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Abstract 

Pollination of Ophrys sphegodes by sexual deception of male Andrena nigroaenea bees 

depends both on male bees emerging before female bees and before flowering, and on the 

orchid flowering before female bee emergence, so that competition for the services of naïve 

male bees is avoided.  Using previously-established relationships between the timing of these 

phenological events and spring temperature, we model flowering and bee emergence dates 

from 1659-2014, using Central England Temperature records.  All phenological events were 

predicted to advance significantly over this period, accompanying a trend towards warmer 

springs.  The interval between male and female flight decreased over time, whereas that 

between male flight and flowering increased.  In addition, female flight preceded orchid 

flowering after warm springs, and it preceded both flowering and male bee flight following 

the warmest springs.  Such reversals in phenology have increased in frequency over the last 

356 years.  In most years, the Ophrys/Andrena pollination system achieves very limited 

pollination success.  The results presented here suggest that climate warming has changed the 

timing of the phenological events that are critical to reproductive success in O. sphegodes, 

and that continuing warming will increase the frequency of years in which this rare orchid 

suffers complete reproductive failure.	
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Introduction 

Weather conditions in any year and long-term climate change both affect the timing 

of important events in the annual life cycles of many species.  Temperature in particular 

exerts a strong influence on phenology, but the strength of its influence can differ 

significantly between species (Fitter et al., 1995; Sparks, Jeffree & Jeffree, 2000; Kauserud et 

al., 2008 Crimmins, Crimmins & Bertelsen, 2010; Iler et al., 2013).  It is widely speculated 

(Memmott et al., 2007; Heglund et al., 2009; Kharouba & Vellend, 2015) that phenological 

shifts caused by climate change pose a significant threat to ecological relationships in which 

one species depends on another, such as those between plants and their pollinators.  If 

flowering time and the dates on which pollinators are active diverge in response to long-term 

climate warming, pollination could be reduced, or fail completely.   

Species with highly specialised pollination mechanisms are likely to be especially 

vulnerable to loss of synchrony with their pollinators.  For many species in the family 

Orchidaceae, pollination is so specialised that it can only be achieved by one species 

(Tremblay, 1992) or a small group of closely-related species, and many orchid species with 

such specialised pollination systems are already rare and endangered.  Although some are 

capable of self-pollination, any reduction in cross-pollination will increase their risk of local 

and global extinction (Tremblay 1994; Tremblay et al., 2005).  For such species, annual 

temperature variations could have a critical effect on pollination success by altering the 

relative timing of flowering and pollinator activity, and longer-term climate change could 

progressively reduce the probability of pollination.  Evidence for such effects might be 

especially clear in orchids with highly specialised pollination systems, and would strongly 

support the contention that climate change will disrupt relationships between co-dependent 

species. 
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One of the most comprehensive analyses to date of the potential for climate change to 

disrupt phenological synchrony in a specialised plant-pollinator relationship involves the 

early spider orchid, Ophrys sphegodes Mill., and the solitary mining bee Andrena 

nigroaenea, which is its sole pollinator in the United Kingdom (Robbirt et al., 2011, 2014; 

see also Willmer, 2014).  O. sphegodes reaches its northern range limit in the UK.  It has 

suffered a severe range contraction in the United Kingdom since records began, although 

limited recovery has been achieved more recently (Jacquemyn & Hutchings, 2015).  Whereas 

Wigginton (1999) classified O. sphegodes as near-threatened in the UK, it is now categorised 

as of Least Concern (Cheffings & Farrell, 2005).  Nevertheless, its range in the UK is at least 

60% smaller than it was in 1930 (Jacquemyn & Hutchings, 2015).  Several causes for this 

decline have been identified, including habitat destruction and the transitory nature of 

suitable habitat, unsuitable grazing regimes, a low rate of establishment from seed, a very 

short life-span and infrequent vegetative propagation (Hutchings, 2010).  Pollination is also 

very inefficient.  Ripe O. sphegodes fruits can contain 5000-10,000 seeds (Soliva & Widmer, 

2003), but as few as 5% of flowers are visited by pollinators in some populations (Ayasse et 

al., 2000).  The percentage of flowers producing fruits is usually well below 25%, and no 

more than 20% of plants produce fruits (Delpino, in Darwin, 1877; Lang, 1980; Neiland & 

Wilcox, 1998; Gay & Philp, 1999; Vandewoestijne et al., 2009).  Establishment from seed is 

very low in most years (Hutchings, 2010).  If long-term climate change is altering the time 

between flowering in O. sphegodes and the flying time of its pollinator, or changing the 

sequence of these events, the current low reproductive success of the orchid may be 

exacerbated, increasing the threat to its survival.   

