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ABSTRACT

Diffuse nutrient and pesticide pollution is a major global and growing pressure on water
quality and poses risks to aquatic ecosystems, human health and water resources. Due to
threats to water quality, the costs of water treatment and the recalcitrance of some
pollutants to traditional water treatment techniques, there is increased focus on the
potential to mitigate agricultural diffuse water pollution through catchment management.
Water quality models have the potential to be applied as decision support tools to identify
mitigation measures that can reduce agricultural diffuse water pollution but, to date,
insufficient consideration has been given to the uncertainties of water quality model
predictions and the impacts of farm-based mitigation measures on multiple pollutants and
at a daily temporal resolution. To address these shortcomings, and the need to identify
mitigation measures that can reduce agricultural diffuse water pollution, the Soil and
Water Assessment Tool model was applied to identify the impacts of farm-based
mitigation measures on diffuse nitrate, total phosphorus and metaldehyde pollution at a
daily time-step within the River Wensum catchment in the East of England. Prohibiting
metaldehyde application in areas where the slope exceeded 2% was the most effective
option to mitigate diffuse metaldehyde pollution, whilst introducing a red clover cover
crop reduced nitrate losses by 19.6% and implementing buffer strips of 6 m width reduced
total phosphorus losses by 16.9%. Results also highlighted the need to consider the
impacts on multiple pollutants and the degree of uncertainty associated with model
predictions when evaluating the effectiveness of mitigation measures. According to
model predictions, a catchment management based approach does have the potential to
reduce agricultural diffuse water pollution, the risk of water quality non-compliance and
the subsequent need for raw water treatment. Overall, this thesis contributes to the

development of effective strategies to mitigate agricultural diffuse water pollution.
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Chapter 1: Introduction

I INTRODUCTION

Global agricultural production increased by more than threefold during the 53-year period
from 1961-2013 (Food and Agriculture Organization of the United Nations [FAQO], 2016).
This increase in production may partially be attributed to a 10.6% increase in the total
global land area under agricultural land use (FAO, 2016), but it is largely a result of the
intensification of agriculture that occurred under the so-called Green Revolution, which
saw an increase in irrigation, fertiliser and pesticide use, the mechanisation of agriculture
and the development of higher yield crop cultivars (Matson et al., 1997). These
developments led to a tremendous increase in agricultural yields (FAO, 2016), but it came

at a high cost to the environment (Carpenter et al., 1998; Foley et al., 2005).

Some of the concerns over continued agricultural expansion relate to habitat loss (Pimm
and Raven, 2000), the negative impact on biodiversity (Fahrig, 2003), and the link it has
to species extinction (Sala et al., 2000). It is also known that inputs of nitrogen and
phosphorus as fertiliser to agricultural land often exceed the amount that is extracted by
crops, creating a surplus of nutrients within agricultural land that may then be transferred
to water bodies (Carpenter et al., 1998). Agriculture is one of the main sources of nitrogen
and phosphorus in surface waters (Kronvang et al., 2009), and their oversupply can result
in eutrophication, impairing the health of ecosystems (Carpenter et al., 1998). Nutrient
enrichment in surface waters can also have negative implications for the supply of water
and human health (Withers and Lord, 2002). Pesticides that are applied to agricultural
land have also been detected within water bodies, and there is increased concern over
their potential impacts on non-target species, water quality and human health (Carter,

2000; Stuart et al. 2012).
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Agricultural diffuse water pollution is one of the main pressures on water resources and
threats to biodiversity (Vorosmarty et al., 2010). Trends suggest that agricultural
expansion and intensification will exacerbate those pressures in the coming decades
(Tilman et al., 2001), and, unless agricultural practices are adapted, diffuse pollution from
agriculture is expected to continue to increase (Carpenter et al., 1998). Given this threat,
legislation has been introduced in many parts of the world to protect water bodies from
agricultural diffuse water pollution and to improve water quality, including the Nitrates
Directive and Water Framework Directive (WFD) in the European Union (EU) (Council
of the European Union, 1991; 2000), and the Clean Water Act in the United States (United
States Congress, 2002). Human population growth is also expected to create
unprecedented demand for food and water in the future (Vorésmarty et al., 2000;
Alexandratos and Bruinsma, 2012). Due to the current and projected future global
pressures on water resources, there is an increasing need to develop mitigation techniques
that have the potential to reduce agricultural diffuse water pollution and improve water

quality.

1.1 Catchment Modelling

Water quality models are one example of numerous types of mathematical model which
have been applied in many fields of research from engineering to the natural sciences and
social sciences. Such models are mathematical expressions of real world phenomena and
are often required because there are gaps in the understanding of how a real world system
functions and how it responds to changes (Beven, 2012). They may for example, be
applied to model catchment systems, physical laws, weather, climate and ecosystems.
When monitoring hydrological systems, models are often helpful because limited
resources may constrain the scale of experiments, what can be measured in-field, and the
spatial and temporal scale of those measurements (Beven, 2012). To assess how a
catchment system may respond to a future change (e.g. the introduction of a mitigation
measure, land use change or climate change), we must also be able to extrapolate from
the observations that are available, to these new conditions and water quality models can
assist this extrapolation through prediction. Water quality models therefore have the
potential to provide cost-effective and timely evidence of the impacts of mitigation
measures on water quality at a scale that is often unfeasible for in-field investigations. As
a result, such models have been increasingly applied as Decision Support Tools (DSTs)

to investigate the impacts of mitigation measures on agricultural diffuse water pollution,
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to assist policy development and to improve the decisions that are made through the
provision of knowledge (Collins and McGonigle, 2008). In doing so, water quality
models can assist the development of effective mitigation techniques and can aid the
development of appropriate catchment management plans to improve water quality. This
thesis is situated in the area of research that endeavours to examine diffuse agricultural
pollution mitigation measures through the application of catchment-scale water quality

models.

Catchment-scale water quality models have been applied to investigate the pressures from
agriculture on water resources and to assess which measures have the potential to mitigate
those impacts, but to date, a lack of research into the uncertainties of catchment model
predictions has left a gap in knowledge. It would be intriguing to know the uncertainties
of model predictions, not least because it would inform the degree of confidence that can
be attached to those predictions. Quantifying this uncertainty will allow catchment
models to become more effective and reliable DSTs. In particular, to date, there has not
been sufficient research to investigate the impacts of catchment-based diffuse agricultural
pollution mitigation measures on multiple pollutants and at a daily temporal resolution.

An investigation into these issues is therefore merited.

Since 2010 the River Wensum catchment, located in Eastern England, has been the focus
of the Wensum Demonstration Test Catchment (DTC) project, which aims to provide
evidence to test the hypothesis that it is economically feasible to reduce agricultural
diffuse water pollution through the introduction of agricultural mitigation measures whilst
maintaining agricultural productivity (Wensum Alliance, 2014). For the purposes of the
Wensum DTC project, the Blackwater sub-catchment has been selected as a pilot area
where the effects of changes in agricultural management practices will be investigated,
and is considered to be representative of the wider River Wensum catchment. To identify
the mitigation options that are most relevant for the River Wensum catchment, there has
been close cooperation and engagement between local land owners, farm managers,
environmental organisations, government agencies and scientific experts. Due to an
abundance of available water quality data collected as part of this wider research project,
the River Wensum catchment has been selected as an appropriate site to conduct an

investigation to model the impacts of agricultural mitigation measures on water quality.
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1.2 Aim and Scope

Within the wider context described above, the overarching aim of this study is to model
the impacts of agricultural mitigation measures on surface water quality and assess the
uncertainties of catchment-scale water quality model predictions within the River

Wensum catchment.
The specific objectives of this study are the following:

1. Compile and process the datasets required to develop and apply a catchment-scale
water quality model of the study area.

2. Develop a catchment-scale water quality model of the study area.

3. Identify catchment measures that have the potential to mitigate diffuse water
pollution from agriculture.

4. Apply the water quality model to generate predictions that can be used to identify
the effects of mitigation measures on surface water quality in the study area at a
daily time-step.

5. Estimate the uncertainties of model predictions.

The scope of the research is limited to modelling the impacts of agricultural mitigation
measures on nitrate, total phosphorus and metaldehyde within the River Wensum
catchment. The focus on agricultural mitigation measures is justified because agriculture
is the largest source of nitrogen pollution and, although point sources are still the principal
source of phosphorus pollution in some parts of the world, agriculture is a large and
increasingly important source (Carpenter et al., 1998; European Environment Agency
[EEA], 2005; White and Hammond, 2007). The River Wensum catchment is selected as
the test catchment for the research due to an abundance of data and the presence of a
responsive community of stakeholders. Nitrate, total phosphorus and metaldehyde are the
water quality parameters chosen because of the focus of environmental and drinking
water supply legislation on nutrients and pesticides in water. These limits to the scope of
the research are necessary so that the research can focus on the key issues affecting

surface water quality.

1.3 Significance of the Study
One of the intended practical outcomes of this study is to identify which mitigation
measures have the potential to be applied within agricultural systems to reduce

agricultural diffuse water pollution and improve water quality. Secondly, it is intended
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that the development of such knowledge will lead to practical solutions to the problem of
agricultural diffuse water pollution and assist the development of sustainable agricultural
practices. On a theoretical basis, the third intended outcome is to demonstrate the novel
use of a technique to assess the uncertainties of model predictions. Such a consideration
of model prediction uncertainty is rarely conducted and is intended to inform the degree
of confidence that can be attached to model predictions, improving the reliability and
effectiveness of catchment-scale water quality models as DSTs and enabling better-
informed management and policy decisions to be made. Fourthly, catchment-scale water
quality models are infrequently applied at a daily temporal resolution, often because of
insufficient data. Given their limited application at a daily resolution and the deficit in
knowledge that this creates, another point of concern for this study is to model pollutants
at a daily resolution and to assess the impacts of agricultural mitigation measures on daily
water quality. Fifthly, modelling studies often consider the impacts of mitigation
measures on a single pollutant in isolation from others but a measure that reduces the
losses of one pollutant could exacerbate losses of others. To develop a better
understanding of the risk of pollution swapping, this study considers the impacts of

mitigation measures on multiple pollutants.

1.4 Structure of the Thesis

This thesis contains six further chapters. In Chapter 2, to establish this study within the
context of the wider research area, a critical review of historical research, current theory,
legislation and practice that relates to surface water quality, catchment management, and
catchment-scale water quality modelling is provided. From this review, gaps in
knowledge are established and areas that require further research are identified. A review
of the key aspects of 10 hydrological models is also provided and the Soil and Water
Assessment Tool (SWAT) model and SWAT Calibration and Uncertainty Program
(SWAT-CUP) are described in more detail. Chapter 3 characterises the Wensum
catchment and describes the datasets that were used within this study. In Chapter 4, the
methodology used to set-up and operate the SWAT water quality models of the River
Wensum catchment and Blackwater sub-catchment is described. The methodology used
to perform model calibration and validation within SWAT-CUP is also described and the
performance of the models are evaluated. In Chapters 5 and 6, agricultural mitigation
measures are identified and the results of model predictions of the effects of those

measures on nitrate, total phosphorus and metaldehyde are presented and discussed.
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Chapter 7 details conclusions, a summary of the research and findings and suggests

potential areas of future research.
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2 LITERATURE REVIEW

2.1 Introduction

Water is vital for life, but this essential resource is increasingly threatened due to
population growth and the increased demand for water for domestic and industrial
purposes (Carr and Neary, 2008). The abstraction of water for domestic activities,
industry, agriculture, mining and hydroelectric energy generation, can cause a
deterioration in water quality and a reduction in water quantity that not only threatens
ecosystems but also the availability of water that is safe for human use. The Sustainable
Development Goals (SDGs) recognise the importance of providing safe, secure and
sustainable water supplies and ending hunger, ensuring food security whilst also
promoting sustainable agriculture (United Nations, 2015a). Reconciling the need to
provide safe and secure water whilst also ending hunger and ensuring food security will
be a difficult task because agriculture is often one of the drivers of water quality
degradation (Ongley, 1996), and so these goals will require new approaches to agriculture
and food production if they are to be achieved. In the above context, this thesis contributes
to achieving the SDGs through the development of improved catchment management

practices to develop the sustainable form of agriculture envisaged by the SDGs.

During the 20th Century, the global human population more than trebled from 1.65 billion
to 6 billion (United Nations, 1999). By 2015, the global population had reached 7.3 billion
and is now expected to grow to 8.5 billion in 2030, 9.7 billion in 2050 and 11.2 billion in
2100 (United Nations, 2015b). Such rapid human population growth will create
unprecedented demand for food and water (Vorosmarty et al., 2000; Alexandratos and
Bruinsma, 2012). For example, to meet the demands of the projected world population in
2050, it is estimated that cereal production will need to increase by 46%, meat production
by 76% and production of oil crops by 89% (Alexandratos and Bruinsma, 2012). In order
to meet the growth in food demand that results from a growing population we must either
convert large areas of land for use within agriculture or increase agricultural productivity
(i.e. improve crop yields). Since 1700, the total land surface area under agricultural use
has increased more than 4.5-fold and is projected to continue to grow (Meyer and Turner,

1992; Tilman et al., 2001). Alexandratos and Bruinsma (2012) predict that, relative to the

Sam David Taylor - June 2017 33



Modelling the Impacts of Catchment Mitigation Measures on Water Quality

level in 2007, the total land surface area under agricultural use in 2050 will have increased
by 4.2%. Such increases are not sustainable over the long term due to the impacts of
agricultural expansion on the environment, which include habitat and biodiversity loss
and species extinction (Pimm and Raven, 2000; Sala et al., 2000; Fahrig, 2003). If there
is to be any long-term and sustainable solution to problem of providing food for an
unprecedented and growing world population, it is to increase crop yields whilst also
minimising the environmental impacts of the intensification of agriculture that such a

policy would require (Tilman et al., 2011).

So far, agricultural production has managed to increase at a rate greater than the rate of
growth of the global population and has reduced malnourishment (FAO, 2016). During
the 53-year period from 1961-2013, global agricultural production increased more than
3-fold, whilst the global population only increased 2.3-fold from 3.08 billion to 7.18
billion (FAO, 2016). This incredible human achievement may partially be attributed to a
10.6% increase in the total land surface area under agricultural use, but it occurred mainly
as a result of the intensification of agriculture on land that was already subject to
agricultural use (Matson et al., 1997; FAO, 2016). This increase in production occurred
during the so-called Green Revolution which started in the 1960s and saw the
development of higher yield crop cultivars, an increase in irrigation, fertiliser and
pesticide use, increased cropping intensities and the mechanisation of agriculture
(Matson, 1997). The long-term increase in crop yields that resulted from these
developments is self-evident in the positive trend observed for wheat, rice and maize

yields on a worldwide basis from 1961-2013 (Figure 2.1).
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Figure 2.1: World wheat, rice and maize yields from 1961-2013 (FAO, 2016).
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One of the main factors behind the increase in agricultural production and yields
witnessed between 1961-2013 was an improved ability to overcome the constraints on
crop growth in agricultural systems, which, in natural ecosystems, is often limited by the
availability of nutrients and water. (Matson et al., 1997). This is evident in the 9.3-fold
and 3.7-fold increase in nitrogen and phosphate fertiliser consumption, respectively, that
occurred during the same period (Figure 2.2) (International Fertilizer Association [IFA],
2016). Another development that increased crop production and yields involved the
improved ability to manage crop pests through increased use of pesticides (Ridgway et
al., 1978). It is difficult to obtain data for actual global pesticide consumption in terms of
the mass consumed but if we consider global trade values to be a proxy for pesticide
consumption, in terms of import values, the size of the global pesticide industry increased

more than 124-fold from 1961-2013 (Figure 2.3) (FAO, 2016).
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Figure 2.2: World nitrogen and phosphate fertiliser consumption from 1961-2013
(IFA, 2016).

Such increases in agricultural production and crop yields have improved food security
but there are now concerns about the environmental impacts of the intensification of
agriculture and whether it is sustainable over the long term (Matson et al., 1997). For
example, the intensification of agriculture can lead to increased soil erosion, reductions
in soil fertility and biodiversity, increased pollution of surface water and groundwater,
eutrophication and increased greenhouse gas emissions (Matson et al., 1997). Whilst
concerns about the environmental impacts of the intensification of agriculture are
growing, so are the concerns about the ability of the world to feed a rapidly growing

global population. At the same time as this, 10.8% of the global population is still
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malnourished (FAO, 2016). Given these needs, the potential for agricultural
intensification to meet this growth in the demand for food is subject to ongoing research
and development (Tilman et al., 2011). Reconciling the need to provide an increased
amount of food for a growing human population whilst also protecting the environment
is a very challenging prospect for the 21st Century and it is essential that new strategies
are developed to ensure that agriculture can sustainably intensify in the future to meet

these requirements.

The effects of agricultural expansion to meet growing food demand, as well as the
agricultural intensification that has been achieved through the increased use of fertilisers
and pesticides, have also compromised global water quality (Matson et al., 1997; Bennett
et al., 2001). It is essential to ensure that water quality meets a sufficient standard if we
are to maintain safe drinking water supplies and to ensure that water is suitable for use in
industry, leisure and agriculture. Due to the increasing use of fertilisers and pesticides and
the rapid degradation in water quality, there is an urgent need to mitigate the impacts of
agriculture on water quality. In this regard, this study makes a valuable contribution to
the development of effective strategies for the mitigation of agricultural diffuse water

pollution and its findings are transferable to other catchments.
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Figure 2.3: World pesticide import trade value from 1961-2013 (FAO, 2016).

2.2 Water Quality Stressors

Globally, the pressures on water resources are increasing and water quality is becoming
increasingly degraded, damaging ecosystems, threatening human health, reducing

quantities of safe and usable water, negatively impacting on livelihoods, creating
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economic costs to societies and inhibiting potential development (Palaniappan et al.,
2010). There are a large number of stressors on water resources but the main human
activities that affect water quality include agriculture, industry, water provision systems,
human waste disposal, population growth, urbanisation and development (Palaniappan et
al., 2010). The pressures on water resources are also expected to be exacerbated in the
future as the global population grows, countries develop and industry and agriculture
expand (Carr and Neary, 2008). Climate change also threatens to have a diverse range of
impacts on freshwater resources and water quality and poses a number of risks to drinking
water supplies (Jiménez-Cisneros et al., 2014). Meanwhile, it is estimated that humankind
already collectively appropriates more than half of the world’s accessible fresh surface
water resources and this is expected to increase in the future (Postel et al., 1996). The
effects of poor water quality also disproportionately impact vulnerable communities,
including the poor and children, who are least able to adapt to change (Palaniappan et al.,

2010).

2.2.1 Sources of Pollution

It is clear from the above that there are a large number of sources of pollution that can
have an impact on water quality. To identify the sources of pollution that are most
important, it will be helpful to first classify the types of pollution that there are. One
particularly useful system used to identify the origins of a pollutant involves classifying
pollutants based on their source. Using this system, pollution can be described as
originating from either point or diffuse sources. Point source pollution, as defined in the
United States Clean Water Act, is “...any discernible, confined and discrete conveyance,
including but not limited to any pipe, ditch, channel, tunnel, conduit, well, discrete fissure,
container, rolling stock, concentrated animal feeding operation, or vessel or other
floating craft, from which pollutants are or may be discharged. This term does not include
agricultural storm-water discharges and return flows from irrigated agriculture.”
(United States Congress, 2002). Point source pollution originates from a discrete source
and may include for example, leaking septic tanks, chemical spills and discharges from

wastewater treatment works. Diffuse pollution, sometimes referred to as non-point source

pollution, is non-discrete and originates over a wide area.

Examples of diffuse pollution include pollutants contained in runoff from agricultural
land or urban areas, discharges from agricultural tiles drains and atmospheric deposition.

Discharges of point source pollution such as those from wastewater treatment works are
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often continuous over time and may be easily monitored and regulated through a sampling
regime (Carpenter et al., 1998). Due to their discrete nature, pollution from point sources
can also often be treated at source and are therefore relatively simple to control. For
example, a leaking septic tank may be replaced, discharges of wastewater by industry
may be controlled through a permit system, wastewater treatment works can install
technologies to clean water and measures can be taken to reduce the future likelihood of
chemical spills. Diffuse pollution is often non-continuous in time and may, for example,
be related to agricultural activities, rainfall events, wildfires or construction (Carpenter et
al., 1998). Diffuse pollution often originates over large areas and may be transported to
bodies of water via surface or subsurface routes or the atmosphere. Due to the nature of
diffuse pollution, it is more difficult to control but it may potentially be regulated through
a system of land management and controls on atmospheric emissions. With the
development of improved wastewater treatment techniques and the removal of phosphate
salts from detergents, point source pollution has been reduced and water quality has
improved (Taylor and Pionke, 1999). This is not to say that point source pollution is no
longer a concern, because it is still an important source of pollution in some countries and
it may increase in the future as the global population grows, but the relative importance
of diffuse pollution has increased, and in some countries it is now the primary source of

water pollution (Carpenter et al., 1998).

Agriculture is a major source of diffuse pollution and is an important global pressure on
surface water and groundwater quality (Carpenter et al., 1998; Vorosmarty et al., 2010;
EEA, 2012; Solheim et al., 2012). In the EU, diffuse pollution is a pressure in 45% of
surface water bodies whilst point source pollution is a pressure in only 16% of surface
water bodies (EEA, 2016a). It is also the most frequent pressure on water quality in
surface water bodies observed within the EU as a whole (EEA, 2016a). For example,
nutrient enrichment that results in-part from agricultural diffuse water pollution is a
pressure in 52% and 56% of surface water bodies in the UK and Germany, respectively
(EEA, 2016Db). In the United States, diffuse pollution from agriculture is also the primary
cause of water quality impairment in streams and the third most frequent cause of water
quality impairment in lakes, ponds and reservoirs (Environmental Protection Agency
[EPA], 2009). Diffuse pollution is by far the largest source of nitrogen and phosphorus in
surface waters in the United States, contributing 82% and 84% of total nitrogen and
phosphorus loads, respectively (Figure 2.4) (Carpenter et al., 1998). Of this diffuse

pollution, cropland is the largest source and is responsible for 48% of total nitrogen loads
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and 37% of the total phosphorus loads within surface waters (Figure 2.5 and Figure 2.6)
(Carpenter et al., 1998).
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Figure 2.4: Diffuse and point source apportionment for total nitrogen and

phosphorus loads in surface waters in the United States (Carpenter et al., 1998).
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Figure 2.5: Source apportionment for diffuse nitrogen loads in surface waters in the

United States (Carpenter et al., 1998).

Despite the improvements in water quality that have resulted from a reduction in point
source pollution, there are still a large number of issues that affect water quality including
eutrophication, contamination by pesticides and heavy metals and the siltation of river

channels (Haygarth and Jarvis, 2002). Increased attention is therefore now being directed
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at diffuse pollution and the role that agriculture plays. This thesis therefore focuses on

diffuse pollution from agriculture.
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Figure 2.6: Source apportionment for diffuse total phosphorus loads in surface

waters in the United States (Carpenter et al., 1998).

2.2.2 Diffuse Nutrient Pollution and Catchment Management as a Solution

As mentioned in Section 2.2.1, diffuse pollution from agriculture is a major concern for
water quality. This section focuses on diffuse nutrient pollution from agriculture and the
role of catchment management as a potential solution to mitigate this problem. The
content of this section has been published in the Journal of Environmental Management

(Taylor et al., 2016).

Agricultural diffuse water pollution remains a notable global pressure on surface water
and groundwater quality (Carpenter et al., 1998; Vorosmarty et al., 2010; EEA, 2012),
and trends suggest that agricultural expansion will continue to exacerbate those pressures
well into the 21st Century (Tilman et al., 2001). Legislation has been introduced in many
parts of the world to protect water bodies from agricultural diffuse water pollution and to
improve water quality, including the Nitrates Directive and WFD in Europe (Council of
the European Union, 1991; 2000), and the Clean Water Act in the United States (United
States Congress, 2002). The WFD seeks to improve or maintain water quality through the
establishment of River Basin Management Plans (RBMPs) and the development of
Programmes of Measures (PoMs), which can be implemented to ensure that each water
body within a river basin district achieves good ecological and chemical status (Council

of the European Union, 2000). Member states committed to achieving this status by 2015
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but many water bodies were not expected to meet the necessary water quality standards
before this deadline (EEA, 2012). According to Solheim et al. (2012), 56% of rivers, 44%
of lakes, 67% of transitional waters and 49% of coastal waters that have been classified
in Europe do not achieve a good ecological status or potential and 6% of rivers, 2% of
lakes, 10% of transitional waters, 4% of coastal waters and 25% of groundwater bodies
by surface area are of a poor chemical status. Agricultural diffuse water pollution is cited
as a significant pressure in 40% of rivers and coastal water bodies and one-third of lakes
and transitional water bodies. Such poor water quality has consequences for the health of
aquatic ecosystems, biodiversity, human health, the use of water in industry and
agriculture and as a resource for public water supply and recreation (Carr and Neary,

2008).

In Europe, agricultural diffuse water pollution contributes 50-80% of the total nitrogen
load and approximately 50% of the total phosphorus load in surface water bodies (EEA
2005; Kronvang et al., 2009). In the UK specifically, agricultural diffuse water pollution
is estimated to be responsible for 61% of the total nitrogen load and 28% of the total
phosphorus load experienced within surface water bodies (Hunt et al., 2004; White and
Hammond, 2007). Nutrient enrichment within surface waters due to the oversupply of
phosphorus and nitrogen in agriculture increases the risk of eutrophication (Richardson
and Jergensen, 1996; Withers and Lord, 2002; Carr and Neary, 2008). While phosphorus
pollution has implications for ecosystem health, nitrate pollution also has implications for
the supply of water and human health (Withers and Lord, 2002). To protect human health,
water is considered to be unfit for human consumption under the Drinking Water
Directive applied within Europe if it contains a nitrate concentration above 50 mg L’!
(equivalent to 11.3 mg NOs-N L) (Council of the European Union, 1998), but many
surface water and groundwater bodies within the UK contain concentrations of nitrate

that approach or exceed this limit (EEA, 2012).

To develop PoMs that can be implemented under the WFD, authorities responsible for
establishing RBMPs must be able to assess the effectiveness of potential mitigation
options. Given the limited resources available to monitor and quantify the impacts of
mitigation options in-field, and the need to provide timely evidence to inform policy,
water quality models which can quantify the impacts of mitigation options on nutrient
losses have been increasingly applied as DSTs within Decision Support Systems (Collins
and McGonigle, 2008; Volk et al., 2008). This approach can be used to develop targeted

mitigation plans, identify critical source areas and times, assess the cost-effectiveness of

Sam David Taylor - June 2017 41



Modelling the Impacts of Catchment Mitigation Measures on Water Quality

mitigation options, identify pollution swapping and involve stakeholders in the
development of suitable management plans (Bouraoui and Grizzetti, 2014). Effective
dialogue and engagement between stakeholders and scientific experts is essential to
ensure that the PoMs are appropriate, cost-effective and sustainable and to maximise the
effectiveness of the mitigation practices that are introduced (van Ast, 2000; Gerrits and

Edelenbos, 2004).

2.2.3 Diffuse Pesticide Pollution and Catchment Management as a Solution
This section focuses on diffuse pesticide pollution from agriculture and the role of

catchment management as a potential solution to mitigate this problem.

Pesticides are used to control pests in agriculture, forestry, for disease control (i.e.
malaria) and in the public, private, commercial and industrial sectors but their
predominant use is in agriculture (Falconer, 1998). Pesticides include but are not limited
to insecticides, herbicides, rodenticides, fungicides and molluscicides and their use has
substantially increased since the 1940s (Gevao and Jones, 2002). Some pesticides are
non-selective in the species they target and once applied, they may enter water and impact
on non-target aquatic species and other organisms including Man (Carter, 2000; Aktar et
al., 2009). Metaldehyde is a molluscicide that is applied to arable land to control
populations of terrestrial gastropods (i.e. slugs and snails) which have the potential to
damage crops (Bailey, 2002). The molluscicidal properties of metaldehyde were
discovered in 1934 (Uneke, 2007), and it has since become one of the most widely-used
chemical gastropod controls (Bailey, 2002). In the UK it is the most commonly used
molluscicide, accounting for 84% of molluscicide use by area treated (Garthwaite et al.,
2015), and is generally applied as a bran, wheat or barley-based pellet in formulations of
2-8% metaldehyde (Bailey, 2002). It is soluble in water and highly-mobile in soils
(European Food Safety Authority, 2010), and under aerobic conditions it has a soil half-
life of approximately two months (EPA, 2006). The stable and mobile nature of
metaldehyde allows it to enter surface waters via surface and subsurface routes from point
and diffuse sources, including by accidental spillage, incorrect disposal, surface runoff,
leaching and drain-flow (Carter, 2000). Metaldehyde is a toxic compound that has the
potential to cause harm to humans, other mammals, birds, fish and other aquatic
organisms (World Health Organization, 1996), and Stuart et al. (2012) suggested that
acetaldehyde, the main metabolite of metaldehyde, is one of the greatest risks to drinking

water supplies from pesticides.
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To protect human health, the EU Drinking Water Directive has set a maximum
permissible concentration of 0.1 ug L™! for any single pesticide in drinking water (Council
of the European Union, 1998). Metaldehyde has however been found to be present in
surface waters at relatively high concentrations. In northern France for example,
Lazartiques et al. (2012) monitored water quality within multiple barrage ponds involved
in farming fish and found that metaldehyde concentrations regularly exceeded the 0.1 pg
L! limit, recording a peak concentration of 6.98 pug L. For the Ouse catchment in
Yorkshire, England, Kay and Grayson (2014) presented surface water quality data
recorded between April 2008 and August 2011 at 21 monitoring sites along the river
network and nine Water Treatment Works (WTW), and found a seasonal pattern in
metaldehyde concentrations which peaked between October and December. This period
coincides with the time during which metaldehyde is generally applied. Peak
concentrations exceeded the 0.1 pg L™! limit at many sites within the catchment, including
the intakes of WTW, and generally ranged between 0.4-0.6 ug L', with a maximum
concentration of 2.7 pg L! recorded on one occasion. For humans, the acceptable daily
intake for metaldehyde is 20 pg kg™ day! (European Food Safety Authority, 2010) which
would suggest that, according to the available data, there is no immediate health risk to
humans. Nevertheless, where drinking water exceeds the 0.1 pg L limit, dilution or

removal is required.

Traditional water treatment techniques, including Granular Activated Carbon (GAC)
filtration, ultraviolet (UV) irradiation and ozonation are effective treatment solutions for
the majority of pesticides but metaldehyde is polar and hydrophilic and displays a low
affinity with GAC, and is not readily oxidised (Cooper, 2011; Autin et al., 2012; Tao and
Fletcher, 2013; Busquets et al., 2014). It is therefore not effectively removed by such
techniques. For example, Kay and Grayson (2014) found that there was no statistically
significant difference between metaldehyde concentrations recorded at the intakes and
outlets of WTW. There are therefore difficulties in reducing metaldehyde concentrations
below the drinking water quality standard, creating a risk of non-compliance (Cooper,
2011). Metaldehyde concentrations in drinking water may potentially be controlled by
blending surface water with groundwater that does not contain metaldehyde and through
a system of abstraction management by selectively switching-off WTW intakes during
periods of elevated in-stream metaldehyde concentration, but the most sustainable
solution to protecting water resources is to mitigate the potential for metaldehyde to enter

watercourses at the point of origin. Changing catchment management practices to

Sam David Taylor - June 2017 43



Modelling the Impacts of Catchment Mitigation Measures on Water Quality

mitigate this risk has therefore received increased attention as a potential solution
(Cooper, 2011; Kay and Grayson, 2014). For example, the Metaldehyde Stewardship
Group in the UK is an industry-led organisation which promotes best practice for
metaldehyde use and aims to minimise the environmental impact of metaldehyde and to
protect water bodies (Metaldehyde Stewardship Group, 2016a). This represents a shift in
perceived responsibility and focus, with an emphasis on addressing the source of

pollution rather than the ‘end-of-pipe’ strategy of water treatment.

Within the UK, water companies that are at risk of exceeding the drinking water quality
limit of 0.1 pg L' that applies to metaldehyde are given so-called Undertakings to ensure
water quality compliance (Drinking Water Inspectorate, 2016). For example, Anglian
Water Services Ltd has been given an Undertaking to assess and address the risk of non-
compliance for metaldehyde for water abstracted from surface water catchments and is
required to implement catchment-based measures (Drinking Water Inspectorate, 2014).
In response to this and as a fundamental part of its catchment strategy under UK water
industry regulations, Anglian Water Services Ltd launched the ‘Slug it Out’ campaign
which is comprised of a trial project that provides a financial incentive to farmers to not
use metaldehyde and encourages the use of ferric phosphate as an alternative solution
(Anglian Water Services Ltd, 2016). A team of catchment advisors has also been set-up
to engage agronomists and farmers in a discussion about practical solutions to the
problem. There is a scarcity of information on the impacts of mitigation measures on
diffuse metaldehyde pollution and a study which investigates the risk of non-compliance
for metaldehyde and the impacts of mitigation measures at a daily time-step is therefore
merited. The Wensum catchment is one of the drinking water catchments managed by
Anglian Water Services Ltd that is subject to the Undertaking for metaldehyde. It has
been selected as an appropriate area for this investigation due to the availability of data

and a responsive community of stakeholders.

2.3 Hydrological Models

Hydrological models with water quality modelling components have the potential to
provide cost-effective and timely evidence of the impacts of changes to management
practices on diffuse pollution at a scale that is often unfeasible for in-field investigations.
Such models are increasingly applied as DSTs to provide evidence to develop agricultural
diffuse water pollution management policy (Collins and McGonigle, 2008), but studies

rarely consider the uncertainties of model predictions and this uncertainty can sometimes
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be quite large (Stow et al., 2007). Conducting uncertainty assessments to capture this
uncertainty would allow models to provide an estimate of the uncertainties of the impacts
of mitigation measures on agricultural diffuse water pollution. By providing this
knowledge, better-informed decisions could be made, and the effectiveness and reliability
of models as DSTs to assist catchment management and policy development could be
improved. Catchment models are also infrequently applied at a daily resolution often
because there is not sufficient data to apply models at such a high temporal resolution
(Gassman et al., 2007). Studies more frequently apply models at longer time-steps (i.e.
monthly or yearly), but it remains important to apply models at a daily temporal resolution
to develop a better understanding of the dynamics of pollutant losses, how frequently
water standards are exceeded and the effectiveness of mitigation measures. Modelling
studies which seek to examine the impacts of mitigation measures on water quality also
often consider single pollutants (e.g. Schilling and Wolter, 2009; Betrie et al., 2011), but
each measure that is introduced may have impacts on other pollutants that are not
considered in the analysis. For example, a measure aimed at reducing the losses of one
pollutant may exacerbate the losses of others (Heathwaite et al., 2000). This phenomenon
is known as pollution swapping and although it is concept that is widely understood, it is
an area of research that has received little attention (Stevens and Quinton, 2009). There
is therefore a need to model the impacts of mitigation measures on multiple pollutants to
develop a better understanding of the impacts of measures on a variety of pollutants and
to mitigate the risk of introducing measures that lead to unforeseen increased losses of
other pollutants. There clearly remain a number of gaps in knowledge and major
shortcomings in the approaches used in the application of models to investigate the
impacts of mitigation measures on diffuse water pollution. There is therefore a clear need
for further research in this area. To identify the hydrological models that may be suitable
for application within this investigation to address these shortcomings and gaps in
knowledge, the types of hydrological models that are available to be applied and their

characteristics must first be outlined.

Model may be classified as lumped, semi-lumped, semi-distributed or fully-distributed
depending on their spatial configuration (Beven, 2012). Lumped models treat a catchment
as one homogeneous unit with parameters, such as slope, that are a spatial average for the
whole area and can only yield predictions for the catchment as a whole unit. Semi-lumped
models discretize a catchment into sub-catchments whilst semi-distributed models

discretise a catchment into zones based on topographic characteristics (i.e. slope or

Sam David Taylor - June 2017 45



Modelling the Impacts of Catchment Mitigation Measures on Water Quality

elevation), soil type and land use and are capable of generating predictions for each of
these zones. Fully-distributed models discretise a catchment into grid-based units and are
capable of making predictions for each unit throughout the grid-space. One advantage
that semi-distributed and fully-distributed models have over lumped models is that they
can spatially distribute changes in land use and management practices throughout the
model area, whereas lumped models cannot. Due to the level of detail that is required to
adequately model and reflect ‘real-world’ land use and land management practices,

lumped models are not considered to be appropriate for the purposes of this investigation.

Models may also be classified as either physically-based, semi-physically based,
conceptual or empirical depending on the extent to which physical processes are
simulated within the model (Devia et al., 2015). The advantages and disadvantages of

each of these model types are reviewed in detail by Wong and Koh (2008).

Empirical models, sometimes referred to as black-box models, are derived from the
mathematical relationships between input and output times series and are not based on an
explicit consideration of the physical processes of a catchment system (Devia et al.,
2015). For example, an empirical model of a catchment may relate precipitation (i.e. the
input) to river discharge (i.e. the output) without any explicit consideration of the relevant
physical processes that occur within a catchment and affect this relationship. An example
of an empirical model is the Runoff Curve Number method which is used to predict
surface runoff from rainfall (Cronshey et al., 1986). The advantages of empirical models
include that they can be developed and applied without much difficulty and are
computationally efficient (de Vos and Rientjes, 2005). They also have the power to derive
relationships between inputs and outputs without the need the need to consider physical
processes and can be developed overtime to compensate for changes in a system
(American Society of Civil Engineers, 2000). Some of the disadvantages of empirical
models are that they are only valid when applied within the boundaries of the observed
data with which they were calibrated and they may not be generalised to other sites or
under alternative scenarios within the same system (de Vos and Rientjes, 2005). Because
empirical models do not represent the physical processes of a catchment system, it is also
difficult to attach any physical meaning to outputs, which can limit the ability of such
models to provide insights into important processes within a catchment. Although
empirical models have good predictive power they lack explanatory power and due to
these reasons, they are not considered to be suitable for the purposes of this investigation

(Devia et al., 2015).
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Conceptual models, sometimes referred to as grey-box models, use simplified equations
that have a physical basis to define physical processes and are considered to be an
intermediate class that sits between empirical and physically-based models (Devia et al.,
2015). Some model parameters are derived through direct measurement but others have
no physical meaning and must be derived through calibration. Examples of conceptual
models include HBV (Lindstrom et al., 1997) and TOPMODEL (Beven et al., 1984). The
advantages of conceptual models are that they are less data intensive than physically-
based models and because they are less complex than physically-based models they are
also more computationally efficient (Lee et al., 2005). But because some parameters of
conceptual models are not physically-based their ability to predict the impacts of changes
in land use and management within a catchment is inhibited (He et al., 2011a). For this
reason, it is also difficult to extend the findings from the conceptual model of one
experimental catchment to other unmodelled locations (He et al., 2011b). Regionalisation
techniques can be used to relate model parameters to catchment characteristics and under
these circumstances conceptual models may be applied to conduct impact studies (He et
al., 2011a; 2011b), however, for the reasons identified above, conceptual models are not

considered to be suitable for the purposes of this investigation.

