-

geometric likelihood for individual studies combined with Normally distributed random effect

for log-odds. Alanko and Duffy (1996) discuss a family of compounded binomial distributions

obtained by using mixing distributions from the generalized inverse gaussian family of distri-

butions, but these distributions had not been used so far in meta-analysis.

We have concentrated on the case of two independent beta-binomial distributions in two arms

of each study. We have proposed two new methods of estimation of the intra-cluster correla-

tion ρ in meta-analysis based on this model. Both our methods work considerably better than

other, more traditional methods suggested by Kulinskaya and Olkin (2014), and they comple-

ment each other by being applicable to meta-analyses of smaller or larger studies. This model

is similar to bivariate binomial-normal REM for log odds ratios discussed by (Stijnen et al.,

2010, p.3056). The latter model can also incorporate a correlation between the two arms of the

same study. However, a similar extension of the beta-binomial model is not straightforward.

For estimation of intra-cluster correlation, another alternative is an analysis of variance esti-

mator ρ̂AOV discussed in Chapter 3. However, ρ̂AOV is also biased and analysis of variance

method estimates the intra-cluster correlation in a each arm separately.

A version of a bivariate beta-binomial distribution was proposed by Bibby and Væth (2011),

but this distribution has a strictly positive lower bound for correlation between the marginals,

so it does not include the case of independent beta-binomial distributions. Moreover, Bibby

and Væth (2011) show that “independence cannot be obtained as a limit in the parameters

without sacrificing the overdispersion”. They also discuss other, previously suggested, versions

of a bivariate beta-binomial distribution, and possible extensions aimed at resolving this prob-

lem, but none are satisfactory. However, a different version that allows a range of correlation
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values, including zero correlation, was applied to meta-analysis in Chu et al. (2012). A new

bivariate beta distribution was recently proposed by Olkin and Trikalinos (2015), but so far

it has not been used for mixing binomial distributions.

We also briefly considered a model with beta-binomial distribution in treatment arm only.

This model is analogous to a version of unconditional random effects logistic regression by

Turner et al. (2000). In this model the study specific log odds of the control groups constitute

K additional parameters, and this model is not appropriate when K → ∞, Stijnen et al.

(2010).

We also proposed a variation of Mantel-Haenszel method for meta-analysis of odds ratios.

Unfortunately, in simulations this method was found to be very biased, especially for odds

ratios greater than 1. Elimination of this bias will be pursued elsewhere. The traditional

inverse variance approach with estimated by one of our methods ICC ρ results in reasonable,

though somewhat low coverage for a realistic range of values of odds ratios and intra-class

correlations.



Chapter 5

Meta-Analysis via Generalized Linear
Mixed-Effects Models

5.1 Introduction

The standard additive random effects model (REM) and multiplicative overdispersed model

(ODM) introduced by Kulinskaya and Olkin (2014) are special cases of hierarchical generalized

linear mixed effects model. When the outcome of interest is a transformation of some statis-

tic such as a logarithmic transformation of odds, the standard additive random effects model

assumes that within-study variability is accounted for through an approximate normal within-

study likelihood, i.e θ̂i ∼ N(θi, σ
2). Combining this assumption with a normal approximation

for true effects between studies, θi ∼ N(θ, τ 2), the model results in θ̂i ∼ N(θ, σ2 + τ 2) (see

Chapter 2 for details). In our context, the standard REM is modelling the estimated logarithm

of ORs θ̂i. In Chapter 4, we have introduced a multiplicative random effects model (ODM)

for ORs. ODM for ORs is modelling the binomial numbers of events X1i and X2i rather than

the logarithmic transformation of odds. In ODM, the variability is modelled through a pair

of independent beta-binomial distributions.

Both models, the standard REM and the multiplicative ODM, have some potential problems.

The standard REM makes a strong assumption about known within-study variances and does

not account for the correlation between σ̂2
i and θ̂i. Also, in REM, the continuity corrections

have to be applied in case of sparse data. Both models suffers from the transformation bias
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of order 1/n and the bias in estimation of random effect variance component. In Chapter 4,

we have shown that the standard methods in meta-analysis fail to estimate the random effect

component correctly. We also introduced two new methods for estimation of the random effect

parameter in ODM. These methods appear less biased than the standard methods. However,

we do not have a fully unbiased method for estimation of intra-cluster correlation.

In this chapter, we concentrate on an attractive alternative for meta-analysis of binary data

via general class of generalized linear mixed-effects models. Generalized linear mixed-effects

models are believed to overcome the problems of standard random effects model in meta-

analysis (Stijnen et al., 2010). Particularly, our interest lies in often recommended non-

central-hypergeometric normal model for meta-analysis introduced by Van Houwelingen et al.

(1993), Liu and Pierce (1993), Sidik and Jonkman (2008) and Stijnen et al. (2010). Non-

central-hypergeometric-normal model (NCHGN) is a mix of non-central-hypergeometric and

normal distributions applied to the number of events in the treatment arm. Without assump-

tion of normality, the non-central-hypergeometric distribution can be used for inference in a

fixed effect model. NCHGN model is a conditional generalized linear mixed-effects model with

exact likelihood. The non-central-hypergeometric distribution is the exact distribution for the

number of events conditional on marginal totals. In the mix of non-central hypergemometric

and normal distributions, the true unobserved conditional odds ratio is obtained by the trans-

formation of the number of successes under non-central hypergeometric distribution. Due to

the use of logit transformation, the model might suffer from transformation bias. Previously,

no simulations has been performed to investigate the NCHGN model and its approximation by

the binomial-normal distribution. This is due to complexity of the models and enormous time

requirement for each combination of simulations. We run the simulation study for NCHGN

model with two scenarios of generating the data. In the first scenario, the data is simulated

with a pair of binomial distributions with a normally distributed log odds across the studies.

The second scenario generates the data from a pair of beta-binomial distributions similar to

simulations in Chapter 4. We show that the maximum likelihood estimates of overall effects
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and between-study variance are biased and the biases are of order 1/n. Chapter 5 discusses the

biases of order O(1/n) similar to those as Chapter 3. However, the models in Chapter 5 differ,

they are the models for transformed expected values as opposed for transformed summary

statistics in Chapter 3. This Chapter mainly concentrates on the biases in a model based on

the non-central hypergeometric distribution mixed by a normal distribution. This Chapter

represents the novel work of this thesis.

5.2 Generalized linear mixed effects model

Generalized linear mixed effects model (GLMM) is an extension of a generalized linear model.

GLMM includes both fixed and random effects (hence mixed effect model). The inference

in GLMM is based on maximum likelihood theory. Usually, the likelihood is obtained as a

mixture of two distributions for fixed and random effects. The mixture of distributions might

include discreet and continuous distributions.

In meta-analysis of a binary data, the mixture distributions might include: binomial and nor-

mal distributions or non-central hypergeometric and normal. For incidence rates, the example

of generalized linear mixed effects model is Poisson-normal model. From the listed models,

we concentrate our attention on non-central hypergeometric and normal model (NCHGN).

For general case, let the univariate observation in the ith study be yi, and the vectors of

covariates are denoted by xi and zi of dimensions p and q for fixed and random effects, for

i = 1, . . . , K, respectively. Given a q-dimensional vector b, the generalized linear mixed effects

model has general form

ηbi (b) = xtiβ + ztib. (5.2.1)

The responses yi are assumed to be independent with mean E(yi|bi) = µbi(bi) and variance

Var(yi|bi) = φaiυ(µbi(bi)), where ai is a known constant and υ(·) is a variance function (Breslow

and Clayton, 1993). The conditional mean and variance have a mean-variance relationship

and both of them depend on a random effect bi. Similarly to generalized linear model, the

conditional mean is associated with linear predictor through a link function g(µi(bi)) = ηi(bi).
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Inverting the link function, h = g−1, and denoting the design matrices with row xTi and zTi by

X and Z, the conditional mean satisfies

E(y|b) = h(Xβ + Zb)

where y = (y1, . . . , yK). The random effect b has mean 0 and follows a distribution which is

commonly assumed to be multivariate normal with variance-covariance matrix D = D(ζ). ζ

is an unknown vector of variance components. Breslow and Clayton (1993) consider models

with binomial, Poisson and hypergeometric specifications for the conditional distribution of yi

with fixed dispersion parameter φ at unity in the conditional variance. The parameter φ may

also be estimated together with other parameters ζ in D = D(ζ).

In generalized linear mixed-effects models, the parameters are estimated by maximum likeli-

hood theory. However, due to non-linearity of the model and the presence of random effects,

the marginal distribution for maximum likelihood approach includes a cumbersome and in-

tractable integration with respect to unobservable random effects. Usually, the integration

does not have a closed form, and therefore no analytic solution is possible. Numerical meth-

ods such as Gaussian quadrature, adaptive Gaussian quadrature or Gauss-Hermite quadrature

have to be applied for evaluation of the integral, approximation of the log-likelihood function,

score equations and information matrix (Breslow and Clayton, 1993).

5.3 Likelihood based inference

The inference in generalized linear mixed effects model is based on maximum likelihood meth-

ods. By specifying a distribution for the data, log-likelihood function is specified. The maxi-

mum likelihood inference is carried out by maximizing the log-likelihood function with respect

to unknown parameters.
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The likelihood function for the generalized linear mixed effects model with exact and approx-

imate likelihood in meta-analysis is

h(X1i|θ, τ 2) =

∫ ∞
−∞

g(X1i|θi)f(θi|θ, τ 2)dθi, (5.3.1)

where f(θi|θ, τ 2) is the density of a normal distribution to model the between study variation,

and g(X1i|θi) is a conditional or an unconditional distribution of binomial outcomes. For

NCHGN, the differentiable log-likelihood function is

l = l(X1i, . . . , X1K |θ, τ 2) = log(
K∏
i=1

h(X1i|θ, τ 2)) =
K∑
i=1

log(h(X1i|θ, τ 2)),

where the distribution h(X1i|θ, τ 2) is the distribution of number of events in treatment arm.

The maximum likelihood estimators for θ and τ 2 are the solutions of the score equations

U(θ) = 0 and U(τ 2) = 0, where

U(θ) =
dl

dθ
and U(τ 2) =

dl

dτ 2
,

provided that the observed information matrix I(ϑ) = −∇ϑ∇T
ϑ l(ϑ) is positive definite when

evaluated at ϑ̂. In maximum likelihood estimation, the standard errors for the parameters θ

and τ 2 are obtained from observed information matrix I(θ), i.e.,

V̂ar(ϑ̂) = [I(ϑ)]−1.

Within-study distributions g(X1i|θ) such as non-central-hypergeometric or binomial have de-

pendence on sample sizes. Hence, the marginal distribution after integration of unobservable

random effects also have dependence on sample sizes. Due to these reasons, the maximum

likelihood estimators from (5.3.1) might have a bias of order O(1/n).

5.4 Generalized linear mixed effects model for meta-

analysis

In generalized linear mixed-effects model with fixed study effects, the term fixed represents a

trial membership. Turner et al. (2000) introduced an unconditional generalized linear mixed-

effects model with fixed and random study effects as a multilevel model for meta-analysis in
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frequentist setting. The difference between standard additive random effects model and an

unconditional generalized linear mixed-effects model is that standard random effects model

directly models a measure that reflects the contrast between the two groups (e.g., log odds

ratio). The conditional logistic (hypergeometric) model is another approach where we con-

dition out the study effects and deal with the OR directly. Unconditional generalized linear

mixed-effects model is the random effects logistic regression model with expected log-odds as

an outcome. The parameters in these models can be estimated by maximum likelihood or

restricted maximum likelihood methods using the iterative generalized least squares.

In this chapter, we also study the use of the NCHGN model to analyse binary data generated

from a mixture of binomial and normal distributions as in standard REM and from a pair

of beta-binomial distributions as in ODM. In the former model, the numbers of events in

treatment and control arms have a conditionally binomial distribution. The number of events

in the treatment arm can be conditioned on total number of events in both arms resulting

in a non-central hypergeometric distribution. For a pair of beta-binomial distributions, the

resulting conditioned distribution of events in treatment arm no longer follows non-central

hypergeometric distribution.

5.4.1 An unconditional generalized linear mixed-effects model with
fixed study effects

An unconditional generalized linear mixed-effects model with fixed study effects is a special

case of mixed-effects logistic regression model. The model allows to fit the logistic regression

model with fixed trial effects and accounting for the heterogeneity across K studies in log odds

scale. The model is

yij|πij ∼ Binomial(nij, πij) j = 1, 2; i = 1, . . . , K,

log(
πij

1− πij
) = φj + (θ + νj)xij, (5.4.1)
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where θ is the overall effect (log odds ratio) and νi ∼ N(0, τ 2). Random effect νi is the

deviation of the ith study true treatment effect (log-odds ratio) from the average θ. φi are

fixed study effects (log-odds in the control arm). τ 2 is the between-study variance. The

indicator xij = 0/1 represents the choice between control and treatment groups. For the

control group, x2i = 0, the full model (5.4.1) reduces to

log(
π2i

1− π2i
) = φi,

and for the treatment group, x1i = 1, the same model (5.4.1) is

log(
π1i

1− π1i
) = φi + θ + νi

where j = 1, . . . , K. Combining both models for control and treatment group, the logistic

regression model has a form

log(
π1i

1− π1i
) = log(

π2i
1− π2i

) + θ + νi

with log( π2i
1−π2i ) as a fixed study effect parameter that has to be estimated. φi = log( π2i

1−π2i ) can

be treated as an intercept. We have

log(
π1i

1− π1i
) = φi + θ + νi.

φi, θ and τ 2 are unknown parameters that have to be estimated. These parameters are esti-

mated iteratively using either marginal quasi-likelihood, penalized quasi-likelihood or first and

second order Taylor expansion approximation. In order to remove the bias of between-study

variance estimates from penalized quasi-likelihood methods, two step bootstrap procedure can

be used (Turner et al., 2000).

5.4.2 An unconditional generalized linear mixed-effects model with
random study effects

An unconditional generalized linear mixed-effects model with random study effects is a mixed-

effects logistic regression model with random study effects, meaning that random effects cor-

responding to the study factor are added to the model. The random effects logistic regression
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model in log odds scale with random study effects is

yij ∼ Binomial(nij, πij); j = 1, 2, i = 1, . . . , K,

log(
πij

1− πij
) = α + uj + (θ + νj)xij,

where θ is the overall effect - log odds ratio and νi ∼ N(0, τ 2), ui ∼ N(0, σ2) and Cov(ui, νi) =

ωστ . In contrast to logistic regression with fixed study effects, the subset of general model for

the control group is

log(
πi2

1− πi2
) = α + ui,

with random effect ui ∼ N(0, σ2) in control group. In case of treatment group the logistic

regression model is

log(
πi1

1− πi1
) = α + ui + θ + νi,

with additional random effect νi ∼ N(0, τ 2) of each study on treatment effect. The hetero-

geneity between log odds in control group is represented by σ2 and in treatment group by

σ2 + τ 2. This assumption might be inappropriate. In order to avoid this problem a coding of

+1/2 and −1/2 is used for the group dummy for the random effects xij instead of a coding

of 0 and 1 in Turner et al. (2000). Thus, overall heterogeneity is represented by parameters

σ2, τ 2, ω representing variations in control/treatment group and correlation between random

study effects respectively. In comparison, standard random effects model assumes that the

heterogeneity is usually represented by a single between-study variance τ 2.

α, θ, σ, τ 2 and ω are unknown parameters that have to be estimated. These parameters can

be estimated similarly to estimation of parameters in unconditional generalized linear mixed-

effects model with fixed study effects (Turner et al., 2000). Hamza et al. (2008) also studied

a logistic regression model with a random intercept for meta-analysis of proportions.

5.4.3 A conditional generalized linear mixed-effects model (exact
likelihood)

The hypergeometric-normal model was initially proposed for meta-analysis by Van Houwelin-

gen et al. (1993) and Liu and Pierce (1993). Later, Sidik and Jonkman (2008) and Stijnen et al.
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(2010) implemented the model into practice. The exact likelihood function of hypergeometric-

normal model for each study i is

h(x1i; θ, τ
2) =

∫ ∞
−∞

g(x1i|θi)f(θi|θ, τ 2)dθi =

∫ ∞
−∞

(
n1i

x1i

)(
n2i

x2i

)
exp(x1iθi)

P (θi)

1√
2πτ 2

exp(−(θi − θ)2

2τ 2
)dθi.

where g(x1i|θi) is the non-central hypergeometric density function for number of events in

treatment arm X1i given X1i +X2i = Xi, P (θi) is

P (θi) =

min(n1i,n2i)∑
i=max(0,ni−n2i)

(
n1i

i

)(
n2i

Xi − i

)
exp(Xiθi)

is the polynomial in θi and true unobservable LOR θi. The distribution of true effect measure

θi is f(θi|θ, τ 2), which is the normal probability density function with mean θ and variance τ 2.

Density h(x1i|θ, τ 2) is the marginal probability function with integrated out unobserved study

specific effect. For g() normal and f() non-central-hypergeometric in (5.3.1), the model is

referred to as hypergeometric-normal model, Stijnen et al. (2010). According to Stijnen et al.

(2010), this approach should solve issues related to an addition of continuity corrections and

the existence of correlations between σ̂2
i and θ̂i arising in the standard random effects model.

This model belongs to a class of generalized linear mixed models. For our case with log odds

ratio for effect measure, the model is known as mixed effects logistic model. Liang and Zeger

(1986) have shown that the inference based on the non-central hypergeometric likelihood is

sensitive to misspecification of the dependence structure.

Liu and Pierce (1993) discussed an accurate closed form approximation to h(x1i; θ, τ
2) based

on Laplace method, which is popular in Bayesian setting. Also in the same paper by Liu

and Pierce (1993), other simple approximations to h(x1i; θ, τ
2) such as William’s method

based on a weighted least squares and quasi-likelihood approach to the dispersion models are

considered. However, these methods do not take into account the variability of estimators

for τ 2. Breslow and Clayton (1993) provide a mixed model for log odds ratio based on the

non-central hypergeometric distribution and discuss the methods based on the full likelihood
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analysis for generalized linear mixed models such as penalized quasi-likelihood and marginal

quasi-likelihood methods.

The log-likelihood of the non-central hypergeometric normal model is

l(θ, τ 2) = log(
K∏
i=1

h(x1i; θ, τ
2)) =

=
K∑
i=1

log(

∫ ∞
−∞

(
n1i

x1i

)(
n2i

x2i

)
exp(x1iθi)

P (θi)

1√
2πτ 2

exp(−(θi − θ)2

2τ 2
)dθi).

The parameters θ and τ 2 can be estimated by either using the EM algorithm (Van Houwelingen

et al., 1993), the numerical Newton-Raphson iterative algorithm (Sidik and Jonkman, 2008)

or maximizing l(θ, τ 2) (Stijnen et al., 2010; Viechtbauer et al., 2010). Liu and Pierce (1993)

proposed an approximation for the integrand in mix of non-central hypergeometric and normal

densities based on Laplace method. However, the most recent approximations for the marginal

likelihood of non-central hypergeometric normal distribution are based on adaptive Gauss-

Hermite quadrature. The non-central hypergeometric distribution is based on the binomial

distribution in treatment and control arms. When the binomial distribution is invalid, X1i

no longer follows non-central hypergeometric distribution (Liang, 1985). The non-central-

hypergeometric normal model is supposed to solve problems related to dependence between

θ̂i and σ̂2
i .

5.4.4 A conditional generalized linear mixed-effects model (approx-
imate likelihood)

In case of small total number of events relative to the total group sizes, the non-central

hypergeometric distribution can be approximated by a binomial distribution (Stijnen et al.,

2010). The model with approximate likelihood for a conditional generalized linear mixed-

effects model is

X1i|(X1i +X2i) ∼ Binomial(X1i +X2i, PX1i|(X1i+X2i))

with

log
( PX1i|(X1i+X2i)

1− PX1i|(X1i+X2i)

)
= log

(n1i

n2i

)
+ θi.
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This model arises because

exp(θ̂i) =
X1i(n2i −X2i)

X2i(n1i −X1i)
=

P̂X1i|(X1i+X2i)

1− P̂X1i|(X1i+X2i)

(n2i −X2i)

(n1i −X1i)

and assuming that X1i and X2i are small relative to the n1i and n2i

(n2i −X2i)

(n1i −X1i)
≈ n2i

n1i

,

which results in approximation

exp(θ̂i) =
P̂X1i|(X1i+X2i)

1− P̂X1i|(X1i+X2i)

(n2i −X2i)

(n1i −X1i)
≈

P̂X1i|(X1i+X2i)

1− P̂X1i|(X1i+X2i)

n2i

n1i

and

θ̂i = log(
P̂X1i|(X1i+X2i)

1− P̂X1i|(X1i+X2i)

) + log(
n2i

n1i

) = log(
P̂X1i|(X1i+X2i)

1− P̂X1i|(X1i+X2i)

)− log(
n1i

n2i

).

The parameters of this model can be estimated by maximizing a random intercept logistic

regression model with offset log(n1i/n2i). Stijnen et al. (2010) states “Using a conditional

generalized linear mixed-effects model is the same as using Breslow’s approximation for the

likelihood as is done in many conditional logistic regression and Cox regression programs”.

5.5 Simulation study

In this section we provide a simulation study to assess the performance of point and inter-

val estimators of overall log-odds ratio θ and between-study variance τ 2 for data generated

from standard REM and ODM. The estimators of θ and τ 2 are obtained from non-central-

hypergeometric-normal model proposed by Stijnen et al. (2010).

In standard REM, the data is generated as follows:

X1i ∼ Binom(n1i, p1i) and X2i ∼ Binom(n2i, f(p1i, θi)),

with θi = log(p1i(1 − p2i)/p2i(1 − p1i)), θi ∼ N(θ, τ 2) and f(p1i, θ) = p1i exp(θi)/(1 − p1i +

exp(θi)p1i)). This scenario is similar to the method of data generation in a simulation study

by Viechtbauer (2007). For a pair of binomial distributions within each study, the conditional
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distribution of the number of events in treatment arm given fixed margins is a non-central-

hypergeometric distribution. No continuity corrections are added to number of events.

For the ODM, the simulation scenario is similar to simulation study in Chapter 4. In Chapter 4,

we introduced a multiplicative random effects model for overdispesed binary data and modified

the standard methods of meta-analysis by inclusion of estimated intra-cluster correlation.

In the current chapter, we apply the non-central-hypergeometric-normal model proposed by

Stijnen et al. (2010) to the data generated from the ODM model as

X1i ∼ BetaBinom(n1i, p1i, ρ) and X2i ∼ BetaBinom(n2i, f(p1i, θi), ρ),

where ρ is the parameter which describes an intra-cluster correlation. The package emdbook

by Bolker (2011) is used for simulating data from the beta-binomial distributions. In ODM,

ρ is unknown and have to be estimated. However, the non-central-hypergeometric-normal

analysis by Stijnen et al. (2010) estimates between-study variance τ 2, not ρ. Hence, given the

correspondence (4.2.3) between τ 2 and ρ in Chapter 4 for ODM and equal sample sizes, the

bias of τ 2 can be assessed by obtaining the true values of τ 2 from the relationship (4.2.3) in

Chapter 4. Again, no continuity corrections are added to number of events in each arm.

In Chapter 4, we have shown that the standard methods perform badly in estimation of

ICC ρ and overall odds ratio θ when the probabilities are low in both arms. In particular,

the estimate of θ is biased when the probabilities in the arms are not the same. The non-

central-hypergeometric-normal model (Stijnen et al., 2010) may be an attractive alternative

for standard additive and overdispersed random effects models. In this section, the analysis

based on the non-central hypergeometric normal model is applied to both REM and ODM.

The sample sizes are assumed to be the same within each arm and across K studies. The

maximum-likelihood estimators of θ and τ 2 are assessed in respect to their bias and coverage

at the 95% confidence level.
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5.5.1 Fitting the non-central-hypergeometric-normal model in R

R package metafor allows to fit the non-central-hypergeometric-normal (NCHGM) model pro-

posed by Stijnen et al. (2010). The NCHGM is the conditional generalized linear mixed-effects

model. ’metafor’ package-version 1.9-2 was used in the current simulations.

In R, there are two methods to fit the non-central-hypergeometric distribution. One is

”dFNCHypergeo” from BiasedUrn package (Fog and Fog, 2013). The other one is ”dnon-

cenhypergeom” from MCMCpack package (Martin et al., 2016). Both of the methods can

be used in rma.glmm function from metafor package. In rma.glmm, ”dFNCHypergeo” is the

default distribution for fitting the conditional generalized linear mixed-effects model (exact

likelihood). The model is specified as

rma.glmm(measure = “OR”, ai =, bi =, ci =, di =, data =,model = “CM.EL”).

In case of using the ”dnoncenhypergeom” function for non-central-hypergeometric distribution,

the model should be specified as

rma.glmm(measure = “OR”, ai =, bi =, ci =, di =,

model = “CM.EL”, control = list(dnchgcalc = “dnoncenhypergeom”))

where ai, bi ci, di are the binary data from the table

Event No event Total
Treatment ai bi ai+ bi

Control ci di ci+ di
Total ai+ ci bi+ di ai+ bi+ ci+ di

Both methods should perform similarly, when fitting the conditional generalized linear mixed-

effects model (exact likelihood). However, the convergence problems might occur when trying

to fit a saturated model. Switching to the other method can help to solve the problem.

In case of low number of events, the binomial-normal approximation is possible for non-

central-hypergeometric-normal distribution, since the non-central-hypergeometric distribution
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can be well approximated by a binomial distribution. In that case, the model is defined as

a conditional generalized linear mixed-effects model (approximate likelihood). This model is

specified as

rma.glmm(measure = “OR”, ai =, bi =, ci =, di =, data =,model = “CM.AL”).

5.5.2 Configurations

The following configurations of parameters were included in the simulations. The number

of studies K = (5, 10, 30); average sample sizes in each arm are n = (50, 100, 250, 1000); the

between-study variance for standard random effects model τ 2 = (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

0.8, 0.9, 1); the overdispersion parameter ρ varies between 0 and 0.1 (small to moderate hetero-

geneity) with steps 0.01, and between 0.1 and 0.6 in steps 0.1 (moderate to large heterogeneity).

The values of LOR θ vary from 0 to 2 in steps of 1. The probability in control group p2i is

taken to be 0.1, since we are mostly interested in sparse data. A total of 10000 repetitions were

produced for each combination. However, not all the simulations converge due to problems in

trying to fit the saturated model, and the actual number of repetitions may be smaller.

5.5.3 Results for a pair of binomial distributions

The results of the simulations for the behaviour of conditional generalized linear mixed-effects

model with exact likelihood in case of a pair of binomial distributions as in the standard REM

are shown in the Figure 5.1 and Figure 5.2 for 0 ≤ τ 2 ≤ 1 with true LOR θ = 0 and p2i = 0.1.

This scenario results in generation of the sparse data in treatment and control arm. Figure

5.1 and Figure 5.2 show the bias of between-study variance τ 2, bias of overall odds ratio θ and

coverage at the nominal confidence level of 0.95 of the overall odds ratio θ obtained from two

methods of fitting the non-central-hypergeometric-normal model for odds ratio. These two

methods are dFNCHypergeo distribution from BiasedUrn package and dnoncenhypergeom

distribution from MCMCpack package respectively. Similarly, Figure 5.3 and 5.4 show the

results of simulations for true θ = 1 and p2i = 0.1 using dFNCHypergeo distribution from
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BiasedUrn package (5.3) and using dnoncenhypergeom distribution from MCMCpack package

(5.4). When θ = 1 with p2i = 0.1, the probability p1i > 0.1 in the treatment arm. We also

fitted the conditional generalized linear mixed-effects model with approximate likelihood for

the similar scenario as above with θ = 0, 1 and p2i = 0.1. The results for θ = 0 and θ = 1

with p2i = 0.1 are shown in the Figure 5.5 and Figure 5.6 respectively.

From the first row of the Figure 5.1 or Figure 5.2 for 0 ≤ τ 2 ≤ 1, it is clear that estimator

for between-study variance τ 2 is subject to downward bias. When θ = 0 and τ 2 6= 0, the bias

varies around 0.25 - 77% for different values of N = 50, 100, 250, 1000 with highest bias for

K = 5, N = 50 and τ 2 = 0.7. When θ = 0 and τ 2 = 0, the bias varies between values of

0.002− 0.0992. Hence, when τ 2 = 0, still some heterogeneity is estimated. This heterogeneity

might be also a result of sampling variability. When θ = 1, the bias of τ 2 varies between 0.5-62

% excluding extremely large values for bias for K = 5 and K = 10. The extremely large values

for the bias might be explained by non-stability of the dFNCHypergeo distribution when the

probabilities in both arms are not equal. Non-stability of the dFNCHypergeo distribution

might the result of small number of studies (K = 5 and K = 10) in simulations. The similar

scenario with more non-stable observations occur when θ = 2. Thus, using dFNCHypergeo

distribution for non-equal probabilities in both arms is not recommended for studies with

small K. In this case, the inference based on a conditional generalized linear mixed effects

model with exact likelihood might be misleading. The bias of τ 2 is similar when using dnon-

cenhypergeom distribution from MCMCpack package, see Figure 5.2 for θ = 0 and Figure 5.4

for θ = 1. For θ = 0 with K = 5 and K = 10, the bias of τ̂ 2CM.EL increases asymptotically with

N . We can clearly see the latter from the first row in Figure 5.1 or Figure 5.2. However, the

increase in bias of τ̂ 2CM.EL is less visible when K = 30. Probably, this can be explained by large

number of studies (K = 30). When K = 30, the bias of τ̂ 2CM.EL also increases with increasing

N from N = 50 to N = 1000. The dnoncenhypergeom distribution for fitting the conditional

generalized linear mixed effects model with exact likelihood is also non stable when θ = 1.

Thus, when probabilities in both arms are equal, it is difficult to find the order for the bias of
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τ̂ 2CM.EL. The order might be either 1/N or 1/K. Another possibility is that the order of the

bias might be depend on the combination of N and K simultaneously.

The bias of the overall odds ratio θ̂CM.EL from two methods (dFNCHypergeo and dnoncenhy-

pergeom) are quite similar. The bias for θ̂CM.EL decreases with increasing N . The bias θ̂CM.EL

is linear to τ 2. The bias θ̂CM.EL is the smallest when true value of θ = 0 and p2i = 0.1 with

N = 1000. In this case p1i = 0.1 and both arms provide sparse data. When θ = 1, the data is

sparse only in control arm, since p1i = p2i exp(θi)/(1− p2i + p2i exp(θi)) and θ ∼ N(θ, τ 2). For

instance, θ = 1 result in p1i = 0.232 . The bias of θ̂CM.EL is higher when θ = 1 (see Figure

5.3 for dFNCHypergeo and Figure 5.4 for dnoncenhypergeom). The bias of θ̂CM.EL is of order

1/N .

The coverage of overall log odds ratio θ̂CM.EL is liberal. When K = 5 and θ = 0, the coverage

is about 84 - 88%. When K = 10 and K = 30, the coverage goes up to 90% and 93% for

N = 1000 respectively. Hence coverage improves with N . When θ = 1, the coverages are

pretty similar to the case when θ = 0. Interestingly, when N = 1000, the coverage drops

dramatically for all values of θ with increasing τ 2. It seems to be due to the bias in estimation

of τ 2. We can clearly see that the bias of τ 2 is not negligible in asymptotics. Increasing

K and N do no provide an asymptotic results in conditional generalized linear mixed-effects

model (exact likelihood). The conditional generalized linear mixed-effects model (approximate

likelihood) performs worse than conditional generalized linear mixed-effects model (exact like-

lihood). Figure 5.5 and Figure 5.6 show that τ̂ 2CM.AL is more biased than τ̂ 2CM.EL for θ = 0

and θ = 1. The bias of τ̂ 2CM.AL is more than 50%. This bias leads to shorter confidence

interval of θ and lower coverage shown in third row of the Figure 5.5 and Figure 5.6. It is

not surprising that the binomial-normal approximation fails for large values of τ 2, as there

will be many studies where the number of cases in the treatment group is large relative to the

sample size (and this is not offset by the large number of studies where the number of cases

in the treatment group is very small). The conditional generalized linear mixed-effects model

with exact and approximate likelihood always underestimate the between-study variance. The
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underestimation of τ 2 affects inference about θ, by overestimating weights and information

matrix. The overestimation of information matrix results in wrong hypothesis tests with large

Type I error and confidence invervals with coverage lower than the nominal level.

We believe that the non-central hypergeometric normal model suffers from transformation

bias in maximum likelihood estimates of overall odds ratio θ and between-study variance τ 2.

However, the negative bias of τ 2, positive bias and low coverage of θ̂CM.EL might also be due

to nonstability of implementations dFNCHypergeo and dnoncenhypergeom when fitting the

model in R programming language. As we have shown, more problems due to non-stability of

fitting the conditional generalized linear mixed effects model with exact likelihood appear when

probabilities in both arms are not equal. Some of the findings from simulations of NCHGN

model depend on numerical issues and not the properties of the model itself. NCHGN model

is a rather difficult model to fit, involving computation of the probability mass function of

the non-central hypergeometric distribution, numerical integration thereof, in addition to the

optimization required for finding the maximum likelihood estimates estimates. The variance-

covariance matrix of the fixed (and random) effects is obtained by numerically approximating

the Hessian matrix. All of these computations can go horribly wrong. Therefore, the present

results say something about the implementation of the NCHGN model in the metafor package,

but whether this holds in general for the model is another issue. New ways of improving the

numeric methods for conditional generalized linear mixed-effects model with exact likelihood

in metafor package in R are required.

