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Fig. 1. A machine learning approach is used to learn a regression function mapping phoneme labels to speech animation. Our approach generates continuous, 

natural-looking speech animation for a reference face parameterization that can be retargeted to the face of any computer generated character. 

 

We introduce a simple and efective deep learning approach to automatically 

generate natural looking speech animation that synchronizes to input speech. 

Our approach uses a sliding window predictor that learns arbitrary non- 

linear mappings from phoneme label input sequences to mouth movements 

in a way that accurately captures natural motion and visual coarticulation 

efects. Our deep learning approach enjoys several attractive properties: it 

runs in real-time, requires minimal parameter tuning, generalizes well to 

novel input speech sequences, is easily edited to create stylized and emotional 

speech, and is compatible with existing animation retargeting approaches. 

One important focus of our work is to develop an efective approach for 

speech animation that can be easily integrated into existing production 

pipelines. We provide a detailed description of our end-to-end approach, 

including machine learning design decisions. Generalized speech animation 

results are demonstrated over a wide range of animation clips on a variety 

of characters and voices, including singing and foreign language input. Our 

approach can also generate on-demand speech animation in real-time from 

user speech input. 

CCS Concepts: · Computing methodologies → Neural networks; Pro- 

cedural animation; Motion processing; Real-time simulation; Visual an- 

alytics; 

Additional Key Words and Phrases: Speech Animation, Machine Learning. 

1 INTRODUCTION 

Speech animation is an important and time-consuming aspect of 

generating realistic character animation. Broadly speaking, speech 

animation is the task of moving the facial features of a graphics (or 

robotic) model to synchronize lip motion with the spoken audio 

and give the impression of speech production. As humans, we are 

all experts on faces, and poor speech animation can be distracting, 

unpleasant, and confusing. For example, mismatch between visual 

and audio speech can sometimes change what the viewer believes 

they heard [McGurk and MacDonald 1976]. High-idelity speech 

animation is crucial for efective character animation. 

Conventional speech animation approaches currently used in 

movie and video game production typically tend toward one of 

two extremes. At one end, large budget productions often employ 

either performance capture or a large team of professional anima- 

tors, which is costly and diicult to reproduce at scale. For example, 

there is no production level approach that can cost-efectively gen- 

erate high quality speech animation across multiple languages. At 

the other extreme, low-budget, high-volume productions may use 

simpliied libraries of viseme lip shapes to quickly generate lower- 

quality speech animation. 

More recently, there has been increasing interest in developing 

data-driven methods for automated speech animation to bridge 

these two extremes, for example [De Martino et al . 2006; Edwards 

et al. 2016; Taylor et al. 2012]. However, previous work requires pre- 

deining a limited set of viseme shapes that must then be blended 

together. Simple blending functions limit the complexity of the 

dynamics of visual speech that can be modeled. Instead, we aim to 

leverage modern machine learning methods that can directly learn 

the complex dynamics of visual speech from data. 

We propose a deep learning approach for automated speech ani- 

mation that provides a cost-efective means to generate high-idelity 

speech animation at scale. For example, we generate realistic speech 
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animation on a visual efects production level face models with over 

100 degrees of freedom. A central focus of our work is to develop 

an efective speech animation approach that may be seamlessly 

integrated into existing production  pipelines. 

Our approach is a continuous deep learning sliding window pre- 

dictor, inspired by [Kim et al. 2015]. The sliding window approach 

means our predictor is able to represent a complex non-linear re- 

gression between the input phonetic description and output video 

representation of continuous speech that naturally includes context 

and coarticulation efects. Our results demonstrate the improvement 

of using a neural network deep learning approach over the decision 

tree approach in [Kim et al. 2015]. The use of overlapping sliding 

windows more directly focuses the learning on capturing localized 

context and coarticulation efects and is better suited to predicting 

speech animation than conventional sequence learning approaches, 

such as recurrent neural networks and LSTMs [Hochreiter and 

Schmidhuber 1997]. 

One of the main challenges using machine learning is properly 

deining the learning task (i.e., what are the inputs/outputs and 

training set) in a way that is useful for the desired end goal. Our 

goal is an approach that makes it easy for animators to incorporate 

high-idelity speech animation onto any rig, for any speaker, and 

in a way that is easy to edit and stylize. We deine our machine 

learning task as learning to generate high-idelity animations of 

neutral speech from a single reference speaker. By focusing on a 

reference face and neutral speech, we can cost-efectively collect a 

comprehensive dataset that fully captures the complexity of speech 

animation. The large training data set allows us to reliably learn 

the ine-grained dynamics of speech motion using modern machine 

learning approaches. In contrast to previous work on procedural 

speech animation [De Martino et al. 2006; Edwards et al. 2016; Tay- 

lor et al. 2012], our approach directly learns natural coarticulation 

efects from data. Deining our input as text (as phoneme labels) 

means we learn a speaker independent mapping of phonetic context 

to speech animation. We require only of-the-shelf speech recogni- 

tion software to automatically convert any spoken audio, from any 

speaker, into the corresponding phonetic description. Our automatic 

speech animation therefore generalizes to any input speaker, for 

any style of speech, and can even approximate other languages. In 

summary, our contributions include: 

• A deinition of a machine learning task for automatically gen- 
erating speech animation that may be integrated into existing 
pipelines. In particular, we deine the task to be speaker    inde- 

pendent and generate animation that can be retargeted to any 

animation rig. 

