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Abstract— Sufficient training examples are the fundamental requirement for most of the learning tasks. However, collecting well-
labelled training examples is costly. Inspired by Zero-shot Learning (ZSL) that can make use of visual attributes or natural language
semantics as an intermediate level clue to associate low-level features with high-level classes, in a novel extension of this idea, we aim to
synthesise training data for novel classes using only semantic attributes. Despite the simplicity of this idea, there are several challenges.
Firstly, how to prevent the synthesised data from over-fitting to training classes? Secondly, how to guarantee the synthesised data is
discriminative for ZSL tasks? Thirdly, we observe that only a few dimensions of the learnt features gain high variances whereas most
of the remaining dimensions are not informative. Thus, the question is how to make the concentrated information diffuse to most of the
dimensions of synthesised data. To address the above issues, we propose a novel embedding algorithm named Unseen Visual Data
Synthesis (UVDS) that projects semantic features to the high-dimensional visual feature space. Two main techniques are introduced
in our proposed algorithm. (1) We introduce a latent embedding space which aims to reconcile the structural difference between the
visual and semantic spaces, meanwhile preserve the local structure. (2) We propose a novel Diffusion Regularisation (DR) that explicitly
forces the variances to diffuse over most dimensions of the synthesised data. By an orthogonal rotation (more precisely, an orthogonal
transformation), DR can remove the redundant correlated attributes and further alleviate the over-fitting problem. On four benchmark
datasets, we demonstrate the benefit of using synthesised unseen data for zero-shot learning. Extensive experimental results suggest
that our proposed approach significantly outperforms the state-of-the-art methods.

Index Terms—Zero-shot learning, Data synthesis, Diffusion regularisation, Visual-semantic embedding, Object recognition.

F

1 INTRODUCTION

C LASSIFICATION is arguably one of the most fundamen-
tal tasks in the machine learning field. Most of the

conventional classification frameworks rely on a sufficient
number of training samples to build reliable models. How-
ever, such a condition is unattainable in many real world
situations. First, obtaining annotations for training samples
is expensive. Although abundant digital images and videos
can be retrieved from the Internet, existing search engines
crucially depend on user-defined keywords that are often
vague and not suitable for learning tasks. The second chal-
lenge is the explosive increase of concepts. The number
of newly defined classes is ever-growing. Meanwhile, fine-
grained tasks make existing categories go deeper, e.g. to
recognise a newly released handbag in a novel pattern.
Training a particular model for each of them is infeasible.
Another difficulty is collecting instances for rare classes. For
example, one might wish to detect an ancient or rare species
automatically. It could be difficult to provide even a single
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example for them since available knowledge could be only
textual descriptions or some distinctive attributes.

As a feasible solution, Zero-shot Learning (ZSL) aims to
leverage a closed-set of semantic models that can gener-
alise to an ever growing set of new classes [1], [2], [3],
[4]. Since semantic information can be obtained through
human knowledge, new classes can be dynamically cre-
ated without collecting any new visual data. The common
paradigm is inspired by that humans can identify new
things by just knowing the conceptual descriptions since
we could associate the concepts to our previous knowledge.
Following such an idea, the first step of ZSL is to train a
prediction model that can map visual data to a semantic
representation. Hereafter, new categories can be recognised
by only knowing their semantic descriptions. Existing ZSL
studies fall into two main streams: prediction models and
semantic representation designs. The former stream devel-
ops advanced models that aim to predict human knowledge
accurately from visual data, e.g. the probabilistic model DAP
and IAP [2], [5], [6]. More recent studies take advantages of
an embedding approach as middle layers between low-level
features and class labels [4], [7], [8], [9], [10], [11]. Besides,
some novel works study how to directly construct classifiers
for unseen classes [12], [13], [14]. The latter stream focuses
on how to effectively represent human knowledge that
can generalise to novel classes, such as human-nameable
attributes [2], [15], [16], [17], [18], word vectors [3], [19],
textual descriptions [20], and class similarities [21], [22].

The methods mentioned above share a common shortage
that the training visual examples cannot be expanded while
the semantic information is increasing and new classes are
added. Since new concepts are ever growing, it is inevitable
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Fig. 1. Given a conceptual description, human can imagine the outline
of the scene by combining previous seen visual elements.

to collect training data for new semantic models. In this
paper, we propose to synthesise training data for unseen
classes. Our idea is inspired by the ability of imagination
of human beings. As illustrated in Fig. 1, given a semantic
description, humans can associate familiar visual elements
and then imagine an approximate scene. It is worth noting
that our method differs from image synthesis in [1] since
the synthesised images from semantics can hardly cover the
large variation of visual appearances. Instead, we synthesise
discriminative low-level features to train supervised classi-
fiers for ZSL. Such an approach provides a direct interface
between ZSL tasks and conventional supervised classifiers.
Moreover, it enables the information mutually flow between
high-level concepts and low-level visual features. In this
way, the training set can be expanded to as large as the
semantic representations.

Despite the simplicity of the idea, we confront two main
technical issues. The first is the visual-semantic discrepancy.
Since the visual and semantic features differ in the extracted
sources and means, the data distributions of the two data
spaces can be significantly discrepant. Two close points in
one space can be far away in the other space. For example,
as reported in [23], the same attribute ‘HasTail’ may have a
great difference between the visual appearances of ‘Zebra’
and ‘Pig’. However, rather than concerning the ‘domain-
shift problem’ for the recognition task in [23], instead, we
hope the model can effectively capture the semantic-visual
correlation so that the synthesised visual data can preserve
the intrinsic structure as close as the real data.

The second issue is the variance decay. Due to that the
number of visual feature dimensions is usually much larger
than that of semantic representations, the learnt projection
is prone to be imbalanced, i.e. the variances of the projected
dimensions vary severely [24]. As shown in Fig. 6, compar-
ing to the real data, we observe that the synthesised data
using linear projection suffers from remarkable variance
decay. The variances of most of the projected dimensions are
extremely low, which indicates they gain little information.
Such projections can lead to degraded performance owing to
the great number of redundant dimensions. Therefore, the
challenge is how to make the information diffuse to most
of the dimensions of the synthesised data with a balanced
projection. To the best of our knowledge, this issue has not
been identified in previous ZSL literature.

To address the above issues, we propose a novel embed-
ding algorithm named Unseen Visual Data Synthesis (UVDS)
that projects semantic features to the high-dimensional vi-
sual feature space. In particular, for the first issue, we in-
troduce a latent embedding space to reconcile the structural
difference between the visual and semantic spaces. We use a
dual-graph (GR) to preserve the local structure of both visual
and semantic spaces. For the second problem, we propose
a novel Diffusion Regularisation (DR) that explicitly makes
the information diffuse to all dimensions of the synthesised
data. Specifically, we use the variances as the measurement
to force information to diffuse over the dimensions of the
synthesised data. We prove that such a scheme is equivalent
to finding an orthogonal rotation transformation. Also, we
discover an elegant form of such an orthogonal rotation
using the `2,1 norm regularisation with efficient solutions.