In summary, for sparse data, we would recommend to use non-central hypergeometric normal

model only when number of studies K is large and sample sizes N are moderate. When K is

small, the estimates of between-study variance and overall effect measure are biased resulting

in narrow confidence intervals. The bias of between-study variance reduces with K. How-

ever, for large values of N , the confidence interval is narrower than for moderate values of N .

Thus, when sample sizes are too large, the non-central hypergeometric normal model is not

recommended. In that case, the methods of standard random effects might be a better option
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since their asymptotic behaviours are well known in meta-analysis. Also, we would not recom-

mend the binomial-normal approximation to non-central hypergeometric normal model, since

it provides more biased estimates of between-study variance resulting in wrong confidence

intervals.
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Figure 5.1: Bias of between-study variance τ 2 (first row), bias (second row) and coverage (third
row) of overall odds ratio at the nominal 95% level using the non-central hypergeometric-
normal in additive random effects model and using dFNCHypergeo for p2i = 0.1, θ = 0 and
0 ≤ τ 2 ≤ 1. Light grey line at 0.95.
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Figure 5.2: Bias of between-study variance τ 2 (first row), bias (second row) and coverage (third
row) of overall odds ratio at the nominal 95% level using the non-central hypergeometric-
normal in additive random effects model using dnoncenhypergeom for p2i = 0.1, θ = 0 and
0 ≤ τ 2 ≤ 1. Light grey line at 0.95.
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Figure 5.3: Bias of between-study variance τ 2 (first row), bias (second row) and coverage (third
row) of overall odds ratio at the nominal 95% level using the non-central hypergeometric-
normal in additive random effects model and using dFNCHypergeo for p2i = 0.1, θ = 1 and
0 ≤ τ 2 ≤ 1. Light grey line at 0.95.
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Figure 5.4: Bias of between-study variance τ 2 (first row), bias (second row) and coverage (third
row) of overall odds ratio at the nominal 95% level using the non-central hypergeometric-
normal in additive random effects model using dnoncenhypergeom for p2i = 0.1, θ = 1 and
0 ≤ τ 2 ≤ 1. Light grey line at 0.95.
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Figure 5.5: Bias of between-study variance τ 2 (first row), bias (second row) and coverage (third
row) of overall odds ratio at the nominal 95% level using the binomial normal approximation
to non-central hypergeometric-normal in additive random effects model for p2i = 0.1, θ = 0
and 0 ≤ τ 2 ≤ 1. Light grey line at 0.95
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Figure 5.6: Bias of between-study variance τ 2 (first row), bias (second row) and coverage (third
row) of overall odds ratio at the nominal 95% level using the binomial normal approximation
to non-central hypergeometric-normal in additive random effects model for p2i = 0.1, θ = 1
and 0 ≤ τ 2 ≤ 1. Light grey line at 0.95
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5.5.4 Results for a pair of beta-binomial distributions

In Chapter 4, we have shown that the standard methods fail in estimation of parameters for

overdispersed model (ODM). The non-central hypergeometric normal model is an attractive

alternative to standard methods. Figures 5.7, 5.8, 5.9 show the plots of bias of τ̂ 2, bias and

coverage of θ̂CM.EL for θ = 0, 1, 2 and p2j = 0.1 using the dFNCHypergeo distribution from

BiasedUrn package. The results of simulations using the dnoncenhypergeom distribution from

MCMCpack package is similar to the results of simulations using the dFNCHypergeo distri-

bution from BiasedUrn package. Due to the close similarity, the results of simulations using

the dnoncenhypergeom distribution from MCMCpack package are not reported. Figures 5.10,

5.11 and 5.12 show the results of the simulations when using a conditional approximate like-

lihood in a generalized linear mixed-effects model.

From the figures 5.7, it is clear that the estimate of the between-study variance τ̂ 2 is biased.

The bias is positive and it is increasing with τ 2. The bias of τ 2 is smaller for θ = 1 and θ = 2,

but it still exists. For θ = 1 and θ = 2, the bias of τ 2also increases with τ 2. The explanation of

larger bias of τ 2 when θ = 0 might be that when θ = 0, the value of probabilities are p1i = 0.1

and p2i = 0.1. Thus, we get sparse data in both arms. The large amount of sparse data might

introduce an additional heterogeneity. In contrast, when θ = 1 and θ = 2, the probability of

control arm is p2i = 0.1, but the probability of treatment arm is p1i = 0.23 and p1i = 0.45

respectively. Hence, only the treatment arm consists of sparse data with zero-entries in cells.

This leads to lower heterogeneity.

The log-odds-ratio θ̂CM.EL is also biased for θ = 0, θ = 1 and θ = 2. For θ = 0, the bias

decreases with increasing K from K = 5 to K = 30. This decrease is from about 50% to

6%. The bias of log-odds-ratio θ̂CM.EL is quite pronounced for θ = 1 and θ = 2. The bias of

θ̂CM.EL comes from the combination of transformation bias and bias of τ̂ 2. This is the same

bias that we discussed in section 4.6.2 of Chapter 4. This bias results in poorer coverage for

θ̂CM.EL, when we increase the value of θ from θ = 0 to θ = 1 and to θ = 2 (see Figures 5.7-5.9

for dFNCHypergeo). For small number of studies K = 5, Figures 5.7-5.9, the coverage goes
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down steadily from 89% to 85% with increasing the sample size from N = 50 to N = 1000.

For moderate number of studies K = 30 and θ = 0, the coverage varies between 92% and 93%

for different values of N from N = 50 to N = 1000. When θ 6= 0, the coverage for K = 5 and

K = 10 is around 82%−83% for θ = 1 and 75%−85% for θ = 2. When the number of studies

K increases to K = 30, the coverage deteriorates dramatically to 73% − 76% for θ = 1 and

50%− 60% for θ = 2. The values of τ 2 in the figures correspond to the values of ρ between 0

and 0.1 for different combinations of p2j and θ.

Some of the Figures (Figure 5.6, Figure 5.8, Figure 5.9, Figure 5.10) show the erratic be-

haviour of plots when K = 5. Figure 5.6, Figure 5.8, Figure 5.9 show results of simulations

from non-central-hypergeometric normal model and Figure 5.10 show results of simulations

from binomial-normal approximation to non-central-hypergeometric normal model. The er-

ratic behaviour appears when the true value of log-odds ratio θ changes from 0 to 1 and 2.

Correspondingly, the probabilities in treatment arms change from p1i = 0.1 when θ = 0 to

p1i = 0.23 for θ = 1 and p1i = 0.45 for θ = 2. The reason for erratic behaviour is that

when K = 5, the non-central-hypergeometric normal model does not estimate τ 2 very well,

since variance τ 2 is of order 1/K. Some scenarios in simulations resulted in huge estimate of

τ 2. Hence there is an imbalance between number of events in treatment arm in comparison

to number of events in control arm. Suppose we have K = 5 and there are 3 or 4 studies

with zeros in control arm since p2i = 0.1 and large number of events in treatment arm since

p1i = 0.23 for θ = 1 and p1i = 0.45 for θ = 2. Then there is a big imbalance between the

numbers of events in treatment arm is comparably large to number of events in control arm.

From the results of our simulations it follows that overestimated between-study variance and

true effect measure will result in shorter confidence interval θ̂CM.EL. Hence it might lead to

reduced coverage. Thus, the non-central-hypergeometric normal model does not perform well

in ODM apart from the case when the number of studies is large and θ 6= 0. The explanation

of this is that the pair of beta-binomial distributions in ODM model do not result in non-

central hypergeometric distribution (Liang, 1985). Originally, the non-central hypergeometric
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distribution is derived from a pair of binomially distributed variables for treatment and con-

trol arm. Applying the non-central hypergeometric distribution to case of correlated binomial

events leads to the failure of assumptions and wrong inference. Liang (1985) has shown that

the maximum likelihood estimator of odds ratio based on non-central hypergeometric distribu-

tion for fixed effect is biased when the number of studies increases asymptotically. For random

effects, we have shown that the maximum likelihood estimators of between-study variance and

overall effect measure are also biased. Particularly, the biases are large when the randomness

is a result of intra-cluster dependence within each arms in each study. The inference based on

non-central hypergeometric distribution is sensitive to misspecification of intra-cluster corre-

lation structure (Hanfelt and Liang, 1998; Liang, 1985). This problem might result in issues

in misspecification of the models for meta-analysis of binary data. Thus, inference based on

non-central hypergeometric distribution in case of overdispersion in meta-analysis might be

misleading. Overall, the results are worse in data generated from ODM than in data generated

from REM.

In summary, we would not recommend the non-central hypergeometric-normal model when

the binary data is assumed to be correlated and effect measure is far from zero. When,

effect measure is far from zero, the main problem in that case is the transformation bias

which results in biased estimates of overall effect measure and too narrow confidence in-

tervals. The binomial-normal approximation to non-central hypergeometric-normal model

also is not a good option, since it provides poorer confidence intervals than the actual non-

central hypergeometric-normal model. Even, when the the effect measure is close to zero, the

between-study variance is still biased. This bias does not seem to decrease with K. The bias

of overall-effect measure does reduce with increasing K and N . However, the coverage does

not still reach nominal 95% significance level.
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Figure 5.7: Bias of between-study variance τ 2 (first row), bias (second row) and coverage (third
row) of overall odds ratio at the nominal 95% level using the non-central hypergeometric-
normal in overdispersed random effects model using dFNCHypergeo for p2i = 0.1, θ = 0 and
0 ≤ τ 2 ≤ 2.2. Light grey line at 0.95
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Figure 5.8: Bias of between-study variance τ 2 (first row), bias (second row) and coverage (third
row) of overall odds ratio at the nominal 95% level using the non-central hypergeometric-
normal in overdispersed random effects model using dFNCHypergeo for p2i = 0.1, θ = 1 and
0 ≤ τ 2 ≤ 1.55. Light grey line at 0.95



154

 Between−study−variance τ2

 B
ia

s 
of

 b
et

w
ee

n−
st

ud
y−

va
ria

nc
e

● ● ●

●

●

●

●
●

●

●

0.22 0.44 0.66 0.88 1.10 1.32 1.48

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

θ = 2 , K = 5 , dFNCHypergeo

 Between−study−variance τ2

 B
ia

s 
of

 b
et

w
ee

n−
st

ud
y−

va
ria

nc
e

● ● ● ●
●

●

●

●

●

●

0.22 0.44 0.66 0.88 1.10 1.32 1.48

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

θ = 2 , K = 10 , dFNCHypergeo

 Between−study−variance τ2

 B
ia

s 
of

 b
et

w
ee

n−
st

ud
y−

va
ria

nc
e

● ● ●
●

●
●

●

●

●

●

0.22 0.44 0.66 0.88 1.10 1.32 1.48

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

θ = 2 , K = 30 , dFNCHypergeo

 Between−study−variance τ2

B
ia

s 
of

 o
ve

ra
ll 

lo
g−

od
ds

−
ra

tio

●

●

●

●

●

●

●

●

●

●

0.22 0.44 0.66 0.88 1.10 1.32 1.48

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

θ = 2 , K = 5 , dFNCHypergeo

 Between−study−variance τ2

B
ia

s 
of

 o
ve

ra
ll 

lo
g−

od
ds

−
ra

tio

●

●

●

●

●

●

●

●

●

●

0.22 0.44 0.66 0.88 1.10 1.32 1.48

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

θ = 2 , K = 10 , dFNCHypergeo

 Between−study−variance τ2

B
ia

s 
of

 o
ve

ra
ll 

lo
g−

od
ds

−
ra

tio

●

●

●

●

●

●

●

●

●

●

0.22 0.44 0.66 0.88 1.10 1.32 1.48

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

θ = 2 , K = 30 , dFNCHypergeo

Between−study−varianceτ2

 C
ov

er
ag

e 
of

 o
ve

ra
ll 

lo
g−

od
ds

−
ra

tio

●

●

●

●
●

● ● ●
● ●

0.22 0.44 0.66 0.88 1.10 1.32 1.48

0.
40

0.
50

0.
60

0.
70

0.
80

0.
90

0.
95

1.
00

θ = 2 , K = 5 , dFNCHypergeo

Between−study−varianceτ2

 C
ov

er
ag

e 
of

 o
ve

ra
ll 

lo
g−

od
ds

−
ra

tio

●

●

●
● ●

● ●

● ●
●

n=50
n=100
n=250
n=1000

0.22 0.44 0.66 0.88 1.10 1.32 1.48

0.
40

0.
50

0.
60

0.
70

0.
80

0.
90

0.
95

1.
00

θ = 2 , K = 10 , dFNCHypergeo

Between−study−varianceτ2

 C
ov

er
ag

e 
of

 o
ve

ra
ll 

lo
g−

od
ds

−
ra

tio

●

●

●

●

●

●

●

●

●

●

0.22 0.44 0.66 0.88 1.10 1.32 1.48

0.
40

0.
50

0.
60

0.
70

0.
80

0.
90

0.
95

1.
00

θ = 2 , K = 30 , dFNCHypergeo

Figure 5.9: Bias of between-study variance τ 2 (first row), bias (second row) and coverage (third
row) of overall odds ratio at the nominal 95% level using the non-central hypergeometric-
normal in overdispersed random effects model using dFNCHypergeo for p2i = 0.1, θ = 2 and
0 ≤ τ 2 ≤ 1.48. Light grey line at 0.95
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Figure 5.10: Bias of between-study variance (first row), bias (second row) and coverage (third
row) of overall odds ratio at the nominal 95% level using the binomial-normal approximation to
non-central-hypergemeotric normal model in beta-binomial random effects model for p2i = 0.1,
θ = 0 and 0 ≤ τ 2 ≤ 2.2. Light grey line at 0.95
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Figure 5.11: Bias of between-study variance (first row), bias (second row) and coverage (third
row) of overall odds ratio at the nominal 95% level using the binomial-normal approximation to
non-central-hypergemeotric normal model in beta-binomial random effects model for p2i = 0.1,
θ = 1 and 0 ≤ τ 2 ≤ 1.55. Light grey line at 0.95
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Figure 5.12: Bias of between-study variance (first row), bias (second row) and coverage (third
row) of overall odds ratio at the nominal 95% level using the binomial-normal approximation
to non-central-hypergemeotric normal model in beta-binomial random effects model p2i = 0.1,
θ = 2 and 0 ≤ τ 2 ≤ 1.48. Light grey line at 0.95
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5.6 Example: effects of diuretics on pre-eclampsia

A meta-analysis of nine-trials on the effect of diuretics on pre-eclampsia (Collins et al., 1985)

was studied in section 4.5 of Chapter 4. The same example is re-analysed in this chapter in

order to compare the results from standard models with the results from generalized linear

mixed effect models. Four classes of generalised models are applied. The first two models are

unconditional generalized linear mixed-effects models with fixed and random study effects,

Turner et al. (2000). metafor package in R uses a coding of +1/2 and -1/2 for the group

dummy for the random effects of unconditional generalized linear mixed-effects models with

fixed and random study effects. This is done in order to avoid the problem of lower variance

in control group relatively to treatment group when a coding of 0 and 1 used instead. More

details can be found in Turner et al. (2000) and Viechtbauer (2015). The second two models

are conditional generalized linear mixed-effects models with approximate and exact likelihood

(Stijnen et al., 2010). For comparison of the results, we also included the results from stan-

dard additive random effects model and multiplicative overdispersed random effects model

from Chapter 4. All the results are shown in table 5.1.

The generalized mixed effects models (GLMM) provide similar results for the logarithm of odds

ratio (LOR) between −0.513 and −0.516 apart from the model CM.AL where LOR = −0.434.

The value of estimator for between-study variance, τ̂ 2CM.AL = 0.165, in conditional general-

ized linear mixed-effects model with approximate likelihood is also lower in comparison to

unconditional generalized linear mixed-effects model with fixed and random study effects,

τ̂ 2UM.FS = 0.254 and τ̂ 2UM.FS = 0.264, and to conditional generalized linear mixed-effects model

with exact likelihood, τ̂ 2CM.EL = 0.260. The explanation might be that the binomial approx-

imation to non-central-hypergeometric distribution in conditional generalized linear mixed-

effects model is invalid for this data in studies with probabilities p1i > 0.1 and p2i > 0.1. For

example, in studies 3, 4 and 9, the probabilities in both arms are higher than 0.1 (see table

4.1 in Chapter 4). The non-central-hypergeometric normal model produces an estimate of

between-study variance τ̂ 2CM.EL = 0.260. This estimate is right between the DL and REML
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Table 5.1: Estimates and confidence intervals for the ICC ρ, for log odds ratios and for odds
ratios diuretics in pre-eclampsia example; GLMM is the generalized linear mixed model, REM
is the random effects and BB is the beta-binomial model. Heterogeneity parameters estimated
are τ 2 in GLMM, and ρ in BB model. L and U are the lower and upper limits of the respective
confidence intervals (CIs).

Model Method Hetero L U LOR L U length OR L U
geneity of CI

GLMM UM.FS 0.254 -0.513 -0.923 -0.104 0.819 0.599 0.398 0.901
GLMM UM.RS 0.264 -0.516 -0.930 -0.102 0.828 0.597 0.395 0.903
GLMM CM.AL 0.165 -0.434 -0.777 -0.091 0.686 0.648 0.460 0.913
GLMM CM.EL 0.260 -0.147(0) 0.667 -0.513 -0.927 -0.100 0.827 0.599 0.396 0.905
FEM 0.000 -0.398 -0.573 -0.223 0.530 0.672 0.564 0.800
REM DL 0.230 0.072 2.202 -0.517 -0.916 -0.117 0.799 0.596 0.400 0.889
REM REML 0.300 0.043 1.475 -0.518 -0.956 -0.080 0.876 0.596 0.384 0.923
BB M&IV 0.008 0.002 0.095 -0.436 -0.792 -0.080 0.712 0.647 0.453 0.923

M&MH -0.427 -0.775 -0.080 0.695 0.652 0.461 0.923
BB REML&IV 0.010 0.001 0.060 -0.447 -0.835 -0.059 0.776 0.640 0.434 0.942

REML&MH -0.431 -0.809 -0.053 0.756 0.650 0.445 0.949
BB MP&IV 0.017 0.002 0.095 -0.469 -0.920 -0.018 0.902 0.626 0.399 0.982

MP&MH -0.459 -0.898 -0.020 0.879 0.632 0.407 0.981
BB CMP&IV 0.018 0.003 0.094 -0.474 -0.942 -0.007 0.936 0.623 0.390 0.993

CMP&MH -0.472 -0.927 -0.016 0.911 0.624 0.396 0.984
BB BD&IV 0.019 0.003 0.107 -0.475 -0.944 -0.006 0.938 0.622 0.389 0.994

BD&MH -0.463 -0.920 -0.021 0.899 0.630 0.399 0.980
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estimator of between-study variance in standard random effects model. The widest confi-

dence intervals among GLMM models of widths 0.827 and 0.828 are from the unconditional

generalized linear mixed-effects model with random study effects (UM.RS) and conditional

generalized linear mixed-effects model with exact likelihood (CM.EL) respectively. These in-

tervals are still shorter than the interval for the inverse-variance odds ratio obtained from

beta-binomial model with ρCMP and ρBD. Among all methods, the inverse-variance method

with ρBD provides the widest confidence interval. Among all the estimates of between-study

variance Viechtbauer (2005) recommend REML as the most unbiased and efficient estimate of

τ 2. The use of REML estimate of τ 2 in standard additive random effects model is well-known.

However, Turner et al. (2000) has analysed the current example and showed that τ̂ 2REML is

biased downwards.

In order to compare the estimates of τ 2 and θ obtained by various methods, we derive the likely

true values of τ 2 and θ using the biases of τ̂ 2CM.EL from simulations of standard REM in table

5.2 and multiplicative ODM in table 5.3. These biases correspond to the case K = 10 and

true τ 2 = 0.1, τ 2 = 0.3 for REM and ρ = 0.01, ρ = 0.02 for ODM. We consider this particular

case since we have only nine studies and small values of τ 2 in the range of 0.165− 0.300 and

ρ in the range of 0.008− 0.019 in this example.

Table 5.2: Bias of τ̂ 2CM.EL from simulation of REM for K = 10 and θ = 0

Sample size
τ 2 50 100 250 1000
0.1 0.069289371 0.004323149 -0.006701096 -0.011848884
0.3 0.05059464 -0.02737167 -0.02787429 -0.02933790

Table 5.3: Bias of τ̂ 2CM.EL from simulation of ODM for K = 10 and θ = 0

Sample size
ρ τ 2 50 100 250 1000

0.01 0.22 0.072288987 0.000957377 -0.009543923 -0.011582204
0.02 0.44 0.093838612 0.024553661 0.008006127 0.005678536
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Thus, the likely true values of between-study variance derived from simulation results of stan-

dard REM and multiplicative ODM with τ̂ 2CM.EL = 0.26 are shown in the table 5.4 and 5.5

respectively.

Table 5.4: Likely true values of τ 2 derived from simulation of REM for K = 10 and θ = 0

Sample size
τ 2 50 100 250 1000
0.1 0.1907106 0.2556769 0.2667011 0.2718489
0.3 0.2094054 0.2873717 0.2878743 0.2893379

Table 5.5: Likely true values of τ 2 derived from simulation of ODM for K = 10 and θ = 0

Sample size
ρ τ 2 50 100 250 1000

0.01 0.22 0.187711 0.2590426 0.2695439 0.2715822
0.02 0.44 0.1661614 0.2354463 0.2519939 0.2543215

From the table 5.4 and 5.5, the value of true between-study variance is not clear. The results

of two models are quire similar for τ 2 = 0.1 in REM and ρ = 0.01 in ODM. This might be

because τ 2 = 0.1 correspond to ρ = 0.01 in relationship 6.2.7. The bias in τ 2 depends on the

sample size. The average sample sizes of nine studies are n1i = 418 and n2i = 354. Thus we

would concentrate on the large values of N in simulations such as N = 250 and N = 1000. For

θ = 0 and small amount of heterogeneity, the results of simulations have shown that inference

based on a conditional generalized linear mixed-effects model with exact likelihood is not that

bad. Thus, from the conditional generalized linear mixed-effects model with exact likelihood,

the true value of τ 2 is around 0.2667011 − 0.2718489 (from data generated with REM) and

0.2695439− 0.2715822 (from data generated with ODM). The problems with conditional gen-

eralized linear mixed-effects model with exact likelihood might appear in case of moderate to

large amount of heterogeneity across the studies. We have shown by simulation study that the

NCHGM might be misleading in case of presence of intra-cluster correlation within studies.

However, in this particular example the value of intra-cluster correlation is very small. Hence

the conditional generalized linear mixed-effects model resulted in similar results in both REM

and ODM models. In this particular example, the bias of τ̂ 2CM.EL = 0.26 is not that large and
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we would still believe this estimator. The likely true values of θ from simulations of REM

and ODM model is as following. These biases of θ from simulations of standard REM and

multiplicative ODM are shown in tables 5.6 and 5.7.

Table 5.6: Bias of θ̂CM.EL from simulation of REM for K = 10 and θ = 0

Sample size
τ 2 50 100 250 1000
0.1 0.028087437 0.021165542 0.018814243 0.006114903
0.3 0.063890995 0.052922304 0.027021773 0.012555648

Table 5.7: Bias of θ̂CM.EL from simulation of ODM for K = 10 and θ = 0

Sample size
ρ τ 2 50 100 250 1000

0.01 0.22 -0.001349553 -0.001946856 -0.00109181 -0.000905712
0.02 0.44 -0.006715632 -0.001437701 -0.0019664942 -0.00075448

Thus, the likely true values of overall odds ratio derived from simulation results of standard

REM and multiplicative ODM with τ̂ 2CM.EL = 0.26 are shown in the table 5.8 and 5.9 respec-

tively.

Table 5.8: Likely true values of log-odds ratio θ derived from simulation of REM for K = 10
and θ = 0

Sample size
τ 2 50 100 250 1000
0.1 -0.5410874 -0.5341655 -0.5318142 -0.5191149
0.3 -0.576891 -0.5659223 -0.5400218 -0.5255556

Table 5.9: Likely true values of odds ratio θ derived from simulation of ODM for K = 10 and
θ = 0

Sample size
τ 2 50 100 250 1000

0.01 0.22 -0.5116504 -0.5110531 -0.5119082 -0.5120943
0.02 0.44 -0.5062844 -0.5115623 -0.5110335 -0.5122455

Again from the table 5.8 and 5.9, similar to the between-study variance, it is not clear the true

value of overall odds ratio. The true log-odds-ratio vary between −0.5410874 and −0.5191149

from REM and between −0.5116504 and −0.5120943 from ODM. In Chapter 4, we rec-

ommended the estimated ICC ρ̂BD = 0.019 and corresponding value of the pooled LOR
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θ̂IV = −0.475 with confidence interval (−0.944, −0.006). Comparing the results from Chap-

ter 4, our estimator θ̂IV = −0.475 from ODM is close to likely values of true log-odds ratio,

however the difference between θ̂CM.EL = −0.513 and θ̂IV (ρ) = −0.475 still exist. Figure 4.1 in

Chapter 4 shows that the Breslow-Day method provides less biased estimates of intra-cluster

correlation. The absolute bias of ρBD is much smaller than the bias of τ̂ 2CM.EL. Particularly,

the bias of ρBD is minimum for small to moderate values of intra-cluster correlation. Also,

Figure 4.3 shows that when for K = 10, the bias of overall log-odds ratio almost does not

exist when θ = 0 and around 0.05 − 0.1 when θ = 1. Thus, obtaining the likely true values

of odds ratio from ODM, then true value of odds ratio is between ψ = 0.672 and ψ = 0.722.

Even though, in this particular example, a non-central hypergeometric normal model provided

similar likely true values between-study variance and overall odds ratio from REM and ODM,

there is difference in likely true values of odds ratio from NCHGN and ODM. Which model

to believe still remain an open question.
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5.7 Summary

In this chapter, we examined by simulations the performance of a conditional generalized lin-

ear mixed effects model with exact and approximate likelihood. Both models were applied

to data simulated from two different scenarios. The first scenario is a pair of binomially dis-

tributed random variables within each study with normally distributed logarithm of odds ratio

across studies. This case corresponds to the standard additive random effects model. In ran-

dom effects model, the overdispersion is introduced through the between-study variance. The

second scenario is a pair of beta-binomially distributed random variables within each study.

This is a two stage model. The events are assumed to have binomial distributions within each

study and the probabilities of events in each arm are assumed to be beta-distributed across

K studies. The same model can be obtained by assuming the within study dependence of

Bernoulli variables within each arm. The overdispersion is introduced through intra-cluster

correction within each arm.

In metafor R package, there exist two methods for fitting the conditional generalized linear

mixed effects model with exact likelihood. The first method used by default is using the

density function dFNCHypergeo from the BiasedUrn package. The second method is using

the density function dnoncenhypergeom from the MCMC package. We examined the stability

and performance of dFNCHypergeo or dnoncenhypergeom for estimation of an overall effect

measure and between-study variance by simulation study. Both methods perform more or less

similarly. Some of our findings depend on numerical issues and not the properties of the con-

ditional generalized linear mixed effects model with exact likelihood. We have also examined

the conditional generalized linear mixed effects model with approximate likelihood, which may

be used when the probabilities are low due to approximation of non-central-hypergeometric

distribution with binomial distribution. This method has shown lower performance than con-

ditional generalized linear mixed effects model with exact likelihood

For beta-binomial model, the conditional generalized linear mixed effects model with exact

likelihood provides biased estimates of θ and τ 2 which results in wrong confidence intervals of
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θ. Particularly, the coverage deteriorates when the log-odds ratio moves far away from zero.

The explanation of the lower coverage and biased estimate of overall effect may be due to the

bias of sample log odds ratio under beta-binomial model when the probabilities of two arms

are not equal (see Chapter 4).

For standard additive random effects model, the maximum likelihood estimate of τ 2 and θ

are also biased. This bias results in lower coverage than the nominal confidence level of 0.95.

The bias in non-central-hypergeometric-normal model might be the result of the logit trans-

formation used in non-central-hypergeometric distribution within each study, since the logit

transformation has a bias of order 1/n.

From the results of simulations in this current chapter and Chapter 4, when the binary data is

sparse it is difficult to propose a universal method for estimating the between-study variance

and overall effect measure. There seems to appear a misspecification problems of models. The

problem lies in differentiating between the models (standard REM and multiplicative ODM)

and their assumptions. In real situation, it is impossible to distinguish if there is a between

study heterogeneity across the studies or intra-cluster dependence within each study. The

former might be the latter assumption and visa versa. According to Stijnen et al. (2010),

generalized linear mixed effects model might provide insights to these problems. Particularly,

a conditional generalized linear mixed-effects model with an exact non-central hypergeomet-

ric likelihood is suggested as an alternative to standard random effects model in order to

avoid the estimated within study variances and continuity corrections in case of sparse data.

Nevertheless, we showed that the estimates of parameters from conditional generalized linear

mixed-effects model with an exact non-central hypergeometric likelihood are biased, hence the

confidence interval of overall effect measure is too narrow. The bias is larger when the binary

data is correlated. This correlation is modelled through beta-binomial model. In case of ex-

istence of correlation, the inference from a conditional generalized linear mixed-effects model

with an exact non-central hypergeometric likelihood is misleading. We believe that the bias in

a conditional generalized linear mixed-effects model with an exact non-central hypergeometric



166

likelihood is the result of transformation. In Chapter 3, we have shown that the transforma-

tion bias is present in standard random effects model and overdispersed multiplicative random

effects model for log odds. Nemes et al. (2009) shows that logistic regression overestimates

the odds ratio due to the bias of order 1/n in studies with small and moderate sample sizes.

Kosmidis et al. (2017) studies the bias of order 1/n in maximum likelihood estimates of overall

effect measure and between-study variance under random effects model.

A diagnostic or a method robust to misspecification of dependency structure of Bernoulli vari-

ables is required. For differences between beta-binomial and logistic-normal model, Williams

(1982) suggests to fit the beta-binomial model and plot standardized residuals against fitted

values. If plot indicates that the variance of these residuals decreases markedly as the fitted

value approaches zero or one, then standard random effects model may be more appropriate.

Another graphical statistic is proposed by Hinde and Demétrio (1998), who consider the plot

of half-normal scores against deviance residuals to choose between beta-binomial and logistic

normal models. All these and other references for diagnostics are well summarized in Hinde

and Demétrio (1998). In regression analysis for binary data, the plot of standardized or de-

viance residuals against fitted value are particularly useful in checking the model adequacy,

detecting outlier or unusual observations. However, the use of this plot to choose between

models maybe not the best option. According to Gelman and Hill (2006), it is generally

difficult to differentiate between beta-binomial and logistic-normal models. Referencing the

paper by Williams (1982), Ganio-Gibbons (1989) suggests that it is only possible to see the

difference between models if there are large number of observations with fitted values close

to zero or one. Breslow and Clayton (1993) warn that ”when the probabilities are small and

the data are highly discrete, only limited information is present for estimating the random

effects”. Hanfelt and Liang (1998) discuss the sparseness of dependent binary data. Hanfelt

and Liang (1998) say that for the asymptotic situation when the number of studies is increas-

ing, the maximum likelihood theory leads to inconsistent maximum likelihood estimation for

odds ratio regression models. For the dependent binary data, Hanfelt and Liang (1998) do not
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recommend the use of likelihood based methods, since these methods are not robust against

model specification.

The misspecification of REM is an important issue in meta-analysis of sparse data. How to

safeguard against misspecification of REM and which method to use in meta-analysis of sparse

data is an open question.



Chapter 6

Comparison of standard and new
methods for estimation of random
effect component from REM and ODM

6.1 Introduction

In Chapter 5, we have shown that the inference based on conditional generalized linear mixed

effects model with exact and approximate likelihood for sparse data might be misleading due

to the negative bias in between-study variance and positive bias in overall effect measure.

The biases of between-study variance and overall effect measure are not large, but still exist.

These biases are the result of transformation from odds ratio to log odds ratio scale, that

the true effect measures undergo when they are integrated out across the studies. The bias

of between-study variance and overall effect measure are of order O(1/N). These biases are

similar to the transformation biases studied in Chapter 3. Similar biases due to transforma-

tion might influence the inference in meta-analysis based on methods from standard random

effects model (REM).

In Chapter 5, we have also shown the problem of misspecification between two models in

meta-analysis. Two main models correspond to standard additive REM and multiplicative

ODM. In standard additive REM, we have a pair of binomially distributed random variables

within each study with normally distributed logarithm of odds ratio across studies. In mul-

tiplicative ODM, binomially-normally distributed random variables from REM are replaced

168
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by a pair of beta-binomially distributed random variables within each study. Two models

have different assumptions. In each model, the requisite parameters need to be estimated.

In standard REM, the parameters of interest are between-study variance and overall effect

measure. In multiplicative ODM, the parameters of interest are intra-cluster correlation and

overall effect measure. In reality, even when the raw data is available, it is very difficult to

distinguish between these two models. This is a problem of misspecification of random effects

models in meta-analysis.