• A deep learning approach that directly learns a non-linear 
mapping from the phonetic representation to visual speech in a 

way that naturally includes localized context and coarticulation 

efects, and can generate high-idelity speech    animation. 

• An empirical evaluation comparing against strong baselines. 
We include both quantitative and qualitative evaluations demon- 

strating the improved performance of our approach. 

• A demonstration of the ease with which our approach can be 
deployed. We provide a wide range of animation clips on a vari- 
ety of characters and voices, including examples of singing and 

foreign languages, as well as a demonstration of on-demand 

speech animation from user input audio. 
 

2 RELATED WORK 

Production quality speech animation is often created manually by 

a skilled animator, or by retargeting motion capture of an actor. 

The advantage of hand animation is that the artist can precisely 

style and time the animation, but it is extremely costly and time 

consuming to produce. The main alternative to hand animation is 

performance-driven animation using facial motion capture of an 

actor’s face [Beeler et al. 2011; Cao et al. 2015, 2013; Fyfe et al. 2014; 

Huang et al. 2011; Li et al. 2013; Weise et al. 2011; Weng et al. 2014; 

Zhang et al. 2004]. Performance-driven animation requires an actor 

to perform all shots, and may generate animation parameters that 

are complex and time consuming for an animator to edit (e.g. all 

parameters are keyed on every frame). In contrast, our goal is to 

automatically generate production quality animated speech for any 

style of character given only audio speech as input. 

Prior work on automated speech animation can be categorized 

into three broad classes: interpolating single-frame visual units, con- 

catenating segments of existing visual data, and sampling generative 

statistical models. 

Single-frame visual unit interpolation involves key-framing static 

target poses in a sequence and interpolating between them to gen- 

erate intermediate animation frames [Cohen et al. 1994; Ezzat et al. 

2002]. One beneit of this approach is that only a small number of 

shapes (e.g. one per phoneme) need to be deined. However, the 

realism of the animation is highly dependent on how well the in- 

terpolation captures both visual coarticulation and dynamics. One 

can either hand-craft such interpolation functions [Cohen et al. 

1994] which are time consuming to reine and ad-hoc, or employ a 

data-driven approach based on statistics of visual speech parame- 

ters [Ezzat et al. 2002]. These approaches make strong assumptions 

regarding the static nature of the interpolant and do not address 

context-dependent coarticulation. This issue is partially considered 

in [Ezzat et al. 2002], which uses covariance matrices to deine how 

much a particular lip shape is allowed to deform, but the covariance 

matrices themselves are ixed which can lead to unnatural deforma- 

tions. In contrast, our method generates smooth animation without 

making strong assumptions about the distribution of visual  speech. 

Sample-based synthesis stitches together short sequences of exist- 

ing speech data that correspond either to ixed-length (e.g. words or 

phonemes) [Bregler et al. 1997; Cao et al. 2005; Liu and Ostermann 

2012; Mattheyses et al. 2013; Theobald and Matthews 2012; Xu et al. 

2013] or variable length [Cosatto and Graf 2000; Edwards et al. 2016; 

Ma et al. 2006; Taylor et al. 2012] units. Unit selection typically 

involves minimizing a cost function based on the phonetic context 

and the smoothness. One limitation is that the context typically 

considers only the phoneme identity, and so a large amount of data 

is required to ensure suicient coverage over all contexts. Sample- 

based animation is also limited in that it can only output units seen 

in the training data. In contrast, our approach is signiicantly more 

data eicient, and is able to learn complex mappings from phonetic 

context to speech animation directly from training   data. 

A more lexible approach is to use a generative statistical model, 

such as GMMs [Luo et al. 2014], switching linear dynamical systems 



 

 

 

[Englebienne et al. 2007], switching shared Gaussian process dynam- 

ical models [Deena et al. 2010], recurrent neural networks [Fan et al. 

2015], or hidden Markov models (HMMs) and their variants [An- 

derson et al. 2013; Brand 1999; Fu et al. 2005; Govokhina et al. 2006; 

Schabus et al. 2011; Wang et al. 2012; Xie and Liu 2007]. During 

training of a HMM-based synthesiser, context-dependent decision 

trees cluster motion data and combine states with similar distribu- 

tions to account for sparsity of the phonetic contexts in the training 

set. Synthesis involves irst traversing the decision trees to select 

appropriate models and then generating the maximum likelihood pa- 

rameters from the models. Models are typically trained using static 

features augmented with derivatives to constrain the smoothness of 

the HMM output by ensuring that the velocity and acceleration of 

the generated static features match the maximum likelihood veloc- 

ity and acceleration. However, HMM-based synthesis may appear 

under articulated because of the limited number of states and the 

smoothness constraints on the parameters [Merritt and King 2013]. 

Within the context of previous work, our sliding window deep 

learning approach addresses all the above limitations. We  employ  

a complex non-linear predictor to automatically learn the impor- 

tant phonetic properties for co-articulation and context. Our ap- 

proach directly learns to predict a sequence of outputs (i.e., an 

animation sequence), and so we can directly model local dynamics 

of visual speech while making minimal assumptions. As such, our 

approach avoids the need for ad-hoc interpolation by directly learn- 

ing a mapping of arbitrary phonetic (sub-)sequences to animation 

(sub-)sequences. 

