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Abstract

In this work, air compressibilty e↵ects are investigated during wave interaction

with an Oscillating Water Column (OWC) Wave Energy Converter (WEC).

Mathematical modelling includes a thermodynamic equation for the air phase

and potential flow equations for the water phase. A simple three dimensional

OWC geometry with a linear Power Take O↵ (PTO) response is considered and

both the thermodynamic and potential flow equations are linearised. Analysis of

the linearised system of equations reveals a nondimensional coe�cient which we

name “compression number”. The flow potential is decomposed into scattering

and radiation components, using an analogue of spring-dashpot response and

taking into account the additional e↵ects of air compressibility to wave interac-

tion processes. We use these concepts to characterise the relative importance

of the air compressibilty e↵ects inside the OWC and to derive novel scaling

relations for further investigation of scaling e↵ects in OWC physical modelling.

The predictions of the methodology are validated against large scale

experimental data, where compressibility e↵ects are evident and fur-

ther application of the methodology to a realistic OWC geometry
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is used to demonstrate the importance of these e↵ects to prototype

scale.

Keywords: OWC, air compression, scaling e↵ects, OWC performance, wave

energy, WEC

1. Introduction

The oscillating water column (OWC) is arguably the most successful wave

energy conversion (WEC) device, as its design and installation are relatively

simple, and its maintenance is not demanding [1]. Wave interactions with these

devices are critical for their performance and survivability. In the early study of5

Evans [2], the wave interaction of OWC devices is studied by considering a free-

surface between (and the interaction with) two closely-spaced vertical plates[3].

In this model, the hydrodynamics inside the OWC are not completely resolved,

as the water surface is treated as a horizontal rigid plate that oscillates vertically

and the air pressure is modelled as a linear spring reacting to the rigid plate10

motion. The vertical motion of the mean water surface is the part of the internal

wave motion that causes displacement of the air in the column above the surface.

The other components of the free surface do not cause compression of the air

above it. Given the assumptions above, the method can give predictions of the

e�ciency of the system, but not of hydrodynamic loads.15

An attempt to quantify compression e↵ects in OWC was made by Sarmento

and Falcao [4], who analysed an ideal two-dimensional shallow-draught OWC

and modelled the air phase as an ideal gas, with a linearised pressure - density

relation. Due to the shallow-draught assumption, their analysis disregards the

problem of interaction at the OWC entrance and it is considered that wave20

reflection originates from the back wall only. However, this is not the case for

realistic OWC geometries, as usually the front wall at the entrance is immersed

to ensure air entrapment under changing water levels due to e.g. tides, or storm

surges. Nevertheless, the study does give useful insights for the causes of air

compression in prototype OWC, demonstrating that these are more likely to25
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appear when the height of the OWC is increased. The nature of these e↵ects

is also studied, with respect to (i) the appearance of phase di↵erences between

free-surface flux and the pressure drop inside the chamber (causing additional

wave energy to reflect back into the o↵shore environment), and (ii) the benefits

of using turbines equipped with phase control to optimise energy absorption.30

In [5], the potential flow equations are formulated for describing wave prop-

agation from a far field and interaction with an OWC device, including the

di↵raction problem due to the immersed part of the front wall. The water is

considered as an irrotational, inviscid fluid and, using the theoretical procedures

developed in [6], [7] and [8], the method is capable of predicting the OWC e�-35

ciency and the development of linear sloshing modes inside the OWC chamber.

However, the method of these authors treats the air as incompressible, so that

the pressure drop from the air turbine is directly applied (as a boundary condi-

tion) at the free-surface. The analysis from [5] disregards the influence on the

OWC e�ciency of the compression of the air (inside the OWC) above the water40

and below the turbine. Whilst the assumption may not be appropriate

for all cases, particularly for full-scale OWC structures, the calcula-

tion method is an invaluable tool for determining the performance of

OWC, in particular with respect to the optimisation of the OWC con-

figuration (size of opening, layout cross-sectional area of the chamber,45

e↵ect of wave collectors), given the incident wave characteristics. A

recent example of such work is [9], where the introduction and in-

fluence of wave collectors in front of an OWC structure is studied,

considering incompressible flow.

In [10], the influence of the air compressibility in scaling an OWC physical50

model is discussed and the chamber height of the OWC is identified as a key

parameter for scaling e↵ects: keeping the chamber height constant ensures that

compressible flow is appropriately scaled, thus confirming the analysis in [4].

As this requirement cannot always be met, alternatives are suggested, such as

increasing the air volume or applying active pressure control. The influence of55

the air compressibility in the performance of the OWC is demonstrated, by the
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numerical simulation of a reference OWC device, at full scale and at 1/10 scale.

The numerical model is an extension of the method [5] to include compressibility

e↵ects at [11]. The results show that, at 1/10 scale, there are scaling e↵ects due

to air compressibility, which become more important as the pressure drop across60

the air turbine increases. Similar conclusions are also discussed in [12, 13], where

dimensional analysis shows that, in order to eliminate air compressibility scaling

e↵ects, the air volume must be scaled with (sF )2, rather than (sF )3, where sF

is the Froude scale.

Compressible air flow in OWC chambers is studied further by Sheng et al.65

[14], assuming isentropic air flow. Their study does not consider the wave inter-

action problem, as the free-surface motion is represented as a rigid, flat boundary

with a given first-order oscillatory motion. This allows them to decouple the

equations of air motion from the wave motion and obtain a simple equation

for volume flux through the turbine. They also take into account the di↵erent70

densities of the air inhaled from the atmosphere the air compressed inside the

OWC and exhaled to the atmosphere. The air pressure drop is modelled as a

quadratic dependence on the air volume flow rate. The main conclusions are (i)

that the assumption of isentropic air compression is acceptable (because good

agreement with experimental data is obtained), and (ii) that energy losses due75

to thermal processes are not significant. More recently, the influece of the

air humidity to the performance of OWC was discussed in [15]. The

authors used a real gas methodology to calculate the thermodynamic

properties for air - vapour mixtures and their theoretical model was

validated against experiments. Initial results show that the influ-80

ence of air humidity is significant, and further work is recommended

towards this direction.

Similar analysis is performed in [16] where they use linearised approach

to derive a non-dimensional number (! ) to characterise compressibility e↵ects.

This number can be used to assess the relative importance of compressibility85

e↵ects with changing wave frequency, water density and OWC air column height.

This non-dimensional number, however, does not include the influence of the
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PTO resistance. The latter has an important e↵ect on the evolution of air

pressures and eventually the wave interaction processes with an OWC structure.

In [17] a numerical model is set-up using the Finite Element Method to study90

the interaction of a cylindrical floating OWC, as a single structure and a system

of arrays. Their model was coupled with a linearised, isentropic state equation

to include air compressibility. Their study showed that changing the air volume

inside the OWC has a considerable influence on the performance of the OWC.