Within physically-based models, sometimes referred to as white-box models, physical
processes are defined and governed by mathematical expressions that are based on real-
world physical laws (Devia et al., 2015). Model parameters have a physical meaning and
can be determined from direct in-field measurement. An example of a physically-based
model is MIKE-SHE (DHI, 2016a). Although most components of the model are
physically-based, SWAT is classified as a semi-physically based model because some
components are conceptual or empirical (Arnold et al., 1998; Abbaspour et al., 2007).
Physically-based models are data intensive and require a relatively large number of
datasets with a high degree of spatial detail to define model parameters (de Vos and
Rientjes, 2005). Due to their complexity, they are less computationally efficient than
empirical or conceptual models, but the structure of physically-based models allows them
to overcome a lot of the deficiencies that these two other model types possess (Abbott et
al., 1986). For example, physically-based models are often spatially distributed (i.e. semi-
distributed or grid-based) which allows them to model spatial changes in land use and
management practices, thereby also allowing users to interpret the effects of these
changes. Because they are often spatially distributed, they are also useful in investigations

that require a high-degree of spatial detail. Because parameters within physically-based
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models also have a physical basis, it is also possible to interpret the physical consequences
of changes in parameter values (Devia et al., 2015. Due to their structure, the findings
derived from physically-based models can also be more easily extended to other
catchment systems. Because of these advantages, and the deficiencies associated with
other model types, physically-based and semi-physically based models are considered to

be the most suitable types of model to apply within this investigation.

The key aspects of a total number of 10 hydrological models which includes SWAT,
DAYCENT, INCA, DNDC, MODFLOW, PHREEQC, Hydrological Predictions for the
Environment (HYPE), HydroGeoSphere, Hydrological Simulation Program - FORTRAN
(HSPF) and MIKE SHE reviewed as part of the process to identify a suitable model to
apply for the purposes of this investigation are summarised in Table 2.1 to Table 2.10.
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Table 2.1: A summary of the key aspects of the Soil and Water Assessment Tool
(SWAT) hydrological model.

Model name

SWAT

Type Semi-physically based, semi-distributed model
Modelling impacts of changes in land use and management practices; pollutant loss
Applications | studies; climate change impacts; hydrologic assessments; best management practices
analysis.
Site specific data:
Digital elevation model; soil map and soil properties; land cover map; land
management practices (e.g. crop types grown; fertiliser and pesticide application
amount and timing; irrigation practices; cultivation and harvesting dates; residue
Inputs management and tillage practices); point sources.
Meteorological data:
Daily values for precipitation; minimum and maximum air temperature; solar
radiation; relative humidity; wind speed.
Discharge; surface runoff; groundwater flow; lateral flow; drain flow; actual
Outputs evapotranspiration; soil and aquifer water storage; nutrient, sediment and pesticide
load; crop yield.
Developer United States Department of Agriculture Agricultural Research Service and Texas
velop A&M AgriLife Research
Website http://swat.tamu.edu/
Language Fortran
Availability Free access
Arnold et al. (2012) Describes the model and a methodology for model calibration
and validation.
Neitsch et al. (2011) Describes the processes modelled by SWAT and the equations
Notable used to define those processes.
references

Arnold et al. (2014) Details the input requirements and outputs of the model.

Gassman et al. (2007) Describes the history of SWAT, its structure and previous
applications.
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Table 2.2: A summary of the key aspects of the DAYCENT hydrological model.

Model

DAYCENT

Type

Physically-based, lumped model

Applications

Modelling the impacts of climate change and management practices on N-gas and
CO; emissions from soils, nitrate leaching and crop yields; best management practices
analysis; agricultural sustainability analysis; investigations into soil system dynamics.

Inputs

Site specific data:

Soil map; soil properties (e.g. texture; depth; field capacity; wilting point; bulk
density; clay, silt and organic carbon content; saturated hydraulic conductivity); land
cover map; land management practices (e.g. crop types grown; fertiliser application
amounts and timing; tillage types and timing; irrigation practices; cultivation and
harvesting dates).

Meteorological data

Daily values for precipitation; minimum and maximum air temperature; solar
radiation; relative humidity; wind speed.

Outputs

Crop yield; N-gas flux (N,O, NOx, N2), CH4 and CO; flux from soils for each layer;
soil temperature; soil water content; soil ammonium and nitrate content; nitrate
leached; carbon and nitrogen content of plants; actual evapotranspiration; soil organic
carbon content; water balance.

Developer

Professor William Parton (Natural Resource Ecology Laboratory, Colorado State
University)

Website

http://www.nrel.colostate.edu/projects/daycent-home.html

Language

C++

Availability

Access by request (century@nrel.colostate.edu)

Notable
references

Parton et al. (1998) Describes the DAYCENT model and tests the ability of the model
to simulate soil water content and temperature.

Parton et al. (2001) Describes the N-gas sub-model of DAYCENT and tests the ability
of the model to simulate NO. and N,O emissions from soils.

Del Grosso et al. (2005) Applied DAYCENT to test the impacts of agricultural
practices on N>O emissions, nitrate leaching and crop yields.
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Table 2.3: A summary of the key aspects of the INCA hydrological model.

Model

INCA (N, P, C and Sed model variants)

Type

Physically-based, semi-distributed model

Applications

Modelling the impacts of climate change and changes in land use; catchment
management; climate change impact assessments.

Inputs

Site specific data:

Digital elevation model; land cover map; land management practices (e.g. fertiliser
application amount and timing) hydrologically effective rainfall; soil moisture deficit;
point source discharges; river network map; nitrogen deposition rate.

For each land cover type: denitrification rate; nitrogen fixation rate; plant nitrate
uptake rate; ammonium nitrification, mineralisation and immobilisation rate; plant
ammonium uptake rate; plant growing seasons.

Meteorological data:

Daily values for precipitation and air temperature.

Outputs

Daily discharge; in-stream concentrations of nitrate, ammonium, suspended sediment;
total phosphorus; soluble reactive phosphorus and chlorophyll-a; macrophyte and
epiphyte biomass at in-stream sites; organic and inorganic phosphorus concentration in
soil water, groundwater and surface runoff; daily N and P fluxes from and to all
storage pools for each land use type; soil temperature; ammonium and nitrate
concentration in groundwater and soil water.

Developer

Prof. Andrew Wade and Prof. Paul Whitehead (University of Reading)

Website

http://www.reading.ac.uk/geographyandenvironmentalscience/research/INCA/

Language

Matlab

Availability

Access by request (a.j.wade@reading.ac.uk)

Notable
references

Whitehead et al. (1998a) Provides a description of the model structure and equations
of the original INCA-N model.

Whitehead et al. (1998b) Applied INCA-N to test model performance in simulating
discharge, and concentrations of nitrate and ammonium and investigated the impacts
of land use change.

Wade et al. (2002a) Provides a description of a new version of the INCA-N model and
compares the performance of the newer version against the performance of the
original model in simulating discharge and nitrate concentration.

Wade et al. (2002b) Provides a description of the model structure and equations of the
INCA-P model.
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Table 2.4: A summary of the key aspects of the DNDC hydrological model.

Model

DNDC

Type

Physically-based, lumped (in site mode) or fully-distributed (in regional mode) model

Applications

Developing predictions for soil biogeochemistry, gaseous emissions from soils, crop
development and modelling the impacts of changes in climate, land use and land
management practices.

Inputs

Site specific data:

Soil input data: land use; soil type; bulk density; pH; field capacity; wilting point;
hydraulic conductivity; porosity; organic carbon content; nitrate and ammonium
concentration at soil surface; slope of land surface; soil salinity index.

Land use practices: crop types and rotation; cultivation and harvesting dates; tillage
practices (frequency, timing and method); fertiliser practices (frequency, timing, type,
rate and depth); irrigation (frequency, timing; method and amount); grazing and grass
cutting events; residue management.

Additional data: Runoff curve number; Manning’s roughness coefficients for soil and
river channel; channel slope and length.

Meteorological data:

Daily values for precipitation; mean or minimum and maximum air temperature;
solar radiation; relative humidity; wind speed.

Outputs

Water balance; emissions of carbon dioxide, methane and nitrous oxide from soil;
soil carbon budget; soil nitrogen budget; crop development and yield.; carbon,
nitrogen and phosphorus pools in soils; influx (including source) of carbon, nitrogen
and phosphorus to soil; efflux (including flux pathway) of carbon, nitrogen and
phosphorus from soils.

Developer

The late Changsheng Li (Institute for the Study of Earth, Oceans and Space,
University of New Hampshire)

Website

http://www.dndc.sr.unh.edu/

Language

C++

Availability

Free access

Notable
references

Li et al. (1992a) Describes the structure of the model, model inputs and sensitivity.

Li et al. (1992b) Describes a number of previous applications of the model to
demonstrate its successful performance.

Institute for the Study of Earth, Oceans and Space (2012) Provides a methodology on
how to operate the model and describes model input requirements and outputs.

Gilhespy et al. (2014) Reviews the history of the model, different versions that have
been developed and discusses its strengths and weaknesses.
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Table 2.5: A summary of the key aspects of the MODFLOW hydrological model.

Model MODFLOW (including the MODPATH and MOC3D extensions)
Type Physically-based, fully-distributed model
.. Groundwater resource management; contaminant transport investigations; climate
Applications . . .
change impact assessments; chemical transport.
Site specific data:
Digital elevation model; channel geometry; initial hydraulic conditions; geological
layers and their properties (e.g. spatial extent, upper and lower depth, hydraulic
Inputs conductivity, specific storage); point sources and extractions.
Meteorological data:
Precipitation; evapotranspiration.
Outouts Hydraulic head evolution; surface runoff; lateral flow; groundwater flow;
utpu groundwater budget and particle path lines; river stage.
Developer United States Geological Survey
Website http://water.usgs.gov/ogw/modflow/
Language Fortran 90 and C
Availability Free access
Harbaugh (2005) Describes the concepts, model equations of MODFLOW-2005 and
Notable provides user input instructions.
references

McDonald and Harbaugh (2003) Summarise the history and development of
MODFLOW.
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Table 2.6: A summary of the key aspects of the PHREEQC hydrological model.

Model PHREEQC
Type Physically-based, lumped model
.. Modelling of chemicals in solution, chemical transport, surface water and
Applications
groundwater management.
Temperature; pH; chemical concentrations; valence states of chemicals; density of
Inputs -
solution.
Chemical diffusion and transport; chemical composition of a solution (reactions
modelled include: mineral dissolution, mineral precipitation, cation exchange, surface
Outputs complexation, gas exchange, evaporation); changes in hydrological conditions
(temperature, pH and redox state); a breakdown of the geochemical reactions that
account for the changes in the chemical composition of a solution over time.
Developer David Parkhurst (United States Geological Survey)
Website http://wwwbrr.cr.usgs.gov/projects/ GWC_coupled/phreeqc/
Language C++
Availability | Free access
Notable Parkhurst and Appelo (2013) The user guide for PHREEQC which also provides
references example applications.
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Table 2.7: A summary of the key aspects of the Hydrological Predictions for the
Environment (HYPE) hydrological model.

Model HYPE

Type Physically-based, semi-distributed model

Modelling the impacts of land use and management practices on water quality; best
Applications | management practice analysis; water resources and catchment management; climate
change impact assessments; pollutant loss studies.

Site specific data:

Digital elevation model; river network map; land cover; land management practices
(e.g. crop types; tile drain depths; fertiliser application timing and amount;
cultivation and harvesting dates; residue management) soil map and soil properties
Inputs (e.g. initial nutrient content); point sources.

Meteorological data:

Precipitation; air temperature; relative humidity; fraction of precipitation that is
snowfall; minimum air temperature; maximum air temperature; wind speed; solar
radiation.

Flow rate; nitrogen and phosphorus concentration and load; water balance;

Outputs groundwater flow; surface runoff.

Developer Swedish Meteorological and Hydrological Institute

Website http://hypecode.smhi.se/

Language Fortran 95

Availability Free access
Stromgqvist et al. (2012) Describes the application of HYPE to model the whole of
Sweden.

Notable )

references Arheimer et al. (2012) Describes the application of HYPE to the Baltic region to

model the impacts of future climate change and mitigation measures on nutrient
loads and water volumes that enter the Baltic Sea.
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Table 2.8: A summary of the key aspects of the HydroGeoSphere hydrological

model.
Model HydroGeoSphere
Type Physically-based, fully-distributed model
Modelling impacts of climate change, land use, and management practices on
Applications | catchment hydrology and water quality; flood risk assessments; catchment and water
resource management; pollutant loss studies.
Site specific data:
Digital elevation model; land use map; soil map; soil properties (e.g. profile, porosity
and permeability); geological layers and their properties (e.g. spatial extent, upper and
lower depth, hydraulic conductivity, storavity; residual saturation and specific
Inputs storage) crop types and vegetation properties (e.g. leaf area index and root depth)
Manning’s roughness coefficient for land surface; point sources.
Meteorological data:
Precipitation; air temperature; potential evapotranspiration.
Discharge; overland flow; unsaturated zone flow; groundwater flow; water balance;
Outputs hydraulic head; water quality (e.g. concentrations of nutrients and other
contaminants).
Developer Aquanty
Website http://www.aquanty.com/hydrogeosphere/
Language Fortran 95
Availability Licensed access
Brunner and Simmons (2012) Reviews HydroGeoSphere and its capabilities.
Notable Aquanty (2016) Describes the processes modelled within HydroGeoSphere and the
equations which govern those processes.
references
Goderniaux et al. (2009) Describes the application of HydroGeoSphere to model the
impacts of climate change on groundwater reserves.
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Table 2.9: A summary of the key aspects of the Hydrological Simulation Program -
FORTRAN (HSPF) hydrological model.

Model HSPF
Type Physically-based, semi-distributed model
Modelling impacts of changes in land use and management practices; climate
Applications change impacts; pollutant loss studies; best management practices analysis;
hydrological assessments; catchment management and planning.
Site specific data:
Digital elevation model; river network geometry; soil map and soil properties; land
cover map; land management practices (e.g. crop types grown, fertiliser and
pesticide application amount and timing; cultivation and harvesting dates and
Inputs tillage practices); point sources.
Meteorological data:
Hourly values for precipitation; air temperature; dew point temperature; wind
speed; solar radiation; potential evapotranspiration; relative humidity; cloud cover.
Water balance; discharge; surface runoff; soil moisture content; interflow;
baseflow; evapotranspiration; groundwater recharge; nutrient (e.g. ammonium,
Outputs nitrate, organic nitrogen, orthophosphate and organic phosphorus), sediment and
pesticide load and concentration; pH; dissolved oxygen; biological oxygen
demand; zooplankton; phytoplankton; faecal coliforms.
Developer United States Environmental Protection Agency
Website https://www.epa.gov/exposure-assessment-models/hspf
Language Fortran 77
Availability Free access
Bicknell et al. (1997) The user manual for HSPF.
Donigian et al. (1984) 4 guide which describes the entire application process for
Notable
HSPF.
references
Singh et al. (2005) 4n intercomparison study which describes the application of
HSPF and SWAT to simulate streamflow in a test catchment.
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Table 2.10: A summary of the key aspects of the fully-integrated MIKE SHE

hydrological model.
Model MIKE SHE
Type Physically-based, fully-distributed model

Catchment management and planning; water supply management; assessing the
Applications | impacts of land use, climate change and agriculture; water quality remediation;
pollutant loss studies.

Site specific data:

Digital elevation model; geological layers and their properties (i.c. spatial extent,
upper and lower depth, horizontal and vertical hydraulic conductivity, specific yield
and specific storage); depth of tile drains; time to drain soils to field capacity; river
network map; river cross-sections; Manning’s M values for land surface (this is the
inverse of Manning’s n); land cover map; crop types and rotation (i.e. cultivation and
Inputs harvesting dates and irrigation practices); vegetation properties (i.e. leaf area index,
root depth and crop coefficient over time); soil map; soil properties (i.e. profile;
saturated moisture content; effective saturation moisture content; field capacity;
wilting point; residual moisture content; hydraulic conductivity; bulk density).

Meteorological data:

Precipitation; potential evapotranspiration.

Overland flow; river flow; unsaturated zone flow; groundwater flow; actual
Outputs evapotranspiration; water quality (e.g. nutrient, sediment and pesticide loads and
concentrations); water balance.

Developer MIKE Powered by DHI

Website https://www.mikepoweredbydhi.com/

Language Fortran

Availability | Licensed access

DHI (2016b) Describes the step-by-step methodology to be used when constructing a
fully-integrated MIKE SHE model.

Notable DHI (2016a) The user guide for MIKE SHE which describes the history of the model,
references model structure, input requirements and outputs.

DHI (2016¢) The reference guide for MIKE SHE which describes the processes that
are modelled and the equations used to govern those processes.

The model that is to be selected for use within this investigation should meet the following

criteria. It should:

1. Simulate the key hydrological and pollutant processes relevant to the River
Wensum catchment and Blackwater sub-catchment.
2. Be capable of modelling the impacts of mitigation measures on nitrate, total

phosphorus and metaldehyde.
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3. Provide outputs at the required spatial and temporal scales (i.e. at the catchment
and sub-catchment scales and at a daily time-step).

4. Be computationally efficient.

5. Have data requirements that can be met by this study.

6. Be able to simulate spatially varying crop rotations.

SWAT simulates all of the key hydrological and pollutant processes found within
catchments, including the River Wensum catchment and Blackwater sub-catchment
(Neitsch et al., 2011). For example, the hydrological processes simulated by the model
include precipitation, evapotranspiration, infiltration, surface runoff, lateral flow,
groundwater return flow, water routing and transmission losses in streams (see section
2.4.1 for a detailed description of the processes simulated within SWAT) (Neitsch et al.,
2011). The pollutant processes simulated by the model include sediment erosion, the
nitrogen and phosphorus cycles and pesticide fate and transport (Neitsch et al., 2011).
Unlike other models, it is explicitly designed to simulate the impacts of mitigation
measures on nutrients and pesticides within catchments (Arnold et al., 2012), and it can
simulate the effects of these measures on nitrate, total phosphorus and metaldehyde
(Neitsch et al.,, 2011). SWAT can also provide outputs at the catchment and sub-
catchment scales and at a daily time-step (Arnold et al., 2014). The model is also
considered to be computationally efficient (Neitsch et al., 2011), allowing to simulations
to be conducted in a timely manner. The data requirements of SWAT, which includes
land use, soil, topographic, meteorological and management datasets, can also be feasibly
met by this study (Arnold et al., 2014). Finally, the model can also simulate spatially
varying crop rotations (Neitsch et al., 2011). SWAT is considered to meet the criteria

defined above, thereby justifying its selection for application within this investigation.

SWAT is also an open source model that is freely available, is subject to ongoing
development, is widely used, provides considerable user support and is relatively user-
friendly. Given these advantages, the properties of the model and the potential
applications that SWAT lends itself to, it is considered to be highly suitable for
application within this study to assess the impacts of catchment mitigation measures on

water quality and the model is discussed in more detail in Section 2.4.

2.4 The Soil and Water Assessment Tool (SWAT)
The SWAT model is jointly developed by the United States Department of Agriculture
Agricultural Research Service and Texas A&M AgriLife Research and is the product of
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over 40 years of research (Gassman et al., 2007). According to Williams et al. (2008), the
model was developed as a successor to the Simulator for Water Resources in Rural Basins
(SWRRB) model (Williams et al., 1985), and the Routing Outputs to Outlet (ROTO)
model (Arnold et al., 1995). The SWAT model in its current form includes components
from a number of other models (Figure 2.7). The hydrology, crop-growth and pesticide
transport components of the SWAT model are derived from the field-scale models
referred to as the Chemicals, Runoff and Erosion from Agricultural Management Systems
(CREAMS) model (Knisel, 1980), the Environmental Policy Integrated Climate (EPIC)
model (Williams et al., 1984) and the Groundwater Loading Effects of Agricultural
Management Systems (GLEAMS) model (Leonard et al., 1987), respectively (Arnold et
al., 2012). These three sub-models, a groundwater sub-model, a weather generator and a
sediment routing sub-model were first integrated into the SWRRB model to simulate the
effects of management practices on hydrology and sediment yields at the catchment scale
(Williams et al., 1985). ROTO was developed to overcome the spatial limitations of
SWRRB and to assess the downstream impacts of management practices in larger
catchments (Arnold et al., 1995). ROTO was initially developed as a separate model to
be run alongside SWRRB to route outputs further downstream within a catchment,
thereby increasing the number of sub-catchments that could be analysed within SWRRB
which until this point was limited to ten sub-catchments (Gassman et al., 2007). This
approach was considered to be quite cumbersome in practice, and to overcome these
difficulties the SWRRB and ROTO models were merged into what became the first
SWAT model. Since the model’s creation, SWAT has been subject to continued
development and expansion, and now incorporates the in-stream kinetic routines of the
QUAL2E water quality model (Brown and Barnwell, 1987) and improved carbon cycling
routines based on those from the CFARM model (Kemanian et al., 2011). The model is
also now able to account for changes in agricultural management practices and land use
over time (Arnold et al., 2012). An ArcGIS SWAT interface (ArcSWAT) has also been
developed to pre-process model inputs and to execute simulations within SWAT (Olivera
et al., 2006). A description of the SWAT model, the processes simulated by the model,
key model features and previous and potential applications are provided for reference in

the sections that follow.
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Figure 2.7: Schematic diagram of SWAT model components and development

history. Adapted from Gassman et al. (2007) and Arnold et al. (2012).

2.4.1 Model Description

SWAT is a semi-distributed, semi-physically based, continuous time-step model that is
designed to simulate the impacts of management practices on surface water, groundwater,
nutrients, sediments and pesticides at the catchment scale (Arnold et al., 2012). The model
operates at a daily time-step, is computationally efficient and enables users to simulate
the impacts of variations in management practices and land use over long time-periods
(Neitsch et al., 2011). The model requires information on land use, topography, soils,
management practices and weather for the catchment where it is to be applied. Within
SWAT, a catchment is divided into sub-catchments which are sub-divided into
Hydrologic Response Units (HRUs) that consist of unique combinations of homogeneous
types of land use, soil and slope characteristics (Arnold et al., 2012). Each HRU
represents a percentage of the sub-catchment area and is not modelled contiguously in
space. As an alternative to the HRU approach, users may choose to only divide the
catchment into sub-catchments which reflect the single most dominant land use, soil type
and slope category within each sub-catchment (Gassman et al., 2007). The major
processes modelled within SWAT include climate, hydrology, plant growth, sediment
erosion, nutrient cycling and transport, pesticide fate and transport and management

practices (Neitsch et al., 2011).

The hydrologic cycle as modelled within SWAT is based on the water balance equation
as defined by Equation 1 and outlined by Neitsch et al. (2011):
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SW, = SWo + X2 (Raay — Qsurs — Ea — Weeep — Qguw) (1)

Where:

SW; is the final soil water content day i (mm H>O)

SW, is the initial soil water content on day i (mm H>O)

t is the time (days)

Raay is the amount of precipitation on day i (mm H>O)

Qsurf is the amount of surface runoff on day i (mm H;O)

E, is the amount of evapotranspiration on day i (mm HO)

Wseep is the amount of water entering the vadose zone from the soil profile on

day i (mm H;O)
Qgw is the amount of return flow on day i (mm H20O)

The hydrologic cycle is also the primary driver of the other processes simulated within
the model because it impacts on plant growth and nutrient, sediment and pesticide

transport (Arnold et al., 2012).

Hydrological processes within SWAT are split into two phases: (i) the land-based phase;
and (ii) the channel-based phase (Neitsch et al. 2011). The former determines the amount
of water, sediment, nutrients and pesticides that enter the stream network. The latter
routes water, sediment nutrients and pesticides through the stream network within the

catchment.

The hydrologic cycle within a catchment is driven and controlled by the local climate
(Arnold et al., 2012). This is also the case within SWAT. The meteorological inputs that
are therefore required to perform simulations within SWAT include daily observations of
precipitation, mean wind speed, maximum and minimum temperature, solar radiation and
mean relative humidity (Arnold et al., 2014). If no observations are available, SWAT
includes a weather generator which has the capacity to generate estimates of the required
daily meteorological inputs from long-term (i.e. preferably 20 years or more) monthly
climate statistics from local weather stations (Arnold et al., 2012). SWAT uses the mean
daily temperature values to estimate whether precipitation should be classified as either
snow or rain (Gassman et al., 2007). Daily soil temperature is also calculated due to the

impact it has on water movement and residue decay (Arnold et al., 2012). The
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hydrological processes modelled within SWAT include canopy storage, infiltration,
redistribution of water throughout the soil profile, evapotranspiration, lateral flow,
surface runoff, ponds, tributaries, transmission losses in streams, and return flow (Neitsch

etal., 2011).

The volume of surface runoff within the model is calculated using a modified version of
the Soil Conservation Service Runoff Curve Number method (Neitsch et al., 2011). The
rate of infiltration of water from the surface into soils is determined by the hydraulic
conductivity and the initial water content of soils. Percolation is calculated for each layer
of soil within the model and occurs when the water content of one layer exceeds field
capacity and the soil layer below is unsaturated (Neitsch et al., 2011). The rate of flow is
determined by the hydraulic conductivity of the soil layer. A kinematic storage model
developed by Sloan et al. (1983) and outlined by Sloan and Moore (1984) is used to
simulate lateral flow within the subsurface and takes account of variations in slope and
the hydraulic conductivity and water content of soils (Neitsch et al., 2011). The model
also incorporates routines to simulate tile drainage. By default, potential
evapotranspiration within the model is calculated using the Penman-Monteith method
(Monteith, 1965; Allen et al., 1998), but there is the option to use either the Priestley-
Taylor method (Priestley and Taylor, 1972) or the Hargreaves method instead
(Hargreaves and Samani, 1985). After potential evapotranspiration has been calculated,
SWAT then calculates actual evapotranspiration (Neitsch et al., 2011). Any rainfall that
has been intercepted by the plant canopy is first evaporated. Transpiration by plants and
evaporation from soils is then calculated using the method described by Ritchie (1972)
and outlined by Neitsch et al. (2011). Water that percolates below the soil profile within
SWAT becomes groundwater recharge and is partitioned between a deep and shallow
aquifer. Water that enters the deep aquifer is considered to contribute groundwater return
flow to streams outside of the catchment and is lost from the model. Water that enters the
shallow aquifer contributes return flow (also known as baseflow) to streams within the
modelled catchment. SWAT incorporates a simplified version of the plant growth sub-
model from the EPIC model and is applied to assess nutrient and water removal by plants
from soils, plant biomass and yield and transpiration (Williams et al., 1984). The model
uses the accumulating heat unit approach to simulate plant development (Neitsch et al.,
2011). Under non-optimal conditions, plant growth may be constrained by insufficient
nutrient and water availability and temperature stress. Sediment erosion is calculated

using the Modified Universal Soil Loss Equation (MUSLE) (Smith et al., 1984; Neitsch
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et al., 2011). The nitrogen and phosphorus cycles are modelled within SWAT to simulate
the movement and transformation of nitrogen and phosphorus within the environment
(Neitsch et al., 2011). Pesticide fate and transport is also modelled within SWAT which
accounts for volatilisation, leaching, decay and transportation in surface runoff (in
solution and when attached to eroded sediment). SWAT is also able to simulate the
management practices that occur within a catchment including irrigation, nutrient and
pesticide application, tillage and a variety of mitigation practices including buffer strips
and reduced tillage (Gassman et al., 2007). Once SWAT has determined the amount of
water, sediment, nutrients and pesticides that is transported from land to the river network,
they are routed downstream. The in-stream processes modelled by SWAT include
biodegradation, transformation, deposition, resuspension, volatilisation and diffusion
(Neitsch et al., 2011). The SWAT model simulates all of the key physical processes found
within the Wensum catchment and so it is considered to a suitable model to apply within

this investigation.

Neitsch et al. (2011) provides a detailed review of the physical processes modelled within
SWAT, the theory behind the model and the equations applied within the model to
simulate physical processes. Input variables define physical properties within the model
and parameters are used to define which management practices are performed. Arnold et
al. (2014) provides a detailed overview of the model input requirements and outputs.
Arnold et al. (2012) also present an overview of the methodology that can be adopted
when applying the model. The model is subject to ongoing development and future
landscape unit and grid-based versions will allow a more detailed spatial representation
of catchment practices to be implemented within SWAT (Arnold et al., 2010; Bosch et
al., 2010; Bonuma et al. 2014; Rathjens et al., 2015).

2.4.2 Model Applications

The acceptance of SWAT as a robust catchment modelling tool is evidenced by the
hundreds of SWAT related peer-reviewed articles that have been published within
scientific journals (Gassman et al., 2007). SWAT has been applied to conduct hydrology
and water quality assessments, sensitivity analyses, pollutant loss studies and to assess
climate change impacts, management practice impacts, land use impacts and calibration
techniques (Gassman et al., 2007). For reference, Gassman et al. (2007) provide a detailed

summary of over 250 previous applications relating to SWAT and Krysanova and Arnold
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(2008), Douglas-Mankin et al. (2010) and Tuppad et al. (2011) review the historical

development and applications of the model.

The Benchmark Models for the Water Framework Directive project established a set of
criteria to assess which models have the potential to assist in the implementation of the
WED (Saloranta et al., 2003). As part of this project, the suitability of SWAT for assessing
the impacts of mitigation measures proposed to meet WFD targets on water quality was
examined by Barlund et al. (2007). Rode et al. (2008) and Volk et al. (2009) also applied
SWAT to examine the potential for changes in catchment management to ensure that
water bodies achieve WFD targets. SWAT has also been widely and successfully applied
to assess the impacts of agricultural mitigation measures on water quality (e.g. Santhi et
al., 2006; Hu et al., 2007; Gevaert et al., 2008; Ullrich and Volk, 2009; Lam et al., 2011;
Moriasi et al., 2011; Glavan et al., 2012; Aouissi et al., 2014; Boithias et al., 2014; Santhi
et al., 2014). Examples of mitigation measures that have been modelled include buffer
strips, nutrient management plans, alternative tillage practices and techniques, alternative
crop rotations and changes in land use. Shepherd et al. (1999) evaluated the suitability of
14 different models to simulate diffuse nutrient losses to watercourses in eastern England
in the UK and found that SWAT was the most suitable model for this task. Due to the
widespread acceptance of SWAT as a robust tool to assess the impacts of catchment
management practices on water quality, it is considered to be suitable for this aspect of

this research project.

For a model to be applied with confidence, it is important to assess the ability of the model
to simulate the variables of interest (e.g. flow rate or nitrate concentration) and to
conclude whether it can do so with a sufficient degree of accuracy. There is no standard
or universally accepted metric applied to assess model performance but Moriasi et al.
(2007) suggest that models should achieve a Nash-Sutcliffe Efficiency (NSE) coefficient
of greater than 0.5 for flow, sediment, nitrogen and total phosphorus at a monthly time-
step for performance to be considered satisfactory. If we consider this performance
criterion to apply at all time-steps, over half of the 115 SWAT hydrological assessments
and 37 SWAT pollutant loss studies summarised by Gassman et al. (2007), achieved this
level of model performance, but some studies reported poor results for all variables
particularly at a daily time-step and it is in this context that we consider the performance

of SWAT within the River Wensum catchment.

A review of the literature has shown the SWAT is suitable for application to assess the

impacts of catchment mitigation measures on water quality and that it is considered to be
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an appropriate DST for assisting authorities in managing catchments to achieve statutory
water quality targets. It is therefore judged that SWAT is highly suitable for application
within this study. For this reason, and those described in Section 2.3, it has been selected

as the water quality model to be applied for the purposes of this research.

2.4.3 The Swat Calibration and Uncertainty Program (SWAT-CUP)

SWAT-CUP is a computer program that can be applied to SWAT models to conduct
semi-automated calibration, validation, sensitivity analysis and uncertainty analysis,
although a manual approach can also be used within the program to calibrate models
(Abbaspour, 2015; Abbaspour et al., 2015). SWAT-CUP incorporates five optimisation
algorithms that can be used to optimise model parameters including Sequential
Uncertainty Fitting version 2 (SUFI-2) (Abbaspour et al., 2004; 2007), Generalised
Likelihood Uncertainty Estimation (GLUE) (Beven and Binley, 1992); Particle Swarm
Optimisation (PSO) (Kennedy and Eberhart, 1995), Parameter Solution (ParaSol) (van
Griensven and Meixner, 2006) and Markov Chain Monte Carlo (MCMC) (Vrugt et al.,
2003). Relative to manual techniques, the semi-automated nature of SWAT-CUP
provides an efficient mechanism to conduct model calibration, validation, sensitivity
analysis and uncertainty analysis. Due to the advantages that SWAT-CUP provides over
a manual approach, it has been selected as the program that will be applied within this

study to undertake these tasks.

SWAT-CUP incorporates a parallel processing module that allows multiple SWAT model
simulations to be run in parallel (i.e. concurrently) when using the SUFI-2 algorithm
(Abbaspour, 2015). The parallelised approach is more computationally efficient than the
non-parallelised approach which runs one simulation at a time, reducing the amount of
time it takes to conduct model sensitivity analysis, calibration, validation and scenario
analysis (Rouholahnejad et al., 2012). At present, the parallel processing module within
SWAT-CUP supports the parallelisation of SUFI-2 but none of the other optimisation
algorithms. The robustness of SUFI-2 as an algorithm for the optimisation of hydrological
model parameters and its suitability for performing model calibration, validation and
sensitivity analysis has been demonstrated in the examples of Abbaspour et al. (2007),
Yang et al. (2008) and Faramarzi et al. (2009). For these reasons, and the increased
computational efficiency that the parallelised version of SUFI-2 allows over the other
optimisation algorithms, it has been chosen as the optimisation algorithm that will be

applied within SWAT-CUP for this study.
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Within SUFI-2, the values of model parameters are considered to be uncertain
(Abbaspour et al., 2007), and this parameter uncertainty propagates uncertainties in model
predictions. SUFI-2 is based on the concept of equifinality which proposes that multiple
parameter sets provide predictions that are acceptable (Beven, 1993; Beven and Freer,
2001; Beven, 2006). Arguing in favour of the concept of equifinality and the non-
uniqueness of parameter sets, Beven and Freer (2001) suggest that practitioners should
search for those parameter sets that provide an adequate representation of a system rather
than a single ‘optimum’ parameter set. These parameter sets are described as behavioural
(i.e. they provide predictions that are an acceptable fit to observations). Numerous
performance criteria have been used to assess whether a parameter set is behavioural or
non-behavioural but one commonly applied is whether the predictions developed from a
particular parameter set achieve an NSE value of greater than 0.5. Based on this criterion,
if a parameter set achieves an NSE greater than 0.5 it is considered to be behavioural. It
is difficult to reject one behavioural parameter set in favour of another that achieves a
superior performance according to the performance criterion applied given that the
performance of a parameter set may be dependent on the calibration and validation time
periods used to assess performance (Beven, 2006). A parameter set might perform
differently if a different time period is used. Since each of the behavioural parameters
provide predictions that are considered to be acceptable, they may also be applied to
provide an assessment of prediction uncertainty (Beven, 1993). The objective of the
SUFI-2 algorithm is to identify the optimum range of values for each parameter which
can be applied to identify those solutions that are behavioural. This approach yields
multiple predictions that are acceptable and provides a means to assess model prediction
uncertainty. A brief step-by-step overview of the SUFI-2 algorithm is provided below but
for a more detailed description of the conceptual basis of SUFI-2 and a description of the
algorithm see Abbaspour et al. (2004) and Abbaspour et al. (2007) which provide the

basis of the description below.

Stage 1: A suitable objective function must first be selected and will be used later in the
process to provide a statistical assessment of the performance of the model in simulating
the variables of interest (e.g. flow rate). Example objective functions that may be used

include the NSE coefficient or percent bias (PBIAS).

Stage 2: A physically realistic uncertainty range must be defined for the value of each
parameter that is to be optimised. The value of a parameter is considered to be uniformly

distributed within this range, as defined by the minimum and maximum values.
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Stage 3: A sensitivity analysis should be conducted to identify those parameters that
model outputs are sensitive to and, therefore, the parameters that should be included in

model calibration.

Stage 4: Initial global uncertainty ranges are defined for each parameter and Latin
Hypercube sampling (McKay et al., 1979) is conducted to generate n parameter sets,
where n equals the number of simulations to be performed. Abbaspour et al. (2007)
recommends that between 500-1000 simulations are performed during this first iteration
and each iteration that follows. A total of n simulations are then performed and the model

outputs for variables of interest (e.g. flow rate) are saved.

Stage 5: To assess the performance of the model in simulating the variables of interest
(e.g. flow rate) the objective function (e.g. the NSE coefficient) is calculated for each

simulation.

Stage 6: A number of measures are calculated, including the 95% confidence interval of
each parameter, to identify improved parameter ranges that may be used in future

iterations.

Stage 7: Next, the 95% prediction uncertainty range is calculated for each variable of
interest (e.g. flow rate) at each time-step. The 95% uncertainty range equates to
simulations that are contained between the 2.5th and 97.5th percentiles. The goodness of
fit of the model is assessed by calculating: (i) the proportion of observations that are
bracketed by the 95% uncertainty range and; (ii) the d-factor, which is the ratio of the
mean distance between the upper and lower 95% uncertainty range to the standard
deviation of the measured data (a measure of the degree of uncertainty). The performance
of the model in simulating the variables of interest (i.e. flow rate) can also be assessed

from the values achieved for the objective function.

Under an ideal scenario, 100% of observations would be bracketed by the uncertainty
band and the d-factor would be minimal. In practice, a balance must be achieved to
maximise the proportion of observations bracketed by the 95% uncertainty range, whilst
minimising the degree of uncertainty in predictions and maximising model performance
according to the objective function. When it is judged that the model is sufficiently
calibrated according to the criteria defined above, the process is finished. If the model is

not deemed to be sufficiently calibrated, Stage 8 is performed.

Stage 8: Uncertainty ranges tend to be quite large during the first iteration and additional

iterations generally need to be performed. Using those estimates derived in Stage 6,
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parameter ranges are updated and a subsequent iteration beginning at Stage 4 is

performed.

The first stage in the process of performing model calibration and validation within
SWAT-CUP is to identify the model parameters that should be included to accurately
simulate the variables of interest. For example, parameters that affect baseflow and
surface runoff within SWAT are important for determining flow rate within a river and
so should be included when calibrating flow rates within the model. The parameters that
are important can usually be identified from literature, although expert judgement may
also be used. Care should be taken to ensure that the ranges assigned to parameter values
remain within a physically realistic uncertainty range (Arnold et al., 2012). Next, using
those parameters selected, a sensitivity analysis should be conducted to identify the
parameters that model outputs are sensitive to. Sensitivity analysis involves calculating
the rate of change in a variable (i.e. flow rate) compared to changes in parameter values
(Arnold et al., 2012). Only those parameters that model outputs are sensitive to should be
included calibration. Next, model calibration is performed to optimise parameter ranges
to improve the goodness of fit between model predictions and observations. When
completed, the performance of the model in simulating variables of interest (e.g. flow rate
or nitrate concentration) can be assessed and a judgement can be made regarding whether
the model performs satisfactorily. If model performance is considered to be satisfactory,
validation of the model parameter sets obtained from calibration can then be performed
during a period of time that is independent from the calibration time period. The purpose
of validation is to examine if the parameter sets obtained from calibration also perform
satisfactorily during an independent time period. If the model performs satisfactorily

during calibration and validation it can be applied to conduct impact assessments.

2.5 Chapter Summary

In this chapter, a review was carried out to establish this study within the context of
research that relates to surface water quality, catchment management, agriculture,
environmental policy and catchment-scale water quality modelling. The importance of
providing safe and sustainable water supplies whilst also increasing agricultural
production to meet the needs of a growing global population was discussed and it was
recognised that reconciling these two needs will be a difficult challenge because
agriculture is often one of the drivers of water quality degradation. The potential for

agricultural intensification to meet the growth in demand for food was discussed and the
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environmental impacts of intensification were identified. It was considered that new
strategies will need to be developed to ensure that agriculture can sustainably intensify to
meet food demand, whilst also minimising the impacts on the environment and ensuring
the supply of safe water. It was also recognised that there is an urgent need to mitigate
the impacts of agriculture on water quality due to the increasing amounts of fertilisers and

pesticides used in agriculture and the rapid degradation in water quality.