In addition to the above two problems, the synthesised
data should also be discriminative for the ZSL task. A direct
regression model tends to learn the principal components
between the two spaces that lead to high bias towards
the training classes. We view this as an over-fitting problem,
i.e. the trained model can achieve high performance on
the synthesised data of seen classes but will dramatically
degrade on the synthesised unseen data. We empirically
show that the above GR and DR can mitigate the over-fitting
problem in a complementary manner: DR does not harm
the local structure preservation but instead benefits the data
synthesis by eliminating the redundant correlations in the
semantic space through the orthogonal rotation. The main
contributions of this paper are summarised below:

• An intuitive framework that enables us to synthe-
sise unseen data from the given semantic attributes.
The synthesised data can be straightforwardly fed
to typical classifiers and lead to the state-of-the-art
performance on four benchmark datasets.

• A novel diffusion regularisation that can explicitly
make information diffuse to each dimension of the
synthesised data. We achieve information diffusion
by optimising an orthogonal rotation problem. We
provide an efficient optimisation strategy to solve
this problem together with the data structural preser-
vation and data reconstruction.

The rest of the paper is organised as follows. We review
existing ZSL methods and related work in Section 2. The
proposed algorithm is described in detail in Section 3. The
experimental results are demonstrated in Section 4. Finally,
we make a conclusion and discuss possible future works in
Section 5.

2 RELATED WORK

Zero-shot Recognition Schemes: We summarise previous
ZSL schemes in Fig. 2, in contrast to conventional super-
vised classification (Fig. 2(A)). Since collecting well-labelled
visual data for novel classes is expensive, as shown in Fig.
2(B), zero-shot learning techniques [1], [2], [3] are proposed
to recognise novel classes without acquiring the visual data.
Most of the early works are based on the Direct-Attribute
Prediction (DAP) model [2]. Such a model utilises semantic
attributes as intermediate clues. A test sample is classified
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Fig. 2. Comparison of supervised and zero-shot classifications and existing ZSL frameworks. (A) a typical supervised classification: the training
samples and labels are in pairs; (B) a zero-shot learning problem: without training samples, the classes C and D cannot be predicted; (C) Direct-
Attribute Prediction model uses attributes as intermediate clues to associate visual features to class labels; (D) label-embedding: the attributes are
concatenated as a semantic embedding; (E) we use semantic embedding to synthesise unseen visual data.

by each attribute classifier in turn, and the class label is
predicted by probabilistic estimation. Admitting the merit
of DAP, there are some concerns about its deficiencies. [18]
points out that the attributes may correlate to each other
resulting in significant information redundancy and poor
performance. The human labelling involved in attribute
annotation may also be unreliable [25].

To circumvent learning independent attributes,
embedding-based ZSL frameworks (Fig. 2(C)) are proposed
to learn a projection that can map the visual features to all
of the attributes at once. The class label is then inferred
in the semantic space using various measurements [7],
[10], [19], [26], [27], [28]. Since the attribute vectors are
regarded as whole semantic representations, attributes are
used for transductive ZSL settings [11], [23], [29], [30], [31],
[32]. However, these methods involve the data of unseen
classes to learn the model, which to some extent breaches
the strict ZSL settings. Recent work [4], [33] combines the
embedding-inferring procedure into a unified framework
and empirically demonstrates better performance. The
closest related work is [34], which takes one-step further to
synthesise classifiers for unseen classes. Our method is also
different from DS-SJE [35], in terms of learning objective,
regularisation, and the potential applications. DS-SJE seeks
to learn a compatibility function for both images and texts,
whereas our objective function aims to reconstruct the
visual features from semantic attributes. Also, our method
learns with GR and DR that are not considered in DS-SJE.
The inferred visual features can be applied to conventional
supervised classifiers, which differs our method from other
previous work.

Our method takes the advantages of semantic embed-
ding. However, our purpose is entirely different from ex-
isting work. As discussed earlier, owing to the fact that
the semantic information is ever growing, it is inevitable to
collect visual training data for newly added concepts. Since
it is easier to obtain semantic information from the Internet,
our method can expand the number of visual feature vectors
to as many as the semantic instances.
Semantic Side Information: ZSL tasks require to leverage
side information as intermediate clues. Such frameworks
not only broaden the classification settings but also enable
various information to aid visual systems. Since textual
sources are relatively easy to obtain, [14], [20] propose to

estimate the semantic relatedness of the novel classes from
the text. [13], [36], [36] learn pseudo-concepts to associate
novel classes using Wikipedia articles. Recently, lexical hi-
erarchies in the ontology engineering are also exploited to
find the relationships between classes [37], [38], [39].

Although various side information is studied, attribute-
based ZSL methods still gain the most popularity. One
reason is that attributes often give prominent classification
performance [21], [22], [40], [41], [42]. For another reason,
attribute representation is a compact way that can further
describe an image by concrete words that are human-
understandable [16], [43], [44], [45]. Various types of at-
tributes are proposed to enrich applicable tasks and im-
prove the performance, such as relative attributes [15], class-
similarity attributes [21], and augmented attributes [17].

In this paper, we evaluate our method using at-
tributes and Word2vectors. Since our proposed framework
is embedding-based, it can easily exploit most of existing
semantic side information.
Structure-Preserving Projection: Structure-preserving pro-
jection is well-studied in unsupervised learning [46]. A
spectral graph is constructed to preserve the original data
structure. [47] extends such an idea to multi-view classifi-
cation to preserve the intrinsic data structures of multiple
modalities. The most common approach is to use local
neighbourhood graphs for each view independently [31].
[48] generalises a single graph to a multi-graph with random
walks between the connections. The graph-based approach
is adopted in [23] for transductive ZSL. They estimate the
pairwise similarity between training data and unlabelled
unseen data using heterogeneous hyper-graphs.

In contrast to these methods, we strictly follow the ZSL
setting that excludes data of unseen classes from the training
set. Such a setting increases the difficulty since the visual
structure of unseen classes can be distinctive from the given
semantic data structure. As a solution, we propose to insert
a latent embedding space to reconcile the data structure
discrepancy between the visual and semantic spaces. A
dual-graph is then constructed to find a balanced structure
between the two spaces.
Data Rotation for Information Diffusion: Because infor-
mation diffusion has not aroused attentions in the ZSL field,
we discuss related work in a broader context. Data Rotation
aims to find a balanced projection that makes the informa-
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Fig. 3. An illustration of our framework of unseen data synthesis. Unseen classes are represented by semantic attributes as inputs. We train a
model that maps the semantic space to the visual data space to synthesise training data for these unseen classes. The crosses in the visual spaces
denote test feature points.

tion diffuse to all dimensions of the synthesised data. Such
an issue is initially concerned with unsupervised learning
methods [49], [50], [51] since imbalanced projection can lead
to inferior retrieval performance. In [51], data rotation is
adopted to minimise the quantisation error. [49] achieves in-
formation diffusion by minimising the reconstruction error
of the covariance matrix. [52] uses perfectly diffused data as
referencing source to find the rotation so that the projected
data can also be well diffused.