In particular, carefully choosing the total air volume can be beneficial for the95

OWC performance, as it may increase the bandwidth of the power capture.

By contrast, an inappropriate choice of air volume can significantly reduce the

captured energy.

The objective of this paper is to study the compressibility e↵ects and their

impact on the performance of the OWC device within the context of the wave100

interaction problem. In a spirit similar to [18], we attempt to derive simple rela-

tions that will enable us to estimate these e↵ects, in a way that can complement

small-scale physical models, and numerical modelling using an incompressible

solver. An additional goal is to provide some theoretical background for vali-

dating numerical models that include the compressibility of the air. A benefit105

is better designs of prototype OWC using small scale models, and recommen-

dations about including air scaling in the design of small scale experiments. To

achieve this, initially, the gas (air) flow problem will be investigated by applying

a linear analysis to the 1D equations presented in [14]. The linear analysis is a

well-know tool used to study OWC interaction with waves and air pressures [19],110

and despite the simplifiying assumptions excluding nonlinear and viscous e↵ects,

it has been proven a satisfactory tool to investigate these processes [20]. Sub-

sequently, this analysis will be used in conjunction with potential flow theory,

following a decomposition similar to that in [5]. Using this decomposition

as a starting point, we discuss the e↵ect of air compressibility to en-115

ergy e�ciency, we investigate the e↵ects of scaling on the air flow and

pressure and we apply the analysis for characterising compressibility

e↵ects to realistic scenarios including experimental data [26, 24] and
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the OWC-WEC installed in Pico, Azores [30].

2. Air flow120

2.1. Governing equations

Figure 1 shows a sketch of the domain in the vicinity of the OWC. For

convenience, a 2D slice of a rectangular OWC is shown here, however, the

analysis can be generalised to include additional OWC configurations, as shown

further below. It is assumed that inside the OWC, the air water motion is125

governed by relations between quantities that primarily depend on time, that

the air is well mixed so that it has a uniform temperature and pressure. The

air-water motion is complicated by sloshing modes, but these cause zero net

displacement; it is only the rise of the spatially averaged water level that can

compress and displace the air-phase. There is no momentum transfer through130

viscosity at the air-water interface, as potential flow is assumed. The volume of

air changes either due to discharge through the power take-o↵ (PTO) or due to

spring-like compression and expansion of the air.

The position of the PTO is not important for our study, but its resistance

is, so we can conveniently define a resistance layer concept, where the PTO is135

replaced by an infinitely thin layer introducing the same pressure drop as the

PTO. The extent of this layer covers a cross-sectional area of the OWC chamber,

normal to direction of the air volume change. For OWC chambers where the

cross-section does not change along the height (e.g. rectangular or cylindrical)

this is the horizontal cross-sectional area of the chamber. For OWC chambers140

with smoothly varying horizontal cross-section, we may choose a characteristic

cross-section, but to maintain consistency, we should define an e↵ective height

of the OWC by dividing the total volume of the air chamber in equilibrium

conditions by the characteristic cross-sectional area.

A single parameter K for the resistance coe�cient is used to calculate the145

pressure drop through the resistance layer. This resistance coe�cient can be

calibrated to represent the energy consumption of the PTO for any OWC con-
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figuration. For the sake of clarity, energy consumption at the resistance layer

corresponds to the total energy loss through the PTO, including viscous and

turbulence losses at the turbine and power generation. Additional linear and150

turbulent losses (e.g inside the OWC chamber) could also be included in the

calibration using available methodologies and / or experimental data. Scaling

and assessment of linear losses have been further discussed in the literature e.g.

[12], [20] .

At any instant we can divide the air in the OWC into infinitesimal columns155

of cross-sectional area dA = dx ·dz (Figure 1). The volume, dV , of each column

is:

dV = (h ! " (x, t ))dxdz (1)

where y = h is the top of the OWC; y = " (x, t ) is the free surface and t is the

time. Subsequently, the total volume of air inside the OWC chamber is:

V (t) =
! ! b

0
dV = AOW C h !

! ! b

0
" dxdz = AOW C (h ! "̄ (t)) (2)

where the double-integrals are over the uniform cross-section of the OWC,160

AOW C is the OWC cross-sectional area, "̄ (t) is the spatially averaged water level

inside the OWC. Throughout, an overbar denotes a spatially-averaged variable

over cross-section of the resistance layer, which for our case study coincides with

the actual OWC cross-section. Note that if the horizontal cross-section of the

OWC chamber is not uniform along the y axis then AOW C corresponds to a165

representative cross-sectional area and the height of the OWC must be defined

as:

h =
Vo

AOW C
(3)

where is Vo is the static equilibrium value of V (t). The equilibrium value of "̄ (t)

is zero.

Inside the OWC chamber, a uniform distribution of the relative air pressure170

p(t) is assumed, in the following equation (4) of state for an ideal gas undergoing
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Figure 1: Geometry of OWC with an resistance layer. The position of the free surface and

the air-water interface inside the OWC is y = ! (x, t ). The side walls at x = 0 and x = b are

impermeable.
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adiabatic, isentropic compression.

p = po

""
#
#o

# !

! 1

#
(4)

where #(t) is the air density when the relative air pressure in the OWC chamber

is p(t), and the constant #o is the equilibrium value for #(t) under the equilibrium

static atmospheric pressure po (note that the total pressure at any given time175

is p(t) + p0). The polytropic expansion index $ for air has the value of $ = 1.4.

Typical values for the air pressure and equilibrium density are po=1 atm and

#o=1.2 kg/m3. The linearised version of equation (4) is given by:

p = $po

"
#
#o

! 1

#
(5)

This approximation of (4) by (5) is satisfactory as long as there is a small

enough deviation of # from #o i.e. for 0.5 < #/ #o < 2, the relative error will not180

exceed 15%. This approximation also ignores thermodynamic processes due to

throttling e↵ects in turbines and orifices [21], but in prototype structures, the

extent of these e↵ects is relatively local when compared to the total air volume

inside the OWC chamber. Any additional energy losses caused by compressible

throttling e↵ects can be nevertheless included in the resistance layer coe�cients,185

as long as relevant empirical relations are provided.

The uniformity of the density #(t) lets us write the mass of air in the OWC

as m = m(t) = #(t)V (t). The flux of mass to and from the OWC, during

inhalation, allows us to write:

dm
dt

=
d(#V )

dt
= ! #b̄v (6)

where v̄(t) is the spatially averaged velocity through the resistance layer (v̄ < 0190

for inhale, v̄ > 0 for exhale), with respect to the cross-sectional are of the OWC

for in 3D configurations or the width (per unit length in the z direction in Figure

1) in a 2D geometry. The velocity v̄ is coupled with the pressure p, according to

the PTO resistance characteristics for the resistance layer. Herein, we consider

a quadratic relation between them:195
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p = K 1v̄ + K 2v̄|v̄| (7)

where K 1 (kg·m�2·s�2) and K 2 (kg·m�3) are coe�cients of the resistance layer.