In the current Chapter, we study how the problems of transformation bias and misspecification

discussed in Chapter 5 affect methods of estimation of random effect component and over-

all effect measure in meta-analysis either in standard REM (Chapter 2) or in multiplicative

ODM (Chapter 4). In addition to standard methods for estimation of between-study variance

and overall effect measure discussed in Chapter 2, we also study novel Profiled Breslow-Day

method introduced in Chapter 4, Corrected Mantel-Paule method with gamma approximation

from Chapter 4 and a new recently developed method based on penalization of likelihood for

estimation of between-study variance (Kosmidis et al. (2017)).

The structure of this Chapter is as follows. Section 6.2 overviews standard REM and mul-

tiplicative ODM. In the same section, we also provide the correspondence between standard

REM and multiplicative ODM. In section 6.3, we provide the brief overview of different esti-

mators of between-study variance in meta-analysis. Section 6.4 provides a simulation study

for standard REM. In section 6.5, we assess the methods for estimation of between-study vari-

ance and corresponding inverse-variance effect measures with data simulated from a pair of

beta-binomial distributions. The example of meta-analysis from Chapters 4 and 5 is restudied

in section 6.6 with estimation of τ 2 from all the possible methods. Section 6.7 summarizes the

findings of the current Chapter. This Chapter represents the novel work of this thesis
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6.2 Random effects models for meta-analysis of LOR

6.2.1 Standard random effects model

In meta-analysis, the standard random effects model assumes that within and between study

variability is accounted for through an approximately normal distribution within and between

study effects, i.e

θ̂i ∼ N(θi, σ
2
i ) and θi ∼ N(θ, τ 2), (6.2.1)

resulting in a marginal distribution of estimated effect measures θ̂i ∼ N(θ, σ̂2
i + τ 2). θ̂i are the

estimates of effect measures, and its within-study variances for each study i are estimated by

σ̂2
i , i = 1, . . . , K. τ 2 represents an unknown variance for between-study variance. When τ 2 is

estimated, the overall estimate of an effect measure can be estimated by the weighted mean

θ̂RE =

K∑
i=1

ŵiθ̂i

K∑
i=1

ŵi

, (6.2.2)

where weights ŵi = 1
ˆVar(θ̂i)

and

V̂ar(θ̂i) =
1

ni1p̂i1(1− p̂i1)
+

1

ni2p̂i2(1− p̂i2)
+ τ̂ 2 (6.2.3)

where τ̂ 2 is an estimator of τ 2, p̂i1 and p̂i2 are estimators of probabilities in treatment and

control arm.

6.2.2 Overdispersed random effects model

In Chapter 4, we have introduced an overdispersed beta-binomial random effects model (ODM)

for ORs. ODM for ORs is modelling the binomial numbers of events X1i and X2i rather

than the logarithmic transformation of ORs. In ODM, the variability is modelled through a

pair of independent beta-binomial distributions. Assuming normality across K studies, the

overdispersed random effects model with a pair of beta-binomial distributions is

θ̂i ∼ N(θ,
vi(Ri)

ni
φi), (6.2.4)
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where φi = (1 + aiρ) and ai is given by

ai = a(ni, Ri, pi1, pi2) = nivi(Ri)
−1
[

1

pi1(1− pi1)
+

1

pi2(1− pi2)

]
− 1.

ai is a linear function of ni and has the same order as ni. Reparametrising ai as a function of

the control arm probability pi2 and the odds ratio ψi, ai can be written as

ai =
niRi[(1− pi2(1− ψi))2 + ψi]

(Ri + 1)[(1− pi2(1− ψi))2 +Riψi]
− 1.

For balanced studies Ri = 1, and ai simplifies to ai = ni/2− 1.

The inverse-variance method for overdispersed random effects model is

θ̂ODM =

K∑
i=1

ŵiθ̂i

K∑
i=1

ŵi

with weights ŵi =
1

σ̂2
i (1 + aiρ)

. (6.2.5)

where

σ̂2
i (1 + aiρ) = Var(log(ψ̂i)) =

1 + (ni1 − 1)ρ

ni1pi1(1− pi1)
+

1 + (ni2 − 1)ρ

ni2pi2(1− pi2)
. (6.2.6)

ρ is an unknown parameter for intra-cluster correlation that has to be estimated.

6.2.3 Correspondence between ρ in ODM and τ 2 in REM

We have two versions of random effects model. One is the standard additive REM and another

is the multiplicative ODM. The heterogeneity in additive random effects model (6.2.2) is

explained by additional variance component of random effects τ 2. In the multiplicative ODM,

we explain overdispersion by common intra-cluster correlation ρ. In both cases, we have some

additional component in the total variance for log(ψ̂i). Comparing the variance (6.2.3) in

standard REM (6.2.2) and variance (6.2.6) in multiplicative ODM (6.2.4), there is a monotonic

relationship between τ 2 and ρ given by

τ 2i = [
(n1i − 1)

n1ip1i(1− p1i)
+

(n2i − 1)

n2ip2i(1− p2i)
]ρi. (6.2.7)

The relationship between the intra-cluster correlation ρ and the between-study variance τ 2

depends on probabilities and sample sizes of positive response p1i and p2i for treatment and
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control arms respectively. Two models, REM and ODM, are largely equivalent when τ 2 or ρ

are constant across studies.

Assuming balanced studies, i.e equal sample sizes n1i = n2i = n∗i , the correspondence above

becomes

τ 2i =
(n∗i − 1

n∗i

)
[

1

p1i(1− p1i)
+

1

p2i(1− p2i)
]ρi

or in terms of within study variance (6.2.3)

τ 2i =
(
n∗i − 1

)
σ2
i ρi

where

σ2
i =

1

n1ip1i(1− p1i)
+

1

n2ip2i(1− p2i)

In the case when the probabilities for treatment and control arms are constant, i.e. p1i = p1

and p2i = p2 and n1i = n2i = n, then between-study variances τ 2i do not depend on i, i.e.

τ 2i = τ 2.

6.3 Estimators of between-study variance

There exist numerous estimators of between-study variance in meta-analysis. Some estimators

are based on method of moments and some are likelihood based estimators. The literature

review of all estimators is given in detail in Chapter 2. In this section, we overview the most

popular and new estimators of between-study variance. Two new estimators are based on the

idea similar to estimation of intra-cluster correlation parameter in Chapter 4. One more new

estimator is the recent development on penalization of likelihood function (Kosmidis et al.

(2017)). All these estimators will be used in simulation study in section 6.4.

6.3.1 Der-Simonian and Laird estimator of τ 2

Under random effects model, the Cochran’s Q-statistic has approximately chi-square distri-

bution χ2
K−1. The Der-Simonian and Laird estimator of τ 2 is based on Cochran’s Q statistic.
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The Der-Simonian and Laird is a method of moment estimator introduced by DerSimonian

and Laird (1986). It is calculated as

τ̂ 2DL = max

(
[Q−K + 1]

/[ K∑
i=1

wi −

K∑
i=1

w2
i

K∑
i=1

wi

]
, 0

)
. (6.3.1)

6.3.2 Mandel-Paule estimator of τ 2

The Mandel-Paule estimator τ̂ 2MP is another moment based estimator similar to DerSimonian

and Laird estimator of between-study variance in meta-analysis. The Mandel-Paule estimator

τ̂ 2MP is based on equating Cochran’s Q statistic Q(τ 2) to the first moment of its chi-square

distribution χ2
K−1 given that a solution exists. It is obtained by solving iteratively the equation

Q(τ 2) =
K∑
i=1

(θi − θ̂RE)2

σ2
i + τ 2

= K − 1. (6.3.2)

The Q profiled confidence interval can be estimated from lower and upper quantiles of χ2
K−1

distribution

Q(τ 2L) = χ2
K−1;0.975 Q(τ 2U) = χ2

K−1;0.025 (6.3.3)

The upper and lower bounds for τ 2 can be calculated iteratively.

6.3.3 Corrected Q-statistic based estimation of τ 2

As described in (4.4.4) of Chapter 4, the corrected Q-statistic can be used for estimation of

between-study variance τ 2 in the standard additive random effects model. Following Kulin-

skaya and Dollinger (2015), the distribution of Q statistic can be well approximated by a

family of gamma distributions with shape and scale parameters

r(τ 2) =
E(Q)2

Var(Q)
and λ(τ 2) =

Var(Q)

E(Q)
.

The expected value and variance of Q are obtained from the equations

(K − 1)− E(Q) = 0.678[(K − 1)− Eth(Q)] (6.3.4)
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and

Var(Q) = 4.74(K − 1)− 12.17E[Q] + 9.42E[Q]2/(K − 1), (6.3.5)

where Eth(Q) is the theoretical approximation to the mean of Q for log odds ratio (Kulinskaya

and Dollinger, 2015). Based on gamma approximation of the Q statistics, the Corrected

Mandel-Paule estimate of τ 2 is obtained from

Q∗(τ 2) = E(Q) (6.3.6)

given that a solution exist, where E(Q) is the solution of equation (6.3.4).

The related confidence interval based on gamma approximation to the distribution of Q statis-

tic can be obtained from{
Γr(τ2),λ(τ2);α/2 ≤ Q∗(τ 2) ≤ Γr(τ2),λ(τ2);1−α/2

}
, (6.3.7)

where Γr(τ2),λ(τ2) is the quantiles of gamma distribution with r(τ 2) and λ(τ 2) as shape and

scale parameters.

6.3.4 Maximum Likelihood estimator of τ 2

Based on assumption that each effect measure θ̂i has a marginal normal distribution N(θ, σ̂i+

τ 2), the maximum likelihood estimator τ̂ 2ML is obtained by maximising the log-likelihood

function

l(θ, τ 2) ≈ −1

2

K∑
i=1

log(σ2
i + τ 2)− 1

2

K∑
i=1

(θi − θ)2

σ2
i + τ 2

, (6.3.8)

ignoring constant terms in the log-likelihood. The maximum likehood estimator of τ 2 is

τ̂ 2ML =

K∑
i=1

w2
i [(θ̂i − θ̂ML)2 − σ2

i ]

K∑
i=1

w2
i

(6.3.9)

Viechtbauer (2005) has also shown that between-study variance estimates based on ML method

are biased.

A 95 per cent confidence interval for τ̂ 2ML is given by set of values which satisfy

lR(τ̂ 2) > lR(τ̂ 2ML)− 1

2
C0.95(χ

2
1) (6.3.10)
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where C0.95(χ
2
1) is the 0.95 quantile of the χ2

1 distribution and lR is the likelihood ratio test

statistic. The distribution

−2 log(
lR(τ 2)

lR(τ 2ML)
)→ χ2

1 for K →∞

where lR(τ 2) is the maximum likelihood function calculated at the τ 2 and τ 2ML. The pro-

file likelihood confidence interval might not be centred at τ 2ML due to absence of symmetry.

The profile likelihood confidence interval is proposed by Hardy and Thompson (1998). The

confidence interval based on τ̂ 2ML can be estimated from the likelihood (6.3.8).

6.3.5 Restricted maximum likelihood estimator of τ 2

Based on assumption that each effect measure θ̂i has a marginal normal distribution N(θ, σ̂i+

τ 2), the restricted maximum likelihood estimator τ̂ 2REML is obtained by maximising the log-

likelihood function

l(θ, τ 2) = −1

2

K∑
i=1

log(σ2
i + τ 2)− 1

2

K∑
i=1

(θi − θ)2

σ2
i + τ 2

− 1

2
log(

K∑
i=1

(σ2
i + τ 2)−1)

ignoring constant terms in the log-likelihood. The restricted maximum likelihood estimator

of between-study variance is

τ̂ 2REML =

K∑
i=1

w2
i [(θi − θ̂REML)2 − σ2

i ]

K∑
i=1

w2
i

+
1

K∑
i=1

wi

. (6.3.11)

The restricted maximum likelihood estimator is the the most common method for estimation

of between-study variance in meta-analysis. The restricted maximum likelihood is preferred

over the method by DerSimonian and Laird (1986) due to its balance between unbiasedness

and efficiency (Viechtbauer, 2005).

Similarly to maximum likelihood estimator, a 95 per cent confidence interval for τ̂ 2REML is

given by set of values which satisfy

lR(τ̂ 2) > lR(τ̂ 2REML)− 1

2
C0.95(χ

2
1) (6.3.12)
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where C0.95(χ
2
1) is the 0.95 quantile of the χ2

1 distribution and lR is the restricted likelihood

ratio test statistic. The distribution

−2 log(
lR(τ 2)

lR(τ 2ML)
)→ χ2

1 for K →∞

where lR(τ 2) is the restricted maximum likelihood function calculated at the τ 2 and τ 2ML.

6.3.6 Penalized likelihood estimator of τ 2

The penalized maximum likelihood estimator of between-study variance proposed by Kosmidis

et al. (2017) can be estimated by obtaining the derivative of the penalized log-likelihood

function

l∗(θ, τ 2) = l(θ, τ 2)− 1

2
log(

K∑
i=1

1

σ̂2
i + τ 2

) (6.3.13)

where
∑K

i=1
1

σ̂2
i +τ

2 is the (1, 1) block of the information matrix obtained from the initial log-

likelihood function l(θ, τ 2) given by 6.3.8. Maximizing l∗(ϑ) results in penalized maximum

likelihood estimators θ̂MPL and τ̂ 2MPL. More details about the derivations and theory of the

new penalized maximum likelihood estimation in meta-analysis are provided in Kosmidis et al.

(2017). Kosmidis et al. (2017) claims that their bias correction reduces the bias of ML for

OR. We include the bias corrected estimator of τ 2 proposed by Kosmidis et al. (2017) in our

simulation.

6.3.7 Breslow-Day estimation of τ 2

Along with the new method for estimation of random effect parameter ρ in ODM, we propose

a new method for estimating the between-study variance in standard additive random effects

model (6.2.1). Through the correspondence (6.2.7) between ρi and τ 2, we can define

ρi = [
(n1i − 1)

n1ip1i(1− p1i)
+

(n2i − 1)

n2ip2i(1− p2i)
]−1τ 2

for the common between-study τ 2. By substituting, ρi as a function of τ 2 into the variance in

Breslow-Day test through the correction factor (4.3.1), we get

Var(x1i|ψ̂MH , τ
2) =

[ 1

E(X1i; ψ̂MH)C1i(τ 2)
+

1

(xi − E(X1i; ψ̂MH))C2i(τ 2)
+
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1

(n1i − E(X1i; ψ̂MH))C1i(τ 2)
+

1

(ni − xi − n1i + E(X1i; ψ̂MH))C2i(τ 2)

]−1
.

Now, though the correspondence (6.2.7), we expressed Breslow-Day statistic as a function of

τ . Since the Breslow-Day statistic still follows χ2
K−1 with K − 1 degrees of freedom, equating

the BD(τ) statistic to its first moment K − 1

K∑
i=1

(X1i − E(X1i; ψ̂MH))2

Var(X1i; ψ̂MH , τ 2)
= K − 1 (6.3.14)

results in a new estimator for between-study variance τ 2. The confidence interval for this

new estimator τ̂ 2BD can be obtained similarly from the lower and upper percentile of the χ2

distribution with K − 1 degrees of freedom as we did before for ρ so that

X2
BD(τ 2U) = χ2

K−1,0.025 X2
BD(τ 2L) = χ2

K−1,0.975. (6.3.15)

We restrict the estimation of τ 2 to positive values, since between-study variance cannot be

negative. τ̂ 2BD can be used in estimation of common effect measure in standard random effects

model. The restrictions for τ̂ 2BD will be similar to those for estimation of ρ, apart from the

additional restriction that τ 2 cannot be negative.

6.4 Simulation study for OR

In this section, we provide a simulation study to access the performance of point and interval

estimators of random effect parameter τ 2 and the combined LOR θ in standard random effects

model of meta-analysis. We assess seven point estimators of τ 2 in respect to their bias: the

Der-Simonian and Laird estimator (6.3.1), the Mandel-Paule inspired estimator τ 2MP - solution

of equation 6.3.2, the corrected Mandel-Paule estimator based on the gamma approximation

to Q distribution τ 2CMP - solution of equation 6.3.6, the ML estimator (6.3.9), the REML

estimator (6.3.11), the penalized ML estimator by Kosmidis et al. (2017) which maximize

likelihood (6.3.13) and the BD-based estimator obtained from (6.3.14). We also assess four

related confidence intervals for τ 2 (6.3.3), (6.3.7), (6.3.12) and (6.3.15) in respect to their

coverage at the 95% confidence level. The combined odds ratio or its log is obtained by
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inverse-variance method θ̂REM =
∑
wi(τ

2)θ̂i
∑
wi(τ

2). We assess these estimators of θ̂ for

bias and for coverage.

6.4.1 Simulation methods

We simulate the binary data using two different methods. One method is by Viechtbauer

(2007) and another method is the same as simulation studies by Abo-Zaid et al. (2013) and

Kosmidis et al. (2017). For both methods of simulations, we consider scenarios with p2i values

equal to 0.1, 0.2, 0.4 and θ values of 0, 1 and 2. Seven estimators of between-study variance

and corresponding effect measure are assessed through a simulation study.

Simulation method by Viechtbauer (2007)

In standard REM for LOR, the data is generated as follows:

θi ∼ N(θ, τ 2) and p1i = p2i exp(θi)/(1− p2i + exp(θi)) (6.4.1)

with

X1i ∼ Binom(n1i, p1i) and X2i ∼ Binom(n2i, p2i) (6.4.2)

where the values of p2i and θ are fixed. The study specific effect measures are estimated as

θ̂i = log(p̂1i(1− p̂2i)/p̂2i(1− p̂1i)) and its variance σ̂2
i is estimated by (6.2.3). This scenario is

similar to the method of simulation by Viechtbauer (2007).

Simulation method by Kosmidis et al. (2017)

The method of data generation in the simulation study by Abo-Zaid et al. (2013) and Kosmidis

et al. (2017) generates the effect measures and their within-study variances using the model

similar to an unconditional generalized linear mixed-effects model with random study effects

discussed in Chapter 5.

Following the simulation method by Abo-Zaid et al. (2013), Kosmidis et al. (2017) generated K

independent sample sizes n1, . . . , nK from uniform distribution with range of (30, 31, . . . , 100).

Instead of using uniform distribution, we have set all K sample sizes n1, . . . , nK to be equal
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across K studies. This is done in order to avoid any additional heterogeneity between K

studies. Let niC ∼ Bin(ni, p = 1/2) and niT = ni − niC be the sample sizes in control and

treatment arms respectively. Next, two independent random effects ui1 and ui2 are generated

from normal distributions ui1 ∼ N(0, 0.1) and ui2 ∼ N(0, τ 2), where τ 2 is the between study

variance. Let Xijk be the Bernoulli variable for outcome k in group j of study i and νijk is its

logit transformation. The νijk values are generated as

νijk = β0 + ui1 + (β1 + ui2)I(j = T ), (6.4.3)

where I(j = T ) is an indicator that takes values 0 for control and 1 for treatment arm,

β0 = log(pi2/(1 − pi2)) is log-odds in control group and β1 = θ is the true log-odds-ratio. In

terms of multilevel model structure, the model (6.4.3) is

νiTk = β0 + ui1 + β1 + ui2 and νiCk = β0 + ui1,

so

θi = log(
piT

1− piT
)− log(

piC
1− piC

) = β1 + ui2.

Then, using the probabilities πijk = exp(νijk)/(1 + exp(νijk)) from the model (6.4.3), we

generated the vector of individual measurements of Xij1, . . . , Xijni
in the study i and group

j. Next, logistic regression

g(Xijk) = γ1 + θiI(j = T ),

is used to estimate γ1 and θi, where g is the logit link function and θi is the individual study

specific effect measure. The estimates of within-study variances are based on the evaluation

of information matrix at the given estimates θ̂i. The full description of this data generation

method can be found in Abo-Zaid et al. (2013) and Kosmidis et al. (2017).

The function functionsMPL.R is programmed by Kosmidis et al. (2017) and metaLik func-

tion from R package metaLik (Guolo and Varin, 2012) were used together for the method of

estimation of between-study variance and overall effect measure proposed by Kosmidis et al.

(2017). Kosmidis et al. (2017) claims that maximum penalized likelihood reduces the asymp-

totic bias of the maximum likelihood estimator of τ 2 and improves the coverage of overall
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log odds ratio θ̂RE in studies with small to moderate sample sizes for all possible cases. The

results of our simulation using the method of simulation by Kosmidis et al. (2017) are shown

in the C.1.2 in Appendix. We have performed a simulation study for different combination of

p2i and θ. We tried to make this simulation study to be comparable to the simulation study

using the method by Viechtbauer (2007). Kosmidis et al. (2017) provided simulation studies

for two scenarios. One scenario is when the values of probabilities in treatment and control

arms are p1i = 0.40 and p2i = 0.219. Another scenario is when the values of probabilities in

treatment and control arms are p1i = 0.30 and p2i = 0.1. The first case is similar to p2i = 0.2

and θ = 1 in our simulations that is done following the method of simulation by Viechtbauer

(2007) and Kosmidis et al. (2017). Thus, for comparison of methods for simulations by Kos-

midis et al. (2017) and by Viechtbauer (2007), see C.13 for data simulated with 6.4.1 and 6.4.2

similar to Viechtbauer (2007) and C.53 for data simulated through logistic regression similar

to Kosmidis et al. (2017) with p2i = 0.2, θ = 1 in Appendix.

Configurations

Sizes of the control and treatment groups were taken equal n1i = n2i = ni and were fixed

across K studies. The true values of LOR θi across K studies were generated from normal

distributions with mean θw and variance τ 2. For a given probability p2i, the number of cases

in the control group X2i was simulated from a Binomial (n2i, p2i) distribution. The number

of cases in the treatment group X1i was generated from a Binomial (n1i, p1i) distribution with

p1i = p2i exp(θi)/(1− p2i + p2i exp(θi)) for a given LOR values of θi.

The following configurations of parameters were included in the simulations. The number

of studies K = (5, 10, 30); average sample sizes in each arm are n = (40, 100, 250, 1000); the

between-study variance for standard random effects model τ 2 varies between 0 and 1 for small-

moderate heterogeneity and between 1 and 10 for moderate-large heterogeneity. The values

of LOR θ vary from 0 to 2 in steps of 1. The probability in the control group p2i takes values

0.1, 0.2, 0.4. A total of 10000 repetitions were produced for each combination.
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Results of simulation study for bias and coverage of τ 2 in case of small-moderate
heterogeneity

Figures 6.1-6.9 shows the results of simulations for five methods mentioned above for small-

moderate heterogeneity (0 ≤ τ 2 ≤ 1) for different combinations of K and n for the case

when p2i ≡ 0.1 and θ = 0, 1. Due to large positive bias of Profiled-Breslow-Day estimator

τ̂ 2BD and negative bias of Der-Simonian and Laird estimator τ̂ 2DL, we did not include them

in the Figures 6.1-6.9. Also, the bias of Profiled-Breslow-Day estimator τ̂ 2BD is not linear in

comparison to other methods. The full results of simulations that include all seven methods

are provided in C.1-C.9 in Appendix. The biases of between-study variance estimates τ̂ 2 for

values of θ = 0, 1 are shown on Figures 6.1 and 6.3. All estimates are negatively biased apart

from τ̂ 2CMP which has positive bias when N is small (N = 40). The bias of τ̂ 2CMP decreases

substantially for N > 40 resulting in the least biased estimator of τ 2 in all scenarios with

different combinations of p2i and θ = 0. When θ 6= 0, the absolute bias of τ̂ 2MP and τ̂ 2CMP are

similar, but bias of τ̂ 2MP is negative and the bias of τ̂ 2CMP is positive. For θ = 0, the second

least biased estimator of τ 2 is τ̂ 2MP . We can clearly see that the proposed approximation for

distribution of Q statistic by gamma distributions improves the estimation of τ 2 in Mandel-

Paule method (see section 6.3.3 for details of approximation). Figure 6.1 shows that when

data is sparse in both arms (θ = 0), the bias of maximum likelihood estimate τ̂ 2ML varies

between 5-53%. Whereas for the same occasion, the bias of penalized maximum likelihood

estimate τ̂ 2MPL varies between 0-42%. Overall, penalization of the likelihood reduces the bias

of maximum likelihood estimates. The reduction in bias from maximum likelihood estimate

to penalized maximum likelihood estimate is between 2-61% for different combinations of K

and N . Particularly, the bias reduction is more than 20% for K = 5 and K = 30. For K = 10,

the bias is reduced between 9-24%. In Figures 6.1-6.9, we cannot see the Penalized maximum

likelihood estimator τ 2MPL, since the bias of Penalized maximum likelihood estimator τ 2MPL and

restricted maximum likelihood estimator τ 2REML are identical. Penalized maximum likelihood

estimator τ 2MPL is good alternative to restricted maximum likelihood estimator. However, the
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bias of both estimators does not disappear completely. For θ = 1 (Figure 6.3) the bias of

penalized maximum likelihood estimate varies between 0-23%. When θ = 1, only the control

arm has a sparse data - p2i = 0.1. Hence, the overall bias of τ̂ 2MPL is lower for θ = 1 than for

sparse data in both arms, θ = 0.

Coming to coverage of τ 2 (Figure 6.2 and 6.4) for p2i = 0.1 with θ = 0 and 1), the Breslow-

Day based estimation, which was the safest option in ODM, results in low coverage for τ 2.

Again, similarly to point estimator of τ 2 from the Breslow-Day based method, this might

be due to bias of estimated probabilities in 6.2.7 that is used in corrections of Breslow-Day

statistic. The bias in probabilities is the result of transformation bias in REM discussed in

Chapter 3. Similar deteriorations in coverage of Breslow-Day based interval estimator for

τ 2 are also shown for non-sparse data. The Q-profile-based and Profile likelihood confidence

intervals perform similarly to simulations by Viechtbauer (2007). The new Q-gamma-profile-

based confidence interval does provide similar results to Q-profile-based confidence interval

estimation. The Q-profile-based confidence interval estimation is always above the nominal

95% confidence level, whereas Q-gamma-profile-based confidence interval is always somewhere

below the nominal 95% confidence level.

Overall, to be on the safe side, we would recommend the corrected-Mandel-Paule estimator

τ̂CMP and corresponding Q-gamma-profile-based confidence interval. This is because τ̂CMP

is the least biased estimator of τ 2 and Q-gamma-profile-based confidence interval perform

similarly to Q-profile-based confidence interval.
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Figure 6.1: Bias of the between-study variance τ 2 obtained from K studies for p2i = 0.1, θ = 0
and 0 ≤ τ 2 ≤ 1. The estimators of τ 2: red triangles – Maximum Likelihood estimator τ̂ 2ML,
green pluses – Maximum Penalized Likelihood estimator τ̂ 2MPL, blue crosses – Restricted Max-
imum Likelihood estimator τ̂ 2REML, pink reverse triangles – Corrected Mandel-Paule estimator
τ̂ 2CMP and black circles – standard Mandel-Paule estimator τ̂ 2MP . Light grey line at 0.95.
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Figure 6.2: Coverage at the nominal confidence level of 0.95 of the between-study variance
τ 2 obtained from K studies for p2i = 0.1, θ = 0 and 0 ≤ τ 2 ≤ 1. Interval estimation
methods: black circles – Q-profile confidence interval for τ 2 based on χ2 distribution, pink
reverse triangles – Q-profile confidence interval for τ 2 based on Γr(τ2),λ(τ2) distribution), dark
blue crosses – Profile likelihood confidence intervals, light blue diamonds – Breslow-Day-Profile
confidence intervals. Light grey line at 0.95.
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Figure 6.3: Bias of the between-study variance τ 2 obtained from K studies for p2i = 0.1, θ = 1
and 0 ≤ τ 2 ≤ 1. The estimators of τ 2: red triangles – Maximum Likelihood estimator τ̂ 2ML,
green pluses – Maximum Penalized Likelihood estimator τ̂ 2MPL, blue crosses – Restricted Max-
imum Likelihood estimator τ̂ 2REML, pink reverse triangles – Corrected Mandel-Paule estimator
τ̂ 2CMP and black circles – standard Mandel-Paule estimator τ̂ 2MP . Light grey line at 0.95.
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Figure 6.4: Coverage at the nominal confidence level of 0.95 of the between-study variance
τ 2 obtained from K studies for p2i = 0.1, θ = 1 and 0 ≤ τ 2 ≤ 1. Interval estimation
methods: black circles – Q-profile confidence interval for τ 2 based on χ2 distribution, pink
reverse triangles – Q-profile confidence interval for τ 2 based on Γr(τ2),λ(τ2) distribution), dark
blue crosses – Profile likelihood confidence intervals, light blue diamonds – Breslow-Day-Profile
confidence intervals. Light grey line at 0.95.
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Results of simulation study for bias and coverage of θ in case of small-moderate
heterogeneity

The improvement in the estimation of τ 2 has a positive impact on bias and coverage of the

overall-effect measure. Particularly, the improvement is visible between τ̂ 2MP and τ̂ 2CMP and

τ̂ 2ML and τ̂ 2MPL (see Figures 6.6, 6.8 for biases of θ and Figures 6.6 and 6.8 for coverages when

θ = 0 and θ = 1). The bias of overall effect measure is positive. The bias is practically the

same regardless of the method. The bias decreases with increasing the sample size N . The

least biased estimator of overall effect measure θ is θ̂CMP . Figure 6.5 shows the bias of θ̂CMP

for θ = 0, 1 and 2. The bias of θ̂CMP decreases with θ = 0, 1 and 2 and changes its magnitude.

Also, using τ̂ 2CMP in weights provides reasonably good coverages for θ̂CMP in comparison to

all the methods (see Figures 6.7 and 6.9). The coverage of θ̂BD with τ̂ 2BD in weights becomes

conservative with increasing K (see C.3,C.6 and C.9 in Appendix). This is due to the large

positive bias of τ̂ 2BD. The bias in τ̂ 2BD comes from the biases of estimated probabilities in equa-

tion (6.2.7). The Profiled Breslow-Day performs well in estimation of intra-cluster correlation

in ODM, but it does not provide a good estimator of between-study variance in standard

REM. Thus, θ̂BD with τ̂ 2BD are not recommended in standard additive random effects model.

Overall the coverage of θ̂MPL is somewhat improved in comparison to the coverage of θ̂ML.

Figures 6.7 and 6.9 show the coverage of overall effect measure for values of θ = 0, 1 respec-

tively. Particularly, the improvements are evident for N > 100. However, for N < 100 the

coverages are still low as in standard methods The latter contradicts to the results by Kos-

midis et al. (2017) for small-moderate sample sizes. We have chosen the sample sizes N and

number of studies K almost similar to simulation results from Chapter 4 and 5.

The results for non-sparse data p2i = 0.2 and p2i = 0.4 are also provided in the Appendix (see

C.10-C.25). When p2i = 0.2 and p2i = 0.4, the biases are similar to the case when p2i = 0.1.

The absolute values of the biases are smaller. Overall, the biases of penalized maximum likeli-

hood estimator τ 2MPL varies between 0-40% for p2i = 0.2 and p2i = 0.4 respectively. Whereas,

the bias of maximum likelihood estimator τ 2ML vary between 3-37% for p2i = 0.2 and 3-49%
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for p2i = 0.4. Again, penalized maximum likelihood reduces the bias of maximum likelihood

estimator. When p2i = 0.2 and p2i = 0.4, the coverages are all above 90% apart from the case

when K = 5. Case K = 5 is the scenario when number of studies is small and all methods

fail to estimate between-study variance, since the precision of τ 2 has an order O(1/K).

When, K = 5 and p2i = 0.1, from the C.1, C.4 and C.7 in Appendix, we can clearly see that

penalized maximum likelihood is much better than maximum likelihood estimator. However,

our sample sizes are big in this situation. Hence, using τ 2MPL leads to small reductions in the

bias of τML for large biases. The penalized maximum likelihood reduces the bias of maxi-

mum likelihood estimates of τ 2. However, some bias does still exist. The bias of overall log

odds-ratio is the same for maximum likelihood, restricted maximum likelihood and penalized

likelihood method (see C.2, C.5, C.8 for p2i = 0.1, C.11, C.14, C.17 for p2i = 0.2 and C.20,

C.23, C.26 for p2i = 0.4 in Appendix) . The DerSimonian and Laird estimator τ̂ 2DL performs

either similar to maximum likelihood estimator or worse for large N > 80 (see C.1, C.4 and

C.7 in Appendix). Particularly τ̂ 2DL has a large bias for moderate-large heterogeneity between

studies as we shall see in section 6.4.1. Thus, DerSimonian and Laird estimator τ̂ 2DL is not

recommended in an estimation of between-study variance.