Management regimes have been proposed to reverse declines in O. sphegodes 

populations (Hutchings, 2010), but the potential threats to its reproduction due to annual 

variations in weather conditions and long-term climate change on pollination success have 
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not been taken into account.  This study examines the effects of long-term changes in 

temperature on divergence between the phenology of flight in Andrena nigroaenea and 

flowering in Ophrys sphegodes.  Understanding the ways in which the relative timing of 

these events is changing over the long term is important, not only because it may explain the 

low levels of pollination in O. sphegodes, but because it may also indicate whether long-term 

climate warming threatens the survival of this rare species.  

Ophrys sphegodes flowers emit a floral bouquet that strongly resembles that of virgin 

female Andrena nigroaenea (Schiestl et al., 1997, 1999, 2000), leading to sexual deception of 

naïve male bees.  In most years, male A. nigroaenea emerge before peak flowering in O. 

sphegodes.  In common with many bee species (Eickwort & Ginsberg, 1980), the emergence 

of male A. nigroaenea also usually precedes the emergence of females, and in the temporary 

absence of female bees to mate with, the males attempt to copulate with flowers of the orchid.  

In doing so, they transfer pollen from one flower to another.  Male bees quickly become 

habituated to the floral bouquet.  Because the orchid provides no reward for the pollinator, 

there is no incentive for habituated bees to continue to visit orchid flowers, but variation in 

the chemical signature of the floral bouquet between plants (Borg-Karlson, 1990; Schiestl et 

al., 1997, 1999, 2000), and between visited and unvisited flowers (Schiestl & Ayasse, 2001), 

may result in more mating attempts with unvisited flowers.  However, as the floral bouquet is 

only emitted when flowers are fresh (Nieland & Wilcock, 1995; Jacquemyn & Hutchings, 

2015), pollinators are only attracted for a short period.   

Pollination in O. sphegodes is strongly dependent on the temporal sequence of bee 

emergence and orchid flowering.  Success depends on male bees emerging from winter 

hibernation before orchid flowering and female bee emergence, and on the orchid flowering 

before female bee emergence.  Crucially, if flowering and female bee emergence coincide, or 

if female bees emerge earlier than the orchid flowers, pollination is likely to be reduced or 
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even fail completely, because of competition between the orchid and female bees for, 

respectively, pseudocopulatory and copulatory services from male bees.  Temporal separation 

of male and female bee emergence, and of orchid flowering and female bee emergence, is 

therefore vital even for the limited pollination success that is usually achieved.  Robbirt et al., 

(2014) found that yearly variation in spring temperature had markedly different impacts on 

the phenology of flight in male and female Andrena nigroaenea, and of flowering in Ophrys 

sphegodes.  For several reasons this may have serious consequences for pollination success.  

Firstly, these differences will cause the time that elapses between each of these phenological 

events to be dependent on the weather in any year.  This may determine whether female bees 

are in flight at the same time as the orchid is in flower, and therefore affect the length of time 

for which male bees will pseudocopulate with orchid flowers.  Secondly, climate change 

could lead to long-term increases or decreases in the mean number of days between each of 

these events.  Thirdly, the sequence in which these events occur may change between years, 

and the frequency of such differences in sequence might alter as warmer springs become 

more common.  Finally, female bee emergence coinciding with, or preceding, orchid 

flowering in any year, and especially in sequences of consecutive years, would be potentially 

disastrous for orchid pollination, and for the survival of this short-lived orchid species, both 

locally and globally. 

Robbirt et al., (2014) used several long-term datasets to quantify the effects of 

variation in temperature between years on the phenology of flowering in Ophrys sphegodes 

and emergence in Andrena nigroaenea.  We now use the relationships established in that 

study to model dates of flowering and bee emergence for every year from 1659-2014, using 

the Central England Temperature (CET) record.  We then address the following questions: (i) 

is there variation in the sequence of the three phenological events (flowering in O. sphegodes 

and emergence of male and female bees of A. nigroaenea) between years during this 356-
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year period, and if so, is the frequency of such differences changing? (ii) is there evidence for 

changes in the time elapsing between each of the three phenological events? (iii) does this 

system provide evidence that climate change can adversely affect critical inter-species 

dependencies? 