Recently, deep learning has been successfully applied to problems 

in the domains of computer vision [Krizhevsky et al. 2012], natural 

language processing [Collobert et al. 2011], and speech recognition 

[Graves and Jaitly 2014]. It has also been very efective in sequence 

generation problems, including: image-caption generation [Xu et al. 

2015], machine translation [Bahdanau et al. 2014], and speech syn- 

thesis [van den Oord et al. 2016]. 

From a machine learning perspective, our setting is an instance 

sequence-to-sequence prediction [Fan et al. 2015; Kim et al. 2015; 

Sutskever et al. 2014]. There are two high level approaches to making 

sequence-to-sequence predictions, sliding window models [Kim et al. 

2015] versus recurrently deined models [Fan et al. 2015; Sutskever 

et al. 2014]. The former emphasizes correctly modeling the local con- 

text and ignores long-range dependences, whereas the latter empha- 

sizes capturing long-range dependences using a low-dimensional 

state that gets dynamically updated as the model processes the in- 

put sequence. We employ a sliding window architecture, inspired 

by [Kim et al. 2015], which better its the requirements of speech 

animation. We discuss this further in Section 5.1. 

 

3 APPROACH OVERVIEW 

We make the following requirements for our speech animation ap- 

proach in order for it to be easily integrated into existing production 

pipelines: 

 

(1) High Fidelity. The generated animations should accurately 

relect complex speaking patterns present in visible speech 

motion, such as co-articulation  efects. 

 

 
 

Fig. 2. An overview of our system. See Section 4 for details for dataset, 

Section 5 for details of training and prediction, and Section 6 for details of 

the retargeting. 

 
 

 
(2) Speaker Independent. The system should not depend on the 

speciic speaker, speaking style, or even the language being 

spoken. Rather, it should be able to generate speech anima- 

tion synchronized to any input  speech. 

(3) Retargetable and Editable. The system should be able to retar- 

get the generated animations to any facial rig. Furthermore, 

the retargeted animations should be easy to edit and stylize 

by animators. 

(4) Fast. The system should be able to generate animations 

quickly, ideally in real-time. 

Figure 2 depicts an overview of our approach. To satisfy high 

idelity (Requirement 1), we take a data-driven approach to accu- 

rately capture the complex structure of natural speech animation. To 

keep the learning problem compact, we train a predictor to generate 

high-idelity speech animation for a single reference face model. 

By learning for a single face, we can control for speaker-speciic 

efects, and focus the learning on capturing the nuances of speech 

animation. One practical beneit of this approach is that we can cost- 

efectively collect an appropriate training set (i.e., for just a single 

speaker) that comprehensively captures a broad range of speech 

patterns. This approach also satisies being retargetable and editable 

(Requirement 3), since it is straightforward to retarget high-quality 

speech animation from a single reference face to any production 

rig, as well as import the animation into editing software such as 

Autodesk Maya. We discuss in Section 5 speciic design decisions of 

our machine learning approach in order to learn to generate high 

idelity animations in real-time (Requirement 4). 

To satisfy being speaker independent (Requirement 2), we train 

our predictor to map input text (as a phoneme transcript) to speech 

animation, rather than mapping directly from audio features. After 

training, we can use any of-the-shelf speech recognition    software 
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to convert spoken audio into a phonetic transcript. We describe in 

Section 5.2 our extended input phoneme representation. 
More formally, let x denote an input phoneme sequence that we 

wish to animate. Our goal is to construct a predictor h(x) := y that 

can predict a realistic animation sequence y for any input x. Note 

that y corresponds to the speciic reference face model. A training 

set of (x, y) pairs collected from the reference speaker is used for 

training (see Section 4). In general, h can be complex and learn 
complex non-linear mappings from x to y (see Section 5). 

After h is learned, one can perform a one-time pre-computation 

of any retargeting function from the reference face model to any 

character CG model of any rig parameterization. Afterwards, we 

can automatically and quickly make predictions to the retargeted 

face for any input phoneme sequence. In summary, our pipeline is 

described as follows: 

 
Training: 

(1) Record audio and video of a reference speaker reciting a 

collection of phonetically-balanced sentences. 

(2) Track and parameterize the face of the speaker to create the 
reference face animation model y. 

(3) Transcribe the audio into phoneme label sequences  x. 
(4) Train a predictor h(x) to map from x to the corresponding 

animation parameters y. 

(5) Pre-compute a retargeting function to a character CG model 

(e.g., using existing retargeting techniques). 
 

Animation: 

(1) Transcribe input audio into a phoneme sequence x (e.g., via 

of-the-shelf speech recognition software). The input can be 

from any language and any speaker. 

(2) Use h(x) to predict the animation parameters y of the refer- 

ence face model corresponding to x. 

(3) Retarget y from the reference face model to a target CG 

model (can be repeated for multiple target rigs). 

 
Note that Steps 1-4 during Training are performed only once for 

all use cases. Step 5 needs to be pre-computed once for each new 

target face model. Given a transcribed audio sequence (Step 1 dur- 

ing Animation), our approach can then automatically generate the 

accompanying visual speech animation in real-time. 