The current state of water quality was assessed and the main stressors on water resources
and the effects of poor water quality were identified. The types and sources of water
pollution were described and the relative importance and difficulties of controlling diffuse
and point source pollution were discussed. Diffuse pollution from agriculture was
identified as a major global pressure on surface water and groundwater quality. The role
of catchment management as a potential solution that can be used to mitigate agricultural
diffuse water pollution and the potential for catchment-scale water quality models to be

applied as DSTs to identify effective mitigation measures was also highlighted.

The types of models available for application were described in detail and the key aspects
of 10 different models were reviewed as part of a process to identify the most suitable
model to apply within this study. As a result of this review, the SWAT model was
identified as highly suitable for application to assess the impacts of mitigation measures
on pollutant losses and water quality and was selected as the model to be applied for the
purposes of this research. Because the model is semi-physically based, its findings are
also transferable to other similar catchments. The history of SWAT, the processes
simulated within the model and the model structure were described in detail and the
previous and potential applications of SWAT were discussed. The program SWAT-CUP,
which can be applied to SWAT models to conduct semi-automated calibration, validation,
sensitivity analysis and uncertainty analysis, was also described in detail and an overview

of the SUFI-2 optimisation algorithm was provided.

From the review in this chapter, a number of gaps in knowledge and major shortcomings
in earlier work were identified which provided the motivation for the aims identified in
Chapter 1. Firstly, a clear need to develop mitigation measures that can be adopted to
mitigate agricultural diffuse water pollution, improve water quality and assist the
development of sustainable agricultural practices was identified. Secondly, it was
identified that modelling studies rarely consider the uncertainties of predictions and that
additional research to provide estimates of the uncertainties of the predicted impacts of

mitigation measures on diffuse water pollution is therefore required. Conducting
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uncertainty analyses will inform the degree of confidence that can be attached to model
predictions, improve the reliability of models as DSTs and allow better-informed policy
decisions to be made. Thirdly, it was established that there is a need to undertake
additional research to investigate the impacts of mitigation measures on pollutants at a
daily resolution to develop a better understanding of how frequently water quality
standards are exceeded, the effectiveness of measures and the dynamics of pollutant
losses. Fourthly, it was found that additional research to model the impacts of mitigation
measures on multiple pollutants needs to be performed to develop a better understanding
the impacts of measures on various pollutants and to mitigate the risk of introducing
measures that exacerbate losses of other pollutants. Fifthly, the recalcitrance of
metaldehyde to traditional water techniques, a lack of research into the impacts of
catchment mitigation measures on metaldehyde and the subsequent need for a study to

investigate potential solutions was also noted.
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3 STUDY AREA AND DATA

3.1 The River Wensum Catchment
The River Wensum catchment has been selected as the study area to investigate the
impacts of agricultural mitigation measures on diffuse metaldehyde pollution (see

Chapter 6).

The River Wensum is a shallow-gradient, naturally-enriched, groundwater-dominated,
lowland calcareous river located in Norfolk, England and drains a total catchment area of
675 km? (Sear et al., 2006) (Figure 3.1). The source of the river is located on Colkirk
Heath, near South Raynham (52° 47" 4.06"” N, 0° 52" 44.26" E) in North Norfolk at a
height of 75 m above sea level and flows in a south-easterly direction for a distance of 78

km until it merges with the River Yare in the city of Norwich.
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In recognition of the status of the River Wensum as one of the best whole-river examples
of its type, a 71 km stretch from the source of the river to a downstream site at Hellesdon
Mill (52° 37" 18.26" N, 1° 19" 24.26" E) was designated as a Site of Special Scientific
Interest (SSSI) in 1993, incorporating an area of 393.31 ha, and is intended to enhance or
conserve features of importance within the site (Natural England, 1993). Reasons cited
for this designation include the presence of a high-diversity of species, including over 100
different plant species, as well as a diverse population of invertebrates and fish, within a
traditionally-managed and relatively pristine lowland corridor. In further recognition of
the presence of important fauna and flora, an area of 306.79 hectares along the River
Wensum was also designated as a Special Area of Conservation (SAC) in 2005 under the
EU Habitats Directive (Council of the European Union, 1992; English Nature, 2005; Joint
Nature Conservation Committee, 2015; 2016). Within the SAC, a favourable
conservation status must be maintained or restored for populations of white clawed
crayfish (Austropotamobius pallipes), European bullhead (Cottus gobio), brook lamprey
(Lampetra planeri), Desmoulin’s whorl snail (Vertigo moulinsiana) and for watercourses
which host Ranunculion fluitantis and Callitricho-Batrachion vegetation (Joint Nature
Conservation Committee, 2016). A favourable conservation status as defined within the
EU Habitats Directive is essentially a status at which the target of interest is not in decline
and its long-term abundance and distribution is not threatened (Council of the European

Union, 1992).

Despite these goals, the most recent condition assessment carried out in 2010 found that,
of the protected habitats contained within the SSSI, 11.05% are in a favourable condition,
47.70% are in an unfavourable but recovering condition and 41.25% are in an
unfavourable and unchanging condition (Natural England, 2016). Reasons cited for
unfavourable conditions include agricultural diffuse water pollution, siltation of river
channels, the presence of invasive freshwater species, water pollution from discharges
into the river network (including discharges from sewage treatment works), water
abstraction, unsuitable water levels and the presence of unsuitable dams, weirs and other
structures (Natural England, 2015a). Indeed, to safeguard water resources from potential
risks to drinking water quality, the entirety of the catchment is designated as a Drinking

Water Protected Area (DWPA) (Environment Agency, 2009).

Prior to anthropogenic modification, the River Wensum existed as a mixed single-thread
sinuous and anastomosing river surrounded by floodplains which hosted a patchwork of

marshland and woodland (Sear et al., 2006). Most of the floodplains were cleared
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approximately 4500 years ago for use within agriculture and the establishment of
settlements and by medieval times, the structure of river had been modified to the form it
takes today. Impoundment of the river by mill-structures started approximately 900 years
ago and peaked just before the Industrial Revolution (circa 1760) and has had a major
effect on the hydrology and ecology of the river. Despite these changes, the river
environment that is present today is considered to be of great ecological and cultural
importance and its preservation is dependent on the implementation of effective
management strategies to mitigate or remove the pressures and threats that it currently

faces.

3.1.1 Geology and Hydrogeology

The entire catchment is underlain by Cretaceous Chalk bedrock deposits that formed
under warm and shallow marine conditions between 66 to 100 million years ago (Figure
3.2) (Sear et al., 2006; British Geological Survey, 2016a). The Chalk dips in a north-
easterly direction at a shallow angle of less than 1° and is composed of a well-fissured
and fine-grained limestone that forms a major aquifer used to meet a large proportion of
water demand in eastern England (Hiscock, 1993; Hiscock et al., 1996; Sear et al 2006;
Allen et al., 1997). The Chalk is mostly composed of coccoliths, the calcium carbonate
plates that combine to form the shells of a type of phytoplankton known as
coccolithophores (Stanley et al., 2005). At some sites in the east of the catchment, the
Chalk is overlain by the Wroxham Crag Formation (Lewis, 2014). The Wroxham Crag
Formation is primarily composed of sand and gravel, although clay and silt beds and
laminae are present in the upper profile of the formation (Rose et al., 2001; Rose et al.,
2002). The bedrock geology is unconformably overlain by a complex sequence of
superficial deposits of Quaternary origin which include tills, glaciofluvial and
glaciolacustrine sands and gravels that were deposited during the Pleistocene and
alluvium, river terrace depots, wind-blown sand and peat deposited during the Holocene

(Figure 3.3) (Sear et al., 2006; Lewis, 2014).

The aquifers within the catchment consist of the alluvium, river terrace deposits,
glaciolacustrine and glaciofluvial sands and gravels, the Wroxham Crag Formation and
the Chalk (Lewis, 2014). These layers are intersected by different tills of low
permeability, creating a complex network of aquifers. The aquifer system as a whole is
estimated to have a mean transmissivity of 685 m? day™!' and a mean storage coefficient

0f 0.064 (Toynton, 1983).
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Several sources contribute to streamflow within the study area including surface runoff,
lateral flow, drain flow and groundwater return flow, which is the principal source. The
river has baseflow indexes of 0.82, 0.75, 0.75 and 0.64 at the flow gauges located at
Fakenham, Swanton Morley, Costessey Mill and Costessey Park, respectively (Figure
3.1) (National River Flow Archive, 2016a,b,c,d). In the north-west of the catchment
where chalk bedrock is located close to the surface, river flow is largely derived from
groundwater flow from the underlying chalk aquifer (Sear et al., 2006). In a south-easterly
direction along the river, the depth of superficial deposits increases and the contribution

to river flow by surface water also increases.
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Figure 3.2: The bedrock geology of the River Wensum catchment. Based upon
DiGMapGB-625, with the permission of the British Geological Survey (British
Geological Survey, 2016b).
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Figure 3.3: The superficial geology of the River Wensum catchment. Based upon
DiGMapGB-625, with the permission of the British Geological Survey (British
Geological Survey, 2016b).

3.1.2 Topography

According to the NEXTMap British Digital Terrain Model Dataset, which has a
resolution of 5 m, the catchment reaches a maximum elevation of 102.7 m above sea level
in the upper reaches of the north of the catchment at Swanton Novers (52° 51’ 1.98" N,
1°0"0.36" E) and falls to a few centimetres above sea level at the confluence of the River
Wensum with the River Yare to the south-east of Norwich (Figure 3.4) (Intermap
Technologies, 2007). The terrain of the catchment is relatively flat, with 90% of the area
having a slope of 5% or less (Figure 3.5). The main river channel slopes in a south-
easterly direction and experiences a fall of 75 metres over the 78 km length of the river
channel, representing an average gradient of 0.96 m km™' (Sear et al., 2006). The River
Wensum valley and the principal tributaries of the main river form the most distinct
topographical features that are present within the catchment. At certain sites the river and
its tributaries have eroded down through superficial deposits into the underlying chalk
bedrock. There are also a number of dry valleys above the headwaters in the north-west

of the catchment that formed under periglacial conditions.
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Figure 3.4: The digital elevation model of the River Wensum catchment. Map
derived from Intermap Technologies (2007).
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Figure 3.5: The slope of the River Wensum catchment. Map derived from Intermap

Technologies (2007).
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3.1.3 Data Description

3.1.3.1 Land Cover

The topographic characteristics of the River Wensum catchment make it highly-suitable
for use in agriculture. As such, according to the Land Cover Map 2007 (LCM2007) raster
dataset, which has a resolution of 25 m and divides land cover into 23 distinct classes
based on the Broad Habitats defined within the UK Biodiversity Action Plan (Morton et
al., 2011), land cover within the catchment is largely arable (Figure 3.6). Of the total
catchment area, 62% is used in agriculture for growing crops, 18.9% is grazing pasture,
7.3% is broadleaf woodland, 4.4% is other grassland 4.2%, forms suburban settlements,
1.4% is coniferous woodland, 1.4% forms urban settlements and 0.5% is freshwater.
Although the catchment is predominantly rural there are a number of main urban centres
including the city of Norwich which has a population of 132,000 and the towns of
Dereham and Fakenham which have populations of 19,000 and 8,000, respectively
(Office for National Statistics, 2016).
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Figure 3.6: A map of the land cover of the River Wensum catchment. Based upon
LCM2007 © NERC (CEH) 2011. Contains Ordnance Survey data © Crown
Copyright 2007. © third party licensors.
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3.1.3.2 Soils

According to the National Soil Map (NATMAP) vector dataset which displays the spatial
occurrence of 300 distinct Soil Associations across England and Wales, 12 different Soil
Associations are present within the River Wensum catchment (Figure 3.7) (Cranfield
University, 2016a). Four of the Soil Associations (Burlingham 1, Burlingham 3, Wick 2
and Wick 3) are loamy soils (37.52% of the catchment), three (Isleham 2, Newport 3 and
Newport 4) are primarily sandy soils (23.54% of the catchment), four others (Barrow,
Beccles 1, Beccles 2 and Gresham) are loamy over clayey soils (37.7% of the catchment)
and one (Adventurers 2) is composed of peat (1.24% of the catchment) (Figure 3.8)
(Cranfield University, 2016b). Each Soil Association is composed of multiple Soil Series
which possess distinct properties and is named after the Soil Series that is present in the
greatest proportion. For example, Burlingham 1, is predominantly composed of the
Burlingham Soil Series, but the Wighill, Wick and Newport Soil Series are also present
in smaller proportions (Cranfield University, 2016c). The properties of each of the Soil
Associations were derived from the HORIZON Hydraulics, HORIZON Fundamentals,
SOILSERIES Agronomy, LandIS Soils Guide and National Soils Inventory (NSI) Profile
datasets (Cranfield University, 2016b,d,e).

The headwaters of the catchment are dominated by the Barrow Soil Association which is
mainly composed of well-drained deep loamy over clayey soils (Cranfield University,
2016f). Along the main river valley and tributaries, soils are predominantly from Isleham
2 Soil Association which are deep sandy and peaty soils that are seasonally waterlogged
due to interaction with groundwater (Cranfield University, 2016g). These soils are
considered to be at risk of wind erosion and flooding during the winter months. The soils
present in the mid-section of the catchment are primarily from the Burlingham 1 Soil
Association and are primarily deep loamy soils that are slowly permeable and slightly
prone to seasonal waterlogging (Cranfield University, 2016c). The lower section of the
catchment is dominated by soils from the Newport 4 Soil Association which is a deep
sandy soil that is well-drained and susceptible to wind erosion (Cranfield University,

2016h).

80 Sam David Taylor - June 2017



Chapter 3: Study Area And Data

Legend

D Catchment boundary - Barrow

[ wick 2 - Beccles 1
Wick 3 I Beccles 2
Newport 3 - Gresham

- Newport 4 - Isleham 2
- Burlingham 1 - Adventurers 2
- Burlingham 3

Kilometres
0 25 5 10 15 20

Figure 3.7: A map of the National Soil Map of England and Wales (NATMAP) soil

types of the River Wensum catchment. Map derived from Soils Data © Cranfield

University (NSRI) and the Controller of Her Majesty’s Stationary Office [2016].
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Figure 3.8: A map of the general soil types of the River Wensum catchment. Map
derived from Soils Data © Cranfield University (NSRI) and the Controller of Her
Majesty’s Stationary Office [2016].

3.1.3.3 Agriculture

Data from the Agricultural Census conducted by Department for Environment, Food and
Rural Affairs (Defra) (2016a) and held by EDINA at Edinburgh University Data Library
(EDINA, 2014) was obtained for the River Wensum catchment for the period 1993-2010
in a 2 km grid square format. According to this data, wheat, oilseed rape, barley and sugar
beet were the crops most commonly grown within the catchment during 1993-2010
(Figure 3.9). Based on expert agronomic advice, the crop rotation applied within the
model, listed in order of cultivation, consisted of winter wheat, winter barley, winter
oilseed rape, winter wheat and sugar beet (Table 3.1). The rotation was initiated at
different starting points within the scheme based on crop-type, and was distributed
randomly within the model because actual crop distributions within the catchment were
unknown. Fertiliser application rates were determined from the Defra RB209 Fertiliser
Manual (Defra, 2010a). Pesticide application rates were determined from UK Annual
Pesticide Surveys for the period 2004-2014 (Garthwaite et al., 2005; 2007; 2010; 2011;
2013; 2015). The pesticide was applied to all cropped areas within the model. In order to

account for the fact that not all areas of each crop type were always treated with
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metaldehyde according to real-world data, the pesticide application rates applied within
the model were multiplied by the percentage of the total area of crop grown that were
treated with metaldehyde (Table 3.2). The timing of pesticide application was based on
agronomic advice. The timings of tillage, cultivation, fertiliser application and harvest
were determined for sugar beet from British Sugar (2010), and for all other crop types

from UK Agriculture (2014).

15000
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Wheat Winter Winter Sugar Spring  Field Potatoes
Barley Oilseed Beet  Barley Beans
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Crop type

Figure 3.9: The area of each crop type most frequently grown within the River
Wensum catchment according to the 2010 Agricultural Census conducted by the

Department for Environment, Food and Rural Affairs (Defra, 2016a; EDINA, 2014).
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Table 3.1: The crop-rotation scheme and management operations applied within the

SWAT model of the Wensum catchment.

Management Operation Description Year Month Day
Tillage Generic fall ploughing operation 1 9 15
Tillage Roterra harrow tillage operation 1 9 30
Pesticide application Application of metaldehyde 1 10 1
Cultivation Plant winter wheat 1 10 1
Fertiliser application Apply 40 kg ha'! elemental nitrogen 2 3 1
Fertiliser application Apply 60 kg ha'! phosphate 2 3 1
Fertiliser application Apply 120 kg ha'! elemental nitrogen 2 5 1
Harvest Harvest winter wheat 2 8 31
Tillage Generic fall ploughing operation 2 9 15
Tillage Roterra harrow tillage operation 2 9 30
Pesticide application Application of metaldehyde 2 10 1
Cultivation Plant winter barley 2 10 1
Fertiliser application Apply 40 kg ha'! elemental nitrogen 3 3 1
Fertiliser application Apply 60 kg ha'! phosphate 3 3 1
Fertiliser application Apply 70 kg ha'! elemental nitrogen 3 4 1
Harvest Harvest winter barley 3 7 31
Tillage Generic fall ploughing operation 3 8 15
Tillage Roterra harrow tillage operation 3 8 31
Pesticide application Application of metaldehyde 3 9 1
Cultivation Plant winter oilseed rape 3 9 1
Fertiliser application Apply 60 kg ha'! elemental nitrogen 4 3 1
Fertiliser application Apply 50 kg ha'! phosphate 4 3 1
Fertiliser application Apply 60 kg ha'! elemental nitrogen 4 4 1
Harvest Harvest winter oilseed rape 4 7 31
Tillage Generic fall ploughing operation 4 9 15
Tillage Roterra harrow tillage operation 4 9 30
Pesticide application Application of metaldehyde 4 10 1
Cultivation Plant winter wheat 4 10 1
Fertiliser application Apply 40 kg ha'! elemental nitrogen 5 3 1
Fertiliser application Apply 60 kg ha'! phosphate 5 3 1
Fertiliser application Apply 120 kg ha'! elemental nitrogen 5 5 1
Harvest Harvest winter wheat 5 8 31
Tillage Generic fall ploughing operation 5 9 15
Fertiliser application Apply 50 kg phosphate 6 3 17
Tillage Roterra harrow tillage operation 6 3 31
Pesticide application Application of metaldehyde 6 4 1
Cultivation Plant sugar beet 6 4 1
Fertiliser application Apply 40 kg ha'! elemental nitrogen 6 4 1
Fertiliser application Apply 40 kg ha'! elemental nitrogen 6 5 1
Harvest Harvest sugar beet 6 10 31
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Table 3.2: The rates of metaldehyde application applied to each crop type within the
SWAT model of the Wensum catchment as determined from UK Annual Pesticide
Surveys for 2004-2014 (Garthwaite et al., 2005; 2007; 2010; 2011; 2013; 2015). The
numbers enclosed in brackets are the percentage of the total area of each crop grown
that were treated with metaldehyde. A percentage greater than 100 indicates that

the area has been treated more than once.

Application rate Application rate Application rate for  Application rate for

Year for wheat (kg ha')  for barley (kg ha') oilseed rape (kg ha')  sugar beet (kg ha™!)
2004 0.374 (13.3) 0.338 (2.40) 0.234 (92.66) 0.152 (0.86)
2005 0.363 (18.82) 0.285 (2.45) 0.116 (164.34) 0.288 (0.9)
2006 0.344 (28.91) 0.284 (7.25) 0.214 (125.51) 0.425 (0.94)
2007 0.325 (39) 0.284 (12.05) 0312 (86.69) 0.409 (1.88)
2008 0.264 (28.86) 0.263 (8.21) 0.271 (68.41) 0.392 (2.81)
2009 0.202 (18.71) 0.241 (4.38) 0.229 (50.14) 0.371 (2.91)
2010 0.179 (15.19) 0.182 (3.39) 0.196 (47.63) 0.350 (3.01)
2011 0.156 (11.68) 0.123 (2.40) 0.163 (45.12) 0.261 (2.70)
2012 0.142 (15.31) 0.124 (3.09) 0.140 (56.68) 0.171 (2.38)
2013 0.127 (18.94) 0.124 (3.78) 0.117 (68.25) 0.162 (2.54)
2014 0.127 (18.94) 0.124 (3.78) 0.117 (68.25) 0.152 (2.69)
2015 0.127 (18.94) 0.124 (3.78) 0.117 (68.25) 0.152 (2.69)

3.1.3.4 Meteorological Data and Climate

Observations of meteorological variables recorded for the period 1 January 1980 to 31
October 2015 were obtained from UK Met Office Integrated Data Archive System
(MIDAS) Land and Marine Surface Stations Data for application within the model (Met
Office, 2012). Daily observations of mean wind speed, sunshine hours, minimum and
maximum air temperature and mean relative humidity were obtained from the UK
MIDAS weather station located at Marham (Station ID: 409), which is sited
approximately 15 km to the east of the Wensum catchment. The Angstrom formula,
outlined by Allen et al. (1998), was used to calculate an estimate of solar radiation from

observations of daily sunshine hours and is defined by Equation 2.

Solar radiation (R) = (as + by %) R, (2)
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Where:

R is solar or shortwave radiation (MJ m™ day™)

n is the actual duration of sunshine (hour)

N is the maximum possible duration of sunshine or daylight hours (hour)

% is the relative sunshine duration (dimensionless)

R, is extraterrestrial radiation (MJ m? day!)

as is the regression constant which expresses the fraction of extraterrestrial

radiation reaching Earth on overcast days (n = 0)

as + bs is the fraction of extraterrestrial radiation reaching Earth on clear days

(n=N)

The Angstrom values, ag and by, vary because they are dependent on atmospheric
conditions (i.e. humidity and dustiness) and solar declination (i.e. the time of year and
latitude of the site) (Allen et al., 1998). Allen et al. (1998) recommend that at a site where
no calibration has been performed to improve estimates of ag and by, the values ag =

0.25 and by = 0.5 should be used.

Where no record of sunshine hours exists within the Marham record, observations
recorded at the weather stations located at Coltishall (Station ID: 429), Norwich Weather
Centre (Station ID: 408), Hemsby (Station ID: 433) and Wattisham (Station ID: 440)
were used to interpolate missing data using the nearest neighbour technique. Observations
of precipitation were obtained from the MIDAS weather stations located at Attlebridge:
Old Hall Farm (Station ID: 4812), East Tuddenham (Station ID: 4817), Heydon (Station
ID: 4807), Hindolveston: Hope House (Station ID: 4886), Syderstone (Station ID: 4710)
and Wendling: Ashness (Station ID: 4793). Where observations of precipitation were
missing from the records from the weather stations listed above, the missing data was
interpolated from the weather stations listed in Table 3.3 using the nearest neighbour

technique.

The River Wensum catchment has a temperate maritime climate and, according to data
from the MIDAS weather station located at Heydon (Station ID: 4807), had a mean annual
rainfall of 714 mm and an annual rainfall range of 542.6-878.8 mm during 1981-2010
(Met Office, 2012). It is clear that the catchment is characterised by a relatively low

annual amount of rainfall when compared to England as a whole, which experienced a
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mean annual rainfall of 855 mm during 1981-2010 (Figure 3.10) (Met Office, 2016).
Mean monthly precipitation within the catchment was lowest in February (45.1 mm) and
highest in October (74.6 mm) (Figure 3.10). Rainfall within the catchment is unevenly
distributed on a monthly basis throughout the course of a year, with the wettest season
occurring on average during the Autumn months from September to November,
experiencing a mean rainfall total of 209.4 mm (29.3% of the mean annual total) during
1981-2010 (Figure 3.10). On an average basis spring witnesses the least amount of
rainfall, experiencing a mean rainfall total of 147.7 mm (20.7% of the mean annual total)
during 1981-2010 (Figure 3.10). Due to the relatively flat topography of the catchment,
the topographic features that are present have relatively little impact on the rainfall regime

within the catchment.

Table 3.3: The UK MIDAS weather stations used to interpolate precipitation data
missing from the primary weather station using the nearest neighbour technique.
The weather stations are listed in order of their proximity to the primary weather

station.

Primary MIDAS Weather Station Weather Stations used to Interpolate Data

Costessey (Station ID: 423), Hevingham (Station
Attlebridge: Old Hall Farm (Station ID: 4812) ID: 4904), East Tuddenham (Station ID: 4817),
Heathersett Tower (Station ID: 30465)

Runhall: Beech House Farm (Station ID: 4755),
East Tuddenham (Station ID: 4817) Attlebridge: Old Hall Farm (Station ID: 4812),
Heathersett Tower (Station ID: 30465)

Heydon (Station ID: 4807) Mannington Hall (MIDAS Station ID: 24219)

Melton Constable (Station ID: 4732), Heydon

Hindolveston: Hope House (Station ID: 4886) )
(Station ID: 4807)

Fakenham: Dunton Hall (Station ID: 56084),

Syderstone (Station ID: 4710)
North Creake (Station ID: 4712),

East Dereham (Station ID: 30462), North

Wendling: Ashness (Station ID: 4793) ) )
Elmham: Tower Hill (Station ID: 4790)
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Figure 3.10: Mean total monthly precipitation for the River Wensum catchment and
England as a whole during 1981-2010 (Met Office, 2012; Met Office, 2016).
Precipitation data for the River Wensum catchment was obtained from the UK

MIDAS Weather Station located at Heydon (Station ID: 4807) (Met Office, 2012).

According to data from the nearby MIDAS weather station located at Marham (Station
ID: 409), monthly mean maximum daily air temperature within the catchment ranged
from 6.8°C in January to 22.1°C in July during 1981-2010 (Figure 3.11). Monthly mean
minimum daily air temperature within the catchment during the same period ranged from
1.0 °C in February to 12.1 °C in July (Figure 3.11). This is fairly typical when compared
to England as a whole (Figure 3.11) (Met Office, 2016). Mean monthly sunshine hours
within the catchment are also fairly typical when compared to England as a whole (Figure
3.12). Mean monthly sunshine hours were lowest in December (51.5 hours) and highest

in July (206 hours) (Figure 3.12).
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Figure 3.11: Monthly mean maximum and minimum air temperatures at the UK
MIDAS weather station located at Marham (Station ID: 409) and for England as a
whole during 1981-2010 (Met Office, 2012; Met Office, 2016).
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Figure 3.12: Mean total monthly sunshine hours at the UK MIDAS weather station
located at Marham (Station ID: 409) and for England as a whole during 1981-2010
(Met Office, 2012; Met Office, 2016).

3.1.3.5 Flow and Metaldehyde Data
Daily mean discharge data were obtained from four gauges for the period 1 January 2008
to 31 October 2015 from the National River Flow Archive (2015) (see Figure 3.1 for

names and locations). Flow statistics for the four flow gauges located within the
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catchment are provided for reference in Table 3.4. When compared, the 95% exceedance
(Q95) and 10% exceedance (Q10) statistics can be used as a measure of the degree of

variability of the flow rate within the river (National River Flow Archive, 2016e).

Table 3.4: Flow statistics for the four flow gauges within the River Wensum
catchment located at Fakenham, Swanton Morley, Costessey Mill and Costessey
Park (National River Flow Archive, 2016a,b,c,d). Q95, Q70, Q50 and Q10 denote
the flow rate that is exceeded 95%, 70%, 50% and 10% of the time, respectively.

Statistic Fakenham Swanton Morley Costessey Mill Costessey Park
Record duration 1966-2015 1969-2015 1960-2015 1961-2015
Mean flow rate (m? s™) 0.867 2.739 4.074 0.35

95% exceedance (Q95) (m’ s™) 0.242 0.936 1.34 0.079
70% exceedance (Q70) (m3 s™) 0.493 1.52 2.349 0.162

50% exceedance (Q50) (m’ s™) 0.69 2.14 3.228 0.237

10% exceedance (Q10) (m® s™) 1.65 5.05 7.46 0.693

Anglian Water Services Ltd provided observations of metaldehyde concentration for two
sites where surface water is licensed for abstraction from the river for the purpose of
drinking water supply (Figure 3.1). During the period 1 January 2008 to 31 October 2015,
378 and 398 grab samples were collected at the Costessey Pits and Heigham WTW
intakes, respectively. According to the grab samples, the mean metaldehyde
concentration at the Costessey Pits and Heigham WTW intakes during the period 1
January 2008 to 31 October 2015 was 0.046 g L™ and 0.055 ug L', respectively. During
this period, the maximum metaldehyde concentration recorded was 1.23 pg L' at the
Costessey Pits intake and 1.64 pg L' at the Heigham WTW intake. To estimate flow at
the two intake sites, it was necessary to apply a correction factor to observations of flow
from the nearest gauges to take account of the increase or decrease in the catchment area
that contributes to flow at these sites. To estimate flow at the Costessey Pits intake,
observations of flow recorded at Costessey Mill were reduced by 0.06%. To estimate flow
at the Heigham WTW intake, the sum of observations of flow recorded at Costessey Mill
and Costessey Park was increased by 3.6%. In combination with the grab sample
observations of metaldehyde concentration, the estimates of flow determined for the
Costessey Mill and Heigham WTW intake sites were used to estimate daily metaldehyde

load at those two locations.
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3.2 The Blackwater Sub-catchment
The Blackwater sub-catchment has been selected as the study area to investigate the
impacts of agricultural mitigation measures on diffuse nutrient pollution from agriculture

(see Chapter 5).

The Blackwater sub-catchment, which is located in the north-eastern section of the River
Wensum catchment, drains an area of 19.6 km? and has been intensively monitored as

part of the Wensum DTC project (Figure 3.13).

Mannington Hall
Legend Weather Station

|| Blackwater sub-catchment outlet (4>)
@ Weather station
Stream

E Sub-catchment boundary

Blackwater
Sub-catchment
Kilometres Outlet

Figure 3.13: A map of the location of the Blackwater sub-catchment in relation to
the River Wensum catchment, nearby weather stations and the outlet of the sub-

catchment.

3.2.1 Geology and Hydrogeology

The entirety of the Blackwater sub-catchment is underlain at a depth of approximately 20
m by Cretaceous Chalk bedrock deposits that are also present over the entire extent of the
rest of the River Wensum catchment (Figure 3.14) (Lewis, 2014). In the east of the sub-
catchment, the Chalk is overlain by the Wroxham Crag formation (16-22 m depth)
(Lewis, 2014). As is the case for the rest of the River Wensum catchment, the bedrock of
the Blackwater sub-catchment is also unconformably overlain by a complex sequence of

superficial deposits of Quaternary origin (Figure 3.15) (Lewis, 2014). The superficial

Sam David Taylor - June 2017 91



Modelling the Impacts of Catchment Mitigation Measures on Water Quality

geology of the sub-catchment includes Holocene wind-blown sand, alluvium, river
terrace deposits and Pleistocene tills (i.e. the Weybourne Town Till, Bacton Green Till,
Walcott Till, Lowestoft Till and Happisburgh Till Members) and glaciofluvial and
glaciolacustrine sands, gravels and silts of the Briton’s Lane (0.2-7 m depth), Sheringham
Cliffs (0.2-12 m depth), Lowestoft (8-16 m depth) and Happisburgh Formations (12-17
m depth) (Lewis, 2014). The western and central sections of the sub-catchment are
dominated by low permeability tills whilst the eastern section of the catchment is

dominated by more freely-draining glacial sand and gravels (Figure 3.15).
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Figure 3.14: The bedrock geology of the Blackwater sub-catchment. Based upon
DiGMapGB-625, with the permission of the British Geological Survey (British
Geological Survey, 2016b).

Stream flow within the Blackwater sub-catchment is derived from groundwater return
flow, lateral flow in the soil zone, surface runoff and contributions from an extensive tile
drain network which is situated at depths between 1-1.55 m (Howson, 2012; Outram et
al., 2016). Streamflow within the sub-catchment is sustained by baseflow during periods
of low rainfall. The sub-catchment has a baseflow index of 0.80, which is similar to that

of the River Wensum catchment as a whole (Robson and Reed, 1999).
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Figure 3.15: The superficial geology of the Blackwater sub-catchment. Based upon
DiGMapGB-625, with the permission of the British Geological Survey (British
Geological Survey, 2016b).

3.2.2 Topography

According to the NEXTMap British Digital Terrain Model Dataset, the topography of the
sub-catchment is relatively subdued, with elevation ranging between 28-70m above sea
level (Figure 3.16), and 95% of the sub-catchment area having a slope of 5% or less
(Figure 3.17) (Intermap Technologies, 2007).

Sam David Taylor - June 2017 93



Modelling the Impacts of Catchment Mitigation Measures on Water Quality

Legend
E Sub-catchment boundary

Elevation
- High: 70
- Low : 28

Figure 3.16: The digital elevation model of the Blackwater sub-catchment. Map
derived from Intermap Technologies (2007).
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Figure 3.17: The slope of the Blackwater sub-catchment. Map derived from
Intermap Technologies (2007).
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3.2.3 Data Description

3.2.3.1 Land Cover

According to the LCM2007 raster dataset, land cover within the Blackwater sub-
catchment is largely arable with 86.05% of the land area utilised for agricultural purposes
(Figure 3.18) (Morton et al., 2011). The dominance of the arable farming industry within
the sub-catchment is reflected by the fact that 74.2% of the land area is utilised for
growing crops, 11.8% as grazing pasture, 9.2% is broadleaf woodland, 2.2% is other
grassland, 1.5% is coniferous woodland, 0.5% forms suburban settlements, 0.3% is

freshwater and 0.3% forms urban settlements.
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Figure 3.18: A map of the land cover of the Blackwater sub-catchment. Based upon
LCM2007 © NERC (CEH) 2011. Contains Ordnance Survey data © Crown
Copyright 2007. © third party licensors.

3.2.3.2 Soils

According to the NATMAP vector dataset, five different Soil Associations are present
within the Blackwater sub-catchment (Figure 3.19) (Cranfield University, 2016a).
Burlingham 1, Wick 2 and Wick 3 cover 83.72% of the sub-catchment and are composed
of loamy soils, Beccles 1 covers 16.17% of the sub-catchment and is composed of loamy

over clayey soils and Isleham 2 covers 0.11% of the sub-catchment and is primarily

Sam David Taylor - June 2017 95



Modelling the Impacts of Catchment Mitigation Measures on Water Quality

composed of sandy soils (Figure 3.20) (Cranfield University, 2016b). The north of the
sub-catchment and east of the sub-catchment are dominated by the Wick 2 and Wick 3
Soil Associations, respectively, which are deep loamy soils that are coarse and well-
drained but are at risk of erosion by surface runoff (Cranfield University, 20164i,j). Soils
in the west of the sub-catchment are predominantly from the Beccles 1 Soil Association
which are loamy over clayey soils that are slowly permeable and prone to seasonal
waterlogging (Cranfield University, 2016k). The south of the sub-catchment is dominated
by the deep loamy soils of the Burlingham 1 Soil Association (Cranfield University,
2016c¢), but a small area of the deep sandy soils of the Isleham 2 Soil Association is also
present at a site near to the location of the outlet of the Blackwater sub-catchment

(Cranfield University, 2016g).
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Figure 3.19: A map of the National Soil Map of England and Wales (NATMAP) soil

types of the Blackwater sub-catchment. Map derived from Soils Data © Cranfield
University (NSRI) and the Controller of Her Majesty’s Stationary Office [2016].
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Figure 3.20: A map of the general soil types of the Blackwater sub-catchment. Map
derived from Soils Data © Cranfield University (NSRI) and the Controller of Her
Majesty’s Stationary Office [2016].

3.2.3.3 Agriculture

Data from the Agricultural Census conducted by Defra (2016a) and held by EDINA at
Edinburgh University Data Library (EDINA, 2014) was obtained for the Blackwater sub-
catchment for the period 1993-2010 in a 2 km grid square format. This data was used to
identify those crops commonly grown within the sub-catchment (Figure 3.21) and to
identify an appropriate crop rotation plan to implement within the SWAT model of the
sub-catchment (Defra, 2016a; EDINA, 2014). Based on this analysis, it was found that
the crops most commonly grown within the sub-catchment were wheat, barley, oilseed
rape, spring beans and sugar beet. The Salle Estate, which is located in the Blackwater
sub-catchment, manages 2000 ha of arable land and operates a seven-year crop-rotation
that includes those crop types identified in the agricultural census data (Salle Farms Ltd,
2014). Listed in order of cultivation, the seven-year crop-rotation operated within the sub-
catchment and applied within the SWAT model consists of winter barley, winter oilseed
rape, winter wheat, sugar beet, spring barley, spring beans and winter wheat (Table 3.5).
The rotation was initiated at different starting points within the rotation based on crop-

type and was distributed randomly within the model because actual crop distributions
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within the sub-catchment were unknown. The Defra RB209 Fertiliser Manual was used
to identify appropriate fertiliser application rates for each crop included in the crop-
rotation (Defra, 2010a). The timings of planting, harvesting, field tillage and fertiliser
application were determined from UK Agriculture (2014) for all crop types except sugar

beet where the source used was British Sugar (2010).
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Figure 3.21: The area of each crop type grown within the Blackwater sub-catchment
according to the 2010 Agricultural Census conducted by the Department for
Environment, Food and Rural Affairs (Defra, 2016a; EDINA, 2014).

As part of the Wensum DTC project, a variety of agricultural mitigation measures have
been introduced on the Salle Estate to assess the impacts of mitigation options on
agricultural diffuse water pollution and water quality within the Blackwater sub-
catchment (Lovett et al., 2015). The mitigation measures that have been tested include
the introduction of an oilseed radish cover crop during the autumn and winter months
which is intended to protect soils from erosion when they would otherwise be bare, to
reduce the leaching of nutrients from soils during wet winter months and, when destroyed,
to act as a ‘green manure’, slowly releasing nutrients to the surrounding soil for
subsequent crops (Rubak et al., 2011). The use of strip tillage and direct drilling to
establish autumn and spring-sown crops, with the intention of reducing sediment and
nutrient loss in surface runoff, have also been introduced as additional mitigation

measures in some pilot areas of the sub-catchment.
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Table 3.5: The seven-year crop-rotation scheme and management operations

applied within the SWAT model of the Blackwater sub-catchment.