Equation 7 takes the form above because the pressure p must be an

odd function of v̄. After the first term containing a linear dependence

(an odd function), the next order of term to choose is quadratic, but

modified from v2 to v̄|v̄| to ensure the term is also odd. By having200

the pressure response as an odd function of the velocity, K 1 and K 2

can be considered positive, ensuring that energy is always absorbed

at the PTO.

Coe�cients K 1 and K 2 are primarily representative of the PTO re-

sistance, meaning the pressure drop induced by the flow rate passing205

through the PTO. The linear coe�cient K 1 in particular is repre-

sentative of the linear relation between the pressure drop and the

discharge in Wells turbines [22]. The coe�cient K 2 (with either K 1

zero or nonzero) is more representative of pressure damping config-

urations typically used in experiments to represent a PTO, e.g. the210

circular orifice in [23] or the rectangular one in [24] .

The solution of equation (7) with respect to v̄ gives

v̄ = p
1

|p|
K 1

2K 2

$ %

1 +
4K 2

K 2
1

|p| ! 1

&

=
p

K (|p|) (8)

where

K (|p|) = |p|2K 2

K 1

1
' (

1 + 4K 2
K 2

1
|p| ! 1

) (9)

and lim {K } = K 1 as K 2 " 0 and lim {K } =
*

K 2|p| as K 1 " 0 and these

limiting behaviours are consistent with equation (7) when K 2 = 0 and K 1215

nonzero, or when K 1 = 0 and K 2 nonzero respectively. We next treat the

flow with a linear analysis and in Section 2.4, consider the nonlinear (quadratic

relation (7)) analysis for the resistance.
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2.2. Linear analysis

We assume a linear response of the PTO resistance so that in (7) K 2 = 0 and220

introducing this as a limiting case in (9) results in K (|p|) = K = K 1. Hereafter

we use the symbol K as K 1. We can also assume that p << $po and "̄ << h .

Using these assumption and combiming equation (6) and (5) gives:

dp
dt

+
$po

hK
p =

$po

h
d"̄
dt

(10)

Equation (10) is valid both in 2D and 3D configurations, as K 1 and K 2 (and

hence K ) in equation (7) models the pressure drop with respect to the appro-225

priate cross-sectional average velocity of the OWC. Equation 10 is essentially

the same as the di↵erential equation for pressure fluctuations in [25], derived in

a similar line of reasoning and used for 2D and 3D cases.

We now assume that each variable (e.g. p, "̄ , v̄) is time-periodic, has zero

mean and shares a single frequency %, and has a distinct phase constant. The230

single frequency assumption is reasonable as, due to regular wave con-

sideration, there is only one excitation frequency transmitted through

the system. This is from the experimental data shown in Section 5

and similar rationale is also used by [14] and [16] in their analysis. We

can therefore write any such flow-variable f as:235

f = f cRe{e�i " t+i # f } (11)

i is the imaginary unit, f c > 0 the amplitude, and &f the phase constant. The

phase di↵erence for the pressure &p is set to zero and all other phase variables

are calculated with respect to &p. From this assumption, equation (10) gives

the following relationship between the parameters:

pc =

$
Ki %

Ki " h
! po

! 1

&

"̄ cei # ! (12)

To eliminate the phase constant, we take the modulus of both sides to obtain:240

pc

"̄ c
=

$po

h
⌦

#
⌦2 + 1

= K %
1

#
⌦2 + 1

(13)

11



where

⌦ =
K %h
$po

(14)

We name this non-dimensional number, ⌦, the compression number and discuss

it in the next section. Also, considering the argument of both sides of equation

(12) gives a relation between the phase constants:

&$ =
'
2

! &! (15)

where:245

&! = arctan(⌦) (16)

Let Q = bd$̄
dt and q = b̄v denote the volumetric flux of the displaced air

due to the interfacial motion and air flow at the resistance layer, respectively.

Using equations (8) and (11), the amplitudes Qc = b" c% and qc = bpc/K are

calculated and equation (13) implies

⇧ =
qc

Qc
=

1
#
⌦2 + 1

(17)

where ⇧ expresses the ratio of the volume flux through the resistance layer to250

that displaced by the water surface. Owing to equation (8), &q = 0 and from

the relation between "̄ and d"̄ /dt we have: &Q = &$ ! %
2 . Comparing with (15)

we deduce:

&Q = ! &! (18)

Hence the phase di↵erence between the volume flux at water surface is ac-

cording to equation (18).255

2.3. Characterisation of air flow

The compression number ⌦ can be considered as a parameter that measures

the relative importance of air compressibility, with respect to the OWC char-

acteristics. The definition (14) shows that ⌦ depends on the OWC height, the
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Figure 2: Variation with respect to ⌦ of volume flux ratio ⇧ and phase di↵erence " q

wave frequency, and the PTO resistance. Quantities such as ⇧ in equation (17)260

and &q in equation (18) depend on ⌦, as shown in Figure 2.

Taking into account the analysis in the previous sections and observations

from Figure 2, the behaviour of the OWC system can be characterised using

the compression number ⌦. In particular:

• For ⌦ $ 0 (incompressible behaviour) the air volume fluxes at the water265

level and at the resistance layer have the same amplitude and they are in

phase. This suggests that the air is behaving as an incompressible fluid.

• For ⌦ >> 0 (compressible behaviour), there is less volume flux passing

through the resistance layer than that displaced by the water surface. In

addition, the phase di↵erence increases from 0 between the two volume270

fluxes as the value of ⌦ increases. As ⌦ increases from zero, compression

becomes more important.

• As ⌦ " % the behaviour becomes that of a closed OWC chamber. If

⌦=2 this is already a large value and little air is passing through the

PTO. However, there can still be volume displacement at the free-surface,275
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depending on the compressibility of the gas. The phase di↵erence &! is

' / 2, and the system behaves as if the chamber is fully closed.

The distinction between compressible and incompressible regimes should be

made on the grounds that ⌦ is su�ciently small for air compressibility to matter.

It is therefore proposed that this treshold is set to ⌦ & 0.1, as in this case280

⇧ > 0.95 and &! < 10o .

