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Abstract

Using a basic theorem from mathematical logic, I show that there are

field-extensions of R on which a class of orderings that do not admit

any real-valued utility functions can be represented by uncountably large

families of utility functions. These are the lexicographically decomposable

orderings studied in [1]. A corollary to this result yields an uncountably

large family of very simple utility functions for the lexicographic ordering
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of the real Cartesian plane. I generalise these results to the lexicographic

ordering of Rn, for every n > 2, and to lexicographic products of lexico-

graphically decomposable chains. I conclude by showing how almost all of

these results may be obtained without any appeal to the Axiom of Choice.

1 Non-Archimedean utility functions

Utility functions may be seen as strong homomorphisms from a complete pre-

order Z = 〈Z,4〉 into a numerical ordering. Although a customary choice for

the codomain of a utility function is the set R of real numbers, alternatives that

violate the Archimedean property have been studied since at least the 1950’s

(see e.g. [6]). Two common choices of a non-Archimedean codomain have estab-

lished themselves: lexicographically ordered vector spaces, usually Rn, for some

natural number n (see for instance [6], [3], [9]), and suitable non-Archimedean

extensions of the reals, obtained by an ultrapower construction (see for in-

stance [5], [11], [14])1. Two main motivations have led to employing these

alternatives to the reals: on the one hand, utility functions with values in some

non-Archimedean structure may exist even when real-valued utility functions

do not exist; on the other hand, certain qualitative setups are better modelled

by means of non-Archimedean utilities, which, for instance, allow one to assign

infinitely small numbers to negligible features of a given problem (for instance,

[11] pursues this approach in order to discriminate between main issues and

side issues in the context of expected utility theory). Both motivations come

together when the reason why real-valued utility functions do not exist may be

ascribed to the fact that the underlying preference exhibits features that cannot

consistently be captured by the reals. It is then worth looking for codomains

alternative to the reals in order to capture more faithfully the structure of the

1This last approach comes from Nonstandard Analysis, a field created by Abraham Robin-
son in the 1960’s (see [13]).
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preference to be represented. In this paper I adopt this perspective on a class

of linear orders that lack real-valued utility functions and show that each of

them has an uncountable family of utility functions on an arbitrary, elementary

extension of the real field containing positive infinitesimals. As a consequence of

this result, I also establish a connection between lexicographically ordered, real

vector spaces and elementary extensions of the reals, the two more prominent

choices of non-Archimedean codomain for utility functions. The best known

linear order from the class I consider was introduced by Debreu in [4]: it is the

lexicographic ordering of the real Cartesian plane, i.e., the chain L2 = 〈R2,42〉,

where the binary relation 42 is defined by the condition:

〈r, s〉 42 〈r′, s′〉 iff r < r′ or r = r′ and s ≤ s′.

Seen as a vector space, L2 is non-Archimedean, since there is no positive, in-

teger multiple of 〈0, 1〉 that is greater than 〈1, 0〉. This suggests that a utility

representation for L2 should assign to every vector of the form 〈0, n〉 a value

that is infinitely close to that of 〈0, 0〉. The same argument naturally extends

to encompass the class of lexicographically decomposable chains described in [2]

and studied in [1]. Since these chains are isomorphic to certain lexicographic

orders, and one may regard lexicographic orders as a linear arrangement of

clusters of infinitely close points, it is natural to associate them with a utility

function on a non-Archimedean structure. Theorem 3.2 shows that uncount-

able families of such functions always exist2. This result locally improves in

several ways the general theorem, proved by Skala in [14] and more concisely

presented by Narens in [12], to the effect that every transitive and complete

relation has a utility function on a particular ultrapower extension of the reals.