Management Operation Description Year Month Day
Tillage Generic fall ploughing operation 1 9 15
Tillage Roterra harrow tillage operation 1 9 30
Cultivation Plant winter barley 1 10 1
Fertiliser application Apply 40 kg ha'! elemental nitrogen 2 3 |
Fertiliser application Apply 60 kg ha'! phosphate 2 3 1
Fertiliser application Apply 70 kg ha'! elemental nitrogen 2 4 1
Harvest Harvest winter barley 2 7 31
Tillage Generic fall ploughing operation 2 8 15
Tillage Roterra harrow tillage operation 2 8 31
Cultivation Plant winter oilseed rape 2 9 1
Fertiliser application Apply 60 kg ha'! elemental nitrogen 3 3 1
Fertiliser application Apply 50 kg ha'! phosphate 3 3 1
Fertiliser application Apply 60 kg ha'! elemental nitrogen 3 4 |
Harvest Harvest winter oilseed rape 3 7 31
Tillage Generic fall ploughing operation 3 9 15
Tillage Roterra harrow tillage operation 3 9 30
Cultivation Plant winter wheat 3 10 1
Fertiliser application Apply 40 kg ha'! elemental nitrogen 4 3 |
Fertiliser application Apply 60 kg ha'! phosphate 4 3 1
Fertiliser application Apply 120 kg ha'! elemental nitrogen 4 5 1
Harvest Harvest winter wheat 4 8 31
Tillage Generic fall ploughing operation 4 9 15
Fertiliser application Apply 50 kg phosphate 5 3 17
Tillage Roterra harrow tillage operation 5 3 31
Cultivation Planting sugar beet 5 4 1
Fertiliser application Apply 40 kg ha'! elemental nitrogen 5 4 1
Fertiliser application Apply 40 kg ha'! elemental nitrogen 5 5 1
Harvest Harvest sugar beet 5 10 31
Tillage Generic fall ploughing operation 5 11 15
Tillage Roterra harrow tillage operation 6 1 31
Cultivation Plant spring barley 6 2 |
Fertiliser application Apply 70 kg ha'! elemental nitrogen 6 4 1
Fertiliser application Apply 45 kg ha'! phosphate 6 4 1
Harvest Harvest spring barley 6 8 31
Tillage Generic fall ploughing operation 6 11 15
Fertiliser application Apply 40 kg ha™! phosphate 7 1 31
Tillage Roterra harrow tillage operation 7 1 31
Cultivation Plant spring beans 7 2 1
Harvest Harvest spring beans 7 8 31
Tillage Generic fall ploughing operation 7 9 15
Tillage Roterra harrow tillage operation 7 9 30
Cultivation Plant winter wheat 7 10 1
Fertiliser application Apply 40 kg ha'! elemental nitrogen 8 3 1
Fertiliser application Apply 60 kg ha'! phosphate 8 3 1
Fertiliser application Apply 120 kg ha'! elemental nitrogen 8 5 1
Harvest Harvest winter wheat 8 8 31

3.2.3.4 Meteorological Data and Climate

Observations of meteorological variables recorded for the period 1 January 1980 to 31
October 2015 were obtained from UK MIDAS Land and Marine Surface Stations Data
for application within the model (Met Office, 2012). Observations of daily minimum and
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maximum temperature, sunshine hours, wind speed and relative humidity were obtained
from the UK MIDAS weather station located at Marham (Station ID: 409), which is sited
approximately 40 km to the south-west of the Blackwater sub-catchment. The Angstrom
formula (see Equation 2 in Section 3.1.3.4) was used to calculate an estimate of solar
radiation from observations of daily sunshine hours. Where observations of daily
sunshine hours were missing from the Marham record, observations recorded at the
nearby MIDAS weather stations located at Coltishall (Station ID: 429), Norwich Weather
Centre (Station ID: 408), Hemsby (Station ID: 433) and Wattisham (Station ID: 440),
selected in order of their proximity to the sub-catchment and the availability of data, were
used to interpolate the missing data. Observations of daily precipitation were obtained
from the MIDAS weather station located at Heydon (Station ID: 4807) (Figure 3.13).
Where observations of precipitation were missing from the Heydon record, observations
recorded at the nearest MIDAS weather station located at Mannington Hall (MIDAS
Station ID: 24219) were used to interpolate the missing data using the nearest-neighbour

technique.

For a description of the climate of the Blackwater sub-catchment please refer to Section

3.1.3.4.

3.2.3.5 Flow and Nutrients Data

As part of the Wensum DTC project, a pressure transducer housed in a stilling well, a
Nitratax Plus SC sensor and a Phosphax Sigma analyser, have been used to continuously
monitor river stage, nitrate and total phosphorus concentrations, respectively, at 30-
minute intervals at the outlet of the Blackwater sub-catchment using automated bankside
monitoring equipment since April 2011 (Figure 3.13). Stream temperature, pH, electrical
conductivity, turbidity, dissolved oxygen, chlorophyll, ammonium, nitrate, and total
reactive phosphorus have also been monitored as part of this work. Quality assurance and
quality control procedures, including the comparison of high-frequency data to laboratory
analysed spot samples, were conducted to ensure the validity of data included in this

research.

Between December 2011 to February 2014 flow gauging using an electromagnetic open
channel flow meter was conducted on 16 occasions during high, moderate and low flow
events. These measurements, in combination with observations of river stage from the
pressure transducers, were used to develop a power-law stage-discharge rating curve

(Figure 3.22). This is an often used technique for deriving discharge time-series from
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stage measurements (Reitan and Petersen-Overleir, 2009). This rating curve was applied
to estimate daily mean discharge, nitrate load and total phosphorus load exported from
the sub-catchment during the period 1 December 2011 to 30 June 2014. These estimates
of discharge, nitrate and total phosphorus load were applied within this research to
perform model sensitivity analysis, calibration and validation. To identify the importance
of any relationship between sediment transport and total phosphorus concentrations
within the sub-catchment, 467 in-stream grab samples collected at the outlet of the
Blackwater sub-catchment during the period October 2010 to March 2015 were used to
develop a log-log regression model and conduct a linear regression t-test to test the
hypothesis that the relationship between the concentration of total suspended solids and

the concentration of total phosphorus was significant.
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Figure 3.22: Power-law stage-discharge rating curve depicting the relationship
between stage and discharge at the outlet of the Blackwater sub-catchment
according to 16 flow gauging measurements taken during December 2011 -

February 2014.

Statistics for discharge, nitrate and total phosphorus concentration that were recorded at
the outlet of the Blackwater sub-catchment by the automated bankside monitoring
equipment from 1 December 2011 to 30 June 2014 are provided for reference in Table

3.6.
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Table 3.6: Statistics for discharge, nitrate and total phosphorus concentration at the
outlet of the Blackwater sub-catchment for the period 1 December 2011 to 30 June
2014. Q95, Q70, Q50 and Q10 denote the flow rate or concentration that was
exceeded 95%, 70%, 50% and 10% of the time, respectively.

Nitrate Concentration Total Phosphorus
Statistic Discharge (m® s)
(mg NO3-N L) Concentration (mg P L)

Mean 0.112 6.15 0.089
95% exceedance (Q95) 0.021 3.88 0.052
70% exceedance (Q70) 0.048 5.34 0.069
50% exceedance (Q50) 0.071 5.95 0.083
10% exceedance (Q10) 0.238 8.57 0.118

3.3 Chapter Summary

In this chapter, the characteristics of the River Wensum catchment and the Blackwater
sub-catchment were described. The Wensum catchment was identified as being of great
ecological and cultural importance and suffers from various pressures including
agricultural diffuse water pollution. It was recognised that there exists a specific need
within the River Wensum catchment to identify mitigation measures that can be
introduced to reduce agricultural diffuse water pollution. The datasets applied within this
study to develop SWAT models of the Wensum and Blackwater sub-catchment were also

described prior to their application within SWAT which is described in the next chapter.
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4 SWAT MODEL SET-UP AND
CALIBRATION AND
VALIDATION

The content of Section 4.2 of this chapter have been published in the Journal of

Environmental Management (Taylor et al., 2016).

4.1 Model Build Process for the Wensum and Blackwater Sub-
catchment SWAT Models

Version 2012.10.0.14 of ArcSWAT, the ArcGIS interface developed to pre-process
model inputs and to execute simulations within SWAT, was used to build the SWAT
models applied in this study (Texas A&M University, 2015). The datasets applied and
the methodology adopted to build the SWAT models of the Wensum and Blackwater sub-
catchments are described below. The methodology applied in this study is the standard
recommended practice to build a SWAT model which is available for reference in

Winchell et al. (2013).

4.1.1 Data Requirements

The spatial datasets required to set-up and run a SWAT model include: (i) a topographic
map (i.e. either a Digital Elevation Model (DEM) or a Digital Terrain Model (DTM)); (i)
a land cover map and (iii) a soil map and soil properties dataset. The temporal datasets
required include: (i) daily meteorological data (i.e. precipitation, minimum and maximum
air temperature, mean wind speed, mean relative humidity and daily sunshine hours) and
(i1) agricultural practices (e.g. fertiliser and pesticide types, application amount and
timing; crop rotations; cultivation and harvesting dates; irrigation practices; tillage
practices and timing; tile drain locations and depths) (Winchell et al., 2013). The datasets
required for model calibration and validation for this specific study include observations

of discharge, nitrate, total phosphorus and metaldehyde concentration and load.
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4.1.2 Catchment Delineation

The first stage of setting-up a SWAT model within ArcSWAT is to perform catchment
delineation (Winchell et al., 2013). This is an automated process that requires users to
specify and input a DEM or DTM of the area that is to be modelled. The NEXTMap
British Digital Terrain Model Dataset (see Sections 3.1.2 and 3.2.2) was applied within
this study to perform delineation within the SWAT models of the Wensum and
Blackwater sub-catchment (Intermap Technologies, 2007). Once delineation has been
completed, the catchment boundary, sub-catchments, river network, river outlet locations
(i.e. points of confluence with other rivers) and monitoring sites will have all been defined
within the model. To automatically delineate the river network that is present, the model
suggests a value for the minimum upstream drainage area that is required before a stream
is formed and modelled within SWAT (Winchell et al., 2013). In practice, users can adjust
this area but this study used the values recommended by the model. One stream alone is
modelled within each sub-catchment within SWAT and so this threshold area also
determines the number of sub-catchments that will be represented within the model and
the level of detail of the stream network modelled. This output was compared to the
stream network actually present within the River Wensum catchment to ensure that the
stream networks, as simulated within the SWAT models of the Wensum and Blackwater

sub-catchment, are represented appropriately.

To extract data for river discharge and in-stream nitrate, total phosphorus and
metaldehyde load and to assist model calibration, validation and scenario analysis, the
locations of gauging stations and water quality sampling sites were defined as monitoring
sites within the models of the Wensum and Blackwater sub-catchment. The locations of

each of these sites is provided in Table 4.1.
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Table 4.1: The coordinates of the locations of flow gauges and water quality

sampling sites used in this investigation.

Site Variables Monitored Coordinates (latitude, longitude)
Fakenham Discharge 52.827049, 0.84688978
Swanton Morley Discharge 52.72551, 0.98986661
Costessey Mill Discharge 52.668306, 1.216729
Costessey Park Discharge 52.655123, 1.2054081
Costessey Pits intake Metaldehyde concentration 52.673515, 1.2003934
Heigham water

eatment works intake Metaldehyde concentration 52.638763, 1.2679429
Blackwater sub- Discharge, nitrate concentration,

) 52.777101, 1.1495666
catchment outlet total phosphorus concentration

A total number of 35 and 29 sub-catchments were delineated within the SWAT models
of the Wensum and Blackwater sub-catchment, respectively (Figure 4.1 and Figure 4.2).
When defining the number of sub-catchments to be modelled within SWAT, a
compromise must be reached between the level of detailed to be modelled and the
computational efficiency of the model (i.e. the time it takes to run simulations). The above
configurations were considered to be an appropriate compromise between these two

factors.
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Figure 4.1: The sub-catchments and stream network delineated within the SWAT

model of the Wensum catchment.
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Figure 4.2: The sub-catchments and stream network delineated within the SWAT

model of the Blackwater sub-catchment.
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4.1.3 Hydrologic Response Unit Definition

Once catchment delineation has been performed within ArcSWAT the next step is to
define the HRUs that are present within each sub-catchment (Winchell et al., 2013).
Within SWAT, HRUs divide each sub-catchment into unique combinations of land use,
soil and slope classes. Although they might not form one contiguous area within a sub-
catchment, those areas that possess the same combinations of land use, soil and slope
classes within a sub-catchment are lumped together to form a HRU. To complete this task
within ArcSWAT the land cover, soil and slope datasets of the modelled area must first

be defined.

The LCM2007 raster dataset, which has a resolution of 25 meters, was used to define land
use within the models of the Wensum and Blackwater sub-catchment (see Sections
3.1.3.1and 3.2.3.1) (Morton et al., 2011). The land cover classes of the LCM2007 dataset
were reclassified to the corresponding SWAT land cover classes within ArcSWAT as

identified in Table 4.2.

Table 4.2: The Land Cover Map 2007 (LCM2007) dataset land cover classes and

the corresponding SWAT land cover classes which they were reclassified to.

LCM2007 Land Cover Class SWAT Land Cover Class

Broadleaf woodland Deciduous forest
Coniferous woodland Evergreen forest
Arable Agricultural land
Improved grassland Pasture

Other grassland Range grasses
Freshwater Water

Urban Urban high-density
Suburban Urban medium-density

The NATMAP vector dataset was used to define soil types within the models of the
Wensum and Blackwater sub-catchment (see Sections 3.1.3.2 and 3.2.3.2) (Cranfield
University, 2016a). The properties of the Soil Associations of the NATMAP dataset are
not included in the SWAT soil database and so the values of these properties for each Soil
Series were manually added to the model database. At present, the SWAT soil database
can only account for the properties of the predominant Soil Series of each Soil

Association. The properties required by SWAT for each soil layer and the corresponding
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soil property derived from the HORIZON Hydraulics, HORIZON Fundamentals,
SOILSERIES Agronomy, LandIS Soils Guide and NSI Profile datasets used within the
models are listed in Table 4.3 (Cranfield University, 2016b,d,e).

Table 4.3: The properties required by SWAT for each layer of each soil type and the

corresponding properties provided as input and their sources.

SWAT Soil Property Dataset Property Source
Depth from soil surface to

LOWER DEPTH HORIZON Fundamentals *
bottom of soil layer (mm)
Moist bulk density (g cm) BULK DENSITY HORIZON Hydraulics *

Calculated from THVS (percentage

water content at field capacity) and )
Available water capacity HORIZON Hydraulics *

THV1500 (percentage water

content at wilting point)
Saturated hydraulic conductivity )

KSAT SUBVERT HORIZON Hydraulics *
(mm hr")
Sand content (%) SAND TOTAL HORIZON Fundamentals ?
Silt content (%) SILT HORIZON Fundamentals ?
Clay content (%) CLAY HORIZON Fundamentals ?
Organic carbon content (%) ocC HORIZON Fundamentals ?
Rock fragment content (%) LandIS Soils Guide °
Maximum rooting depth in the

DROCK SOILSERIES Agronomy ?

soil profile (mm)

Fraction of porosity from which

anions are excluded

Moist soil albedo

Universal Soil Loss Equation

soil erodibility (K) factor

SWAT default value used (= 0.5)

Calculated from

MATRIX_COLOUR

Calculated from SAND TOTAL,
SILT, CLAY and OC

National Soils Inventory

Profiles ©

HORIZON Fundamentals 2

2 Cranfield University (2016d); ® Cranfield University (2016b); © Cranfield University (2016¢).

The available water capacity was calculated from the fraction of water content present at
field capacity (THVS) and the fraction of water content present at the wilting point
(THV1500) using Equation 3 as defined by Arnold et al. (2014):
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AWC = FC—-WP 3)

Where: AWC is the available water capacity of the soil layer
FC is the fraction of water content present at field capacity
WP is the fraction of water content present at the wilting point

The moist soil albedo defines the fraction of incident solar radiation that is reflected by
the soil surface and is a function of the soil colour. It was calculated using Equation 4 as

defined by Natural Resources Conservation Service (2016):
Soil Albedo = (0.069 x colour value) — 0.114 4)

The Universal Soil Loss Equation (USLE) soil erodibility (K) factor describes the
erodibility of soils and was calculated using Equation 5 as defined by Neitsch et al.

(2011):
KUSLE = fcsand X fcl—si X forgc X fhisand (5)

Where: f.sqna 18 @ factor that reduces the erodibility of soils with high coarse sand

content and increases the erodibility of soils with low sand content.
fei—si 18 a factor that reduces the erodbility of soils with high clay to silt ratios.

forge 18 a factor that reduces the erodibility of soils with high organic carbon

content.

frisana 18 @ factor that reduces the erodibility of soils with very high sand

content.

These factors are calculated using Equations 6 to 9 as defined by Neitsch et al. (2011).

fesana = (02 + 0.3 x exp [0.256 x myx (1 — 22k} ) (6)

100

faesi = (2 ) ()

Mcet+mgipe

forgc _ (1 0.25x0rgC ) (8)

- orgC+exp[3.72—2.95%0rgC]|

1_ms

s = (1 ) ©

100+exp[—5.51+22.9( 100

Where: mg is the sand content (%) (0.05-2mm sized particles)

mg;;¢ 1S the silt content (%) (0.002-0.05 sized particles)
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m. is the clay content (%) (< 0.002 mm sized particles)
orgC is the organic carbon content (%)

HRU definition in ArcSWAT also involves dividing the modelled area into slope classes
(Winchell et al., 2013). ArcSWAT automatically derived a map of slope within the
modelled area from the DTM during catchment delineation. The next step in HRU
definition involved applying this map to categorise slope within the modelled area. A
maximum of 5 slope categories can be used to define slope classes within SWAT. The
slope classes used within the SWAT models of the Wensum and Blackwater sub-
catchment were defined as 0-1%, 1-2%, 2-5%, 5-10% and >10%. The ranges selected
were considered to be appropriate due to the relatively subdued topography of the

Wensum catchment.

After classifying land use, soil and slope within ArcSWAT the distribution of HRUs
within the modelled areas were defined (Winchell et al., 2013). Users can define either
one HRU per sub-catchment based on either the dominant HRU or the dominant land use,
soil and slope class present within the sub-catchment, or to define multiple HRUs for each
sub-catchment. In order to reflect land use, soil and slope classes more accurately,
multiple HRUs were defined within the models of the Wensum and Blackwater sub-
catchment. Users can specify thresholds to eliminate minor land use, soil and slope classes
from each sub-catchment and to determine the land use, soil and slope classes to be
modelled within HRUs. If a land use, soil or slope class is present at a level below this
threshold they are eliminated from the sub-catchment. Thresholds of 20%, 10% and 20%
were applied to land use, soil and slope class, respectively, to define the HRUs within
each sub-catchment for both models. These are the default recommended thresholds and
are considered to offer a sufficient level of detail for most applications (Winchell et al.,
2013). Lower thresholds can be used to represent land use, soil and slope classes in more
detail but a greater level of detail reduces the computational efficiency of simulations (i.e.
it takes longer to run simulations). In practice, a compromise must be reached between

the level of detail simulated and the computational efficiency of simulations.

4.1.4 Weather Station Definition and Meteorological Input Data

After HRUs have been defined the next step is to define weather station locations and to
import meteorological datasets. The meteorological datasets required by SWAT are daily
observations of precipitation, maximum and minimum temperature, mean relative

humidity, solar radiation and mean wind speed (Arnold et al., 2014). The sources of the
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meteorological datasets applied within the SWAT models of the Wensum and Blackwater
sub-catchment are described in Sections 3.1.3.4 and 3.2.3.4. The locations of each of the

weather stations applied and the observations used are provided in Table 4.4.

Table 4.4: The locations of the UK Met Office Integrated Data Archive System
(MIDAS) weather stations and the meteorological observations applied within the

SWAT models of the Wensum and Blackwater sub-catchment.

Coordinates
MIDAS Weather Station Observation
(latitude, longitude)

Maximum temperature,
) minimum temperature, mean
Marham (Station ID: 409) ) o 52.651,0.56772
relative humidity, solar

radiation, mean wind speed

Attlebridge: Old Hall Farm (Station ID: 4812)  Precipitation 52.6962, 1.1654
East Tuddenham (Station ID: 4817) Precipitation 52.6595, 1.07405
Heydon (Station ID: 4807) Precipitation 52.7957, 1.12606
Hindolveston: Hope House (Station ID: 4886)  Precipitation 52.8247,1.02592
Syderstone (Station ID: 4710) Precipitation 52.8612,0.74711
Wendling: Ashness (Station ID: 4793) Precipitation 52.6782,0.85209

For each meteorological data type loaded into the model (e.g. precipitation, mean wind
speed etc.), SWAT assigns each sub-catchment to the nearest weather station. On
occasions when no observations were available, the built-in SWAT weather generator
was used to generate estimates of the required meteorological inputs. The SWAT weather
generator is described in detail in Neitsch et al. (2011) and generates estimates of
meteorological variables from long-term (i.e. ideally 20 years or more) monthly climate
statistics from each weather station. The mean monthly climate statistics required by the
SWAT weather generator, the weather stations whose datasets those statistics were
derived from and the period of time covered by the record that was used are listed in Table
4.5. Each of the statistics are defined in Arnold et al. (2014). The program pcpSTAT was
used to calculate the statistical parameters required by the SWAT weather generator for

precipitation (Liersch, 2003).
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Once the weather stations have been defined and the meteorological datasets to be used
have been imported into the model, the model databases and input files are automatically

written within ArcSWAT.

Table 4.5: The mean monthly climate statistics required by the SWAT weather
generator, the UK Met Office Integrated Data Archive System (MIDAS) weather
stations whose datasets those statistics were derived from and the period of time

those datasets covered.

Monthly Climate Statistics MIDAS Weather Station(s) Period of Record

Mean daily maximum air
temperature; mean daily
minimum air temperature;
standard deviation of daily
maximum air temperature;
Marham (Station ID: 409) The years: 1980-2014
standard deviation of daily
minimum air temperature; mean
daily solar radiation; mean daily

relative humidity; mean daily

wind speed

Mean monthly precipitation
Attlebridge: Old Hall Farm

(Station ID: 4812), East
Tuddenham (Station ID: 4817),  The years: 1981-2010 for all

total; standard deviation of daily
precipitation; skew coefficient

of daily precipitation; ) )
Heydon (Station ID: 4807), weather stations except Heydon

Hindolveston: Hope House (Station ID: 4807) where the
(Station ID: 4886), Syderstone record covered 1980-2014.
(Station ID: 4710), Wendling:

Ashness (Station ID: 4793)

probability of a wet day
following a dry day; probability
of a wet day following a wet
day; mean number of wet days;

maximum half-hourly rainfall

4.1.5 Modifying SWAT Inputs to Represent Agricultural Practices

After creating the model databases and input files which contain the default model
settings, the input files of the SWAT models were edited to represent agricultural
practices within the Wensum and Blackwater sub-catchment. This is an important step
because, to assess the impacts of agricultural mitigation measures on water quality, the
models should reflect agricultural practices within the catchment. SWAT can represent
detailed management operations at the HRU level including the crop types grown,

cultivation and harvesting dates, the type, rate and timing of pesticide and fertiliser
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application, tillage types and timing and irrigation practices (Winchell et al., 2013). The
crop rotations, tillage practices, fertiliser practices, pesticide practices and cultivation and
harvesting dates applied within the models of the Wensum and Blackwater sub-catchment

are described in detail in Sections 3.1.3.3 and 3.2.3.3.

Tile drains were also applied on all areas of arable land within the models of the Wensum
and Blackwater sub-catchment except on arable sites where well-drained sandy soils were
present. In practice, this meant that tile drains were not implemented on arable land where
the Isleham 2, Newport 3 and Newport 4 Soil Associations are located. These sandy soils
freely drain and were considered to not require the assistance of tile drains to remove
excess soil water and so it was deemed that tile drains were not likely to be present in
these areas (Cranfield University, 2016g,h,I). The initial values of the SWAT model
parameters used to define the properties of tile drains within the models of the Wensum
and Blackwater sub-catchment were determined from the literature and are described in
Table 4.6. The value for the tile drain lag time parameter (GDRAIN) was based on expert

judgement and was determined from in-field experience.

Table 4.6: The SWAT model parameters used to define the properties of tile drains
within the models of the Wensum and Blackwater sub-catchment and their

respective values.

SWAT Tile Drain Parameter  Description Value
DDRAIN Depth to tile drain from surface (mm) 1000 #
TDRAIN Time it takes to drain soils to field capacity (hours) 48°

Tile drain lag time (i.e. the time it takes to transfer
GDRAIN ) ) ) ) 12
water to the exit of tile drains after entering) (hours)

2 Qutram et al. (2016); ® Arnold et al. (2014).

A system of automatic irrigation was applied within the models of the Wensum and
Blackwater sub-catchment. The automated irrigation system applied within SWAT is
triggered when the plant water demand stress threshold, defined as the fraction of
potential plant growth due to water stress, is below a user-defined value (Arnold et al.,
2014). On each day when the plant water stress is below this threshold value, the model
automatically applies water up to a user-specified amount. Within SWAT, irrigation
water first fills the top soil layer to field capacity and continues working downwards until
all soil layers are filled to field capacity or the whole water amount has been applied

(Arnold et al., 2014). The parameters used to define this system of automatic irrigation
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within the models of the Wensum and Blackwater sub-catchment were determined from
the literature and are described in Table 4.7. This final step concludes the model set-up
process within ArcSWAT and model sensitivity analysis, calibration and validation can

now be performed within SWAT-CUP.

Table 4.7: The SWAT model parameters that control and define automatic
irrigations practices within the models of the Wensum and Blackwater sub-

catchment.

SWAT Automatic
Description Value
Irrigation Parameter

The plant water stress threshold that triggers
AUTO_WSTRS S 0952
automatic 1rrigation

The irrigation efficiency factor which accounts
IRR_EFF ' 0.90°
for conveyance and evaporative loss

IRR MX Maximum depth of irrigation water applied (mm) 25

2 Arnold et al. (2014); ® Schneider (2000).

4.2 Blackwater Sub-catchment Nutrients Model

4.2.1 Model Calibration and Validation

In order to conduct a sensitivity analysis and to perform model calibration and validation,
the Sequential Uncertainty Fitting version 2 (SUFI-2) optimisation algorithm (Abbaspour
et al., 2004; 2007) was applied within SWAT-CUP version 5.1.6.2 (Abbaspour, 2015).
SUFI-2 is based on the concept of equifinality, which posits that multiple models (i.e.
multiple parameter sets) provide equally acceptable predictions and as such, parameter
values are treated as uncertain (Beven, 1993; Beven and Freer, 2001). Model parameters
selected for calibration were first assigned an initial global uncertainty range within
SWAT-CUP (Table 4.8). Sensitivity analysis was then performed to identify those
parameters that model outputs were sensitive to. In general, a parameter should be
included in calibration if sensitivity analysis identifies that there is a 95% probability that
the sensitivity of a variable to a particular parameter is significant. Only sensitive
parameters were included in the calibration of the model at a daily time-step against
observations of discharge and nitrate and total phosphorus loads recorded at the outlet of
the Blackwater sub-catchment. Using the sensitive parameters, five iterations of 1000

simulations were performed to calibrate the model. The parameter ranges were updated
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after each iteration, as identified by the SUFI-2 optimisation algorithm, until prediction
uncertainty and model performance was considered satisfactory. The model was applied
at a daily time-step during the period from 1 December 2011 to 30 June 2014, of which
1 December 2011 to 31 March 2013 and 1 April 2013 to 30 June 2014 were used as
calibration and validation time periods, respectively. An initial warm-up period of four
years was applied during calibration and validation to ensure that the model achieved a
steady-state and to eliminate any initial bias. Validation involved evaluating model
performance against observations recorded outside of the calibration time-period and was

utilised as an additional test of model performance.
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Table 4.8: The model parameters identified as significant by the sensitivity analysis

and the initial and final calibrated ranges of each parameter.

Parameter Description Initial range Final range
ALPHA BF Baseflow recession constant (1/day) 0-1 0.16-0.5
GW_DELAY Groundwater delay time (days) 0-500 420 -490
CH N2 Mapnmg s roughness coefficient for the 0-03 0.03 - 0.081
- main channel
CH K2 Effective hyd.raullc COIldlﬁ:thlty of main 0-100 28 .55
- channel alluvium (mm hr')
ALPHA BNK Baseflow recession constant for bank 0-1 073 -0.96
- storage (1/day)
GW_REVAP Groundwater evaporation coefficient 0.02-0.2 0.03-0.1
SURLAG Surface runoff lag coefficient 1-24 1-4.18
Threshold depth of water in the shallow
aquifer required for the movement of water i 3
REVAPMN from the shallow aquifer to the unsaturated 0-500 66 200
zone to occur (mm)
OV N Manning’s roughness coefficient for 0.2 - 0.28 0.035 - 0.087 @
- overland flow
CN2 AGRL Runoff curve number for agricultural land -0.2-0.2° -0.15--0.052
CN2 FRSD Runoff curve number for deciduous forest -0.2-0.2° -0.13-0.093°
CN2 PAST Runoff curve number for pasture land -0.2-0.2° -0.23 --0.0822
SOL AWC Available water capacity of soil layer (mm 0.2-0020 0.16 - 0.394
- H>O/mm soil)
SOL Z The depth frgm the soil surface to the 0.2-0020 0.041 - 0.028 2
- bottom of soil layer (mm)
DDRAIN Depth to the sub-surface drain (mm) 900 - 1100 1060 - 1130
CDN Denitrification exponential rate coefficient 0-0.1 0.033 - 0.059
ANION EXCL Fraction of void space from which anions 05-075 068 -0.76
- are excluded
SDNCO Fra(.:tl.on of field capacity above which 09-1 0.94 - 0.96
denitrification takes place
SOL NO3 Initial nitrate concentration in the soil layer 0-100 69 - 96
- (ppm) -
SOL SOLP Inltlal’soluble phosphorus concentration in 0-100 36 - 70
- the soil layer (ppm)
GWSOLP Concentration of soluble phosphorus in 0-0.25 0.06 - 0.19
groundwater (ppm)
SOL BD Moist bulk density of soil layer (g cm™) -0.2-0.2° -0.25 --0.054+*
RCN Concentration of nitrogen in rainfall (mg 1) 0-15 3.7-7
CMN Rate factor for mlperallsatlon of active 0.001 - 0.003 0.0017 - 0.0023
organic nutrients in humus
NPERCO Nitrate percolation coefficient 0-1 0.21-0.47
CH_ERODMO The level of resistance to channel erosion 0-1 0.83-0.96
HLIFE NGW  Half-life of nitrate in groundwater (days) 0-200 130 - 200
. o ) N
PHOSKD 11\3/ilgi')_?§)h0rus soil partitioning coefficient (m 100 - 200 150 - 180
TDRAIN Time to drain soil to field capacity (hours) 0-72 46 - 64
ESCO Soil evaporation compensation factor 0-1 0.86 -1
SHALLST N Inlt{al concentration of nitrate in shallow 0 - 1000 130 - 310
- aquifer (ppm)
ERORGP Phosphorus enrichment ratio 0-0.1 0.0017 - 0.03

2 A relative change which has been applied to the original value of the parameter where the value is

multiplied by 1 plus a number from within the defined range.

116 Sam David Taylor - June 2017



Chapter 4: SWAT Model Set-up and Calibration and Validation

4.2.2 Objective Functions

Moriasi et al. (2007) recommend that three quantitative statistics are used as objective
functions to evaluate model performance, including the Nash-Sutcliffe Efficiency (NSE)
coefficient, percent bias (PBIAS) and the ratio of the root mean square error to the
standard deviation of the measured data (RSR). Each of these statistical measures is

defined below.

4.2.2.1 Nash-Sutcliffe Efficiency Coefficient
The Nash-Sutcliffe Efficiency (NSE) coefficient proposed by Nash and Sutcliffe (1970)
is defined by Equation 10.

?:1(YiObs_YiSim)2

NSE =1 — SARTRTISY (10)

Where:

n is the total number of observations

yPbs is the value of the observed variable at the i time-step
ysim is the value of the simulated variable at the i time-step
yobs is the mean value of the measured data considered

NSE is a normalised statistic that describes the degree of the ‘goodness-of-fit’ between
model predictions and observations and can vary between - and 1, where a value of 1
represents a perfect fit. An NSE value of between 0 and 1 is generally recognised as
acceptable model performance, whilst a value of less than 0 indicates that the mean of the
measured data is a better predictor of a variable compared to the model and indicates

unsatisfactory model performance.

4.2.2.2 Percent Bias

Percent bias (PBIAS) is described as the average tendency of simulated data to
overestimate or underestimate a variable relative to observations and is defined by
Equation 11. The optimum value of PBIAS is zero, indicating perfect agreement between
model simulations and observations. A negative PBIAS value indicates overestimation

and a positive value indicates underestimation.

pRIAS = Zimt (PP Yi)-100
IR, O™

(11)
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4.2.2.3 Ratio of the Root Mean Square Error to the Standard Deviation of the Measured
Data (RSR)

RSR is described as the ratio of the Root Mean Square Error (RMSE) to the standard
deviation (STDEV) of observed data and is defined by Equation 12 (Moriasi et al., 2007).

b im\ 2|

RMSE [\/Z{Ll(Y? Y2

RSR = STDEV — = -
obs [\/Z{Ll(Y?bS_YObS)Z

(12)

RSR can vary from an optimum value of zero, indicating that there is no error between
measured and simulated data, up to large positive values (Moriasi et al., 2007). A small

RSR indicates a good model performance.

4.2.2.4 Model Performance Criteria

Moriasi et al. (2007) suggest that for a model to be considered to perform satisfactorily
in simulating discharge, nitrate and total phosphorus loads at a monthly time-step, it must
achieve a NSE of > 0.5, a RSR of < 0.7 and a PBIAS of + 25% for discharge and a NSE
of > 0.5, a RSR of < 0.7 and a PBIAS of + 70% for nitrate and total phosphorus loads.

4.2.3 Calibration and Validation

Sensitivity analysis identified that the parameters listed in Table 4.8 were required to be
included in model calibration. In order to calibrate the model against observations of
discharge, and nitrate and total phosphorus loads, five iterations of 1000 simulations were
performed. The initial and final calibrated ranges of each parameter are provided in Table

4.8.

4.2.3.1 Discharge Simulation

The model performance in simulating daily mean discharge at the outlet of the Blackwater
sub-catchment during the calibration and validation time periods is shown in Figure 4.3
and Figure 4.4. When evaluated at a daily time-step, the model achieved NSE, PBIAS
and RSR values of 0.77, -6.0% and 0.48, respectively, during the calibration period and
values of 0.68, -24.8% and 0.57, respectively, during the validation period (Table 4.9).
The 95% prediction uncertainty range bracketed 86% and 87% of observed flow data
during calibration and validation periods, respectively, indicating that the model achieved
a relatively good fit between predictions and observations overall. To evaluate the model
performance at a monthly time-step against the performance criteria suggested by Moriasi
et al. (2007), daily data were aggregated into monthly time-series. According to those

criteria, the model can be considered to perform very well in simulating discharge at both
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daily and monthly time-steps during the calibration and validation periods (see Table 4.9).
The negative PBIAS values achieved during both time periods indicate that the model
tends to overestimate discharge. This overestimation is pronounced during prolonged dry
periods in 2013 and 2014 and may indicate a deficiency in simulating baseflow during

periods of drought.
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Figure 4.3: Observed (solid line) and the best simulated (dotted line) daily mean
discharge, nitrate and total phosphorus loads recorded at the outlet of the
Blackwater sub-catchment during the calibration time period (1 December 2011 —
31 March 2013). The 95% confidence interval is represented by the hatched area
and the daily rainfall amount recorded at Heydon weather station is plotted in the

top panel for reference.
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Figure 4.4: Observed (solid line) and the best simulated (dotted line) daily mean
discharge, nitrate and total phosphorus loads recorded at the outlet of the
Blackwater sub-catchment during the validation time period (1 April 2013 —30 June
2014). The 95% confidence interval is represented by the hatched area and the daily
rainfall amount recorded at Heydon weather station is plotted in the top panel for

reference.
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Table 4.9: The statistical performance of the model in simulating mean discharge,
nitrate and total phosphorus loads at monthly and daily time-steps at the outlet of
the Blackwater sub-catchment during the calibration (1 December 2011 — 31 March
2013) and validation (1 April 2013 — 30 June 2014) periods, respectively. NSE is the
Nash-Sutcliffe Efficiency coefficient, PBIAS is percentage bias and RSR is the ratio
of the root mean square error to the standard deviation of the measured data. The
numbers enclosed in brackets are benchmark values suggested by Moriasi et al.

(2007).

Variable NSE PBIAS (%) RSR

Daily time-step:

Calibration:

Flow 0.77 -6.0 0.48
Nitrate 0.72 5.6 0.53
Total Phosphorus 0.44 0.8 0.75
Validation:

Flow 0.68 -24.8 0.57
Nitrate 0.46 4.2 0.74
Total Phosphorus 0.36 2.9 0.80

Monthly time-step:

Calibration:

Flow 0.95 (>0.5) -5.9 (£25) 0.23 (<0.7)
Nitrate 0.86 (>0.5) 5.6 (£70) 0.37 (<0.7)
Total Phosphorus 0.63 (>0.5) 0.8 (£70) 0.61 (<0.7)
Validation:

Flow 0.92 -15.6 0.28
Nitrate 0.81 -4.7 0.43
Total Phosphorus 0.60 8.5 0.64

4.2.3.2 Baseflow Simulation
To further evaluate model performance, the baseflow index modelled at the outlet of the
Blackwater sub-catchment during the calibration and validation periods was compared to

the value of 0.80 reported for the sub-catchment by Robson and Reed (1999). According
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to model predictions, the baseflow index at the outlet of the Blackwater sub-catchment
during the calibration and validation periods was 0.58 and 0.65, respectively (Table 4.10).
These values are less than the value of 0.80 reported by Robson and Reed (1999),
suggesting that the baseflow index during the calibration and validation periods was
different to that when reported by Robson and Reed (1999), or that the model
underestimates baseflow within the sub-catchment, but a visual evaluation of Figure 4.3
and Figure 4.4 indicates that the model performs reasonably well in simulating baseflow

during the calibration and validation periods.

Table 4.10: Modelled total flow, baseflow and baseflow index at the outlet of the
Blackwater sub-catchment during the calibration (1 December 2011 — 31 March
2013) and validation (1 April 2013 — 30 June 2014) periods, respectively.

Total flow Baseflow Baseflow
Period
(mm) (mm) index

Calibration (1 December

437 255 0.58
2011 — 31 March 2013)
Validation (1 April 2013

324 211 0.65

—30 June 2014)

4.2.3.3 Nitrate Simulation

The model performance in simulating daily nitrate loads during the calibration and
validation time periods is shown in Figure 4.3 and Figure 4.4, respectively. When
evaluated at a daily time-step, the model achieved NSE, PBIAS and RSR values of 0.72,
5.6% and 0.53, respectively, during the calibration period and values of 0.46, 4.2% and
0.74, respectively, during the validation period (Table 4.9). The 95% prediction
uncertainty range bracketed 76% and 72% of observed nitrate load data during calibration
and validation periods, respectively, indicating that the model achieved a relatively good
fit between predictions and observations overall. According to the criteria set out in
Moriasi et al. (2007), the model performs very well in simulating nitrate loads during the
calibration and validation periods if evaluated at a monthly time-step (see Table 4.9).
When evaluated at a daily time-step however, there is a notable decline in model

performance during the validation period.

A visual inspection of Figure 4.4 indicates that the model generally performs well in
simulating nitrate loads during the validation period however there is an observed

tendency to underestimate some peaks in nitrate loads. Although the model tends to
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overestimate discharge in general, it failed to reproduce a number of peaks in discharge
(e.g. during March 2012, June - August 2012 and October - December 2013) which
appears to translate into an underestimation of nitrate loads. Four factors that may
contribute to this deficiency are: (i) rating curve uncertainty under high-flow conditions
due to a limited number of flow gauging observations recorded during storm events
(McMillan et al., 2010); (i1) difficulties in modelling responses to extreme conditions
(Zhang et al., 2014); (iii) difficulties in modelling antecedent conditions within a
catchment (Yatheendradas et al., 2008); and (iv) incorrect timing of management

practices (e.g. fertiliser application and tillage).

The model also greatly underestimates the mass of nitrate exported from the sub-
catchment in response to 35 mm of rainfall recorded at Heydon weather station on 27
May 2014. This is the largest amount of precipitation to have occurred within the sub-
catchment on any single day since 2008. During the three consecutive days following this
event, nitrate loads observed at the sub-catchment outlet were over 7, 5 and 4 times the
mass predicted by the best simulation respectively. It is possible that the response
observed within the sub-catchment may result from an incidental loss of nitrate from a
farm or from the connection of a previously unconnected nitrate source or so-called
legacy stores (Outram et al., 2016) within the system. Such occurrences are difficult to
account for within SWAT. If model performance in simulating nitrate loads at a daily
time-step during the validation period is evaluated with these three outliers removed,

NSE, PBIAS and RSR values of 0.68, -1.43% and 0.56 are achieved, respectively.