In case of sparse data the biases in τ̂ 2 might be the combination of transformation bias, bias

due to continuity corrections and bias of estimates θ̂i that come from the bias of estimated

probabilities in θ̂i. The sparseness in the data itself can introduce an unobserved heterogeneity

between studies. All the methods for sparse data have to be applied with care. At the mo-

ment, there exist no uniformly unbiased and robust method for estimation of between-study

variance and for an overall effect measure. In general, different estimators of τ 2 can be used for

different inferential purposes, one to reduce the variance of overall effect measure to minimum

and another to obtain a reliable confidence interval (Kulinskaya et al., 2014).
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Figure 6.5: Bias of overall odds ratio θIV obtained from K studies by the inverse-variance
method with the moment estimator τ̂ 2CMP in the weights, for p2i = 0.1, and 0 ≤ τ 2 ≤ 1. The
biases are given for θ = 0 (circles), θ = 1 (circle plus), and θ = 2 (circle cross). Light grey line
at 0.
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Figure 6.6: Bias of the estimated overall effect measure θ̂RE obtained from K studies for
p2i = 0.1, θ = 0 and 0 ≤ τ 2 ≤ 1. The estimators of θ̂RE include the estimators of τ 2: red
triangles – Maximum Likelihood estimator τ̂ 2ML, green pluses – Maximum Penalized Likelihood
estimator τ̂ 2MPL, blue crosses – Restricted Maximum Likelihood estimator τ̂ 2REML, pink reverse
triangles – Corrected Mandel-Paule estimator τ̂ 2CMP and black circles – standard Mandel-Paule
estimator τ̂ 2MP . Light grey line at 0.95.
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Figure 6.7: Coverage at the nominal confidence level of 0.95 of the overall log odds ratio θ̂RE
obtained from K studies by the inverse-variance method, for p2i = 0.1, θ = 0 and 0 ≤ τ 2 ≤ 1.
The inverse-variance weights use the following estimators of τ 2: red triangles – Maximum
Likelihood estimator τ̂ 2ML, green pluses – Maximum Penalized Likelihood estimator τ̂ 2MPL,
blue crosses – Restricted Maximum Likelihood estimator τ̂ 2REML, pink reverse triangles –
Corrected Mandel-Paule estimator τ̂ 2CMP and black circles – standard Mandel-Paule estimator
τ̂ 2MP . Light grey line at 0.95.
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Figure 6.8: Bias of the estimated overall effect measure θ̂RE obtained from K studies for
p2i = 0.1, θ = 1 and 0 ≤ τ 2 ≤ 1. The estimators of θ̂RE include the estimators of τ 2: red
triangles – Maximum Likelihood estimator τ̂ 2ML, green pluses – Maximum Penalized Likelihood
estimator τ̂ 2MPL, blue crosses – Restricted Maximum Likelihood estimator τ̂ 2REML, pink reverse
triangles – Corrected Mandel-Paule estimator τ̂ 2CMP and black circles – standard Mandel-Paule
estimator τ̂ 2MP . Light grey line at 0.95.
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Figure 6.9: Coverage at the nominal confidence level of 0.95 of the overall log odds ratio θ̂RE
obtained from K studies by the inverse-variance method, for p2i = 0.1, θ = 1 and 0 ≤ τ 2 ≤ 1.
The inverse-variance weights use the following estimators of τ 2: red triangles – Maximum
Likelihood estimator τ̂ 2ML, green pluses – Maximum Penalized Likelihood estimator τ̂ 2MPL,
blue crosses – Restricted Maximum Likelihood estimator τ̂ 2REML, pink reverse triangles –
Corrected Mandel-Paule estimator τ̂ 2CMP and black circles – standard Mandel-Paule estimator
τ̂ 2MP . Light grey line at 0.95.
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Results of simulation study for bias and coverage of τ 2 in case of moderate-large
heterogeneity

In addition to simulations with small to moderate heterogeneity, we have performed similar

simulations for moderate to large heterogeneity (0 ≤ τ 2 ≤ 10). Figures 6.10-6.17 show the

results of simulations for moderate-large heterogeneity (0 ≤ τ 2 ≤ 10). Again, we do not

include the Profiled Breslow-Day estimator τ̂ 2BD and Der-Simonian and Laird estimator τ̂ 2DL

due to the large biases of both estimators. The Profiled Breslow-Day estimator τ̂ 2BD results in

the largest positive bias and conservative coverage in θ̂BD among all methods. This is because

of large positive bias of τ̂ 2BD. Only τ̂ 2BD has a positive bias, whereas the bias of other estimator

τ̂ 2ML,τ̂ 2MPL, τ̂ 2REML, τ̂ 2MP , τ̂ 2CMP and τ̂ 2DL are negative.

Figures 6.10 and 6.12 show the biases of between-study variances estimated by five methods

similar to results for small-moderate heterogeneity. Correspondingly to the results for small-

moderate heterogeneity, τ̂ 2CMP is the first least biased estimator and τ̂ 2MP is the second least

biased estimator of between-study variance for all scenarios. Asymptotically with increasing

the sample sizes, both estimators τ̂ 2CMP and τ̂ 2MP tend to perform identically. However, for

small-moderate sample sizes τ̂ 2CMP is much better than τ̂ 2MP and other estimators based on

maximising the likelihood for all the scenarios with different combination of p2i and θ in

simulations.

When p2i = 0.1, Figures 6.10 and 6.12 show the bias of between-study variance estimators

under moderate to large heterogeneity, θ = 0 and θ = 1. Similarly to results for small-

moderate heterogeneity, all estimators of τ 2 are biased downwards. The biases for moderate-

large heterogeneity (1 ≤ τ 2 ≤ 10) are the continuation of the biases for small-moderate

heterogeneity (0 ≤ τ 2 ≤ 1).

When data are sparse in both arms (p2i = 0.1 and θ = 0) and 1 ≤ τ 2 ≤ 10, the bias of

maximum likelihood estimator τ̂ML ranges between 4-54%. Whereas, the bias of penalized

maximum likelihood estimator τ̂MPL ranges between 0.1-42%. The overall bias reduction

for moderate-large heterogeneity is similar to the results of simulations for small-moderate
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heterogeneity (0 ≤ τ 2 ≤ 1). Also, we would expect the similar bias reductions for results with

p2i = 0.1 and θ = 1 (see Figures 6.12). The bias of τ̂MPL and τ̂REML are linearly identical.

Also, similarly for small-moderate heterogeneity, the coverages of τ 2 from four methods are

shown in Figures 6.11 and 6.13 for p2i = 0.1 and θ = 0 and θ = 1 respectively. Interestingly,

for sparse data p2i = 0.1 and θ = 0, all the coverages deteriorate with τ 2 when K = 30 and

N ≤ 250. The similar reductions in coverages occur for higher probabilities such as p2i = 0.2

and p2i = 0.4 with θ = 0, 1, 2. For the rest of the combinations of N and K, the coverages from

all three methods perform pretty well with Q-profile and Q-gamma-profile based confidence

intervals being more conservative than Profile-likelihood confidence interval.

Again, among all the methods, we would recommend τ̂CMP as the least biased point estimator

with corresponding Q-gamma-profile based confidence intervals. The approximation of the

Q distribution by gamma distribution with parameters defined in section 6.3.3 works very

well. Among the maximum likelihood methods, restricted maximum likelihood and penalized

maximum likelihood perform similar hence are recommended to use. However, the bias of

maximum likelihood and penalized maximum likelihood estimators still exist and further study

of their bias reduction is to be pursued elsewhere.
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Figure 6.10: Bias of the between-study variance τ 2 obtained from K studies for p2i = 0.1,
θ = 0 and 0 ≤ τ 2 ≤ 10. The estimators of τ 2: red triangles – Maximum Likelihood estimator
τ̂ 2ML, green pluses – Maximum Penalized Likelihood estimator τ̂ 2MPL, blue crosses – Restricted
Maximum Likelihood estimator τ̂ 2REML, pink reverse triangles – Corrected Mandel-Paule es-
timator τ̂ 2CMP and black circles – standard Mandel-Paule estimator τ̂ 2MP . Light grey line at
0.95.
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Figure 6.11: Coverage at the nominal confidence level of 0.95 of the between-study variance
τ 2 obtained from K studies for p2i = 0.1, θ = 0 and 0 ≤ τ 2 ≤ 10. Interval estimation
methods: black circles – Q-profile confidence interval for τ 2 based on χ2 distribution, pink
reverse triangles – Q-profile confidence interval for τ 2 based on Γr(τ2),λ(τ2) distribution), dark
blue crosses – Profile likelihood confidence intervals. Light grey line at 0.95.
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Figure 6.12: Bias of the between-study variance τ 2 obtained from K studies for p2i = 0.1,
θ = 1 and 0 ≤ τ 2 ≤ 10. The estimators of τ 2: red triangles – Maximum Likelihood estimator
τ̂ 2ML, green pluses – Maximum Penalized Likelihood estimator τ̂ 2MPL, blue crosses – Restricted
Maximum Likelihood estimator τ̂ 2REML, pink reverse triangles – Corrected Mandel-Paule es-
timator τ̂ 2CMP and black circles – standard Mandel-Paule estimator τ̂ 2MP . Light grey line at
0.95.
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Figure 6.13: Coverage at the nominal confidence level of 0.95 of the between-study variance
τ 2 obtained from K studies for p2i = 0.1, θ = 1 and 0 ≤ τ 2 ≤ 10. Interval estimation
methods: black circles – Q-profile confidence interval for τ 2 based on χ2 distribution, pink
reverse triangles – Q-profile confidence interval for τ 2 based on Γr(τ2),λ(τ2) distribution), dark
blue crosses – Profile likelihood confidence intervals. Light grey line at 0.95.
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Results of simulation study for bias and coverage of θ in case of moderate-large
heterogeneity

Figure 6.14 and Figures 6.15, 6.16, 6.17 show the bias and coverage of overall log-odds-ratio

θ of K studies obtained from five methods of estimating of τ 2, respectively. All the figures for

bias and coverage of overall log-odds-ratio correspond to the simulated data from the scenarios

with θ = 0, θ = 1 and θ = 2.

For moderate-large heterogeneity, 0 ≤ τ 2 ≤ 10 , the bias of estimated log-odds-ratio θ̂ was

practically the same regardless of a method used for estimation of between-study variance

τ 2 (Figure 6.14 shows the bias of overall-log-odds-ratio with τ̂ 2CMP in weights). The bias of

estimated log-odds-ratio is pretty much the same in these scenarios. This is probably due

to the fact that large values of τ 2 lead to the estimate of weighted inverse variable log-odds

ratio becoming just an unweighted average, regardless of the estimator of τ 2 used. The bias

of overall log-odds-ratio reduces with increasing θ from θ = 0 to θ = 2.

The coverages of overall log-odds-ratio for sparse data (p2i = 0.1 and θ = 0) from all methods

are shown in Figure 6.15. The best method that provides the coverage close to nominal

0.95 significance level is new Profiled-Q-gamma-based method. Similarly to simulations for

small-moderate heterogeneity the coverages from all methods deteriorate when N ≤ 100 and

K = 30. The coverages of maximum likelihood estimator θML are below 90% for N ≤ 100

and above 90% for N ≥ 100 apart from the case of small number of studies K = 5. For small

number of studies K = 5, the bias of τ̂ 2ML is larger than for K = 10 and K = 30. Due to

this large negative bias, the coverages are lower for small and large values of N . The coverage

of θMPL are somewhat better than coverage of θML. Particularly, the difference is noticeable

for K = 5. This can be explained by less biased estimate of between-study variance θMPL

for K = 5 (see Figures 6.10 and 6.15 for bias of τ̂ 2MPL and coverage of θ̂MPL respectively).

When K = 10 and K = 30, the improvements in coverages of θ̂MPL relative to θ̂ML are

smaller than for the case of K = 5, but stills exists. The similar improvements occur for

larger probabilities p2i = 0.2 and p2i = 0.4. When both arms have equal probabilities (either
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p1i = p2i = 0.2 and p1i = p2i = 0.4), the bias of τ̂ 2ML varies between 4-50% and 4-56% for

p2i = 0.2 and p2i = 0.4 respectively. Whereas, the bias of τ̂ 2MPL ranges between 0-37% and

0-45%. Again, we can clearly see the reduction in the bias of τ̂ 2MPL in comparison to τ̂ 2ML.

The bias reduction is between 2-25% and 2-24% for p2i = 0.2 and p2i = 0.4 respectively. We

would expect the same proportion of bias reduction similar to small-moderate heterogeneity

for non-equal probabilities and non-sparse data, i.e p2i = 0.2 and p2i = 0.4 with θ = 1, 2.

The overall proportion of bias reduction for small-moderate and moderate-large heterogeneity

in between-study variance from τ̂ 2MPL to τ̂ 2ML are quite similar. Again, similarly to small to

moderate heterogeneity, the bias of overall log-odds-ratio for moderate large heterogeneity

is the same for maximum likelihood and penalized likelihood method. Penalized maximum

likelihood does perform better than standard ML in estimation of τ 2 and (marginally) coverage

of the confidence interval for θ for all sample sizes N. However, this method still does not

provide nominal 95% confidence level, apart from the case when studies have large sample

sizes N = 1000. Thus, further understanding of the penalized maximum likelihood for log

odds ratio and other effect measures from binary data is required. Particularly, when the

sample sizes are not large. Higher order terms might matter. Further expansion of the score

functions might be required. Much better method for confidence interval of overall effect

measure is the new Profiled Q gamma based method. The main reason of good performance

of Profiled Q gamma based method can be explained by having a least biased point estimator

τ̂ 2CMP .

The DerSimonian and Laird estimator θ̂DL does not perform well at all in comparison to θ̂ML,

θ̂MPL, θ̂REML, θ̂MP and θ̂CMP for moderate-large heterogeneity. Thus, θ̂DL as well as θ̂BD were

not include in the Figures. Among all estimators, the least biased estimator of between-study

variance τ̂ 2CMP provide a superior coverages for θ̂CMP . Thus, τ̂ 2CMP and θ̂CMP are recommended

to use in standard additive random effects model. From the likelihood based estimators τ̂ 2MPL

and τ̂ 2REML perform similarly. Thus, τ̂ 2MPL is a feasible alternative to θ̂REML. However, neither

τ̂ 2REML nor θ̂REML outperform τ̂ 2CMP .
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Figure 6.14: Bias of overall odds ratio θIV obtained from K studies by the inverse-variance
method with the moment estimator τ̂ 2CMP in the weights, for p2i = 0.1, and 0 ≤ τ 2 ≤ 10.
The biases are given for θ = 0 (circles), θ = 1 (circle plus), and θ = 2 (circle cross). Light
grey line at 0.
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Figure 6.15: Coverage at the nominal confidence level of 0.95 of the overall log odds ratio θ̂RE
obtained from K studies by the inverse-variance method, for p2i = 0.1, θ = 0 and 0 ≤ τ 2 ≤ 10.
The inverse-variance weights use the following estimators of τ 2: red triangles – Maximum
Likelihood estimator τ̂ 2ML, green pluses – Maximum Penalized Likelihood estimator τ̂ 2MPL,
blue crosses – Restricted Maximum Likelihood estimator τ̂ 2REML, pink reverse triangles –
Corrected Mandel-Paule estimator τ̂ 2CMP and black circles – standard Mandel-Paule estimator
τ̂ 2MP . Light grey line at 0.95.
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Figure 6.16: Coverage at the nominal confidence level of 0.95 of the overall log odds ratio θ̂RE
obtained from K studies by the inverse-variance method, for p2i = 0.1, θ = 1 and 0 ≤ τ 2 ≤ 10.
The inverse-variance weights use the following estimators of τ 2: red triangles – Maximum
Likelihood estimator τ̂ 2ML, green pluses – Maximum Penalized Likelihood estimator τ̂ 2MPL,
blue crosses – Restricted Maximum Likelihood estimator τ̂ 2REML, pink reverse triangles –
Corrected Mandel-Paule estimator τ̂ 2CMP and black circles – standard Mandel-Paule estimator
τ̂ 2MP . Light grey line at 0.95.
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Figure 6.17: Coverage at the nominal confidence level of 0.95 of the overall log odds ratio θ̂RE
obtained from K studies by the inverse-variance method, for p2i = 0.1, θ = 2 and 0 ≤ τ 2 ≤ 10.
The inverse-variance weights use the following estimators of τ 2: red triangles – Maximum
Likelihood estimator τ̂ 2ML, green pluses – Maximum Penalized Likelihood estimator τ̂ 2MPL,
blue crosses – Restricted Maximum Likelihood estimator τ̂ 2REML, pink reverse triangles –
Corrected Mandel-Paule estimator τ̂ 2CMP and black circles – standard Mandel-Paule estimator
τ̂ 2MP . Light grey line at 0.95.
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6.5 Simulation study for estimating τ 2 from a model

with a pair of beta-binomial distributions

6.5.1 Simulation study

Similar to simulation study in Chapter 4, in this section we provide a simulation study to

access the performance of point and interval estimators of random effect parameter τ 2 and the

combined LOR θ in beta-binomial model of meta-analysis. Contrasting to simulation study

in Chapter 4, we estimate between-study variance as in REM rather than the intra-cluster

correlation as in ODM. Our main goal is to check how robust are the methods under misspeci-

fication between the standard additive REM and multiplicative ODM. In reality, we may never

know which model is applicable to a particular dataset. We assess seven point estimators of τ 2

in respect to their bias: the DerSimonian and Laird method (6.3.1), the Mandel-Paule inspired

method τ 2MP - solution of equation 6.3.2, the corrected Mandel-Paule estimator based on the

gamma approximation to Q distribution τ 2CMP - solution of equation 6.3.6, the ML method

(6.3.9), the REML method (6.3.11), the penalized ML method by Kosmidis et al. (2017) which

maximize likelihood (6.3.13) and the BD-based method (6.3.14). We also assess four related

confidence intervals for τ 2 (6.3.3), (6.3.7), (6.3.12) and (6.3.15) in respect to their coverage at

the 95% confidence level. The combined odds ratio or its log is obtained by inverse-variance

method θ̂w =
∑
wi(τ

2)θ̂i/
∑
wi(τ

2). We assess inverse variance method of obtaining combined

effect θ̂ for bias and for coverage.

6.5.2 Simulation design

Sizes of the control and treatment groups were taken equal n1i = n2i = ni across K studies.

For a given probability p2i, the number of cases in the control group X2i was simulated from

a beta-binomial (n2i, p2i, ρ) distribution using the R package emdbook (Bolker, 2011). The

number of cases in the treatment group X1i was generated from a beta-binomial (n1i, p1i, ρ)

distribution with p1i = p2i exp(θ)/(1 − p2i + p2i exp(θ)) for a given LOR value of θ. When
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ρ = 0, the numbers of events for treatment and control arm Xij were generated from binomial

distributions with sample size nij and probabilities pij, preserving the above relationship

between the probabilities in the treatment and control arms.

The following configurations of parameters were included in the simulations. The number

of studies K = (5, 10, 30); average sample sizes in each arm are n = (30, 100, 250, 1000);

overdispersion parameter ρ varies between 0 and 0.1 (small to moderate heterogeneity) with

steps 0.01, and between 0.1 and 0.3 in steps 0.05 (moderate to large heterogeneity). The

corresponding true value of between-study variance is obtained through (6.2.7). The values

of LOR θ vary from 0 to 2 in steps of 1. The probability in the control group p2i takes values

0.1, 0.2, 0.4. A total of 10000 simulations were produced for each combination.

6.5.3 Simulation results

Figures 6.18 and 6.19 show the bias and coverage of τ 2 estimated by the five methods men-

tioned above for different combinations of K and n for the case of p2i ≡ 0.1 and θ = 0

and varying values of 0 ≤ ρ ≤ 0.3. The corresponding true values of τ 2 can be obtained

from relationship (6.2.7). The bias and coverage of true log odds ratio θ estimated by the

inverse-variance (θIV ) for values of θ = 0, 1, 2, are shown in Figures 6.20 - 6.23, respectively.

Bias and coverage in estimation of between-study variance

All estimates of between-study variance have a non-linear bias that increases in τ 2, Figures 6.18

for p2i = 0.1, C.63 and C.64 in Appendix for p2i = 0.2 and p2i = 0.4. The bias of between-study

variance estimate obtained from Profiled Breslow-Day method and Corrected Mantel-Paule

method is always positive. Whereas, the bias of estimates from standard methods methods

based on maximising the likelihood vary with combination of N and K. The sign of the bias

changes from switching from small-moderate sample sizes (N = 40, 100) to moderate large

sample sizes (N = 250, 1000). The Der-Simonian and Laird method did not perform well when

the assumptions of standard additive random effects model have been satisfied (see simulation

results in section 6.4.1 and 6.4.1). Thus, we do not expect it perform well in beta-binomial
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model when assumptions of standard additive random effects model are not satisfied (see

Figures 6.18 for p2i = 0.1, C.63 and C.64 in Appendix for p2i = 0.2 and p2i = 0.4). Coming to

coverage of τ 2 (Figures 6.19 and C.65, C.66), the Q-profile and and Profile-likelihood based

estimation seem to perform well for N ≤ 250 and K ≤ 10. However, the coverage of these

methods deteriorates with increasing either N or K. The best scenario for the Q-profile

and and Profile-likelihood based method is N = 100. However, we can not only rely on a

particular set of simulations. In reality, we would never get the studies with the same samples

studies across all studies. Considering asymptotics with increasing N or K, none of the four

methods perform well. The Breslow method that performed well in Chapter 4 suffers from

the transformation biases of probabilities that are used through relationship 6.2.7. Thus, it

provides a biased point and interval estimate of between-study variance.

In summary, we can clearly see that the misspecification problems impact the estimation of

between-study variance. τ̂ 2BD is aimed at the beta-binomial model, so no surprise that it is

good in ODM. However, when standard methods are used, all methods are not robust to

misspecification of random effects model.
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Figure 6.18: Bias of the between-study variance τ 2 obtained from K studies in beta-binomial
model for p2i = 0.1,θ = 0 and 0 ≤ ρ ≤ 0.3. The estimators of τ 2: yellow square with crosses –
Der-Simonian and Laird estimator τ̂ 2DL, red triangles – Maximum Likelihood estimator τ̂ 2ML,
green pluses – Maximum Penalized Likelihood estimator τ̂ 2MPL, dark blue crosses – Restricted
Maximum Likelihood estimator τ̂ 2REML, light blue diamonds – Profiled-Breslow-Day estima-
tor τ̂ 2BD,pink reverse triangles – Corrected Mandel-Paule estimator τ̂ 2CMP and black circles –
standard Mandel-Paule estimator τ̂ 2MP . Light grey line at 0.95.
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Figure 6.19: Coverage at the nominal confidence level of 0.95 of the between-study variance
τ 2 estimated from K studies in beta-binomial model for p2i = 0.1, θ = 0 and 0 ≤ ρ ≤ 0.3.
Interval estimation methods: black circles – Q-profile confidence interval for τ 2 based on χ2

distribution, pink inverse triangles – Q-profile confidence interval for τ 2 based on Γr(τ2),λ(τ2)
distribution), dark blue crosses – Profile likelihood confidence intervals, light blue diamonds
– Breslow-Day-Profile confidence intervals. Light grey line at 0.95.
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Bias and coverage in estimation of overall log-odds ratio θ

Similarly to results from Chapter 4, the bias of estimated odds ratio θ̂ was practically the same

regardless of a method used for estimation of intra-class correlation τ 2. Without loss of gener-

ality, we plotted the results for bias of θ̂ obtained when using the moment estimator ρ̂CMP in

Figure 6.20 for values of log-odds θ = 0, 1 and 2. We used the moment estimator ρ̂CMP , since it

is the least unbiased estimator of between-study variance in standard additive random effects

model (see section 6.4.1 and 6.4.1 for results of simulations from standard additive random

effects model). Similarly to results from Chapter 4, there is no bias when θ = 0, i.e. when the

probabilities of an event in two arms are the same, but the bias clearly increases positively

with increasing values of θ, and/or τ 2. This is conflicting with results of ODM, where the

bias of θ increases negatively with increasing values of θ, and/or τ 2. Whenever applying the

standard methods for estimation of between-study variance to beta-binomial model, estimates

of between-study variance obtains positive bias which results in positive bias in θ. In ODM,

the bias of random effect parameter is negative, hence the bias of θ is also negative. For more

details see the Sections 4.6.2 and 4.6.2 in Chapter 4. Similar results for larger probabilities

are provided in Appendix (see C.67 and C.71 for probabilities p2i = 0.2 and p2i = 0.4 with

values of log-odds θ = 0, 1 and 2).

For coverages of overall log-odds ratio θ, see the Figures 6.21, 6.22 and 6.23 for θ = 0, 1 and 2

respectively. The method used for estimation of intra-class correlation τ 2 plays an important

role in estimation of variance, and therefore the coverage of the odds-ratio. The Figures 6.21,

6.22 and 6.23 clearly show the reduced coverage of OR due to the transformation bias dis-

cussed in section 4.6.2 and 4.6.2 in Chapter 4. Among all the methods, Profiled Breslow-Day

method shows the least reductions in the coverage of OR. This might be due to the very bi-

ased estimator of between-study variance τ̂ 2BD which increases the variance hence provides the

widest the confidence interval. The results of coverages for larger probabilities are provided

in Appendix (see C.68, C.69 and C.70 and C.72, C.73 and C.74 for p2i = 0.2 and p2i = 0.4).
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Overall, the standard methods for estimation of between-study variance are not robust to mis-

specification of REM models in meta-analysis. In standard additive random effects models,

the performance of standard methods were studied by Viechtbauer (2005). However, estimat-

ing the between-study variance in beta-binomial model might leads to wrong inference about

the size of heterogeneity, sizes of overall effect measure and its confidence interval. The trans-

formation bias is an additional problem, which plays an important role when we have random

effects model. τ̂ 2CMP results in the best coverage of θ̂RE for K ≤ 10, so the most robust.
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Figure 6.20: Bias of overall log odds ratio θIV obtained from K studies by the inverse-variance
method with the moment estimator ρ̂CMP in the weights, for p2i = 0.1, and 0 ≤ ρ ≤ 0.3. The
biases are given for θ = 0 (circles), θ = 1 (circle plus), and θ = 2 (circle cross). Light grey line
at 0.
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Figure 6.21: Coverage at the nominal confidence level of 0.95 of the overall log odds ratio θ
obtained from K studies by the inverse-variance method, for p2i = 0.1, θ = 0 and 0 ≤ ρ ≤ 0.3
(equivalent to 0 ≤ τ 2 ≤ 6.5). The inverse-variance weights use the following estimators of τ 2:
yellow square with crosses – Der-Simonian and Laird estimator τ̂ 2DL, red triangles – Maximum
Likelihood estimator τ̂ 2ML, green pluses – Maximum Penalized Likelihood estimator τ̂ 2MPL,
dark blue crosses – Restricted Maximum Likelihood estimator τ̂ 2REML, light blue diamonds –
Profiled-Breslow-Day estimator τ̂ 2BD,pink reverse triangles – Corrected Mandel-Paule estimator
τ̂ 2CMP and black circles – standard Mandel-Paule estimator τ̂ 2MP . Light grey line at 0.95.
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Figure 6.22: Coverage at the nominal confidence level of 0.95 of the overall log odds ratio θ
obtained from K studies by the inverse-variance method, for p2i = 0.1, θ = 1 and 0 ≤ ρ ≤ 0.3
(equivalent to 0 ≤ τ 2 ≤ 5). The inverse-variance weights use the following estimators of τ 2:
yellow square with crosses – Der-Simonian and Laird estimator τ̂ 2DL, red triangles – Maximum
Likelihood estimator τ̂ 2ML, green pluses – Maximum Penalized Likelihood estimator τ̂ 2MPL,
dark blue crosses – Restricted Maximum Likelihood estimator τ̂ 2REML, light blue diamonds –
Profiled-Breslow-Day estimator τ̂ 2BD,pink reverse triangles – Corrected Mandel-Paule estimator
τ̂ 2CMP and black circles – standard Mandel-Paule estimator τ̂ 2MP . Light grey line at 0.95.
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Figure 6.23: Coverage at the nominal confidence level of 0.95 of the overall log odds ratio θ
obtained from K studies by the inverse-variance method, for p2i = 0.1, θ = 2 and 0 ≤ ρ ≤ 0.3
(equivalent to 0 ≤ τ 2 ≤ 4.5). The inverse-variance weights use the following estimators of τ 2:
yellow square with crosses – Der-Simonian and Laird estimator τ̂ 2DL, red triangles – Maximum
Likelihood estimator τ̂ 2ML, green pluses – Maximum Penalized Likelihood estimator τ̂ 2MPL,
dark blue crosses – Restricted Maximum Likelihood estimator τ̂ 2REML, light blue diamonds –
Profiled-Breslow-Day estimator τ̂ 2BD,pink reverse triangles – Corrected Mandel-Paule estimator
τ̂ 2CMP and black circles – standard Mandel-Paule estimator τ̂ 2MP . Light grey line at 0.95.
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6.6 Example: effects of diuretics on pre-eclampsia

A meta-analysis of nine trials on the effect of diuretics on pre-eclampsia (Collins et al., 1985)

was studied in Chapters 4 and 5. The same example is re-analysed in this Chapter in order

to compare the results using standard and new methods developed for standard additive ran-

dom effects model, for overdispersed random effects model and generalized linear mixed effect

models.

In addition to the results from Chapter 4 and Chapter 5, the results include maximum likeli-

hood estimates of τ 2 and θ, penalized maximum likelihood estimates of τ 2 and θ proposed by

Kosmidis et al. (2017), Mandel-Paule estimates of τ 2 and θ, Corrected Mandel-Paule estimates

of τ 2 and θ and Profiled-Breslow-Day estimates of τ 2 and θ. For likelihood based estimates,

the confidence interval for τ 2 is obtained by profile-likelihood method. All the results are

shown in table 6.1.

From the results in table 6.1, we would not believe the estimate of between-study variance

from Profiled-Breslow-Day method. Our simulations have shown that τ̂ 2BD is very biased due

to the bias in probabilities that are used through the correspondence 6.2.7. According to our

simulation results the values of τ̂ 2BD is too large on average. Similarly, the confidence interval

of τ̂ 2 based on Profiling the Breslow-Day test statistics is also biased. The penalized maxi-

mum likelihood estimate τ 2MPL = 0.301 of between-study variance is close to REML estimate

τ 2MPL = 0.300. Hence the estimate of odds ratio and its confidence interval is pretty similar

for MPL and REML. Kosmidis et al. (2017) states that τ̂ 2MPL and τ̂ 2REML are closely related.

We have done simulations comparing τ̂ 2REML and τ̂ 2MPL. The results which are not reported

here have shown that τ̂ 2MPL is just the same as τ̂ 2REML for all combinations of N , K and τ 2.

Also, our simulations have shown that τ̂ 2MPL and τ̂ 2REML are very similar. The bias of τ̂ 2REML

is similar to the bias of τ̂ 2MPL. Thus, the estimate of between-study variance τ̂REML is biased

as well.

We have shown in the current Chapter that MPL method does not entirely eliminate the bias

of τ̂ 2ML. The estimators τ̂ 2MPL and τ̂ 2REML still suffer from the negative biases which were visible
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Table 6.1: Estimates and confidence intervals for the ICC ρ, for log odds ratios and for odds
ratios diuretics in pre-eclampsia example; GLMM is the generalized linear mixed model, REM
is the random effects and BB is the beta-binomial model. Heterogeneity parameters estimated
are τ 2 in GLMM, and ρ in BB model. L and U are the lower and upper limits of the respective
confidence intervals (CIs).

Model Method Hetero L U LOR L U length OR L U
geneity of CI

GLMM UM.FS 0.254 -0.513 -0.923 -0.104 0.819 0.599 0.398 0.901
GLMM UM.RS 0.264 -0.516 -0.930 -0.102 0.828 0.597 0.395 0.903
GLMM CM.AL 0.165 -0.434 -0.777 -0.091 0.686 0.648 0.460 0.913
GLMM CM.EL 0.260 -0.147(0) 0.667 -0.513 -0.927 -0.100 0.827 0.599 0.396 0.905
FEM 0.000 -0.398 -0.573 -0.223 0.530 0.672 0.564 0.800
REM DL 0.230 0.072 2.202 -0.517 -0.916 -0.117 0.799 0.596 0.400 0.889
REM REML 0.300 0.043 1.475 -0.518 -0.956 -0.080 0.876 0.596 0.384 0.923
REM ML 0.239 0.041 1.499 -0.517 -0.921 -0.113 0.808 0.596 0.398 0.893
REM MPL 0.301 0.043 1.475 -0.518 -0.956 -0.080 0.876 0.595 0.384 0.923
REM MP 0.386 0.072 2.202 -0.518 -0.998 -0.037 0.961 0.596 0.368 0.963
REM CMP 0.428 0.094 2.183 -0.517 -1.016 -0.018 0.998 0.596 0.362 0.983
REM BD 0.478 0.098 37.78 -0.516 -1.038 0.005 1.033 0.597 0.354 1.005
BB M&IV 0.008 0.002 0.095 -0.436 -0.792 -0.080 0.712 0.647 0.453 0.923

M&MH -0.427 -0.775 -0.080 0.695 0.652 0.461 0.923
BB REML&IV 0.010 0.001 0.060 -0.447 -0.835 -0.059 0.776 0.640 0.434 0.942

REML&MH -0.431 -0.809 -0.053 0.756 0.650 0.445 0.949
BB MP&IV 0.017 0.002 0.095 -0.469 -0.920 -0.018 0.902 0.626 0.399 0.982

MP&MH -0.459 -0.898 -0.020 0.879 0.632 0.407 0.981
BB CMP&IV 0.018 0.003 0.094 -0.474 -0.942 -0.007 0.936 0.623 0.390 0.993

CMP&MH -0.472 -0.927 -0.016 0.911 0.624 0.396 0.984
BB BD&IV 0.019 0.003 0.107 -0.475 -0.944 -0.006 0.938 0.622 0.389 0.994

BD&MH -0.463 -0.920 -0.021 0.899 0.630 0.399 0.980
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from the results of simulations. Our simulations have shown that τ̂ 2MP and τ̂ 2CMP provide least

biased estimates of between-study variance. Thus, in this example the values of τ̂ 2MP = 0.386

and τ̂ 2CMP = 0.478 are somewhat higher than the estimates from likelihood based methods.