The observations above indicate that for a given gas, the flow characterisa-

tion depends on the combination of the OWC dimensions, the PTO resistance

and the incident wave conditions. Taking the two extreme cases ⌦ = 0 and

⌦ = % and considering the pressure inside the OWC, it can be shown through285

the previous analysis that:

p =

+
,

-
K &$̄

&t for ⌦ = 0

! po

h "̄ for ⌦ " %
(19)

Therefore, it can be hypothesised that when the air behaves as incompressible,

(⌦ = 0) the response of the OWC to the free-surface motion can be described

as a dashpot that consumes energy from the free-surface oscillation, and when

⌦ = % , the response of OWC can be described as a spring that temporarily290

converts kinetic energy to potential energy of compression, while not extracting

any total energy from the system. It is therefore reasonable to suggest that

for 0 < ⌦ < % , the response of OWC is that of dashpot-spring system that is

shown in Figure 3.

Considering "̄ = " I + " C , where " I and " C are the free surface elevation295

related to the incompressible mode (dashpot response) and the compressible

mode (spring response) of the overall free-surface oscillation. Noting that in

such a system, the spring and dashpot motions will have a ' / 2 phase di↵erence,

we can establish a trigonometric relation between the total amplitude " c and

the amplitudes of each mode, " C
c and " I

c , such as:300

" C
c

" I
c
= ⌦ = tan(&! ) (20)
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Figure 3: Spring dashpot analogy for OWC response to free-surface oscillation
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and

" c =
" C

c

sin&!
=

" I
c

cos&!
(21)

Note also that

sin&! =
⌦

#
1 + ⌦2

and cos&! =
1

#
1 + ⌦2

(22)

Distinguishing between the incompressible and the compressible mode is

a key element for performing the wave interaction analysis and investigating

scaling e↵ects. For example, the incompressible mode is responsible for power305

generation, and isolating its interaction from the incident wave field is useful to

understand the e↵ect of scaling on energy production.

The concept of the compression number and its importance for characterising

air flow inside the OWC chamber can be also assessed by comparing it to the

non-dimensional number derived by [16], defined according to the following:310

! =
%2Vo#w

co
2b#o

(23)

where #w is the air density and co the speed of sound. Given that co
2#o = $po

and Vo/b = h then ! compares to ⌦ as follows:

! = ⌦
%#w
K

(24)

By definition, parameter ! includes the influence of the water density and

neglects the e↵ect of the PTO resistance, as opposed to ⌦. Di↵erences in sea

and fresh water densities are typically taken into account as a scaling e↵ect when315

modelling wave structure interaction problems, but these generally less than 3%.

By contrast, the influence of the PTO resistance to air scaling e↵ects is more

significant, especially for studies verifying the design of the OWC, as typically

in these studies, a number of di↵erent of PTO resistance coe�cients might be

considered and the importance of scaling e↵ects will be di↵erent for each K . We320

therefore believe that ⌦ is more helpful than ! for indicating the importance of
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air compressibility during the design stage of an OWC. The influence on scaling

due to change in water density will be further discussed in Section 4, where

scaling relations are derived.

2.4. Quadratic resistance325

OWC devices are usually mounted with Wells turbines that have a linear

velocity-pressure relation for the PTO resistance [22], although it is common

practice to employ quadratic relations to describe the resistance relation for

physical modelling purposes [26, 14]. However, using equation (7) with K 2 '= 0

would make impossible the use of a simple non-dimensional number to charac-330

terise the air flow inside the OWC. In order not to lose this advantage, we can

write equation (7) as follows:

p = (K 1 + K 2|v̄|) v̄. (25)

Now, we attempt a linearisation of (25) which includes the influence of the

variable term in the brackets. A representative approximation comes from con-

sidering the period-averaged value for |v̄| , which we write as:335

v̄m =
1

T

! T

0
v̄c| cos%t|dt =

2

'
v̄c (26)

where v̄m is the time-average value over the period T = 2' / %. Replacing

the time-varying |v̄| with the constant |v̄m | in equation (25) gives the linear

approximation:

p = K 3v̄ (27)

where K 3 = K 1 + K 2v̄m . Our linearisation of equation (25) is graphically

represented in Figure 4. The straight line is closer to the dashed curve over340

a wider range of v̄/ v̄c than using a straight line through the origin that it

tangent to the curve. Our linearisation (27) is better than simply approximating

(25) by p = K 1v̄. Using the K 2 linearisation can be nevertheless not

practical on occasions where velocity data are not provided for the
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Figure 4: Linearisation of the resistance relation

OWC structure in question. In this case, an estimate of the velocity345

at the orifice can be provided from approximate relations, as shown

in Section 5.

3. Wave interaction

3.1. Potential flow equations

The geometry of the domain around the OWC device is shown in Figure 5,350

where the subdomains for the air and water and their boundaries are identified.

In the air subdomain, inside the OWC, the flow is governed by equation (10),

while in the water subdomain, linearised potential flow theory is used. We

assume that plane regular waves approach under normal incidence and interact

with the rectangular OWC chamber. The flow in the water subdomain is two-355

dimensional (x ! y plane). This does interfere with the assumptions on the
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configuration of the OWC chamber which can be either 2D or 3D. Herein, for

simplicity, we assume that the OWC is rectangular, although the methodology

can cover any OWC configuration, as long as the conditions stated in Section 2

are respected.360

Considering the potential flow theory for the water subdomain (! d & y & 0),

the flow is governed by Laplace’s equation:

( 2�

( x2
+

( 2�

( y2
= 0 (28)

where � = �(x, y, t ) is the velocity potential. Neglecting surface tension and

shear stress e↵ects, the linearised dynamic boundary condition at y = 0 is:

( �
( t

+ g" =

+
,

-
0 for x ( b (outside the OWC)

! p
' w

for 0 & x & b (inside the OWC)
(29)

where #w is the water density and g the gravitational acceleration. Assuming365

linear flow dynamics, the linearised kinematic boundary condition at the free-

surface and at the air-water interface is:

( �
( y

=
("
( t

at y=0 for x ( 0 (30)

Combining the dynamic and the kinematic boundary conditions gives:

( 2�

( t2
+ g

( �
( y

=

+
,

-
0 for x ( b (outside the OWC)

! 1
' w

&p
&t for x & b (inside the OWC)

(31)

We can manipulate equations (29)-(31) to remove the time dependency by

assuming time-periodic motion at one frequency %. Using the linear analysis of370

section 2.2, we can include the phase di↵erences between p and " , but now with

the loss of generality, we set &$ = 0 and &p = &! ! ' / 2. Thus:

" (x, t ) = " c(x)e�i " t

�(x, y, t ) = ) (x, y)e�i " t

p(t) = pce�i " t�i (%/ 2�a⌦) = pc sin(&! )e�i " t ! ipc cos(&! )e�i " t

(32)
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Figure 5: Potential flow equations in the fluid subdomain for the velocity potential � of the

water flow.
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By substituting equations (32) into (31) and taking into consideration equa-

tion (22)

!
%2

g
) +

()
( y

=

+
,

-
0 for x ( b

"
' wg

pcp
1+! 2 + i "

' wg
! pcp
1+! 2 for 0 & x & b

(33)

Equation (33) can be decomposed to scattering and radiation components, as375

shown in [5]. Following a similar procedure, the flow potential, ) is decomposed

into: i) the scattering potential, ) S , which describes the fully reflective case

of wave interaction with the OWC fully open (p = 0) and (ii) the radiation

potential ) R , which describes the wave radiation for the pressure applied in

the OWC. Including the air compression e↵ects, the radiation potential can be380

further decomposed into ) RI (incompressible radiation) and ) RC (compressible

radiation).