Material and methods 

Four sets of long-term data were used to examine the effects of temperature on the 

relationships between the timing of flowering in Ophrys sphegodes and the emergence of 

male and female Andrena nigroaenea, as follows: (i) Data on mean monthly temperature 

from 1659 to 2014 were obtained from the Central England Temperature (CET) record 

(http://hadobs.metoffice.com/hadcet/cetml1659on.dat).  (ii) Data on timing of flowering in O. 

sphegodes were obtained from a field-based demographic study conducted from 1975 to 2006 

(Hutchings 1987a,b, 2010) in which population censuses were carried out at the peak of 

flowering in each year.  Information on the timing of data collection was available for 25 out 

of 32 years of the study.  (iii) Data on peak flowering of O. sphegodes between 1848 and 

1958 were obtained from fully dated herbarium specimens stored at the Royal Botanic 

Gardens, Kew, and the British Museum, London.  To ensure that only plants collected at the 

peak of flowering were included in the study, specimens with less than 60% of their flowers 

open were discarded (Robbirt et al., 2011).  A total of 77 specimens was available for use in 

the analysis.  (iv) Peak flying dates of male and female A. nigroaenea were obtained from 

fully dated museum specimens held at the Natural History Museum, London, and Oxford 

University Museum of Natural History.  In total, 357 specimens were included in the analysis 

(208 male specimens collected between 1893 and 2004, and 149 female specimens collected 

between 1900 and 2007), with at least one specimen collected in each of 81 years within a 

115-year period from 1893 to 2007. Although specimens could have been collected at any 
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time in the flying season, on average over the 115 years the dates of collection would tend to 

represent peak flying dates (Robbirt et al. 2014).   

Analysis of the effects of weather variables (mean temperature, total rainfall and total 

sunshine hours calculated over various time periods prior to flowering, and number of frost 

days in the winter prior to flowering) on peak flowering date in Ophrys sphegodes have 

shown that spring temperatures and, to a lesser extent, number of frosts, have significant 

impacts on peak flowering date, whereas rainfall does not (Hutchings, 2010).  Furthermore, 

no significant effect of rainfall on flowering date was discernible in the herbarium data 

Robbirt (2012). The timing of emergence of many bee species is also significantly affected 

by spring temperature (Bartomeus et al., 2011), whereas rainfall is less likely to exert a strong 

influence on this phenological event (Robbirt, 2012).  Moreover, many bees, including 

species in the genus Andrena, exhibit protandrous emergence, suggesting different 

physiological responses to temperature in male and female bees (Eickwort & Ginsberg, 1980; 

Baldock, 2008).  This background informed our decision to examine the effects of spring 

temperatures on the timing of emergence of Andrena nigroaenea and peak flowering of 

Ophrys sphegodes over the 356-year period of the CET record.   

Regressions of mean annual temperature and mean spring (March-May) temperature 

against year were calculated from the CET temperature record to seek evidence of long-term 

warming, both at an annual level and within the spring months that most strongly influenced 

the timing of bee flight and orchid flowering.  Bartomeus et al., (2011) reported accelerated 

warming in North American temperature records from 1970 onwards compared with the rate 

of warming between 1900 and 2010.  To seek corroboration of this finding, we examined the 

relationship between temperature and year of recording from 1970-2014, and then compared 

the gradients of the regressions calculated over the periods 1659-2014 and 1970-2014. 
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Linear regression relationships established by Robbirt et al., (2014) between peak flying 

dates of male and female A. nigroaenea, peak flowering dates in O. sphegodes, and spring 

temperature (Table 1), were used to predict the dates on which each of these events occurred 

in each of the 356 years of the CET record.  (Polynomial regressions only produced marginal 

increases in r2, and the absence of a plausible biological rationale for such relationships did 

not justify their use.)  The relationship between flowering date and spring temperature had 

been extensively validated using two independent sets of data: herbarium records and field 

observations (Robbirt et al., 2011).  The trend of earlier bee flying date with increasing spring 

temperature had also been validated, by comparing the museum records with the extremely 

large dataset of the Bees, Wasps & Ants Recording Society (BWARS), although the latter did 

not allow analysis by bee gender (Robbirt et al., 2014).  Mean temperature from March – 

May was the best predictor of peak flying date of female bees and of peak flowering date in 

O. sphegodes, whereas mean temperature from February – April was the best predictor of 

peak flying date of male bees.  For every 1°C rise in spring temperature, peak flying date of 

male A. nigroaenea advanced by 9.2 days, that of female bees advanced by 15.6 days, and 

peak flowering date of O. sphegodes advanced by 6.4 days (Robbirt et al., 2014).    Linear 

regressions, using the appropriate spring temperature, were calculated to quantify long-term 

change in the predicted dates of peak flying and peak flowering between the start and end of 

the whole CET recording period, and between 1970 and 2014.  The gradients of regressions 

between these two periods were compared to seek evidence of accelerating changes in the 

timing of these events.   