Section 4 describes the training data. Section 5 describes our deep 
learning sliding window approach. Section 6 describes  retargeting 
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Fig. 3. (a) The 34 vertices of the AAM shape component. (b) The first three 

modes of variation (highest energy) in the AAM shape component shown 

at ±3 standard deviations about the mean. (c) The first three modes of 

variation of the combined AAM model shown at ±3 standard deviations 

about the mean. 
 
 
 

 
The TIMIT corpus was designed as a phonetically diverse speech 

training dataset and achieves high coverage of the relevant coartic- 

ulation efects while minimizing the amount of speech recording 

required. 

 
4.1 Reference Face Parameterization 

The video data of KB-2k is compactly parameterized using the coef- 

icients of linear models of lower facial shape and appearance that 

an Active Appearance Model (AAM) optimizes to track the video 

frames [Cootes et al. 2001; Matthews and Baker 2004]. The shape 

component represents N = 34 vertices of the lower face and jaw, s = 

{u1, v1, u2, v2, ..., uN , vN }  , as the linear model, s = s0 + 
.

i=1 sipi , 
using m  = 16 modes to capture 99% of shape variation, see Fig- 

ure 3(b). The mean shape is s0, each si is a shape basis vector, and 

the shape parameters are pi . 

The appearance model is separated into k = 2 non-overlapping 

regions Ak (u), where u represents the set of 40 thousand (u, v) 
pixel coordinates sampled at s0. Using two regions allows the pixels 

within the inner mouth area (when visible) to vary independently 

of the remaining face pixels of the lips and jaw, Ak (u) = Ak (u) + .n       k   k k 

i=1 λi Ai (u). The mean appearance of each region is A0 , the basis 
vectors Ak , and appearance parameters λk . 

i i 

approaches. For speech-to-text transcription, we used either of-the- 

shelf software such as the Penn Phonetics Lab Forced Aligner [Yuan 

and Liberman 2008] that is based on the HTK toolbox [Young et al. 

2006], or manual transcription in special cases. 

 

4 AUDIO-VISUAL SPEECH TRAINING DATA 

For our training set, we use the existing KB-2k dataset from [Taylor 

et al. 2012]. KB-2k is a large audio-visual dataset containing a single 

The reference face representation, y, is a q = 104 dimensional de- 

scription of both deformation and intensity changes of a human face 

during speech described as a linear projection of concatenated shape 

and appearance parameters. An appropriate weight, w, balances the 

energy diference of intensity and shape parameters [Cootes et al. 

2001], 
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actor reciting 2543 phonetically diverse TIMIT [Garofolo et al. 1993] 
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and captured at 1080p29.97. All sentences in the dataset have been 

manually annotated in the Arpabet phonetic code. 
The irst three modes of joint variation, ji, are shown in Figure 3(c). 

Complete details are included in [Taylor et al. 2012]. 
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gether (ŷ 1, ŷ 2, . . . , ŷT ) using the frame-wise mean (Figure 
4(e)). 

Since the mapping from phonetic subsequences to animation sub- 

sequences can be very complex, we instantiate h using a deep neural 
(b)   x̂1, x̂2, . . . 
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network. Our learning objective is minimizing square loss between 

the ground truth ixed-length subsequence and its corresponding 

prediction outputs among training data. 
 

5.1 Deep Learning Details & Discussion 

Deep learning approaches have become popular due to their ability 

to learn expressive representations over raw input features, which 

can lead to dramatic improvements in accuracy over using hand- 

crafted features [Krizhevsky et al. 2012]. 

For our experiments, we use a fully connected feed forward neu- 

ral network with a (sliding window) input layer connected to three 

fully connected hidden layers and a inal output layer. There are 
(e) y 0 

-50 

 

 

 

2 4 6 8 10 12 14 16 18 20 22 24 

Frame number 

3000 hidden units per hidden layer, each using a hyperbolic tangent 

transfer function. We employ standard mini-batch stochastic gradi- 

ent descent for training, with mini-batch size of 100. To counteract 
overitting, we use dropout [Srivastava et al . 2014] with 50%  prob- 

Fig. 4. Depicting our deep learning sliding window regression pipeline. We 

start with a frame-by-frame sequence of phonemes x as input (a). We convert 

x into a sequence of overlapping fixed-length inputs (x̂1, x̂2, . . .) (b). We 

apply our learned predictor to predict on each x̂i  (c), which results in a 

sequence of overlapping fixed-length outputs (ŷ 1, ŷ 2, . . .) (d). We blend 

(ŷ 1, ŷ 2, . . .) by averaging frame-wise to arrive at our final output y (e). Note 

the center frame of ŷ i  is highlighted, but all predicted values contribute to 

y. Only the first predicted parameter value is shown for clarity. 

 
 

5 DEEP LEARNING SLIDING WINDOW REGRESSION 

Our sliding window neural network deep learning approach is in- 

spired by [Kim et al. 2015], and is motivated by the following as- 

sumptions. 

Assumption 1. Coarticulation efects can exhibit a wide range 

of context-dependent curvature along the temporal domain. For ex- 

ample, the curvature of the irst AAM parameter, Figure 4(e), can 

vary smoothly or sharply depending on the local phonetic context, 

Figure 4(a). 