) = ) S ! ) RI ! ) RC (34)

Similar to [5], the dynamic boundary condition (33) is decomposed as follows:

! " 2

g ) S + &( S

&y = 0

! " 2

g ) RI + &( RI

&y =

+
,

-
0 for x ( b (outside the OWC)

"
' wg pI for 0 & x & b (inside the OWC)

! " 2

g ) RC + &( RC

&y =

+
,

-
0 for x ( b (outside the OWC)

"
' wg pC for 0 & x & b (inside the OWC)

(35)

where

pI = pcp
1+! 2

pC = i ! pcp
1+! 2

(36)

In equation (35), the scattering potential is dependent on the incident wave385

conditions, the width of the OWC, b, and the entrance immersion depth, a,

and corresponds to the excitation of the internal free surface of the OWC from

an incident wave field. The incompressible radiation potential corresponds to

a motion of the OWC free-surface which radiates as a wave field outside of
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the OWC. On removing the radiation from the scattering potential, the wave390

field and associated OWC free-surface motion for the fully coupled problem is

derived. The compressible radiation potential then corresponds to the problem

of a free oscillation of the free surface of an OWC with capped PTO. Among

the three potentials, only in the incompressible radiation case the net flux of

energy change is non-zero. So, strictly speaking, the ) RC does not involve any395

energy radiation, however, we keep this naming convention for convenience. In

equation (35) the velocity potential is a complex quantity () (x, y) = cR(x, y),

where c is a complex number constant describing phase &( and R(x, y) is a

real function), despite removing the time dependency, as there are still phase

di↵erences between the three components.400

Assuming that the y-dependence is the same for ) RI and ) RC , both inside

and outside the OWC, in (35), it can be demonstrated that:

) RC = i⌦) RI . (37)

Volume fluxes at the free-surface in the OWC can be derived by integrating

the vertical velocity of the air-water interface with respect to x ) [0, b]. Using

the decomposition of the potentials, the three time-independent amplitudes of405

free-surface fluxes qS
c , qRI

c , qRC
c , corresponding to the scattering, incompressible

radiation and compressible radiation potential, respectively, are defined as:

qS,RI,RC =

! b

o

()
( y

S,RI,RC

dx (38)

Using the same approach, we can also calculate the fluxes qI and qC corre-

sponding to the incompressible and compressible modes derived from the spring

and dashpot analogue (see Section 2.3) as follows:410

qI,C =

! b

o

()
( y

I,C

dx (39)

where ) I and ) C are the velocity potentials satisfying the incompressible and

compressible modes, respectively. Following the argument in [5], to obtain the

total flux we must remove the radiation flux from the scattering flux. In our case,

we argue that by removing the incompressible or compressible radiation fluxes
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(qRI and qRC ) from a certain proportion of the scattering flux qS , we obtain the415

fluxes related to the incompressible (dashpot) or compressible (spring) modes,

qI and qR , respectively.

qI = ⇤I qS ! qRI (40)

qC = ⇤C qS ! qRC (41)

where complex constants ⇤I and ⇤C are scaling coe�cients of the scattering flux.

These coe�cients represent the ratio of the incident wave field that excites the420

incompressible and the compressible modes respectively. Since the proportions

of the scattering fluxes add up to the total flux, it is therefore evident that:

⇤I + ⇤C = 1 (42)

We can calculate ⇤I and ⇤C by finding relations between the fluxes in equa-

tions (40) (41). Using the definition " = " I + " C within the context of complex

exponential functions and taking into account the analysis in section 2.3, we425

define:

" C = i⌦" I (43)

Equation (43) shows that the phase of " C precedes the phase of " I by ' / 2.

Translating equation (43) to a relation between fluxes gives:

qC = i⌦qI . (44)

Combining equations (37) and (38), we find

qRC = i⌦qRI . (45)

Combining equations (40, 41, 42, 44 and 45) we obtain the pair of relations430

⇤I = 1
1+! 2 ! i !

1+! 2

⇤C = ! 2

1+! 2 + i !
1+! 2 .

(46)
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Coe�cients ⇤I and ⇤C are complex numbers, as they incorporate the phase

di↵erences between fluxes. Also (46) implies that |⇤I |2+|⇤C |2 = 1, which shows

that the coe�cients satisfy the energy balance for the scattering flux. In addi-

tion, the analysis above allows us to consider only the incompressible e↵ects, by

using the scattering wave field that excites the incompressible (dashpot) mode435

and by considering the incompressible radiation equation. These considerations

are formulated below:

" 2

g ) SI + &( SI

&y = 0

" 2

g ) RI + &( RI

&y =

+
,

-
0 for x ( b (outside the OWC)

"
' wg pI for 0 & x & b (inside the OWC)

(47)

where ) SI is the scattering potential corresponding to the incident wave field

that excites only the incompressible (dashpot) response. Equation (47) is in

the form of the dynamic boundary condition considered in [5], and by further440

introducing a PTO resistance coe�cient such as:

K 0 = Kp
1+! 2 . (48)

We can write a linear relation between pI and the velocity at the resistance

layer:

pI = K 0 &( I

&y = K 0
'

&( SI

&y ! &( RI

&y

)
. (49)

The fully coupled problem, presented in equations (28)- (36) can be solved

by using techniques similar to those in [6] and [5] but we do not pursue that here.445

Equations (47)-(49) form the dynamic boundary condition for the incompress-

ible mode. Treating the incompressible mode separately is advantageous for two

reasons: i) we can assess the energy e�ciency of the OWC using methodologies

designed for incompressible flows (e.g. [5]), as energy production is related only

to incompressible processes, and ii) we can facilitate the derivation of scaling450

recommendations, as will be shown in the next section.
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3.2. Energy processes

During wave interaction with OWC, the incident wave energy is transmitted

inside the chamber, exciting the free-surface motion inside the OWC and subse-

quent pneumatic processes related to air compression and energy consumption455

at the PTO. In this section the e↵ect of the air compressibility in limiting the

available wave energy for conversion into power is demonstrated, as well as the

infuence of compressibility e↵ects to determining the optimal PTO resistance.