We share the consideration of these previous works, yet
our proposed method is entirely different from them. Firstly,
our ZSL task is fully supervised. We aim to synthesise
visual features rather than finding an optimal subspace
of original features. Secondly, none of the previous works
utilise variance as measurement and explicitly control the
information diffusion. In our experiments, we demonstrate
that the synthesised data can achieve more balanced di-
mensions even comparing to the real data. The improved
performance can also prove the effectiveness of our method.

3 APPROACH

ZSL tasks generally involve three steps: training, inference,
and test. Some of previous methods may combine infer-
ence with training or test. In our framework, the training
only requires data of seen classes. The attributes of unseen
classes are required at the inference stage to synthesis visual
features. Finally, we use the synthesised features for ZSL
classification.

3.1 Preliminaries
The training set contains visual features, at-
tributes, and seen class labels that are in 3-tuples:
(x1, a1, y1), ..., (xN , aN , yN ) ⊆ Xs × As × Ys, where
N is the number of training samples; Xs = [xnd] ∈ RN×D
is a D-dimensional feature space; As = [anm] ∈ RN×M
is an M -dimensional attribute space; and yn ∈ {1, ..., C}
consists of C discrete class labels. During the test, the given
attributes can be either category-level or instance-level. In our
framework, we aim to cope with both of the scenarios using
a unified paradigm. Given N̂ pairs of unseen instances
with semantic attributes from Ĉ discrete categories:
(â1, ŷ1), ..., (âN̂ , ŷN̂ ) ⊆ Au × Yu, where Yu ∩ Ys = ∅,

Au = [an̂m] ∈ RN̂×M , the goal of zero-shot learning is
to learn a classifier, f : Xu → Yu, where the samples in
Xu are completely unavailable during training. We use
Calligraphic typeface to indicate a space. Subscripts s and u
refer to ‘seen’ and ‘unseen’. hat denotes the variables that
are related to ‘unseen’ samples.
Unseen Visual Data Synthesis: We aim to synthesise the
visual features of unseen categories by the given semantic
attributes. Specifically, we learn an embedding function on
the training set f ′ : As → Xs. After that, we are able to infer
Xu through: Xu = f ′(Au) .
Zero-shot Recognition: Using the synthesised visual fea-
tures, it can directly estimate the probability distribution
of the unseen categories. It is straightforward to employ
conventional supervised classifiers, e.g. SVM, to predict the
labels of unseen classes fSVM : Xu → Yu.

3.2 Unseen Visual Data Synthesis
Traditional ZSL methods minimise the single classification
error of each attribute. Due to that, the attributes are sepa-
rately learnt, as aforementioned, such a framework highly
depends on the quality of the designed attributes. Recently,
there is a new scheme that addresses ZSL by an embedding
approach [7]. In particular, an objective function is learnt
to minimise the multi-class error simultaneously and con-
sider the relationship between different attributes. A typical
multi-attributes classifier can be learnt by the following
problem:

min
P
L(XsP,As) + λΩ(P ), (1)

where P is the projection matrix, L is a loss function, and
Ω is a regularisation term with its hyper-parameter λ. It
is common to choose Ω(P ) = ‖P‖2F . During the test, an
unseen instance can be directly mapped to the attribute
space by â = x̂P .

However, due to the fact that P is learnt using only the
training data, the inferred attributes â are prone to be biased
towards the ‘seen’ attributes As. Inspired by the idea that
a human can imagine the visual appearance of an unseen
object through given semantic descriptions, we propose to
synthesise visual features by reversely learning a mapping
function from the semantic space to the visual feature space:

min
P
L(AsP,Xs) + λΩ(P ). (2)
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The loss term accounts for the reconstruction error between
the semantic input and the visual output; whereas the regu-
larisation ensures the discrimination to unseen classes. Such
a framework provides a direct mapping to the visual space
without computing a pseudo-inverse matrix and therefore
avoids information loss. Before the test, it is straightforward
to infer the visual features of unseen classes using their class
attributes:

Xu = AuP . (3)

Visual-Semantic Structure Preservation In spite of the
simplicity of the above framework, several problems are
worth noting. Firstly, in practice, there is often a huge gap
between visual and semantic spaces. In pursuance of min-
imum reconstruction error, the model tends to learn prin-
cipal components between the two spaces. Consequently,
the synthesised data would be not discriminant enough for
ZSL purposes. Secondly, such a regression-based framework
does not discover the intrinsic topological structure. As a
result, the synthesised data may gain an entirely different
feature distribution to the original visual features. Thus,
directly mapping from semantic to visual space can lead to
inferior performance. We propose to introduce an auxiliary
latent-embedding space V to reconcile the semantic space
with the visual feature space, where V = [vnd] ∈ RN×D . In
this way, instead of Ω(P ), we can let V preserve the intrinsic
data structural information of both visual and semantic
spaces:

J = ‖Xs − VQ‖2F + ‖V − AsP‖2F + λΩ1(V), (4)

where ‖.‖F is the Frobenius norm of a matrix, which es-
timates the Euclidean distance between two matrices. The
latent-embedding space V is decomposed from X and A is
then decomposed from V , where Q = [qd′d] ∈ RD×D and
P = [pmd] ∈ RM×D are two projection matrices. Ω1 is a
dual-graph that is introduced next.

In detail, we take the Local Invariance [46] assumption
and solve the problem through a spectral Dual-Graph ap-
proach. This is a combination of two supervised graphs
that aim to simultaneously estimate the data structures of
both X and A. The graph of visual space WX ∈ RN×N
has N vertices {g1, ..., gN} that correspond to N data points
{x1, ..., xN} in the training set. The semantic graph WA ∈
RN×N has the same number of vertices. As mentioned
earlier, the attributes for ZSL tasks can be instance-level
or category-level. In particular, for instance-level attributes,
we construct k-nn graphs for both visual and semantic
spaces, i.e. put an edge between each data point xn (or
an) and each of its k nearest neighbours. For each pair
of the vertices gi and gj in the weight matrix (not differ
in WX and WA), wij = 1 if and only if gi and gj are
connected by an edge, otherwise, wij = 0. As a result,
we can separately compute the two weight matrices WX
and WA. It is noteworthy that, for category-level attributes,
WA is computed in a slightly different way. Every vertex
in the same category is connected by a normalised edge,
i.e. wij = k/nc, if and only if ai and aj are from the same
category c, where nc is the size of category c.