According to the criteria set out by Moriasi et al. (2007), the model can be considered to
perform very well in simulating nitrate loads at a monthly time-step during the calibration
and validation periods (see Table 4.9). Moriasi et al. (2007) recommend that, in general,
the model performance criteria should be less strict when considering a shorter time-step.
For the purposes of this investigation, the model is therefore considered to perform

adequately in simulating nitrate loads at daily and monthly time-steps.

4.2.3.4 Total Phosphorus Simulation

The model performance in simulating daily total phosphorus loads during the calibration
and validation time periods can be observed in Figure 4.3 and Figure 4.4, respectively. A
visual inspection indicates that the model generally performs well in simulating total
phosphorus loads in baseflow, however it fails to reproduce a number of peak events

during the calibration and validation periods.
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The sediment transport component of the SWAT model was not calibrated within this
investigation because sediment observations were not available at daily or sub-daily
resolutions. 467 stream water samples were, however, collected at the outlet of the
Blackwater sub-catchment from October 2010 to March 2015 as part of the Wensum DTC
Project and were used to develop a log-log regression model to test the hypothesis that
there is a significant relationship between the concentration of total suspended solids and
the concentration of total phosphorus (Figure 4.5). A linear regression t-test found that
this relationship has a P-value of <0.001 and is statistically significant. Because of the
significance of this relationship and the sensitivity of total phosphorus losses to the
transport of sediment during storm events, the lack of high-resolution data means that
sediment losses may not be adequately simulated by the model. This observation may
account for the apparent deficiency of the model in simulating total phosphorus loads
during storm events. Other explanations which may account for the poor performance of
the model in reproducing peak total phosphorus events are that: (i) the general
representation of fertiliser practice within the model is not sufficiently accurate for total
phosphorus at a daily resolution; and (ii) the accumulation of sediment and sediment-
associated nutrients within complex tile drainage networks and their subsequent removal
during storm events is difficult to reproduce within a generalised model. For example,
Kronvang et al. (1997) investigated the transport of sediment and phosphorus in an arable
catchment in Denmark and found that the majority of losses occurred during storm events,

with subsurface drainage found to be an important pathway.

Despite the above deficiencies, when evaluated at a daily time-step the model achieved
NSE, PBIAS and RSR values of 0.44, 0.8% and 0.75, respectively, during the calibration
period and values of 0.36, -2.9% and 0.80, respectively, during the validation period
(Table 4.9). The 95% prediction uncertainty range bracketed 85% and 92% of observed
total phosphorus load data during calibration and validation periods, respectively,
indicating that the model achieved a relatively good fit between predictions and
observations overall. Although the model does not achieve the satisfactory performance
criteria suggested by Moriasi et al. (2007) when simulating total phosphorus loads at a
daily time-step, the small percent bias values achieved during the calibration and
validation time periods indicate that the model simulates overall total phosphorus loads
with reasonable accuracy (Table 4.9). When evaluated at a monthly time-step, the model
performance in simulating total phosphorus loads does achieve the satisfactory

performance criteria (Table 4.9). The priority of this investigation is to achieve good
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model performance in simulating losses of total phosphorus over the long term. Given the
good performance in this respect, for the purposes of this investigation it is therefore
considered that the model performs adequately in simulating total phosphorus loads at

both daily and monthly time-steps.
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Figure 4.5: Log-log regression model of the relationship between the concentration
of total suspended solids (TSS) and the concentration of total phosphorus (TP) at
the outlet of the Blackwater sub-catchment according to stream water samples

collected during 1 October 2010 — 31 March 2015.

4.2.3.5 Crop Yield Simulation

As an additional test of model performance, the crop yields simulated by the Blackwater
model were compared to mean yields recorded by all farms up to the outlet of the
Blackwater sub-catchment (Figure 3.13), and to mean yields recorded for eastern England
(Table 4.11). Because no crops were harvested during the periods of the years 2011 and
2013 that were included in the calibration period, crop yields simulated during calibration
were compared to crop yields observed during 2012. During the calibration period from
1 December 2011 — 31 March 2013, crop yields simulated by the model compared
favourably with observations for the Blackwater sub-catchment and eastern England
(Table 4.11). According to observations for the Blackwater sub-catchment, the model
underestimated spring barley, sugar beet, winter oilseed rape and winter wheat yields by
11.8%, 10.1%, 7.1% and 19.1%, respectively, and overestimated spring bean and winter
barley yields by 6.8% and 22.5%, respectively. When compared to observations for

eastern England, the model overestimated spring barley, winter barley and winter oilseed
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rape yields by 5.2%, 22.5% and 11.9%, respectively, whilst the model underestimated
winter wheat yields by 3.6%. Because no crops were harvested during the period of the
year 2014 included in the validation period, crop yields simulated during validation were
compared to crop yields observed during 2013. Model predictions of crop yield during
the validation period from 1 April 2013 — 30 June 2014 also compare favourably with
observations for the Blackwater sub-catchment and eastern England (Table 4.11).
According to observations for the Blackwater sub-catchment, the model overestimated
spring barley, sugar beet and winter barley yields by 20.1%, 9.7% and 18.1%,
respectively, and underestimated spring bean, winter oilseed rape and winter wheat yields
by 5.3%, 6.5% and 14.6%, respectively. When compared to observations for eastern
England, the model overestimated spring barley, winter barley and winter oilseed raped
yields by 20.3%, 7.6% and 27.9%, respectively, and underestimated winter wheat yields
by 14.1%. These results compare favourably with those achieved by previous studies
(Srinivasan et al., 2010; Nair et al., 2011; Baffaut et al., 2015), indicating that the model
can perform well in simulating crop yields without calibration. For the purposes of this
study, it is considered the model performs satisfactorily in simulating crop yields. Factors
that may account for the apparent differences between observed and predicted crop yields
include that SWAT does not currently account for the impacts of weeds and pests on crop
growth (Neitsch et al., 2011). There may also be differences between modelled and actual
agricultural management practices and responses to extreme events which affect crop
growth and yield (Srinivasan et al.,, 2010; Mittelstet et al., 2015). A better model
performance in simulating crop yields may result if crop parameters are calibrated within

SWAT (Nair et al., 2011).
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Table 4.11: Simulated and mean observed crop yields for the Blackwater sub-
catchment and mean observed yields for eastern England during the calibration (1
December 2011 — 31 March 2013) and validation (1 April 2013 — 30 June 2014)
periods, respectively. Data for eastern England is from Defra (2016b). Data for the
Blackwater sub-catchment is for all farms up to the outlet of the sub-catchment and
is from Wensum Alliance (2017). The numbers enclosed in brackets are the

percentage difference between the simulated and observed yields.

Blackwater sub-
Eastern England

Simulated yield catchment mean
Crop mean observed
(tonnes ha™) observed yield
yield (tonnes ha™')
(tonnes ha™)

Calibration:
Spring barley 5.99 6.79 (-11.8) 5.69 (5.2)
Spring beans 2.59 2.43 (6.8) N/A
Sugar beet 57.60 64.09 (-10.1) N/A
Winter barley 8.41 6.87 (22.5) 6.87 (22.5)
Winter oilseed

4.09 4.41(-7.1) 3.66 (11.9)
rape
Winter wheat 7.01 8.67 (-19.1) 7.27 (-3.6)
Validation:
Spring barley 6.93 5.77 (20.1) 5.77 (20.3)
Spring beans 4.15 4.38 (-5.3) N/A
Sugar beet 73.91 67.39 (9.7) N/A
Winter barley 6.97 5.90 (18.1) 6.48 (7.6)
Winter oilseed

4.30 4.60 (-6.5) 3.36 (27.9)
rape
Winter wheat 6.76 7.91 (-14.6) 7.87 (-14.1)

4.3 Wensum Catchment Metaldehyde Model

4.3.1 Model Calibration
The SUFI-2 optimisation algorithm was applied within Version 5.1.6.2 of SWAT-CUP

to perform sensitivity analysis and calibration (Abbaspour et al., 2004). A sensitivity
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analysis consisting of 500 simulations was conducted to identify the parameters that the
model outputs of discharge and metaldehyde load are sensitive to. The model was
calibrated at a daily time-step against observations of discharge and metaldehyde load
recorded during the period from 1 January 2008 to 31 October 2015. A preceding warm-
up period of four years was applied to allow the model to reach a steady-state. The limited
availability of metaldehyde data precluded the opportunity to conduct a split-time
calibration and validation for the model. The performance of the model was evaluated
against statistical measures including the NSE coefficient, PBIAS and RSR. These
objective functions are described in Section 4.2.2 and are the statistical measures
recommended for use in model evaluation and reviewed in detail by Moriasi et al. (2007).
SWAT does not provide pesticide concentration as an output and so metaldehyde
concentration had to be calculated from model predictions of discharge and metaldehyde

load at the Costessey Pits and Heigham WTW intake sites.

4.3.2 SWAT Metaldehyde Parameters

SWAT includes parameters which define the physical and chemical properties of
pesticides and control their transport and fate within the model (Arnold et al., 2014).
Metaldehyde is not included in the SWAT pesticide database and so the values of these
properties for metaldehyde (see Table 4.12) were determined from the literature and were

manually added to the model database.

Table 4.12: The physical and chemical properties of metaldehyde and associated

SWAT model parameters.
Parameter Description Value
SKOC Soil adsorption coefficient normalised for soil organic carbon content (mL g') ~ 240?
WOF Wash-off fraction 0.6°
HLIFE F Half-life of metaldehyde on foliage (days) 35¢
HLIFE S Half-life of metaldehyde in soil (days) 60°
AP _EF Application efficiency for metaldehyde 0.75¢
WSOL Solubility of metaldehyde in water (mg L") 220?

2 Tomlin (2006); ® Willis et al. (1980); ¢ EPA (2006); ¢ Arnold et al. (2014).

Sensitivity analysis found that model outputs for discharge and metaldehyde load were

sensitive to 29 parameters (Table 4.13). Six iterations of 500 simulations were conducted
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to calibrate the model against observations of discharge and metaldehyde load at a daily

time-step during the period 1 January 2008 to 31 October 2015.

Table 4.13: The sensitive model parameters and the initial and final calibrated

ranges.

Parameter Description Initial range Final range

ALPHA BF Baseflow recession constant (day™') 0-1 0.30-0.38

GW_DELAY  Groundwater delay time (days) 0-500 270 - 400

CH N2 Manning’s roughness coefficient for the main 0-03 021 - 024

- channel
CH K2 Hydrguhc condu(_:]twlty of main channel 0-100 20-3]
- alluvium (mm hr)

ALPHA BNK azsyejl)ow recession constant for bank storage 0-1 0.098 - 0.27

GW_REVAP Groundwater evaporation coefficient 0.02-0.2 0.030-0.14

SURLAG Surface runoff lag coefficient 1-24 1-4.7
Threshold depth of water in the shallow aquifer

REVAPMN required for .the movement of water from the 0 - 500 250 - 300
shallow aquifer to the unsaturated zone to occur
(mm)

RCHRG_DP Deep aquifer percolation fraction 0-0.1 0.067 - 0.078

OV N i\l/lozt)r;nmg s roughness coefficient for overland 0.2 10 0.2° 0.056-021°

CN2 AGRL Runoff curve number for agricultural land -0.2t0 0.2*  -0.025 to 0.0055*

CN2 FRSD Runoff curve number for deciduous forest -0.2 t0 0.2° 0.085 - 0.15*

CN2 PAST Runoff curve number for pasture land -0.2 t0 0.2° 0.098 -0.21*

SOL Z Depth from soil surface to the bottom of soil 0.2 to 0,28 -0.38 10 -0.32°

- layer (mm)

SOL K Saturatid hydraulic conductivity of soil layer 0.2 to 0,28 0.19 - 0.338
(mm hr')

GDRAIN Tile drain lag time (hours) 0-100 18 -31

TDRAIN Time to drain soil to field capacity (hours) 0-72 57-172

ESCO Soil evaporation compensation factor 0-1 0.76 - 0.90*

SKOC Soil adsorptlon coefficient no_rlmallsed for 0.2 10 0.2° 034 - 0420
organic carbon content (mL g™')

WOF Metaldehyde wash-off fraction -0.2 t0 0.2° -0.17 t0 -0.10*

HLIFE F Half-life of metaldehyde on foliage (days) -0.2 t0 0.2° -0.23t0 -0.16*

HLIFE S Half-life of metaldehyde in soils (days) -0.2 t0 0.2° -0.11 to -0.057*

AP _EF Application efficiency for metaldehyde 09-1 0.90-0.93

CHPST REA éze;ﬁ?)on coefficient in reach for metaldehyde 021002  -0.083 to -0.016
Partition coefficient between water and a a

CHPST_KOC . diment in reach for metaldehyde (m* g™!) 021002 0.1310-0.051

CHPST RSP Resuspensmn Velocf}ty for metaldehyde sorbed 0.2 to 0,28 0.15 t0 -0.10°

- to sediment (m day™)

CHPST MIX ﬁgﬁ}?g velocity for metaldehyde in reach (m 021002°  -0.058 to -0.017°

SEDPST BRY 1(\1/2[§lt_211)1dehyde burial velocity in bed sediment (m 0.2 10 0.2° 0.37 10 -0.26°

PERCOP Pesticide percolation coefficient -0.2 t0 0.2° -0.30 to -0.15*

A relative change where the initial parameter value has been multiplied by 1 plus a number from within

the defined range.
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4.3.3 Calibration

4.3.3.1 Discharge Simulation

A visual examination of the observed and simulated hydrographs at each of the four flow
gauges during the calibration period indicates that the model has a tendency to
underestimate peak discharges, but the timings of those peaks and the recession curves
compare favourably (Figure 4.6). When evaluated at a daily time-step, the model achieved
NSE, PBIAS and RSR values which indicate that the model achieved a good overall fit
to the observed hydrograph at each flow gauge (Table 4.14). The PBIAS values show
that, for discharge, the model has an overestimation bias of -10.2% at the Fakenham
gauge, and underestimation biases of 8.3%, 12% and 2.8% at the Swanton Morley,
Costessey Mill and Costessey Park gauges, respectively. The RSR values indicate that
the model achieves a relatively low residual error for discharge at each gauge. The
statistical performance of the model compares favourably with previous studies (Moriasi
et al., 2007), and can be considered to perform satisfactorily in simulating discharge

within the catchment at a daily time-step during the calibration period.
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Figure 4.6: Hydrographs depicting observed (solid line) and best simulated (dotted
line) daily mean discharge for the flow gauges located at (a) Fakenham, (b) Swanton
Morley, (¢) Costessey Mill and (d) Costessey Park during the calibration period (1
January 2008 - 31 October 2015). The 95% confidence interval is depicted by the

hatched area.
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Table 4.14: The statistical performance of the model in simulating mean discharge,
metaldehyde load and metaldehyde concentration at a daily time-step during the
calibration period from 1 January 2008 to 31 October 2015, as measured by the
Nash-Sutcliffe Efficiency (NSE) coefficient, percent bias (PBIAS) and ratio of the
root-mean square error to the standard deviation of measured data (RSR). A
positive PBIAS indicates a tendency of the model to underestimate a variable, whilst

a negative PBIAS indicates a tendency to overestimate a variable.

Variable NSE PBIAS (%) RSR
Fakenham:
Discharge 0.52 -10.2 0.70

Swanton Morley:

Discharge 0.68 8.3 0.56
Costessey Mill:
Discharge 0.67 12.0 0.58
Costessey Park:
Discharge 0.57 2.8 0.66

Costessey Pits:

Metaldehyde load 0.50 -1.1 0.71
Metaldehyde concentration -0.54 -46.6 1.24
Heigham WTW:

Metaldehyde load 0.44 28.8 0.75
Metaldehyde concentration 0.11 -12.8 0.94

4.3.3.2 Baseflow Simulation

To further evaluate model performance, the modelled baseflow indexes at the four flow
gauging stations within the catchment during the calibration period were compared to
published values. According to model predictions, the baseflow indexes at the flow
gauges located at Fakenham, Swanton Morley, Costessey Mill and Costessey Park were
0.56, 0.58, 0.61 and 0.56, respectively, during the calibration period from 1 January 2008
— 31 October 2015 (Table 4.15). These values are relatively lower than the observed
baseflow indexes for each gauge which have been calculated from long-term
measurements collected from 1966, 1969, 1960 and 1961 to 2015 at the gauges located

at Fakenham, Swanton Morley, Costessey Mill and Costessey Park, respectively
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(National River Flow Archive, 2016a,b,c,d). This result suggests that either the baseflow
index at each site was lower than the long-term observed baseflow index during the
calibration period or that the model under predicts baseflow at each flow gauge within
the catchment, but a visual evaluation of Figure 4.6 indicates that the model performs

reasonably well in simulating baseflow.

Table 4.15: Modelled total flow, baseflow and baseflow index at the flow gauges
located within the River Wensum catchment during the calibration period (1

January 2008 — 31 October 2015) and the long-term measured baseflow indexes.

Modelled Measured
Total flow Baseflow
Flow gauge baseflow baseflow
(mm) (mm)

index index
Fakenham 1200 675 0.56 0.822
Swanton Morley 1481 861 0.58 0.75°
Costessey Mill 1546 937 0.61 0.75°¢
Costessey Park 1426 793 0.56 0.644

2 National River Flow Archive (2016a), ® National River Flow Archive (2016b), ¢ National River Flow
Archive (2016c), ¢ National River Flow Archive (2016d).

4.3.3.3 Metaldehyde Simulation

A visual analysis of observed and simulated metaldehyde concentrations at both intake
sites indicates a seasonal pattern in metaldehyde loss and concentration, which regularly
peaks during the period from September to January (Figure 4.7). The catchment is clearly
at an increased risk of exceeding the 0.1 pg L' limit during this period, which coincides
with the time when metaldehyde was applied within the model and is generally applied
within the catchment. This problematic period was also recognised by Kay and Grayson

(2013).
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Figure 4.7: Observed (crosses) and best simulated (solid line) daily metaldehyde load
for the intakes at (a) Costessey Pits and (b) Heigham WTW and mean metaldehyde
concentration for the intakes at (c) Costessey Pits and (d) Heigham WTW during
the calibration period (1 January 2008 — 31 October 2015). The 95% confidence
interval is depicted by the hatched area.
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When evaluated at a daily time-step, the model achieved NSE, PBIAS and RSR values
for metaldehyde load during the calibration period that indicate a mixed performance
(Table 4.14). There are a number of quality limitations associated with the observed
metaldehyde data used within this study that must be considered when evaluating the
performance of the model. Firstly, observations of metaldehyde concentration and
estimates of load were determined from grab samples collected at one instant in time.
Ideally, the observed metaldehyde concentration should equal the mean daily in-stream
value, but the grab sample measurements may not capture the mean metaldehyde
concentration of a day, depending on the timing of sample collection and rainfall events.
Secondly, the grab sample record only contains observations for 13.6% and 14.3% of
days during the calibration period at the Costessey Pits and Heigham WTW intakes,
respectively. These factors may limit the calibration performance of the model. Despite
these limitations, the NSE values indicate that the model achieved a relatively good fit of
the observed metaldehyde load at both intake sites. The PBIAS values of -1.1% and
28.8% achieved for metaldehyde load at the Costessey Pits and Heigham WTW intakes,
respectively, indicate that the model almost matches observations at the Costessey Pits
intake, whilst possessing a moderate bias to underestimate metaldehyde load at the
Heigham WTW intake. Given the factors that limit the quality of observations, the model
achieves RSR values for metaldehyde load which indicate relatively low levels of residual

€ITo”T.

The statistical measures of performance indicate that the model also achieved a mixed
performance in simulating metaldehyde concentration at the two intake sites (Table 4.14).
Moriasi et al. (2007) recommend that performance criteria should be relaxed when using
observations that possess a large uncertainty to assess model performance. Given the
limitations associated with the observations of metaldehyde concentration applied within
this study, it would be unfair to dismiss the performance of the model in simulating
metaldehyde concentration at a daily time-step as inadequate based on the performance
statistics alone. The statistics are perhaps more a reflection of the limitations of the data
rather than the performance of the model itself. A visual evaluation of observed and
simulated metaldehyde concentrations at both intakes indicates a more skilful
performance than is suggested by the statistical measures (Figure 4.7). The magnitudes
of peak events were overestimated or underestimated on a number of occasions but the
timings of peaks and recession curves compare favourably with observations. Some

events were not reproduced in the observed record and on a number of occasions during

136 Sam David Taylor - June 2017



Chapter 4: SWAT Model Set-up and Calibration and Validation

October to November 2012, the magnitude of some observed peak events were not
reproduced by the model. This is not unexpected given the uncertainties associated with
data from the observed record. If these uncertainties are taken into account, both the visual
evaluation and statistical performance indicate that the model possesses sufficient skill to
predict discharge, metaldehyde concentration and load. The model can therefore be
applied to assess the risk of non-compliance for metaldehyde and to quantify the impacts

of mitigation options on diffuse metaldehyde pollution.

4.3.3.4 Crop Yield Simulation

As an additional test of model performance, the crop yields simulated by the Wensum
model were compared to mean yields recorded by all farms up to the outlet of the
Blackwater sub-catchment (Figure 3.13) during the period 2011-2014, and to mean yields
recorded during the period 2008-2015 for eastern England (Table 4.16). During the
calibration period from 1 January 2008 — 31 October 2015, crop yields simulated by the
model compared favourably with observations for the Blackwater sub-catchment and
eastern England (Table 4.16). According to observations for the Blackwater sub-
catchment, the model underestimated sugar beet yields by 5%. It is important to consider
that the Blackwater is only 2.9% of total area of the Wensum catchment and so a
difference in yields can reasonably be expected. When compared to observations recorded
for the Blackwater sub-catchment and eastern England respectively, winter barley yields
were overestimated by 17.8% and 15.2%, winter oilseed rape yields were overestimated
by 2.6% and 14.9% and winter wheat yields were underestimated by 15.1% and 6.7%.
These results compare favourably with those achieved by previous studies (Srinivasan et
al., 2010; Nair et al., 2011; Baffaut et al., 2015), indicating that the model can perform
well in simulating crop yields without calibration. Based on the above analysis, it is
considered that the model performs satisfactorily in simulating crop yields. The factors
which may account for the apparent differences between observed and predicted crop

yields are described in Section 4.2.3.5 and also apply here.
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Table 4.16: Crop yields simulated by the model of the River Wensum catchment and
mean observed crop yields for the Blackwater sub-catchment and eastern England
during the calibration period (1 January 2008 — 31 October 2015). Data for eastern
England is from Defra (2016b). Data for the Blackwater sub-catchment is for all
farms up to the outlet of the sub-catchment and is from Wensum Alliance (2017)
The numbers enclosed in brackets are the percentage difference between the

simulated and observed yields.

Blackwater sub-
Eastern England

Simulated yield catchment mean
Crop mean observed
(tonnes ha™) observed yield
yield (tonnes ha™')
(tonnes ha™')

Sugar beet 70.11 73.81 (-5.0) N/A
Winter barley 7.37 6.25(17.8) 6.4 (15.2)
Winter oilseed

4.11 4.00 (2.6) 3.58 (14.9)
rape
Winter wheat 7.48 8.81 (-15.1) 8.02 (-6.7)

4.4 Use of Automatic Irrigation in the Models

Although a system of automatic irrigation was implemented within the models of the
River Wensum catchment and Blackwater sub-catchment, it was recognised post-
development that it is unrealistic to assume that all crop types are irrigated, when only
high-value crops, such as potatoes and fruit, are likely to be irrigated (Watts et al., 2015).
Although sugar beet does receive some irrigation, less than 5% of the crop is irrigated
(British Sugar and NFU Sugar, 2011). Because this unrealistic assumption was included
in both models, it is important to determine how much irrigation water was applied within

the models and to identify the implications of this for the findings of this investigation.

It was found that no irrigation water was applied within the model of Blackwater sub-
catchment during the calibration period from 1 December 2011 — 31 March 2013. As
such, the system of automatic irrigation did not have any impact on model
parameterisation and model behaviour during model calibration. The absence of irrigation
water also indicates that the crops grown within the model did not experience water stress
during this period. During the validation period from 1 April 2013 — 30 June 2014, 10.8
mm of irrigation water was applied to cropland within the Blackwater sub-catchment

(equivalent to 8.48 mm per annum during the validation period). A total of 831.5 mm of
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precipitation occurred during the validation period, and so the irrigation water represents
an addition of 1.3% of water to the water budget of the model during validation. Although
this irrigation water is not likely to have been present, it is not considered to have had a
major impact on model results due to the relatively small volume applied. Nevertheless,
it is important to consider the implications of the automatic irrigation assumption on crop
growth, soil water content, soil hydrological behaviour and pollutant mobilisation and
transport. For example, wetter soils due to irrigation during periods of plant water stress
may have resulted in increased crop growth and an increase in the uptake of nutrients
from soils by crops than would otherwise have occurred, potentially reducing the amount
of nutrients available to be lost in rainfall events. Wetter soils due to irrigation may have
also resulted in increased nutrient losses from soils through increased leaching and the

increased susceptibility of soils to nutrient loss in surface runoff.

Within the model of the Wensum catchment, it was found that 264.79 mm of irrigation
water was applied to cropland during the calibration period from 1 January 2008 — 31
October 2015 (equivalent to 33.78 mm per annum during the calibration period). A total
0f'5494.7 mm of precipitation occurred during the same period, and so the irrigation water
represents an addition of 4.82% of water to the water budget of the model during
calibration. Although this is more irrigation water than was applied within the Blackwater
model during validation, it is still a relatively small amount. The potential effects of the
irrigation water on nutrient losses described above also apply here, potentially increasing

losses of metaldehyde through leaching and surface runoff.

It is important to also consider the potential effects of the irrigation assumption on the
apparent relative effectiveness of mitigation measures. For example, wetter soils may
have increased the incidence and severity of surface runoff events within the Wensum
and Blackwater models, potentially increasing the apparent relative effectiveness of
buffer strips, the introduction of a red clover cover crop, a system of no metaldehyde
application to arable land that has a slope of >2% or where clay soils are present, whilst
exacerbating losses due to the use of reduced tillage techniques and the removal of tile
drains. It is possible that the increased uptake of nutrients by plants may counteract this

effect to some degree for nitrate and total phosphorus.

4.5 Chapter Summary
In this chapter, the methodology used to build the SWAT models of the Wensum and

Blackwater sub-catchment was described. The temporal and spatial datasets used within
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the models and the agricultural practices simulated were also described. Sensitivity
analysis, calibration and validation were conducted at a daily time-step for the SWAT
model of the Blackwater sub-catchment for discharge, nitrate and total phosphorus load.
Sensitivity analysis and calibration were also performed for the SWAT model of the
Wensum catchment for discharge and metaldehyde load. It was found that there was at
an increased risk of exceeding the 0.1 pg L' limit for metaldehyde at the Costessey Pits
and Heigham WTW intake sites each year during the period from September to January.
The parameters included in model calibration and their initial and final calibrated ranges
were identified. The objective functions NSE, PBIAS and RSR used to evaluate model
performance were defined and were applied to provide a statistical assessment of the
performance of both models in simulating the variables of interest. The model of the
Blackwater sub-catchment was considered to perform satisfactorily in simulating
discharge and nitrate and total phosphorus load at a daily time-step and the model of the
Wensum catchment was considered to perform satisfactorily in simulating discharge,
metaldehyde load and concentration. The satisfactory performance of the models suggests
that they can be applied with confidence to assess the impacts of agricultural mitigation

measures on water quality.
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5 IMPACTS OF MITIGATION
MEASURES ON NUTRIENT
CONCENTRATIONS

The content from Sections 5.1 to 5.2.1.2 of this chapter have been published in the Journal
of Environmental Management (Taylor et al., 2016).

5.1 Mitigation Scenarios

As part of the Wensum DTC Project, stakeholders, including farmers and farm-advisers,
were consulted to identify and select potential agricultural mitigation options that can be
applied within the Blackwater sub-catchment to improve water quality. The Farm Scale
Optimisation of Pollutant Emission Reductions (FARMSCOPER) tool, described in
detail by Zhang et al. (2012) and Gooday et al. (2014), was also applied to the sub-
catchment to evaluate the impacts of potential mitigation options. FARMSCOPER is a
spreadsheet-based DST which can identify the impacts of mitigation options on losses of
multiple pollutants at the farm scale and assess the costs of each mitigation option
(ADAS, 2015; 2016). Input requirements include mean annual precipitation, soil type and
general farm type, based on the robust farm types classification scheme used by the UK
Government (ADAS, 2015; Defra, 2010b). More detailed livestock and cropping
information can be included if required. Since application within this project, the tool has
undergone considerable development and it can now evaluate the impacts of mitigation
options on biodiversity, energy and water use and can be applied at catchment and
national scales (ADAS, 2015). The options identified as being suitable by stakeholders
and the results provided by FARMSCOPER were broadly similar and were selected for

evaluation in this study (see Table 5.1).

The control scenario (S0) is considered to represent current conditions and practices
within the catchment and is used as the baseline scenario against which all other
mitigation scenarios are assessed. Under scenario S0, a generic ploughing operation

(primary tillage) is conducted on agricultural land within the model prior to establishing
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a crop. Primary tillage involves the aggressive mixing of surface materials and a mixing
or burying of crop residues, pesticides and fertilisers leaving a rough soil surface. Primary
tillage is followed by a further pulverisation of surface materials (secondary tillage) with
a harrow (the Roterra harrow in the SWAT model). Secondary tillage involves a less
aggressive mixing of soils, and pulverises soils into a finer material, removing air pockets
and preparing the seedbed for cultivation (see Table 5.2). Such a detailed regime of tillage
practice is not often conducted in SWAT. Under scenario SO0, tile drains are included on
all areas of arable land. Sandy soils (i.e. Isleham 2) where tile drains would otherwise

have been excluded are not under arable land use anywhere within the catchment.

Table 5.1: The agricultural measures scenarios applied within the SWAT model of

the Blackwater sub-catchment.

Number Name Description
SO Control scenario Baseline scenario representing current conditions and practices
S1 Buffer strip (2 m) Establishment of 2 m wide buffer strip on arable land
S2 Buffer strip (6 m) Establishment of 6 m wide buffer strip on arable land
S3 Conservation tillage A reduced tillage practice compared to the control scenario
S4 Zero tillage No field tillage and the direct drilling of crops

) Removal or blockage of field drainage systems from all arable
S5 No tile drains

land
Red clover cover ) )
S6 Introduction of a red clover cover crop to the crop rotation scheme
crop
) ) Buffer strip (6 m) (S2) and red clover cover crop (S6) scenarios
S7 Combined scenario

combined

Scenarios S1 and S2 involve the introduction of buffer strips of 2 m and 6 m width,
respectively, to areas of arable land within the sub-catchment. Scenario S1 represents a
compulsory practice required under cross compliance rules in order to qualify for
payments under Common Agricultural Policy schemes (Defra, 2015). Scenario S2
represents a voluntary practice that can be introduced in order to qualify for payments
under the Entry Level Stewardship Scheme by achieving good environmental conditions
(Natural England, 2013). Scenarios S3 and S4 consider the use of alternative tillage
practices within the sub-catchment. Conservation or reduced tillage (S3) involves a less

aggressive mixing of soils relative to the control scenario, whereas no tillage (S4)
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involves the direct drilling of seeds into soils without any cultivation. The mixing depth
and mixing efficiency of each tillage technique considered by the SWAT model is
provided in Table 5.2. Scenario S5 involves the removal or blockage of subsurface tile
drainage systems from areas of arable land within the sub-catchment in order to simulate
the slowing of runoff and solute transport. Under scenario S6, a red clover cover crop was
applied within the modelled sub-catchment on two occasions during the crop rotation
scheme when arable land would otherwise have been bare prior to the planting of spring
crops. The two occasions are between the harvesting of winter wheat and the cultivation
of sugar beet from the 1 September to 31 March and between the harvesting of spring
barley and the cultivation of spring beans from 1 September to 31 January. Under this
scenario, the red clover cover crop is terminated within the model at the end of the
growing period and is ploughed back into the field to form a ‘green manure’. Finally, to
assess the impacts of mitigation options on water quality when introduced in combination,
ared clover cover crop (S6) and buffer strips of 6 m width (S2), the two mitigation options
that were considered to be most effective at reducing nitrate and total phosphorus losses
individually within the Blackwater sub-catchment, respectively, were modelled together
under scenario S7. Each mitigation scenario was implemented across all areas of arable

land within the sub-catchment.

Table 5.2: The mixing depth and efficiency of each tillage technique applied within

the model.
Tillage Technique Mixing Depth (mm) Mixing Efficiency (fraction)
Generic ploughing operation 150 0.95
Conservation tillage 100 0.25
Roterra harrow 5 0.80

To quantify the impacts of each mitigation option on long-term water quality, each
scenario was run within the SWAT model at a daily time-step for the period 1990-2009,
with an initial warm-up period of four years from 1986-1989. The period from 1990-2009
was used because precipitation during this period reflected full climatic variability,
including droughts and wet periods. A total number of 1000 simulations were performed
to simulate discharge, and nitrate and total phosphorus loads at a daily time-step under
each scenario. This relatively long time period was used in order to consider the response

of the sub-catchment to each measure under a variety of conditions over the long term.
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5.2 Results and Discussion

5.2.1 Agricultural Mitigation Options

The satisfactory performance of the model in simulating discharge and nitrate and total
phosphorus loads suggests that the model can be applied with high confidence to assess
the impacts of agricultural mitigation options on water quality within the Blackwater sub-

catchment.

5.2.1.1 Mitigation Scenario Impacts

Buffer strip scenarios S1 and S2 achieved small reductions in the amount of nitrate lost
from the sub-catchment relative to the control scenario (S0) (Figure 5.1a). Scenarios S1
and S2 reduced mean annual nitrate losses by 2.3% and 4.6%, respectively, for buffer
strips of 2 m and 6 m width. A reduction in the total area of land utilised for agricultural
purposes and the reduction in the total amount of fertiliser applied to land within the sub-
catchment that results is most likely to be responsible for the reduction in nitrate losses
observed under these scenarios. A proportion of the simulated reductions are also likely
to result from a reduction in the amount of nitrate lost in surface runoff due to wider buffer
strips. In comparison, Glavan et al. (2012) found that introducing buffer strips of 4 m
width to arable land and grassland within SWAT reduced losses of total nitrogen by
21.2% and attributed this reduction largely to a drop in the amount of total nitrogen lost
in surface runoff. In another study, Lam et al. (2011) found that introducing buffer strips
of 10 m width to arable land and pasture land along the main river channel reduced total
nitrogen losses by 12.9% and attributed this reduction largely to denitrification within
groundwater in the locality of the vegetative buffer. Scenarios S1 and S2 achieved notable
reductions in the amount of total phosphorus lost from the sub-catchment relative to the
control scenario (SO) (Figure 5.1b). Scenarios S1 and S2 reduced mean annual total
phosphorus losses by 12.2% and 16.9%, respectively, reflecting an increase in the width
of buffer strips from 2 m to 6 m. Increasing the width of buffer strips acts to slow surface
runoff, causing more sediment-associated phosphorus to drop out before the runoff enters
a stream. In comparison, Glavan et al. (2012) found that introducing buffer strips of 4 m
width to arable land and grassland within SWAT reduced losses of total phosphorus by
47.7% and Lam et al. (2011) found that introducing buffer strips of 10 m width to arable
land and pastureland along the main river channel reduced total phosphorus losses by
5.3%. Again, it is considered that the effectiveness of buffer strips is dependent on local

factors. As evidenced by our study and the findings of others, including Cho et al. (2010),
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it is clear that the effectiveness of buffer strips varies, depending on local conditions, the
width of the buffer strip and the extent of the area to which they are applied. For mean
annual losses, the 95% prediction uncertainty range within which 95% of the 1000 model
predictions fell, ranged from 2.5 kg NOs-N ha! yr'! to 11.5 kg NO3-N ha™! yr'! and 0.06
kg P ha! yr'! to 0.28 kg P ha! yr'! under scenario S1, and from 2.4 kg NOs-N ha! yr'! to
11.4 kg NO3-N ha! yr'! and 0.05 kg P ha™! yr'! to 0.26 kg P ha"! yr'! under scenario S2
(Figure 5.1). Relative to control scenario SO, the lower and upper bounds of the 95%
prediction uncertainty range respectively reduced by 5.6% and 2.4% for nitrate and 13.8%
and 13% for total phosphorus under scenario S1 and reduced by 7.7% and 3.3% for nitrate
and 18.8% and 17.4% for total phosphorus under scenario S2. Although there is some
uncertainty associated with model predictions under scenarios S1 and S2, the results
indicate a clear reduction in the amount of nitrate and total phosphorus lost from the sub-
catchment. This result suggests that buffer strips can be introduced to reduce nitrate and

total phosphorus losses over the long term.

Alternative tillage scenarios S3 and S4 resulted in small increases in the amount of nitrate
and total phosphorus lost from the sub-catchment relative to the control scenario (S0)
(Figure 5.1). Nitrate losses under scenarios S3 and S4 increased by 4.7% and 6.3%,
respectively, and total phosphorus losses increased by 3.8% and 7.2%, respectively. The
95% prediction uncertainty range of mean annual losses ranged from 2.8 kg NO3-N ha’!
yr!to 12.3 kg NOs-N ha! yr! and 0.07 kg P ha! yr! to 0.33 kg P ha'! yr'! under scenario
S3, and from 2.8 kg NO3-N ha™! yr! to 12.3 kg NO3-N ha! yr-1 and 0.07 kg P ha! yr'! to
0.34 kg P ha'! yr'! under scenario S4. Relative to control scenario S0, the lower and upper
bounds of the 95% prediction uncertainty range respectively increased by 5.1% and 5%
for nitrate and 2.9% and 3.8% for total phosphorus under scenario S3 and increased by
6.2% and 5.0% for nitrate and 4.2% and 7.1% for total phosphorus under scenario S4.
Although the 95% uncertainty ranges for losses of nitrate and total phosphorus under
scenarios S3 and S4 appear to be relatively large, the upper and lower limits of those
ranges depict a small but clear increase in the amount of nitrate and total phosphorus lost
from the sub-catchment when alternative tillage practices are introduced. The increase in
nitrate and total phosphorus losses was an unexpected result given that alternative tillage
systems including conservation tillage and zero tillage have been reported to reduce
sediment erosion and losses of total phosphorus and nitrogen (McDowell and McGregor,
1984; Ulén et al., 2010). Lam et al. (2011) however found that introducing alternative

tillage practices within SWAT, including zero-tillage and conservation tillage, did not
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have a significant impact on total nitrogen and total phosphorus losses and attributed this
observation to limited surface runoff and sediment erosion within the catchment (Lam et
al., 2010). A number of studies have also reported an increase in the amount of dissolved
phosphorus and nitrogen lost from arable fields where reduced tillage systems are
implemented for successive years (McDowell and McGregor, 1984; Ulén et al., 2010).
Where plant residues are left undisturbed, the incorporation of fertilisers within soils
becomes limited (Ulén et al., 2010) and nutrients accumulate in topsoil (Logan et al.,
1991). This practice has the potential to increase the amount of nutrients lost in surface
runoff (McDowell and McGregor, 1984; Ulén et al., 2010) and may account for the small
increases in nitrate and total phosphorus losses observed under scenarios S3 and S4.
Periodically conducting conventional tillage within a long-term reduced tillage system is
recommended by Addiscott and Thomas (2000) in order to redistribute nutrients within

the soil subsurface and mitigate this risk.