The available power that can be consumed at the PTO can be calculated

throguh the incident wave field as follows:460

Ēw =
1

16
#gH2cg (50)

where Ew is the total incident wave power and cg the group velocity of the inci-

dent wave train. According to the analysis in the previous section, the incident

wave field can be decomposed to two components, exciting the compressible

and the incompressible mode, respectively. The scattering incompressible mode

represented by ⇤I qS (see equation (40) ) is the only one relevant to energy465

consumption at the PTO. For the purposes of this study, we will argue that

for a given wave frequency and OWC shape, the interface amplitude is directly

proportional to the incident wave amplitude, this is a reasonable assumption,

especially for the linear analysis in the present work, as in this case, wave heights

and amplitudes act as scaling parameters of the velocity potential. Therefore,470

the ratio of the incident wave height corresponfing to the scattering incompress-

ible mode H I is related to the total incident wave height H as follows:

H I /H = |qSI |
|qS | = |⇤I | (51)

where qSI = ⇤I qS . Solving equation 51 for H I gives

H I = Hp
1+! 2

(52)

According to the analysis of [5] and [24] the e�ciency n of the OWC can

be expressed through the ratio of the energy captured at the PTO to the total475
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incident wave energy, therefore

n = Ē OWC

Ē w
(53)

where

ĒOW C = 1
T

. T
0 p(t)q(t) · dt = 1

T

. T
0 K v̄2(t)b · dt (54)

is the power captured at the PTO.

Let n0 be the e�ciency of the OWC calculated assuming incompressible flow,

then combining equations (52) and (53) it is derived:480

n = n !

1+! 2 (55)

Given that n0 can be bounded by [0, 1] then n is bounded by [0, 1
1+! 2 ]. This

essentialy means that the e↵ect of air compressibility limits the energy available

to be captured at the OWC, as part of the incident wave energy is directed

towards exciting compressible processes in OWC’s, where no significant energy

consumption takes place.485

With respect to the influece of the compressibility to the optimal PTO con-

figuration, the analysis of [5] calculates the optimal resistance coe�cient K 0
opt as

a function of the width of the OWC and wave characteristics, through the quan-

tities of radiation admittance and susceptance. This analysis is applied only for

incompressible flow so we can calculate the resistance coe�cient including the490

influence of the incompressible flow using equation (48). Remembering that ⌦

is linearly related to K and solving for the optimal PTO resistance, including

compressible e↵ects, gives:

K opt =
K !

opt#
1�(! !

opt)
2 (56)

where ⌦0
opt = K 0

opt %h/ $po. It can be shown that ⌦0
opt < 1 from equation

(48) by considering K = K opt , K 0 = K 0
opt and multiplying both parts with495

%h/ $po. Equation (56) suggests that by taking into account the compressibility

e↵ects, the optimal PTO resistance coe�cients is increased compared to the one

calculated by [5], by assuming incompressible flow.
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4. Scaling of air compression

4.1. Applying Froude Scaling500

In this section, we investigate the influence on our mathematical model of

applying Froude scaling to the description of the water flow. First we define the

global Froude scale constant sF

sF = L P /L M (57)

where L M is the significant length in the model and L P is the corresponding

length in the prototype. Hereafter we use subscripts M and P to denote model505

and prototype scale, respectively. According to Froude scaling, the OWC prop-

erties K , %, and h are scaled as follows: K M = K P /
#

sF , %M = %P
#

sF and

hM = hP /s F , respectively. By applying these relations to definition (14), we

find that the compression numbers for the prototype and model scale di↵er in

the ratio:510

! M

! P
= 1/s F . (58)

Equation (58) makes clear that using a global Froude scale incorrectly scales

compressibility, as ⌦ changes with scale. By leaving the height of the OWC

unscaled (hM = hP ), it is observed that ⌦P = ⌦M . This is consistent with the

suggestions of [10], for including compression e↵ects in an OWC physical model.

This, however, is an impractical solution and in [10] alternatives are discussed515

about including compression e↵ects by increasing the available air volume or

implementing active control to the volume variations.

The potential flow equations can be used to inform us of the implications of

using Froude scaling, as they are satisfied in all scales. Nearly all the equations

for potential flow remain unchanged by interaction with the air phase, such as520

Laplace ’s equation (28), the kinematic boundary condition (30) and the dy-

namic boundary condition outside the OWC (31); all these are automatically

satisfied at all Froude scales. Therefore, scaling e↵ects are introduced through

the dynamic boundary condition in the OWC, which is further decomposed into
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scattering and radiation components, according to equation (35). In the latter525

we observe that the scattering potential obeys Froude scaling laws, which is

expected, as this component concerns the interaction with the OWC without

air pressurisation. By contrast, pressure variables in the radiation components

of equation (35) are influenced by the compression number, which, as we have

demonstrated in (58) depends on the Froude scale. In order to further inves-530

tigate the influence of scaling, from equations (40) and (41) we consider the

pressure amplitude in the chamber:

pc = K v̄ = K
() I

( y
= K

"
⇤I () S

( y
!

() RI

( y

#
(59)

which we can also write

pc = K
() I

( y
= i⌦K

() C

( y
= i⌦K

"
⇤C () S

( y
!

() RC

( y

#
. (60)

By combining equations (59), (60) and (35), new relations for the scattering,

incompressible and compressible radiation are obtained:535

" 2

g ) S + &( S

&y = 0

" 2

g ) RI +
/
1 + S!

0 &( RI

&y = S! ⇤I &( S

&y

" 2

g ) RC +
/
1 + i⌦2S!

0 &( RC

&y = S! ⇤C &( S

&y

(61)

where

S! =
K %

#w g
#
1 + ⌦2

(62)

Equations (61) must be valid at prototype and model scale. The condition

that satisfies this requirement for all radiation components is ⌦P = ⌦M , which

is impossible to achieve with Froude scaling, as shown in equation (58). From

the latter, we also deduce that by using Froude scaling (assuming sF > 1),540

⌦2S! and ⇤C are larger at model scale than prototype, while S! and ⇤I are

larger at prototype scale than the model scale. Therefore, during the conversion
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from prototype to model scale, the compressible radiation contribution will be

underpredicted, and the incompressible radiation will be overpredicted.

Overpredicting the incompressible radiation component at model scale leads545

one to being over-optimistic about the energy output of an OWC. In addition,

using Froude scaling for the resistance does not ensure that the optimal fre-

quency regime will be correctly estimated using small scale models. These two

remarks are further investigated in the following section, where recommenda-

tions for the correct scaling of the energy output of an OWC are given.550

4.2. Scaling recommendations

As we have demonstrated in (48 and 49), it is possible to manipulate the

scattering and incompressible radiation equations in order to obtain the same

as those encountered in [5], by using the concept of the scattering potential that

excites the incompressible mode and the equivalent resistance. Combining these555

with equations (61) and (62), we obtain:

" 2

g ) SI + &( SI

&y = 0

" 2

g ) RI +
/
1 + S!