In the embedding space V , we expect that if gi and gj in
both graphs are connected, each pair of embedded points vi
and vj are also close to each other. However, sometimes WX

andWA are not always consistent due to the visual-semantic
gap. To compromise such conflicts, we compute the mean of
the visual and attribute graphs, i.e. Wij = 1

2 (WXij
+WAij

).
The resulted regularisation is:

Ω1(V) =
1

2

N∑
i,j=1

‖vi − vj‖2wij

= Tr(VTDV)− Tr(VTWV) = Tr(VTLV),

(5)

where D is the degree matrix of W , Dii =
∑
i wij . L is

known as graph Laplacian matrix L = D −W and Tr(.)
computes the trace of a matrix.
Diffusion Regularisation Another fundamental problem is
Redundant projections. Compared to the compact attributes,
the variance of visual data is usually larger and more
informative. However, when we learn visual features from
the attributes, in particular when projecting A to V using
P , the dimension difference D � M will lead the learn-
ing algorithm to pick the directions with low variances
progressively. As shown in Fig. 6, most of the informa-
tion (variance) is contained in a few projections. As a
result, the remaining dimensions of the synthesised data
experience a dramatic variance decay, which indicates the
learnt representation is severely redundant. To address the
problem, we may expect the concentrated information can
effectively diffuse to all of the learnt dimensions through an
adjustment rotation [53]. Therefore, we modify the rotating
matrix Q in Eq. (4). In this paper, we consider an orthog-
onal rotation, i.e. QQT = I , since it is easy to show that
Tr(QTPTATAPQ) = Tr(PTATAP ). This is an intuitive
idea that we can rotate the whole feature space by changing
the coordinates through the orthogonal transformation. In
this way, the high-variance can diffuse to lower-variance
dimensions without changing the overall variance. Such a
property is reported in [54] that is known as ITQ, which
aims to learn similarity-preserving binary codes. By solving
an orthogonal Procrustes problem, the whole feature space
is rotated according to the coordinates without changing
the structure. Although the values of each dimension are
changed, the overall data structure in the semantic A is
completely preserved. Next, we show how the rotation can
control variance diffusion.

From Eq. (4), the optimal synthesised data is X = VQ,
where V = AP . We first prove that the overall variance
does not change after rotation. The attribute data As is
centralised, i.e.

∑N
n=1 an = 0. The original variance Γ of V

is Γ = Nσd, where σd =
∑N
n=1 v

2
nd/N denotes the variance

of the d-th dimension. After rotation Q, we have the new
variance of each dimension σ′d and the sum of variance of
each dimension is Γ′. We show Γ = Γ′ in the following:

Γ = N
D∑
d=1

σd =
D∑
d=1

N∑
n=1

v2nd = ‖V‖2F = Tr(VVT )

= Tr(VQQTVT ) = ‖VQ‖2F

=
D∑
d=1

N∑
n=1

x2nd = N
D∑
d=1

σ′d = Γ′. (6)

We hope the overall variance Γ tends to equally diffuse
to all of the learnt dimensions in order to recover the real
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data distribution of X . In other words, the variance of dif-
fused standard deviations Π in the synthesised data should
be small, i.e. Π = 1/D

∑D
d=1(πd − π̄)2 , where πd =

√
σ′d

and π̄ is the mean of all standard deviations. According to
the above Eq. (6), we have ε, i.e.

∑D
d=1 π

2
d =

∑D
d=1 σ

′
d =∑D

d=1 σd = ε. Since the sum of standard deviations does
not change after rotation Eq. (6), minimising the variance
of diffused standard deviations can make high variances
diffuse to dimensions with low variances. Next, we show
how to minimise Π in our learning framework to find the
orthogonal rotation. We first rewrite Π:

Π =
1

D

D∑
d=1

(πd − π̄)2

=
1

D

D∑
d=1

π2
d + π̄2 − 2

D

D∑
d=1

πdπ̄

=
ε

D
− 1

D2
(
D∑
d=1

πd)
2. (7)

The first term ε
D of the above equation is a constant.

Thus, the problem of minimising Π is equivalent to max-
imise the sum of diffused standard deviations in the bracket
of the second term of Eq. (7). Furthermore, such a maximi-
sation can be converted into the problem of optimising the
orthogonal rotation:

D∑
d=1

πd =
D∑
d=1

√
σ′d =

D∑
d=1

√√√√ N∑
n=1

x2nd/N

=
1√
N
‖X T ‖2,1 =

1√
N
‖QTVT ‖2,1, (8)

where ‖.‖2,1 is the `2,1 norm of a matrix. According to
Eq. (7) and Eq. (8), we can simply maximise ‖QTVT ‖2,1
to maximise Π with the optimal Q for the purpose of
information diffusion. Finally, we can combine the diffusion
regularisation with Eq. (4) and Eq. (5) to form the overall
loss function. Such a function aims to minimise the recon-
struction error from attributes to visual features, meanwhile
preserve the data structure and enable the information to
diffuse to all dimensions:

min
P,Q,V

J = ‖Xs − VQ‖2F + ‖V − AsP‖2F + λTr(VTLV)

−β‖QTVT ‖2,1, s.t. QQT = I. (9)

3.3 Optimisation Strategy
The key of our optimisation is to find a proper solution for
the latent-embedding space V . From the above Eq. (9), it can
be seen that V simultaneously accounts for the reconstruc-
tion error, structure preservation, and diffusion regularisa-
tion. However, the problem raised in Eq. (9) is a non-convex
optimisation problem. To the best of our knowledge, there
is no direct way to find its optimal solution. In this paper,
we propose an iterative scheme by using the alternating op-
timisation to obtain the local optimal solution. Specifically,
we iteratively update V , Q, and P in an alternate manner. In
this way, the optimisation becomes analytic and tractable for
each variable with the associated sub-problem. It is noted
that some variables are first heuristically initialised before
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Fig. 4. Objective function convergence on the AwA dataset.

our proposed optimisation. Specifically, we initialise Q = I
and V = Xs. Such an initialisation equals to start from
the simple problem in Eq. (2). The initialisation of P can
be obtained via P = (ATs As)−1ATs V . The whole alternate
procedure of the proposed UVDS is listed as follows.
1. V-step: By fixing P and Q, we can reduce Eq. (9) to the
following sub-problem:

min
V
‖Xs − VQ‖2F + ‖V − AsP‖2F + λTr(VTLV)

− β‖QTVT ‖2,1 (10)

The minimal V can be obtained by setting the partial deriva-
tive of Eq. (10) to zero and we have

∂J

∂V
= 2(VQ−X )QT + 2(V −AP )

+ 2λLV − βVQEQT = 0, (11)

where E = diag(e1, . . . , ed, . . . , eD) ∈ RD×D and the d-th
element of E is ed = 1/(

√
Nπd). By merging the like terms,

Eq. (11) can be rewritten as

V(2QQT + 2αI+βQEQT ) + (2λL)V − (XQT + 2AP ) = 0,
(12)

which is a typical Sylvester equation so that V can be
efficiently solved by the lyap() function in the MATLAB
toolbox.
2. Q-step: By fixing P and V , we can reduce Eq. (9) to the
following sub-problem:

min
Q
‖Xs − VQ‖2F − β‖QTVT ‖2,1, s.t. QQT = I (13)

Since we need to solve Q with the orthogonality con-
straint in Eq. (13), we adopt the gradient flow in [55]
which is an iterative scheme that can optimise orthogonal
problems with a feasible solution. Such an iterative scheme
can minimise Eq. (13) until it arrives at a stationary solution.
Specifically, given the orthogonal rotation Qt during the t-th
iterative optimisation, a better solution of Qt+1 is updated
via Cayley transformation:

Qt+1 = HtQt, (14)

where Ht is the Cayley transformation matrix and defined as

Ht = (I +
τ

2
Φt)
−1(I− τ

2
Φt), (15)
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TABLE 1
Key statistics of the four datasets.