We believe that τ̂ 2CMP corrects for the bias of τ̂ 2MP and hence τ̂ 2CMP > τ̂ 2MP . Therefore, in ad-

dition to recommendation of the estimated ICC ρ̂BD = 0.019 and corresponding value of the

pooled OR ψ̂IV = 0.622 with confidence interval (0.389, 0.994) under beta-binomial model, we

would recommend τ̂ 2CMP = 0.428 and corresponding value of the pooled OR ψ̂IV = 0.596 with

confidence interval (0.362, 0.983) as the least biased estimates of between-study variance in

standard additive random effects model. These estimates are very similar. Generalized linear

mixed effects models provide similar estimates of odds ratio with shorter confidence interval.

Our recommendations are very theoretical. We still do not know which model to believe and

which random effect component to estimate. It is important to develop the diagnostics against

misspecification of dependency structure of Bernoulli variables.

6.7 Summary

In this Chapter, we compared the methods for estimation of random effect component from

standard additive REM and multiplicative ODM. In standard additive REM, the binary data

were generated similarly to the method of simulation study by Viechtbauer (2007) and to the

method of simulation by Kosmidis et al. (2017) using logistic regression. In multiplicative

ODM, the simulations were only generated for data simulated similarly to Viechtbauer (2007)

with a pair of beta-binomial distributions instead of a pair of standard binomial distributions.

Firstly, we compared the performance of methods for estimation of random effect component

for both data simulated similarly to Viechtbauer (2007) and for data simulated similarly to

Kosmidis et al. (2017) using logistic regression with binary data generated under assumptions

of standard additive REM. Secondly, we compared the performance of methods for estima-

tion of random effect component for data simulated similarly to Viechtbauer (2007) under

assumptions of standard additive REM and multiplicative ODM. The two new methods for
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estimation of between-study variance were studied through two different scenarios for data

simulated similarly to Viechtbauer (2007). In the first scenario, the data were generated from

a pair of binomial distributions with assumptions of standard REM. In the second scenario,

instead of a pair of binomial distributions, we generated data from a pair of beta-binomial

distributions. In addition to standard and new methods for estimation of between-study

variance, we have also studied the bias correction to score function for maximum likelihood

estimate of between-study variance proposed by Kosmidis et al. (2017). This bias correction is

similar to penalization of the likelihood. Kosmidis et al. (2017) has shown by simulations that

proposed penalized likelihood provides better coverage than maximum likelihood method for

overall effect measure in case-control studies. Kosmidis et al. (2017) claims that the proposed

method is universal in reducing the bias of maximum likelihood estimates in meta-analysis

of continuous and binary outcomes. However, the behaviour of the bias reductions depends

on the effect measure. The program written by Kosmidis et al. (2017) was used for analysis

of log-odds ratio with the same structure of generating the data as in Viechtbauer (2007)

and as in Abo-Zaid et al. (2013). The simulations for data generated by method similarly to

Viechtbauer (2007) and by method simulated similarly to Kosmidis et al. (2017) using logistic

regression were run for different scenarios in meta-analysis under assumptions of standard

random effects model. The difference between the simulation method by Viechtbauer (2007)

and simulation method by Kosmidis et al. (2017) is that the former is simulating data from

the fixed intercept model and the latter from the random intercept model similar to Turner

et al. (2000) and discussed in Chapter 5 of this thesis. Another difference between methods of

simulation is that Kosmidis et al. (2017) uses logistic regression for estimation of study spe-

cific log-odds ratios. The results of both simulations have shown that bias correction improves

the estimate of maximum likelihood by reducing its bias. However, the bias of between-study

variance has not been completely eliminated. The bias is larger in the random intercept model

than in fixed intercept model. This is due extra random effect and inconsistent within-study

sample sizes in the random intercept model. Also, in both scenarios, the bias is larger for
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sparse-data than for non-sparse data. The penalized likelihood is better than maximum likeli-

hood estimate for between-study variance, but it is still biased. In our simulations, the bias of

penalized maximum likelihood method and the bias of restricted maximum likelihood method

are absolutely the same. The Profiled Breslow-Day method proposed in Chapter 4 did not

result in a good estimator of between-study variance. This method is only recommended in

ODM, but not in REM. The corrected Manted-Paule method has shown promising results

providing the least estimate of between-study variance.

One of the important findings of this and previous Chapter is the importance of the misspecifi-

cation between random effects models. All studied methods are not robust to misspecification

of random effects model. The misspecification occurs due to wrong assumption of normality of

random effects in beta-binomial model and wrong estimation of the random effect component.

ODM model introduced in Chapter 4 is a better option. In ODM, we directly estimate intra-

cluster correlation instead of between-study variance. However, for maximum-likelihood based

methods, in ODM we still make assumption of normality across effects between studies. Com-

paring the maximum-likelihood based methods and methods based on method of moments,

the latter are the better option since we avoid the distributional assumptions as in likelihood

based methods. The similar misspecification appears in general case using GLMM. Litière

et al. (2007) and Litière et al. (2008) studied the impact of misspecifying the random effects

distribution on the maximum likelihood estimates in generalized linear mixed models. Litière

et al. (2008) studied the replacement of normal random effects model by a non-parametric

distribution. However, these models result in different consistency of MLE estimates. Other

authors who studied misspecification problem in GLMM are Neuhaus et al. (1992), Verbeke

and Lesaffre (1997), Agresti et al. (2004) and McCulloch and Neuhaus (2011). Which model

to use in which scenario in meta-analysis of binary data is an open question ?! Robust di-

agnostics against misspecification of dependency structure of Bernoulli variables is required,

and will be a subject of our future research.



Chapter 7

Conclusion

7.1 Summary of the thesis

The current thesis is motivated by the problems of overdispersion arising in modelling pro-

portions for single studies and in meta-analysis. In meta-analysis, the proportions usually

give rise to two sample effect measures (odds ratio, relative risk and risk difference). Due to

ease of analysis following normalization and variance-stabilization, these measures are usually

transformed from one scale to another. These transformations have been studied by many

authors such as Cox (1983) and Bhaumik et al. (2012) for log-odds, or Kim and Taylor (1994)

for arcsine transformation in the absence or the presence of overdispersion. Overdispersion is

usually accounted for by correcting the variance of an effect measure such as log odds ratio

or arcsine difference. However, correction of the variance does not solve all the problems of

inference in single studies and in meta-analyses. The additional issues arise from the bias of

order O(1/n) for each effect measure. The bias appears from the non-linearity of the trans-

formations such as log odds or arcsine. Transformed measures are meta-analysed by fixed or

random effects models.

We studied the biases of order O(1/n) for log-odds and arcsine transformation by theoret-

ical derivations and by simulations. For arcsine transformation we managed to reduce the

size of bias by adding the first and second order corrections. For log-odds, the corrections

changes the magnitude of the bias but do not make it disappear. This is due to dependence
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of corrections on probabilities which are biased themselves. The same bias is also present

for log-odds ratio in standard random effects model. We have also studied the alternative

representation of random effects model in multiplicative form for log odds ratio. We presented

a model that used an intra-cluster correlation as a source of overdispersion. The intra-cluster

correlation parameter is used as an inflation factor to the variance of FEM. We assumed the

constant intra-cluster correlation parameter across the studies. This is the strong assumption,

however common in meta-analysis with limited number of studies. We have also proposed

new methods for estimation of intra-cluster correlation in ODM and between-study variance

in REM by profiling the Breslow-Day test and correcting the Mandel-Paule method based on

the improved approximation for Q statistics by gamma distribution.

The multiplicative overdispersed random effects model is an attractive counterpart to standard

random effects model. However, the methods of the former model are still not fully unbiased.

When the data is sparse in standard fixed effect model, the standard Mantel-Haenzsel method

is superior to weighted inverse-variance approach (Breslow, 1981). In case of heterogeneous

sparse data due to correlation within each arm, the inverse-variance method outperforms the

corrected Mantel-Haenzsel method in terms of the bias and coverage. The low performance

of Mantel-Haenzsel method in terms of the bias and coverage can be explained by the bias of

estimators of the intra-cluster correlation. The same bias has lower effect on the bias of effect

measure obtained by the inverse-variance method. When effect measure (log odds ratio) is far

from zero, the inverse-variance and Mantel-Haenzsel methods also suffer from biases of order

O(1/n).

Generalized linear mixed effect models are alternatives to standard additive and multiplicative

random effects models. Particularly, a conditional generalized linear mixed-effects model with

exact likelihood that uses a non-central hypergeometric distribution within each study and

normal distribution between studies is of interest. However, as we have shown in Chapter 5

it also suffers from the biases of order O(1/n). In beta-binomial model (Chapter 5), this is

due to violation of the non-central hypergeometric distribution assumption in the presence of
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intra-cluster correlation and the bias of true unobserved conditioned odds ratio that is ob-

tained by inverse of logit trasformation of the number of successes. The bias is smaller when

the data was simulated from standard additive random effects model with a pair of binomial

distributions within studies and normal distribution between studies. However for the latter

model, the bias of order O(1/n) does still exist. Thus, the use of NCHGN model is question-

able. When the binary data is actually correlated, NCHGN might provide wrong inference.

We need diagnostic tools to distinguish between correlated or independent binary data.

The approximation of non-central-hypergeometric distribution by binomial distribution does

not perform well at all for both beta-binomial and additive random effects models. Hence,

the use of this model is not recommended. The maximum likelihood estimates in standard

random effects model do also suffer from the transformation biases of order O(1/n). Kos-

midis et al. (2017) believes that his bias correction eliminates the bias of order O(1/n) and

reduces the bias of maximum likelihood estimates. We assessed the bias correction proposed

by Kosmidis et al. (2017) in standard REM and multiplicative ODM by simulation study.

Our simulations show that in data generated through logistic regression, the methods for es-

timation of between-study variance produce larger biases than in data generated similar to

simulations by Viechtbauer (2007). Probably this is because, in generation of data through

logistic regression, two random effects are added to the model. One for intercept and one

for covariate. In data generated similar to simulations by Viechtbauer (2007), we have only

added one random effect to log-odds ratio. For both scenarios, the results from our simula-

tions showed that the bias correction helps standard random effects model. However, the bias

in estimates of between-study variance still exists in both sparse and non-sparse data. We

have also assesed the standard and new methods for estimation of between-study variance in

correlated binary data. The results of the latter simulations have shown that estimating the

between-study variance when heterogeneity is introduced by dependence of Bernoulli variables

leads to wrong inference about the overall effect measure. Thus, how to safeguard against mis-

specification problem in meta-analysis is not an easy question to answer. As we have shown,
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use of generalized linear mixed effects model might not help when the log odds ratio is far

from zero.

There are still so many problems that needs to be discovered within statistical inference in

meta-analysis of binary data. In this thesis, we have concentrated our attention on transfor-

mations, overdispersion, methods of estimation and models for meta-analysis of binary data.

7.2 Practical issues and recommendations

The focus of this thesis is limited to the meta-analysis of binary data using log-odds and

arcsine transformation. In practice, alternative effect measures such as relative risk or risk

differences might be used instead. When choosing the effect measure, two most common as-

pects should be considered: firstly, the effect measure should be statistically appropriate and

convenient to use, secondly, the effect measure should contain the useful clinical information

(Sutton et al., 2000). The motivation of current thesis is that log odds ratio is commonly used

in meta-analysis of binary data due to its attractive properties and the ease of interpretation.

Alternatively, arcsine or difference of arcsine transformations is a variance stabilized counter-

part to log-odds ratio and log-relative risk.

We have developed a multiplicative ODM model, which is a counterpart to standard REM.

In this model, we have assumed a common intra-cluster correlation across all studies. This

approach is common in randomized controlled trials. However, it becomes less efficient when

there is a variation of intra-cluster correlations across the studies. If this is the case, the

correlation should be estimated and then used within each study in adjusted inverse variance

method. However, this leads to the question of estimation. We have used methods that as-

sume a common intra-cluster correlation. Alternative methods are required. Our simulations

also used equal sample sizes in treatment and control arm. The majority of studies are fairly

balanced. However this is not true in general. We should not ignore the scenario when stud-

ies have unbalanced samples size. The inferential methods are expected to perform worse in
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unbalanced case.

When using the standard methods for sparse data, the continuity corrections are added to

cells with zero events. The most popular continuity corrections are 1/2 for log-odds and 3/8

for arcsine transformation are still preferred in most of the cases. In case of using the arcsine

differences as an effect measure, we would recommend the use of our bias correction proposed

in Chapter 3 for small values of intra-cluster correlation (ρ ≤ 0.06). The log-odds transfor-

mation is biased of order O(1/n) and we could not eliminate this bias. The further research

is required for log-odds transformation in order to eliminate the higher order terms.

In meta-analysis of binary data, the standard REM and new ODM methods are the easiest

and safest methods to implement for practitioner. Both models suffer from transformation

biases and it is not clear which one to use for the data in hands. The random effect compo-

nent in both models has to be estimated by either moment based method or likelihood based

methods. Among all methods, we would recommend the proposed Corrected Mandel-Paule

method for estimation of random effect component in both REM and ODM . The adjusted

Mantel-Haenzsel method did not show any promising results. The inverse-variance method

is recommended over the Mantel-Haenzsel method in ODM and REM. But both, the inverse

variance and Mantel-Haenzsel method suffer from transformation bias when the log-odds ratio

is far from zero.

An alternative is to use the exact non-central-hypergeometric likelihood. From the results of

our simulations, we would not recommend the use of binomial approximation to non-central-

hypergeometric distribution in GLMM. This method provided the worse case scenario results

even when the assumption of binomially distributed variables within each study is satisfied.

In practice, convergence problems might occur when trying to fit the saturated model in gen-

eralized linear mixed effect model with exact non-central-hypergeometric distribution. These

convergence problems may result in singularity of variance-covariance matrices. Generalized

linear mixed effect model with exact non-central-hypergeometric likelihood is also compu-

tationally difficult and time expensive. This is due to maximizing the marginal likelihood
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obtained integrating out the random effects model.

7.3 Limitations and future research

When using log-odds ratio as an effect measure in meta-analysis, the standard methods for

estimation of between-study variance are biased. The bias of between-study variance com-

bined with the transformation bias of log-odds impacts the estimation of overall log-odds ratio

and its confidence intervals. We have tried to eliminate the bias of order O(1/N) in log-odds

and arcsine difference. However, we have only succeed in bias reduction of arcsine differences.

Kosmidis et al. (2017) proposed a method to eliminate the bias of order O(1/N) in maximum

likelihood based methods for various effect measures in meta-analysis. We have performed

simulations with the method proposed by Kosmidis et al. (2017) for log-odds ratio. The bias

correction improves the likelihood based estimates of between-study variance and overall effect

measure. However, the bias of estimates have not been eliminated completely. The penalized

maximum likelihood estimator is still biased. Further expansions of the score functions should

be studied for bias reduction in maximum likelihood based estimates.

In ODM, multivariate extensions of the models and corresponding methods of estimation

should be developed and studied for different effect measures. Moreover, in ODM, it would be

worthwhile to develop an improved methods for estimation of intra-cluster correlation within

each arm across the studies. This is possible if the distribution of Q or Breslow-Day statistics

is obtained under random effects model. It is also important to create diagnostic tools to

analyze the random effects distribution. Extension of ODM to regression models would be

advantageous to incorporate covariates in the analysis. The intra-cluster dependence between

Bernoulli variables may also be modelled through the covariates.

Recently, Chen et al. (2016) proposed a marginal beta-binomial model based on the composite

likelihood approach to a pair of beta-binomial distributions. Similar to our ODM model, this

model assumes a pair of beta-binomial distributions in meta-analysis of binary data. However,
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the main difference between our ODM model and the model proposed by Chen et al. (2016) is

the use of inverse variance methods versus composite maximum likelihood method. Similarly

the model by Chen et al. (2016), Kuss (2015) suggests to use beta-binomial regression model

with maximum likelihood estimation of composite likelihood from a pair of beta-binomial

distributions as generalized linear model family with logit link function for log-odds ratio.

The future research should include the comparison of model proposed and studied by Chen

et al. (2016), model proposed by Kuss (2015) and our ODM model proposed in Chapter 4 in

meta-analysis of binary outcomes from case-control studies.

In conclusion, the misspecification of a model is a very important issue. We have proposed

ODM model, an alternative to standard REM model. We have also studied different meth-

ods for estimation of random effect component in ODM and REM. A method robust against

misspecification of dependency between Bernoulli variables would be preferable. Generalised

linear mixed models are a logical choice in meta-analysis of discrete data, when the misspeci-

fication of models is present.
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Appendix A

A.1 Bayesian setting

This problem may not exist in the Bayesian setting.

The binomial likelihood for X|p ∼ B(n, p) is proportionate to pX(1 − p)n−X . Given that

p ∼ B(r, s), the full likelihood is proportionate to pX+r−1(1− p)n−X+s−1. Thus the posterior

distribution θ|X is B(X+r, n−X+s), and (as is well known) Beta is the conjugate distribution

for Binomial. We need r > 0, s > 0 for the beta-binomial density to be defined, i.e. for a proper

prior, but this is not that necessary. The posterior mean and variance of this distribution are,

respectively,

p̂Bayes =
r +X

r + s+ n
and Var(p̂Bayes) =

(r + x)(s+ n−X)

(r + s+ n)2(r + s+ n+ 1)
.

Given a density g(p), find the density for log-odds θ, given that p = h(θ) = [1 + exp(−θ)]−1.

Using the standard change of variables formula, the density is g(p) = f(θ(p))h′(p), where

h′(θ) = h(θ)(1− h(θ)) is the derivative of the inverse log-odds transformation. :

g(p) = f(θ(p))h′(p) =
f(θ(p))

p(1− p)
.

Similarly,

g(θ) = f(p(θ))[h′(p)]−1 = f(p(θ))p(1− p).

So, for a prior π(p) = B(r, s) on p,

π(θ) = Br,s(p(θ))p(1− p) = Br+1,s+1(p(θ)).

We need r > −1, s > −1 for this density to be defined, i.e. for a proper prior on the log-

odds scale. Important particular cases of the beta priors for p are: The non-informative
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Jeffreys prior for p is π(p) ∝ p−1/2(1 − p)−1/2 = B(1/2, 1/2) (Zhu and Lu, 2004), (Boos and

Stefanski, 2013, ch. 4 p.175, formula 4.15) provides corresponding Jeffreys prior for log-odds

as π(θ) = eθ/2/(1+eθ) = e−θ/2/(1+e−θ). This corresponds to s = r = 3/2. The uniform prior

U(0, 1) = B(1, 1) would result in the prior B(2, 2) for log-odds. Haldane’s improper prior

p−1(1 − p)−1 ∝ B(0, 0) results in the flat uniform prior for log-odds (Zhu and Lu, 2004). All

these cases agree with the general result above. The gist of this is that non-informative prior

for p often results in a very informative prior for log-odds and vice-versa. The likelihood on

the log-odds scale is

[ 1

1 + e−θ
]X[ e−θ

1 + e−θ
]n−X

π(θ) = BX+r+1,n−X+s+1(p(θ)).

A.2 Results of simulation

A.2.1 Simulation(without bias correction) for larger probabilities

Figures A.1 and A.3 show the bias of the arcsine transformation for p = 0.2 and p = 0.4.

Figures A.2 and A.4 show the coverage of the arcsine transformation for p = 0.2 and p = 0.4

A.3 Bias correction of arcsine transformation with known

ρ and p

Results for p = 0.1, p = 0.2 and p = 0.4 with theoretical bias correction are given in Figures

A.5, A.6 and A.7, respectively.

Coverage after bias correction (for known p and ρ) is depicted in Figures A.5, A.6 and A.7,

respectively. It can be seen that the coverage is greatly improved.
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Figure A.1: Bias on the arcsine scale of the meta-analysis of arcsine transformations from K
studies in overdispersed binomial model for p = 0.2 and 0 ≤ ρ ≤ 0.1. Simulations (10000 for
each values of ρ) from beta-binomial distribution (black), from Lunn and Davies (1998) model
(red) and from Gaussian copula (Emrich and Piedmonte, 1991) (green) with and without the
continuity correction (solid and dashed lines, respectively). Also the first order bias terms
given by the first two terms of equation (3.2.1) and plotted for known p and ρ (solid or dashed
blue lines). Light grey line at zero.
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Figure A.2: Coverage (for a known value of ρ) at the nominal 95% level of the true value of
p using the meta-analysis of acrsine transformation from K studies in overdispersed binomial
model for p = 0.2 and 0 ≤ ρ ≤ 0.1. Simulations (10000 for each values of ρ) from beta-binomial
distribution (black lines), from Lunn and Davies (1998) model (red lines) and from Gaussian
copula (Emrich and Piedmonte, 1991) (green) with and without the continuity correction
(solid or dashed lines, respectively). Light grey line at 0.95.
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Figure A.3: Bias on the arcsine scale of the meta-analysis of arcsine transformations from K
studies in overdispersed binomial model for p = 0.4 and 0 ≤ ρ ≤ 0.1. Simulations (10000 for
each values of ρ) from beta-binomial distribution (black), from Lunn and Davies (1998) model
(red) and from Gaussian copula (Emrich and Piedmonte, 1991) (green) with and without the
continuity correction (solid and dashed lines, respectively). Also the first order bias terms
given by the first two terms of equation (3.2.1) and plotted for known p and ρ (solid or dashed
blue lines). Light grey line at zero.
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Figure A.4: Coverage (for a known value of ρ) at the nominal 95% level of the true value of
p using the meta-analysis of acrsine transformation from K studies in overdispersed binomial
model for p = 0.4 and 0 ≤ ρ ≤ 0.1. Simulations (10000 for each values of ρ) from beta-binomial
distribution (black lines), from Lunn and Davies (1998) model (red lines) and from Gaussian
copula (Emrich and Piedmonte, 1991) (green) with and without the continuity correction
(solid or dashed lines, respectively). Light grey line at 0.95.
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Figure A.5: Coverage in meta-analysis at the nominal 95% level of the true value of p using
the acrsine transformation with bias-correction in overdispersed binomial model for p = 0.1
and 0 ≤ ρ ≤ 0.1; n sample size; k number of studies. Simulations (10000 for each values of
ρ) from beta-binomial distribution (solid lines), from Lunn and Davies (1998) model (dashed
lines) and from model with Gaussian Copula (Emrich and Piedmonte, 1991) with and without
the continuity correction (black, red and green colour, respectively). Light grey line at 0.95.



254

 Intra−cluster correlation ρ

C
ov

er
ag

e

● ●
●

● ● ● ● ●
● ●

n = 20 , K = 10

● ●

●

● ● ●
●

●

●
●

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.
85

0.
87

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

 Intra−cluster correlation ρ

C
ov

er
ag

e

●
●

●
● ●

●
●

● ● ●

n = 80 , K = 10

●
●

●
● ●

●
●

● ● ●

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.
90

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

 Intra−cluster correlation ρ

C
ov

er
ag

e

●
●

●

●

●
●

●
●

●
●

n = 250 , K = 10

●
●

●

●

●
●

●
●

●
●

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.
90

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

 Intra−cluster correlation ρ

C
ov

er
ag

e

● ●
●

●
●

●
●

● ●
●

n = 1000 , K = 10

● ●
●

●
●

●
●

● ●
●

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.
90

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

 Intra−cluster correlation ρ

C
ov

er
ag

e

●
●

● ●
● ● ● ● ● ●

n = 20 , K = 30

● ●

● ● ●
●

●
● ● ●

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
0.

85
0.

87
0.

90
0.

92
0.

94
0.

96
0.

98
1.

00

 Intra−cluster correlation ρ

C
ov

er
ag

e

●
● ●

● ●
● ●

●
● ●

n = 80 , K = 30

●
● ● ● ●

● ●

●

●
●

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.
90

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

 Intra−cluster correlation ρ

C
ov

er
ag

e

●
● ●

●
●

●

● ●
●

●

n = 250 , K = 30

●
● ●

● ●

●
● ●

●
●

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.
90

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

 Intra−cluster correlation ρ

C
ov

er
ag

e

● ●

●
●

●
● ●

●
●

●

n = 1000 , K = 30

● ●

●
●

●
● ● ●

●

●

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.
90

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

 Intra−cluster correlation ρ

C
ov

er
ag

e

● ● ● ● ● ● ● ● ● ●

n = 20 , K = 80

●
●

● ●

●
●

● ●

● ●

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.
85

0.
87

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

 Intra−cluster correlation ρ

C
ov

er
ag

e

●

●
● ● ●

● ●
●

●
●

n = 80 , K = 80

●

●
● ●

● ● ● ●

●
●

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.
90

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

 Intra−cluster correlation ρ

C
ov

er
ag

e

● ● ●

● ●
● ●

● ●
●

n = 250 , K = 80

● ● ●

● ●
● ●

●
●

●

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.
90

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

 Intra−cluster correlation ρ

C
ov

er
ag

e

●
●

●

●
● ●

●
●

●
●

n = 1000 , K = 80

●
●

●

●
● ●

●
●

●
●

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.
90

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Figure A.6: Coverage at the nominal 95% level of the true value of p using the acrsine trans-
formation with bias-correction in overdispersed binomial model for p = 0.2 and 0 ≤ ρ ≤ 0.1; n
sample size; k number of studies. Simulations (10000 for each values of ρ) from beta-binomial
distribution (solid lines), from Lunn and Davies (1998) model (dashed lines) and from model
with Gaussian Copula (Emrich and Piedmonte, 1991) with and without the continuity correc-
tion (black, red and green colour respectively). Light grey line at 0.95.



255

Intra−cluster correlationρ

C
ov

er
ag

e

● ●
●

●
●

●
● ●

● ●

n = 20 , K = 10

●
●

● ● ●

●
● ●

●
●

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.
90

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Intra−cluster correlationρ

C
ov

er
ag

e

●
● ● ● ● ●

● ● ● ●

n = 80 , K = 10

●

● ● ● ●
●

● ● ● ●

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.
90

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Intra−cluster correlationρ

C
ov

er
ag

e

●
●

●
● ●

●
●

●
● ●

n = 250 , K = 10

●
●

●
● ●

●
●

●
● ●

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.
90

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Intra−cluster correlationρ

C
ov

er
ag

e

● ● ●
● ● ● ●

● ● ●

n = 1000 , K = 10

● ● ●
● ● ● ●

● ● ●

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.
90

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Intra−cluster correlationρ

C
ov

er
ag

e

● ● ●

● ● ● ● ●
●

●

n = 20 , K = 30

● ● ●

● ●
●

●
●

●

●

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
0.

90
0.

91
0.

92
0.

93
0.

94
0.

95
0.

96
0.

97
0.

98
0.

99
1.

00

Intra−cluster correlationρ

C
ov

er
ag

e

● ●

●

●
●

● ● ●
●

●

n = 80 , K = 30

● ●

●

●

●

● ● ●
●

●

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.
90

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Intra−cluster correlationρ

C
ov

er
ag

e

●
● ● ● ●

●
●

●
●

●

n = 250 , K = 30

●
● ● ● ●

●
●

●
●

●

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.
90

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Intra−cluster correlationρ

C
ov

er
ag

e

● ● ●

●

●

●
●

●

●

●

n = 1000 , K = 30

● ● ●

●

●

●
●

●

●

●

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.
90

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Intra−cluster correlationρ

C
ov

er
ag

e

●
●

●

●
●

● ●
● ● ●

n = 20 , K = 80

●
●

●

●

●

●
●

● ● ●

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.
90

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Intra−cluster correlationρ

C
ov

er
ag

e

●
● ●

● ●
●

● ● ● ●

n = 80 , K = 80

●
● ●

● ●
●

● ● ● ●

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.
90

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Intra−cluster correlationρ

C
ov

er
ag

e

● ● ● ●
●

● ●
●

●
●

n = 250 , K = 80

● ● ● ●
●

● ●
●

● ●

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.
90

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Intra−cluster correlationρ

C
ov

er
ag

e

●

●
●

●
●

● ●

● ●
●

n = 1000 , K = 80

●

●
●

●
●

● ●

● ●
●

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.
90

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Figure A.7: Coverage at the nominal 95% level of the true value of p using the acrsine trans-
formation with bias-correction in overdispersed binomial model for p = 0.4 and 0 ≤ ρ ≤ 0.1; n
sample size; k number of studies. Simulations (10000 for each values of ρ) from beta-binomial
distribution (solid lines), from Lunn and Davies (1998) model (dashed lines) and from model
with Gaussian Copula (Emrich and Piedmonte, 1991) with and without the continuity correc-
tion (black, red and green colour, respectively). Light grey line at 0.95.



Appendix B

B.1 Variance of corrected Mantel-Haenzsel odds ratio

Following the derivation from Silcocks (2005), the variance of LOR similar to 2.4.10 can be

obtained as derived by Robins et al. (1986) and Phillips and Holland (1987) as

Var(ψ̂MH) =

K∑
j=1

W 2
jCVar(ψ̂j)

(
K∑
j=1

WjC)2

where WjC is

WjC =
(n1j −X1j)X2j

C1jn2j + C2jn1j

and the variance of individual odds ratio is

Var(ψ̂j) =
C1j

X1j

+
C1j

n1j −X1j

+
C2j

X2j

+
C2j

n2j −X2j

.

Here we assumed that WjC and ψ̂j are independent from each other. However, in general this

assumption is wrong. WjC and ψ̂j are correlated with each other, since both of these variables

depend on the observed number of cases in treatment and control arm.

Substituting the weights and variances of each individual odds ratio, we have

Var(log(ψ̂MH)) =

K∑
j=1

(
(n1j−X1j)X2j

C1jn2j+C2jn1j
)2(

C1j

X1j
+

C1j

n1j−X1j
+

C2j

X2j
+

C2j

n2j−X2j
)

(
K∑
j=1

(n1j−X1j)X2j

C1jn2j+C2jn1j
)2
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Assuming a common odds ratio across K studies estimated by ψ̂MH , the equation for variance

can be re-written as

Var(log(ψ̂MH)) =

ψ̂2
MH

K∑
j=1

(
(n1j−X1j)X2j

C1jn2j+C2jn1j
)2(

C1j

X1j
+

C1j

n1j−X1j
+

C2j

X2j
+

C2j

n2j−X2j
)

(
K∑
j=1

(n1j−X1j)X2j

C1jn2j+C2jn1j
)2

which is the same as equation derived by Donald and Donner (1987) with corrections factors

(4.3.1) taken into account. The variance can be further re-written as

Var(log(ψ̂MH)) =

K∑
j=1

(
(n1j−X1j)X2j

C1jn2j+C2jn1j
)2(

C1j(n2j−X2j)+C2jX1j

X1j(n2j−X2j)
+

C2j(n1j−X1j)+C1jX2j

X2j(n1j−X1j)
)

(
K∑
j=1

(n1j−X1j)X2j

C1jn2j+C2jn1j
)2

or

Var(log(ψ̂MH)) =

K∑
j=1

(n1j−X1j)X2j

(C1jn2j+C2jn1j)2
(n1j −X1j)X2j(

C1j(n2j−X2j)+C2jX1j

X1j(n2j−X2j)
+

C2j(n1j−X1j)+C1jX2j

X2j(n1j−X1j)
)

(
K∑
j=1

(n1j−X1j)X2j

C1jn2j+C2jn1j
)2

By re-defining the term ψMH =
X2j(n2j−X2j)

(n1j−X1j)X2j
, we have

Var(log(ψ̂MH)) =

K∑
j=1

(n1j−X1j)X2j

(C1jn2j+C2jn1j)2
(
C1j(n2j−X2j)+C2jX1j

ψMH
+ C2j(n1j −X1j) + C1jX2j)

(
K∑
j=1

(n1j−X1j)X2j

C1jn2j+C2jn1j
)2

Now as it was done by Silcocks (2005), if the rows of the 2 × 2 contingency table are inter-

changed, the variance should not change. Hence, this is the same as the statement about the

variance of interchanged table such as

Var(log(ψ̂∗MH)) =

K∑
j=1

(n2j−X2j)X1j

(C1jn2j+C2jn1j)2
(
C2j(n1j−X1j)+C1jX2j

ψ∗MH
+ C1j(n2j −X2j) + C2jX1j)

(
K∑
j=1

(n2j−X2j)X1j

C1jn2j+C2jn1j
)2

such that ψMH = 1/(ψ∗MH).

Let R =
K∑
j=1

(n2j−X2j)X1j

C1jn2j+C2jn1j
and S =

K∑
j=1

(n1j−X1j)X2j

C1jn2j+C2jn1j
, thus taking the mean of two estimates

above results in

Var(log(ψ̂MH)) =
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K∑
j=1

(
R2(n1j−X1j)X2j

(C1jn2j+C2jn1j)2ψ̂MH
+

S2(n2j−X2j)X1j

(C1jn2j+C2jn1j)2
)(C1j(n2j −X2j) + C2jX1j + ψ̂MH(C2j(n1j −X1j) + C1jX2j))

2R2S2
.