Scenario S5 involved removing tile drains from the sub-catchment. This measure may not
be considered practical or desirable but it is necessary to identify the important pathways
of nutrient loss within the sub-catchment. Scenario S5 reduced nitrate losses by 58.9%
and increased total phosphorus losses by 31.6%, relative to the control scenario (S0)
(Figure 5.1). The 95% prediction uncertainty ranges for mean annual losses ranged from
1.4 kg NO3-N ha! yr! to 4.3 kg NO3-N ha! yr'! and 0.1 kg P ha™! yr'! to 0.4 kg P ha'! yr
! under scenario S5. Relative to control scenario SO, the lower and upper bounds of the
95% prediction uncertainty range respectively reduced by 45.5% and 63.5% for nitrate
and increased by 47.5% and 25.1% for total phosphorus under scenario S5. The result for
nitrate indicates that subsurface drainage is a major conduit for nitrate losses from arable
land to the river network within the sub-catchment. The large increase in total phosphorus
losses results from an increase in surface runoff and soil erosion due to reduced
subsurface drainage, and highlights the need to maintain good drainage within arable
systems. The 95% confidence interval of the predicted impacts of scenario S5 on nitrate
losses within the sub-catchment is also markedly smaller compared to all other scenarios,

indicating a higher confidence in model predictions.
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Figure 5.1: (a) The mean annual nitrate load and (b) the mean annual total
phosphorus load exported from the Blackwater sub-catchment during the period
1990-2009 under each mitigation scenario. The upper and lower bounds of the 95%
prediction uncertainty range are also shown at the end of each line. The ‘x’

represents the mean value of each scenario.

Introducing a red clover cover crop to the crop rotation scheme applied within the sub-
catchment under scenario S6 reduced nitrate and total phosphorus losses by 19.6% and
1.6%, respectively (Figure 5.1). Under scenario S6 the 95% prediction uncertainty range
of mean annual losses ranged from 1.8 kg NO3-N ha! yr'! to 10.0 kg NOs-N ha! yr'! and
0.06 kg P ha! yr! to 0.32 kg P ha! yr'! and, relative to control scenario SO, the lower and
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upper bounds of the 95% prediction uncertainty range respectively reduced by 30.4% and
14.8% for nitrate and 2.7% and 0.9% for total phosphorus. In comparison, Ullrich and
Volk (2009) found that introducing red clover as a cover crop within a SWAT model of
the Parthe catchment in central Germany reduced nitrate losses in surface runoff by 63%,
relative to a control scenario which involved conservation tillage alone. The large
reduction in nitrate loss observed by our study is likely to result from the uptake of nitrate
from soils by the cover crop, locking nitrate within organic plant material and preventing
it from leaching from soils during wet winter months (Rubzk et al., 2011). The presence
of a crop at a time of year when soils would otherwise be bare protects the soil surface
and reduces the amount of nutrients lost through wind erosion and surface runoff. The
root system of the cover crop also enhances the percolation of water into the soil
subsurface, reducing surface runoff and erosion, further reducing nutrient losses.
Following the termination of a cover crop, nutrients stored in organic plant material are
slowly released to soils through the process of mineralisation. The red clover essentially
acts as a ‘green manure’. The reduction in nitrate losses observed under this scenario and
the slow release of nutrients ensure that less nitrogen fertiliser needs to be applied to
fields, reducing fertiliser expenditure and improving soil conditions. The magnitude of
the reduction in total phosphorus losses is markedly less than that observed for nitrate due
to the fact that the uptake of phosphorus by plants is counteracted by the slow desorption
of phosphorus from soil particles. This observation limits the potential for cover crops to
reduce phosphorus losses, however it is possible to reduce losses of phosphorus through
long-term phosphorus mining (Delorme et al., 2000). Mining involves the net removal of
nutrients through the harvesting of cover crops, instead of incorporating the organic

material of cover crops into soils as a green manure.

Although there is clear uncertainty associated with model predictions for nitrate and total
phosphorus losses under each scenario (Figure 5.1), the results indicate a clear, if
sometimes relatively small, direction of change under each scenario. We can therefore be
confident in the impacts of each mitigation option for the management of diffuse

pollution, despite the degree of uncertainty that is associated with predictions.

In order to assess which mitigation options have the potential to be applied within the
sub-catchment to achieve statutory water quality targets, percent exceedance curves
depicting the amount of time any nitrate and total phosphorus concentration is exceeded
at the sub-catchment outlet during the period from 1990-2009 were developed for each

scenario (Figure 5.2). With reference to the European Drinking Water Directive, in which
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water is considered unfit for human consumption if it contains a nitrate concentration
above 50 mg L™! (equivalent to 11.3 mg NOs-N L), then under the control scenario (S0),
the 50 mg L™ water quality standard is exceeded 0.82% of the time at the sub-catchment
outlet, equivalent to 60 days during the period 1990-2009 (Figure 5.2a). This risk is
reduced to 0.01% of the time or 1 day under scenario S5 in which tile drains are removed
from the sub-catchment. Introducing a red clover cover crop to the crop rotation scheme
under scenario S6 reduced the amount of time this standard was exceeded to 0.36%,
equivalent to 26 days over the 20-year period 1990-2009. Under this scenario, the amount
of time that the 50 mg L"! standard was exceeded at the sub-catchment outlet was reduced
by over 50% compared to the control scenario, benefiting aquatic ecology and water
resource management. Scenarios S1-S4 had a more limited effect on the percent
exceedance curves relative to the control scenario (S0) (Figure 5.2a). The Diffuse Water
Pollution Plan developed for the River Wensum SSSI specifies that for the river to be in
a favourable condition, mean annual total phosphorus concentrations must not exceed 0.1
mg L! at the catchment outlet (Environment Agency, 2010). Under the control scenario
(S0), the 0.1 mg L' target was exceeded 53% of the time at the sub-catchment outlet
(Figure 5.2b), with the mean annual total phosphorus concentration just below the target
at 0.097 mg L. This exceedance reduced to 51% and 49% of the time under scenarios
S1 and S2, respectively, with 2 m and 6 m wide buffer strips (Figure 5.2b). Under
scenarios S1 and S2, mean annual total phosphorus concentrations at the sub-catchment
outlet were 0.092 mg L' and 0.091 mg L', respectively. Scenario S5, involving the
removal of tile drains from arable land, increased the amount of time this target was
exceeded to 72% (Figure 5.2b). Under this scenario, the mean annual concentration of
total phosphorus at the sub-catchment outlet equalled 0.111 mg L, exceeding the
required target. Scenarios S3, S4 and S6 had a more limited effect on the percent
exceedance curves relative to the control scenario (SO) (Figure 5.2b). It is clear from the
scenarios considered that buffer strips represent the most effective mitigation option that

can be applied within an arable catchment to reduce losses of total phosphorus.
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Figure 5.2: Environmental Targets (ET) and percent exceedance curves for (a)
nitrate concentration and (b) total phosphorus concentration as simulated at the
outlet of the Blackwater sub-catchment during the period 1990-2009 under each

mitigation scenario.

5.2.1.2 Combined Effectiveness of Mitigation Options

According to the model simulations, the most effective and practical mitigation options
considered as part of this investigation in the Blackwater sub-catchment to reduce losses
of nitrate and total phosphorus include, respectively, the introduction of a red clover cover
crop to the crop-rotation applied within the sub-catchment (scenario S6) and the
introduction of buffer strips of 6 m width to areas of arable land (scenario S2). In order

to understand the impacts of mitigation options on long-term water quality when
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introduced to the sub-catchment in combination, these two mitigation options were

modelled in combination under scenario S7.

The two mitigation options introduced under scenario S7 reduced nitrate and total
phosphorus losses within the sub-catchment by 24.1% and 17.9%, respectively, over the
period 1990-2009 (Figure 5.1). In comparison, the cumulative impact of these mitigation
options, when modelled individually and added together, reduced nitrate and total
phosphorus losses over the same period by 24.2% and 18.6%, respectively. This result
suggests that the mitigation options considered here simply combine to produce a total
effect almost equal the sum of their individual effects. Under scenario S7 the 95%
prediction uncertainty range of mean annual losses ranged from 1.7 kg NO3-N ha™! yr! to
9.5 kg NO3-N ha! yr'! and 0.05 kg P ha™! yr! to 0.26 kg P ha! yr'! and, relative to control
scenario SO, the lower and upper bounds of the 95% prediction uncertainty range
respectively reduced by 35.8% and 19% for nitrate and 19.9% and 18.5% for total
phosphorus.

The 50 mg L' drinking water quality standard that applies to nitrate was exceeded 0.34%
of the time at the outlet of the Blackwater sub-catchment under scenario S7 (Figure 5.2a),
equivalent to 25 days during the 1990-2009 period. This result compares to 0.82% of the
time or 60 days under the control scenario S0, 0.75% of the time or 55 days under scenario
S2 and 0.36% of the time or 26 days under scenario S6. The 0.1 mg L' water quality
target that applies to total phosphorus was exceeded 48.5% of the time at the outlet of the
Blackwater sub-catchment during the 1990-2009 period under scenario S7 (Figure 5.2b).
This result compares to 53.2% of the time under the control scenario S0, 48.6% of the
time under scenario S2 and 53.8% of the time under scenario S6. These results further
suggest that the combined effect of the mitigation options considered here is nearly equal
to the sum of their individual impacts on water quality. Despite this finding, in practice,
when choosing mitigation options, it is essential to consider their many potential impacts
before introduction in the environment in order to understand the risk of pollution
swapping and the potential for unintended environmental consequences (Stevens and

Quinton, 2009).

5.2.1.3 Implications for Catchment Management
The evidence from this study may be used to influence future agri-environmental policy,
develop improved agricultural practices to reduce diffuse pollution from agriculture and

to increase the uptake of mitigation measures. From a catchment management
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perspective, Catchment Change Network (2012) identified barriers that need to be
overcome to effectively address the problem of diffuse pollution from agriculture.

Solutions to the barriers identified include:

1. Improved availability of and access to data concerning water quality, pollution
sources and management practices.

2. Increased provision of education and access to research and case studies to raise
awareness.

3. Policy changes to support long-term responsible catchment management (i.e.
increased emphasis within funding schemes for actions taken to improve water
quality).

4. Development of integrated farm plans which align economic and environmental

interests.

The results of this investigation may be used to partially address each of the barriers
identified above. For example, the results may be shared with stakeholders, improving
the availability of surface water quality data. The mitigation measures considered by this
investigation also increase the evidence base of the impacts of individual and combined
measures and the results of this investigation may be used as examples to assist farmers
in developing appropriate mitigation schemes. The findings of this study may also be used
to assist policy development and to engage with farmers about the commercial benefits
of adopting mitigation measures that reduce agricultural water pollution, such as
reductions in fertiliser loss and expenditure, assisting the development of farm plans

which align economic and environmental goals.

The Catchment Sensitive Farming (CSF) project aims to reduce agricultural water
pollution by providing farmers with training and advice to adopt practices to minimise
the impacts of agriculture on water quality (Natural England, 2017). The results of this
study are therefore relevant to the CSF project, and may be used by CSF officers to advise
farmers and land managers on practices that can be adopted to mitigate agricultural
diffuse water pollution. The overlapping 95% confidence intervals observed under each
mitigation scenario indicate that there is a relatively large degree of uncertainty associated
with model predictions and suggest that the potential impacts of measures, should they
be introduced, are very uncertain (Figure 5.1). This uncertainty creates difficulties for
policy makers, farmers, farm advisers, CSF officers and other stakeholders when
developing catchment management strategies to mitigate agricultural diffuse water

pollution because it complicates any assessment of the benefits of mitigation measures.
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This may create reluctance amongst stakeholders to incentivise and introduce measures
and act as a barrier to the implementation of catchment management strategies to reduce
agricultural diffuse water pollution. Thus, uncertainty creates a challenge to the
development of strategies to mitigate agricultural diffuse water pollution and although it
may appear to be an appealing option, waiting for the uncertainties to be reduced does
not represent a solution to the problem we seek to address. A more pragmatic approach
to the problem of agricultural diffuse water pollution involves quantifying and working
within the scope of the uncertainties, presenting them to allow people to develop a better
understanding of the potential impacts of introducing mitigation measures on water
quality, whilst also working to constrain the uncertainties. Providing uncertainty
assessments whilst also presenting a clear explanation of the potential benefits of a
measure should help to create realistic expectations of the impacts of measures and may
encourage the uptake of effective solutions. It is hoped that identifying a range of potential
outcomes will reduce the likelihood that stakeholder confidence is undermined if a
particular impact is not achieved, compared to if a singular prediction was provided by a
deterministic assessment, assisting the creation of trust and the development of fruitful

working partnerships between experts and stakeholders.

5.3 Chapter Summary

In this chapter, the agricultural mitigation measures applied within the SWAT model of
the Blackwater sub-catchment were identified and the effects of those measures on nitrate
and total phosphorus loads and concentrations were presented and discussed. Introducing
ared clover cover crop was found to reduce nitrate and total phosphorus losses by 19.6%
and 1.6%, respectively, and suggests that red clover can be successfully grown as a green
manure, reducing fertiliser expenditure and agricultural diffuse water pollution over the
long term. Buffer strips of 2 m and 6 m width on arable land reduced total phosphorus
losses by 12.2% and 16.9%, respectively, and were the mitigation measures most
effective at reducing total phosphorus losses within the sub-catchment. Removing tile
drains from arable land was the measure most effective at reducing losses of nitrate and
reduced nitrate losses by 58.9%. This measure also increased losses of total phosphorus
by 31.6%. This result highlights the importance of modelling the impacts of mitigation
measures on multiple pollutants to mitigate the risk of introducing measures that
exacerbate losses of other pollutants. Conservation tillage and no-tillage resulted in small

increases in nitrate and total phosphorus losses, highlighting the importance of assessing
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the potential impacts of mitigation measures prior to their introduction. The most
effective combination of measures that can be introduced to reduce losses of nitrate and
total phosphorus are a red clover cover crop and buffer strips. According to the results,
the prediction uncertainties indicate that there can be a relatively large degree of
uncertainty associated with model predictions. This result highlights the need to conduct
robust uncertainty analyses when evaluating the effectiveness of mitigation measures on
diffuse nitrate and total phosphorus pollution to develop a better understanding of the
potential impacts of mitigation measures. Although no mitigation measure resulted in nil-
exceedance of the drinking water quality standard that applies to nitrate, it was found that
mitigation measures can reduce diffuse nitrate pollution and the proportion of time that
this limit was exceeded. Although the target for mean annual total phosphorus
concentration was not exceeded under all scenarios except scenario S5, the proportion of
days in which this target was exceeded was also successfully reduced by mitigation

measurcs.
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6 IMPACTS OF MITIGATION
MEASURES ON
METALDEHYDE
CONCENTRATIONS

6.1 Mitigation Scenarios

The satisfactory performance of the Wensum SWAT model in simulating discharge,
metaldehyde load and concentration suggests that the model can be applied with
confidence to assess the impacts of agricultural mitigation measures on metaldehyde load

and concentration within the River Wensum catchment.

A number of mitigation scenarios were developed in consultation with stakeholders and
experts (Table 6.1). The control scenario (S0) represents a best estimate of current
conditions and practices and was applied as the baseline scenario to which the other
mitigation scenarios were compared. Scenario SO includes buffer strips of 2 m width on
arable land. This practice is compulsory under cross-compliance rules to qualify for the
Basic Payment Scheme and is therefore considered to be widely practiced (Defra, 2015).
Scenario S1 involves the introduction of buffer strips of 6 m width to arable land. This is
a voluntary practice under the Countryside Stewardship scheme which provides a
financial incentive for farmers to introduce measures which benefit the environment
(Natural England, 2015b). Under scenario S2, the maximum application rate of
metaldehyde to all areas of arable land was limited to 0.16 kg ha™'. This is a practice that
may be recommended in the UK for the additional protection of water and is one of the
guidelines issued by the Metaldehyde Stewardship Group (Metaldehyde Stewardship
Group, 2016b). Scenarios S3 and S4 are more targeted approaches to mitigation and
involve the introduction of mitigation practices to areas considered to be at a high risk of
metaldehyde loss due to their potential susceptibility to surface runoff. Under scenario
S3, no metaldehyde was applied to areas of arable land where the slope exceeds 2%. This

represents 42.4% of the catchment within the SWAT model. Under scenario S4, no
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metaldehyde was applied to areas of arable land where clay soils are present, representing

39.1% of the catchment area within the model.

Table 6.1: The mitigation measures scenarios applied within the SWAT model of the

Wensum catchment.

Scenario Number  Description

SO The baseline scenario which reflects current conditions and practices

S1 Establishment of buffer strips of 6 m width on arable land

S2 Maximum metaldehyde application rate of 0.16 kg ha™! on arable land

S3 No applications of metaldehyde to arable land that has a slope of >2%

S4 No applications of metaldehyde to arable land where clay soils are present

Each scenario was run 500 times at a daily time-step during the period 1 January 2008 to
31 October 2015 to determine the impacts of each mitigation measure on metaldehyde
pollution and to capture the uncertainty of predictions. This relatively long-period of time

is considered to reflect a typical range of climatological conditions.

6.2 Results and Discussion

6.2.1 Mitigation Scenario Impacts

According to predictions at the Costessey Pits and Heigham WTW intake sites, buffer
strips of 6 m width under scenario S1 achieved moderate reductions in the amount of
metaldehyde lost from arable land within the Wensum catchment relative to the control
scenario (S0) (Figure 6.1). According to the mean prediction that was derived from the
500 model simulations performed under scenario S1, buffer strips of 6 m width reduced
monthly metaldehyde losses per hectare of arable land that contributes to each site by
20% and 19.4% at the Costessey Pits and Heigham WTW intake sites, respectively. The
reductions predicted are likely to result from a reduction in the amount of metaldehyde
lost in surface runoff due to a widening of buffer strips from 2 m width under the control
scenario to 6 m width under scenario S1. Although no specific data is available for the
effectiveness of buffer strips at reducing metaldehyde losses, it is possible to compare the
results of this study with studies that investigated the effectiveness of buffer strips on
other pesticides. For example, Arora et al. (1996) found that for buffer strips of 20.12 m
width, retention rates for the herbicides atrazine, metolachlor, and cyanazine ranged from

11-100%, 16-100% and 8-100%, respectively, for six runoff events during the years
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1993-1994. The large range in retention rates was attributed to variations in the runoff
generated by each storm event and variations in infiltration within the buffer zone during
each event. The key factor in determining retention rates was identified as the amount of
infiltration of surface runoff that occurred in the buffer zone which is dependent on soil
moisture conditions. Gevaert et al. (2008) introduced buffer strips of 5 m width to arable
land within a SWAT model of the Nil catchment in Belgium and found that total losses
of atrazine reduced by 11.67%. Reichenberger et al. (2007) conducted a review of 14
studies which examined the effectiveness of buffer strips on pesticide losses and found
that their effectiveness varied considerably, depending on the width of the buffer strip,
the amount and rate of runoff generated by each storm event, soil properties, soil moisture
conditions and the amount of infiltration that occurred in the buffer zone. Pesticides
strongly adsorbed to sediment are also likely to be more easily removed from surface
runoff by buffer strips (Zhang et al., 2010). As evidenced by our study, and the findings
of others, it is clear that buffer strips can be effective at reducing metaldehyde losses but
their effectiveness varies, depending on local conditions, the width of the buffer and the
nature of storm events. For monthly metaldehyde losses, the 95% prediction uncertainty
range within which 95% of the 500 model predictions fell ranged from 6.87x10kg ha!
month™ to 1.60x107° kg ha! month™ and 5.93x10° kg ha! month™! to 1.38x10” kg ha’!
month™! at the Costessey Pits and Heigham WTW intakes, respectively, under scenario
S1 (Figure 6.1). Relative to the control scenario SO, the lower and upper bounds of the
95% prediction uncertainty range reduced by 16.6% and 23% at the Costessey Pits intake
site, and 16.9% and 22.7% at the Heigham WTW intake, respectively. Although there is
some uncertainty in model predictions under scenario S1, the results indicate a clear
reduction in the amount of metaldehyde lost from arable land within the Wensum
catchment and suggest that buffer strips can be introduced to reduce metaldehyde losses

over the long term.
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Figure 6.1: The monthly metaldehyde load per hectare of arable land at the (a)
Costessey Pits and (b) Heigham water treatment works intake sites during the
period 1 January 2008 — 31 October 2015 under each mitigation scenario. The upper
and lower bounds of the 95% prediction uncertainty range are also shown at the end
of each line. The ‘X’ represents the mean prediction that was derived from the 500

model simulations conducted for each scenario.

Limiting metaldehyde applications to a maximum rate of 0.16 kg ha™ on all areas of
arable land under scenario S2 also resulted in moderate reductions in the amount of
metaldehyde lost relative to the control scenario S0, and was slightly more effective than

scenario S1 (Figure 6.1). According to the mean prediction that was derived from the 500
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model simulations performed under scenario S2, monthly metaldehyde losses per hectare
of arable land that contributes to each site reduced by 26.1% and 25.9% at the Costessey
Pits and Heigham WTW intake sites, respectively. Under scenario S2, the 95% prediction
uncertainty range of monthly metaldehyde losses ranged from 6.05x10¢ kg ha™! month™!
to 1.53x10” kg ha! month™ and 5.21x10°kg ha! month™! to 1.32x10 kg ha™! month™! at
the Costessey Pits and Heigham WTW intakes, respectively. Relative to the control
scenario S0, the lower and upper bounds of the 95% prediction uncertainty range reduced
by 26.6% and 26.1% at the Costessey Pits intake site, and by 27.0% and 25.6% at the
Heigham WTW intake, respectively. The reductions in metaldehyde losses predicted
under this scenario are to be expected given that 19.1% less metaldehyde has been applied
to arable land which also means that there is less metaldehyde available to be lost within
the catchment. Nevertheless, these results do suggest that limiting metaldehyde
application rates to 0.16 kg ha™! on areas of arable land can be an effective mitigation
measure to reduce metaldehyde losses. It is, however, important to remember that,
although the application rate for metaldehyde should not be greater than is necessary to
effectively control the impacts of slugs and snails, metaldehyde application rates can only
realistically be reduced to a level where metaldehyde still sufficiently controls their

impacts (Bereswill et al., 2014).

Prohibiting metaldehyde application on areas of arable land where the slope exceeds 2%
under scenario S3 achieved relatively large reductions in the amount of metaldehyde lost
from arable land when compared to the control scenario SO (Figure 6.1). According to the
mean prediction that was derived from the 500 model simulations performed under
scenario S3, monthly metaldehyde losses per hectare of arable land that contributes to
each site reduced by 57.1% and 54.4% at the Costessey Pits and Heigham WTW intake
sites, respectively. Under scenario S3, the 95% prediction uncertainty range of monthly
metaldehyde losses ranged from 3.05x10%kg ha'! month™! to 9.69x10° kg ha'! month™!
and 2.82x10 kg ha™! month! to 8.85x10° kg ha! month™! at the Costessey Pits and
Heigham WTW intakes, respectively. Relative to the control scenario S0, the lower and
upper bounds of the 95% prediction uncertainty range reduced by 63.0% and 53.2% at
the Costessey Pits intake site, and by 60.5% and 50.3% at the Heigham WTW intake,
respectively, under scenario S3. Under this scenario, the amount of metaldehyde applied
within the model was reduced by 50.4%. The reductions in losses of metaldehyde
achieved under this scenario cannot be accounted for by the reduction in the amount of

metaldehyde applied alone. Within the model, areas with a slope greater than 2% account
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for 53% of arable land up to the Costessey Pits intake and 50.6% of arable land up to the
Heigham WTW intake but, according to the mean prediction derived from the 500
simulations performed under scenario S3, they account for 57.1% and 54.4% of
metaldehyde losses, respectively. This finding suggests that areas with a slope of greater
than 2% are at a higher risk of metaldehyde loss than areas of arable land where slopes
are more shallow. According to Bereswill et al. (2014), areas where the slope of fields
equals or exceeds 2% are at a relatively higher risk of surface runoff and the loss of
pesticides in surface runoff compared to arecas with slopes that are more shallow.
Prohibiting metaldehyde application on these higher risk zones reduces the potential for
metaldehyde to be lost in surface runoff, which may account for the reduction in

metaldehyde lost under scenario S3.

Prohibiting metaldehyde application on areas of arable land where clay soils are present
under scenario S4 also resulted in relatively large reductions in metaldehyde losses when
compared to the control scenario SO (Figure 6.1). According to the mean prediction that
was derived from the 500 model simulations performed under scenario S4, monthly
metaldehyde losses per hectare of arable land that contributes to each site reduced by
55.1% and 55.6% at the Costessey Pits and Heigham WTW intake sites, respectively.
Under scenario S4, the 95% prediction range of monthly metaldehyde losses ranged from
4.00x10% kg ha! month™! to 8.77x10° kg ha! month™! and 3.38x10° kg ha™! month™! to
7.44x10°kg ha™! month™! at the Costessey Pits and Heigham WTW intakes, respectively.
The 95% uncertainty range for metaldehyde losses observed under scenario S4 is more
narrow than for all other scenarios. Relative to the control scenario SO, the lower and
upper bounds of the 95% prediction uncertainty range reduced by 51.5% and 57.7% at
the Costessey Pits intake site, and by 52.6% and 58.3% at the Heigham WTW intake,
respectively. Under this scenario, the amount of metaldehyde applied to arable land was
reduced by 49.1% and so, as was also recognised for scenario S3, the reductions in
metaldehyde losses observed under this scenario cannot only be accounted for by a
reduction in metaldehyde application. Within the model, areas with clay soil account for
48.7% of arable land up to the Costessey Pits intake and 46.6% of arable land up to the
Heigham WTW intake but, according to the mean prediction derived from the 500 model
simulations performed under scenario S3, they account for 55.1% and 55.6% of
metaldehyde losses, respectively. This finding suggests that areas with clay soils are at a
greater risk of metaldehyde loss than areas of arable land where other soil types are

present. According to Cronshey et al. (1986), clay soils possess very low infiltration rates
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and are at a higher risk of runoff than other soil types. Prohibiting metaldehyde
application on these higher risk soil types reduces the potential for metaldehyde to be lost
from arable land in surface runoff and may account for the reduction in metaldehyde lost

under this scenario.

Although there is a relatively large degree of uncertainty associated with model
predictions, according to the mean prediction that was derived from the 500 model
simulations performed for each scenario and the upper and lower bounds of the 95%
uncertainty range, there is a clear reduction in metaldehyde losses under each scenario
(Figure 6.1). The degree of uncertainty identified in Figure 6.1 highlights the importance
of considering prediction uncertainty when evaluating the effectiveness of mitigation
measures on pollutants. By assessing this uncertainty, it is possible to develop a better
understanding of the potential effectiveness of mitigation measures, which also allows

better-informed management and policy decisions to be made.

To assess the risk of exceeding the 0.1 pg L! limit that applies to metaldehyde under each
scenario and to identify which mitigation measures have the potential to mitigate the risk
that this limit will be exceeded, percent exceedance curves which depict the proportion
of time any metaldehyde concentration was exceeded at the Costessey Pits and Heigham
WTW intakes during the period 1 January 2008 to 31 October 2015 were developed
(Figure 6.2). The percent exceedance curves were developed from the mean prediction
that was derived from the 500 model simulations conducted for each scenario. Under the
baseline scenario (S0), metaldehyde concentrations exceeded the 0.1 ug L limit 15.3%
and 15.0% of the time at the Costessey Pits and Heigham WTW intake sites, respectively,
and is equivalent to 439 and 431 days during the period 1 January 2008 to 31 October
2015 (Table 6.2). Under this scenario, maximum metaldehyde concentrations of 3.92 pg
L' and 2.09 pg L' were recorded at the Costessey Pits and Heigham WTW intakes,

respectively.
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Figure 6.2: The Environmental Target (ET) for metaldehyde and percent
exceedance curves for the intakes at (a) Costessey Pits and (b) Heigham WTW under

each mitigation scenario during the period 1 January 2008 — 31 October 2015.

No scenario resulted in nil-exceedance of the 0.1 ug L' limit at the Costessey Pits and
Heigham WTW intakes but scenario S3 was found to be the most effective mitigation

option, in terms of its ability to reduce the number of days this limit was exceeded and
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the maximum concentration that occurred. Under scenario S3, the percent of time the 0.1
ng L' limit was exceeded was reduced to 6% and 5.9% at the Costessey Pits and Heigham
WTW intake sites, respectively (Table 6.2). This result is equivalent to 172 and 170 days
at each site during the period 1 January 2008 to 31 October 2015 and, when compared to
the control scenario, represents a reduction of 60.8% and 60.5%. Under scenario S3, the
maximum metaldehyde concentration recorded at the Costessey Pits and Heigham WTW
intakes was reduced to 1.75 pg L' and 1.02 pg L™}, respectively, equivalent to a reduction
of 55.2% and 51.1% at each site. Scenario S3 prohibits metaldehyde application on areas
of arable land where the slope exceeds 2%. Gentle slopes or flat land allows water to
penetrate into the soil and increase runoff concentration times, thereby reducing the

potential for metaldehyde appearance in quick overland flow (Bereswill et al., 2014).

Table 6.2: The percent of time metaldehyde concentrations exceeded 0.1 ng L' and
the maximum metaldehyde concentration recorded at the Costessey Pits and
Heigham WTW intake sites under each mitigation scenario during the period 1

January 2008 to 31 October 2015.

Intake Site SO S1 S2 S3 S4
Costessey Pits

Percent exceedance (%) 15.3 14 13.2 6 7.7
Relative change in exceedance (%) - -8.9 -14.1 -60.8 -49.9
Maximum concentration (ug L) 3.92 2.74 3.53 1.75 2.15
Relative change in maximum concentration (%) - -30.1 -10 -55.2 -45.2
Heigham WTW

Percent exceedance (%) 15 13.6 12.8 5.9 6.9
Relative change in exceedance (%) - -9.8 -15.1 -60.5 -54.2
Maximum concentration (ug L) 2.09 1.47 1.43 1.02 1.15
Relative change in maximum concentration (%) - -29.8 -31.5 -51.1 -44.9

Scenario S4 was found to be the second most effective mitigation option, in terms of its
ability to reduce the number of days the 0.1 ug L! limit was exceeded and the maximum
concentration that occurred, and prohibited the application of metaldehyde to arable land
where clay soils are present. Under scenario S4, the percent of time the 0.1 pg L' limit
was exceeded was reduced to 7.7% and 6.9% at the Costessey Pits and Heigham WTW

intake sites, respectively. This result is equivalent to 220 and 197 days at each site and,
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when compared to the control scenario, represents a reduction of 49.9% and 54.2%. Under
scenario S4, the maximum metaldehyde concentration recorded at the Costessey Pits and
Heigham WTW intakes was reduced to 2.15 pg L and 1.15 pg L', respectively,
equivalent to a reduction of 45.2% and 44.9% at each site. Metaldehyde is weakly
adsorbed by clay soils (European Food Safety Authority, 2010), and clay soils are
relatively less permeable and more susceptible to surface runoff than other soil types
(Cronshey et al., 1986). Metaldehyde can therefore be quickly flushed into river courses

in areas with clay soils.

According to model predictions, areas of arable land with a slope of greater than 2% and
areas of arable land where clay soils are present are at a relatively higher risk of
metaldehyde loss. The results of this study suggests that the most effective approach to
reduce metaldehyde concentrations at raw water intake sites involves targeting areas that
are at a relative high risk of metaldehyde loss. The susceptibility of an area to such losses
can be identified from the characteristics of a site, including soil composition and
topography.

Scenario S1 was the least effective mitigation option, in terms of reducing the number of
days the 0.1 ug L! limit was exceeded, and involved the introduction of buffer strips of
6 m width to all areas of arable land. Nevertheless, it reduced the percent of time that the
0.1 pg L! limit was exceeded to 14% and 13.6% at the Costessey Pits and Heigham WTW
intakes, respectively (Table 6.2). This result is equivalent to 400 and 388 days at each site
and, when compared to the control scenario, represents a reduction of 8.9% and 9.8%.
Under scenario S1, the maximum metaldehyde concentration recorded at the Costessey
Pits and Heigham WTW intakes was reduced to 2.74 ug L' and 1.47 ug L', respectively,
equivalent to a reduction of 30.1% and 29.8% at each site. These are notable reductions
and this practice is the only one considered for which farmers are able to receive financial

payments to compensate the loss of land from arable production.

Limiting the maximum application rate of metaldehyde to 0.16 kg ha™! on arable land
under scenario S2 reduced the percent of time that the 0.1 ug L' limit was exceeded to
13.2% and 12.8% at the Costessey Pits and Heigham WTW intakes, respectively (Table
6.2). This result is equivalent to 377 and 365 days at each site and, when compared to the
control scenario, represents a reduction of 14.1% and 15.1%. Under scenario S2, the
maximum metaldehyde concentration recorded at the Costessey Pits and Heigham WTW
intakes was reduced to 3.53 pg L' and 1.43 ng L', respectively, equivalent to a reduction

of 10% and 31.5% at each site. It is important to note an apparent downward trend in the
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amount of metaldehyde that has been applied to each of the four crop types considered
within this investigation over time in the UK (Table 3.2). This trend suggests that either
the need for metaldehyde use has reduced in recent years, or that farmers have recognised
the risks of metaldehyde loss and the potential regulatory consequences that may result,
such as a ban on metaldehyde use, and are self-regulating, reducing the amount they apply

to arable land.

6.3 Chapter Summary

In this chapter, the agricultural mitigation measures applied within the SWAT model of
the Wensum catchment were described and the effects of those measures on metaldehyde
load and concentration at the Costessey Pits and Heigham WTW intake sites were
presented and discussed. Introducing buffer strips of 6 m width to arable land reduced
metaldehyde losses by 20% at the Costessey Pits intake and by 19.4% at the Heigham
WTW intake. These are notable reductions in metaldehyde loss and, out of those
considered, this is the only measure for which farmers are able to receive financial
compensation. Limiting metaldehyde application rates to 0.16 kg ha' reduced
metaldehyde losses by 26.1% and 25.9% at the Costessey Pits and Heigham WTW intake
sites, respectively. Although this measure is effective at reducing metaldehyde loss, care
must be taken to avoid the risk that metaldehyde application rates are reduced to a level
where they are no longer sufficient to effectively control the impacts of molluscs on crops.
At the Costessey Pits and Heigham WTW intakes respectively, prohibiting metaldehyde
application on areas of arable land where the slope exceeds 2% reduced metaldehyde
losses by 57.1% and 54.4%, whilst prohibiting metaldehyde application on areas of arable
land where clay soils are present reduced metaldehyde losses by 55.1% and 55.6%.
Prohibiting metaldehyde application on areas of arable land where the slope exceeds 2%
was found to be the most effective measure at reducing peak metaldehyde concentrations
and the percent of time that the 0.1 pg L' limit was exceeded. Model predictions
suggested that areas of arable land where clay soils are present and areas of arable land
with a slope of greater than 2% are at a relatively higher risk of metaldehyde loss than
other zones. The results also suggested that targeting these areas may be an effective
approach to reduce metaldehyde losses from arable land and concentrations at raw water
intake sites. The degree of uncertainty associated with model predictions highlighted the
importance of conducting an uncertainty assessment when evaluating the impacts of a

mitigation measure on diffuse metaldehyde pollution to develop a better understanding
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of the potential effectiveness of mitigation measures. Although no mitigation measure
resulted in nil-exceedance at the intake sites of the 0.1 pg L' limit that applies to
metaldehyde in drinking water, results showed that catchment mitigation measures can
reduce diffuse metaldehyde pollution and the proportion of time that this limit is
exceeded. The results also suggest that a catchment management based approach can
reduce the need for raw water treatment for metaldehyde and, therefore, the total cost

associated with such treatment.
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7 SUMMARY AND
CONCLUSIONS

7.1 Research Developments

The stated aim of this thesis as defined in Chapter 1 was to model the impacts of
agricultural mitigation measures on surface water quality and assess the uncertainties of
catchment-scale water quality model predictions within the River Wensum catchment.
Due to threats to water quality, the costs of water treatment and the recalcitrance of some
pollutants to traditional water treatment techniques, there has been increased focus on the
potential to mitigate agricultural diffuse water pollution through catchment management.
Water quality models have the potential to be applied as DSTs to identify mitigation
measures that can be introduced to reduce agricultural diffuse water pollution and
improve water quality. One advantage of such models is that they can provide cost-
effective and timely evidence of the impacts of mitigation measures at a scale that is often
unfeasible for in-field investigations but there remain gaps in knowledge and major
shortcomings in the approaches used which provided the motivation for the work
contained herein. The main shortcomings in the approaches used and developments made

in this thesis to address them are discussed below.

7.1.1 The Temporal Resolution at Which Pollutants and Mitigation
Measures Impacts Are Modelled

Deficiency: Catchment-scale water quality models are infrequently applied at a daily
time-step, often because there is insufficient data to apply models at such a high temporal
resolution, but this creates a deficit in knowledge. Major pollutant losses from agricultural
land are often event-based and occur over short periods of time (i.e. hours to days). If
models are applied at longer time-steps (i.e. weekly, monthly or yearly), the details of
such event-based responses can be lost. For example, nitrate, total phosphorus and
metaldehyde concentrations may exceed water quality standards when simulated at a
daily resolution but these occurrences of water quality non-compliance may be lost due
to the effect of averaging when simulating longer time-steps. This is important because

water quality standards are established to protect aquatic ecosystems and human health
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and to ensure that water remains fit for use in industry and for leisure purposes. If events
of water quality exceedance are not flagged, damage can occur and it might not be
recognised that action needs to be taken to address the issue. To sufficiently and
confidently determine the effectiveness of mitigation measures on water quality, it is also
important to understand their impacts on water quality at a daily time-step for this very
reason. Understanding how catchments and pollutants respond to storm events over such
short time-scales can therefore yield information that may be useful to the catchment
manager who seeks to mitigate pollutant losses. Where raw water is abstracted from water
bodies to supply drinking water it is also advantageous to know how quickly a catchment
system responds to a storm event and how soon after such events pollutants are observed
in water. For example, in the case of the river water abstraction sites within the Wensum
catchment it would be useful for water resource managers to know how soon after storm
events a metaldehyde response occurs at the intake sites, or when problematic periods
occur throughout the year when metaldehyde concentrations regularly exceed drinking
water quality standards so that they know when to switch-off the water treatment work
intakes. This information can only really be supplied in a useful form if the response is

understood at least at a daily temporal resolution.

Development: To address these shortcomings and to provide this information, SWAT
models of the Wensum and Blackwater sub-catchment were developed and high-temporal
resolution datasets were used to perform model calibration and validation at a daily time-
step for discharge, nitrate, total phosphorus and metaldehyde. The models developed were
applied to identify the at-risk periods within the catchment for metaldehyde and to
identify the impacts of agricultural mitigation measures on pollutant losses and water
quality at a daily resolution. As a result, we now better understand the dynamics of
pollutant responses within the River Wensum catchment, how frequently water quality
standards are exceeded, the risk of non-compliance and how effective potential
agricultural mitigation measures may be at mitigating pollutant losses. Such a
development improves the reliability and effectiveness of water quality models as DSTs

to aid decision making and catchment management.

7.1.2 Modelling the Impacts of Mitigation Measures on Multiple Pollutants
Deficiency: Within studies which seek to examine the impacts of mitigation measures on
water quality, pollutants are often considered in isolation. For example, some studies may

evaluate the impacts of mitigation measures on nitrate alone. This may be justified in the
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sense that data is only available for nitrate or that the researchers are only interested in
nitrate as a pollutant and not others but this doesn’t match with the reality of the impacts
of mitigation measures because, when they are introduced, they may have impacts on
multiple pollutants within a catchment system. It is therefore important to consider the
impacts of mitigation measures on multiple pollutants. For example, introducing a
mitigation measure that reduces nitrate losses might in-turn exacerbate losses of sediment
and total phosphorus but how would the catchment modeller or catchment manager be
aware of this risk unless multiple pollutants are considered within assessments? This
phenomenon is known as pollution swapping and is an area of research that has received

relatively little attention.