Dataset # of attributes Attribute Type Annotation Level # of Seen Classes # of unseen classes # of total images
AwA 85 Both per class 40 10 30475
CUB 312 Binary Both 150 50 11788
aPY 64 Binary per image 20 12 15339
SUN 102 Continues per image 707 10 14340

Fig. 5. Some random image and attribute examples of the 4 datasets.

where I is the identity matrix, Φt = ∆QTt − Qt∆
T is

the skew-symmetric matrix, τ is an approximate minimiser
satisfying Armijo-Wolfe conditions [56] and ∆ is the partial
derivative of Eq. (13) with respect to Q as

∆t = VT (VQt −Xs)− βVTVQtE., (16)

where the diagonal matrix E is defined the same as that in
Eq. (11). In this way, for the Q-step, we repeat the above
formulation to update Q until achieving convergence. Gen-
erally, we set t = 30 for Q updating in the Q-step. A similar
proof of the updating procedure with the orthogonality
constraint can be observed in [55].
3. P-step: By fixing Q and V , we can reduce Eq. (9) to the
following sub-problem:

min
P

α‖V − AsP‖2F . (17)

The resulted equation is derived by a standard least squares
problem with the following analytical solution:

P = (ATs As)−1ATs V. (18)

Note that (ATs As)−1 is not always full rank, especially
in which all of the instances share the class-level attributes.
Therefore, we use Moore-Penrose pseudo inverse of matrix
instead. We have so far described our optimisation of each
step for Eq. (9) in detail. As mentioned above, to obtain a
local optimal solution, we adopt an alternate optimisation
scheme, in which we repeat t times to solve V sub-problem,
Q sub-problem and P sub-problem in sequence. In our
experiments, ten iterations in overall alternate optimisation
are proved to be enough for convergence as shown in Fig. 4.
The proposed UVDS approach is depicted in Algorithm. 1.

3.4 Zero-shot Recognition
Once we obtain the embedding matrices P andQ, the visual
features of unseen classes can be easily synthesised from
their semantic attributes:

Xu = AuPQ. (19)

Algorithm 1: Unseen Visual Data Synthesis (UVDS)

Input: Training set {Xs, As, Ys}, k for k-nn graph
Output: P, Q and V

1 Initialise Q = I, V = Xs and P = (ATs As)−1ATs V ,
where I ∈ RD×D is the identity matrix.

2 Repeat
3 V-Step: Fix P , Q and update V using Eq. (12).
4 Q-Step: Fix P , V and update Q by following steps:
5 for t = 1 : max iterations do
6 Compute the gradient ∆t using Eq. (16);
7 Compute the the skew-symmetric matrix Φt;
8 Compute the Cayley matrix Ht using Eq. (15);
9 Compute the Qt+1 using Eq. (14);

10 if convergence, break;
11 end
12 P -Step: Fix V , Q and update P using Eq. (18).
13 Until convergence
14 Return fUVDS(x) = xPQ

It is noticeable that for instance-level attributes, Xu con-
tains as many instances as the test set. The zero-shot recog-
nition task now becomes a typical classification problem.
Thus, any existing supervised classifier, e.g. SVM, can be
applied to learn a mapping function: Yu = fsvm(Xu).

For category-level, only a prototype feature of each
category is synthesised. Either few-shot learning techniques
or the simplest Nearest Neighbour (NN) algorithm can be
adopted: ŷ = arg mini ‖x̂− âiPQ‖22, where x̂ is a test image,
âi is the class-level attribute vector of the i-th unseen class,
and ŷ is the final prediction. Since we focus on the quality
of the synthesised features, we simply use NN and SVM for
instance-level tasks and NN for category-level tasks.

4 EXPERIMENTS

We provide a comprehensive comparison with both clas-
sic and recent state-of-the-art methods on four benchmark
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TABLE 2
Comparison with state-of-the-art methods.

Method Feature AI EP Animals with Attributes Caltech-UCSD Birds aPascal&aYahoo SUN Attribtue
Lampert et al. [2] V CA PC 57.23 - 38.16 72.00
Romera-Paredes and Torr [4] V CA PC 75.32±2.28 - 24.22±2.89 82.10±0.32
GAN V CA PC 62.40±0.85 40.52±0.95 24.28±0.44 68.85±0.72
Ours V CA PC 82.12±0.12 44.90±0.88 42.25±0.54 80.50±0.75
Lampert et al. [2] V W2V PC 42.82±0.81 24.52±0.68 24.52±0.28 65.28±0.57
Akata et al. [39] V W2V PC 56.25±0.74 30.28±0.56 29.28±0.86 70.70±0.65
Romera-Paredes and Torr [4] V W2V PC 58.29±0.58 28.47±0.76 32.67±0.58 72.65±0.78
Zhang and Saligrama [22] V W2V PC 57.49±1.82 29.68±0.84 34.95±1.47 74.19±0.83
GAN V W2V PC 48.34±0.69 25.33±0.82 27.48±0.74 68.58±0.89
Ours V W2V PC 62.88±0.76 32.14±0.47 35.82±0.45 76.98±0.46
Lampert et al. [2] G CA PC 57.19±0.62 37.41±0.63 35.26±0.95 38.94±0.90
Romera-Paredes and Torr [4] G CA PC 74.72±0.81 55.10±0.48 34.48±0.96 57.36±0.29
Akata et al. [39] G CA PC 76.72±0.12 55.34±0.27 32.02±0.15 57.18±0.80
Ours G CA PC 80.28±0.14 57.52±0.54 38.65±0.28 60.82±0.91
Zhang and Saligrama [22] V CA PI 76.33±0.83 30.41±0.20 46.23±0.53 82.50±1.32
Zhang and Saligrama [42] V CA PI 80.46±0.53 42.11±0.55 50.35±2.97 83.83±0.29
Ours V CA PI 85.28±0.49 46.48±0.82 52.48±0.79 87.50±0.75
Romera-Paredes and Torr [4] V IA PC - 42.82±0.73 39.69±0.45 79.85±1.02
Ours+SVM V IA PC - 45.72±1.23 53.21±0.62 86.50±1.75

Feature: VGG-19 (V) and GoogLeNet-1K (G); Auxiliary Information (AI): Class-level Attributes (CA), Instance-level Attributes (IA), and Word2Vec (W2V); Evaluation
Protocol (EP): Per-class accuracy (PC) and Per-image accuracy (PI).

datasets: Animals with Attributes (AwA) [2], aPascal &
aYahoo (aPY) [16], Caltech-UCSD Birds-200-2011 (CUB) [57],
and SUN Attribute (SUN) [58]. Key characteristics of these
datasets are summarised in Table 1. Furthermore, we verify
the statements we made in this paper by comparing to a
variety of baselines.