In addition, comparisons were made of the regression gradients with time between 

each pair of phenological events over the period 1659-2014.  Significant differences between 

these gradients, even in the face of potentially wide variation in spring temperature between 

individual years, would be strong evidence of systematic changes in the time elapsing 
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between pairs of phenological events over the 356-year temperature record.  Quantification of 

the time elapsing between each of the three events was obtained by dividing the 356-year 

temperature record into seven “eras”, each approximately 50 years in duration (1659-1710, 

1711-1760, 1761-1810, 1811-1860, 1861-1910, 1911-1960 and 1961-2014).  For each of the 

seven eras, we calculated the mean number of days predicted to have elapsed between each 

pair of phenological events.  Significant changes in the mean length of time elapsing between 

each pair of events across the seven eras were sought using analysis of variance. 

Finally, evidence was sought for changes in the sequence of the three phenological 

events (peak flying date of male and female bees and peak orchid flowering date) over the 

356-year temperature record.  It was assumed that successful pollination of the orchid 

requires (i) that male bee peak flying date precedes orchid peak flowering date and female 

bee peak flying date, and (ii) that orchid peak flowering date precedes female bee peak flying 

date.  The proportion of years in which this order of events was fulfilled by the predicted 

dates of bee flight and orchid flowering was calculated for each of the seven eras.  

 

Results 

Both mean annual temperature and mean spring (March – May) temperature, 

calculated from the CET dataset, demonstrate significant warming from 1659 to 2014 (Fig. 

1a, b).  The relationships imply an increase in mean annual temperature from 8.79 °C to 9.74 

°C and an increase in mean spring temperature from 7.68 °C to 8.64 °C during this 356-year 

period.  The mean rate of warming, as indicated by both the mean annual temperature and 

mean March-May temperature, was significantly faster between 1970 and 2014 than over the 

whole period from 1659 to 2014 (P = 0.0066 and 0.0025 respectively). 

Peak flying dates for male and female bees, and orchid peak flowering date, all 

showed significant advancement from 1659 to 2014 (all P<0.0001, Fig. S1a-c).  The 
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regressions predict advances in peak flying dates for male and female Andrena nigroaenea of 

10.51 and 15.09 days respectively, and an advance in peak flowering for Ophrys sphegodes 

of 6.21 days over this period.  The rates of change in phenology were all significantly faster 

between 1970 and 2014 than they were over the whole of the CET recording period (P = 

0.0025 for all comparisons).   

The average time between peak flying date of male and female Andrena nigroaenea 

was predicted to have fallen between 1659 and 2014 from 6.51 days to 1.93 days (Fig. 2a).  

In contrast, the time elapsing between male bee peak flying date and peak flowering of O. 

sphegodes was predicted to have increased from 5.04 days to 9.37 days (Fig. 2b).  Whereas 

predicted peak flying date of female bees was slightly later (1.48 days) than peak orchid 

flowering at the start of the CET recording period, the regression indicates that female bees 

are now likely to achieve peak flying date 7.43 days earlier than orchid flowering reaches its 

peak (Fig. 2c).  The changes in the number of days elapsing between the predicted dates of 

each pair of phenological events were significant across the 356-year period, i.e. the 

regression gradients were all significantly different from zero (male bee flying time – female 

bee flying time, r = -0.16, P < 0.01; male bee flying time – orchid flowering time, r = 0.19, P 

< 0.001; female bee flying time – orchid flowering time, r = -0.32, P < 0.0001, n = 354 in all 

cases).   

Phenological predictions from the seven 50-year eras from 1659-2014 showed that in 

years with warmer springs, female A. nigroaenea reached peak flying date earlier than males, 

and that the frequency of years in which this happened was lower before the beginning of the 

twentieth century (Fig. 3a).  The data also show that although male A. nigroaenea usually 

reach peak flying date before the peak of flowering in O. sphegodes, this is not always the 

case (Fig. 3b).  Since the start of the eighteenth century, peak orchid flowering has preceded 

peak male bee flying date in 10-20% of years, but 350-300 years ago, when spring 
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temperatures were usually lower than they have been more recently, peak flowering preceded 

male bee peak flying date in approximately 35% of years.  As spring temperatures have risen, 

the frequency of years in which the predicted female bee peak flying date preceded peak 

flowering in O. sphegodes has increased almost uninterruptedly.  Peak flying date of female 

A. nigroaenea preceded peak flowering in O. sphegodes in 80% of the years from 1961 to 

2014, whereas this only occurred in 40% of the years between 1659 and 1710 (Fig. 3c).   

