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ABSTRACT 

     In colour correction, we map the RGBs captured by a camera to human visual system referenced colour 

coordinates including sRGB and CIE XYZ. Two of the simplest methods reported are linear and polynomial 

regression. However, to obtain optimal performance using regression – especially for a polynomial based method - 

requires a large corpus of training data and this is time consuming to obtain. If one has access to device spectral 

sensitivities, then an alternative approach is to generate RGBs synthetically (we numerically generate camera RGBs 

from measured surface reflectances and light spectra). Advantageously, there is no limit to the number of training 

samples we might use. In the limit – under the so-called maximum ignorance with positivity colour correction - all 

possible colour signals are assumed.  

In this work, we revisit the maximum ignorance idea in the context of polynomial regression. The formulation 

of the problem is much trickier, but we show – albeit with some tedious derivation – how we can solve for the 

polynomial regression matrix in closed form. Empirically, however, this new polynomial maximum ignorance 

regression delivers significantly poorer colour correction performance compared with a physical target based 

method. So, this negative result teaches that the maximum ignorance technique is not directly applicable to non-

linear methods. However, the derivation of this result leads to some interesting mathematical insights which point 

to how a maximum-ignorance type approach can be followed. 
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INTRODUCTION 

The imaging sensors on cameras measure colour differently compared to human eyes. To faithfully reproduce 

colour, it is therefore necessary to convert the device specific RGB values to CIE XYZ tristimulus values. This 

process is called colour correction. Typically, the colour correction procedure involves measuring the device 

response for some physical targets, often viewed with respect to multiple lights. Mapping schemes can then be 

derived which colour correct RGBs to CIE XYZs. Colour correction methods include look-up tables, linear 

regression [1], polynomial regression [2], root polynomial regression and neural networks.  

However, the more complex the model the more data is needed to get good results. Indeed, finding the best 

polynomial regression transform for multiple lights and surfaces can be tedious. Acquiring all the necessary images 

can take a few hours. Alternately, given a mathematical model of image formation and knowledge of the spectral 

sensitivities of a camera it is possible to generate images numerically. Importantly, colour correction transforms 

derived in this way can be based on very large data sets and the colour correction transform is delivered rapidly. 

The Maximum Ignorance (MI) approach to colour correction take this approach one step further. Specifically, 

we assume that any spectrum, including the spectrum with negative values is equally likely to occur. Relative to 

this mathematical assumption it has been shown that the best colour correction matrix is the mapping which best 

takes the device specific spectral sensitivity functions onto the CIE XYZ colour matching functions [3]. This 

maximum ignorance transform is interesting as it also relates to the ‘Luther’ conditions which specify when perfect 

colour correction is possible. In particular, Horn [1] (and more recently Vora and Trussell [3]) has shown that perfect 

colour correction for any colour stimulus is possible if and only the Luther conditions are met, i.e. when the device 

sensitivities are a linear transform from the colour matching functions.  
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Arguably, however, for cameras that do not meet the Luther conditions, the MI assumption is practically not 

useful because it does not make physical sense. Indeed, spectra with negative power do not exist in nature, so 

making the assumption that they do exist has negative impact on the performance of colour correction.  

Finlayson and Drew addressed this problem by introducing the concept of maximum ignorance with positivity 

(MIP) [4]. Under this assumption, all colour signals are assumed to be strictly positive and occur with equal 

likelihood. The colour signal is drawn uniformly and randomly from the interval [0, 𝑃] (where 𝑃 is an upper bound 

on the power at any wavelength). Finlayson and Drew presented an algorithm for  MIP colour correction [4] which 

they showed depended only on the spectral sensitivities of the sensors (RGB and XYZ) and the autocorrelation of 

the spectra (which they computed in closed form for the MIP assumption). Experiments demonstrated that the MIP 

approach delivered much better colour correction than the MI method. Indeed, the results were found to be  

comparable to the physical target based approaches. 

In this paper, we revisit and extend the concept of MIP. First, we reformulate the computation in terms of sensor 

response rather than spectral correlations. The advantage of doing this is that it allows us to consider non-linear 

correction schemes. In our second contribution, we show how we can derive the polynomial regression matrix given 

maximum ignorance with positivity assumptions (we call this MIPP). The practical importance of this work is also 

considered. 