Assumption 2. Coarticulation efects are localized, and do not 

exhibit very long range dependences. For example, how one articulates 

the end of łpredictionž is efectively the same as how one articulates the 

end of łconstructionž, and does not depend (too much) on the beginning 

of either word. 

These assumptions motivate the main inductive bias in our learn- 

ing approach, which is to train a sliding window regressor that learns 

to predict arbitrary ixed-length subsequences of animation. Figure 4 

depicts our prediction pipeline, which can be summarized  as: 

(1) Decompose the input phonetic sequence x into a sequence of 

overlapping ixed-length inputs (x̂ 1, x̂ 2, . . . , x̂T ) of window 

size Kx (Figure 4(b)). 

(2) For each x̂ j , predict using h, resulting in a sequence of over- 

ability. The inal output layer is standard multi-linear regression 

trained to minimize the squared loss. One can train this model using 

any of-the-shelf deep learning platform.1 

As mentioned earlier, the key property of our deep learning slid- 

ing window approach is that it can jointly predict for multiple frames 

simultaneously, which is directly motivated by the assumption that 

we should focus on capturing local temporal curvature in visual 

speech. One can equivalently view our sliding window predictor as 

a variant of a convolutional deep learning  architecture. 

In contrast, many recent deep learning approaches to sequence- 

to-sequence prediction use recurrent neural networks (and their 

memory-based extensions) [Fan et al. 2015; Sutskever et al. 2014], 

and model such dependencies indirectly by propagating information 

from frame to frame via hidden unit activations and, in the case of 

LSTMs, a state vector. While RNNs and LSTMs have the capacity 

to capture complex temporal curvature, their inductive bias is not 

necessarily aligned with our modeling assumptions, thus potentially 

requiring a large amount of training data before being able to reliably 

learn a good predictor. Instead, we focus the learning on capturing 

neighborhoods of context and coarticulation efects. We show in 

our experiments that the sliding window architecture dramatically 

outperforms LSTMs for visual speech animation. 

Our approach has two tuning parameters,Kx and Ky . The input 

window length Kx must be large enough to capture the salient 

coarticulation efects, and the output window length Ky must be 
large enough to capture the salient local curvature of y. For example, 

making Kx too small will not allow the model to disambiguate 

between two plausible coarticulations (due to the disambiguating 

phoneme lying outside the input window), and having Ky be too 

small can lead to noisy predictions. However, the larger that Kx 

and Ky are, the more training data is required to learn an accurate 

model since the intrinsic complexity of the model class (and thus 

risk of overitting to a inite training set) increases with Kx and Ky . 

lapping ixed-length outputs (ŷ 1, ŷ 2, . . . , ŷT ), each of win-    
dow size Ky (Figure 4(c) and Figure 4(d)). 1 We used Keras (http://keras.io/) with Theano [Bastien et al. 2012] 
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Fig. 5. Example linguistically motivated indicator features used to augment 

the phoneme label input features. 

 

 
We ind that Kx and Ky are straightforward to tune, in part due 

to how quickly our model trains. From our experiments, we ind 

Kx = 11 and Ky = 5 give the best results on our training and test 

sets. 
 

5.2 Feature Representation 

The inal major design decision is the choice of feature representa- 

tion. The most basic representation is simply a concatenated feature 

vector of phoneme identity indicator variables per input frame. Be- 

cause our dataset contains 41 phonemes, this would result in    a 

41 × Kx dimensional input feature vector to represent each input 
subsequence x̂ . We call this the raw feature representation. 

We also incorporated a linguistically motivated feature represen- 

tation. These are all indicator features that correspond to whether a 
certain condition is satiied by the input subsequence x̂ . We proce- 

durally generate three groups of  features: 

• Phoneme identiftcation spanning speciftc locations. Ev- 

ery feature in this group corresponds to an indicator function  
of whether a speciic phone spans a speciic set of frames.  E.g., 

łDoes the phone /s/ span frames j through k of the input subse- 

quence?ž 

• Phoneme attribute category at a speciftc location. Every 
feature in this group corresponds to an indicator function of 

whether a phone belonging to a speciic category at a speciic 

frame location. E.g., łIs the phone at frame j of the input a 

nasal consonant?ž 

• Phoneme transitions at speciftc locations. Every feature 
in this group corresponds to an indicator function of   whether 

two adjacent frames correspond to a speciic type of phoneme 

transition. E.g., łAre the phones at k-th and k + 1-th input 

frames in a speciic cluster of consonant-vowel pairs?ž 

Figure 5 shows some example queries. In our experiments, we found 

that using linguistically-motivated features ofered a small improve- 

ment over using just the raw features. The supplementary material 

contains a full expansion of all the linguistic  features. 

 

6 RIG-SPACE   RETARGETING 

To generalize to a new output face model the predicted animation 

must be retargeted. The AAM reference face representation de- 

scribed in Section 4.1 captures both shape and appearance changes 

(e.g. teeth and tongue visibility) during speech and any potentially 
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Fig. 6. a) Four modes of the reference shape model at ±3σ from the mean 

create eight speech retargeting shapes. b) Corresponding poses transferred 

to a variety of face rigs by an artist. 
 
 

to compute animation parameters for any rig implementation and 

character style. 

