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Abstract
A common proxy for the adaptive capacity of a community to the impacts of future climate change is
the range of climate variability which they have experienced in the recent past. This study presents an
interpretation of such a framework for monthly temperatures. Our results demonstrate that
emergence into genuinely ‘unfamiliar’ climates will occur across nearly all months of the year for
low-income nations by the second half of the 21st century under an RCP8.5 warming scenario.
However, high income countries commonly experience a large seasonal cycle, owing to their position
in the middle latitudes: as a consequence, temperature emergence for transitional months translates
only to more-frequent occurrences of heat historically associated with the summertime. Projections
beyond 2050 also show low-income countries will experience 2–10 months per year warmer than the
hottest month experienced in recent memory, while high-income countries will witness between 1–4
months per year hotter than any month previously experienced. While both results represent
significant departures that may bring substantive societal impacts if greenhouse gas emissions
continue unabated, they also demonstrate that spatial patterns of emergence will compound existing
differences between high and low income populations, in terms of their capacity to adapt to
unprecedented future temperatures.

1. Introduction

Understanding how the signal of future anthropogenic
climate warming emerges from the noise of internal
variability is of significant societal importance (Lehner
and Stocker 2015, Stott 2015). When considering the
future occurrence of unusual temperatures, a com-
mon approach may be to evaluate the distribution of
heat anomalies witnessed in a specific month under
present-day greenhouse gas concentrations, then make
comparisons with the number of occurrences under
a future warming scenario, but maintaining a lim-
ited focus on that specific month (e.g. Black and
Karoly 2016). However, many studies related to climate

change-driven temperature emergence highlight the
fact that the adaptive capacity of a given location to
changes in future temperature distributions could be
inferred by looking at the climate experienced by com-
munities in the past (Hawkins et al 2014, Huber et al
2017, Diffenbaugh and Scherer 2011, Anderson 2011,
Mahlstein et al 2011, Harrington et al 2016, Frame et al
2017). In this context, any warming-induced increase
in the frequency of, say, dramatically warm autumn
months for a temperate location like Sydney, Australia,
may just translate to an increase in the occurrence of
monthly temperatures historically associated with the
summertime. This isn’t necessarily something beyond
the adaptive capacity for that community, as they
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would have experienced these temperatures in the past
(albeit during a different time of year).

In this study, we assume that the experience of
temperatures in the recent past is an adequate proxy
for the capability of different populations to cope with
emergent changes to their climate in the future. It is
of course noted that many factors beyond tempera-
turedeterminewheredifferentpopulations, ecosystems
and crop types can thrive around the world (Mahlstein
et al 2013), and the timing of climate thresholds during
the annual cycle (like the onset of Spring temperatures)
are also important for the natural world (Cassou and
Cattiaux 2016). Such caveats to the results presented in
section 3 are further discussed in section 4.

We hereafter present two different approaches
to characterising emergent changes in temperature
through time, by comparing (1) whether the same his-
torical temperatures are witnessed during a specified
month in the future; and (2) whether a temperature
range associated with a given month in the past occurs
more or less frequently at any time throughout the year
within future model projections.

Figure 1 provides a schematic illustration of these
two different approaches of interpreting monthly
temperature emergence in this study. We focus on
two individual grid cells situated approximately over
Sydney, Australia (151.8◦E, 32.9◦S) and Singapore
(104.1◦E, 1.4◦N), using a single climate model sim-
ulation (MIROC5) to illustrate both the seasonal
oscillation of temperatures at a given location and the
expected changes with future warming. One approach
to understanding emergent temperature changes for a
given month of the year over each location would be to
observe changes for a specific month only. Indeed, both
locations demonstrate a discernible warming signal
when comparingMarch temperatures (horizontal solid
lines) between 1951–2000 and 2051–2100 We hereafter
refer to the first time period as ‘recent memory’ and
the second time period as the ‘future’. In this frame-
work, one could consider the attributable change in
the likelihood of witnessing the hottest March tem-
perature in recent memory, and for this single model,
find that it occurs much more frequently in the future
for both locations (under a high-emissions, or RCP8.5,
scenario). Supplementary analysis (figure S1) available
at stacks.iop.org/ERL/12/114039/mmedia also reveals
that, under thismonth-by-month framework, themag-
nitude of temperature emergence for a given location
is mostly similar across all months of the year.

However, an alternative approach is to identify the
range of all fifty March temperatures from the first half
of the 20th century (vertical dashed lines), and evaluate
the likelihood of witnessing monthly mean tempera-
tures within this range at any point during the calendar
year, comparing the first and second time periods. It is
in this context that deviations occur between the tem-
perate and tropical examples of figure 1. The reader
will find that in recent memory over Sydney, similar
temperatures to March were found during the months

of November and December, while in the future these
types of temperatures are more commonly seen in the
months of October and April. Overall however, there is
actually a negligible change between the two time peri-
ods, in terms of the total number of months throughout
the calendar year which occupy this temperature
range.