THEORY 

Maximum Ignorance with Positivity 

Suppose we represent a colour signal spectrum 𝐶(𝜆) at 31 discrete sample wavelengths (10 nm, nanometre  

sampling) across the visible spectrum 400 to 700 nm. Let 𝑪 denote the 31×𝑛 matrix containing a set of 𝑛 calibration 

colour signal spectra (one per column). Let 𝑿 and 𝑹 denote the 31×3 matrices containing the standard observer 

colour matching function and device spectral sensitivities. The camera and human observer response to the entire 

calibration set are captured by 3×𝑛 matrices 𝑷 and 𝑸 [5]: 

𝑷 = 𝑹⊺𝑪       (1) 

𝑸 = 𝑿⊺𝑪       (2) 

Mathematically, in colour correction we wish to map 𝑷 to 𝑸. The least-squares solution to colour correction 

finds 3×3 matrix 𝑴 which minimises: 
‖𝑴𝑷 − 𝑸‖𝐹      (3) 

‖. ‖𝐹 above denotes the Frobenius norm (the square root of the sum of squared differences between 𝑴𝑷 and 

𝑸). The Matrix 𝑴 which minimises (3) is found in closed-form using the Moore–Penrose pseudoinverse: 

𝑴 = 𝑸𝑷⊺(𝑷𝑷⊺)−1     (4) 

By substituting (1) and (2) into (4), we obtain:  

𝑴 = 𝑿⊺𝑪𝑪⊺𝑹(𝑹⊺𝑪𝑪⊺𝑹)−1    (5) 

We can see from (5) that 𝑴  depends only on the 31×3  sensitivities 𝑹 and 𝑿  and the 31×31  spectral 

autocorrelation matrix 𝑪𝑪⊺. The original MIP formulation uses a special spectral autocorrelation matrix. Suppose 

we wish to represent all possible colour signal spectra in the interval [0, 𝑃], where 𝑃 denotes the maximum spectral 

power per wavelength. Because the spectral autocorrelation matrix and its inverse both appear in (5), the magnitude 

of spectral autocorrelation matrix is not important. Hence without losing generality, we can assume spectra lie in 

the interval [0,1]. Under these conditions, according to [4] 𝑪𝑪⊺ is equal to: 

[𝑪𝑪⊺]𝑖𝑗 = {

1

3
        (𝑖 = 𝑗)

1

4
        (𝑖 ≠ 𝑗)

 , 

 (6) 
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Our new formulation is based on the expectation of the sensor response correlation. In order to tackle this 

problem, we first look at how to compute the expectation of the response of a sensor with a single colour channel. 

Let 𝒓 denote the 31-vector containing sensor response curve from a single colour channel. Let 𝒄 denote the 31-

vector colour signal. The sensor response 𝑝 is computed as a dot-product: 

𝑝 = 𝒓⊺𝒄 

    = 𝒓 ⋅ 𝒄   
    = 𝑟1𝑐1 + 𝑟2𝑐2 + ⋯ + 𝑟31𝑐31 

(7) 

Let us assume that each colour signal sample is an independent and identically distributed random variable with 

values between 0 and 1. The expected value of 𝑝 is written as: 

     𝐸(𝑝) 

= ∫ 𝒓 ⋅ 𝒄  d𝒄
1

0

 

= ∫ ⋯
1

0

∫ 𝑟1𝑐1 + 𝑟2𝑐2 + ⋯ + 𝑟31𝑐31  d𝑐1 d𝑐2 ⋯ d𝑐31

1

0

 

(8) 

We now need to apply the idea from equation (8) to equation (4). Now, let us explicitly write the least-squares 

matrix calculation in terms of the correlations of sensor responses: 

𝑴 = 𝑸𝑷⊺(𝑷𝑷⊺)−1 

     =  [

𝑸𝟏𝑷𝟏
⊺ 𝑸𝟏𝑷𝟐

⊺ 𝑸𝟏𝑷𝟑
⊺

𝑸𝟐𝑷𝟏
⊺ 𝑸𝟐𝑷𝟐

⊺ 𝑸𝟐𝑷𝟑
⊺

𝑸𝟑𝑷𝟏
⊺ 𝑸𝟑𝑷𝟐

⊺ 𝑸𝟑∗𝑷𝟑
⊺

] [

𝑷𝟏𝑷𝟏
⊺ 𝑷𝟏𝑷𝟏

⊺ 𝑷𝟏𝑷𝟏
⊺

𝑷𝟐𝑷𝟏
⊺ 𝑷𝟐𝑷𝟐

⊺ 𝑷𝟐𝑷𝟐
⊺

𝑷𝟑𝑷𝟏
⊺ 𝑷𝟑𝑷𝟑

⊺ 𝑷𝟑𝑷𝟑
⊺

]