Retargeting approaches that are of particular interest are those 

that can be pre-computed once by exploiting the known subspace of 

facial motion captured by the AAM representation. To accomplish 

this, the retargeting function must be well-deined over the entire 

range of poses that the reference face model can take. One efective 

approach is to use piece-wise linear retargeting where a small set 

of poses is manually mapped from the reference face model to the 

target face model. However, we note that any other retargeting 

approach may be used. 

Our implementation pre-computes a retargeting function that 

spans the animation space of the neural network by manually posing 

a subset of the shape bases, si , of the reference AAM representation 

and the mean shape, s0, on a target character. We use the irst four 

shape modes for retargeting as these modes describe the most sig- 

niicant motion (91% energy) of the lower face and are interpretable 

by an animator. 

To better represent non-linear behavior on the target rig we pose 

the output character at both +3 and −3 standard deviations from the 
mean, resulting in a set of eight poses, s−3,  +3, . . . , s−3, s+ , where        1 1 4 4 

complex and content-dependent retargeting function may be  used su 
= s0 + sk ∗ u

√
pk is relative to the mean pose, s0. 

• Does phone /s/ span L input frames of the subsequence 
starting from the k-th frame? (position, identiication and 
length of span) 

• Is the phone at k-th input frame a nasal consonant? (at- 
tribute) 

• Are the phones at k-th and k+1-th input frames in a speciic 
cluster of consonant-vowel pairs? (transition  category) 



 

 

 

Figure 6 depicts an example retargeting process. For each of eight 

retargeting poses of the reference face, we create a one-time corre- 

sponding pose on each of the target rigs. We ind that it is straightfor- 

ward to pose these shapes manually, largely due to the fact that the 

basis shapes in the reference face are easy to interpret. For example, 

the irst mode corresponds to how open the mouth is. 
The rig parameters corresponding to the eight poses (efectively 

rig eigenvectors) are stored, giving R = {r−3, r+3, . . . , r−3,  +3 }, rel- r 

(who is not the reference speaker used for training). The second row 

shows the generated speech animation on the reference face model, 

and the inal rows show the animation retargeted to the example 

face rigs. 

Figure 9 shows neutral speech animation to a target rig with 

expression stylization added as a post-process by an animator. It is 

straightforward to import our speech animations into standard ani- 
mation editing software such as Maya to create edited and stylized 

1 1 4 4 

ative to the mean pose r0. Subsequently predicted speech animation 
from the neural network can be directly transferred to the target   

rig by forming linear combinations of columns of R (i.e. rig-space 

interpolation). The 8-dimensional weight vector, w, that determines 

the contribution of each pose is calculated by: 

wu  
= max(  

p̂k             0) (2) 

k u
√

pk 
,
 

where p̂k is the shape component of the neural network prediction 

and u ∈ {−3, +3} dependent on whether the pose is associated with 
a negative or positive deviation from the mean. To  retarget the 

predicted pose to a character, the rig parameters are combined as 

follows: 

Rt = (R − r0 )w + r0 (3) 

The initial character setup is only performed once for each new 

character and is independent of how the rig is implemented (for 

example, blend-shapes, deformer based, etc.). Afterwards the ani- 

mation pipeline is fully automatic. Examples of animation created 

using this rig-space retargeting approach are shown in the supple- 

mentary video. Rig-space retargeting is a simple pre-computable 

approach that captures the energy of speech articulation and yields 

consistently high quality animation. For well rigged characters it is 

easy for an animator to edit the resulting neutral speech animation, 

for example to overlay an emotional expression. 

Other retargeting approaches are possible, and by design, indepen- 

dent of our speech animation prediction approach. Mesh deforma- 

tion transfer [Sumner and Popović 2004] may be used to automate 

retargeting of reference shapes for rig-space deformation for exam- 

ple. Deformation transfer could also be used per-frame to transfer 

prediction animation to an un-rigged character   mesh. 
 

7 RESULTS 

For visual inspection we include frames of example predicted speech 

animations. Please refer to the supplementary video for animation 

results. 

Figure 7 shows how well our neural network model performs in 

predicting the speech animation of the original reference speaker. 

The input is one of the held-out sentences of the reference speaker. 

The resulting predicted speech animation can be directly compared 

to the (unseen) original video. We see that our approach is able to 

accurately capture the salient lip and jaw movements. In general, 

our approach tends to slightly under articulate compared to the 

original video2 ś however this may be compensated for by scaling 
up the motion during retargeting if required (we do  not). 

Figure 8 shows the full sequence of intermediate animations 

within the prediction pipeline. The irst row shows the input speaker 
 

 

2 This is common to all machine learning approaches due to the need for regularization 

to prevent overitting and enable generalizing to new    inputs. 

inal animations. 
 

8 EVALUATION 

We present an empirical analysis evaluating our approach using 

both quantitative and subjective measures against several strong 

baselines. We test on not only the held-out test sentences from the 

KB-2k training dataset, but also on completely novel speech from 

diferent speakers. Traditionally, machine learning approaches are 

evaluated on test examples drawn from the same distribution as the 

training set. However, testing on novel speakers is a much stronger 

test of generalizability, and is required for production quality speech 

animation. Because we do not have ground truth, we evaluate that 

setting solely via subjective evaluation (i.e., a user preference study). 
 