I show in section 3 that, with regard to lexicographically decomposable chains,

2To be precise, I restrict attention to the lexicographically decomposable chains of cardi-
nality 2ℵ0 . This restriction is reasonable, in view of the fact that structures whose power is
strictly greater than the power of the continuum are not of central significance to mathematical
economics
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it is possible to bypass the ultrapower construction altogether while obtaining

utility functions on an arbitrary elementary extension of the real field containing

a positive infinitesimal (i.e., no special ultrafilter has to be specified to select

the relevant elementary extensions). Furthermore, the analytical form of these

functions can be explicitly given in a remarkably simple way. This sheds further

light on the significance of [1] and [2], since the lexicographically decompos-

able chains isolated and examined in these papers do not only constitute an

important class of linear orders lacking real-valued utility functions, but also

turn out to be a class of linear orders admitting uncountably large families of

analytically specifiable utility functions on non-Archimedean extensions of the

reals. In view of the last fact, it is also possible to introduce uncountable fam-

ilies of utility functions for certain lexicographic products of linear orders, in

particular Rn, for every n > 2. This establishes an explicit connection between

the use of lexicographic, real vector spaces and elementary extensions of the

reals within utility theory: any vector-valued utility function on Rn can be con-

verted into transfinitely many utility function on an arbitrary extension of the

real field containing positive infinitesimals. To the best of my knowledge, this

connection has not been noted in the literature so far: its significance lies in

the fact that it connects two typical choices of non-Archimedean codomain for a

utility function, thus yielding some immediate extensions of existing theorems.

For example, the result recently obtained by Herzberg in [9], which establishes

the existence of certain utility functions with codomain the vector space Rn+1

(without any appeal to Nonstandard Analysis) directly implies the existence of

uncountably many utility functions on an arbitrary nonstandard extension of

the reals. The structure of the paper is as follows: in section 2 I illustrate a

basic, ultraproduct-free, construction of field-extensions of the reals; in section 3

I rely on it to prove the existence of utility functions on nonstandard extensions
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of the real field for lexicographically decomposable chains; in section 4 I extend

the same approach to lexicographic products of linear orders; in section 5 I show

how one could obtain most of the results in this paper without appealing to the

Axiom of Choice.

2 Infinitesimals and L2

The utility functions I appeal to in the remainder of the paper take values in

certain field-extensions of the reals containing positive infinitesimals. These

can be constructed from the expanded real field R = 〈R, <,+, ·, {r}r∈R〉, where

‘expanded’ refers to the fact that R is endowed with a distinct constant for

each real number. A first-order language L for R contains in its alphabet the

quantifier ∃, the connectives ∨,¬ (the remaining quantifier and connectives can

be defined in terms of those listed), open and closed brackets and the symbol

for equality, together with a relation symbol denoting <, function symbols for

the field operations and uncountably many constant symbols, each naming a

distinct real number. Let ED(R) be the elementary diagram of R, i.e., the set of

all L -sentences true in R: in particular ED(R) contains the axioms for ordered

fields. Now, consider the set C of uncountably many inequalities {r < c}r∈R,

witch c a constant symbol not in L . Since any finite subset of ED(R) ∪ C is

satisfied by R, the compactness theorem of first-order logic implies that this set

of sentences has a model ∗R, which is an ordered field and whose domain will

be denoted by ∗R. In fact, R is elementarily embeddable in ∗R and the latter

structure is, as a result, an extension of the real field, since it contains a copy of

every real and an additional positive element named by c, which is greater than

every real number. Call its multiplicative inverse ε: because c > n, for every n,

it follows (since the ordinary laws of arithmetic are in ED(R)) that 0 < ε < 1
n ,

i.e., ε is a positive infinitesimal. More generally, for every positive real number
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r, εr is a positive infinitesimal: there are therefore uncountably many of them

and their additive inverses are the negative infinitesimals. Now, if r is any real

and I the set of all infinitesimals, the set r + I = µ(r) is called the monad of

r. When r = 0, µ(r) = I and the fact that s < t implies εs < εt shows how

the ordering of R can be encoded into µ(0): by translation, this ordering can

be encoded into any monad. Intuitively, it is as if we could attach to each real

number an order-isomorphic copy of R collapsed into a monad. The immediate

significance of this remark lies in the fact that L2 may be regarded as a real

line, to each point of which a copy of R has been attached. In particular, we

may take the line in question to be y = 0: to each point on it, of coordinates

(r, 0), the vertical line x = r is attached, which is order-isomorphic to R under

the projection map (r, s) 7→ s. By collapsing each vertical line into a monad,

one obtains a ∗R-valued utility function for L2. More precisely:

Lemma 2.1. Let ε ∈ ∗R be a fixed, positive infinitesimal. Then L2 has a

continuous ∗R-valued utility function defined by the condition u(〈r, s〉) = r+ εs.