−1

 

(9) 

In terms of equation (9) we would like to compute the expected values of  𝑸𝑷⊺ and 𝑷𝑷⊺. The terms in these 

two matrices can be computed if for arbitrary matrices X and Y we can compute (𝑿𝒀)𝑖𝑗. Denoting the 𝑖th row of X 

as the vector 𝜶 and the 𝑗th column of Y as 𝜷,  𝐸(𝑿𝒀)𝑖𝑗 can be computed by solving the following equation:  

     𝐸((𝑿𝒀)𝑖𝑗) 

= 𝐸((𝜶 ⋅ 𝒄)(𝜷 ⋅ 𝒄)) 

= ∫ ⋯ ∫ (∑ 𝑐𝑖𝛼𝑖

31

𝑖=1

) ⋅ (∑ 𝑐𝑖β𝑖

31

𝑖=1

)
1

0

1

0

  d𝑐1 … d𝑐31 

(10) 

For illustration let us suppose there are only 2 wavelengths then.  

     𝐸((𝜶 ⋅ 𝒄)(𝜷 ⋅ 𝒄)) 

= ∫ ∫ (𝑐1𝛼1 + 𝑐2𝛼2)(𝑐1𝛽1 + 𝑐2𝛽2)
1

0

1

0

  d𝑐1d𝑐2 

= ∫ ∫ 𝑐1
2𝛼1𝛽1 + (𝛼1𝛽2 + 𝛼2𝛽1)𝑐1𝑐2 + 𝛼2𝛽2𝑐2

2
1

0

1

0

d𝑐1d𝑐2 

=
𝛼1𝛽1

3
+

𝛼2𝛽1 + 𝛼1𝛽2

4
+

𝛼2𝛽2

3
 

(11) 

Equation (11) can be extended to include 31 wavelengths, the derivations are not provided here.  

Polynomial Maximum Ignorance with Positivity Colour Correction 

In second order polynomial colour correction, we seek a more general form of the colour correction mapping. 

Specifically, we add squared and ‘cross’ terms to each RGB camera measurement: each input RGB is mapped to a 

9-vector: (𝑟, 𝑔, 𝑏, 𝑟2, 𝑔2, 𝑏2, 𝑟𝑔, 𝑟𝑏, 𝑔𝑏)⊺. Then, again, we can use the Moore-Penrose inverse to solve for the colour 

correction transform, although here 𝑸𝑷⊺ and 𝑷𝑷⊺ have the dimensions of  3×9 and 9×9 respectively. 
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The expectation for the cross-product terms – in the 3x9 matrix 𝑸𝑷⊺ - between the linear terms and the 

polynomial terms are calculated using equation (12): 

     𝐸((𝜶 ⋅ 𝒄)(𝜷 ⋅ 𝒄)(𝜸 ⋅ 𝒄)) 

= ∫ ⋯ ∫ (∑ 𝑐𝑖𝛼𝑖

31

𝑖=1

) ⋅ (∑ 𝑐𝑖β𝑖

31

𝑖=1

)
1

0

1

0

 ⋅ (∑ 𝑐𝑖𝛾𝑖

31

𝑖=1

)  d𝑐1 … d𝑐31 

(12) 

As an example, to compute 𝐸((𝒓 ⋅ 𝒄)(𝒓 ⋅ 𝒄)(𝒙 ⋅ 𝒄)) –the 𝜶  and𝜷  in equation (12) are redefined as the 

sensitivities of the red sensor and 𝜸 is redefined as the 𝑋 colour matching function i.e. we compute𝐸(𝑟2𝑥).  