8.1 Baselines 

We compare against a variety of state-of-the-art baselines selected 

based on their performance and availability, or ease of implementa- 

tion. 

HMM-based Synthesis. The current state-of-the-art appoach is 

the (HTS) HMM-based synthesizer [Zen et al. 2007]. We trained this 
model using the same reference face parameters y as our approach. 

The HMM synthesizer uses context-dependent decision tree clus- 

tering [Odell 1995] to account for the sparseness of (quinphone) 

contexts in the training data by tying states with similar properties. 

The query set used in clustering is a subset of the indicator features 

used by our approach (Section 5.2). There are 749 queries which 

relate to the identity of the phonemes forming the context, and their 

place and manner of articulation (e.g., vowels, consonants, voiced, 

voiceless, nasal, etc.) The clustering criterion is the minimum de- 

scription length (MDL) and each cluster must contain no fewer than 

50 observations, which produces 11893 leaf nodes. We use typical 

left-to-right phone models with ive emitting states and a single 

mixture component per state [Zen et al. 2007]. 

Dynamic Viseme Animation. Dynamic visemes were proposed as 

a data-derived visual speech unit in contrast to traditional visemes. 

Dynamic visemes are deined as speech-related movements of the 

face, rather than static poses. They are identiied by segmenting    

the reference face parameters y into sequences of non-overlapping, 

visually salient short gestures which are then clustered. Each cluster 

represents visually similar lip motions that map to many strings of 

acoustic phonemes, each of variable length. In [Taylor et al. 2012] 

animation is predicted using dynamic programming to ind the best 

match. The best dynamic viseme sequence is evaluated by minimiz- 

ing a cost function which accounts for the probability of producing 

the phoneme sequence, the smoothness of the resulting animation, 

and for variable speaking rate. We use the implementation described 

in [Taylor et al. 2012]. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 7. Comparison of held-out video of the reference speaker compared with AAM reference model rendered predictions. Predicted mouth regions are 

rendered onto the original face for visual comparison. 

 

“I like to speak in movie quotes” 

/ ay l ay k t uw s p iy k ih n m uw v iy k w ow t s  / 

 

Fig. 8. Animation is transferred from the shape component of the AAM to CG characters using rig-space retargeting. (a) Reference video of the input speech 

(unseen speaker). (b) Visualization of the predicted animation as AAM. (c) The corresponding rig-space retargeted animation on a selection of face rigs. 

 

Long Short-Term Memory Networks. LSTMs are a memory-based 

extension of recurrent neural networks, and were recently applied 

to learning photorealistic speech animation [Fan et al. 2015], which 

demonstrated some modest improvements over basic HMMs using 

a small dataset. We follow the basic setup of [Fan et al. 2015], and 

trained an LSTM network [Bastien et al. 2012] on the KB-2k dataset. 

We use three hidden layers, a fully-connected layer, and two LSTM 

layers. We experimented with 100 to 3000 hidden units for each layer, 

inding 500 achieves the best performance. Mini-batch size was 10, 

and to prevent overitting we use dropout with 50% probability 

[Srivastava et al. 2014]. 
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Fig. 9. Expression and stylization can be added to the predicted speech animation using standard animation techniques. (Top row) Frames of neutral speech 

animation generated using our approach for the sentence łI’ll finally be the hero I’ve always dreamed of being". (Botom row) The same neutral speech 

animation with expression and upper facial motion added by an artist. 
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Fig. 10. Showing the mean square error of the KB-2k held out test sentences 

in the AAM parameter space, the predicted mesh vertex locations (shape), 

and appearance pixel intensities. We see that our approach consistently 

achieves the lowest mean squared error. 

 
 
 

Decision Tree Regression. Decision trees remain amongst the best 

performing learning approaches [Caruana and Niculescu-Mizil 2006] 

and make minimal distributional assumptions on the training data 

(e.g., no smoothness assumption). We use the sliding window deci- 

sion tree implementation described in [Kim et al. 2015] with Kx = 11 

and Ky  = 5 and set the minimum leaf size to 10. 

8.2 Benchmark Evaluation 

In our benchmark evaluation, we evaluate all approaches on the 

ifty KB-2k held out test sentences. Because we have the ground 

truth for this data, we evaluate using squared loss of the various 

approaches. Figure 10 shows the results when measuring squared 

error in the reference AAM model parameter space, in the predicted 

shape vertex positions, and in predicted appearance pixel inten- 

sities. Decision tree regression is denoted łDtreež, and dynamic 

visemes is denoted łDVž. We see that our approach consistently 

achieves the lowest squared error. We also see that LSTMs perform 

Fig. 11. Showing the mean square error of our approach as we vary the 

sliding window input-output sizes (Kx and Ky ). We see that performance 

flatens as we increase the window sizes, indicating that there is litle to be 

gained from modeling very long-range coarticulation efects. 

 
 

 
decision tree and HMM-based approaches, which still perform no- 

ticeably poorer.3 These results suggest that our sliding window 

neural network approach achieves state-of-the-art performance in 

visual speech animation. Of course, squared error is not perfectly 

correlated with perceived quality, and modest diferences in squared 

error may not be indicative of which approach produces the best 

speech animation. To address perceptual issues, Section 8.3 shows 

user study results. 