4.1 Setup
Settings ZSL is a complicated system that involves multiple
key steps. Existing methods differ in the experimental setup,
in terms of visual feature extraction, semantic auxiliary in-
formation, modelling, and evaluation protocols. We strictly
follow published seen/unseen splits. For AwA [2] and aPY
[16], we follow the standard 40/10 and 20/12 splits like
most of existing methods. For CUB, we follow [7] to use
the 150/50 setting. For SUN, we use the simple 707/10
setting as reported in [4], [22], [25]. Methods under different
settings [23], [29], [34], or using other various semantic
information [15], [21], [39], [45] are not compared with. For
fair and comprehensive comparison with existing state-of-
the-art methods, we divided our main comparisons into five
groups. The details are introduced as follows.
Visual Features The adopted visual features of existing
methods mainly differ in deep models. Since most of pre-
vious methods are based on the 4096-dimensional CNN
features extracted by [22] for the four datasets using the
“Image-net-vgg-verydeep-19” model [59], most of our eval-
uations are based on the same model. In order to see the
effect of different visual features, we also conduct exper-
iments using the GoogLeNet-1K feature and compared to
the results evaluated by [60].
Auxiliary Information The attribute annotation levels of
the four datasets are different. In CUB, aPY, and SUN,
each image is annotated by a unique attribute signature.
In AwA, all of the images within one class share the same
attribute signature. We compute such class-level attributes
(CA) for aPY and SUN by averaging the image-level at-
tributes for each class. Yet, it is impossible to get the image-
level attribute descriptions for AwA. The resultant class-
level attributes for the four datasets are in real numbers,

whereas the image-level attribute (IA) signatures of CUB,
aPY, and SUN are binary. We also implement evaluations
using Word2Vec features [61] as the auxiliary information.
Each class name is encoded into a vector as the class-level
semantic representation.
Evaluation Protocols The first comprehensive ZSL compari-
son [22] adopts the Per-image accuracy (PI) as the evaluation
criteria. Namely, they measure whether the Top-1 prediction
is the correct class label for each image. However, it is
recently argued that such a criterion may encourage biased
prediction on densely populated classes [60]. Therefore,
most of our evaluation is based on the Per-class accuracy
(PC) which is the mean value of all of the test classes. With-
out loss of generality, we also calculate the corresponding PI
for comparison.
Implementation Parameters Half of the data in each class
in the training sets are used as the validation set. We use 10-
fold cross-validation to obtain the optimal hyper-parameters
λ and β. k is fixed to 10 for the k-nn graph.

4.2 Comparison with the State-of-the-art methods
Table 2 summarises our comparison to the published results
of state-of-the-art methods on the benchmark datasets. The
hyphens indicate that the compared methods were not
tested on the corresponding datasets in the original papers.
The comparisons are mainly divided into five sections. In
the first section, all of the compared methods were tested
using human-annotated attributes. In the second section,
W2V class-label embeddings [61] are employed as the class-
level semantic features. We implement the state-of-the-art
methods using their published codes. Section three demon-
strates the effect of input visual features. We alter the VGG-
19 model by GoogLeNet-1K and keep the rest the same as
that in section one. We also calculate the Per-image accuracy
of our method in section four for comparison. For all of the
above four sections, we evaluate our method using class-
level attributes. In this scenario, each unseen class gains a
synthesised visual feature prototype from the class attribute
signature. The test unseen images are predicted by the NN
classification using these prototypes.
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TABLE 3
Detailed analysis of key aspects of the proposed method.

Scenario Dataset CUB SUN aPY
Test Domain Seen Unseen Seen Unseen Seen Unseen

Prototype-based

Baseline CA MF CA MF CA MF CA MF CA MF CA MF
Linear Regression 66.82 64.34 27.28 30.31 88.85 89.12 63.00 64.50 52.42 55.35 17.96 21.63
GR-only (β = 0) 65.79 65.53 38.82 40.42 89.67 88.41 75.50 76.00 59.38 57.75 25.75 28.86
DR-only (λ = 0) 66.32 67.98 37.75 40.64 90.31 89.85 74.00 77.50 57.96 58.32 30.28 32.46
Ours 67.47 68.43 44.90 44.90 92.32 89.88 80.50 78.50 62.75 64.88 42.25 41.97

Sample-based

Baseline NN SVM NN SVM NN SVM NN SVM NN SVM NN SVM
Linear Regression 64.57 67.44 22.36 26.57 90.79 92.27 72.50 77.00 43.75 44.42 13.48 15.96
GR-only (β = 0) 61.38 66.88 32.65 38.58 88.42 91.91 74.50 80.00 53.34 57.08 22.74 25.59
DR-only (λ = 0) 62.44 68.94 36.93 42.24 88.34 90.47 78.00 84.00 55.05 53.41 23.68 24.22
Ours 63.78 70.32 39.82 45.72 89.85 93.23 78.50 86.50 54.35 69.75 38.49 53.21

CA: Class-level attributes, MF: Mean of synthesised features, GR: Graph regularisation, and DR: Diffusion regularisation. Best results are in bold.

Fig. 6. Normalised variances of the synthesised data w.r.t. dimensions. Variance of each dimension is sorted in descending order. We make a
comparison between the synthesised data variances ‘with’ (green) and ‘without’ (red) diffusion regularisation. The variances of real data (blue) are
computed from real unseen data as references.

In section five, when image-level attributes (IA) are
available in CUB, aPY, and SUN, we further conduct ex-
periments using SVM classifiers. The visual feature vector
of each unseen image is synthesised by the proposed UVDS
and then fed to train SVM models. During the test, visual
features that are extracted from the real unseen image are
fed to the trained SVM to get the prediction. A similar setup
can be found in [4], which assumes each training attribute
signature as a class in its own right. The IA-based ZSL has
its unique applications. For instance, the unseen class may
be unknown for humans and we do not have a CA signature
for it. Alternatively, we may know the class. But it could be
difficult to summarise a CA signature, e.g. restaurants may
have distinctive styles and attributes. In both of the cases,
we could describe those ‘hard’ unseen classes by exemplars
with sparse attributes. This does not violates the spirit of
ZSL since the test images are still unseen for the machine.

Our method outperforms most of the published results
on the four datasets. Note that on aPY, using synthesised
instance-level features with SVM provides a significant
performance boost. The evidence can also be found on
SUN. This is because that on aPY and SUN, the class-
level attributes may not well conclude the features of all
of the instances in each class, e.g. different style of room.
Thus, the individualised synthesised visual features with
the SVM classifier can make significant improvement. How-
ever, using finer-defined attributes, such as on AwA and
CUB, CA can also results in similar performance to that
of using instance-level features with SVM. In the second
section, the performance based on W2V degraded severely
due to the coarse description of the class labels. Our method
achieves the best results on all of the datasets. The success

can be considered from two aspects. Firstly, although the
W2V feature space is heterogeneous to the visual space,
our GR can adjust the synthesised features to mitigate such
a difference. Secondly, from the Fig. (8) can be seen, the
synthesised features are more discriminative than the real
visual features, which can withstand some performance
degradation. In section three, different results can be seen
using GoogLeNet-1K features. It can be observed that CUB
gains the most significant benefit. [2], [4] also achieve im-
provements on aPY. But in general, we can conclude that
the VGG-19 feature can better fit most of the approaches
although GoogLeNet-1K has its own advantage on the CUB
dataset.