Dividing the numerator and denominator by S2, we have

Var(log(ψ̂MH)) =

K∑
j=1

(ψ̂MH(n1j−X1j)X2j+(n2j−X2j)X1j)

(C1jn2j+C2jn1j)2
(C1j(n2j −X2j) + C2jX1j + ψ̂MH(C2j(n1j −X1j) + C1jX2j))

2R2

Now let Pj = (C1j(n2j − X2j) + C2jX1j)/(C1jn2j + C2jn1j) and Qj = (C2j(n1j − X1j) +

C1jX2j)/(C1jn2j + C2jn1j) with Rj = (n2j − X2j)X1j/(C1jn2j + C2jn1j) and Sj = (n1j −

X1j)X2j/(C1jn2j + C2jn1j) then

Var(log(ψ̂MH)) =

K∑
j=1

(ψMHSj +Rj)(Pj + ψMHQj)

2R2

multiplying the brackets out, the variance can be expressed in the form of standard variance

derived by Robins et al. (1986) and Phillips and Holland (1987) such that

Var(log(ψ̂MH)) =

K∑
j=1

RjPj

2R2
+

K∑
j=1

(PjSj +QjRj)

2RS
+

K∑
j=1

SjQj

2S2
.

B.2 Limit of ψ̂MH on ρ

The corrected Mantel-Haenzsel odds ratio (4.3.2) can be rewritten in the form

ψ̂CMH =

∑K
j=1

n1jn2jp1j(1−p2j)
C1jn2j+C2jn1j∑K

j=1
n1jn2jp2j(1−p1j)
C1jn2j+C2jn1j

When ρ→ −1/max(aj), Cij = 1− (nij − 1)/max(aj). Then the the correction factors are

C1j = 1− (n1j − 1)/max(aj) and C2j = 1− (n2j − 1)/max(aj)

For balanced studies n1j = n2j = nj, aj = nj − 1 and C1j = C2j = C(ρ) = 1 + (nj − 1)ρ. For

ρ→ −1/max(aj)

C(ρ) = 1− (nj − 1)/max(nj − 1).
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The corrected Mantel-Haenzsel odds ratio (4.3.2) is

ψ̂CMH =

∑
nj=max(nj)

n1jn2jp1j(1−p2j)
2C(ρ)nj

+
∑

nj 6=max(nj)
n1jn2jp1j(1−p2j)
C1jn2j+C2jn1j∑

nj=max(nj)
n1jn2jp2j(1−p1j)

2C(ρ)nj
+
∑

nj 6=max(nj)
n1jn2jp1j(1−p2j)
C1jn2j+C2jn1j

which is the same as

ψ̂CMH =

∑
nj=max(nj)

n1jn2jp1j(1− p2j) + 2C(ρ)nj
∑

nj 6=max(nj)
n1jn2jp1j(1−p2j)
C1jn2j+C2jn1j∑

nj=max(nj)
n1jn2jp2j(1− p1j) + 2C(ρ)nj

∑
nj 6=max(nj)

n1jn2jp1j(1−p2j)
C1jn2j+C2jn1j

When ρ→ −1/max(aj), C(ρ)→ 0, so

ψ̂CMH =

∑
nj=max(nj)

n1jn2jp1j(1− p2j)∑
nj=max(nj)

n1jn2jp2j(1− p1j)
=

∑
nj=max(nj)

n2
jp1j(1− p2j)∑

nj=max(nj)
n2
jp2j(1− p1j)

ψ̂CMH =

∑
nj=max(nj)

p1j(1− p2j)∑
nj=max(nj)

p2j(1− p1j)

B.3 Limit of θ̂IV on ρ

The inverse variance odds ratio with weight wj(ρ) is

θ̂w =

∑K
j=1wj(ρ)θ̂j∑K
j=1wj(ρ)

=

∑K
j=1

θ̂j
σ2
j (1+ajρ)∑K

j=1
1

σ2
j (1+ajρ)

Similarly to ψ̂MH , when ρ→ −1/max(aj),θ̂w should be subdivided into 2 components

θ̂w =

∑
nj=max(nj)

θ̂j
σ2
j (1+ajρ)

+
∑

nj 6=max(nj)
θ̂j

σ2
j (1+ajρ)∑

nj=max(nj)
1

σ2
j (1+ajρ)

+
∑

nj 6=max(nj)
1

σ2
j (1+ajρ)

For balanced studies n1j = n2j = nj, aj = nj − 1. So, when ρ → −1/max(aj), 1 + ajρ → 0.

Thus,

θ̂w =

∑
nj=max(nj)

θ̂j
σ2
j

+ (1 + ajρ)|nj=max(nj)

∑
nj 6=max(nj)

θ̂j
σ2
j (1+ajρ)∑

nj=max(nj)
1
σ2
j

+ (1 + ajρ)|nj=max(nj)

∑
nj 6=max(nj)

1
σ2
j (1+ajρ)

and

θ̂w =

∑
nj=max(nj)

θ̂j
σ2
j∑

nj=max(nj)
1
σ2
j
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Table B.1: Correspondence between θj and ψj

θj 0 1 2 3
ψj 1 2.718282 7.389056 20.08554

B.4 Analysis of probabilities

In the simulations we are only interested in three values of effect measure. The correspondence

between the effect of interest log odds ratio and odds ratio is

Since the probability of response for treatment arm pjT depends on effect measure θj and

probability of control pjC , the correspondence between these three variables is

Table B.2: Correspondence between pjC and pjT

The values for log odds ratio θj
pjC 1 2 3
0.1 0.2319693 0.45085306 0.690567858
0.2 0.4046097 0.648785644 0.83392523
0.3 0.5381015 0.760004128 0.895921012
0.4 0.644405 0.831253174 0.930509025
0.5 0.7310586 0.880797078 0.952574127
0.6 0.8030497 0.917243097 0.967874898
0.7 0.8638095 0.945178838 0.979108454
0.8 0.9157762 0.967273444 0.98770625
0.9 0.9607297 0.985185515 0.994498537

B.5 Analysis of correspondence between τ 2 and ρ

The correspondence between τ 2 and ρ is important for multiplicative random effects model in

simulations. Below we show the different value for aj in the correspondence (6.2.7) with differ-

ent configurations. From tables below for different values of sample sizes n = (10, 20, 40, 80, 160,

250, 640, 1000), we show that the values of aj is increasing monotonically with probabilities for

control arm piC . Due to correspondence (6.2.7) between τ 2 and ρ, any increase in aj influence

the increase in values for τ 2.
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N = 10 N = 20

θ = 0 θ = 1 θ = 2 θ = 0 θ = 1 θ = 2

piC
0.1 15.05 13.64 14.21 15.89 14.39 15.00
0.2 9.36 9.57 12.12 9.88 10.11 12.80
0.3 7.91 9.22 13.94 8.35 9.73 14.71
0.4 7.68 10.17 17.67 8.10 10.73 18.65
0.5 8.18 12.17 23.52 8.63 12.85 24.83
0.6 9.44 15.61 32.70 9.96 16.47 34.51
0.7 11.94 21.65 48.28 12.60 22.86 50.97
0.8 17.29 34.06 79.74 18.25 35.95 84.17
0.9 33.85 71.66 174.50 35.74 75.65 184.19

Table B.3: The values of aj for N = (10, 20)

N = 40 N = 80

θ = 0 θ = 1 θ = 2 θ = 0 θ = 1 θ = 2

piC
0.1 16.31 14.77 15.40 16.52 14.96 15.59
0.2 10.14 10.37 13.13 10.27 10.51 13.30
0.3 8.57 9.99 15.10 8.68 10.12 15.29
0.4 8.32 11.01 19.14 8.42 11.15 19.39
0.5 8.86 13.19 25.48 8.97 13.36 25.81
0.6 10.23 16.91 35.42 10.36 17.12 35.87
0.7 12.93 23.46 52.31 13.10 23.76 52.98
0.8 18.73 36.89 86.39 18.97 37.37 87.50
0.9 36.68 77.64 189.04 37.15 78.63 191.46

Table B.4: The values of aj for N = (40, 80)
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N = 160 N = 250

θ = 0 θ = 1 θ = 2 θ = 0 θ = 1 θ = 2

piC
0.1 16.62 15.06 15.69 16.66 15.09 15.73
0.2 10.34 10.57 13.39 10.36 10.60 13.42
0.3 8.73 10.18 15.39 8.75 10.20 15.42
0.4 8.48 11.23 19.51 8.50 11.25 19.55
0.5 9.03 13.44 25.97 9.05 13.47 26.03
0.6 10.42 17.23 36.10 10.45 17.27 36.18
0.7 13.18 23.91 53.31 13.21 23.96 53.43
0.8 19.10 37.60 88.05 19.14 37.69 88.25
0.9 37.38 79.13 192.67 37.47 79.31 193.11

Table B.5: The values of aj for N = (160, 250)

N = 640 N = 1000

θ = 0 θ = 1 θ = 2 θ = 0 θ = 1 θ = 2

piC
0.1 16.70 15.13 15.77 16.71 15.13 15.78
0.2 10.38 10.62 13.45 10.39 10.63 13.46
0.3 8.77 10.23 15.46 8.78 10.23 15.47
0.4 8.52 11.28 19.60 8.52 11.28 19.61
0.5 9.07 13.50 26.09 9.08 13.51 26.11
0.6 10.47 17.31 36.27 10.48 17.32 36.29
0.7 13.24 24.02 53.57 13.25 24.04 53.60
0.8 19.19 37.78 88.47 19.20 37.80 88.52
0.9 37.56 79.50 193.58 37.58 79.55 193.69

Table B.6: The values of aj for N = (640, 1000)
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B.6 Simulation results

B.6.1 Bias and coverage in estimation of intra-cluster correlation ρ

Fixed ρ



264

 Intra−cluster correlation ρ

C
ov

er
ag

e

● ● ● ● ● ● ● ● ●
● ●

●

●

●

●

0.00 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.30

−
0.

30
−

0.
25

−
0.

20
−

0.
15

−
0.

10
−

0.
05

0.
00

0.
05

n = 20 , K = 5

 Intra−cluster correlation ρ

C
ov

er
ag

e

● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

0.00 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.30

−
0.

30
−

0.
25

−
0.

20
−

0.
15

−
0.

10
−

0.
05

0.
00

0.
05

n = 50 , K = 5

 Intra−cluster correlation ρ

C
ov

er
ag

e

● ● ● ● ● ● ● ● ●
● ●

●

●

●

●

0.00 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.30

−
0.

30
−

0.
25

−
0.

20
−

0.
15

−
0.

10
−

0.
05

0.
00

0.
05

n = 100 , K = 5

 Intra−cluster correlation ρ

C
ov

er
ag

e

● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

0.00 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.30

−
0.

30
−

0.
25

−
0.

20
−

0.
15

−
0.

10
−

0.
05

0.
00

0.
05

n = 1000 , K = 5

 Intra−cluster correlation ρ

C
ov

er
ag

e

● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

0.00 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.30

−
0.

30
−

0.
25

−
0.

20
−

0.
15

−
0.

10
−

0.
05

0.
00

0.
05

n = 20 , K = 10

 Intra−cluster correlation ρ

C
ov

er
ag

e
● ● ● ● ● ● ● ●

● ● ●

●

●

●

●

0.00 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.30

−
0.

30
−

0.
25

−
0.

20
−

0.
15

−
0.

10
−

0.
05

0.
00

0.
05

● ρ̂M
ρ̂CMP
ρ̂REML
ρ̂BD
ρ̂MP

n = 50 , K = 10

 Intra−cluster correlation ρ

C
ov

er
ag

e

● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

0.00 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.30

−
0.

30
−

0.
25

−
0.

20
−

0.
15

−
0.

10
−

0.
05

0.
00

0.
05

n = 100 , K = 10

 Intra−cluster correlation ρ

C
ov

er
ag

e

● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

0.00 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.30

−
0.

30
−

0.
25

−
0.

20
−

0.
15

−
0.

10
−

0.
05

0.
00

0.
05

n = 1000 , K = 10

 Intra−cluster correlation ρ

C
ov

er
ag

e

● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

0.00 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.30

−
0.

30
−

0.
25

−
0.

20
−

0.
15

−
0.

10
−

0.
05

0.
00

0.
05

n = 20 , K = 20

 Intra−cluster correlation ρ

C
ov

er
ag

e

● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

0.00 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.30

−
0.

30
−

0.
25

−
0.

20
−

0.
15

−
0.

10
−

0.
05

0.
00

0.
05

n = 50 , K = 20

 Intra−cluster correlation ρ

C
ov

er
ag

e

● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

0.00 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.30

−
0.

30
−

0.
25

−
0.

20
−

0.
15

−
0.

10
−

0.
05

0.
00

0.
05

n = 100 , K = 20

 Intra−cluster correlation ρ

C
ov

er
ag

e

● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

0.00 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.30

−
0.

30
−

0.
25

−
0.

20
−

0.
15

−
0.

10
−

0.
05

0.
00

0.
05

n = 1000 , K = 20

Figure B.1: Bias of the intra-cluster correlation ρ from K studies in beta-binomial model
for p2j = 0.2, θ = 0 and 0 ≤ ρ ≤ 0.3. The method of estimators for ρ:circles (Moment
estimator of ρ - ρ̂M), squares (Corrected Mandel-Paule moment estimator for ρ based on
Γr(ρ),λ(ρ) distribution - ρ̂CMP ), diamonds (Restricted maximum likelihood estimator for ρ -
ρ̂REML), triangles (Breslow-Day estimator for ρ based on χ2 distribution - ρ̂BD) and reverse-
triangles (Mandel-Paule estimator of ρ - ρ̂MP ). Light grey line at 0 for bias.
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Figure B.2: Bias of the intra-cluster correlation ρ from K studies in beta-binomial model
for p2j = 0.4, θ = 0 and 0 ≤ ρ ≤ 0.3. The method of estimators for ρ: circles (Moment
estimator of ρ - ρ̂M), squares (Corrected Mandel-Paule moment estimator for ρ based on
gamma approximation for Q distribution - ρ̂CMP ), diamonds (Restricted maximum likelihood
estimator for ρ - ρ̂REML), triangles (Breslow-Day estimator for ρ based on χ2 distribution -
ρ̂BD) and reverse-triangles (Mandel-Paule estimator of ρ - ρ̂MP ). Light grey line at 0 for bias.
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Figure B.3: Coverage at the nominal confidence level of 0.95 of the intra-cluster correlation ρ
from K studies in beta-binomial model for p2j = 0.2, θ = 0 and 0 ≤ ρ ≤ 0.3. The method for
obtaining the confidence interval are shown as follows: circles (Q-profile confidence interval
for ρ based on χ2 distribution), squares (Q-profile confidence interval for ρ based on Γr(ρ),λ(ρ)
distribution), diamonds (Profile likelihood confidence intervals) and triangles (Breslow-Day-
Profile confidence interval for ρ based on χ2 distribution). Light grey line at 0.95 for coverage.
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Figure B.4: Coverage at the nominal confidence level of 0.95 of the intra-cluster correlation ρ
from K studies in beta-binomial model for p2j = 0.4, θ = 0 and 0 ≤ ρ ≤ 0.3. The method for
obtaining the confidence interval are shown as follows: circles (Q-profile confidence interval
for ρ based on χ2 distribution), squares (Q-profile confidence interval for ρ based on Γr(ρ),λ(ρ)
distribution), diamonds (Profile likelihood confidence intervals) and triangles (Breslow-Day-
Profile confidence interval for ρ based on χ2 distribution) Light grey line at 0.95 for coverage.
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Figure B.5: Bias of the intra-cluster correlation ρ from K studies in beta-binomial model for
p2j = 0.1, 0 ≤ θ ≤ 3, ρ = 0.1 and 10 ≤ n ≤ 1000. The method of estimators for ρ: circles
(Moment estimator of ρ - ρ̂M), squares (Corrected Mandel-Paule moment estimator for ρ
based on Γr(ρ),λ(ρ) distribution - ρ̂CMP ), diamonds (Restricted maximum likelihood estimator
for ρ - ρ̂REML), triangles (Breslow-Day estimator for ρ based on χ2 distribution - ρ̂BD) and
reverse-triangles (Mandel-Paule estimator of ρ - ρ̂MP ). Light grey line at 0 for bias.
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Figure B.6: Coverage at the nominal confidence level of 0.95 of the intra-cluster correlation ρ
from K studies in beta-binomial model for p2j = 0.1, 0 ≤ θ ≤ 3, ρ = 0.1 and 10 ≤ n ≤ 1000.
The method for obtaining the confidence interval are shown as follows: circles (Q-profile
confidence interval for ρ based on χ2 distribution), squares (Q-profile confidence interval for ρ
based on Γr(ρ),λ(ρ) distribution), diamonds (Profile likelihood confidence intervals) and triangles
(Breslow-Day-Profile confidence interval for ρ based on χ2 distribution). Light grey line at
0.95 for coverage.
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Figure B.7: Bias of the intra-cluster correlation ρ from K studies in beta-binomial model for
p2j = 0.2, 0 ≤ θ ≤ 3, ρ = 0.1 and 10 ≤ n ≤ 1000. The method of estimators for ρ: circles
(Moment estimator of ρ - ρ̂M), squares (Corrected Mandel-Paule moment estimator for ρ
based on Γr(ρ),λ(ρ) distribution - ρ̂CMP ), diamonds (Restricted maximum likelihood estimator
for ρ - ρ̂REML), triangles (Breslow-Day estimator for ρ based on χ2 distribution - ρ̂BD) and
reverse-triangles (Mandel-Paule estimator of ρ - ρ̂MP ). Light grey line at 0 for bias.
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Figure B.8: Coverage at the nominal confidence level of 0.95 of the intra-cluster correlation ρ
from K studies in beta-binomial model for p2j = 0.2, 0 ≤ θ ≤ 3, ρ = 0.1 and 10 ≤ n ≤ 1000.
The method for obtaining the confidence interval are shown as follows: circles (Q-profile
confidence interval for ρ based on χ2 distribution), squares (Q-profile confidence interval for ρ
based on Γr(ρ),λ(ρ) distribution), diamonds (Profile likelihood confidence intervals) and triangles
(Breslow-Day-Profile confidence interval for ρ based on χ2 distribution). Light grey line at
0.95 for coverage.
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Figure B.9: Bias of the intra-cluster correlation ρ from K studies in beta-binomial model for
p2j = 0.4, 0 ≤ θ ≤ 3, ρ = 0.1 and 10 ≤ n ≤ 1000. The method of estimators for ρ: circles
(Moment estimator of ρ - ρ̂M), squares (Corrected Mandel-Paule moment estimator for ρ
based on Γr(ρ),λ(ρ) distribution - ρ̂CMP ), diamonds (Restricted maximum likelihood estimator
for ρ - ρ̂REML), triangles (Breslow-Day estimator for ρ based on χ2 distribution - ρ̂BD) and
reverse-triangles (Mandel-Paule estimator of ρ - ρ̂MP ). Light grey line at 0 for bias.
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Figure B.10: Coverage at the nominal confidence level of 0.95 of the intra-cluster correlation
ρ from K studies in beta-binomial model for p2j = 0.4, 0 ≤ θ ≤ 3, ρ = 0.1 and 10 ≤ n ≤ 1000.
The method for obtaining the confidence interval are shown as follows: circles (Q-profile
confidence interval for ρ based on χ2 distribution), squares (Q-profile confidence interval for ρ
based on Γr(ρ),λ(ρ) distribution), diamonds (Profile likelihood confidence intervals) and triangles
(Breslow-Day-Profile confidence interval for ρ based on χ2 distribution). Light grey line at
0.95 for coverage.
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Figure B.11: Bias of the intra-cluster correlation ρ from K studies in beta-binomial model
for 0.1 ≤ p2j ≤ 0.4, θ = 0, ρ = 0.1 and 10 ≤ n ≤ 1000. The method of estimators for ρ:
circles (Moment estimator of ρ - ρ̂M), squares (Corrected Mandel-Paule moment estimator for
ρ based on Γr(ρ),λ(ρ) distribution - ρ̂CMP ), diamonds (Restricted maximum likelihood estimator
for ρ - ρ̂REML), triangles (Breslow-Day estimator for ρ based on χ2 distribution - ρ̂BD) and
reverse-triangles (Mandel-Paule estimator of ρ - ρ̂MP ). Light grey line at 0 for bias.
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Figure B.12: Coverage at the nominal confidence level of 0.95 of the intra-cluster correlation ρ
from K studies in beta-binomial model for 0.1 ≤ p2j ≤ 0.4, θ = 0, ρ = 0.1 and 10 ≤ n ≤ 1000.
The method for obtaining the confidence interval are shown as follows: circles (Q-profile
confidence interval for ρ based on χ2 distribution), squares (Q-profile confidence interval for ρ
based on Γr(ρ),λ(ρ) distribution), diamonds (Profile likelihood confidence intervals) and triangles
(Breslow-Day-Profile confidence interval for ρ based on χ2 distribution). Light grey line at
0.95 for coverage.
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Figure B.13: Bias of the intra-cluster correlation ρ from K studies in beta-binomial model
for 0.1 ≤ p2j ≤ 0.4, θ = 1, ρ = 0.1 and 10 ≤ n ≤ 1000. The method of estimators for ρ:
circles (Moment estimator of ρ - ρ̂M), squares (Corrected Mandel-Paule moment estimator for
ρ based on Γr(ρ),λ(ρ) distribution - ρ̂CMP ), diamonds (Restricted maximum likelihood estimator
for ρ - ρ̂REML), triangles (Breslow-Day estimator for ρ based on χ2 distribution - ρ̂BD) and
reverse-triangles (Mandel-Paule estimator of ρ - ρ̂MP ). Light grey line at 0 for bias.
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Figure B.14: Coverage at the nominal confidence level of 0.95 of the intra-cluster correlation ρ
from K studies in beta-binomial model for 0.1 ≤ p2j ≤ 0.4, θ = 1, ρ = 0.1 and 10 ≤ n ≤ 1000.
The method for obtaining the confidence interval are shown as follows: circles (Q-profile
confidence interval for ρ based on χ2 distribution), squares (Q-profile confidence interval for ρ
based on Γr(ρ),λ(ρ) distribution), diamonds (Profile likelihood confidence intervals) and triangles
(Breslow-Day-Profile confidence interval for ρ based on χ2 distribution). Light grey line at
0.95 for coverage.
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Figure B.15: Bias of the intra-cluster correlation ρ from K studies in beta-binomial model
for 0.1 ≤ p2j ≤ 0.4, θ = 2, ρ = 0.1 and 10 ≤ n ≤ 1000. The method of estimators for ρ:
circles (Moment estimator of ρ - ρ̂M), squares (Corrected Mandel-Paule moment estimator for
ρ based on Γr(ρ),λ(ρ) distribution - ρ̂CMP ), diamonds (Restricted maximum likelihood estimator
for ρ - ρ̂REML), triangles (Breslow-Day estimator for ρ based on χ2 distribution - ρ̂BD) and
reverse-triangles (Mandel-Paule estimator of ρ - ρ̂MP ). Light grey line at 0 for bias.
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Figure B.16: Coverage at the nominal confidence level of 0.95 of the intra-cluster correlation ρ
from K studies in beta-binomial model for 0.1 ≤ p2j ≤ 0.4, θ = 2, ρ = 0.1 and 10 ≤ n ≤ 1000.
The method for obtaining the confidence interval are shown as follows: circles (Q-profile
confidence interval for ρ based on χ2 distribution), squares (Q-profile confidence interval for ρ
based on Γr(ρ),λ(ρ) distribution), diamonds (Profile likelihood confidence intervals) and triangles
(Breslow-Day-Profile confidence interval for ρ based on χ2 distribution). Light grey line at
0.95 for coverage.
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B.6.2 Bias and coverage in estimation of overall effect measure θIV
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Figure B.17: Coverage at the nominal confidence level of 0.95 of the inverse-variance overall
effect measure θIV from K studies in beta-binomial model for p2j = 0.2, θ = 0 and 0 ≤ ρ ≤ 0.3.
The inverse-variance weights use the estimators of ρ: circles (Moment estimator of ρ - ρ̂M),
squares (Corrected Mandel-Paule moment estimator for ρ based on gamma approximation for
Q distribution - ρ̂CMP ), diamonds (Restricted maximum likelihood estimator for ρ - ρ̂REML),
triangles (Breslow-Day estimator for ρ based on χ2 distribution - ρ̂BD) and reverse-triangles
(Mandel-Paule estimator of ρ - ρ̂MP ). Light grey line at 0.95 for coverage.
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Figure B.18: Coverage at the nominal confidence level of 0.95 of the inverse-variance overall
effect measure θIV from K studies in beta-binomial model for p2j = 0.4, θ = 0 and 0 ≤ ρ ≤ 0.3.
The inverse-variance weights use the estimators of ρ: circles (Moment estimator of ρ - ρ̂M),
squares (Corrected Mandel-Paule moment estimator for ρ based on gamma approximation for
Q distribution - ρ̂CMP ), diamonds (Restricted maximum likelihood estimator for ρ - ρ̂REML),
triangles (Breslow-Day estimator for ρ based on χ2 distribution - ρ̂BD) and reverse-triangles
(Mandel-Paule estimator of ρ - ρ̂MP ). Light grey line at 0.95 for coverage.
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Figure B.19: Bias of the inverse-variance overall effect measure ψIV from K studies in beta-
binomial model for 0.1 ≤ p2j ≤ 0.4, θ = 0, ρ = 0.1 and 10 ≤ n ≤ 1000. The inverse-
variance weights use the estimators of ρ: circles (Moment estimator of ρ - ρ̂M), squares
(Corrected Mandel-Paule moment estimator for ρ based on gamma approximation for Q dis-
tribution - ρ̂CMP ), diamonds (Restricted maximum likelihood estimator for ρ - ρ̂REML), tri-
angles (Breslow-Day estimator for ρ based on χ2 distribution - ρ̂BD) and reverse-triangles
(Mandel-Paule estimator of ρ - ρ̂MP ). Light grey line at 0 for bias.
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Figure B.20: Coverage at the nominal confidence level of 0.95 of the Inverse-Variance overall
effect measure θIV from K studies in beta-binomial model for 0.1 ≤ p2j ≤ 0.4 , θ = 0, ρ = 0.1
and 10 ≤ n ≤ 1000. The weights of the Mandel-Haenzsel odds ratio use the estimators of
ρ: circles (Moment estimator of ρ - ρ̂M), squares (Corrected Mandel-Paule moment estimator
for ρ based on gamma approximation for Q distribution - ρ̂CMP ), diamonds (Restricted max-
imum likelihood estimator for ρ - ρ̂REML), triangles (Breslow-Day estimator for ρ based on
χ2 distribution - ρ̂BD) and reverse-triangles (Mandel-Paule estimator of ρ - ρ̂MP ). Light grey
line at 0.95 for coverage.
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Figure B.21: Bias of the inverse-variance overall effect measure ψIV from K studies in beta-
binomial model for 0.1 ≤ p2j ≤ 0.4, θ = 1, ρ = 0.1 and 10 ≤ n ≤ 1000. The inverse-
variance weights use the estimators of ρ: circles (Moment estimator of ρ - ρ̂M), squares
(Corrected Mandel-Paule moment estimator for ρ based on gamma approximation for Q dis-
tribution - ρ̂CMP ), diamonds (Restricted maximum likelihood estimator for ρ - ρ̂REML), tri-
angles (Breslow-Day estimator for ρ based on χ2 distribution - ρ̂BD) and reverse-triangles
(Mandel-Paule estimator of ρ - ρ̂MP ). Light grey line at 0 for bias.
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Figure B.22: Coverage at the nominal confidence level of 0.95 of the Inverse-Variance overall
effect measure θIV from K studies in beta-binomial model for 0.1 ≤ p2j ≤ 0.4 , θ = 1, ρ = 0.1
and 10 ≤ n ≤ 1000. The weights of the Mandel-Haenzsel odds ratio use the estimators of
ρ: circles (Moment estimator of ρ - ρ̂M), squares (Corrected Mandel-Paule moment estimator
for ρ based on gamma approximation for Q distribution - ρ̂CMP ), diamonds (Restricted max-
imum likelihood estimator for ρ - ρ̂REML), triangles (Breslow-Day estimator for ρ based on
χ2 distribution - ρ̂BD) and reverse-triangles (Mandel-Paule estimator of ρ - ρ̂MP ). Light grey
line at 0.95 for coverage.
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Figure B.23: Bias of the inverse-variance overall effect measure ψIV from K studies in beta-
binomial model for 0.1 ≤ p2j ≤ 0.4, θ = 2, ρ = 0.1 and 10 ≤ n ≤ 1000. The inverse-
variance weights use the estimators of ρ: circles (Moment estimator of ρ - ρ̂M), squares
(Corrected Mandel-Paule moment estimator for ρ based on gamma approximation for Q dis-
tribution - ρ̂CMP ), diamonds (Restricted maximum likelihood estimator for ρ - ρ̂REML), tri-
angles (Breslow-Day estimator for ρ based on χ2 distribution - ρ̂BD) and reverse-triangles
(Mandel-Paule estimator of ρ - ρ̂MP ). Light grey line at 0 for bias.
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Figure B.24: Coverage at the nominal confidence level of 0.95 of the Inverse-Variance overall
effect measure θIV from K studies in beta-binomial model for 0.1 ≤ p2j ≤ 0.4 , θ = 2, ρ = 0.1
and 10 ≤ n ≤ 1000. The weights of the Mandel-Haenzsel odds ratio use the estimators of
ρ: circles (Moment estimator of ρ - ρ̂M), squares (Corrected Mandel-Paule moment estimator
for ρ based on gamma approximation for Q distribution - ρ̂CMP ), diamonds (Restricted max-
imum likelihood estimator for ρ - ρ̂REML), triangles (Breslow-Day estimator for ρ based on
χ2 distribution - ρ̂BD) and reverse-triangles (Mandel-Paule estimator of ρ - ρ̂MP ). Light grey
line at 0.95 for coverage.
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B.6.4 Bias and coverage in estimation of overall effect measure θMH
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Figure B.25: Bias of the Mantel-Haenzsel overall effect measure psiMH from K studies in beta-
binomial model for p2j = 0.1, θ = 0 and 0 ≤ ρ ≤ 0.3. The weights of the Mantel-Haenzsel odds
ratio use the estimators of ρ: circles (Moment estimator of ρ - ρ̂M), squares (Corrected Mandel-
Paule moment estimator for ρ based on gamma approximation for Q distribution - ρ̂CMP ),
diamonds (Restricted maximum likelihood estimator for ρ - ρ̂REML), triangles (Breslow-Day
estimator for ρ based on χ2 distribution - ρ̂BD) and reverse-triangles (Mandel-Paule estimator
of ρ - ρ̂MP ). Light grey line at 0 for bias.
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Figure B.26: Coverage at the nominal confidence level of 0.95 of the Mantel-Haenzsel overall
effect measure θMH from K studies in beta-binomial model for p2j = 0.1, θ = 0 and 0 ≤ ρ ≤ 0.3.
The weights of the Mandel-Haenzsel odds ratio use the estimators of ρ: circles (Moment
estimator of ρ - ρ̂M), squares (Corrected Mandel-Paule moment estimator for ρ based on
gamma approximation for Q distribution - ρ̂CMP ), diamonds (Restricted maximum likelihood
estimator for ρ - ρ̂REML), triangles (Breslow-Day estimator for ρ based on χ2 distribution -
ρ̂BD) and reverse-triangles (Mandel-Paule estimator of ρ - ρ̂MP ). Light grey line at 0.95 for
coverage.
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Figure B.27: Coverage of the Mantel-Haenzsel overall effect measure ψMH from K studies
in beta-binomial model for p2j = 0.1, θ = 1 and 0 ≤ ρ ≤ 0.3. The weights of the Mantel-
Haenzsel odds ratio use the estimators of ρ: circles (Moment estimator of ρ - ρ̂M), squares
(Corrected Mandel-Paule moment estimator for ρ based on gamma approximation for Q distri-
bution - ρ̂CMP ), diamonds (Restricted maximum likelihood estimator for ρ - ρ̂REML), triangles
(Breslow-Day estimator for ρ based on χ2 distribution - ρ̂BD) and reverse-triangles (Mandel-
Paule estimator of ρ - ρ̂MP ). Light grey line at 0 for bias.
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Figure B.28: Coverage of the Mantel-Haenzsel overall effect measure ψMH from K studies
in beta-binomial model for p2j = 0.1, θ = 2 and 0 ≤ ρ ≤ 0.3. The weights of the Mantel-
Haenzsel odds ratio use the estimators of ρ: circles (Moment estimator of ρ - ρ̂M), squares
(Corrected Mandel-Paule moment estimator for ρ based on gamma approximation for Q distri-
bution - ρ̂CMP ), diamonds (Restricted maximum likelihood estimator for ρ - ρ̂REML), triangles
(Breslow-Day estimator for ρ based on χ2 distribution - ρ̂BD) and reverse-triangles (Mandel-
Paule estimator of ρ - ρ̂MP ). Light grey line at 0 for bias.
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Figure B.29: Bias of the Mantel-Haenzsel overall effect measure θMH from K studies in beta-
binomial model for p2j = 0.1, 0 ≤ θ ≤ 3, ρ = 0.1 and 10 ≤ n ≤ 1000. The weights of the
Mantel-Haenzsel odds ratio use the estimators of ρ: circles (Moment estimator of ρ - ρ̂M),
squares (Corrected Mandel-Paule moment estimator for ρ based on gamma approximation for
Q distribution - ρ̂CMP ), diamonds (Restricted maximum likelihood estimator for ρ - ρ̂REML),
triangles (Breslow-Day estimator for ρ based on χ2 distribution - ρ̂BD) and reverse-triangles
(Mandel-Paule estimator of ρ - ρ̂MP ). Light grey line at 0 for bias.
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Figure B.30: Coverage at the nominal confidence level of 0.95 of the Mantel-Haenzsel overall
effect measure θMH from K studies in beta-binomial model for p2j = 0.1,0 ≤ θ ≤ 3, ρ = 0.1
and 10 ≤ n ≤ 1000. The weights of the Mandel-Haenzsel odds ratio use the estimators of
ρ: circles (Moment estimator of ρ - ρ̂M), squares (Corrected Mandel-Paule moment estimator
for ρ based on gamma approximation for Q distribution - ρ̂CMP ), diamonds (Restricted max-
imum likelihood estimator for ρ - ρ̂REML), triangles (Breslow-Day estimator for ρ based on
χ2 distribution - ρ̂BD) and reverse-triangles (Mandel-Paule estimator of ρ - ρ̂MP ). Light grey
line at 0.95 for coverage.
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Figure B.31: Bias of the Mantel-Haenzsel overall effect measure ψMH from K studies in beta-
binomial model for p2j = 0.2, 0 ≤ θ ≤ 3, ρ = 0.1 and 10 ≤ n ≤ 1000. The weights of the
Mantel-Haenzsel odds ratio use the estimators of ρ: circles (Moment estimator of ρ - ρ̂M),
squares (Corrected Mandel-Paule moment estimator for ρ based on gamma approximation for
Q distribution - ρ̂CMP ), diamonds (Restricted maximum likelihood estimator for ρ - ρ̂REML),
triangles (Breslow-Day estimator for ρ based on χ2 distribution - ρ̂BD) and reverse-triangles
(Mandel-Paule estimator of ρ - ρ̂MP ). Light grey line at 0 for bias.
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Figure B.32: Coverage at the nominal confidence level of 0.95 of the Mantel-Haenzsel overall
effect measure θMH from K studies in beta-binomial model for p2j = 0.2, 0 ≤ θ ≤ 3, ρ = 0.1
and 10 ≤ n ≤ 1000. The weights of the Mandel-Haenzsel odds ratio use the estimators of
ρ: circles (Moment estimator of ρ - ρ̂M), squares (Corrected Mandel-Paule moment estimator
for ρ based on gamma approximation for Q distribution - ρ̂CMP ), diamonds (Restricted max-
imum likelihood estimator for ρ - ρ̂REML), triangles (Breslow-Day estimator for ρ based on
χ2 distribution - ρ̂BD) and reverse-triangles (Mandel-Paule estimator of ρ - ρ̂MP ). Light grey
line at 0.95 for coverage.
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Figure B.33: Bias of the Mantel-Haenzsel overall effect measure ψMH from K studies in beta-
binomial model for p2j = 0.4, 0 ≤ θ ≤ 3, ρ = 0.1 and 10 ≤ n ≤ 1000. The weights of the
Mantel-Haenzsel odds ratio use the estimators of ρ: circles (Moment estimator of ρ - ρ̂M),
squares (Corrected Mandel-Paule moment estimator for ρ based on gamma approximation for
Q distribution - ρ̂CMP ), diamonds (Restricted maximum likelihood estimator for ρ - ρ̂REML),
triangles (Breslow-Day estimator for ρ based on χ2 distribution - ρ̂BD) and reverse-triangles
(Mandel-Paule estimator of ρ - ρ̂MP ). Light grey line at 0 for bias.
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Figure B.34: Coverage at the nominal confidence level of 0.95 of the Mantel-Haenzsel overall
effect measure θMH from K studies in beta-binomial model for p2j = 0.4, 0 ≤ θ ≤ 3, ρ = 0.1
and 10 ≤ n ≤ 1000. The weights of the Mandel-Haenzsel odds ratio use the estimators of
ρ: circles (Moment estimator of ρ - ρ̂M), squares (Corrected Mandel-Paule moment estimator
for ρ based on gamma approximation for Q distribution - ρ̂CMP ), diamonds (Restricted max-
imum likelihood estimator for ρ - ρ̂REML), triangles (Breslow-Day estimator for ρ based on
χ2 distribution - ρ̂BD) and reverse-triangles (Mandel-Paule estimator of ρ - ρ̂MP ). Light grey
line at 0.95 for coverage.
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B.7 Transformation Bias of θ̂
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Figure B.35: Bias of log-odds ratio in overdispersed binomial model for p1j = 0.1 (log(p1j/(1−
p1j)) = −2.20) and p2j = 0.4 (log(p2j/(1− p2j)) = −0.40) and 0 ≤ ρ ≤ 0.1. 10000 simulations
for each value of ρ from the beta-binomial distribution (black); the first order bias term given
by the first two terms of equation (4.6.2) with known values of p and ρ (blue), with and
without the continuity correction (solid and dashed lines, respectively)