There were significant changes in the predicted mean number of days elapsing 

between each pair of phenological events across the seven eras into which the data were 

divided (Fig. 3d-f).  There was a rapid and almost continuous reduction in mean time 

between peak flying dates of male and female A. nigroaenea (Fig. 3d).  In contrast, the time 

between male bee peak flying date and peak flowering in O. sphegodes increased 

significantly from the first era to the last (Fig. 3e).  The mean date of female bee emergence 

has been earlier than that of peak flowering in all eras since the beginning of the eighteenth 

century, and the time between these events has been steadily increasing.  Peak flying date of 

female bees was, on average, approximately 8 days earlier than peak orchid flowering 

between 1961 and 2014, whereas mean peak flowering preceded female bee peak flying date 

by approximately 2 days between 1659 and 1710 (Fig. 3f).  The data indicate that female A. 

nigroaenea peak flying date preceded peak flowering in O. sphegodes in 26 of the last 28 

years, and in 17 of the last 18 years.   

 

Discussion 

The sensitivity to temperature of both the flowering date of Ophrys sphegodes and the 

flying date of Andrena nigroaenea (Robbirt et al., 2011, 2014) is typical of many kinds of 

phenological change that can be attributed to climatic warming, where spring and summer 

events are advanced by warmer springs (see e.g. Thackeray et al., 2010).  Robbirt et al., 
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(2014) have suggested that the disparity of responses to temperature between O. sphegodes 

and its specialist pollinator has the potential to threaten the synchrony required for effective 

pollination by sexual deception.  This is similar in principle to postulated mismatches 

between insects and specialist nectar providers arising from different rates of phenological 

advancement in response to spring warming (Forrest & Thompson, 2011; Kudo, 2014; 

Kharouba & Velland, 2015).  In contrast, generalist pollinators may provide sufficient 

phenological overlap to insure community-wide pollination services against warmer years 

(Memmott et al., 2007; Forrest & Thompson, 2011; Iler et al., 2013).  For example, 

Bartomeus et al., (2011) showed that, from 1880 to 2010, ten bee species emerged earlier, 

and the advance was significant in four species.  Significant differences between advances in 

bee emergence and plant flowering were not observed however, suggesting that climate 

change was not causing phenological divergence.  Bartomeus et al., (2011) acknowledged 

that their approach limited the likelihood of observing divergence because it compared the 

combined responses of ten bee species to the combined responses of large numbers of plant 

species, and they emphasized the need for studies comparing phenological responses to 

temperature in plant species and the specific pollinators on which they depend (see also 

Gezon, Inouye & Irwin, 2016).  The current study addresses this requirement, in a system that 

is perhaps especially sensitive because the plant species is close to its northern range limit. 

Although Bartomeus et al., (2011) found no significant differences in the 

phenological responses to temperature of males and females of ten North American bee 

species, the large number of bee species described as having protandrous emergence 

(Eickwort & Ginsberg, 1980), including Andrena species (Baldock, 2008), clearly suggests 

that male and female physiologies differ in their responses to temperature.  There is a clear 

difference in phenological response to temperature between male and female A. nigroaenea 

(Robbirt et al., 2014), but its full consequences only become apparent when these responses 
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are modelled against the long-term temperature record utilised here (King et al., 2015).  

Warmer springs produced a greater advance in peak flying date for female bees than for 

males, and peak orchid flowering date advanced less than either of these events, providing 

further evidence of differences in metabolic responses to temperature between autotrophic 

and heterotrophic organisms (Brown et al., 2004).  The combination of these divergent 

responses has the potential to cause catastrophic damage to pollination in Ophrys sphegodes 

because of long-term changes in the intervals between all three phenological events as spring 

temperatures have increased (Fig. 4).  The time between male bee peak flying date and orchid 

flowering was shorter at the start of the temperature record than it is now, whereas the time 

between male and female bee peak flying dates was longer.  The change in relative timing of 

orchid flowering and female bee flying date is more complex.  Herbarium and museum 

specimens were available to provide information on flowering and flight times back to the 

mid- and late-nineteenth centuries respectively.  From these dates until the present, there has 

been significant change in the time elapsing between these events.  On average, female flight 

has preceded flowering, and the time between these events has increased (Fig. 3f), as has the 

proportion of years in which female flight has been predicted to precede flowering (Fig. 3c).  