By contrast, Singapore experiences March-like
temperatures for almost eight months of the year in
the recent past, but such temperatures are seen only
infrequently during January and February months in
the future, hence representing a significant change.
Understanding how transitions to future climates can
be interpreted in this context of prior experience is the
primary motivation of this study.

2. Data and methods

To more systematically investigate these contrasting
perspectives, temperature data is extracted from 35
models in the Coupled Model Intercomparison Project
Phase 5 archive (CMIP5, Taylor et al 2012) for the
two previously mentioned time periods: 1951–2000
(defined as ‘recent memory’) and 2051–2100 (defined
as the ‘future’). ‘Historical’ and ‘RCP8.5’ simulations of
monthly mean temperature are used for each of the two
respective time periods. For those models which ran
more than one simulation of the same experiment type,
only the first ensemble member (r1i1p1) is considered.

For each model at each grid point (using their
native resolution), all individual monthly data are
first re-organized from the coldest month (M1) to
hottest month (M12), based on the mean monthly
temperature climatology over the recent past. This is
to facilitate an easier comparison of changes to win-
ter and summer months across both hemispheres.
Then for each individual month, the maximum and
minimum of the 50 available (monthly mean) temper-
atures are identified. Based on this specified range, n1
is subsequently calculated as the number of monthly
temperature values from all calendar months which fall
inside this range over the historical period (from a total
of 50× 12 = 600). Hence, a fraction F1 = n1/600 will
be found for each month of the year for the late 20th
century.

The process is then repeated for temperature data
over the latter period: we quantify the number of
monthly mean temperatures in the second half of the
21st century which fall inside this same range speci-
fied from the Historical data, yielding a new fraction
F2 = n2/600. We can consequently define the ratio of
witnessing a 20th century month at some point in the
second half of the 21st century as RAM = F2 / F1 (RAM
denoting ‘Ratio across all months’). This is repeated for
each grid point in each model and for each month of
theyear.These fractionalnumbersare then interpolated
onto a common 2.5◦ × 2.5◦ grid, and the multi-model
median value is calculated at each grid point.
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Figure 1. Schematic illustration of the modified approach used to interpret monthly temperature emergence in this study. We focus
here on two individual grid cells, approximately situated over (a) Sydney, Australia (151.8◦E, 32.9◦S) and (b) Singapore (104.1◦E,
1.4◦N), using a single climate model (MIROC5) to illustrate both the seasonal cycle of monthly temperatures and the future signal
of anthropogenic climate change. To illustrate long-term warming signals, blue lines denote fifty years of monthly temperatures over
1951–2000; red lines show fifty years of monthly temperatures over 2051–2100 The traditional approach to evaluate emergence of
March temperatures follows the solid horizonal line; our adapted approach considers considers the number of months in each fifty
year period falling within the dashed vertical lines.

3. Results

3.1. Future occurrence of historical monthly tem-
perature ranges

Figure 2 presents a map of these multi-model
median RAM values. The historically coldest 3 months
are found between 4 and 10 times less frequently in
the second half of the 21st century, and this pattern is
apparent across most regions globally—such a result is
expected with a warming climate and consistent with
previous assessments (Collins et al 2013). There is also
an interesting projected increase in the likelihood of
witnessing temperatures historically associated with
the warmest 3 months (M10–M12) over South-
ern Hemisphere mid-latitudes: this is likely due to
more transitional months in the future ‘looking’ like
summertime temperatures of the past. Over the mid-
to-high latitudes, there are minimal changes apparent

in the likelihood of witnessing transitional months
(M4–M9) at any point during the year. By contrast,
there are significant decreases over tropical latitudes
in the future likelihood of witnessing temperatures
historically associated with any of the twelve months
of the calendar year (albeit with M12 exhibiting some
regional exceptions). Low latitude regions are therefore
projected to witness emergent decreases in historically
familiar temperatures year-round.