Appendix C

C.1 Results for method of simulation similar to Viecht-

bauer (2007) and Kosmidis et al. (2017)

C.1.1 Full results for small-moderate heterogeneity with p2j = 0.1,
p2j = 0.2 and p2j = 0.4 with the method of simulation similar
to Viechtbauer (2007)
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Figure C.1: Bias of the between study variance τ 2 obtained from K studies for p2j = 0.1,
θw = 0 and 0 ≤ τ 2 ≤ 1. The estimators of τ 2: black circles – DerSimonian and Laird
estimator τ̂ 2DL, red triangles – Maximum Likelihood estimator τ̂ 2ML, green pluses – Maximum
Penalized Likelihood τ̂ 2MPL, dark blue crosses – Restricted Maximum Likelihood τ̂ 2REML, light
blue diamond – Profiled-Breslow-Day τ̂ 2BD, pink reverse triangles – Corrected Mandel-Paule
τ̂ 2CMP and yellow circles – standard Mandel-Paule τ̂ 2MP . Light grey line at 0.95.
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Figure C.2: Bias of the estimated overall effect measure θ̂w obtained from K studies for
p2j = 0.1, θw = 0 and 0 ≤ τ 2 ≤ 1. The estimators of θ̂w include the estimators of τ 2: circles
– DerSimonian and Laird estimator τ̂ 2DL, triangles – maximum likelihood estimator τ̂ 2ML and
pluses – maximum penalized likelihood τ̂ 2MPL. Light grey line at 0.95.
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Figure C.3: Coverage at the nominal confidence level of 0.95 of the overall log odds ratio θ̂w
obtained from K studies by the inverse-variance method, for p2j = 0.1, θw = 0 and 0 ≤ τ 2 ≤ 1.
The inverse-variance weights use the following estimators of τ 2: circles – DerSimonian and
Laird estimator τ̂ 2DL, triangles – maximum likelihood estimator τ̂ 2ML and pluses – maximum
penalized likelihood τ̂ 2MPL. Light grey line at 0.95.
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Figure C.4: Bias of the between study variance τ 2 obtained from K studies for p2j = 0.1,
θw = 1 and 0 ≤ τ 2 ≤ 1. The estimators of τ 2: circles – DerSimonian and Laird estimator τ̂ 2DL,
triangles – maximum likelihood estimator τ̂ 2ML and pluses – maximum penalized likelihood
τ̂ 2MPL. Light grey line at 0.95.
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Figure C.5: Bias of the estimated overall effect measure θ̂w obtained from K studies for
p2j = 0.1, θw = 1 and 0 ≤ τ 2 ≤ 1. The estimators of θ̂w include the estimators of τ 2: circles
– DerSimonian and Laird estimator τ̂ 2DL, triangles – maximum likelihood estimator τ̂ 2ML and
pluses – maximum penalized likelihood τ̂ 2MPL. Light grey line at 0.95.
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Figure C.6: Coverage at the nominal confidence level of 0.95 of the overall log odds ratio θ̂w
obtained from K studies by the inverse-variance method, for p2j = 0.1, θ = 1 and 0 ≤ τ 2 ≤ 1.
The inverse-variance weights use the following estimators of τ 2: circles – DerSimonian and
Laird estimator τ̂ 2DL, triangles – maximum likelihood estimator τ̂ 2ML and pluses – maximum
penalized likelihood τ̂ 2MPL. Light grey line at 0.95.
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Figure C.7: Bias of the between study variance τ 2 obtained from K studies for p2j = 0.1,
θw = 2 and 0 ≤ τ 2 ≤ 1. The estimators of τ 2: circles – DerSimonian and Laird estimator τ̂ 2DL,
triangles – maximum likelihood estimator τ̂ 2ML and pluses – maximum penalized likelihood
τ̂ 2MPL. Light grey line at 0.95.
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Figure C.8: Bias of the estimated overall effect measure θ̂w obtained from K studies for
p2j = 0.1, θw = 2 and 0 ≤ τ 2 ≤ 1. The estimators of θ̂w include the estimators of τ 2: circles
– DerSimonian and Laird estimator τ̂ 2DL, triangles – maximum likelihood estimator τ̂ 2ML and
pluses – maximum penalized likelihood τ̂ 2MPL. Light grey line at 0.95.
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Figure C.9: Coverage at the nominal confidence level of 0.95 of the overall log odds ratio θ̂w
obtained from K studies by the inverse-variance method, for p2j = 0.1, θw = 2 and 0 ≤ τ 2 ≤ 1.
The inverse-variance weights use the following estimators of τ 2: circles – DerSimonian and
Laird estimator τ̂ 2DL, triangles – maximum likelihood estimator τ̂ 2ML and pluses – maximum
penalized likelihood τ̂ 2MPL. Light grey line at 0.95.
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Figure C.10: Bias of the between study variance τ 2 obtained from K studies for p2j = 0.2,
θw = 0 and 0 ≤ τ 2 ≤ 1. The estimators of τ 2: circles – DerSimonian and Laird estimator τ̂ 2DL,
triangles – maximum likelihood estimator τ̂ 2ML and pluses – maximum penalized likelihood
τ̂ 2MPL. Light grey line at 0.95.
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Figure C.11: Bias of the estimated overall effect measure θ̂w obtained from K studies for
p2j = 0.2, θ = 0 and 0 ≤ τ 2 ≤ 1. The estimators of θ̂w include the estimators of τ 2: circles
– DerSimonian and Laird estimator τ̂ 2DL, triangles – maximum likelihood estimator τ̂ 2ML and
pluses – maximum penalized likelihood τ̂ 2MPL. Light grey line at 0.95.
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Figure C.12: Coverage at the nominal confidence level of 0.95 of the overall log odds ratio θ̂w
obtained from K studies by the inverse-variance method, for p2j = 0.2, θw = 0 and 0 ≤ τ 2 ≤ 1.
The inverse-variance weights use the following estimators of τ 2: circles – DerSimonian and
Laird estimator τ̂ 2DL, triangles – maximum likelihood estimator τ̂ 2ML and pluses – maximum
penalized likelihood τ̂ 2MPL. Light grey line at 0.95.
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Figure C.13: Bias of the between study variance τ 2 obtained from K studies for p2j = 0.2,
θw = 1 and 0 ≤ τ 2 ≤ 1. The estimators of τ 2: circles – DerSimonian and Laird estimator τ̂ 2DL,
triangles – maximum likelihood estimator τ̂ 2ML and pluses – maximum penalized likelihood
τ̂ 2MPL. Light grey line at 0.95.
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Figure C.14: Bias of the estimated overall effect measure θ̂w obtained from K studies for
p2j = 0.2, θw = 1 and 0 ≤ τ 2 ≤ 1. The estimators of θ̂w include the estimators of τ 2: circles
– DerSimonian and Laird estimator τ̂ 2DL, triangles – maximum likelihood estimator τ̂ 2ML and
pluses – maximum penalized likelihood τ̂ 2MPL. Light grey line at 0.95.
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Figure C.15: Coverage at the nominal confidence level of 0.95 of the overall log odds ratio θ̂w
obtained from K studies by the inverse-variance method, for p2j = 0.2, θ = 1 and 0 ≤ τ 2 ≤ 1.
The inverse-variance weights use the following estimators of τ 2: circles – DerSimonian and
Laird estimator τ̂ 2DL, triangles – maximum likelihood estimator τ̂ 2ML and pluses – maximum
penalized likelihood τ̂ 2MPL. Light grey line at 0.95.
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Figure C.16: Bias of the between study variance τ 2 obtained from K studies for p2j = 0.2,
θw = 2 and 0 ≤ τ 2 ≤ 1. The estimators of τ 2: circles – DerSimonian and Laird estimator τ̂ 2DL,
triangles – maximum likelihood estimator τ̂ 2ML and pluses – maximum penalized likelihood
τ̂ 2MPL. Light grey line at 0.95.
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Figure C.17: Bias of the estimated overall effect measure θ̂w obtained from K studies for
p2j = 0.2, θw = 2 and 0 ≤ τ 2 ≤ 1. The estimators of θ̂w include the estimators of τ 2: circles
– DerSimonian and Laird estimator τ̂ 2DL, triangles – maximum likelihood estimator τ̂ 2ML and
pluses – maximum penalized likelihood τ̂ 2MPL. Light grey line at 0.95.
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Figure C.18: Coverage at the nominal confidence level of 0.95 of the overall log odds ratio θ̂w
obtained from K studies by the inverse-variance method, for p2j = 0.2, θw = 2 and 0 ≤ τ 2 ≤ 1.
The inverse-variance weights use the following estimators of τ 2: circles – DerSimonian and
Laird estimator τ̂ 2DL, triangles – maximum likelihood estimator τ̂ 2ML and pluses – maximum
penalized likelihood τ̂ 2MPL. Light grey line at 0.95.
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Figure C.19: Bias of the between study variance τ 2 obtained from K studies for p2j = 0.4,
θw = 0 and 0 ≤ τ 2 ≤ 1. The estimators of τ 2: circles – DerSimonian and Laird estimator τ̂ 2DL,
triangles – maximum likelihood estimator τ̂ 2ML and pluses – maximum penalized likelihood
τ̂ 2MPL. Light grey line at 0.95.
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Figure C.20: Bias of the estimated overall effect measure θ̂w obtained from K studies for
p2j = 0.4, θ = 0 and 0 ≤ τ 2 ≤ 1. The estimators of θ̂w include the estimators of τ 2: circles
– DerSimonian and Laird estimator τ̂ 2DL, triangles – maximum likelihood estimator τ̂ 2ML and
pluses – maximum penalized likelihood τ̂ 2MPL. Light grey line at 0.95.
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Figure C.21: Coverage at the nominal confidence level of 0.95 of the overall log odds ratio θ̂w
obtained from K studies by the inverse-variance method, for p2j = 0.4, θw = 0 and 0 ≤ τ 2 ≤ 1.
The inverse-variance weights use the following estimators of τ 2: circles – DerSimonian and
Laird estimator τ̂ 2DL, triangles – maximum likelihood estimator τ̂ 2ML and pluses – maximum
penalized likelihood τ̂ 2MPL. Light grey line at 0.95.
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Figure C.22: Bias of the between study variance τ 2 obtained from K studies for p2j = 0.4,
θw = 1 and 0 ≤ τ 2 ≤ 1. The estimators of τ 2: circles – DerSimonian and Laird estimator τ̂ 2DL,
triangles – maximum likelihood estimator τ̂ 2ML and pluses – maximum penalized likelihood
τ̂ 2MPL. Light grey line at 0.95.
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Figure C.23: Bias of the estimated overall effect measure θ̂w obtained from K studies for
p2j = 0.4, θw = 1 and 0 ≤ τ 2 ≤ 1. The estimators of θ̂w include the estimators of τ 2: circles
– DerSimonian and Laird estimator τ̂ 2DL, triangles – maximum likelihood estimator τ̂ 2ML and
pluses – maximum penalized likelihood τ̂ 2MPL. Light grey line at 0.95.
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Figure C.24: Coverage at the nominal confidence level of 0.95 of the overall log odds ratio θ̂w
obtained from K studies by the inverse-variance method, for p2j = 0.4, θ = 1 and 0 ≤ τ 2 ≤ 1.
The inverse-variance weights use the following estimators of τ 2: circles – DerSimonian and
Laird estimator τ̂ 2DL, triangles – maximum likelihood estimator τ̂ 2ML and pluses – maximum
penalized likelihood τ̂ 2MPL. Light grey line at 0.95.
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Figure C.25: Bias of the between study variance τ 2 obtained from K studies for p2j = 0.4,
θw = 2 and 0 ≤ τ 2 ≤ 1. The estimators of τ 2: circles – DerSimonian and Laird estimator τ̂ 2DL,
triangles – maximum likelihood estimator τ̂ 2ML and pluses – maximum penalized likelihood
τ̂ 2MPL. Light grey line at 0.95.
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Figure C.26: Bias of the estimated overall effect measure θ̂w obtained from K studies for
p2j = 0.4, θw = 2 and 0 ≤ τ 2 ≤ 1. The estimators of θ̂w include the estimators of τ 2: circles
– DerSimonian and Laird estimator τ̂ 2DL, triangles – maximum likelihood estimator τ̂ 2ML and
pluses – maximum penalized likelihood τ̂ 2MPL. Light grey line at 0.95.



332

τ2

C
ov

er
ag

e
●

●

●

●

●

●

● ●
● ●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
83

0.
85

0.
87

0.
89

0.
91

0.
93

0.
95

0.
97

0.
99

n = 40 , K = 5

τ2

C
ov

er
ag

e

●

●

●
●

●
●

●

●

●
●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
83

0.
85

0.
87

0.
89

0.
91

0.
93

0.
95

0.
97

0.
99

n = 100 , K = 5

τ2

C
ov

er
ag

e

●

●

●

●

●

●

●
●

●

●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
83

0.
85

0.
87

0.
89

0.
91

0.
93

0.
95

0.
97

0.
99

n = 250 , K = 5

τ2

C
ov

er
ag

e

●

●
●

● ●

● ● ● ● ●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
83

0.
85

0.
87

0.
89

0.
91

0.
93

0.
95

0.
97

0.
99

n = 1000 , K = 5

τ2

C
ov

er
ag

e

●

●

●

●

●
●

●

●

●
●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
83

0.
85

0.
87

0.
89

0.
91

0.
93

0.
95

0.
97

0.
99

n = 40 , K = 10

τ2

C
ov

er
ag

e

●

●
● ● ● ●

●
●

●
● ●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
83

0.
85

0.
87

0.
89

0.
91

0.
93

0.
95

0.
97

0.
99

n = 100 , K = 10

● DL
ML
MPL
REML
BD
Qgamma
MP

τ2

C
ov

er
ag

e

●

● ● ● ●
● ●

●
● ●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
83

0.
85

0.
87

0.
89

0.
91

0.
93

0.
95

0.
97

0.
99

n = 250 , K = 10

τ2

C
ov

er
ag

e

●

●
●

● ● ●

●
●

●

● ●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
83

0.
85

0.
87

0.
89

0.
91

0.
93

0.
95

0.
97

0.
99

n = 1000 , K = 10

τ2

C
ov

er
ag

e

●

●

● ●
● ●

●
●

● ●
●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
83

0.
85

0.
87

0.
89

0.
91

0.
93

0.
95

0.
97

0.
99

n = 40 , K = 30

τ2

C
ov

er
ag

e

●

●
●

● ●

● ● ●
●

●
●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
83

0.
85

0.
87

0.
89

0.
91

0.
93

0.
95

0.
97

0.
99

n = 100 , K = 30

τ2

C
ov

er
ag

e

●

● ●

●
●

●

● ●

● ●
●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
83

0.
85

0.
87

0.
89

0.
91

0.
93

0.
95

0.
97

0.
99

n = 250 , K = 30

τ2

C
ov

er
ag

e

●

●
● ● ●

● ●
●

●

● ●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
83

0.
85

0.
87

0.
89

0.
91

0.
93

0.
95

0.
97

0.
99

n = 1000 , K = 30

Figure C.27: Coverage at the nominal confidence level of 0.95 of the overall log odds ratio θ̂w
obtained from K studies by the inverse-variance method, for p2j = 0.4, θw = 2 and 0 ≤ τ 2 ≤ 1.
The inverse-variance weights use the following estimators of τ 2: circles – DerSimonian and
Laird estimator τ̂ 2DL, triangles – maximum likelihood estimator τ̂ 2ML and pluses – maximum
penalized likelihood τ̂ 2MPL. Light grey line at 0.95.
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C.1.2 Full simulation study for method of simulation similar to
Kosmidis et al. (2017) when p2j = 0.1, p2j = 0.2 and p2j = 0.4

Results of simulation study for bias and coverage of τ 2 in case of small-moderate
heterogeneity

The results of the simulations for data generated using the method of simulation as in Kos-

midis et al. (2017) is as following. Figures C.28 - C.33 show the bias and coverage of between

study variance for p2j = 0.1 and different values of effect measure θ = 0, 1, 2. From Figures

C.28,C.30,C.32, we can clearly see that the estimate of τ 2 from all four methods are biased.

The bias of τ 2 varies with the method of estimation. The DerSimonian and Laird method

performs worse than maximum likelihood and penalized likelihood estimators. Hence, simi-

larly to results for the method of simulation by Viechtbauer (2007), we did not include this

method into the figures. Among all the methods, Mandel-Paule method performs the best

being a least biased estimator of between study variance. Our primary interest lies in maxi-

mum likelihood and penalized likelihood estimators. Similarly to the method of simulation by

Viechtbauer (2007), the penalized likelihood estimator of τ 2 performs identical to restricted

maximum likelihood estimator. Overall, the bias of maximum likelihood estimator of τ 2 for

sparse data (p2j = 0.1) varies between 4.13-98.8% for different combination of samples sizes

N , number of studies K and overall effect measure θ. Whereas, the overall bias of penalized

maximum likelihood estimator of τ 2 ranges between 0-98.2%. The penalized likelihood esti-

mator τ 2 is noticeably better than maximum likelihood estimator of τ 2. However, the bias

does still exists. Also for some combinations of samples sizes N , number of studies K and

overall effect measure θ, the reductions in bias from τ̂ 2MPL to τ̂ 2ML is very small. Similarly

to the method of simulation by Viechtbauer (2007), the bias is larger when probabilities in

both arms are equal and data is sparse (p2j = 0.1 and θ = 0). For the case when p2j = 0.1

and θ = 0, the bias of maximum likelihood estimator is about 8.35-98.8% and the bias of

penalized maximum likelihood estimator is about 0.03-98.2%. When the probabilities in both

arms are not equal, the bias of maximum likelihood estimator is about 4.9-92.8% for θ = 1

and 4.13-82.8% for θ = 2 . For the same scenario, the bias of penalized maximum likelihood

estimator is about 0.01-89.8% for θ = 1 and 0-76.9% for θ = 2. Thus, the bias of τ̂ 2ML and

τ̂ 2MPL are higher in case of sparse data in both arms (p2j = 0.1 and θ = 0) than sparse data

in only control arm (p2j = 0.1 and θ = 1, θ = 2 ). The overall improvement in the bias
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of maximum likelihood estimate of τ 2 varies between 0.6-52.4%. The improvement in bias is

bigger for small number of studies, K = 5 (7.7-52.4% improvement) and K = 10 (8.175-29.1%

improvement), in comparison to K = 30 (0.6-9% improvement). Comparing the simulation

method by Viechtbauer (2007) and the simulation method by Kosmidis et al. (2017), the bias

of estimators of τ 2 are somewhat larger in the simulation method by Kosmidis et al. (2017).

Coming to the coverage, the coverage of τ 2 from Q-profiled confidence intervals and Profiled-

likelihood confidence intervals are shown in Figures C.29, C.31 and C.33. Both methods

perform very well for the data simulated using the method of simulation by Kosmidis et al.

(2017) apart from the case when coverage deteriorate when N ≤ 250 and K = 30 for sparse

data (p2j = 0.1 and θ = 0).

For p2j > 0.1, the bias of between-study variance is similar to the bias when p2j = 0.1. Figure

C.51 C.53 C.55 and C.57 C.59 C.61 in this Appendix show the bias of τ 2 when p2j = 0.2 and

p2j = 0.4 respectively. Again, the Mandel-Paule method outperform maximum likelihood,

penalized maximum likelihood and restricted maximum likelihood method in estimation of

between study variance τ 2. The bias of maximum likelihood estimator τ̂ 2ML in non-sparse

data varies between 4-87.3% for p2j = 0.2 and 4-74.8% for p2j = 0.4. Whereas the bias of

penalized maximum likelihood estimator τ̂ 2MPL varies between 0-81.9% for p2j = 0.2 and 0-

67.95% p2j = 0.4. We can clearly see the reduction of the bias between maximum likelihood

estimator τ̂ 2ML and penalized maximum likelihood estimator τ̂ 2MPL. However, the bias has not

been eliminated completely. Also, the absolute value of the bias is less in non-sparse data

(p2j = 0.2 and p2j = 0.4 with θ = 0, 1, 2) than in sparse data (p2j = 0.1 with θ = 0, 1, 2).

Coverages for τ 2 are shown in the Figures C.52, C.54 C.56 and C.58, C.60 C.62 in Appendix

for p2j = 0.2 and p2j = 0.4 are respectively. When p2j = 0.2 and p2j = 0.4 the coverages of τ 2

are similar p2j = 0.1 with the Q-profile confidence intervals being to conservative for N ≥ 100

and Profile-likehood confidence interval being too liberate. In order to be safe in choose inter-

vals for τ 2, we recommend Q-profile confidence intervals. Comparing the simulation study by

Kosmidis et al. (2017) and our simulations, the results are as following. Kosmidis et al. (2017)

considered only particular cases of meta-analysis. One of the cases is when p1j = 0.40 and

p2j = 0.219 resulting in true overall odds ratio ψ = 2.377 and log odds ratio θ = 0.9. Another

case is when p1j = 0.3 and p2j = 0.1 resulting in true overall odds ratio ψ = 3.85 and log odds

ratio θ = 1.35. We considered the general case when p2j = 0.1, 0.2, 0.4 with θ = 0, 1, 2. This
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results in twelve combinations of p2j and θ. So one of the simulation results by Kosmidis et al.

(2017) is a nearly a particular case of our simulations when p2j = 0.2 and θ = 1 (Figure C.53).

In addition to simulations of Kosmidis et al. (2017), we added the Mandel-Paule method and

restricted maximum likelihood method for point estimator of τ 2. We have also added the

interval estimation of τ 2 with Q-profile and Profile-likehood method based of τ̂ 2REML. Since

τ̂ 2REML τ̂
2
MPL perform similarly, their confidence intervals would similar too.

Kosmidis et al. (2017) limited his simulations with 0 ≤ τ 2 ≤ 2.5. In addition to values

0 ≤ τ 2 ≤ 2.5, we considered simulations with small-moderate heterogeneity (0 ≤ τ 2 ≤ 1) and

moderate-large heterogeneity 0 ≤ τ 2 ≤ 10.

Our simulations and simulations Kosmidis et al. (2017) provide similar results. The results of

our simulations show that bias of maximum likelihood estimate τ̂ML is reduced by penalization

of the likelihood. The proportion of the bias reduced for small-moderate values of heterogene-

ity and moderate-large values of heterogeneity are similar. For sparse and non-sparse data,

our results show that the penalization of the likelihood does not entirely remove the bias of

maximum likelihood. The estimates of between study variance still remain biased for both

sparse and non-sparse data. The bias of between-study variance is larger for sparse data than

for non-sparse data.
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Figure C.28: Bias of the between study variance τ 2 obtained from K studies for p2j = 0.1,
θw = 0 and 0 ≤ τ 2 ≤ 1. The estimators of τ 2: red triangles – Maximum Likelihood estimator
τ̂ 2ML, green pluses – Maximum Penalized Likelihood estimator τ̂ 2MPL, blue crosses – Restricted
Maximum Likelihood estimator τ̂ 2REML and black circles – standard Mandel-Paule estimator
τ̂ 2MP . Light grey line at 0.95.
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Figure C.29: Coverage at the nominal confidence level of 0.95 of the between study variance τ 2

obtained from K studies for p2j = 0.1, θw = 0 and 0 ≤ τ 2 ≤ 1. Interval estimation methods:
black circles – Q-profile confidence interval for τ 2 based on χ2 distribution and dark blue
crosses – Profile likelihood confidence intervals. Light grey line at 0.95.
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Figure C.30: Bias of the between study variance τ 2 obtained from K studies for p2j = 0.1,
θw = 1 and 0 ≤ τ 2 ≤ 1. The estimators of τ 2: red triangles – Maximum Likelihood estimator
τ̂ 2ML, green pluses – Maximum Penalized Likelihood estimator τ̂ 2MPL, blue crosses – Restricted
Maximum Likelihood estimator τ̂ 2REML and black circles – standard Mandel-Paule estimator
τ̂ 2MP . Light grey line at 0.95.
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Figure C.31: Coverage at the nominal confidence level of 0.95 of the between study variance
τ 2 obtained from K studies for p2j = 0.1, θw = 1 and 0 ≤ τ 2 ≤ 1. Interval estimation methods:
black circles – Q-profile confidence interval for τ 2 based on χ2 distribution dark blue crosses
– Profile likelihood confidence intervals. Light grey line at 0.95.



340

τ2

 B
ia

s 
of

 τ
2

●

●

●
●

●
●

●

●
●

●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

8
−

0.
7

−
0.

6
−

0.
5

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

n = 40 , K = 5

τ2

 B
ia

s 
of

 τ
2

●

● ● ● ● ● ●
● ●

●
●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

8
−

0.
7

−
0.

6
−

0.
5

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

n = 100 , K = 5

τ2

 B
ia

s 
of

 τ
2

●

●
● ● ●

●
●

●

● ●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

20
−

0.
17

−
0.

14
−

0.
11

−
0.

08
−

0.
05

−
0.

02
0.

00
0.

02
0.

04

n = 250 , K = 5

τ2

 B
ia

s 
of

 τ
2

●

● ● ●

●

●
●

●
●

● ●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

20
−

0.
17

−
0.

14
−

0.
11

−
0.

08
−

0.
05

−
0.

02
0.

00
0.

02
0.

04

n = 1000 , K = 5

τ2

 B
ia

s 
of

 τ
2

●

●

●

●

●
●

●
●

●
●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

8
−

0.
7

−
0.

6
−

0.
5

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

n = 40 , K = 10

τ2

 B
ia

s 
of

 τ
2

●

●
● ● ● ● ● ● ●

● ●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

8
−

0.
7

−
0.

6
−

0.
5

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

n = 100 , K = 10

●

ML
MPL
REML
MP

τ2

 B
ia

s 
of

 τ
2

●

●
● ● ● ●

● ●

●

● ●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

20
−

0.
17

−
0.

14
−

0.
11

−
0.

08
−

0.
05

−
0.

02
0.

00
0.

02
0.

04

n = 250 , K = 10

τ2

 B
ia

s 
of

 τ
2

●
● ● ● ● ●

● ● ●

●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

20
−

0.
17

−
0.

14
−

0.
11

−
0.

08
−

0.
05

−
0.

02
0.

00
0.

02
0.

04

n = 1000 , K = 10

τ2

 B
ia

s 
of

 τ
2

●

●

●

●

●

●

●

●
●

●
●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

8
−

0.
7

−
0.

6
−

0.
5

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

n = 40 , K = 30

τ2

 B
ia

s 
of

 τ
2

●

●
● ● ● ● ● ●

● ● ●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

8
−

0.
7

−
0.

6
−

0.
5

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

n = 100 , K = 30

τ2

 B
ia

s 
of

 τ
2

●

●
● ● ●

● ●
●

● ●
●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

20
−

0.
17

−
0.

14
−

0.
11

−
0.

08
−

0.
05

−
0.

02
0.

00
0.

02
0.

04

n = 250 , K = 30

τ2

 B
ia

s 
of

 τ
2

●
● ● ● ● ● ● ● ●

● ●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

20
−

0.
17

−
0.

14
−

0.
11

−
0.

08
−

0.
05

−
0.

02
0.

00
0.

02
0.

04

n = 1000 , K = 30

Figure C.32: Bias of the between study variance τ 2 obtained from K studies for p2j = 0.1,
θw = 2 and 0 ≤ τ 2 ≤ 1. The estimators of τ 2: red triangles – Maximum Likelihood estimator
τ̂ 2ML, green pluses – Maximum Penalized Likelihood estimator τ̂ 2MPL, blue crosses – Restricted
Maximum Likelihood estimator τ̂ 2REML and black circles – standard Mandel-Paule estimator
τ̂ 2MP . Light grey line at 0.95.