Predictions for the years before herbarium and museum specimens were available suggest 

that female flight date has been on average slightly earlier than flowering date from early in 

the eighteenth century (see also Fig. 4).  However, even before then there were many years in 

which spring temperature was high enough for female bees to be in flight before the orchid 

flowered.  In the most recent eras examined here, spring temperatures have been warm 

enough for female emergence to precede flowering in most years.  Unless the orchid 

undergoes rapid selection for earlier flowering following warm springs, it is therefore likely 

that continued climate change will result in it always flowering after the emergence of female 

bees.   
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It is probable that populations of Ophrys sphegodes contain genetic variation on 

which adaptive evolution might act to at least partially overcome the predicted changes in the 

order of phenological events.  This is suggested by the fact that different plants within O. 

sphegodes populations reach peak flowering on different dates over a 3-4 week period.  Some 

of this variation may be caused by microclimatic effects, but differences in genotype are also 

likely to be involved.  Although the date of peak female Andrena nigroaenea emergence is 

advancing faster than that of peak flowering in O. sphegodes, any plants that flower before 

the emergence of female bees may still be able to benefit from pseudocopulation, whereas 

later-flowering plants probably could not.  Genotypes conferring early flowering would 

therefore be selected if warming progresses continuously.  However, the long-term warming 

trend is accompanied by wide and unpredictable yearly fluctuations in climatic variables, 

including temperature (Fig. 1).  Consequently, the strength – and even the direction - of 

selection on flowering date may vary strongly between years, and this is likely to disrupt 

selection for earlier flowering.  As A. nigroaenea does not appear to benefit from the 

relationship with O. sphegodes, it is unlikely that the bee will be subject to directional 

selection favouring the maintenance of pseudocopulation.  Overall, therefore, it is doubtful 

whether adaptive evolution will prevent temperature-driven changes in phenology from 

affecting pollination in O. sphegodes. 

Although male Andrena nigroaenea usually emerge before Ophrys sphegodes 

flowers, our results suggest that this is not always the case, and that it has not been since at 

least the mid-seventeenth century.  Between 1659 and 1710, when springs were cooler, the 

orchid is predicted to have flowered before male bees emerged in approximately 35% of 

years.  In years with springs cool enough for this to happen, it is possible that, even though 

Ophrys flowers may attract pollinators for a few days (Nieland & Wilcock, 1995), the first 

flowers to open might not be cross-pollinated before they wither, due to the absence of male 
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bees.  Under such circumstances, seeds could only be produced autogamously.  While 

autogamy has been observed in other Ophrys species (Claessens & Kleynen, 20011), it has 

not been reported in O. sphegodes, and Vandewoestijne et al., (2009) state that O. sphegodes 

is allogamous.  In more recent years, with higher spring temperatures causing greater advance 

in male bee emergence than orchid flowering, there appear to have been fewer years in which 

flowering has preceded male bee flight.  A continuation of climate warming will lead to years 

in which orchids flower before male bees emerge becoming ever less frequent.  If the success 

of the sexual deception depended only on male bee emergence preceding orchid flowering, 

and not also on the timing of female bee emergence, these warming-induced changes in 

phenology would enable pseudocopulation to occur in a higher proportion of years.   

Reversal in the sequence of female bee emergence and flowering is likely to have 

grave consequences for orchid pollination.  If female bees are flying when the orchid is 

flowering, or even before it flowers (Fig. 4), male bees will be drawn to copulate with them 

instead of pseudocopulating with the orchid.  It has been reported that the fragrance signal 

emitted by flowers of Ophrys exaltata - a close relative of O. sphegodes - is even more 

attractive to male bees of its pollinator, Colletes cunicularius, than the odour emitted by 

female C. cunicularius (Vereeken & Schiestl, 2008).  We are unaware of published evidence 

for a comparable situation in the O. sphegodes/A. nigroaenea pollination system, but even if 

similar circumstances obtained, the orchid would have to compete with female Andrena 

nigroaenea for the services of male bees in any year warm enough to allow female bee 

emergence to coincide with, or precede, orchid flowering.  This would be likely to reduce 

orchid pollination, and possibly prevent it entirely.  Our results suggest that, even 350-300 

years ago, there was often a very short window of time between orchid flowering and female 

bee emergence (Fig. 4).  Even a very short window for pseudocopulation would have been 

absent in most of the years for which herbarium, field and museum data sources were 
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available.  The data indicate that female bees emerged before the orchid flowered in 26 of the 

28 years prior to 2014 (Fig. 3c), suggesting that few of these years favoured 

pseudocopulation.  Long sequences of years in which pollination is severely limited, or fails 

completely, will be disastrous in the long term because O. sphegodes plants have a half-life of 

only 2.25 years following emergence from their subterranean phase of life, and multiplication 

by vegetative propagation is infrequent (Hutchings, 2010).  Regular recruitment from seed to 

replace dying individuals is therefore essential to maintain populations.  Although mature 

seed capsules can contain up to 10,000 seeds (Soliva & Widmer, 2003), establishment from 

seed, and survival of recruits to sexual maturity, are very low (Hutchings, 2010).  As climate 

warming continues, it appears that years in which orchid flowering precedes female bee 

emergence will become ever less frequent, resulting in fewer years in which seeds are 

produced, and smaller seed crops in each of those years.  