3.2. Future exceedancesofhottest historicalmonthly
temperature
Of course, it is important to consider that a large frac-
tion of monthly temperature anomalies in the future
will also be warmer than the historical range of all
months (i.e. warmer than the hottest month observed
over the entire 50 year climatology period), and these
unprecedented temperatures aren’t taken into account
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Figure 2. (a) Multi-model median RAM metric presented for all twelve months of the year. Months are ordered from coldest (M1) to
hottest (M12), based on historical climatologies at each grid point, to facilitate a reasonable comparison between summer and winter
months across hemispheres. (b) Multi-model mean number of months per year in 2051–2100 which exceed the maximum absolute
temperature found across all months from 1951–2000 (corresponding to the maximum of the range of M12). Calculations are made
at each grid point within individual models before being concatenated to a common 2.5◦ × 2.5◦ scale.

in figure 2(a). Figure 2(b) shows this fraction of all
months warmer than the hottest historical month on
record at each grid cell, expressed as the (multi-model
mean) number of months per year witnessing such
exceedances in the future: this fraction reaches in excess
of 60% for the tropics, but remaining less than 20% for
most mid-latitude land regions. While both numbers

represent significant deviations from recent memory,
the contrast between different regions is striking. This
further suggests that the strong seasonality in tempera-
tures in higher latitudes means people living there will
be more resilient to changes in temperature distribu-
tions across most calendar months, when compared
against people living in tropical latitudes.
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Figure 3. (a) Box plot showing the aggregated RAM metric, weighted according to the distribution of people living in low income
countries and high income countries, as of 2015. Shaded boxes show the inter-quartile range of all RAM for all people across all CMIP5
models, while the whiskers denote the 5th–95th percentile range. The RAM value has been aggregated according to the three coldest
months (M1–M3 in figure 2), six transitional months (M4–M9) and the three historically hottest months (M10–M12). Panel (b) is
the same format as panel (a), but denotes the average number of months per year expected to be warmer than the hottest historical
month by 2051–2100.

3.3. Contrasting patterns of future emergence for
different population groupings
Several previous studies have highlighted that disag-
gregating the global population according to different
levels of socio-economic development tend to align
with these geographic differences in emergence (Har-
rington et al 2016, Green 2016, Herold et al 2017).
To consider how the results presented in figure 2 map
to such a population-orientated framework, we weight
the spatial results of RAM and the fraction of months
above the historical maxima according to the geo-
graphic distribution of all people living in both low
income and high income countries. These country
selections were made from The World Bank (2016,
http://bit.ly/2bBWnzX), and corresponding popula-
tion data was taken for the year 2015 from the Center
for International Earth Science Information Network
database (CIESIN 2005). The population data was first

aggregated from the 0.25◦ × 0.25◦ spatial resolution
provided, to the 2.5◦ × 2.5◦ resolution of the climate
model output.

Figure 3 attempts to aggregate the key patterns
from figure 2 into a more simplistic figure. All grid
points from all models are aggregated together for
the two population groupings to form a distribution
of the RAM metric for each month. Then all values
are further aggregated for M1–M3 (coldest 3 months),
M4–M9 (Transitional months) and M10–M12 (hottest
3 months). The shaded range of the box plots is the
interquartile range, with the tails showing 5%−95%
confidence range.

Figure 3(a) reveals that both low- and high-income
populations will experience statistically significant
decreases in the likelihood of witnessing historical win-
tertime temperatures in the future. However, there are
no statistically significant deviations from the historical

5
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frequency of witnessing transitional monthly temper-
atures or summertime temperatures in the future for
high income countries. Instead, there is a redistribution
of when certain temperatures occur to different times
of the year. Under the assumption of recent tempera-
ture variability serving as a proxy for societal capacity to
cope with future changes, these results therefore sug-
gest that most high income locations will experience
similar types of climate compared with their recollec-
tion from recent memory. By contrast, low income
countries witness a much stronger decrease in the like-
lihood of witnessing ‘transitional’ months from recent
memory in the future.

To best appreciate any possible differences between
the two population groupings, figure 3(b) again
presents population-weighted results, this time show-
ing a modified version of figure 2(b) to give the
average number of months per year in the future
which are expected to be warmer than the hottest
monthly temperature experienced in recent mem-
ory (across all months). High income countries are
expected to witness between one and four months per
year with monthly mean temperatures hotter than any-
thing experienced in recent memory under the RCP8.5
scenario—this represents a significant departure from
historical norms and will thus present significant chal-
lenges for adaptation and coping with these changes
in the future. The situation is bleaker still for low
income countries, with model results indicating an
averageof four additionalmonthsper yearwarmer than
the hottest month in recent memory, and an upper
estimate of ten months per year with previously
unprecedented heat anomalies. Such projections rep-
resent sustained and significant challenges for any
low-income communities currently preparing climate
change adaptation strategies.

The reasons for the substantial differences between
the two population groupings relates to the fact that
low income populations primarily exist in lower lat-
itudes, and a high number of high income countries
span the mid-to-high latitudes (Harrington et al 2016,
Herold et al 2017, Davis and Diffenbaugh 2016, Frame
et al 2017): the latitude-driven contrasts in monthly
temperature emergence in figure 2 thus precipitate as
more dramatic differences between the two population
groupings.