In addition, we also consider the recent Generative Ad-
versarial Network (GAN) [62] as a comparable baseline,
which can also synthesise unseen visual features using at-
tributes. In order to preserve the discrimination for different
classes, we adopt a similar framework as that in the InfoGan
[63]. As shown in Fig. 7, the difference to InfoGan is that the
generative net (GN) is conditioned on the class attributes (or
W2V) instead of the one-hot class vector so as to achieve the
inter-class transfer for ZSL. The implementation details can
be found in [63]. During the inference, we input the class-
level semantic representations (attributes or W2V) of unseen
classes to generate unseen visual features. We then use the
generated samples to train SVM to classify unseen instances
at the test phase. As shown in Table 2, due to the sizes of the
datasets are not very large, the results of GAN are inferior
to conventional methods. Therefore, how to apply GAN on
ZSL task requires further investigation.



0162-8828 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2762295, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017 10

Real 

Fake 

Attributes 

Attributes 

Fig. 7. Framework of the compared GAN model.

4.3 Detailed Evaluations

To further understand the success of our UVDS algorithm
and verify our statements that are made in this paper, we
compare to variations of our methods as baselines under
different scenarios. Since AwA only provides class-level
attributes, we conduct the remaining experiments on CUB,
SUN, and aPY.
Baseline methods The primary purpose of our comparison
is to understand the effect of each term in Eq. (9). The first
baseline method is simply Linear Regression (β = 0, λ = 0)
that we solve Eq. (2) and synthesise prototypes of unseen
classes using Eq. (3). The second and third methods are
denoted as Graph-Regularisation (GR) only (β = 0) and
Diffusion-Regularisation (DR) only (λ = 0). In this pair of
comparison, we aim to study the characters of each term
and how they contribute to the overall performance. For
both of the methods, we use the same cross-validation as
our proposed method to tune λ and β. In order to discuss
the over-fitting problem, we also use the validation set as
test for seen classes.

Since existing zero-shot learning methods differ in the
annotation level of the semantic attributes, we also inves-
tigate how such scenarios can affect the performance. The
first scenario is prototype-based, i.e. each unseen class gains
only one visual prototype. There are two possible ways to
obtain the class-level prototype: (1) we can compute the
mean of image-level attributes in each class and use the
averaged class-level attributes (CA) to synthesise one visual
prototype for each class; (2) we can first synthesise the
visual features from the image-level attributes and use the
mean of the features (MF) as the class prototype. During
the test, we use NN classification to predict the label for
the test image. The second scenario is sample-based, i.e. each
unseen image has one unique attribute description. In this
scenario, we can fully synthesise all of the visual features
of unseen classes and use them as training examples. We
show how an advanced classifier, e.g. SVM, can further
boost the performance. We summarise the results of our self-
comparison in Table 3. Based on the outcomes, we can verify
the following statements that are made in this paper.
Generalisation to Unseen Data From Table 3, we can see
that linear regression can achieve acceptable performance
when tested on seen classes. On two datasets, CUB and
SUN, the synthesised visual features by the linear regres-
sion method are even better than the comparative methods
using simple NN classifiers. However, a remarkable drop
of recognition rates (32.21% on CUB and 18.29% on SUN)

can be found when tested on unseen classes. In average, the
performance degradation of unseen class recognition using
the linear regression method is about 20%. This is a typical
over-fitting problem since we tune the best parameters on
the seen set but the trained model cannot well generalise
to unseen classes. In comparison, the proposed method
can achieve the best performance in most of the situations.
Meanwhile, the proposed method can also smoothly gener-
alise to unseen classes. In the case of the SUN dataset, the
recognition rate of unseen classes using the SVM classifier
is only 3.38% lower than the MF scenario on seen classes
(89.88%). The other two baseline methods GR-only and DR-
only achieve similar performances on the seen classes and
once is higher than the proposed method (55.05% of DR-
only on aPY using NN classifier). On unseen classes, the
two baseline methods are all better than linear regression
without regularisation but lower than the proposed method
using both regularisations. Such results suggest that the
proposed method can significantly eliminate the bias to the
seen training data.
Effect of Regularisations In Table 3, we can see both of
the regularisations can significantly boost the performance
comparing to the linear regression method. In most cases,
the DR-only method is slightly better than the GR-only
method. This suggests the importance of the balanced fea-
tures. Also, we observe the performance of using both of
the regularisations is always better than using one of them
on the unseen set. To further understand the relationships
between GR and DR, in Fig. 9, we fix λ = 0.001 and show
the performance varies with β. In turn, we fix β = 0.1 to
see the trend of performance with respect to λ. It can be
seen that in most cases, adding the other regularisation can
benefit the performance (compared to the case of β = 0
or λ = 0 at the beginning of the curve). The exception
is only when the other regularisation is over-weighted,
e.g. λ = 10. Such a result indicates the two regularisations
are not redundant but well complementary to each other.
Class-level attributes or Mean of Features In the case that
only class-level attributes are provided, there is no other
optional scenario. However, if the provided attributes are
image-level, we could use the mean of the attributes for
each class to compute prototypes (CA). Alternatively, we
could synthesise visual feature for each image first and then
compute the mean of the features for each class (MF). When
comparing these two scenarios in Table 3, interestingly,
the performance difference between the two methods is
insignificant. The results of MF on the aPY dataset tend to
be better than those of CA, whereas, on the SUN dataset,
the results of CA are slightly higher than those of MF.
We assume the potential reason is due to the quality of
the attribute annotations since the attributes in aPY are
reported not very reliable [25]. Such results also show the
positive side of our method that we could confidently use
the class-level attributes even though there are no image-
level attributes available, e.g. the AwA dataset.
Advance of using SVM One encouraging reason for syn-
thesising unseen data is to be used for training supervised
classifiers. In Table 3, the performance of using NN classifi-
cation under the sample-based scenario is somewhat worse
than that under the prototype-based scenarios (CA and MF).
After using SVM classifiers, the performance is remark-
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Fig. 8. T-SNE of the real and synthesised visual features of unseen classes: (A) real visual features; (B) synthesised visual features; (C) Since
t-SNE of different data is not aligned, we also show the distribution of mixed real and synthesised visual features.

Fig. 9. The performance with respect to the Graph regularisation and
Diffusion regularisation. The results are under the scenario of CA and
using NN classifier.

ably boosted and achieves the highest ZSL recognition rate
among all of the scenarios. This is a promising result that
substantially demonstrates the advantage of using synthe-
sised training data for advanced classifiers.
Efficiency Our method is very efficient at the test phase
since it only requires to search among several unseen proto-
types or to make prediction using SVM. The experiment is
conducted in Matlab 2016b environment with Core i7-6820
Processors. As shown in Table 4, the averaged computation

time for training is also practical for both conventional and
large-scale datasets.

TABLE 4
Computation Time on Each Dataset.