Proof. That u is a utility function follows from Theorem 3.2 in section 3. Con-

tinuity holds with respect to the order topology on L2 and the interval topology

on ∗R. To see this, it suffices to note that, relative to u, the pre-image of any

open ray in ∗R is open in L2.

This result is based on the fact that R2 admits a partition into equivalence

classes (vertical lines) that behave like monads in the lexicographic ordering.

This feature of L2 can be spelled out informally by observing that a lexicographic

ordering models a preference based on several graded criteria: when two are at

play, the first takes precedence over the second unless the alternatives being

compared are identical relative to the first criterion. In other words, however

significant the second criterion is, it can never modify a preference based on the

first criterion. This behaviour is aptly captured by a utility function that scales
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the second criterion by an infinitesimal factor, making it negligible with respect

to the first. Note that, since there are uncountably many positive infinitesimals,

there are uncountably many choices of scaling factor and this gives rise to an

uncountable family of continuous utility functions for L2 of the form described

in the lemma 1. The next section proves it as the corollary of a more general

result, which can be directly obtained from the analysis of lexicographically

decomposable chains offered in [1].

3 Lexicographic Decompositions

Suppose that Z = 〈Z,≺〉 is a countably bounded and connected chain. Count-

able boundedness amounts to the fact that there is a sequence {di}i∈N ⊆ Z

such that Z =
⋃

n,m∈N(dm, dn) and connectedness is the familiar topological

property, relative the order topology on Z. Theorem 2.3-(a) of [1] implies the

existence of a sub-chain included in Z which is order-isomorphic to R, the real

line3. The set X plays the role of the x-axis in the discussion of L2 from the

previous section. Its importance lies in the fact that it has a R-valued utility

function and, furthermore, it determines a partition of Z, which can be defined

as follows, if [z] denotes the cell of the partition that contains z ∈ Z:

[z] =
⋂

x,y∈X∧ x≺z≺y
(x, y).

Note that, in L2, the cell [〈x, 0〉] is the vertical line through 〈x, 0〉. Thus, the

partition of the lexicographic ordering of R2 is just a special case of a general

type of partition. The reader familiar with Nonstandard Analysis will have

noted that the definition of the cell [z] resembles the definition of a monad in an

internal topological space: there one considers the family of open neighborhoods

of a standard point x and intersects their ∗-images to obtain µ(x). The partitions

3The original result is stated relative to (0, 1), which is order-homeomorphic to R.
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of chains just described mirror this process and suggest that a natural utility

function for an object like Z should take values on a numerical domain that

contains infinitesimals. In order to show that this is indeed the case, it is

possible to rely on Theorem 2.3-(b) of [1], to the effect that there is an order-

isomorphism between Z and the lexicographic ordering on the set
⋃

x∈X(x×[x]).

The last set may be called the lexicographic decomposition of Z. If each cell in

the lexicographic decomposition had a R-valued utility function, then it would

be possible to represent Z on ∗R. As a result, one can convert Proposition 2.2

of [1], stated below, into an existence theorem for utility functions.

Lemma 3.1. Let Z be a non-representable chain, and let X be a representable

sub-chain X ⊂ Z so that Z admits the decomposition
⋃

x∈X{x} × [x]. If [x] is

representable for every x ∈ X, then Z is a planar chain.

A planar chain is a linear ordering one of whose subsets is order-isomorphic

to a subset of L2 without a R-valued utility function. Although the original

motivation of the above proposition was simply to describe an ordering that has

no R-valued utility functions, the information it provides suffices to deduce an

existence theorem. To state it, call a function u : Z −→ ∗R a properly ∗R-valued

utility function for Z iff the range of u is not a subset of R. Then:

Theorem 3.2. Let Z be a countably bounded chain with no largest and no small-

est element. If every cell in its lexicographic decomposition has a R-valued utility

function, then Z has uncountably many ∗R-valued utility functions.Moreover, if

Z is non-representable, then the utility functions are properly ∗R-valued.