4. Discussion and limitations

The consideration of emergent changes to monthly
mean temperature examines only one specific com-
ponent of the many varying impacts that will result
from a warming climate. The focus here remains strictly
regarding thecapabilityofdifferentpopulations around
the world to cope with increasingly ‘unfamiliar’ tem-
perature regimes through time (Frame et al 2017):
examplesof the implications associatedwith this frame-
work include the health impacts of added heat stress

(Mitchell et al2016, Huber et al2017, Fischer et al2013,
Im et al2017); economic losses through labour produc-
tivity decreases in certain regions of the world (Dunne
et al 2013, Hansen and Sato 2016, Pal and Eltahir 2016),
and the consideration of future adaptation to new and
novel climates (Diffenbaugh and Scherer 2011, Stott
and Walton 2013, Sippel et al 2015a, Diffenbaugh and
Charland 2016, Lusk 2017). However, it is also impor-
tant to emphasise that the framework presented in this
study is limited to the explicit purpose outlined in
the introductory paragraphs, and should not be inter-
preted as showing the absence of significant climate
change impacts over extra-tropical locations during
transitional months. Multiple lines of evidence have
demonstrated the adverse effects of changing spatio-
temporal patterns with future climate change: these will
include, but not be limited to, snow-fed hydrological
systems (Diffenbaugh et al 2013), changes to locations
where crops can grow, the timing of crop harvest and
overall yield changes (Lobell and Burke 2008, Lobell
et al 2011, Lobell and Tebaldi 2014, Asseng et al 2015,
Mueller et al 2015, Liu et al 2016), as well as ecosystem
impacts drivenby warming-induced changes to pheno-
logical cues for many different species of flora and fauna
(Pacifici et al 2015, Cassou and Cattiaux 2016, Pecl
et al 2017). In short, growing season lengths for crops
and melting periods for glaciers depend on the length
of temperature exceedance, not just the frequency or
magnitude.

The results in this study have utilised climate model
simulations and should thus be interpreted only in this
context. We chose to analyse all models, rather than
attempting some form of validation against histori-
cal observations, for three reasons: (1) this ensured
future model uncertainty (Hawkins and Sutton 2009)
was appropriately sampled; (2) previous studies have
found temperature variability on monthly timescales to
be well-represented in CMIP5 models (Christidis et al
2015); and (3) both warming signals and measures
of monthly temperature variability are being explic-
itly compared over different regions of the world, so
any validation techniques would be complicated by
observed modes of climate variability in the recent past.

It is also recognised that a non-linear relationship
exists between the range of temperatures experienced
by a given population, and the relative rates of excess-
heat morbidity or mortality with additional warming
(Huang et al2011, Gasparrini et al2015). Most targeted
studies identify a minimum-mortality threshold which
exists within a population’s range of historical tem-
peratures, with the occurrence of heat-related health
impacts rising rapidly with further warming thereafter
(Gasparrini et al 2015, Tobı́as et al 2017). Unfortu-
nately, the lack of representative mortality/morbidity
records for both low-income and high-income coun-
tries remains a significant barrier to characterising
such heat impacts using the framework presented in
this study (Gasparrini et al 2015, Mitchell et al 2016,
Mora et al 2017). Nevertheless, future research should

6



Environ. Res. Lett. 12 (2017) 114039

explore techniques to better represent these non-linear
relationships betweenmonthly temperature emergence
and corresponding changes to heat stress.

5. Summary

Many approaches towards quantifying the emergence
of new and novel climates at a sub-seasonal timescale
focus on the month of interest in isolation (Sippel et al
2015b, Anderson 2011, Diffenbaugh and Scherer 2011,
King et al 2016, Christidis et al 2015). However, the
adaptive capacity of a community to future temperature
emergence has commonly been interpreted as a func-
tionof the climate they have been familiar with in recent
memory (Grambsch and Menne 2003, Diffenbaugh
and Scherer 2011, Hayden et al 2011, Dunne et al 2013,
Burke et al 2015, Huber et al 2017). To address this
difference in perspectives, this study presents a frame-
work for considering emergent temperature changes
by evaluating whether, under a future warming sce-
nario, the range of temperatures historically associated
with a specific month occur more or less frequently
throughout a calendar year. Our results highlight that
the presence of a substantial seasonal cycle in the mid-
to-high latitudes translates to a larger adaptive capacity
for people living there. Consequently, the magnitude of
emergence into genuinely unfamiliar future tempera-
tures, when considered at a monthly timescale, is found
to be much more severe for low income countries liv-
ing at lower latitudes when compared with high income
countries inhabiting higher latitudes. This suggests that
related climate change impacts may further exacerbate
existing societal disparities in the future.
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