0 &( RI

&y = S! &( SI

&y

(63)

where

S! =
K 0%
#w g

(64)

Equations (63) and (64) are not explicitly dependent on ⌦, and we can

therefore apply Froude scaling to all the variables involved, including K 0 and

) SI . So, given a particular OWC design at prototype scale, the scaling of the560

energy output at Froude model scale will be consistent if the following conditions

on K 0 and the incident wave amplitude are met:

K 0
M = K !

Pp
sF

and ) SI
M = (sF )�3/ 2) SI

P (65)

By combining the definition of the equivalent resistance (48) and the scaling

relation in (65) we calculate the PTO resistance in model as:

29



K M =
( p

1+4A MCM�1
2A M

(66)

where565

AM = " 2
Mh2

M

! po
= 1

sF

" 2
P h2

P

! po
and CM = 1

sF
K 2

P (1 + ⌦2
P ) (67)

Assuming that under typical operating conditions in small scale OWC mod-

els ⌦M << 1, then K 0
M = K M . Thus, from equation (66) we derive:

K M = K P#
sF (1+! 2

P
)

(68)

Evans and Porter [5] derive an expression for the optimum PTO resistance,

which we can use to calculate a value of K 0 for optimal energy e�ciency. This

means that the energy e�ciency of the OWC depends on the compression num-570

ber ⌦. Nevertheless, scaling for the equivalent resistance eliminates this depen-

dency, and using this scaling in small scale models can improve the consistency

of the results, when converting to prototype scale.

Once the resistance parameter is defined, ⌦M is calculated, either to be

used for further scaling calculations or to verify the assumption for equation575

(66). The scaling of the scattering potential that excites the incompressible

mode is not as straightforward. According to the analysis presented in

Section 3.2, let the incident wave height at prototype scale that excites the

incompressible mode be:

H I
P = H P#

1+! 2
P

(69)

where HP is the total incident wave height. As argued before, we use Froude580

scaling of the incident wave height H I
P rather than HP , as this will ensure a

consistent scaling of ) SI both inside and outside of the OWC, thus ensuring the

correct scaling of the energy output. This results in the model scale incident

wave height HM being scaled by the following equation

HM = HP

#
1+! 2

M

sF

#
1+! 2

P

(70)
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or, if ⌦M is much less than one, then approximately585

HM = HP
1

sF

#
1+! 2

P

. (71)

It is thus demonstrated that in order to ensure a consistent scaling for the

energy output production, a di↵erent scaling procedure has to be applied for

the PTO resistance and the incident wave height in the physical model, other-

wise scaled by Froude laws. While the resistance scaling is straightforward for

physical modellers, scaling the incident wave height with a law di↵erent that590

Froude scaling may prove inconvenient as emerging nonlinearities in shallow

water (close to the OWC) may cause substantially di↵erent evolution of non-

linear wave shoaling and breaking that may invalidate the prediction of wave

loads, especially for extreme wave conditions. Alternatively, we can leave the

Froude scale for ) S and adjust for the contribution of the incompressible mode.595

So, considering the validity of equation (63) across scales, we can calculate a

modified scaling factor for the incompressible radiation e↵ects

s0F = sF s! (72)

where we define

s! = 1+! 2
M

1+! 2
P

(73)

The scaling factor s0F can replace Froude scaling factor sF for all variables

directly related to the incompressible radiation problem, such as the interface600

elevation of the incompressible mode (" I
P = s0F " I

M ) or any potential related to

the incompressible mode () I,SI,RI
P = (s0F )

3
2 ) I,SI,RI

P ).

It can be shown from (49) that scaling for the equivalent resistance and the

total incident wave field, ) s, ensures Froude scaling for the pressure

pP = sF pM . (74)

Scaling for the compressible radiation properties can be indirectly achieved605

by using the relations between incompressible and compressible properties that
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were developed in sections 2 and 3. For example, the total elevation amplitude

of the interface inside the OWC can be derived as a function of the amplitude

corresponding to the incompressible mode as follows:

" P = s!
Fp
s⌦

" M . (75)

Finally, the power output is proportional to Ē * p&$I

&t , therefore610

ĒOW C = sF
*

s0F ĒP . (76)

In terms of scaling extreme wave loads, this proves to be more complicated,

as the following properties must be correctly scaled:

• Air pressure

• Hydrodynamic pressures inside the OWC

• Hydrodynamic pressures outside the OWC615

• Phase di↵erences between all the items above

We can use equations (74)-(75) to scale the air pressure and hydrodynamic pres-

sures inside the OWC, assuming that they are proportional to the amplitude.

In addition equation (16) is used to calculate the phase di↵erence between the

air pressure and the free-surface oscillation. For the hydrodynamic pressures620

outside the OWC, we need first to calculate the total (incident and reflected)

amplitude of the OWC. The reflection coe�cient can be defined as the square-

root of the ratio of the wave energy that is reflected o↵shore.

R =
(

1 ! Ē OWC

Ē I
(77)

and the reflection coe�cient for the prototype scale is calculated from model

scale properties as follows:625

RP =

1
1 ! Ē OWC( M )#

s!
F

Ē I( M )
. (78)
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The reflection coe�cient in equation (78) provides information about the

average reflected wave height, nevertheless a complete solution of the system

of equation (35) is required to define the evanescent modes of the incident and

reflected wave field that define the total wave height outside the OWC and

the phase di↵erence between the wave field and the OWC oscillation. Since a630

complete solution is not attempted in this paper, accounting for the e↵ects of

scaling on the extreme loads is not presented in this work.

In this section, accounting for the e↵ects of scaling in OWC due to air

compression is attempted using an analytical approach. It is therefore important

to point out the limitations of this method, which are caused by nonlinearities635

in the air compression response (see [14]), nonlinearities in the incident wave

field, as well as disregarding intense free-surface dynamics that lead to impulsive

loading inside and outside the OWC. In addition, the use of the compression

number is developed by considering a regular wave field, with one value for

frequency %, whereas random waves nedd to be considered for designing an640

OWC. If the waves have a relatively narrow band of frequencies, then we may

choose a value of % in the centre of the band. If the wave spectrum range is

broad, it would pay to treat several values of %corresponding to the load peaks

or spread of frequencies.