Proof. By earlier remarks in this section, Z is order-isomorphic to the lexico-

graphical ordering LX = 〈
⋃

x∈X{x}× [x],4X〉. Here x ∈ X and X is a subchain

of Z that is order-isomorphic to R. The ordering is defined by the following

biconditional:
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〈x, y〉 4X 〈x′, y′〉 iff either x ≺ x or x = x′ and y 4 y′,

where ≺,4 are the asymmetric and symmetric part of the linear order on Z

respectively. First, fix an isomorphism u : X → R. Next, since each cell [x] has

a R-valued utility function ux, define a function u∗ for LX using the following

condition:

u∗(〈x, y〉) = u(x) + εux(y),

where y ∈ [x] and ε is a fixed, positive infinitesimal. It remains to verify that

u∗ is indeed a utility function, i.e., that:

〈x, y〉 4X 〈x′, y′〉 iff u∗(〈x, y〉) ≤ u∗(〈x′, y′〉).

Suppose first that 〈x, y〉 4X 〈x′, y′〉. By definition of lexicographic ordering this

means that either (i) x ≺ x′ or (ii) x = x′ and y 4 y′. In case (i) u(x) < u(x′)

iff u(x′) − u(x) > 0, because u is an order-isomorphism. To verify u(x) +

εux(y) < u(x′) + εux′(y′) iff u′(x) − u(x) > ε(ux(y) − ux′(y′)) it is enough to

note that u(x′) − u(x) is a positive real, larger than any infinitesimal. Thus,

certainly u∗(〈x, y〉) < u∗(〈x′, y′〉). In case (ii) x = x′ implies y, y′ ∈ [x] = [x′].

Since y, y′ are in the same cell, y 4 y′ iff ux(y) ≤ ux(y′). Multiplication by a

positive infinitesimal preserves inequalities, so u(x) + εux(y) ≤ u(x′) + εux(y′)

and, again, u∗(〈x, y〉) < u∗(〈x′, y′〉). This shows that 〈x, y〉 4X 〈x′, y′〉 implies

u∗(〈x, y〉) ≤ u∗(〈x′, y′〉). In fact, the argument just given shows that strict

inequalities are also preserved when x ≺ x (this fact will be relied upon later).

The next step is to verify that u∗(〈x, y〉) ≤ u∗(〈x′, y′〉) implies 〈x, y〉 4X 〈x′, y′〉.

To this end, assume u∗(〈x, y〉) ≤ u∗(〈x′, y′〉). By the law of excluded middle,

either x = x′ or x 6= x′. In the former case u(x) = u(x′) and y, y′ ∈ [x] hold.

Then u(x)+εux(y) ≤ u(x′)+εux(y′) implies εux(y) ≤ εux(y′) iff ux(y) ≤ ux(y′),

since positive infinitesimals have multiplicative inverses. The fact that ux is a

strong homomorphism finally yields y 4 y′ and 〈x, y〉 4x 〈x′, y′〉. If, on the other
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hand, x′ 6= x, it suffices to rule out x′ ≺ x. But x′ ≺ x implies 〈x′, y′〉 4X 〈x, y〉,

which in turn implies u∗(〈x′, y′〉) < u∗(〈x, y〉), contradicting the hypothesis. It

follows that x 4 x′ and, since x, x′ are distinct, x ≺ x′ (X is a chain), which

in turn leads to 〈x, y〉 4X 〈x′, y′〉. This concludes the verification that u∗ is a

utility function. Note that u∗ depends on a choice of infinitesimal, and there

are uncountably many possible choices. It follows that there are uncountably

many ∗R-valued utility functions for the lexicographic ordering LX . Since there

is an order-isomorphism f from Z onto LX , the composition u∗ ◦ f , for each of

uncountably many possible u∗, is a ∗R-valued utility function for Z.