The expectation for the auto-product terms – the 9x9 matrix 𝑷𝑷⊺ – can be computed using equation (13): 

     𝐸((𝒄 ⋅ 𝜶)(𝒄 ⋅ 𝜷)(𝒄 ⋅ 𝜸)(𝒄 ⋅ 𝜻)) 

= ∫ ⋯ ∫ (∑ 𝑐𝑖𝛼𝑖

31

𝑖=1

) ⋅ (∑ 𝑐𝑖β𝑖

31

𝑖=1

)
1

0

1

0

 ⋅ (∑ 𝑐𝑖𝛾𝑖

31

𝑖=1

) ⋅ (∑ 𝑐𝑖𝜁𝑖

31

𝑖=1

)  d𝑐1 … d𝑐31 

 

(13) 

As an example, to compute 𝐸((𝒄 ⋅ 𝒓)(𝒄 ⋅ 𝒓)(𝒄 ⋅ 𝒈)(𝒄 ⋅ 𝒃)), 𝜶 and 𝜷 in (13) denote the spectral sensitivity of the 

red sensor and 𝜸 and 𝜻 are respectively redefined the spectral sensitivities of the green and blue sensors i.e. we 

compute 𝐸(𝑟2𝑔𝑏) 

Although the process is quite tedious, we can derive a closed form answer to equation (12) and (13) that depends 

only on 𝜶, 𝜷, 𝜸 and 𝜻, analogous to the derivation of equation (11). In this way, we can solve for the maximum 

ignorance with positivity polynomial regression. Space limitations do not allow us to present the derivation here. 

EXPERIMENTS 

We performed a colour correction experiment using a Nikon D5100 camera (see  [6] for measurement details). 

Relative to this camera we computed the Maximum Ignorance, Maximum Ignorance with Positivity, and 

Polynomial Maximum Ignorance with Positivity colour correction transforms (two 3×3 matrices and one 3×9 

matrix). We then apply these transforms to both synthetic and real camera data.  

Simulation Experiment using Synthetic Colour Signal 

We generated colour signals using all pairs of 102 illuminant spectra and 1995 reflectances [7] (over 200,000 

spectra). We calculate RGBs and corresponding XYZs by numerical integration. We now apply each of the 3 

maximum ignorance colour corrections to our RGBs to predict XYZs. To measure the fitting error, we used 

CIELAB Δ𝐸. The results are shown in Table 1. 

 

Table 1. CIELAB 𝛥𝐸 for Simulation Experiments 

Method Mean Median 95% 

Maximum Ignorance 5.25 3.54 13.02 

Maximum Ignorance with Positivity 3.16 2.14 8.64 

Polynomial Maximum Ignorance with Positivity 4.52 3.48 11.31 

Experiment using real camera data 

Under cloudy daylight, the XYZ values of a 24-patch X-Rite ColorChecker Classic were measured using a 

Photo Research PR-670. These colour signal spectra were integrated to form target XYZs. Great care was taken 

with the measurement geometry by measuring every patch the same way. The effect of shading across the target 

was normalised out. Then an image of the colour checker was taken. Per patch RGBs was averaged to return 24 

camera measurements. As before, the RGBs were mapped to the target XYZs using our maximum ignorance 

transforms. The CIELAB Δ𝐸 was computed and the results are presented in Table 2. 
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Table 2. CIELAB 𝛥𝐸 for Experiment Involving Real World Data 

Method Mean Median 95% 

Maximum Ignorance 5.32 4.46 12.22 

Maximum Ignorance with Positivity 3.99 3.66 8.25 

Polynomial Maximum Ignorance with Positivity 6.25 5.02 12.5 

CONCLUSION 

In linear colour correction, Maximum Ignorance with Positivity (MIP) assumes that all possible positive spectra 

are equally likely. Relative to this assumption, colour correction depends only on the autocorrelation of the spectra 

and the device spectral sensitivities. However, to apply the MIP assumption to non-linear colour correction is much 

more complex. One of the contributions of this paper is to show how we can solve the problem of polynomial 

regression under the MIP assumption, by presenting the mathematics behind the modelling of the expected sensor 

response.  

 Experiments, however, demonstrated that the polynomial maximum ignorance assumption works less well than 

the antecedent methods. Speculatively, this underperformance can be explained by the higher order terms for 

‘unlikely’ sharp spectra dominating the regression. But, the observation that we might examine performance for all 

spectra in terms of expected sensor responses is one that can be extended to other colour correction scenarios which 

we are investigating. 
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