Although A. nigroaenea is considered protandrous (Baldock, 2008; i.e. males emerge 

from hibernation before females), our data suggest that, even in the earliest era of the CET 

data, there were years in which spring temperatures were warm enough for female bees to 

emerge much earlier than males (Fig. 3a).  This was predicted to have occurred in 20-30% of 

years in most of the eras we examined, but approximately 100 years ago the frequency of 

such years appears to have increased (Fig. 3b).  Female bees were predicted to have emerged 

before males in approximately half of the last fifty years.  Female bees are only sexually 

receptive for a short time following emergence (Paxton & Tengo, 2001), and therefore egg 

production could be reduced or fail completely in years with very warm springs, when male 

bees might not emerge until near the end of this brief period of receptivity, or until after it has 

closed.  Even though A. nigroaenea is common and widespread in the UK, this could have 

detrimental consequences for its populations, and further reduce the effectiveness of the O. 

sphegodes/A. nigroaenea pollination system.  



18	
	

There are as yet few documented examples of deleterious effects on fitness caused by 

loss of phenological synchrony between species with different temperature sensitivities.  

However, it has been shown that in warmer years there is a shorter interval between the 

arrival of migratory broad-tailed hummingbirds at their northern breeding grounds and the 

first flowering of their vital nectar sources (McKinney et al., 2012), and Kudo & Ida (2013) 

reported that early onset of spring in a series of years advanced flowering in Corydalis 

ambigua populations more than the activity of their pollinating bumblebees, leading to lower 

seed-set.  Our results suggest that the O. sphegodes/A. nigroaenea pollination system, which 

is already inefficient, will become even less effective as climate warming continues, mainly 

because of the increased likelihood of female bee peak flying date preceding orchid peak 

flowering date (Fig. 4).  Ultimately, hand pollination may be necessary as a conservation 

measure for O. sphegodes, particularly near the northern limit of its range in the UK, both 

because climate warming will cause its pollinator to pay less attention to the sexual deception 

practised by the orchid, and because the pollinator itself may become less abundant.  Hand 

pollination has already been advocated by Phillips et al. (2015) to conserve another orchid, 

Caladenia huegelii, with a single pollinator species (a thynnid wasp) which is already rare. 

Our results strongly support the widely expressed view that climate change threatens 

ecological interactions in which critical stages in the annual life cycle of one species depend 

on coinciding with the timing of particular stages in another.  Phenological divergence caused 

by species responding differently both to annual weather fluctuations and to climate 

warming, as in the case of O. sphegodes and A. nigroaenea, clearly has the potential to 

disrupt such relationships.  Further studies are now urgently required to assess the potential 

for phenological change, caused by climate warming, to cause widespread community 

disruption.   
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Table 1. Established relationships between peak flying dates for male and female Andrena 

nigroaenea and peak flowering date for Ophrys sphegodes, and mean spring temperature.  

For male bees, xFA is mean temperature over the months from February to April.  For female 

bees and for orchid flowering, xMM is mean temperature over the months from March to May.  

y is time, in days after March 1, for peak flying date or peak flowering date to be reached.  

See Robbirt et al., (2014) for further details. 

 

_____________________________________________________________________ 

           r2              P             d.f. 

_____________________________________________________________________ 

 
Male bee flying date     y = 122.8 – 9.168xFA 0.157     <0.0001 208 

 

Female bee flying date     y = 202.3 – 15.640xMM 0.167     <0.0001 149 

 

Orchid peak flowering date     y = 130.0 – 6.423xMM  0.230     <0.0001 102 

______________________________________________________________________ 
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Fig. 1. (a) Mean annual monthly temperature, and (b) mean monthly temperature from March 

to May, calculated from the Central England Temperature (CET) record from 1659 to 2014. 