341

τ2

C
ov

er
ag

e

●

● ● ● ● ● ● ● ● ● ●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

n = 40 , k = 5 , n/k = 8

τ2

C
ov

er
ag

e

●

● ● ● ● ● ● ● ● ● ●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

n = 100 , k = 5 , n/k = 20

τ2

C
ov

er
ag

e

●

● ●
● ●

● ●

●
● ●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
85

0.
87

0.
89

0.
91

0.
93

0.
95

0.
97

0.
99

n = 250 , k = 5 , n/k = 50

τ2

C
ov

er
ag

e

●

● ●

●

● ●

●
●

●

●
●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
85

0.
87

0.
89

0.
91

0.
93

0.
95

0.
97

0.
99

n = 1000 , k = 5 , n/k = 200

τ2

C
ov

er
ag

e

●

● ● ● ● ● ● ● ● ● ●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

n = 40 , k = 10 , n/k = 4

τ2

C
ov

er
ag

e
●

● ● ● ● ● ● ● ●
● ●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

n = 100 , k = 10 , n/k = 10

● Q−Profile conf.int
Profile−likelihood conf.int

τ2

C
ov

er
ag

e

●

●
●

●
● ●

● ● ● ●
●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
85

0.
87

0.
89

0.
91

0.
93

0.
95

0.
97

0.
99

n = 250 , k = 10 , n/k = 25

τ2

C
ov

er
ag

e

●

● ● ● ●

●

● ● ●
● ●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
85

0.
87

0.
89

0.
91

0.
93

0.
95

0.
97

0.
99

n = 1000 , k = 10 , n/k = 100

τ2

C
ov

er
ag

e

●

●

●
● ● ● ● ● ● ●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

n = 40 , k = 30 , n/k = 1.33

τ2

C
ov

er
ag

e

●

● ● ● ● ● ● ●
●

●
●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

n = 100 , k = 30 , n/k = 3.33

τ2

C
ov

er
ag

e

●

●
●

● ●

● ●
●

●
●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
85

0.
87

0.
89

0.
91

0.
93

0.
95

0.
97

0.
99

n = 250 , k = 30 , n/k = 8.33

τ2

C
ov

er
ag

e

●

● ● ●

● ●
●

●
●

●
●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
85

0.
87

0.
89

0.
91

0.
93

0.
95

0.
97

0.
99

n = 1000 , k = 30 , n/k = 33.33

Figure C.33: Coverage at the nominal confidence level of 0.95 of the between study variance τ 2

obtained from K studies for p2j = 0.1, θw = 2 and 0 ≤ τ 2 ≤ 1. Interval estimation methods:
black circles – Q-profile confidence interval for τ 2 based on χ2 distribution and dark blue
crosses – Profile likelihood confidence intervals. Light grey line at 0.95.
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Results of simulation study for bias and coverage of θ in case of small-moderate
heterogeneity

The improvement in the bias of τ 2 has a positive impact on the bias and coverage of overall

effect measure. Regardless of the method, the bias of overall effect measure is indistinguish-

able. The bias of θ is dissimilar for θ = 0, 1 and 2 and p2j = 0.1 (see Figure C.34 for bias

of θ̂MPL for θ = 0, 1 and 2. The bias of θ̂MPL is large when N ≤ 100 and decreases with

increase in sample size from N = 100 to N = 1000. The biases from all methods are shown

in the Figures C.35, C.37 and C.39 for θ = 0, 1 and 2. Figures C.35 - C.40 shows that the

penalized maximum likelihood method outperforms maximum likelihood in terms of bias and

coverage. However when data is sparse, θ = 0 and p2j = 0.1, the coverage deteriorate with

increasing K. The coverage improves when control arm only has a low probability (p2j = 0.1)

and treatment arm has probabilities p1j > 0.1.
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Figure C.34: Bias of overall odds ratio θIV obtained from K studies by the inverse-variance
method with the moment estimator τ̂ 2MPL in the weights, for p2j = 0.1, and 0 ≤ τ 2 ≤ 1. The
biases are given for θ = 0 (circles), θ = 1 (circle plus), and θ = 2 (circle cross). Light grey line
at 0.
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Figure C.35: Bias of the estimated overall effect measure θ̂w obtained from K studies for
p2j = 0.1, θw = 0 and 0 ≤ τ 2 ≤ 1. The estimators of θ̂w include the estimators of τ 2: red
triangles – Maximum Likelihood estimator τ̂ 2ML, green pluses – Maximum Penalized Likelihood
estimator τ̂ 2MPL, blue crosses – Restricted Maximum Likelihood estimator τ̂ 2REML and black
circles – standard Mandel-Paule estimator τ̂ 2MP . Light grey line at 0.95.
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Figure C.36: Coverage at the nominal confidence level of 0.95 of the overall log odds ratio θ̂w
obtained from K studies by the inverse-variance method, for p2j = 0.1, θw = 0 and 0 ≤ τ 2 ≤ 1.
The inverse-variance weights use the following estimators of τ 2: red triangles – Maximum
Likelihood estimator τ̂ 2ML, green pluses – Maximum Penalized Likelihood estimator τ̂ 2MPL,
blue crosses – Restricted Maximum Likelihood estimator τ̂ 2REML and black circles – standard
Mandel-Paule estimator τ̂ 2MP . Light grey line at 0.95.
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Figure C.37: Bias of the estimated overall effect measure θ̂w obtained from K studies for
p2j = 0.1, θw = 1 and 0 ≤ τ 2 ≤ 1. The estimators of θ̂w include the estimators of τ 2: red
triangles – Maximum Likelihood estimator τ̂ 2ML, green pluses – Maximum Penalized Likelihood
estimator τ̂ 2MPL, blue crosses – Restricted Maximum Likelihood estimator τ̂ 2REML and black
circles – standard Mandel-Paule estimator τ̂ 2MP . Light grey line at 0.95.
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Figure C.38: Coverage at the nominal confidence level of 0.95 of the overall log odds ratio θ̂w
obtained from K studies by the inverse-variance method, for p2j = 0.1, θw = 1 and 0 ≤ τ 2 ≤ 1.
The inverse-variance weights use the following estimators of τ 2: red triangles – Maximum
Likelihood estimator τ̂ 2ML, green pluses – Maximum Penalized Likelihood estimator τ̂ 2MPL,
blue crosses – Restricted Maximum Likelihood estimator τ̂ 2REML and black circles – standard
Mandel-Paule estimator τ̂ 2MP . Light grey line at 0.95.
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Figure C.39: Bias of the estimated overall effect measure θ̂w obtained from K studies for
p2j = 0.1, θw = 2 and 0 ≤ τ 2 ≤ 1. The estimators of θ̂w include the estimators of τ 2: red
triangles – Maximum Likelihood estimator τ̂ 2ML, green pluses – Maximum Penalized Likelihood
estimator τ̂ 2MPL, blue crosses – Restricted Maximum Likelihood estimator τ̂ 2REML, pink reverse
triangles – Corrected Mandel-Paule estimator τ̂ 2CMP and black circles – standard Mandel-Paule
estimator τ̂ 2MP . Light grey line at 0.95.
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Figure C.40: Coverage at the nominal confidence level of 0.95 of the overall log odds ratio θ̂w
obtained from K studies by the inverse-variance method, for p2j = 0.1, θw = 2 and 0 ≤ τ 2 ≤ 1.
The inverse-variance weights use the following estimators of τ 2: red triangles – Maximum
Likelihood estimator τ̂ 2ML, green pluses – Maximum Penalized Likelihood estimator τ̂ 2MPL,
blue crosses – Restricted Maximum Likelihood estimator τ̂ 2REML and black circles – standard
Mandel-Paule estimator τ̂ 2MP . Light grey line at 0.95.
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Results of simulation study for bias and coverage of τ 2 in case of moderate-large
heterogeneity

Similarly as for the method of simulation by Viechtbauer (2007), we performed simulation

study for the method of simulation by Kosmidis et al. (2017) with moderate-large values of

heterogeneity across studies. Figures C.41, C.43, C.45 and C.42, C.44, C.46 show the bias

and coverage of τ 2 from point and interval estimator of τ 2 for moderate-large heterogeneity

0 ≤ τ 2 ≤ 10. The bias of τ 2 for moderate-large heterogeneity 0 ≤ τ 2 ≤ 10 is similar to

small-moderate heterogeneity 0 ≤ τ 2 ≤ 1. Again, Mandel-Paule method outperforms likeli-

hood based methods. Overall for p2j = 0.1, the bias of Mandel-Paule estimator varies between

0.1-80%. Whereas, the bias of maximum likelihood and penalized likelihood estimators vary

between 4.58-86.22% and 0.05-83.25%. Again τ̂MPL reduces the bias of τ̂MPL. However, the

reductions in bias is similar to restricted maximum likelihood. When p2j = 0.1 and θ = 0,

the bias of maximum likelihood and penalized likelihood estimators vary between 9.42-86.22%

ans 3.27-83.25% respectively. The biases are large when both arms have low probabilities

in comparison to when only control arm has a low probability. The bias of both likelihood

based estimators is large in comparison to simulation results with the method of simulation

by Viechtbauer (2007). We would expect the smaller bias when p2j = 0.1 with θ = 1 and

θ = 2, since only control arm has a lower probabilities across K studies.

Coming to coverages, overall Q-profile and Profile-likelihood based confidence intervals per-

forms worse than they performed for small-moderate heterogeneity. Particularly, the coverages

of Profile-likelihood based confidence interval deteriorate when number of studies increase from

K = 5 to K = 10 and K = 30 (see Figures C.42, C.44, C.46).
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Figure C.41: Bias of the between study variance τ 2 obtained from K studies for p2j = 0.1,
θw = 0 and 0 ≤ τ 2 ≤ 10. The estimators of τ 2: red triangles – Maximum Likelihood estimator
τ̂ 2ML, green pluses – Maximum Penalized Likelihood estimator τ̂ 2MPL, blue crosses – Restricted
Maximum Likelihood estimator τ̂ 2REML and black circles – standard Mandel-Paule estimator
τ̂ 2MP . Light grey line at 0.95.
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Figure C.42: Coverage at the nominal confidence level of 0.95 of the between study variance
τ 2 obtained from K studies for p2j = 0.1, θw = 0 and 0 ≤ τ 2 ≤ 10. Interval estimation
methods: black circles – Q-profile confidence interval for τ 2 based on χ2 distribution and dark
blue crosses – Profile likelihood confidence intervals. Light grey line at 0.95.
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Figure C.43: Bias of the between study variance τ 2 obtained from K studies for p2j = 0.1,
θw = 1 and 0 ≤ τ 2 ≤ 10. The estimators of τ 2: red triangles – Maximum Likelihood estimator
τ̂ 2ML, green pluses – Maximum Penalized Likelihood estimator τ̂ 2MPL, blue crosses – Restricted
Maximum Likelihood estimator τ̂ 2REML and black circles – standard Mandel-Paule estimator
τ̂ 2MP . Light grey line at 0.95.
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Figure C.44: Coverage at the nominal confidence level of 0.95 of the between study variance
τ 2 obtained from K studies for p2j = 0.1, θw = 1 and 0 ≤ τ 2 ≤ 10. Interval estimation
methods: black circles – Q-profile confidence interval for τ 2 based on χ2 distribution and dark
blue crosses – Profile likelihood confidence intervals. Light grey line at 0.95.
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Figure C.45: Bias of the between study variance τ 2 obtained from K studies for p2j = 0.1,
θw = 2 and 0 ≤ τ 2 ≤ 10. The estimators of τ 2: red triangles – Maximum Likelihood estimator
τ̂ 2ML, green pluses – Maximum Penalized Likelihood estimator τ̂ 2MPL, blue crosses – Restricted
Maximum Likelihood estimator τ̂ 2REML and black circles – standard Mandel-Paule estimator
τ̂ 2MP . Light grey line at 0.95.
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Figure C.46: Coverage at the nominal confidence level of 0.95 of the between study variance τ 2

obtained from K studies for p2j = 0.1, θw = 2 and 0 ≤ τ 2 ≤ 10. Interval estimation methods:
black circles – Q-profile confidence interval for τ 2 based on χ2 distribution dark blue crosses
– Profile likelihood confidence intervals. Light grey line at 0.95.
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Results of simulation study for bias and coverage of θ in case of moderate-large
heterogeneity

Similarly to results of simulations with the method of simulation by Viechtbauer (2007), for

moderate-large heterogeneity (0 ≤ τ 2 ≤ 10), the bias of estimated overall log-odds ratio θ̂w

was practically the same regardless of the method used. Figures C.47 show the bias of θ̂MPL

for θ = 0, 1 and 2. We can clearly see that, the bias of θ̂MPL reduces with increasing θ.

Asymptotically, the biases of θ̂MPL reduces with the sample size N .

Figures C.48, C.49, C.50, show the coverages of estimated overall log-odds-ratio θ̂ from four

methods. The four methods are Mandel-Paule estimator, Maximum-likelihood estimator, Pe-

nalized Maximum-likelihood estimator and Restricted Maximum-likelihood estimator. Overall

from Figures C.48, C.49, C.50, the coverages of θ̂RE from all the methods do not reach the

95% significance level. Among all the methods, the Mandel-Paule method remain the best

method with least biased estimate of τ 2 and better coverage than likelihood based methods.

The coverage from of penalized maximum likelihood estimator θ̂MPL are slightly better than

coverages from maximum likelihood estimator θ̂ML. However, for p2j = 0.1 and θ = 0, they are

still below 90% for K = 5 and K = 10 with N ≤ 100. With increasing the sample size N , the

coverage of penalized maximum likelihood and restricted maximum likelihood improve from

80-85% to around 92%. Coverage of penalized maximum likelihood and restricted maximum

likelihood are practically identical. The coverages from all methods deteriorate when K = 30

and N ≤ 250. This is due to large negative bias of between study variance when K = 30

and N ≤ 250. Thus, the performance of methods for small-moderate heterogeneity is not the

same as for moderate-large heterogeneity.

For p2j = 0.1 with θ = 1 and θ = 2, all the coverage go up with increasing K and N (see

Figures C.49 and C.50). There is no dramatic deterioratio for coverages when p2j = 0.1 with

θ = 1 and θ = 2 in comparison to the case when p2j = 0.1 and θ = 0. Thus, when hetero-

geneity is large and data is sparse in both arms (p2j = 0.1 and θ = 0), the confidence intervals

tend to become shorter with increasing K from K = 5 to K = 30 for N ≤ 250. This is

probably because the bias of τ 2 increases with increase in K from K = 5 to K = 30. For

example the bias of τ̂ 2MPL for K = 5 and θ = 0 varies between 3.27 − 66.612%. Whereas,

the bias of τ̂ 2MPL for K = 30 and θ = 0 varies between 5.95 − 83.25%. Thus we get worse

coverages for K = 30 and then for K = 5 when N ≤ 250. Overall the bias of τ 2 depend on the
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combination of K and N . The main conclusion is the performance of method of simulation

similarly to Viechtbauer (2007) and similarly to Kosmidis et al. (2017) are not the same. This

might be because of different data generation structure. In method of simulation similarly

to Viechtbauer (2007), we generate the effect measures directly from the normal distribution.

Whereas, in the method of simulation similarly to Kosmidis et al. (2017), we generate the

data from logistic regression and obtain the estimates of effect measure as the coefficients of

covariates. The generation of sample sizes are also different in two methods of simulation. In

the method of simulation similarly to Viechtbauer (2007), the sample sizes are fixed. Whereas

in the method of simulation similarly to Kosmidis et al. (2017), the sample sizes are variable.

One more difference these two methods of simulation is that in the method of simulation by

Kosmidis et al. (2017) we have two random effects that are added to coefficients for slope and

intercept.
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Figure C.47: Bias of overall odds ratio θIV obtained from K studies by the inverse-variance
method with the moment estimator τ̂ 2MPL in the weights, for p2j = 0.1, and 0 ≤ τ 2 ≤ 10. The
biases are given for θ = 0 (circles), θ = 1 (circle plus), and θ = 2 (circle cross). Light grey line
at 0.
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Figure C.48: Coverage at the nominal confidence level of 0.95 of the overall log odds ratio θ̂w
obtained from K studies by the inverse-variance method, for p2j = 0.1, θw = 0 and 0 ≤ τ 2 ≤ 10.
The inverse-variance weights use the following estimators of τ 2: red triangles – Maximum
Likelihood estimator τ̂ 2ML, green pluses – Maximum Penalized Likelihood estimator τ̂ 2MPL,
blue crosses – Restricted Maximum Likelihood estimator τ̂ 2REML and black circles – standard
Mandel-Paule estimator τ̂ 2MP . Light grey line at 0.95.
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Figure C.49: Coverage at the nominal confidence level of 0.95 of the overall log odds ratio θ̂w
obtained from K studies by the inverse-variance method, for p2j = 0.1, θw = 1 and 0 ≤ τ 2 ≤ 10.
The inverse-variance weights use the following estimators of τ 2: red triangles – Maximum
Likelihood estimator τ̂ 2ML, green pluses – Maximum Penalized Likelihood estimator τ̂ 2MPL,
blue crosses – Restricted Maximum Likelihood estimator τ̂ 2REML and black circles – standard
Mandel-Paule estimator τ̂ 2MP . Light grey line at 0.95.
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Figure C.50: Coverage at the nominal confidence level of 0.95 of the overall log odds ratio θ̂w
obtained from K studies by the inverse-variance method, for p2j = 0.1, θw = 2 and 0 ≤ τ 2 ≤ 10.
The inverse-variance weights use the following estimators of τ 2: red triangles – Maximum
Likelihood estimator τ̂ 2ML, green pluses – Maximum Penalized Likelihood estimator τ̂ 2MPL,
blue crosses – Restricted Maximum Likelihood estimator τ̂ 2REML and black circles – standard
Mandel-Paule estimator τ̂ 2MP . Light grey line at 0.95.
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Simulation results for bias and coverage of τ 2 for small-moderate heterogeneity
when p2j = 0.2 and p2j = 0.4
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Figure C.51: Bias of the between study variance τ 2 obtained from K studies for p2j = 0.2,
θw = 0 and 0 ≤ τ 2 ≤ 1. The estimators of τ 2: red triangles – Maximum Likelihood estimator
τ̂ 2ML, green pluses – Maximum Penalized Likelihood estimator τ̂ 2MPL, blue crosses – Restricted
Maximum Likelihood estimator τ̂ 2REML and black circles – standard Mandel-Paule estimator
τ̂ 2MP . Light grey line at 0.95.
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Figure C.52: Coverage at the nominal confidence level of 0.95 of the between study variance τ 2

obtained from K studies for p2j = 0.2, θw = 0 and 0 ≤ τ 2 ≤ 1. Interval estimation methods:
black circles – Q-profile confidence interval for τ 2 based on χ2 distribution and dark blue
crosses – Profile likelihood confidence intervals. Light grey line at 0.95.
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Figure C.53: Bias of the between study variance τ 2 obtained from K studies for p2j = 0.2,
θw = 1 and 0 ≤ τ 2 ≤ 1. The estimators of τ 2: red triangles – Maximum Likelihood estimator
τ̂ 2ML, green pluses – Maximum Penalized Likelihood estimator τ̂ 2MPL, blue crosses – Restricted
Maximum Likelihood estimator τ̂ 2REML and black circles – standard Mandel-Paule estimator
τ̂ 2MP . Light grey line at 0.95.
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Figure C.54: Coverage at the nominal confidence level of 0.95 of the between study variance
τ 2 obtained from K studies for p2j = 0.2, θw = 1 and 0 ≤ τ 2 ≤ 1. Interval estimation methods:
black circles – Q-profile confidence interval for τ 2 based on χ2 distribution dark blue crosses
– Profile likelihood confidence intervals. Light grey line at 0.95.
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Figure C.55: Bias of the between study variance τ 2 obtained from K studies for p2j = 0.2,
θw = 2 and 0 ≤ τ 2 ≤ 1. The estimators of τ 2: red triangles – Maximum Likelihood estimator
τ̂ 2ML, green pluses – Maximum Penalized Likelihood estimator τ̂ 2MPL, blue crosses – Restricted
Maximum Likelihood estimator τ̂ 2REML and black circles – standard Mandel-Paule estimator
τ̂ 2MP . Light grey line at 0.95.
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Figure C.56: Coverage at the nominal confidence level of 0.95 of the between study variance τ 2

obtained from K studies for p2j = 0.2, θw = 2 and 0 ≤ τ 2 ≤ 1. Interval estimation methods:
black circles – Q-profile confidence interval for τ 2 based on χ2 distribution and dark blue
crosses – Profile likelihood confidence intervals. Light grey line at 0.95.
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Figure C.57: Bias of the between study variance τ 2 obtained from K studies for p2j = 0.4,
θw = 0 and 0 ≤ τ 2 ≤ 1. The estimators of τ 2: red triangles – Maximum Likelihood estimator
τ̂ 2ML, green pluses – Maximum Penalized Likelihood estimator τ̂ 2MPL, blue crosses – Restricted
Maximum Likelihood estimator τ̂ 2REML and black circles – standard Mandel-Paule estimator
τ̂ 2MP . Light grey line at 0.95.
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Figure C.58: Coverage at the nominal confidence level of 0.95 of the between study variance τ 2

obtained from K studies for p2j = 0.4, θw = 0 and 0 ≤ τ 2 ≤ 1. Interval estimation methods:
black circles – Q-profile confidence interval for τ 2 based on χ2 distribution and dark blue
crosses – Profile likelihood confidence intervals. Light grey line at 0.95.
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Figure C.59: Bias of the between study variance τ 2 obtained from K studies for p2j = 0.4,
θw = 1 and 0 ≤ τ 2 ≤ 1. The estimators of τ 2: red triangles – Maximum Likelihood estimator
τ̂ 2ML, green pluses – Maximum Penalized Likelihood estimator τ̂ 2MPL, blue crosses – Restricted
Maximum Likelihood estimator τ̂ 2REML and black circles – standard Mandel-Paule estimator
τ̂ 2MP . Light grey line at 0.95.
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Figure C.60: Coverage at the nominal confidence level of 0.95 of the between study variance
τ 2 obtained from K studies for p2j = 0.4, θw = 1 and 0 ≤ τ 2 ≤ 1. Interval estimation methods:
black circles – Q-profile confidence interval for τ 2 based on χ2 distribution dark blue crosses
– Profile likelihood confidence intervals. Light grey line at 0.95.



374

τ2

 B
ia

s 
of

 τ
2

●

●

●

●

●

●

●

●

●

●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

8
−

0.
7

−
0.

6
−

0.
5

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

n = 40 , K = 5

τ2

 B
ia

s 
of

 τ
2

●

●
●

●
●

● ●
●

●
●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

8
−

0.
7

−
0.

6
−

0.
5

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

n = 100 , K = 5

τ2

 B
ia

s 
of

 τ
2

●

●
●

● ●

●

● ● ●

●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

20
−

0.
17

−
0.

14
−

0.
11

−
0.

08
−

0.
05

−
0.

02
0.

00
0.

02
0.

04

n = 250 , K = 5

τ2

 B
ia

s 
of

 τ
2

●
● ●

● ● ● ● ●
● ●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

20
−

0.
17

−
0.

14
−

0.
11

−
0.

08
−

0.
05

−
0.

02
0.

00
0.

02
0.

04

n = 1000 , K = 5

τ2

 B
ia

s 
of

 τ
2

●

●

●

●

●

●

●

●

●

●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

8
−

0.
7

−
0.

6
−

0.
5

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

n = 40 , K = 10

τ2

 B
ia

s 
of

 τ
2

●

●
●

●
●

●
●

●
●

●
●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

8
−

0.
7

−
0.

6
−

0.
5

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

n = 100 , K = 10

●

ML
MPL
REML
MP

τ2

 B
ia

s 
of

 τ
2

●

●
●

●
●

●
●

● ●
●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

20
−

0.
17

−
0.

14
−

0.
11

−
0.

08
−

0.
05

−
0.

02
0.

00
0.

02
0.

04

n = 250 , K = 10

τ2

 B
ia

s 
of

 τ
2

●
●

● ● ● ● ● ● ●

● ●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

20
−

0.
17

−
0.

14
−

0.
11

−
0.

08
−

0.
05

−
0.

02
0.

00
0.

02
0.

04

n = 1000 , K = 10

τ2

 B
ia

s 
of

 τ
2

●

●

●

●

●

●

●

●

●

●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

8
−

0.
7

−
0.

6
−

0.
5

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

n = 40 , K = 30

τ2

 B
ia

s 
of

 τ
2

●

●
●

●
●

●
●

●
●

●
●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

8
−

0.
7

−
0.

6
−

0.
5

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

n = 100 , K = 30

τ2

 B
ia

s 
of

 τ
2

●

●
●

●

●

●

●

●
●

●

●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

20
−

0.
17

−
0.

14
−

0.
11

−
0.

08
−

0.
05

−
0.

02
0.

00
0.

02
0.

04

n = 250 , K = 30

τ2

 B
ia

s 
of

 τ
2

●
● ● ●

●
● ● ●

●

● ●

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

−
0.

20
−

0.
17

−
0.

14
−

0.
11

−
0.

08
−

0.
05

−
0.

02
0.

00
0.

02
0.

04

n = 1000 , K = 30

Figure C.61: Bias of the between study variance τ 2 obtained from K studies for p2j = 0.4,
θw = 2 and 0 ≤ τ 2 ≤ 1. The estimators of τ 2: red triangles – Maximum Likelihood estimator
τ̂ 2ML, green pluses – Maximum Penalized Likelihood estimator τ̂ 2MPL, blue crosses – Restricted
Maximum Likelihood estimator τ̂ 2REML and black circles – standard Mandel-Paule estimator
τ̂ 2MP . Light grey line at 0.95.
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Figure C.62: Coverage at the nominal confidence level of 0.95 of the between study variance τ 2

obtained from K studies for p2j = 0.4, θw = 2 and 0 ≤ τ 2 ≤ 1. Interval estimation methods:
black circles – Q-profile confidence interval for τ 2 based on χ2 distribution and dark blue
crosses – Profile likelihood confidence intervals. Light grey line at 0.95.
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C.2 Results of simulation for estimating τ 2 from a model

with a pair of beta-binomial distribution when p2j =

0.2 and p2j = 0.4

C.2.1 Bias and coverage in estimation of between-study variance
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Figure C.63: Bias of the between study variance τ 2 obtained from K studies in beta-binomial
model for p2j = 0.2,θ = 0 and 0 ≤ ρ ≤ 0.3. The estimators of τ 2: black circle – Der-Simonian
and Laird estimator τ̂ 2DL, red triangles – Maximum Likelihood estimator τ̂ 2ML, green pluses
– Maximum Penalized Likelihood estimator τ̂ 2MPL, dark blue crosses – Restricted Maximum
Likelihood estimator τ̂ 2REML, light blue diamonds – Profiled-Breslow-Day estimator τ̂ 2BD,pink
reverse triangles – Corrected Mandel-Paule estimator τ̂ 2CMP and yellow circles – standard
Mandel-Paule estimator τ̂ 2MP . Light grey line at 0.95.
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Figure C.64: Bias of the between study variance τ 2 obtained from K studies in beta-binomial
model for p2j = 0.4,θ = 0 and 0 ≤ ρ ≤ 0.3. The estimators of τ 2: black circle – Der-Simonian
and Laird estimator τ̂ 2DL, red triangles – Maximum Likelihood estimator τ̂ 2ML, green pluses
– Maximum Penalized Likelihood estimator τ̂ 2MPL, dark blue crosses – Restricted Maximum
Likelihood estimator τ̂ 2REML, light blue diamonds – Profiled-Breslow-Day estimator τ̂ 2BD,pink
reverse triangles – Corrected Mandel-Paule estimator τ̂ 2CMP and yellow circles – standard
Mandel-Paule estimator τ̂ 2MP . Light grey line at 0.95.
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Figure C.65: Coverage at the nominal confidence level of 0.95 of the between-study variance τ 2

estimated from K studies in beta-binomial model for p2j = 0.2, θ = 0 and 0 ≤ ρ ≤ 0.3. Interval
estimation methods: circles – Q-profile confidence interval for τ 2 based on χ2 distribution,
inverse triangles – Q-profile confidence interval for τ 2 based on Γr(τ2),λ(τ2) distribution), crosses
– Profile likelihood confidence intervals, diamonds – Breslow-Day-Profile confidence intervals.
Light grey line at 0.95.
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Figure C.66: Coverage at the nominal confidence level of 0.95 of the between-study variance τ 2

estimated from K studies in beta-binomial model for p2j = 0.4, θ = 0 and 0 ≤ ρ ≤ 0.3. Interval
estimation methods: circles – Q-profile confidence interval for τ 2 based on χ2 distribution,
inverse triangles – Q-profile confidence interval for τ 2 based on Γr(τ2),λ(τ2) distribution), crosses
– Profile likelihood confidence intervals, diamonds – Breslow-Day-Profile confidence intervals.
Light grey line at 0.95.
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C.2.2 Bias and coverage in estimation of overall effect measure
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Figure C.67: Bias of overall log odds ratio θIV obtained from K studies by the inverse-variance
method with the moment estimator ρ̂CMP in the weights, for p2j = 0.2, and 0 ≤ ρ ≤ 0.3. The
biases are given for θ = 0 (circles), θ = 1 (circle plus), and θ = 2 (circle cross). Light grey line
at 0.
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Figure C.68: Coverage at the nominal confidence level of 0.95 of the overall log odds ratio θ
obtained from K studies by the inverse-variance method, for p2j = 0.2, θ = 0 and 0 ≤ ρ ≤ 0.3.
The inverse-variance weights use the following estimators of ρ: black circle – Der-Simonian
and Laird estimator τ̂ 2DL, red triangles – Maximum Likelihood estimator τ̂ 2ML, green pluses
– Maximum Penalized Likelihood estimator τ̂ 2MPL, dark blue crosses – Restricted Maximum
Likelihood estimator τ̂ 2REML, light blue diamonds – Profiled-Breslow-Day estimator τ̂ 2BD,pink
reverse triangles – Corrected Mandel-Paule estimator τ̂ 2CMP and yellow circles – standard
Mandel-Paule estimator τ̂ 2MP .Light grey line at 0.95.
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Figure C.69: Coverage at the nominal confidence level of 0.95 of the overall log odds ratio θ
obtained from K studies by the inverse-variance method, for p2j = 0.2, θ = 1 and 0 ≤ ρ ≤ 0.3.
The inverse-variance weights use the following estimators of ρ: black circle – Der-Simonian
and Laird estimator τ̂ 2DL, red triangles – Maximum Likelihood estimator τ̂ 2ML, green pluses
– Maximum Penalized Likelihood estimator τ̂ 2MPL, dark blue crosses – Restricted Maximum
Likelihood estimator τ̂ 2REML, light blue diamonds – Profiled-Breslow-Day estimator τ̂ 2BD,pink
reverse triangles – Corrected Mandel-Paule estimator τ̂ 2CMP and yellow circles – standard
Mandel-Paule estimator τ̂ 2MP .Light grey line at 0.95.
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Figure C.70: Coverage at the nominal confidence level of 0.95 of the overall log odds ratio θ
obtained from K studies by the inverse-variance method, for p2j = 0.2, θ = 2 and 0 ≤ ρ ≤ 0.3.
The inverse-variance weights use the following estimators of ρ: black circle – Der-Simonian
and Laird estimator τ̂ 2DL, red triangles – Maximum Likelihood estimator τ̂ 2ML, green pluses
– Maximum Penalized Likelihood estimator τ̂ 2MPL, dark blue crosses – Restricted Maximum
Likelihood estimator τ̂ 2REML, light blue diamonds – Profiled-Breslow-Day estimator τ̂ 2BD,pink
reverse triangles – Corrected Mandel-Paule estimator τ̂ 2CMP and yellow circles – standard
Mandel-Paule estimator τ̂ 2MP .Light grey line at 0.95.
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Figure C.71: Bias of overall log odds ratio θIV obtained from K studies by the inverse-variance
method with the moment estimator ρ̂CMP in the weights, for p2j = 0.4, and 0 ≤ ρ ≤ 0.3. The
biases are given for θ = 0 (circles), θ = 1 (circle plus), and θ = 2 (circle cross). Light grey line
at 0.
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Figure C.72: Coverage at the nominal confidence level of 0.95 of the overall log odds ratio θ
obtained from K studies by the inverse-variance method, for p2j = 0.4, θ = 0 and 0 ≤ ρ ≤ 0.3.
The inverse-variance weights use the following estimators of ρ: black circle – Der-Simonian
and Laird estimator τ̂ 2DL, red triangles – Maximum Likelihood estimator τ̂ 2ML, green pluses
– Maximum Penalized Likelihood estimator τ̂ 2MPL, dark blue crosses – Restricted Maximum
Likelihood estimator τ̂ 2REML, light blue diamonds – Profiled-Breslow-Day estimator τ̂ 2BD,pink
reverse triangles – Corrected Mandel-Paule estimator τ̂ 2CMP and yellow circles – standard
Mandel-Paule estimator τ̂ 2MP .Light grey line at 0.95.
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Figure C.73: Coverage at the nominal confidence level of 0.95 of the overall log odds ratio θ
obtained from K studies by the inverse-variance method, for p2j = 0.4, θ = 1 and 0 ≤ ρ ≤ 0.3.
The inverse-variance weights use the following estimators of ρ: black circle – Der-Simonian
and Laird estimator τ̂ 2DL, red triangles – Maximum Likelihood estimator τ̂ 2ML, green pluses
– Maximum Penalized Likelihood estimator τ̂ 2MPL, dark blue crosses – Restricted Maximum
Likelihood estimator τ̂ 2REML, light blue diamonds – Profiled-Breslow-Day estimator τ̂ 2BD,pink
reverse triangles – Corrected Mandel-Paule estimator τ̂ 2CMP and yellow circles – standard
Mandel-Paule estimator τ̂ 2MP .Light grey line at 0.95.
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Figure C.74: Coverage at the nominal confidence level of 0.95 of the overall log odds ratio θ
obtained from K studies by the inverse-variance method, for p2j = 0.4, θ = 2 and 0 ≤ ρ ≤ 0.3.
The inverse-variance weights use the following estimators of ρ: black circle – Der-Simonian
and Laird estimator τ̂ 2DL, red triangles – Maximum Likelihood estimator τ̂ 2ML, green pluses
– Maximum Penalized Likelihood estimator τ̂ 2MPL, dark blue crosses – Restricted Maximum
Likelihood estimator τ̂ 2REML, light blue diamonds – Profiled-Breslow-Day estimator τ̂ 2BD,pink
reverse triangles – Corrected Mandel-Paule estimator τ̂ 2CMP and yellow circles – standard
Mandel-Paule estimator τ̂ 2MP .Light grey line at 0.95.
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