Lemma 2.1 from section 2 is a special case of Theorem 3.2 because L2 is order-

isomorphic (under the obvious function) to the lexicographic decomposition:

⋃
x∈R{x} × [〈x, s〉]

which one can represent choosing u and ux from Theorem 1 to be the identity

and the projection function 〈x, s〉 7→ s respectively. In this special case it is

clear that each cell in the partition has a R-valued utility function, a fact that

has been assumed in the statement of Theorem 3.2. This assumption can be

replaced by sufficient conditions (given in Theorem 2.4 of [1]) under which a

lexicographic decomposition of a chain into cells with R-valued utility functions

exists. In order to understand how these conditions work, it is important to

bear in mind that, if Z is a countably bounded chain without extrema, then it

admits a lexicographic decomposition based on a subchain X into cells that are

intervals and, thus, connected in the interval topology. If these cells have no

real-valued utility functions, one can find a larger subchain X ′ ⊃ X that gives

rise to a lexicographic decomposition whose cells split the cells of the initial

decomposition. In this case X ′ is a refinement of X. The trick consists in finding

a condition ensuring the existence of a maximal refinement whose cells, because
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they can’t be further split, will have R-valued utility functions. The relevant

condition is stated in [1], p.101, where it is called σ-finiteness. It amounts to

the fact that, for every X determining a lexicographic decomposition, every

increasing ⊂-chain of refinements is ⊂-bounded by a countable subchain (i.e.,

there is a subchain X = {Xi}i∈N such that any X ′ in the chain is refined by an

element of X ). With this condition in place, Theorem 3.2 immediately implies

a counterpart of Theorem 2.4 from [1]:

Theorem 3.3. Let Z be a countably bounded, connected and σ-finite chain that

has no R-real valued utility functions. Then Z has uncountably many ∗R-valued

utility functions.

4 Lexicographic Products

The conditions for the existence of a lexicographic decomposition described in

the previous section make it possible to introduce ∗R-valued utility functions

for chains that cannot be embedded into the ordered reals by a strong homo-

morphism. This may be seen as a deconstructive strategy: it begins with a

particular type of chain Z and it produces an isomorphic copy that can be bro-

ken down into components with real-valued utility functions. In view of section

3, this strategy can be reversed: one can consider chains with R-valued, or in

fact ∗R-valued utility functions, and take their lexicographic product, which

will turn out to have uncountably many ∗R-valued utility functions. If A,B are

chains with domains A,B respectively, their lexicographic product, denoted by

A ◦L B, is the lexicographic ordering on the Cartesian product A × B, deter-

mined by the corresponding orderings of the given chains. The results discussed

in section 3 offer a sort of bootstrapping technique to obtain utility functions for

lexicographic products, since now it is no longer necessary to describe decom-

positions into elements that have R-valued utility functions but it is possible to
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construct lexicographic products of chains that have ∗R-valued utility functions.

The relevant procedure requires specific reference to one subset of ∗R, namely

the set F of finite numbers, defined as follows:

x ∈ F iff there is n ∈ N such that |x| < n.

In the present, special sense, finiteness is the property of not being infinitely

large. The utility functions described in the previous sections are not only ∗R-

valued but also F-valued. This restriction is necessary to collapse the ‘negligible’

components of a lexicographic ordering into monads, since the product of an

infinitesimal and an infinitely large number may be finite and not infinitesimal.

With this notion of finiteness in mind, one can adapt the main argument of

section 3 to obtain the following:

Lemma 4.1. Let A,B be chains with domains A,B respectively and suppose

that A has a R-valued utility function f and B has a F-valued utility function

g. Then there are uncountably many F-valued utility functions for A ◦L B of the

form: f + εg, where ε is a positive infinitesimal.

Proof. Let ≤A,≤B be the total orderings defined on A,B respectively. Then the

lexicographic product A ◦L B is ordered by the relation ≤AB defined as follows:

〈a, b〉 ≤AB 〈a′, b′〉 iff a <A a
′ or a = a′ and b ≤B b

′.

It suffices to verify that:

〈a, b〉 ≤AB 〈a′, b′〉 iff f(a) + εg(b) ≤ f(a′) + εg(b′).