Development: To address this deficiency and to mitigate the risk of pollution swapping,
this thesis modelled the impacts of agricultural mitigation measures on both nitrate and
total phosphorus within the River Wensum catchment. The impacts of buffer strips on
metaldehyde were also considered. Results highlighted the need to consider the impacts
of mitigation measures on multiple pollutants to avoid the risk of pollution swapping. For
example, although removing tile drains from the Blackwater sub-catchment reduced
nitrate losses, this measure also exacerbated losses of total phosphorus. As a result of this
research, we now have a better understanding of the impacts of a number of measures on
multiple pollutants including nitrogen and phosphorus, reducing the risk that unforeseen

increased losses of other pollutants may occur as a result of the introduction of a measure.

7.1.3 Uncertainty in Model Predictions

Deficiency: Models are often applied in a deterministic manner during calibration,
validation and when evaluating the impacts of mitigation measures on pollutant losses
and water quality. This approach rejects the concept of equifinality which posits that
multiple parameter sets may provide acceptable model predictions in favour of searching
for an optimum parameter set and does not treat parameter values as uncertain (Beven,
1993). It assumes that the optimum parameter set obtained from calibration is the ‘best’
representation of a system and that it therefore yields the best model performance and
predictions and applies this single parameter set to assess the impacts of mitigation
measures on pollutant losses and water quality. This deterministic approach gives no
consideration to the uncertainty of model parameters and predictions. Although model
and prediction uncertainty can be quite large, this uncertainty is rarely considered or

assessed by studies.
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Development: To address this deficiency, SWAT was applied with a probabilistic
approach by considering parameter values to be uncertain and allowing them to vary
within a calibrated range. This allowed the model to account for uncertainties in
parameter values and to provide an estimate of the uncertainties of the impacts of
agricultural mitigation measures on pollutant loads in model predictions. By adopting this
method, the results obtained captured the potential uncertainty of model predictions and
allowed an estimate of this uncertainty to be provided. Results highlighted the importance
of considering prediction uncertainty when evaluating the impacts of mitigation measures
on pollutants. Quantifying and capturing this uncertainty allows a better understanding of
the potential effectiveness of mitigation measures to be developed. This approach allows
better-informed management and policy decisions to be made and has allowed the model
to become a more effective and reliable decision support tool to assist catchment
management and policy development, and it is an approach that should be recommended
and adopted. As a result of this approach, we can have more confidence in the model
predictions that have been developed and the results that were obtained by this study
compared to if a deterministic approach had been used because the latter fails to capture

a range of possibilities.

7.1.4 Management of the River Wensum Catchment and Scaling Up

Deficiency: Due to the impacts of agriculture on water quality and the recalcitrance of
some agricultural pollutants to traditional water treatment techniques, there exists a need
to identify mitigation measures that have the potential to reduce agricultural diffuse water
pollution at the point of origin, to improve water quality and to ensure that the necessary
water quality standards can be met. Metaldehyde is not effectively removed from water
by traditional treatment techniques but there is a lack of information on the effectiveness
of measures to mitigate diffuse metaldehyde pollution. The need for a study to investigate
potential solutions was therefore noted. Reconciling the need to provide safe water whilst
also ending hunger as the world human population grows also requires the development
of improved agricultural practices to minimise the impacts of agriculture on water quality.
Due to the cultural and ecological importance of the River Wensum and the need to
preserve it that arises from this importance, there also exists a specific need to identify
effective management strategies to mitigate or remove the pressure that it currently faces

from agricultural diffuse water pollution.
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Development: The application of SWAT within this study has shown that by managing
agricultural practices within a catchment, it is possible to reduce agricultural diffuse water
pollution and improve water quality. By mitigating the potential for agricultural pollutants
to enter watercourses at their point of origin (i.e. in-field), this study has also developed
effective and practical solutions to the problem of agricultural diffuse water pollution and
the problems it creates. The solutions developed by this study also have the potential to
form a management strategy that can be implemented within the River Wensum
catchment to mitigate agricultural diffuse water pollution, to minimise the pressure that
it currently exerts on the river system and to help preserve this ecological and culturally
important river. Because SWAT is a semi-physically based model, as opposed to an
empirical or conceptual model, the findings of this study are also transferable to other
similar catchments and can also assist in their management to reduce agricultural diffuse

water pollution further increasing the scope and impact of the work conducted herein.

7.2 Research Summary and Findings

Water quality models are cost-effective DSTs which can be applied to assess the
quantitative impacts of a variety of mitigation measures on water quality. Models must
be robustly calibrated to achieve this goal but there is often a scarcity of sufficient data to
parameterise and evaluate models. High-frequency water quality monitoring has allowed
the successful application of SWAT within this study to investigate the long-term impacts
of agricultural mitigation measures on surface water quality in a lowland arable catchment
in the UK. This study has improved upon earlier work by adopting a more sophisticated
approach to model calibration and validation and scenario analysis and applied SWAT
within the River Wensum catchment at a daily time-step to: (i) identify the frequency and
duration that metaldehyde concentrations exceed the 0.1 pg L' water quality standard at
public water supply intake sites; (ii) provide an assessment of the at-risk periods for
metaldehyde within the catchment; (iii) identify the impacts of mitigation measures on
diffuse nitrate, total phosphorus and metaldehyde pollution from agriculture and; (iv)
identify mitigation measures that have the potential to be introduced within catchments

to reduce agricultural diffuse water pollution and improve water quality.

Scenario analysis found that introducing buffer strips of 6 m width to arable land reduced
metaldehyde loads by 20% at the Costessey Pits intake and by 19.4% at the Heigham
WTW intake. These reductions were attributed to a reduction in the amount of

metaldehyde lost in surface runoff. Limiting metaldehyde application rates to a maximum
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of 0.16 kg ha™! on all areas of arable land reduced metaldehyde loads by 26.1% and 25.9%
at the Costessey Pits and Heigham WTW intake sites, respectively. Although results
suggest that reducing metaldehyde application rates can be an effective measure to reduce
metaldehyde losses, it is important to remember that application rates can only
realistically be reduced to a level where metaldehyde is still effective at controlling the

impacts of slugs and snails.

At the Costessey Pits and Heigham WTW intake sites, respectively, prohibiting
metaldehyde application on areas of arable land where the slope exceeds 2% reduced
metaldehyde loads by 57.1% and 54.4%, whilst prohibiting metaldehyde application on
areas of arable land where clay soils are present reduced metaldehyde loads by 55.1% and
55.6%. Results suggested that these areas of arable land are at a relatively higher risk of
metaldehyde loss than other zones and that targeting these areas may be an effective
approach for mitigating metaldehyde loss. The development of a conceptual catchment
model allowed this study to identify and target areas that are considered to be at a
relatively high risk of metaldehyde loss and it is recommended that such a conceptual

understanding is developed for each location where metaldehyde poses a problem.

It was found that the catchment was at an increased risk of exceeding the 0.1 pg L™! limit
for metaldehyde at the Costessey Pits and Heigham WTW intake sites each year during
the period from September to January. Prohibiting metaldehyde application on areas of
arable land where the slope exceeds 2% was the measure most effective at reducing peak
metaldehyde concentrations and the percent of time the 0.1 ug L limit was exceeded.
Although no mitigation measure resulted in nil-exceedance of the 0.1 ug L™ limit for
metaldehyde at the public water supply intake sites, it was found that farm-based
measures can reduce diffuse metaldehyde pollution and reduce the risk of water quality
non-compliance. It was also found that a catchment management based approach to
diffuse pollution control for metaldehyde does have the potential to reduce the need for
raw water treatment and, as a result, also has the potential to reduce the associated costs

of treatment.

Scenario analysis found that introducing a red clover cover crop to the crop rotation
scheme applied within the SWAT model of the Blackwater sub-catchment reduced nitrate
losses by 19.6% and total phosphorus losses by 1.6% over the long term. This finding
suggests that a red clover cover crop can successfully be grown as a ‘green manure’,
improving soil conditions, reducing expenditure on fertilisers and reducing agricultural

diffuse water pollution over the long term. The possibility of mining phosphorus through
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the successive harvesting of cover crops is also considered, but this practice limits the

potential for the cover crop to act as a green manure.

Introducing buffer strips of 2 m and 6 m width to arable land were found to be the most
effective mitigation measures that could be adopted to reduce losses of total phosphorus,
achieving reductions of 12.2% and 16.9%, respectively, although consideration must be
given to the reduction in agricultural productivity that occurs under these scenarios as a

result of removing areas of arable land from cultivation.

According to the findings of this investigation, the removal of subsurface tile drainage
systems from areas of arable land, albeit not practical in terms of maintaining arable
production, represents the single most effective mitigation measure that can be adopted
to reduce losses of nitrate, achieving a reduction of 58.9%. This measure, however,
increased total phosphorus losses by 31.6%, highlighting the need to consider multiple
pollutants when evaluating the potential effectiveness of mitigation measures at reducing

agricultural diffuse water pollution.

If reductions are to be achieved in both nitrate and total phosphorus losses, the most
effective combination of mitigation measures that can be introduced are a cover crop and
buffer strips. When modelled in combination, these two mitigation options were found to
have a total impact that was almost equal to the sum of their individual modelled impacts

on water quality.

The alternative tillage scenarios applied within the SWAT model of the Blackwater sub-
catchment unexpectedly resulted in small increases in nitrate and total phosphorus losses.
This result was attributed to the enrichment of nutrients within topsoil and an increased
loss of nutrients in surface runoff. This observation highlights the need to conduct a
detailed assessment of the potential impacts of a mitigation measure prior to
implementation otherwise there is a risk of introducing practices which achieve the
opposite of the intended result. This example highlights the benefits provided by water

quality models in aiding decision-making and catchment management.

The uncertainties of the predicted impacts of mitigation measures on diffuse agricultural
nitrate, total phosphorus and metaldehyde pollution were also quantified. Results indicate
that there can be a relatively large degree of uncertainty associated with model predictions
and it is recommended that future impact assessments conduct a robust evaluation of
prediction uncertainty to develop a better understanding of the potential impacts of

mitigation measures and to improve confidence in model predictions.
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The availability of high-frequency water quality data ensures that models can be robustly
calibrated and tested. By modelling water quality at a daily time-step, considering the
impacts of mitigation measures on multiple pollutants, as well as accounting for the
uncertainties in model parameters and predictions it is possible to impart a higher degree
of confidence to model predictions and, therefore, in the predicted impacts of mitigation
measures on water quality. This study has shown that high-frequency water quality
datasets can be applied within SWAT, as an advanced example of the many water quality
models available, to quantify the long-term impacts of agricultural mitigation measures
on water quality at a daily resolution to assist the creation of more effective and reliable

DSTs, leading to the development of appropriate diffuse water pollution mitigation plans.

7.3 Further Research

Whilst the improvements to the modelling of catchment mitigation measures on water
quality presented in this thesis and the new knowledge gained as a result represent
considerable developments over earlier work, there remains room to further enhance and

advance catchment modelling research. Beneficial areas of further research include:

Application of a Multiple-Model Ensemble (MME) modelling approach: Future
studies could adopt a MME approach to assess the impacts of changes in management
practices or other environmental changes on water quality. This approach would involve
combining single model predictions into multiple-model ensembles to identify the effects
of model structure on predictions and could be applied to evaluate the performance of the
multiple-model ensembles relative to single model predictions. MMEs have been found
to improve on the overall performance of individual models in simulating hydrology and
water quality (Viney et al., 2009; Exbrayat et al., 2010; Exbrayat et al., 2011). This
technique would improve understanding of the uncertainty associated with single-model
and multiple-model predictions and would improve confidence in the predicted impacts
of a change in the environment (e.g. changes in land use, management practices or
climate). This is a relatively novel approach to water quality modelling but has received
some interest as indicated by the examples of Bormann et al. (2009), Breuer et al. (2009),
Huisman et al. (2009), Viney et al. (2009), Exbrayat et al. (2010) and Exbrayat et al.
(2011).

Climate change impact assessment: The application of meteorological datasets from
the latest climate change scenario projections, such as those from the EURO-CORDEX
project (Jacob et al., 2014; EURO-CORDEX, 2016), within SWAT to assess the impacts
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of predicted future changes in climate on water quality. An ensemble of climate change
scenarios should be considered to account for the potential uncertainty in future climate
projections. This assessment would allow an estimate to be made of the potential impacts
of climate change on water quality. The model developed could also be applied to
examine the effectiveness of catchment measures to mitigate the predicted impacts on
water quality. This new knowledge could be applied to develop an effective management
strategy to minimise the impacts of future climate change on water quality within

catchments.

Mitigation measure cost-benefit analysis: A cost-benefit analysis could be conducted
to assess the costs or savings that each agricultural mitigation measure would incur on
land managers and to assess the relative cost-effectiveness of each measure at reducing
diffuse water pollution. This is similar to the approach adopted within the spreadsheet-
based FARMSCOPER model (Zhang et al., 2012; ADAS, 2016), and could be conducted
to ensure that the optimum combination of mitigation measures is adopted to provide the
greatest net-benefit to water quality whilst minimising costs. Incorporating such an
analysis into mitigation assessments and any catchment management plans that are

developed as a result could improve the viability of future plans.
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Highlights
e Water quality models can help the development of diffuse pollution mitigation
plans.
e Multiple pollutants must be considered when assessing mitigation option
impacts.
e Cover crops can reduce agricultural diffuse water pollution over the long term.
e Reduced tillage strategies can potentially increase nutrient losses.

e Prediction uncertainty needs to be considered during impact assessment.

Abstract

Agricultural diffuse water pollution remains a notable global pressure on water quality,
posing risks to aquatic ecosystems, human health and water resources and as a result
legislation has been introduced in many parts of the world to protect water bodies. Due
to their efficiency and cost-effectiveness, water quality models have been increasingly
applied to catchments as Decision Support Tools (DSTs) to identify mitigation options
that can be introduced to reduce agricultural diffuse water pollution and improve water
quality. In this study, the Soil and Water Assessment Tool (SWAT) was applied to the
River Wensum catchment in eastern England with the aim of quantifying the long-term
impacts of potential changes to agricultural management practices on river water quality.
Calibration and validation were successfully performed at a daily time-step against
observations of discharge, nitrate and total phosphorus obtained from high-frequency
water quality monitoring within the Blackwater sub-catchment, covering an area of 19.6
km?. A variety of mitigation options were identified and modelled, both singly and in
combination, and their long-term effects on nitrate and total phosphorus losses were
quantified together with the 95% uncertainty range of model predictions. Results showed
that introducing a red clover cover crop to the crop rotation scheme applied within the
catchment reduced nitrate losses by 19.6%. Buffer strips of 2 m and 6 m width represented
the most effective options to reduce total phosphorus losses, achieving reductions of
12.2% and 16.9%, respectively. This is one of the first studies to quantify the impacts of
agricultural mitigation options on long-term water quality for nitrate and total phosphorus
at a daily resolution, in addition to providing an estimate of the uncertainties of those
impacts. The results highlighted the need to consider multiple pollutants, the degree of
uncertainty associated with model predictions and the risk of unintended pollutant

impacts when evaluating the effectiveness of mitigation options, and showed that high-
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frequency water quality datasets can be applied to robustly calibrate water quality models,

creating DSTs that are more effective and reliable.

Keywords
Catchment management; Catchment modelling; Diffuse water pollution; Mitigation

scenarios; SWAT; Water quality.

1 Introduction

Agricultural diffuse water pollution remains a notable global pressure on surface water
and groundwater quality (Carpenter et al., 1998; Vorosmarty et al., 2010; European
Environment Agency, 2012), and trends suggest that agricultural expansion will continue
to exacerbate those pressures well into the 21st Century (Tilman et al., 2001). Legislation
has been introduced in many parts of the world to protect water bodies from agricultural
diffuse water pollution and to improve water quality, including the Nitrates Directive and
Water Framework Directive (WFD) in Europe (Council of the European Union, 1991;
2000), and the Clean Water Act in the United States (United States Environmental
Protection Agency, 2002). The WFD seeks to improve or maintain water quality through
the establishment of River Basin Management Plans (RBMPs) and the development of
Programmes of Measures (PoMs), which can be implemented to ensure that each water
body within a river basin district achieves good ecological and chemical status (Council
of the European Union, 2000). Member states committed to achieving this status by 2015
but many water bodies were not expected to meet the necessary water quality standards
before this deadline (European Environment Agency, 2012). According to Solheim et al.
(2012), 56% of rivers, 44% of lakes, 67% of transitional waters and 49% of coastal waters
that have been classified in Europe do not achieve a good ecological status or potential
and 6% of rivers, 2% of lakes, 10% of transitional waters, 4% of coastal waters and 25%
of groundwater bodies by surface area are of a poor chemical status. Agricultural diffuse
water pollution is cited as a significant pressure in 40% of rivers and coastal water bodies
and one-third of lakes and transitional water bodies. Such poor water quality has
consequences for the health of aquatic ecosystems, biodiversity, human health, the use of
water in industry and agriculture and as a resource for public water supply and recreation

(Carr and Neary, 2008).

In Europe, agricultural diffuse water pollution contributes 50-80% of the total nitrogen
load and approximately 50% of the total phosphorus load in surface water bodies

(European Environment Agency 2005; Kronvang et al., 2009). In the United Kingdom
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(UK) specifically, agricultural diffuse water pollution is estimated to be responsible for
61% of the total nitrogen load and 28% of the total phosphorus load experienced within
surface water bodies (Hunt et al., 2004; White and Hammond, 2007). Nutrient enrichment
within surface waters due to the oversupply of phosphorus and nitrogen in agriculture
increases the risk of eutrophication (Richardson and Jergensen, 1996; Withers and Lord,
2002; Carr and Neary, 2008). While phosphorus pollution has implications for ecosystem
health, nitrate pollution also has implications for the supply of water and human health
(Withers and Lord, 2002). To protect human health, water is considered to be unfit for
human consumption under the Drinking Water Directive applied within Europe if it
contains a nitrate concentration above 50 mg L (equivalent to 11.3 mg NOs-N L)
(Council of the European Union, 1998), but many surface water and groundwater bodies
within the UK contain concentrations of nitrate that approach or exceed this limit

(European Environment Agency, 2012).

To develop PoMs that can be implemented under the WFD, authorities responsible for
establishing RBMPs must be able to assess the effectiveness of potential mitigation
options. Given the limited resources available to monitor and quantify the impacts of
mitigation options in-field, and the need to provide timely evidence to inform policy,
water quality models which can quantify the impacts of mitigation options on nutrient
losses have been increasingly applied as Decision Support Tools (DSTs) within Decision
Support Systems (Collins and McGonigle, 2008; Volk et al., 2008). This approach can be
used to develop targeted mitigation plans, identify critical source areas and times, assess
the cost-effectiveness of mitigation options, identify pollution swapping and involve
stakeholders in the development of suitable management plans (Bouraoui and Grizzetti,
2014). Effective dialogue and engagement between stakeholders and scientific experts is
essential to ensure that the PoMs are appropriate, cost-effective and sustainable and to
maximise the effectiveness of the mitigation practices that are introduced (Van Ast, 2000;

Gerrits and Edelenbos, 2004).

The Benchmark Models for the Water Framework Directive project established a set of
criteria to assess which models have the potential to assist in the implementation of the
WEFD (Saloranta et al., 2003). As part of this project, the suitability of the Soil and Water
Assessment Tool (SWAT) water quality model for assessing the impacts of mitigation
options proposed to meet WFD targets on water quality was examined by Bérlund et al.
(2007). Rode et al. (2008) and Volk et al. (2009) also applied SWAT to examine the

potential for changes in catchment management to ensure that water bodies achieve WFD
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targets. SWAT has been widely and successfully applied to assess the impacts of
agricultural mitigation options on water quality and can therefore be considered to be an
appropriate DST for assisting authorities in managing catchments to achieve statutory
water quality targets (e.g. Santhi et al., 2006; Hu et al., 2007; Ullrich and Volk, 2009;
Lam et al., 2011; Moriasi et al., 2011; Glavan et al., 2012; Aouissi et al., 2014; Boithias
et al., 2014; Santhi et al., 2014). Examples of mitigation options that have been modelled
include buffer strips, nutrient management plans, alternative tillage techniques,

alternative crop rotations and changes in land use.

In this study, based in the River Wensum catchment in Eastern England (Figure 9.1), the
availability of a high-quality, high-frequency dataset of water quality enabled the
performance of SWAT in simulating multiple pollutants at a daily time-step to be
assessed. SWAT was also used to investigate the impacts of agricultural mitigation
options on long-term water quality at a daily resolution and to assess the uncertainties of
the predicted impacts of mitigation options on water quality. The unique water quality
dataset applied within this study is derived from continuous monitoring at a 30-minute
temporal resolution. Such a monitoring strategy reduces the uncertainty associated with
estimates of in-stream nutrient loads relative to datasets derived from fewer samples
collected at longer time intervals and ensures that the model applied within this
investigation has been robustly calibrated. This lower uncertainty allows the model to be

applied with a higher degree of confidence, creating a more effective and reliable DST.

There is no standard or universally accepted metric applied to assess model performance
but Moriasi et al. (2007) suggested that models should achieve a Nash-Sutcliffe
Efficiency (NSE) coefficient of greater than 0.5 for flow, nitrogen and total phosphorus
at a monthly time-step for performance to be considered satisfactory. If we consider this
performance criterion to apply at all time-steps, over half of the 115 SWAT hydrological
assessments and 37 SWAT pollutant loss studies summarised by Gassman et al. (2007),
achieved this level of model performance, but some studies reported poor results for all
variables particularly at a daily time-step and it is in this context that we consider the

performance of SWAT within the River Wensum catchment.

Since 2010, the River Wensum catchment has been the focus of the Wensum
Demonstration Test Catchment (DTC) Project which aims to provide evidence to test the
hypothesis that it is economically feasible to reduce agricultural diffuse water pollution
through the introduction of agricultural mitigation practices whilst maintaining

agricultural productivity (Wensum Alliance, 2014). The Blackwater sub-catchment has
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been selected as a pilot area where the effects of changes in management will be
investigated and is considered to be representative of the rest of the River Wensum
catchment. To identify the mitigation options that are most relevant for the River Wensum
catchment, there has been close cooperation and engagement between local land owners,
farm managers, environmental organisations, government agencies and scientific experts.
With knowledge gained from these stakeholders, the aim of this investigation is to apply
SWAT to the Blackwater sub-catchment to quantify the long-term impacts of potential
changes to agricultural practices on water quality, to assess the uncertainties of those
predictions and to identify mitigation options that have the potential to be applied within
similar arable catchments to improve water quality. This is one of the first studies to
quantify the impacts of agricultural mitigation options, both singly and in combination,
on long-term water quality for nitrate and total phosphorus at a daily time-step, in addition

to providing an estimate of the uncertainties of those impacts.
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Figure 9.1: A map of the location and land cover of the Blackwater sub-catchment
in relation to the River Wensum catchment within England. The locations of the
weather stations used in this investigation and the outlet of the sub-catchment are
also shown. Based upon LCM2007 © NERC (CEH) 2011. Contains Ordnance
Survey data © Crown Copyright 2007. © third party licensors.
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In the remaining parts of this paper, a brief review of the study area, the datasets used and
the methodology adopted in applying SWAT to the Blackwater sub-catchment is
provided. A detailed summary of the mitigation options that were selected and modelled
is also supplied. The results of model calibration and validation and the impacts of each
agricultural measure on water quality, both singly and in combination, are also presented

and discussed. Finally, conclusions and a summary of findings are provided.

2 Materials and Methods

2.1 Study Area

The River Wensum has a total catchment area of 675 km? and is designated a Special
Area of Conservation (SAC), a Drinking Water Protected Area and 71 km of the riparian
zone are designated as a Site of Special Scientific Interest (SSSI) (Natural England, 1993;
English Nature, 2005; Environment Agency, 2009). The importance of the River Wensum
has also been recognised by the UK Biodiversity Action Plan, which designates the river
as a priority chalk river habitat (Biodiversity Reporting and Information Group, 2007).
The catchment has a temperate maritime climate and had a mean annual rainfall of 714
mm and an annual rainfall range of 542.6-878.8 mm during 1981-2010 (Met Office,
2014).

This study focuses on the Blackwater River, a tributary of the Wensum, which drains an
area of 19.6 km? (Figure 9.1). The characteristics of the Blackwater sub-catchment are
typical of the wider River Wensum catchment and other catchments found in Eastern
England. The topography of the sub-catchment is relatively subdued, with elevation
ranging from 28-70 m above sea level, and 95% of the sub-catchment area has a slope of
5% or less. Streamflow within the Blackwater sub-catchment is derived from
groundwater flow, lateral flow in the soil zone, surface runoff and contributions from an
extensive tile drain network (Howson, 2012). During periods of low rainfall, streamflow
is sustained by baseflow, with a baseflow index similar to that of the Wensum catchment
as a whole equal to 0.80 (Outram et al. 2014). At the outlet of the Blackwater sub-
catchment during the period from 1 December 2011 to 30 June 2014, 30-minute
resolution data recorded a daily mean discharge of 0.112 m® s and daily mean
concentrations of 6.16 mg NO3-N L and 0.089 mg P L™! for nitrate and total phosphorus,
respectively. Cretaceous Chalk deposits underlay the majority of the sub-catchment, with
some Pleistocene Crag deposits on the south-eastern edge of the sub-catchment boundary

(Hiscock, 1993). The bedrock geology is overlain by superficial deposits of Quaternary
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glacial origin composed of boulder clay, sands and gravel that attain a thickness of greater

than 20 m (Hiscock, 1993; Hiscock et al., 1996).

2.2 The SWAT Model and Inputs

SWAT is a semi-distributed and physically based water quality model that operates at a
continuous time-step (Arnold et al., 2012). The model is designed to simulate the effects
of changes in management practices on surface water and groundwater hydrology, diffuse
pollution and sediment erosion within catchments. Within SWAT, a catchment is divided
into multiple sub-catchments which are then further divided into Hydrologic Response
Units (HRUs) that consist of homogeneous land use, slope and soil characteristics
(Arnold et al., 2012). Physical processes in SWAT are split into two phases: (i) the land-
based phase; and (ii) the channel-based phase (Neitsch et al. 2011). The former includes
climate, hydrology, plant growth, erosion, nutrient cycles, pesticides and management
practices. The latter routes water, sediment, nutrients and pesticides through the channel
network. Input variables define physical properties within the model and parameters are
used to define and perform management practices. The model simulates all of the key
physical processes found within the Blackwater sub-catchment and is therefore
considered to be a suitable model to apply. In order to construct a SWAT model of the
Blackwater sub-catchment, ArcSWAT version 2012.10.0.14 was applied (Texas A&M
University, 2015). The methodology applied to construct the model is available for
reference in Winchell et al. (2013). Readers are referred to Neitsch et al. (2011) for a
detailed review of the physical processes modelled within SWAT and Arnold et al. (2014)
for a detailed overview of the model input requirements and outputs. Gassman et al.
(2007) provide a detailed summary of over 250 previous publications relating to SWAT.
Krysanova and Arnold (2008), Douglas-Mankin et al. (2010) and Tuppad et al. (2011)
review the historical development and applications of the model and Arnold et al. (2012)
present an overview of a methodology that can be adopted when applying the model. The
model is subject to ongoing development and future landscape unit and grid-based
versions will allow a more detailed spatial representation of catchment practices to be
implemented within SWAT (Arnold et al., 2010; Bosch et al., 2010; Bonuma et al. 2014;
Rathjens et al., 2015).

2.2.1 Catchment agricultural practices
Data from the Agricultural Census conducted by The Department for Environment, Food

and Rural Affairs (Defra) was obtained for the River Wensum catchment for the period
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1993-2010 in a 2 km grid square format. Data for the Blackwater sub-catchment was used
to identify those crops commonly grown within the sub-catchment (Figure 9.2) and to
identify an appropriate crop rotation plan to implement within the SWAT model of the
sub-catchment (Defra, 2016; EDINA, 2014). Based on this analysis, it was found that the
most commonly grown crops within the catchment were wheat, barley, oilseed rape,
spring beans and sugar beet. The Salle Estate, which is located in the Blackwater sub-
catchment, manages 2000 ha of arable land and operates a seven-year crop-rotation that
includes those crop types identified in the agricultural census data (Salle Farms Ltd,
2014). Listed in order of cultivation, the seven-year crop-rotation operated within the
sub-catchment and applied within the SWAT model consists of winter barley, winter
oilseed rape, winter wheat, sugar beet, spring barley, spring beans and winter wheat
(Table 9.1). The rotation was initiated at different starting points within the rotation based
on crop-type and was distributed randomly within the model because actual crop
distributions within the sub-catchment were unknown. The Defra RB209 Fertiliser
Manual was used to identify appropriate fertiliser application rates for each crop included
in the crop-rotation (Defra, 2010a). The timings of planting, harvesting, field tillage and
fertiliser application were determined from UK Agriculture (2014) for all crops except
sugar beet where the source used was British Sugar (2014).
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Figure 9.2: The area of each crop type grown within the Blackwater sub-catchment
according to the 2010 Agricultural Census conducted by the Department for
Environment, Food and Rural Affairs (Defra, 2016; EDINA, 2014).
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Table 9.1: The seven year crop-rotation scheme and management operations applied

within the SWAT model of the Blackwater sub-catchment.

Year Month Day

Management operation

Description

1 9 15 Tillage Generic fall ploughing operation

1 9 30 Tillage Roterra harrow tillage operation

1 10 1 Cultivation Plant winter barley

2 3 1 Fertiliser application Apply 40 kg ha! elemental nitrogen
2 3 1 Fertiliser application Apply 60 kg ha'! phosphate

2 4 1 Fertiliser application Apply 70 kg ha™! elemental nitrogen
2 7 31 Harvest Harvest winter barley

2 8 15 Tillage Generic fall ploughing operation

2 8 31 Tillage Roterra harrow tillage operation

2 9 1 Cultivation Plant winter oilseed rape

3 3 1 Fertiliser application Apply 60 kg ha! elemental nitrogen
3 3 1 Fertiliser application Apply 50 kg ha™! phosphate

3 4 1 Fertiliser application Apply 60 kg ha'! elemental nitrogen
3 7 31 Harvest Harvest winter oilseed rape

3 9 15 Tillage Generic fall ploughing operation

3 9 30 Tillage Roterra harrow tillage operation

3 10 1 Cultivation Plant winter wheat

4 3 1 Fertiliser application Apply 40 kg ha'! elemental nitrogen
4 3 1 Fertiliser application Apply 60 kg ha™! phosphate

4 5 1 Fertiliser application Apply 120 kg ha! elemental nitrogen
4 8 31 Harvest Harvest winter wheat

4 9 15 Tillage Generic fall ploughing operation

5 3 17 Fertiliser application Apply 50 kg phosphate

5 3 31 Tillage Roterra harrow tillage operation

5 4 1 Cultivation Planting sugar beet

5 4 1 Fertiliser application Apply 40 kg ha! elemental nitrogen
5 5 1 Fertiliser application Apply 40 kg ha'! elemental nitrogen
5 10 31 Harvest Harvest sugar beet

5 11 15 Tillage Generic fall ploughing operation

6 1 31 Tillage Roterra harrow tillage operation

6 2 1 Cultivation Plant spring barley

6 4 1 Fertiliser application Apply 70 kg ha! elemental nitrogen
6 4 1 Fertiliser application Apply 45 kg ha™! phosphate

6 8 31 Harvest Harvest spring barley

6 11 15 Tillage Generic fall ploughing operation

7 1 31 Fertiliser application Apply 40 kg ha™! phosphate

7 1 31 Tillage Roterra harrow tillage operation

7 2 1 Cultivation Plant spring beans

7 8 31 Harvest Harvest spring beans

7 9 15 Tillage Generic fall ploughing operation

7 9 30 Tillage Roterra harrow tillage operation

7 10 1 Cultivation Plant winter wheat

8 3 1 Fertiliser application Apply 40 kg ha! elemental nitrogen
8 3 1 Fertiliser application Apply 60 kg ha™! phosphate

8 5 1 Fertiliser application Apply 120 kg ha™! elemental nitrogen
8 8 31 Harvest Harvest winter wheat

To assess the impacts of mitigation options on agricultural diffuse water pollution and

water quality within the Blackwater sub-catchment, a variety of mitigation options have

been introduced on the Salle Estate as part of the Wensum DTC Project (Lovett et al.,

2015). The mitigation options include the introduction of a cover crop during the autumn

220
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and winter months which is intended to protect soils from erosion when they would
otherwise be bare, to reduce the leaching of nutrients from soils during wet winter months
and, when destroyed, to act as a ‘green manure’, slowly releasing nutrients to the
surrounding soil for subsequent crops (Rubak et al., 2011). The use of strip tillage to
establish autumn and spring-sown crops, with the intention of reducing sediment and
nutrient loss in surface runoff, has been introduced as an additional mitigation option in

some pilot areas of the sub-catchment.

2.2.2 Meteorological data

The meteorological inputs required to perform simulations within SWAT include daily
observations of precipitation, mean wind speed, maximum and minimum temperature,
solar radiation and mean relative humidity (Arnold et al., 2014). If no observations are
available, SWAT includes a weather generator which has the capacity to generate

estimates of meteorological variables.

Observations of meteorological variables recorded from January 1980 to June 2014 were
obtained from UK Met Office Integrated Data Archive System (MIDAS) Land and
Marine Surface Stations Data for application within the model (Met Office, 2012).
Observations of daily minimum and maximum temperature, wind speed and relative
humidity were obtained from the MIDAS weather station located at Marham (MIDAS
Station ID: 409), which is sited approximately 40 km to the south-west of the Blackwater
sub-catchment. Observations of daily sunshine hours recorded at Marham weather station
were used to estimate a daily record of incident solar radiation for the sub-catchment.
Where observations of daily sunshine hours are missing from the Marham record,
observations recorded at the nearby MIDAS weather stations located at Coltishall
(MIDAS Station ID: 429), Norwich Weather Centre (MIDAS Station ID: 408), Hemsby
(MIDAS Station ID: 433) and Wattisham (MIDAS Station ID: 440), selected in order of
their proximity to the sub-catchment and the availability of data, were used to interpolate
the missing data. Observations of daily precipitation were obtained from the MIDAS
weather station located at Heydon (MIDAS Station ID: 4807) (Figure 9.1). Where
observations of precipitation are missing from the Heydon record, observations recorded
at the nearest MIDAS weather station, located at Mannington Hall (MIDAS Station ID:

24219), were used to interpolate the missing data using the nearest-neighbour technique.

Sam David Taylor - June 2017 221



Modelling the Impacts of Catchment Mitigation Measures on Water Quality

2.2.3 Water quality data

As part of the Wensum DTC Project, automated equipment including a pressure
transducer housed in a stilling well, a Nitratax Plus SC sensor and a Phosphax Sigma
analyser, have been used to continuously monitor river stage, nitrate and total phosphorus
concentrations, respectively, at 30-minute intervals at the outlet of the Blackwater sub-
catchment since April 2011 (Figure 9.1). Quality assurance and quality control
procedures, including the comparison of high-frequency data to laboratory analysed spot
samples, were conducted to ensure the validity of data included in this study. Flow
gauging using an electromagnetic open channel flow meter was conducted on 16
occasions during high, moderate and low flow events which, in combination with
observations of river stage from the pressure transducers, was used to develop a power
law stage-discharge rating curve which was applied to estimate daily mean discharge,
nitrate load and total phosphorus load exported from the sub-catchment during the period
1 December 2011 to 30 June 2014. These estimates were applied within this study to
perform model sensitivity analysis, calibration and validation. To identify the importance
of any relationship between sediment transport and total phosphorus concentrations
within the sub-catchment, 467 in-stream grab samples collected at the outlet of the
Blackwater sub-catchment during the period October 2010 to March 2015 were used to
develop a log-log regression model and conduct a linear regression t-test to test the
hypothesis that the relationship between the concentration of total suspended solids and

the concentration of total phosphorus was significant.

2.2.4 Geographical datasets

The digital terrain model applied within this study has a resolution of 5 m and was
obtained from the NEXTMap British Digital Terrain Model Dataset (Intermap
Technologies, 2007). Land cover within the study area was identified from the Land
Cover Map 2007 (LCM2007) raster dataset which has a resolution of 25 m and divides
land cover into 23 distinct classes based on the Broad Habitats defined within the UK
Biodiversity Action Plan (Morton et al., 2011). According to LCM2007, land cover
within the Blackwater sub-catchment is largely arable with 86.05% of the land area
utilised for agricultural purposes (Morton et al., 2011). The dominance of the arable
farming industry within the sub-catchment is reflected by the fact that 74.22% of the land
area is utilised for growing crops and 11.83% as grazing pasture. Woodland, other areas
of grassland and heathland, urban areas and surface water bodies including wetland

environments account for the remaining area.
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A map of soil types within the sub-catchment was derived from the National Soil Map
(NATMAP) vector dataset which displays the spatial occurrence of 300 distinct Soil
Associations throughout England and Wales (Cranfield University, 2014a). Each Soil
Association is composed of multiple Soil Series and possesses distinct properties.
According to NATMAP, five different Soil Associations are present within the
Blackwater sub-catchment. Burlingham 1, Wick 2 and Wick 3 cover 83.72% of the sub-
catchment and are composed of loamy soils, Beccles 1 covers 16.17% of the sub-
catchment and is composed of loamy over clayey soils and Isleham 2 covers 0.11% of the
sub-catchment and is composed of sandy soils (Cranfield University, 2014b). The
properties of each Soil Association, as required by SWAT, have been determined from
the Horizon Fundamentals, Horizon Hydraulics, NSI Textures and NSI Profile datasets
(Cranfield University, 2014c¢,d). The properties required by SWAT for each layer of each
soil type include the depth of soil layer, moist bulk density, available water capacity,
saturated hydraulic conductivity, sand, silt, clay and organic carbon content, maximum
rooting depth within the soil profile, the fraction of porosity from which anions are

excluded, moist albedo of the soil surface and erodibility (Arnold et al., 2014).

2.2.5 Model calibration and validation

In order to conduct a sensitivity analysis and to perform model calibration and validation,
the Sequential Uncertainty Fitting version 2 (SUFI-2) optimisation algorithm (Abbaspour
et al., 2004; 2007) was applied within the SWAT Calibration and Uncertainty Program
(SWAT-CUP) version 5.1.6.2 (Abbaspour, 2014). SUFI-2 is based on the concept of
equifinality, which posits that multiple models (i.e. multiple parameter sets) provide
equally acceptable predictions and as such, parameter values are treated as uncertain
(Beven, 1993; Beven and Freer, 2001). Model parameters selected for calibration were
first assigned an initial global uncertainty range within SWAT-CUP (Table 9.2).
Sensitivity analysis was then performed to identify those parameters that model outputs
were sensitive to. In general, a parameter should be included in calibration if sensitivity
analysis identifies that there is a 95% probability that the sensitivity of a variable to a
particular parameter is significant. Only sensitive parameters were included in the
calibration of the model at a daily time-step against observations of discharge and nitrate
and total phosphorus loads recorded at the outlet of the Blackwater sub-catchment. Using
the sensitive parameters, five iterations of 1000 simulations were performed to calibrate
the model. The parameter ranges were updated after each iteration, as identified by the

SUFI-2 optimisation algorithm, until prediction uncertainty and model performance was
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considered satisfactory. The model was applied at a daily time-step during the period
from 1 December 2011 to 30 June 2014, of which 1 December 2011 to 31 March 2013
and 1 April 2013 to 30 June 2014 were used as calibration and validation time periods,
respectively. An initial warm-up period of four years was applied during calibration and
validation to ensure that the model achieved a steady-state and to eliminate any initial
bias. Validation involved evaluating model performance against observations recorded
outside of the calibration time-period and was utilised as an additional test of model

performance.
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Table 9.2: The model parameters identified as significant by the sensitivity analysis

and the initial and final calibrated ranges of each parameter.