Mean annual monthly temperature vs years from 1659-2014 (open and closed circles), y = 

4.3788 + 0.00266x, r = 0.4102, r2 = 0.1683, P= <0.0001, n = 354, and from 1970-2014 (open 

circles), y = -34.18 + 0.02x, r = 0.526, r2 = 0.277, P <0.0001, n = 44. Mean monthly 

temperature from March to May vs. years from 1659-2014 (open and closed circles), y = 

3.1660 + 0.00272x, r = 0.3153, r2 = 0.0994, P <0.0001, n = 354, and from 1970-2014 (open 

circles), y = --56.62 + 0.03x, r = 0.505, r2 = 0.255, P <0.0001, n = 44. 

 

Fig. 2. Time (days) between (a) predicted male and female Andrena nigroaenea flying dates 

between 1659 and 2014 (y = 27.915 – 0.013x, r = 0.162, r2 = 0.026, P<0.0001, n = 354), (b) 

predicted male Andrena nigroaenea flying date and peak flowering date in Ophrys sphegodes 

between 1659 and 2014 (y = -15.204 + 0.012x, r = 0.187, r2 = 0.035, P<0.0001, n = 354), (c) 

predicted female Andrena nigroaenea flying date and peak flowering date in Ophrys 

sphegodes between 1659 and 2014 (y = 43.119 - 0.025x, r = 0.315, r2 = 0.099, P<0.0001, n = 

354).  Positive values on the y-axis indicate that the timing of the first-mentioned 

phenological event preceded that of the second.   

 

Fig. 3. Proportion of years in each of seven 50-year eras (see text) during which (a) peak 

flying date of male Andrena nigroaenea was predicted to precede peak flowering date of 

female Andrena nigroaenea, (b) peak flying date of male Andrena nigroaenea was predicted 

to precede peak flowering date in Ophrys sphegodes, (c) peak flying date of female Andrena 

nigroaenea was predicted to precede peak flowering date in Ophrys sphegodes, (d) mean 

number of days predicted to elapse between peak flying date of male Andrena nigroaenea 

and female Andrena nigroaenea (F6,349 = 8.12, P<<0.001), (e) peak flying date of male 
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Andrena nigroaenea and peak flowering date in Ophrys sphegodes (F6,349 = 8.08, P<<0.001), 

(f) peak flying date of male Andrena nigroaenea and peak flowering date in Ophrys 

sphegodes (F6,349 = 8.08, P<<0.001). 

 

Fig. 4.  Schematic diagram of the predicted changes in timing of flight in male (black) and 

female (red) Andrena nigroaenea, and flowering (green) in Ophrys sphegodes between Era 1 

(1659 – 1710) and Era 7 (1961 – 2014).  All three phenological events are earlier in May in 

Era 7 than in Era 1 because of climate warming, but warming has the greatest impact on 

timing of female bee emergence and the smallest effect on timing of orchid flowering.  The 

gradients and positions of the lines shown for each phenological event are based on the 

predicted effects of temperature.  The time elapsing between each pair of phenological events 

shows gradual changes in response to warming, and the predicted sequence of the three 

events changes from Era 1 to Era 7.  In Era 1, the mean timing of male flight precedes that of 

orchid flowering, which in turn (just) precedes that of female flight.  In Era 7, however, male 

flight (just) precedes female flight, and female flight precedes orchid flowering by several 

days. 
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Supplentary information in the online version 

 

Fig. S1. (a) Predicted peak flying dates of male Andrena nigroaenea between 1659 and 2014 

(y = 124.87 – 0.03x, r = 0.293, r2 = 0.086, P <0.0001, n = 354) and between 1970 and 2014 (y 

= 676.62 – 0.31x, r = 0.398, r2 = 0.158, P <0.001, n = 44). (b) Predicted peak flying dates of 

female Andrena nigroaenea between 1659 and 2014 (y = 152.78 – 0.043x, r = 0.315, r2 = 

0.099, P <0.0001, n = 354) and between 1970 and 2014 (y = 1087.91 – 0.513x, r = 0.505, r2 = 

0.255, P <0.0001, n = 44). (c) Predicted peak flowering dates of Ophrys sphegodes between 

1659 and 2014 (y = 109.665 – 0.018x, r = 0.315, r2 = 0.099, P <0.0001, n = 354) and between 

1970 and 2014 (y = 493.67 – 0.211x, r = 0.505, r2 = 0.255, P <0.0001, n = 44).  The graphs 

for female flight date and orchid flowering date are similar in form because variation in 

timing of both is predicted using the same temperature measurement (mean temperature from 

March – May).  The amplitude of variation in female flight time is approximately 2.5 times 

greater than that in flowering time.  Times to flying and flowering are reported as days after 

March 1. 
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Fig. S1b 
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