AwA CUB aPY SUN ImageNet
1.56× 103 1.47× 103 0.84× 103 1.03× 103 1.44× 104

4.4 Further Discussions

This section mainly investigates three key aspects of the
proposed method: (1) what are the outcomes of the diffusion
regularisation? (2) what kind of visual features are synthe-
sised? and (3) how is the performance on other ZSL scenar-
ios, e.g. Generalised and large-scale ZSL? We answer these
questions based on the following experimental analysis.

In Fig. 6, we show the variance of each dimension of the
synthesised data. The variances are sorted in descending
order. We compare with the real unseen data and the syn-
thesised data without diffusion regularisation (β = 0). It is
noticeable that, in the synthesised data without DR, most
variances are concentrated in a few dimensions (roughly
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Fig. 10. Success and Failure cases of nearest neighbour matching. The query visual feature is synthesised from its attribute description. We find
top-5 nearest neighbours of the query feature from the real instances. It is a match if the nearest instance and the test image have the same label.

1000, 1500, and 500 on SUN, aPY, and CUB) while most
of the remaining dimensions gain very low variances. In
comparison, the variances of our proposed synthesised data
and real data are more informative. Furthermore, thanks
to the DR, the variances in our proposed data are even
more balanced than real data. In other words, each of the
dimension gains the equal amount of information. Such
quantitative evidence explains the success of our proposed
method in the ZSL recognition task.

In Fig.(10), we provide some qualitative results of our
method. We use the synthesised features as queries and
retrieve real images from the unseen datasets. In Fig. 10,
we show some success cases that most of the top-5 results
are with the same class labels. Particularly, the third result
of Bag is the same paired image of the attributes that are
used to synthesise the data. Such results demonstrate that
the synthesised data is close to the samples from the same
class in the feature space. On the contrary, we also provide
some failure cases that the top-1 retrieval result is not with
the same class label. Some of them are due to the ambiguity
of the semantic meaning, e.g. the flea market has many similar
attributes to the shoe shop. Some other cases, e.g. the CUB
dataset, the real data of the birds are not distinctive to
the other classes. Therefore, the NN-based retrieval gives
a mixture of true-positives and false-positives. Such failures
due to the ambiguity of the visual feature are not common
cases. We can still achieve 45.72% overall recognition rate on

TABLE 5
Comparison with published results on the ImageNet Dataset.

Hierarchy Most Populated Least Populated AH
Method 2H 3H 500 1K 5K 500 1K 5k 20K
ConSE [9] 7.63 2.18 12.33 8.31 3.22 3.53. 2.69 1.05 0.95
DEVISE [8] 5.25 1.29 10.36 6.68 1.94 4.23 2.86 0.78 0.49
SJE [39] 5.31 1.33 9.88 6.53 1.99 4.93 2.93 0.78 0.52
ESZSL [4] 6.35 1.51 11.91 7.69 2.34 4.50 3.23 0.94 0.62
SYNC [34] 9.26 2.29 15.83 10.75 3.42 5.83 3.52 1.26 0.96
Ours 10.15 2.47 15.96 11.28 4.12 6.06 3.74 1.49 1.02

the CUB dataset.
Fig.(8) shows the distribution of the synthesised (B) and

real features (A) of the unseen classes using t-SNE. On
SUN and CUB, after mixing both of the features together
(C), most classes are discriminative, which means the syn-
thesised features capture the same distribution of the real
unseen classes. On aPY, however, the synthesised features
look more discriminative than the real features. This can
be ascribed to the orthogonal constraint that makes the
structure-preserving of the graph constraint sacrifice for the
performance. After mixing the real and synthesised features
together, intraclass points can be easily discriminated, which
supports the effectiveness of the synthesised features.

Finally, we evaluate our method under Generalise ZSL
(GZSL) scenarios (Table 6) and on large scale datasets (Table
5) using the class-level attributes (CA). For the former one,
we strictly follow the four protocols proposed in [64]. For
consistency, we use the GoogLeNet-1K feature as [39], [60],
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TABLE 6
Comparison with published results on GZSL.

AwA CUB
Method U-U S-S U-T S-T U-U S-S U-T S-T
DAP [2] 51.1 78.5 2.4 77.9 38.8 56.0 4.0 55.1
IAP [2] 56.3 77.3 1.7 76.8 36.5 69.6 1.0 69.4
ConSE [9] 63.7 76.9 9.5 75.9 35.8 70.5 1.8 69.9
SynC [64] 73.4 81.0 0.4 81.0 54.4 73.0 13.2 72.0
Ours 80.3 86.7 15.3 79.5 57.52 75.4 23.8 76.5

U: Unseen classes; S: Seen classes; T=S+U.

[64]. The attributes are the same as conventional ZSL. U-
U is the conventional unseen-to-unseen ZSL; S-S is the
traditional supervised classification; U-T and S-T are two
types of GZSL that evaluate whether learnt unseen/seen
models are confused to each other. On AwA, our method
outperforms the state-of-the-art methods on three of the four
scenarios. Only on S-T our result is slightly lower than that
of [64]. The seen/unseen balance can be viewed as an over-
fitting problem: while we sacrifice the performance on seen
classes (S-T), the performance on GZSL on unseen classes U-
T is significantly boosted. The evidence can also be found on
CUB dataset. Although our model performs slightly worse
on the seen classes, a better trade-off is achieved, which
results in 6.2% performance gain on the U-T scenario on
CUB.

For the large scale ZSL, we follow the settings of [60]
on the ImageNet dataset. We extracted the same VGG-19
features as that for the four ZSL benchmarks. For class-
level attributes, we use the W2V features provided by [34].
Our method consistently outperforms the published results,
from which we can see the prominence synthesised features.
However, there is still a large room for improvements. We
argue that, for most of ZSL scenarios, the number of unseen
classes should be at least smaller than that of training
classes. Such inverted ZSL with significantly larger number
of test classes requires reconsideration of the framework.
One possible way is to incrementally synthesise unseen
visual features and then fine-tune the model using both real
and synthesised features like a semi-supervised learning
framework.

5 CONCLUSION

In this paper, we proposed a novel algorithm that syn-
thesises visual data for unseen classes using semantic at-
tributes. The attributes are regarded as a full representa-
tion and embedded into the visual feature space. From
the experiments, we can see that directly embedding using
regression-based models can lead to low zero-shot recogni-
tion rates. We ascribed such direct synthesised data to three
problems, in terms of imbalanced variances, over-fitting,
and indiscrimination. In correspondence, we introduced a
latent structure-preserving space with the diffusion regular-
isation as the objective function. As a result, we observed
that the proposed algorithm could significantly benefit the
performance on unseen class recognition. Our approach
outperformed the state-of-the-art methods on all of the four
benchmark datasets.

For future work, a worthy attempt is to synthesise
instance-level features so that the SVM-based framework
can be widely applied. For another, our qualitative ex-
periments give positive results since we have shown the

synthesised features are close to the real features in the same
class. In the future, the synthesised data can be leveraged for
more applications such as image retrieval or unseen image
reconstruction. Also, how to address the inverted ZSL with
larger number of test classes requires further investigation.
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