First, suppose that 〈a, b〉 ≤AB 〈a′, b′〉. If a <A a′, then f(a) < f(a′) and

f(a), f(a′) differ by a real number. Since g(b), g(b′) ∈ F by hypothesis, εg(b), εg(b′)

are infinitesimals (because I is an ideal in the ring F) and an argument already

provided in Theorem 3.2 shows that f(a)+εg(b) < f(a′)+εg(b′). If, on the other
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hand a = a′, then f(a) = f(a′) and the result follows from the fact that multi-

plication by a positive infinitesimal preserves inequalities. To prove the converse

conditional, suppose that f(a)+εg(b) ≤ f(a′)+εg(b′) but 〈a, b〉 ≤AB 〈a′, b′〉 fails.

In this case, either a′ <A a or a′ = a and b′ <B b. By the previous part of the

proof, the first possibility cannot arise, so a = a′. In this case f(a) = f(a′)

and εg(b) ≤ εg(b′): since ε has a positive, multiplicative inverse, g(b) ≤ g(b′) iff

b ≤B b
′, a contradiction that concludes the proof.

It follows from the last lemma that L1 ◦L L2 = L3, the lexicographic ordering

of R3, is represented by uncountably many functions of the form f + εg, where

one can take f to be the identity on R and choose g such that g(〈s, t〉) = s+ εt,

in the light of Lemma 2.1. Varying the choice of ε in f + εg, one obtains

uncountably many ‘quadratic’ utility functions for L3. The choice of ε described

above yields a utility function defined by the following condition: u(〈r, s, t〉) 7→

r + εs + ε2t. The same strategy works on L ◦L L3 = L4 and, after sufficiently

many iterations, it applies to Ln, for every n ∈ N. A connection thus arises

between lexicographically ordered real vector spaces and nonstandard extension

of the reals, which is spelled out in the following:

Corollary 4.2. Ln has uncountably many, continuous utility functions on an

arbitrary field-extension of the reals, each of which satisfies an equation of the

form:

u(〈r1, . . . , rn〉) = r1 + εr2 + . . .+ εn−1rn.

Here continuity can be established for the relevant interval topologies by noting

that a strongly order-preserving function between two chains is continuous. The

construction of utility functions for lexicographic orderings is not restricted to

the real case, since one easily obtains a further corollary, which applies to the

abstract setting described in section 3:
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Corollary 4.3. Let Z be as in theorem 3.3 and let X ⊆ Z determine a maximal

partition of X into representable cells. Then there are uncountably many ∗R-

valued utility functions for X ◦L Z.

A natural question is whether families of utility functions exist for lexicographic

products of lexicographically decomposable chains like those satisfying the hy-

potheses of Theorem 3.3. The answer, in the affermative, is most clearly articu-

lated by focusing at first on the lexicographic product Z2 = Z◦L Z = 〈Z2,≺Z2〉,

where Z is a lexicographically decomposable chain. In view of Theorem 3.2, the

following inequalities hold:

u∗ ◦ f(z) = u∗(〈xz, yz〉) = g(xz) + εhxz
(yz),

where 〈xz, yz〉 is the image of z ∈ Z under some isomorphism f from Z into

its lexicographic decomposition, yz ∈ [xz] and g is real-valued. Keeping f fixed

and letting 〈z1, z2〉 be a generic element of Z2, it is now possible to define a

function u by the condition u(〈z1, z2〉) 7→ u∗f(z1)+ε2u∗f(z2). It can be verified

that u is a utility function for Z2 by exploiting of the following equalities:

u(〈z1, z2〉) = u∗f(z1) + ε2u∗f(z2)

= u∗(〈xz1 , yz1〉) + ε2u∗(〈xz2 , yz2〉)

= g(xz1) + εhxz1
(yz1) + ε2(g(xz2) + εhxz2

(yz2)),

where g, hxzi
(i = 1, 2) are real-valued functions. The biconditional to be verified

is then:

〈z1, z2〉 4Z2 〈w1, w2〉 iff u(〈z1, z2〉) ≤ u(〈w1, w2〉),

where the right-hand side in expanded form is:

g(xz1) + εhxz1
(yz1) + ε2(g(xz2) + εhxz2

(yz2)) ≤

g(xw1
) + εhxw1

(yw1
) + ε2(g(xw2

) + εhxw2
(yw2

)).
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The verification is tedious because it splits into several cases, but not substan-

tially different from the proof of Theorem 3.2. For example, it may be assumed

that 〈z1, z2〉 ≺Z2 〈w1, w2〉 holds and that, in addition z1 ≺ w1. In this case,

since f is an isomorphism from Z onto its lexicographic decomposition, the in-

equality f(z1) ≺ f(w1) holds4. This can be rewritten as 〈xz1 , yz1〉 ≺ 〈xz2 , yz2〉.

If xz1 ≺ xz2 , then g(xz2)− g(xz1) is a positive real number and this suffices to

conclude that, in this particular case, u(〈z1, z2〉) < u(〈w1, w2〉). If xz1 = xz2 ,

then it follows that yz1 ≺ yz2 and that yz1 , yz2 ∈ [xz1 ]. Some field arithmetic

eventually yields u(〈z1, z2〉) < u(〈w1, w2〉). The other cases are dealt with simi-

larly. In the light of the existence of utility functions for Z2, one may adapt the

argument just sketched to the lexicographic product Z ◦L Z2 = Z3. The relevant

family of utility functions is now described by the condition:

u(〈z1, z2, z3〉) =

g(xz1) + εhxz1
(yz1) + ε2(g(xz2) + εhxz2

(yz2)) + ε4(g(xz3) + εhxz3
(yz3)).

In general:

Lemma 4.4. Let Z be as in Theorem 3.3 and f be an isomorphism from Z

into its lexicographic decomposition. Then Zn has uncountably many ∗R-valued

utility functions satisfying the equality:

u(〈z1, . . . , zn〉) = g(xz1) + εhxz1
(yz1) + ε2g(xz2) + ε3hxz2

(yz2) + . . .+

ε2(n−1)g(xzn) + ε2(n−1)+1hxzn
(yzn).

5 Dispensing with Choice

The construction of a field-extenstion ∗R relies on an application of the com-

pactness theorem of first-order logic for uncountable languages. As such, it

presupposes the Axiom of Choice (AC). The theorems from sections 3 and 4,

4Here ≺ is the order relation on the lexicographic decomposition of Z.
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however, can still be proved without appealing to AC because they do not re-

quire field-extensions of the reals, strictly speaking, but only extensions with

positive infinitesimals. In other words, one may renounce some field structure

in order not to invoke AC, and rely on a numerical domain that, despite not be-

ing field, includes a copy of the real field as well as positive infinitesimals. This

can be done in an easy and surprisingly fruitful way, pointed out and developed

by James Henle in [7] and [8]. The framework described by Henle is known as

Non-nonstandard analysis: only its basics are needed in the present context.

Henle’s leading idea amounts to breaking off the ultrapower construction of a

nonstandard model of the real field just before introducing the ultrafilter, whose

existence is guaranteed by AC. In other words, one may just work with the ring

R of all real-valued sequences and determine an equivalence relation ∼ on them

as follows:

a ∼ b iff there is n such that for every m > n am = bm

where a, b are two real-valued sequences. The ∼-equivalence classes determine

the set of non-nonstandard reals ∗R. Although still a ring, ∗R is not totally

ordered when one defines order by the stipulation:

a ≤ b iff there is n such that for every m > n am ≤ bm.

where a,b are ∼-equivalence classes containing a, b respectively. Furthermore,

∗R has zero divisors and thus is not a field. On the other hand, it contains

positive infinitesimals: one of them is the equivalence class e containing the

sequence defined by the condition an = 1
n , which is positive according to the

definition of ordering given above and smaller than any ∼-class containing a

positive constant sequence, i.e., the counterpart of a standard real number in

∗R. The theorems from sections 3 and almost all theorems from section 4

continue to hold if one works with ∗R-valued functions. On the other hand,
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the proofs of continuity in lemma 2.1 and corollary 4.2 rely on the fact that the

codomain of a utility function should be a linear order.
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