Figure 11 shows the comparison of our approach as we vary the 

sliding window input/output sizes (Kx and Ky ). We see that the 

performance converges as we increase the window sizes, indicating 

that there is little to be gained from modeling very long-range 

coarticulation efects. 

In terms of computational cost, our approach evaluates predic- 

tions at ∼1000 video frames per second. Training the model takes 
just a couple of hours on an Nvidia Tesla K80 GPU. 

signiicantly worse on our data, which agrees with our   intuition    

as discussed in Section 5.1. The most competitive baselines are the 3 Additional results and detailed analysis are included in the supplemental  material. 
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Table 1. Showing user study results for the fity KB-2k held out test sen- 

tences. For each test sentence, we ran a side-by-side comparison between 

two methods, and collected 25 pairwise judgments per comparison. A 

method wins the comparison if it receives the majority of the pairwise 

judgments for that test sentence. All results except comparison with ground 

truth AAM are statistically significant with 95% confidence. 

 

Ours vs AAM HMM DV LSTM Dtree 

W / L 27 / 23 39 / 11 50 / 0 50 / 0 38 / 12 

 

Table 2. Showing user study results for the 24 novel speaker test sentences. 

The setup is the same as Table 1. All results are statistically significant with 

95% confidence. 

 
Ours vs HMM DV LSTM Dtree 

W / L 19 / 5 24 / 0 24 / 0 15 / 9 

 

 
8.3 User Preference Study 

We conducted a user preference study to complement our quan- 

titative experiments. We compared our approach to the baseline 

implementations using two sets of test sentences. The irst are the 

ifty KB-2k test sentences, which is the same speaker as the training 

set. The second is a set of 24 sentences each spoken by a diferent 

speaker not contained in the training set and represents a challeng- 

ing generalization test. Note that for the second set of sentences 

we do not have ground truth parameterized reference video and so 

there is no analogous AAM benchmark evaluation for them. 

We conducted the user preference study on Amazon Mechanical 

Turk. For each sentence we showed two animations side-by-side 

and asked the subject to make a forced choice of which animation 

seems more natural. We collected 25 judgments per sentence and 

comparison case. A method łwinsž the comparison if it receives a 

majority of the preference judgments (i.e., at least 13). The raw user 

study results are available in the supplementary material. 

Table 1 shows the aggregate results for the ifty KB-2k test sen- 

tences. We see that our approach is preferred to the baselines, and 

is comparable to the ground truth AAM reference representation. 

Table 2 shows analogous results for the 24 novel speaker test sen- 

tences. We again see the same pattern of preferences. These results 

suggest that our approach enjoys robust perceptual performance 

gains over previous baselines. 
 

9 SUMMARY 

We introduce a deep learning approach using sliding window re- 

gression for generating realistic speech animation. Our framework 

has several advantages compared to previous work on visual speech 

animation: 

• Our approach requires minimal hand-tuning, and is easy to 
deploy. 

• Compared to other deep learning approaches, our approach 
exploits a key inductive bias that the primary focus should 
be on jointly predicting the local temporal curvature of visual 

speech. This allows our approach to generalize well to any 

speech content using a relatively modest training set. 

• The compact reference parameterization means our approach 
is easy to retarget to new characters. 

• It is straightforward to edit and stylize the retargeted animation 
in standard production editing  software. 

 

We demonstrate using both quantitative and subjective evalua- 

tions that our approach signiicantly outperforms strong baselines 

from previous work. We show that these performance gains are 

robust by evaluating on input from novel speakers and in novel 

speaking styles not contained in the training set. 

 
9.1 Limitations & Future Work 

The main practical limitation is that our animation predictions are 

made in terms of the reference face AAM parameterization. This 

enables the generalization of our approach to any content, but retar- 

geting to a character introduces a potential source of errors. Care 

must be taken when posing the initial character setup for the retar- 

geting shapes to preserve the idelity of the predicted animation. 

Fortunately, this is a precomputation step that only needs to be 

performed once per character. Moving forward, one interesting di- 

rection for future work is to use real animation data to develop a 

data-driven retargeting technique tailored for automated speech 

animation. 

By learning from only neutral speech we are able to learn a  

robust model of speech animation that generalizes to any speech 

content. It is currently the role of the artist to add expression and 

emotion. An interesting future direction would be to train a much 

larger neural network on training data from multiple emotional 

contexts (e.g., angry, sad, etc.) to make the predicted facial motion 

closer to the emotional intent. One major challenge is how to cost- 

efectively  collect  a  comprehensive  dataset  for  training.  Without 

a suiciently comprehensive training set, it can be challenging to 

employ modern machine learning techniques, because  methods 

such as deep learning are typically highly underconstrained. Possible 

directions including collecting łmessyž data at scale (e.g., from public 

video repositories), or developing active learning approaches that 

adaptively selects which video data to collect in order to minimize 

total collection costs. 

A further generalization could train a speech animation model 

from multiple speakers possessing a variety of facial characteristics 

(male, female, round, square, leshy, gaunt etc.) and select the char- 

acteristics most closely matching the character model at prediction 

time. This approach could generalize diferent facial dynamics for 

diferent face shapes according to the talking style of the character. 

Again, there is a major challenge of how to efectively collect a 

comprehensive training set. 
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