Parameter Description Initial range Final range
ALPHA BF Baseflow recession constant (1/day) 0-1 0.16-0.5
GW_DELAY Groundwater delay time (days) 0-500 420 -490
CH N2 Manning’s roughness coefficient for the main 0-03 0.03 - 0.081
- channel
CH K2 Effective hydrauhc COIldlfthlty of main 0-100 28 - 55
- channel alluvium (mm hr')
ALPHA BNK ﬁa;(sizf}]sw recession constant for bank storage 0-1 073 - 0.96
GW_REVAP Groundwater evaporation coefficient 0.02-0.2 0.03-0.1
SURLAG Surface runoff lag coefficient 1-24 1-4.18
Threshold depth of water in the shallow aquifer
REVAPMN required for .the movement of water from the 0 -500 66— 200
shallow aquifer to the unsaturated zone to
occur (mm)
OV N i\l/lozt)r;nmg s roughness coefficient for overland 0.2 -0.28 20,035 - 0.087¢
CN2 AGRL Runoff curve number for agricultural land -0.2-0.2° -0.15--0.05*
CN2 FRSD Runoff curve number for deciduous forest -0.2-0.2 -0.13-0.093*
CN2 PAST Runoff curve number for pasture land -0.2-0.2° -0.23 --0.0822
SOL AWC Available water capacity of soil layer (mm 02-0020 0.16 - 0.394
- H>O/mm soil)
SOL 7 The (.16pth from the soil surface to the bottom 0.2 -0.28 0.041 - 0.0282
- of soil layer (mm)
DDRAIN Depth to the sub-surface drain (mm) 900 - 1100 1060 - 1130
CDN Denitrification exponential rate coefficient 0-0.1 0.033 - 0.059
ANION EXCL Fraction of void space from which anions are 05-075 068 -0.76
- excluded
SDNCO Frac?tlgn of field capacity above which 09-1 0.94 -0.96
denitrification takes place
SOL NO3 Initial nitrate concentration in the soil layer 0-100 69 - 96
- (ppm) -
SOL SOLP In{tlal soluble phosphorus concentration in the 0-100 36 - 70
- soil layer (ppm)
GWSOLP Concentration of soluble phosphorus in 0-0.25 0.06-0.19
groundwater (ppm)
SOL BD Moist bulk density of soil layer (g cm™) -0.2-0.2° -0.25 - -0.054*
RCN Concentration of nitrogen in rainfall (mg 1! 0-15 3.7-7
Rate factor for mineralisation of active organic 0.0017 -
CMN nutrients in humus 0.001 -0.003 0.0023
NPERCO Nitrate percolation coefficient 0-1 0.21-0.47
CH_ERODMO The level of resistance to channel erosion 0-1 0.83-0.96
HLIFE NGW  Half-life of nitrate in groundwater (days) 0-200 130 - 200
. Lo . 3
PHOSKD ﬁlgoji)horus soil partitioning coefficient (m 100 - 200 150 - 180
TDRAIN Time to drain soil to field capacity (hours) 0-72 46 - 64
ESCO Soil evaporation compensation factor 0-1 0.86 -1
SHALLST N Inltl.al concentration of nitrate in shallow 0 - 1000 130 - 310
- aquifer (ppm)
ERORGP Phosphorus enrichment ratio 0-0.1 0.0017 - 0.03

? A relative change which has been applied to the original value of the parameter where the value is

multiplied by 1 plus a number from within the defined range.
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2.3 Objective Functions

Moriasi et al. (2007) recommend that three quantitative statistics are used as objective
functions to evaluate model performance, including the Nash-Sutcliffe Efficiency (NSE)
coefficient, percentage bias (PBIAS) and the ratio of the root mean square error to the
standard deviation of the measured data (RSR). Each of these statistical measures is

defined below.

2.3.1 Nash-Sutcliffe efficiency coefficient
The Nash-Sutcliffe Efficiency (NSE) coefficient proposed by Nash and Sutcliffe (1970)
is defined by Equation 1.

n obs Sim~2
Zi=1(Yi _Yi )

NSE =1- 3ol bl (1)

Where: n is the total number of observations, Y°P is the value of the observed variable

at the i time-step, Y>'™ is the value of the simulated variable at the i time-step and Y°Ps

is the mean value of the measured data considered.

NSE is a normalised statistic that describes the degree of the ‘goodness-of-fit” between
model predictions and observations and can vary between -co and 1, where a value of 1
represents a perfect fit. An NSE value of between 0 and 1 is generally recognised as
acceptable model performance, whilst a value of less than 0 indicates that the mean of the
measured data is a better predictor of a variable compared to the model and indicates

unsatisfactory model performance.

2.3.2 Percent bias

Percent bias (PBIAS) is described as the average tendency of simulated data to
overestimate or underestimate a variable relative to observations and is defined by
Equation 2. The optimum value of PBIAS is zero, indicating perfect agreement between
model simulations and observations. A negative PBIAS value indicates overestimation

and a positive value indicates underestimation.

21_1=1 (y.obs_y.sim)* 100
i i i 2
Z?=1 (YiObS) ( )

PBIAS =

2.3.3 Ratio of the root mean square error to the standard deviation of the measured data
(RSR)

RSR is described as the ratio of the Root Mean Square Error (RMSE) to the standard
deviation (STDEV) of observed data and is defined by Equation 3 (Moriasi et al., 2007).
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RSR can vary from an optimum value of zero, indicating that there is no error between
measured and simulated data, up to large positive values (Moriasi et al., 2007). A small

RSR indicates a good model performance.

2.3.4 Model performance criteria

Moriasi et al. (2007) suggest that for a model to be considered to perform satisfactorily
in simulating discharge, nitrate and total phosphorus loads at a monthly time-step, it must
achieve a NSE of > 0.5, a RSR of < 0.7 and a PBIAS of + 25% for discharge and a NSE
of > 0.5, a RSR of < 0.7 and a PBIAS of + 70% for nitrate and total phosphorus loads.

2.4 Mitigation Scenarios

As part of the Wensum DTC Project, stakeholders, including farmers and farm-advisers,
were consulted to identify and select potential agricultural mitigation options that can be
applied within the Blackwater sub-catchment to improve water quality. The Farm Scale
Optimisation of Pollutant Emission Reductions (FARMSCOPER) tool, described in
detail by Zhang et al. (2012) and Gooday et al. (2014), was also applied to the sub-
catchment to evaluate the impacts of potential mitigation options. FARMSCOPER is a
spreadsheet-based DST which can identify the impacts of mitigation options on losses of
multiple pollutants at the farm scale and assess the costs of each mitigation option
(ADAS, 2015). Input requirements include mean annual precipitation, soil type and
general farm type, based on the robust farm types classification scheme used by the UK
Government (ADAS, 2015; Defra, 2010b). More detailed livestock and cropping
information can be included if required. Since application within this project, the tool has
undergone considerable development and it can now evaluate the impacts of mitigation
options on biodiversity, energy and water use and can be applied at catchment and
national scales (ADAS, 2015). The options identified as being suitable by stakeholders
and the results provided by FARMSCOPER were broadly similar and were selected for
evaluation in this study (see Table 9.3).

The control scenario (S0) is considered to represent current conditions and practices
within the catchment and is used as the baseline scenario against which all other
mitigation scenarios are assessed. Under scenario S0, a generic ploughing operation

(primary tillage) is conducted on agricultural land within the model prior to establishing
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a crop. Primary tillage involves the aggressive mixing of surface materials and a mixing
or burying of crop residues, pesticides and fertilisers leaving a rough soil surface. Primary
tillage is followed by a further pulverisation of surface materials (secondary tillage) with
a harrow (the Roterra harrow in the SWAT model). Secondary tillage involves a less
aggressive mixing of soils, and pulverises soils into a finer material, removing air pockets
and preparing the seedbed for cultivation (see Table 9.4). Such a detailed regime of tillage
practice is not often conducted in SWAT. Under scenario SO0, tile drains are included on
all areas of arable land. Sandy soils (i.e. Isleham 2) where tile drains would otherwise

have been excluded are not under arable land use anywhere within the catchment.

Table 9.3: The agricultural measures scenarios applied within the SWAT model of

the Blackwater sub-catchment.

Number Name Description
SO Control scenario Baseline scenario representing current conditions and practices
S1 Buffer strip (2 m) Establishment of 2 m wide buffer strip on arable land
S2 Buffer strip (6 m) Establishment of 6 m wide buffer strip on arable land
S3 Conservation tillage A reduced tillage practice compared to the control scenario
S4 Zero tillage No field tillage and the direct drilling of crops
35 No tile drains Removal or blockage of field drainage systems from all arable
land
36 Red clover cover Introduction of a red clover cover crop to the crop rotation
crop scheme
37 Combined scenario Buffer strip (6 m) (S2) and red clover cover crop (S6) scenarios

combined

Table 9.4: The mixing depth and efficiency of each tillage technique applied within
the model.

Tillage technique Mixing depth (mm) Mixing efficiency (fraction)
Generic ploughing operation 150 0.95
Conservation tillage 100 0.25
Roterra harrow 5 0.80
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Scenarios S1 and S2 involve the introduction of buffer strips of 2 m and 6 m width,
respectively, to areas of arable land within the sub-catchment. Scenario S1 represents a
compulsory practice required under cross compliance rules in order to qualify for
payments under Common Agricultural Policy schemes (Defra, 2015). Scenario S2
represents a voluntary practice that can be introduced in order to qualify for payments
under the Entry Level Stewardship Scheme by achieving good environmental conditions
(Natural England, 2014). Scenarios S3 and S4 consider the use of alternative tillage
practices within the sub-catchment. Conservation or reduced tillage (S3) involves a less
aggressive mixing of soils relative to the control scenario, whereas no tillage (S4)
involves the direct drilling of seeds into soils without any cultivation. The mixing depth
and mixing efficiency of each tillage technique considered by the SWAT model is
provided in Table 9.4. Scenario S5 involves the removal or blockage of subsurface tile
drainage systems from areas of arable land within the sub-catchment in order to simulate
the slowing of runoff and solute transport. Under scenario S6, a red clover cover crop was
applied within the modelled sub-catchment on two occasions during the crop rotation
scheme when arable land would otherwise have been bare prior to the planting of spring
crops. The two occasions are between the harvesting of winter wheat and the cultivation
of sugar beet from the 1 September to 31 March and between the harvesting of spring
barley and the cultivation of spring beans from 1 September to 31 January. Under this
scenario, the red clover cover crop is terminated within the model at the end of the
growing period and is ploughed back into the field to form a ‘green manure’. Finally, to
assess the impacts of mitigation options on water quality when introduced in combination,
ared clover cover crop (S6) and buffer strips of 6 m width (S2), the two mitigation options
that were considered to be most effective at reducing nitrate and total phosphorus losses
individually within the Blackwater sub-catchment, respectively, were modelled together
under scenario S7. Each mitigation scenario was implemented across all areas of arable

land within the sub-catchment.

To quantify the impacts of each mitigation option on long-term water quality, each
scenario was run within the SWAT model at a daily time-step for the period 1990-2009,
with an initial warm-up period of four years from 1986-1989. The period from 1990-2009
was used because precipitation during this period reflected full climatic variability,
including droughts and wet periods. A total number of 1000 simulations were performed

to simulate discharge, and nitrate and total phosphorus loads at a daily time-step under
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each scenario. This relatively long time period was used in order to consider the response

of the sub-catchment to each measure under a variety of conditions over the long term.

3 Results and Discussion

3.1 Calibration and Validation

Sensitivity analysis identified that the parameters listed in Table 9.2 were required to be
included in model calibration. In order to calibrate the model against observations of
discharge, and nitrate and total phosphorus loads, five iterations of 1000 simulations were
performed. The initial and final calibrated ranges of each parameter are provided in Table

9.2.

3.1.1 Discharge simulation

The model performance in simulating daily mean discharge at the outlet of the Blackwater
sub-catchment during the calibration and validation time periods is shown in Figure 9.3
and Figure 9.4. When evaluated at a daily time-step, the model achieved NSE, PBIAS
and RSR values of 0.77, -6.0% and 0.48, respectively, during the calibration period and
values of 0.68, -24.8% and 0.57, respectively, during the validation period (Table 9.5).
The 95% prediction uncertainty range bracketed 86% and 87% of observed flow data
during calibration and validation periods, respectively, indicating that the model achieved
a relatively good fit between predictions and observations overall. To evaluate the model
performance at a monthly time-step against the performance criteria suggested by Moriasi
et al. (2007), daily data were aggregated into monthly time-series. According to those
criteria, the model can be considered to perform very well in simulating discharge at both
daily and monthly time-steps during the calibration and validation periods (see Table 9.5).
The negative PBIAS values achieved during both time periods indicate that the model
tends to overestimate discharge. This overestimation is pronounced during prolonged dry
periods in 2013 and 2014 and may indicate a deficiency in simulating baseflow during

periods of drought.
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Figure 9.3: Observed (solid line) and the best simulated (dotted line) daily mean
discharge, nitrate and total phosphorus loads recorded at the outlet of the
Blackwater sub-catchment during the calibration time period (1 December 2011 —
31 March 2013). The 95% confidence interval is represented by the hatched area
and the daily rainfall amount recorded at Heydon weather station is plotted in the

top panel for reference.
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Figure 9.4: Observed (solid line) and the best simulated (dotted line) daily mean
discharge, nitrate and total phosphorus loads recorded at the outlet of the
Blackwater sub-catchment during the validation time period (1 April 2013 — 30 June
2014). The 95% confidence interval is represented by the hatched area and the daily
rainfall amount recorded at Heydon weather station is plotted in the top panel for

reference.
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Table 9.5: The statistical performance of the model in simulating mean discharge,
nitrate and total phosphorus loads at monthly and daily time-steps at the outlet of
the Blackwater sub-catchment during the calibration (1 December 2011 — 31 March
2013) and validation (1 April 2013 — 30 June 2014) periods, respectively. NSE is the
Nash-Sutcliffe Efficiency coefficient, PBIAS is percentage bias and RSR is the ratio
of the root mean square error to the standard deviation of the measured data. The
numbers enclosed in brackets are benchmark values suggested by Moriasi et al.

(2007).

Variable NSE PBIAS (%) RSR

Daily time-step:

Calibration:

Flow 0.77 -6.0 0.48
Nitrate 0.72 5.6 0.53
Total Phosphorus 0.44 0.8 0.75
Validation:

Flow 0.68 -24.8 0.57
Nitrate 0.46 4.2 0.74
Total Phosphorus 0.36 -2.9 0.80

Monthly time-step:

Calibration:

Flow 095(>0.5) -59(£25) 0.23(<0.7)
Nitrate 0.86 (>0.5) 5.6 (£70) 0.37 (<0.7)
Total Phosphorus 0.63 (>0.5) 0.8 (£70) 0.61 (<0.7)
Validation:

Flow 0.92 -15.6 0.28
Nitrate 0.81 -4.7 0.43
Total Phosphorus 0.60 8.5 0.64
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3.1.2 Nitrate simulation

The model performance in simulating daily nitrate loads during the calibration and
validation time periods is shown in Figure 9.3 and Figure 9.4, respectively. When
evaluated at a daily time-step, the model achieved NSE, PBIAS and RSR values of 0.72,
5.6% and 0.53, respectively, during the calibration period and values of 0.46, 4.2% and
0.74, respectively, during the validation period (Table 9.5). The 95% prediction
uncertainty range bracketed 76% and 72% of observed nitrate load data during calibration
and validation periods, respectively, indicating that the model achieved a relatively good
fit between predictions and observations overall. According to the criteria set out in
Moriasi et al. (2007), the model performs very well in simulating nitrate loads during the
calibration and validation periods if evaluated at a monthly time-step (see Table 9.5).
When evaluated at a daily time-step however, there is a notable decline in model

performance during the validation period.

A visual inspection of Figure 9.4 indicates that the model generally performs well in
simulating nitrate loads during the validation period however there is an observed
tendency to underestimate some peaks in nitrate loads. Although the model tends to
overestimate discharge in general, it failed to reproduce a number of peaks in discharge
(e.g. during March 2012, June - August 2012 and October - December 2013) which
appears to translate into an underestimation of nitrate loads. Four factors that may
contribute to this deficiency are: (i) rating curve uncertainty under high-flow conditions
due to a limited number of flow gauging observations recorded during storm events
(McMillan et al., 2010); (i1) difficulties in modelling responses to extreme conditions
(Zhang et al., 2014); (iii) difficulties in modelling antecedent conditions within a
catchment (Yatheendradas et al., 2008); and (iv) incorrect timing of management

practices (e.g. fertiliser application and tillage).

The model also greatly underestimates the mass of nitrate exported from the sub-
catchment in response to 35 mm of rainfall recorded at Heydon weather station on 27
May 2014. This is the largest amount of precipitation to have occurred within the sub-
catchment on any single day since 2008. During the three consecutive days following this
event, nitrate loads observed at the sub-catchment outlet were over 7, 5 and 4 times the
mass predicted by the best simulation respectively. It is possible that the response
observed within the sub-catchment may result from an incidental loss of nitrate from a
farm or from the connection of a previously unconnected nitrate source or so-called

legacy stores (Outram et al., 2016) within the system. Such occurrences are difficult to
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account for within SWAT. If model performance in simulating nitrate loads at a daily
time-step during the validation period is evaluated with these three outliers removed,

NSE, PBIAS and RSR values of 0.68, -1.43% and 0.56 are achieved, respectively.

According to the criteria set out by Moriasi et al. (2007), the model can be considered to
perform very well in simulating nitrate loads at a monthly time-step during the calibration
and validation periods (see Table 9.5). Moriasi et al. (2007) recommend that, in general,
the model performance criteria should be less strict when considering a shorter time-step.
For the purposes of this investigation, the model is therefore considered to perform

adequately in simulating nitrate loads at daily and monthly time-steps.

3.1.3 Total phosphorus simulation

The model performance in simulating daily total phosphorus loads during the calibration
and validation time periods can be observed in Figure 9.3 and Figure 9.4, respectively. A
visual inspection indicates that the model generally performs well in simulating total
phosphorus loads in baseflow, however it fails to reproduce a number of peak events

during the calibration and validation periods.

The sediment transport component of the SWAT model was not calibrated within this
investigation because sediment observations were not available at daily or sub-daily
resolutions. 467 stream water samples were, however, collected at the outlet of the
Blackwater sub-catchment from October 2010 to March 2015 as part of the Wensum DTC
Project and were used to develop a log-log regression model to test the hypothesis that
there is a significant relationship between the concentration of total suspended solids and
the concentration of total phosphorus (Figure 9.5). A linear regression t-test found that
this relationship has a P-value of >0.001 and is statistically significant. Because of the
significance of this relationship and the sensitivity of total phosphorus losses to the
transport of sediment during storm events, the lack of high-resolution data means that
sediment losses may not be adequately simulated by the model. This observation may
account for the apparent deficiency of the model in simulating total phosphorus loads
during storm events. Other explanations which may account for the poor performance of
the model in reproducing peak total phosphorus events are that: (i) the general
representation of fertiliser practice within the model is not sufficiently accurate for total
phosphorus at a daily resolution; and (ii) the accumulation of sediment and sediment-
associated nutrients within complex tile drainage networks and their subsequent removal

during storm events is difficult to reproduce within a generalised model. For example,
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Kronvang et al. (1997) investigated the transport of sediment and phosphorus in an arable
catchment in Denmark and found that the majority of losses occurred during storm events,

with subsurface drainage found to be an important pathway.

y =0.3498x +3.4391
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Figure 9.5: Log-log regression model of the relationship between the concentration
of total suspended solids (TSS) and the concentration of total phosphorus (TP) at
the outlet of the Blackwater sub-catchment according to stream water samples

collected during 1 October 2010 — 31 March 2015.

Despite the above deficiencies, when evaluated at a daily time-step the model achieved
NSE, PBIAS and RSR values of 0.44, 0.8% and 0.75, respectively, during the calibration
period and values of 0.36, -2.9% and 0.80, respectively, during the validation period
(Table 9.5). The 95% prediction uncertainty range bracketed 85% and 92% of observed
total phosphorus load data during calibration and validation periods, respectively,
indicating that the model achieved a relatively good fit between predictions and
observations overall. Although the model does not achieve the satisfactory performance
criteria suggested by Moriasi et al. (2007) when simulating total phosphorus loads at a
daily time-step, the small percentage bias values achieved during the calibration and
validation time periods indicate that the model simulates overall total phosphorus loads
with reasonable accuracy (Table 9.5). When evaluated at a monthly time-step, the model
performance in simulating total phosphorus loads does achieve the satisfactory
performance criteria (Table 9.5). The priority of this investigation is to achieve good
model performance in simulating losses of total phosphorus over the long-term. Given

the good performance in this respect, for the purposes of this investigation it is therefore
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considered that the model performs adequately in simulating total phosphorus loads at

both daily and monthly time-steps.

3.2 Agricultural Mitigation Options

The satisfactory performance of the model in simulating discharge and nitrate and total
phosphorus loads suggests that the model can be applied with high confidence to assess
the impacts of agricultural mitigation options on water quality within the Blackwater sub-

catchment.

3.2.1 Mitigation scenario impacts

Buffer strip scenarios S1 and S2 achieved small reductions in the amount of nitrate lost
from the sub-catchment relative to the control scenario (S0) (Figure 9.6a). Scenarios S1
and S2 reduced mean annual nitrate losses by 2.3% and 4.6%, respectively, for buffer
strips of 2 m and 6 m width. A reduction in the total area of land utilised for agricultural
purposes and the reduction in the total amount of fertiliser applied to land within the sub-
catchment that results is most likely to be responsible for the reduction in nitrate losses
observed under these scenarios. A proportion of the simulated reductions are also likely
to result from a reduction in the amount of nitrate lost in surface runoff due to wider buffer
strips. In comparison, Glavan et al. (2012) found that introducing buffer strips of 4 m
width to arable land and grassland within SWAT reduced losses of total nitrogen by
21.2% and attributed this reduction largely to a drop in the amount of total nitrogen lost
in surface runoff. In another study, Lam et al. (2011) found that introducing buffer strips
of 10 m width to arable land and pasture land along the main river channel reduced total
nitrogen losses by 12.9% and attributed this reduction largely to denitrification within
groundwater in the locality of the vegetative buffer. Scenarios S1 and S2 achieved notable
reductions in the amount of total phosphorus lost from the sub-catchment relative to the
control scenario (S0) (Figure 9.6b). Scenarios S1 and S2 reduced mean annual total
phosphorus losses by 12.2% and 16.9%, respectively, reflecting an increase in the width
of buffer strips from 2 m to 6 m. Increasing the width of buffer strips acts to slow surface
runoff, causing more sediment-associated phosphorus to drop out before the runoff enters
a stream. In comparison, Glavan et al. (2012) found that introducing buffer strips of 4 m
width to arable land and grassland within SWAT reduced losses of total phosphorus by
47.7% and Lam et al. (2011) found that introducing buffer strips of 10 m width to arable
land and pastureland along the main river channel reduced total phosphorus losses by

5.3%. Again, it is considered that the effectiveness of buffer strips is dependent on local
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factors. As evidenced by our study and the findings of others, including Cho et al. (2010),
it is clear that the effectiveness of buffer strips varies, depending on local conditions, the
width of the buffer strip and the extent of the area to which they are applied. For mean
annual losses, the 95% prediction uncertainty range within which 95% of the 1000 model
predictions fell, ranged from 2.5 kg NOs-N ha! yr'! to 11.5 kg NO3-N ha™! yr'! and 0.06
kg P ha'! yr'! to 0.28 kg P ha'! yr'! under scenario S1, and from 2.4 kg NOs-N ha! yr! to
11.4 kg NO3-N ha! yr'! and 0.05 kg P ha™! yr! to 0.26 kg P ha'! yr'! under scenario S2
(Figure 9.6). Relative to control scenario S0, the lower and upper bounds of the 95%
prediction uncertainty range respectively reduced by 5.6% and 2.4% for nitrate and 13.8%
and 13% for total phosphorus under scenario S1 and reduced by 7.7% and 3.3% for nitrate
and 18.8% and 17.4% for total phosphorus under scenario S2. Although there is some
uncertainty associated with model predictions under scenarios S1 and S2, the results
indicate a clear reduction in the amount of nitrate and total phosphorus lost from the sub-
catchment. This result suggests that buffer strips can be introduced to reduce nitrate and

total phosphorus losses over the long-term.
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Figure 9.6: (a) The mean annual nitrate load and (b) the mean annual total
phosphorus load exported from the Blackwater sub-catchment during the period
1990-2009 under each mitigation scenario. The upper and lower bounds of the 95%
prediction uncertainty range are also shown at the end of each line. The ‘%X’

represents the mean value of each scenario.

Alternative tillage scenarios S3 and S4 resulted in small increases in the amount of nitrate
and total phosphorus lost from the sub-catchment relative to the control scenario (S0)
(Figure 9.6). Nitrate losses under scenarios S3 and S4 increased by 4.7% and 6.3%,
respectively, and total phosphorus losses increased by 3.8% and 7.2%, respectively. The

95% prediction uncertainty range of mean annual losses ranged from 2.8 kg NOs-N ha’!
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yr'to 12.3 kg NOs-N ha! yr'and 0.07 kg P ha! yr'!to 0.33 kg P ha! yr'! under scenario
S3, and from 2.8 kg NO3-N ha™! yr!to 12.3 kg NO3-N ha! yr'and 0.07 kg P ha™! yr' to
0.34 kg P ha'! yr'! under scenario S4. Relative to control scenario SO, the lower and upper
bounds of the 95% prediction uncertainty range respectively increased by 5.1% and 5%
for nitrate and 2.9% and 3.8% for total phosphorus under scenario S3 and increased by
6.2% and 5.0% for nitrate and 4.2% and 7.1% for total phosphorus under scenario S4.
Although the 95% uncertainty ranges for losses of nitrate and total phosphorus under
scenarios S3 and S4 appear to be relatively large, the upper and lower limits of those
ranges depict a small but clear increase in the amount of nitrate and total phosphorus lost
from the sub-catchment when alternative tillage practices are introduced. The increase in
nitrate and total phosphorus losses was an unexpected result given that alternative tillage
systems including conservation tillage and zero tillage have been reported to reduce
sediment erosion and losses of total phosphorus and nitrogen (McDowell and McGregor,
1984; Ulén et al., 2010). Lam et al. (2011) however found that introducing alternative
tillage practices within SWAT, including zero-tillage and conservation tillage, did not
have a significant impact on total nitrogen and total phosphorus losses and attributed this
observation to limited surface runoff and sediment erosion within the catchment (Lam et
al., 2010). A number of studies have also reported an increase in the amount of dissolved
phosphorus and nitrogen lost from arable fields where reduced tillage systems are
implemented for successive years (McDowell and McGregor, 1984; Ulén et al., 2010).
Where plant residues are left undisturbed, the incorporation of fertilisers within soils
becomes limited (Ulén et al., 2010) and nutrients accumulate in topsoil (Logan et al.,
1991). This practice has the potential to increase the amount of nutrients lost in surface
runoff (McDowell and McGregor, 1984; Ulén et al., 2010) and may account for the small
increases in nitrate and total phosphorus losses observed under scenarios S3 and S4.
Periodically conducting conventional tillage within a long-term reduced tillage system is
recommended by Addiscott and Thomas (2000) in order to redistribute nutrients within

the soil subsurface and mitigate this risk.

Scenario S5 involved removing tile drains from the sub-catchment. This measure may not
be considered practical or desirable but it is necessary to identify the important pathways
of nutrient loss within the sub-catchment. Scenario S5 reduced nitrate losses by 58.9%
and increased total phosphorus losses by 31.6%, relative to the control scenario (S0)
(Figure 9.6). The 95% prediction uncertainty ranges for mean annual losses ranged from

1.4 kg NO3-N ha! yr'to 4.3 kg NOs-N ha! yr'and 0.1 kg P ha! yr'to 0.4 kg P ha'! yr
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! under scenario S5. Relative to control scenario SO, the lower and upper bounds of the
95% prediction uncertainty range respectively reduced by 45.5% and 63.5% for nitrate
and increased by 47.5% and 25.1% for total phosphorus under scenario S5. The result for
nitrate indicates that subsurface drainage is a major conduit for nitrate losses from arable
land to the river network within the sub-catchment. The large increase in total phosphorus
losses results from an increase in surface runoff and soil erosion due to reduced
subsurface drainage, and highlights the need to maintain good drainage within arable
systems. The 95% confidence interval of the predicted impacts of scenario S5 on nitrate
losses within the sub-catchment is also markedly smaller compared to all other scenarios,

indicating a higher confidence in model predictions.

Introducing a red clover cover crop to the crop rotation scheme applied within the sub-
catchment under scenario S6 reduced nitrate and total phosphorus losses by 19.6% and
1.6%, respectively (Figure 9.6). Under scenario S6 the 95% prediction uncertainty range
of mean annual losses ranged from 1.8 kg NO3-N ha™! yr'! to 10.0 kg NO3-N ha! yr'! and
0.06 kg P ha'! yr'to 0.32 kg P ha'! yr'! and, relative to control scenario SO, the lower and
upper bounds of the 95% prediction uncertainty range respectively reduced by 30.4% and
14.8% for nitrate and 2.7% and 0.9% for total phosphorus. In comparison, Ullrich and
Volk (2009) found that introducing red clover as a cover crop within a SWAT model of
the Parthe catchment in central Germany reduced nitrate losses in surface runoff by 63%,
relative to a control scenario which involved conservation tillage alone. The large
reduction in nitrate loss observed by our study is likely to result from the uptake of nitrate
from soils by the cover crop, locking nitrate within organic plant material and preventing
it from leaching from soils during wet winter months (Rubzak et al., 2011). The presence
of a crop at a time of year when soils would otherwise be bare protects the soil surface
and reduces the amount of nutrients lost through wind erosion and surface runoff. The
root system of the cover crop also enhances the percolation of water into the soil
subsurface, reducing surface runoff and erosion, further reducing nutrient losses.
Following the termination of a cover crop, nutrients stored in organic plant material are
slowly released to soils through the process of mineralisation. The red clover essentially
acts as a ‘green manure’. The reduction in nitrate losses observed under this scenario and
the slow release of nutrients ensure that less nitrogen fertiliser needs to be applied to
fields, reducing fertiliser expenditure and improving soil conditions. The magnitude of
the reduction in total phosphorus losses is markedly less than that observed for nitrate due

to the fact that the uptake of phosphorus by plants is counteracted by the slow desorption
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of phosphorus from soil particles. This observation limits the potential for cover crops to
reduce phosphorus losses, however it is possible to reduce losses of phosphorus through
long-term phosphorus mining (Delorme et al., 2000). Mining involves the net removal of
nutrients through the harvesting of cover crops, instead of incorporating the organic

material of cover crops into soils as a green manure.

Although there is clear uncertainty associated with model predictions for nitrate and total
phosphorus losses under each scenario (Figure 9.6), the results indicate a clear, if
sometimes relatively small, direction of change under each scenario. We can therefore be
confident in the impacts of each mitigation option for the management of diffuse

pollution, despite the degree of uncertainty that is associated with predictions.

In order to assess which mitigation options have the potential to be applied within the
sub-catchment to achieve statutory water quality targets, percent exceedance curves
depicting the amount of time any nitrate and total phosphorus concentration is exceeded
at the sub-catchment outlet during the period from 1990-2009 were developed for each
scenario (Figure 9.7a and Figure 9.7b). With reference to the European Drinking Water
Directive, in which water is considered unfit for human consumption if it contains a
nitrate concentration above 50 mg L™ (equivalent to 11.3 mg NOs-N L), then under the
control scenario (S0), the 50 mg L' water quality standard is exceeded 0.82% of the time
at the sub-catchment outlet, equivalent to 60 days during the period 1990-2009 (Figure
9.7a). This risk is reduced to 0.01% of the time or 1 day under scenario S5 in which tile
drains are removed from the sub-catchment. Introducing a red clover cover crop to the
crop rotation scheme under scenario S6 reduced the amount of time this standard was
exceeded to 0.36%, equivalent to 26 days over the 20-year period 1990-2009. Under this
scenario, the amount of time that the 50 mg L standard was exceeded at the sub-
catchment outlet was reduced by over 50% compared to the control scenario, benefiting
aquatic ecology and water resource management. Scenarios S1-S4 had a more limited
effect on the percent exceedance curves relative to the control scenario (S0) (Figure 9.7a).
The Diffuse Water Pollution Plan developed for the River Wensum SSSI specifies that
for the river to be in a favourable condition, mean annual total phosphorus concentrations
must not exceed 0.1 mg L at the catchment outlet (Environment Agency, 2010). Under
the control scenario (S0), the 0.1 mg L™! target was exceeded 53% of the time at the sub-
catchment outlet (Figure 9.7b), with the mean annual total phosphorus concentration just
below the target at 0.097 mg L. This exceedance reduced to 51% and 49% of the time

under scenarios S1 and S2, respectively, with 2 m and 6 m wide buffer strips (Figure
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9.7b). Under scenarios S1 and S2, mean annual total phosphorus concentrations at the
sub-catchment outlet were 0.092 mg L! and 0.091 mg L', respectively. Scenario S5,
involving the removal of tile drains from arable land, increased the amount of time this
target was exceeded to 72% (Figure 9.7b). Under this scenario, the mean annual
concentration of total phosphorus at the sub-catchment outlet equalled 0.111 mg L,
exceeding the required target. Scenarios S3, S4 and S6 had a more limited effect on the
percent exceedance curves relative to the control scenario (S0) (Figure 9.7b). It is clear
from the scenarios considered that buffer strips represent the most effective mitigation

option that can be applied within an arable catchment to reduce losses of total phosphorus.
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Figure 9.7: Environmental Targets (ET) and percent exceedance curves for (a)
nitrate concentration and (b) total phosphorus concentration as simulated at the
outlet of the Blackwater sub-catchment during the period 1990-2009 under each

mitigation scenario.

3.2.2 Combined effectiveness of mitigation options

According to the model simulations, the most effective and practical mitigation options
considered as part of this investigation in the Blackwater sub-catchment to reduce losses
of nitrate and total phosphorus include, respectively, the introduction of a red clover cover
crop to the crop-rotation applied within the sub-catchment (scenario S6) and the
introduction of buffer strips of 6 m width to areas of arable land (scenario S2). In order

to understand the impacts of mitigation options on long-term water quality when
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introduced to the sub-catchment in combination, these two mitigation options were

modelled in combination under scenario S7.

The two mitigation options introduced under scenario S7 reduced nitrate and total
phosphorus losses within the sub-catchment by 24.1% and 17.9%, respectively, over the
period 1990-2009 (Figure 9.6). In comparison, the cumulative impact of these mitigation
options, when modelled individually and added together, reduced nitrate and total
phosphorus losses over the same period by 24.2% and 18.6%, respectively. This result
suggests that the mitigation options considered here simply combine to produce a total
effect almost equal the sum of their individual effects. Under scenario S7 the 95%
prediction uncertainty range of mean annual losses ranged from 1.7 kg NO3-N ha! yr! to
9.5 kg NO3-N ha! yr'!and 0.05 kg P ha™! yr' to 0.26 kg P ha'! yr'! and, relative to control
scenario SO, the lower and upper bounds of the 95% prediction uncertainty range
respectively reduced by 35.8% and 19% for nitrate and 19.9% and 18.5% for total
phosphorus.

The 50 mg L' drinking water quality standard that applies to nitrate was exceeded 0.34%
of the time at the outlet of the Blackwater sub-catchment under scenario S7 (Figure 9.7a),
equivalent to 25 days during the 1990-2009 period. This result compares to 0.82% of the
time or 60 days under the control scenario S0, 0.75% of the time or 55 days under scenario
S2 and 0.36% of the time or 26 days under scenario S6. The 0.1 mg L' water quality
target that applies to total phosphorus was exceeded 48.5% of the time at the outlet of the
Blackwater sub-catchment during the 1990-2009 period under scenario S7 (Figure 9.7b).
This result compares to 53.2% of the time under the control scenario S0, 48.6% of the
time under scenario S2 and 53.8% of the time under scenario S6. These results further
suggest that the combined effect of the mitigation options considered here is nearly equal
to the sum of their individual impacts on water quality. Despite this finding, in practice,
when choosing mitigation options, it is essential to consider their many potential impacts
before introduction in the environment in order to understand the risk of pollution
swapping and the potential for unintended environmental consequences (Stevens and

Quinton, 2009).

4 Conclusions
Water quality models are cost-effective DSTs which can be applied to assess the
quantitative impacts of a variety of mitigation options on water quality. Models must be

robustly calibrated to achieve this goal, but there is often a scarcity of sufficient data to
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parameterise and evaluate models. High-frequency water quality monitoring has allowed
the successful application of SWAT within this investigation to quantify the impacts of
agricultural mitigation options on long-term water quality at a daily resolution in a
lowland arable catchment in the UK. The uncertainties of the predicted impacts of each
mitigation option on water quality have also been quantified and mitigation options that
have the potential to be applied within arable catchments to improve water quality have

been identified.

Scenario analysis found that introducing a red clover cover crop to the crop rotation
scheme applied within the model reduced nitrate losses by 19.6% and total phosphorus
losses by 1.6% over the long-term. This finding suggests that a cover crop can
successfully be grown as a ‘green manure’, improving soil conditions, reducing
expenditure on fertilisers and reducing agricultural diffuse water pollution over the long
term. The prospect of mining phosphorus through the successive harvesting of cover
crops is also considered, but this practice limits the potential for the cover crop to act as

a green manure.

Introducing buffer strips of 2 m and 6 m width to arable land was found to be the most
effective mitigation options that could be applied to reduce losses of total phosphorus,
achieving reductions of 12.2% and 16.9%, respectively, although consideration must be
given to the reduction in agricultural productivity that occurs under these scenarios as a

result of removing areas of arable land from cultivation.

According to the findings of this investigation, the removal of subsurface tile drainage
systems from areas of arable land, albeit not practical in terms of maintaining arable
cultivation, represents the single most effective mitigation option that can be adopted to
reduce losses of nitrate, achieving a reduction of 58.9%. This measure, however,
increased total phosphorus losses by 31.6%, highlighting the need to consider multiple
pollutants when evaluating the effectiveness of mitigation options to reduce agricultural

diffuse water pollution.

If reductions are to be achieved in both nitrate and total phosphorus losses, the most
effective combination of mitigation options that can be applied are a cover crop and buffer
strips. When modelled in combination, these two mitigation options were found to have
a total impact which was almost equal to the sum of their individual modelled impacts on

water quality.

246 Sam David Taylor - June 2017



Chapter 9: Appendices

The alternative tillage scenarios applied within the model unexpectedly resulted in small
increases in nitrate and total phosphorus losses. This result was attributed to the
enrichment of nutrients within topsoil and an increased loss of nutrients in surface runoff.
This observation highlights the need to conduct a detailed assessment of the potential
impacts of a mitigation option prior to implementation otherwise there is a risk of
introducing practices which achieve the opposite of the intended result. This example
highlights the benefits provided by water quality models in aiding decision-making and

catchment management.

The availability of high-frequency water quality data ensures that models can be robustly
calibrated. Such techniques can impart a higher degree of confidence to model predictions
and, therefore, in the predicted impacts of mitigation options on water quality. This
investigation has shown that high-frequency water quality datasets can be applied within
SWAT, as an example of one of the many water quality models available, to quantify the
long-term impacts of agricultural mitigation options on water quality at a daily resolution
and assist in the creation of more effective and reliable DSTs, leading to the development
of appropriate diffuse water pollution mitigation plans. Results indicate that there is a
relatively large degree of uncertainty associated with model predictions and we would
recommend that impact assessments conduct a robust evaluation of prediction uncertainty

to improve confidence in model predictions.
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