The analysis above did not take into account active PTO control for opti-645

mising energy capture during interaction with random waves [27]. This could

be included using an methodology for incompressible air flow e.g. [28], but

considering only the incident wave height related to the incompressible mode

and K 0 as the resistance coe�cient as starting points. Note that for relatively

broad-band spectra, K 0 will be relatively dependent on ⌦ for each individual650

wave or wave groups, so further investigation should be performed to define the

variation of ⌦ with respect to each wave group. This, nevertheless should not

introduce more control parameters to the optimisation algorithm, apart from

constants h and $po.
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4.3. E↵ects of sea water scaling655

Fresh water rather than sea water is typically used in physical modelling of

coastal structures, causing an additional scaling e↵ect, due to density di↵erences

between sea and fresh water. In most coastal structures, these scaling e↵ects

can be included a posteriori, for example by multiplying wave loads with a

correction ratio accounting for the e↵ect of sea water. In our study, di↵erences660

in water density introduce scaling e↵ects in the interaction between air and

water phase as for example the radiation component in equation (29) includes

the water density. These e↵ects can be resolved in a relatively simple manner

if we introduce the following variable:

I 0 = K !

' wg
(79)

where I 0 is a resistance coe�cient normalised to the specific weight of the water.665

Equation (64) then becomes:

S! = I 0% (80)

Froude scaling can be now applied with respect to I 0 according to (82)

I 0
M = I !

Pp
sF

(81)

Assuming sea water density applies always in prototype scale and fresh water

always in model scale, the scaling relation for K 0 becomes:

K 0
M = s'

K !
Pp
sF

(82)

where s' is ratio of sea water to fresh water. The PTO resistance is then defined670

by scaling relation (66), assuming

AM = (s" )
2

sF

" 2
P h2

P

! po
and CM = (s" )

2

sF
K 2

P (1 + ⌦2
P ) (83)

For ⌦M << 1, the scaling relation can be calculated according to Equation (84)

K M = s" K P#
sF (1+! 2

P
)

(84)

Density scaling e↵ects can be further included in the analysis of Section 4.2,

by replacing Equation (67) with (83) and (68) with (84). Since scaling of K M
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already includes the e↵ect of sea water scaling, this is also included in any675

relation containing ⌦M , as the latter is derived by the former for the model

scale.

5. Validation and example applications

In this section, the method is validated using numerical and experimental

data originally presented in [26, 29, 23] and subsequently, example applications680

are presented from other physical model tests e.g. [24] and prototype OWC

structures, such as the Pico Power Plant [30, 31]. For the purposes of all calcu-

lations, it is assumed that $po=140kPa.

5.1. Validation

The experimental configuration of the physical model tests in the Grosse685

Welle Kanal (GWK) is presented in [26, 29, 23] in detail. The OWC structure

comprises three rectangular chambers 1.44 m x 2.45 m each, with the longer

dimension being aligned with the longitudinal axis of the flume. The PTO

casing was represented by using a 0.5 m diameter pipe attached to the roof of

the OWC and the PTO resistance with an orifice plate inserted in the middle of690

the pipe. A set regular and random wave conditions were tested combined with

di↵erent orifice diameters varying from 0.05 m to 0.3 m, to investigate the e↵ect

of di↵erent PTO configurations. Herein, we use an example of a regular wave

condition with T = 4 s, H=0.4 m and still water depth at the generation dG=3.5

m, which corresponds to d =1.58 m at the toe of the structure. Since the total695

height of the OWC chamber is 2.4 m, the height of the air column is calculated

to be h=0.82 m. Two orifice plate diameters are considered, 0.05 m (Case 1)

and 0.3 m (Case 2), and significant compressibility e↵ects are anticipated to

occur for the former one (0.05 m), due to the high flow resistance at the orifice.

Both the free-surface elevation inside the OWC chamber and the pressure700

drop at the orifice were recorded and shown in Figure 5.1. Data were processed

using a 60 s window (15 waves), where the regular waves were fully developped.
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To clean up the noise from the measurements, a low-pass filter at T/ 10 was

applied. The compression number, ⌦ was calculated experimentally using two

methods:705

• By manipulating equation (13) to calculate ⌦ as follows:

⌦ =
1

1 '
$̄c! po

pch

) 2
! 1

(85)

• By considering the phase di↵erence &$ and equations (15) and (16) to

calculate ⌦ as follows:

⌦ = arctan(
'
2

! &$) (86)

Note that &$ is calculated as the phase di↵erence between the signal of the

pressure and the free surface elevation, considering the primary harmonic of710

the wave motion, herein at T =4 s. The calculation of ⌦ using equation (85)

is performed using both using the data presentend at Figure 5.1 as well as by

considering only the primary harmonic of both the free surface and the pressure

drop.

The compression number ⌦ was also calculated theoretically using equation715

14. Since the pressure drop is quadratic to the velocity, the K was calculated

using the linearisation method proposed in Section 2.4. The amplitude of the

velocity ūm , was therefore computed using the following relation

ūc = Sb

1
pc

K o
(87)

where Sb is the ratio of the OWC chamber area to the pipe area and K o is

calculated according to equation (90) [32]:720

K o = [1 ! (So)
2Cc]

2 1

(So)4(Cc)2
(88)

where So is the ratio of the orifice diameter to the pipe diameter (0.1 and 0.3

for Case 1 and Case 2, respectively) and Cc is an empirical coe�cient calculated

according to [32] (0.62 and 0.66 for Case 1 and Case 2, respectively).
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Figure 6: Time series of free-surface elevation (dashed lines) and pressure (solid lines) for Case

1 (top) and Case 2 (bottom). Pressure values are shown at the left axis, whilst free-surface

elevation values are shown at the right axis
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The pressure drop amplitude pc in equation 87 is calculated from the exper-

imental data, by considering only the amplitude of the primary harmonic and725

v̄m is calculated using equation (26). Results are presented in Table 5.1. Based

on these results, the following comments are made:

• The theoretical analysis is in accordance with the findings from the ex-

perimental analysis.

• The compression number ⌦ is accurately calculated for Case 1730

• Results from experimental analysis using the primary harmonics are very

similar to the ones derived by including higher-order terms, hence demon-

strating that applying linearisatin is a reasonable assumption.

• The calculation of ⌦ is less accurate for Case 2. This is probably because

uncertainties such as the empirical calculation of resistance or emergence735

of nonlinearities are probably magnified due to the fact that ⌦ $ 0. In

practice though, both the experimental and the theoretical calculation of ⌦

demonstrate that the air flow in Case 2 is characterised as incompressible.

• When the pressure drop is related to the velocity quadratically, a calcula-

tion of the vertical velocities in the OWC chamber is necessary to obtain740

a value for K . In this case, we were able to calculate it directly from the

experimental data. In the absence of pressure and velocity data, the calcu-

lation can be achieved by guessing the e�ciency related to incompressible

processes 0¡& n0 &1 and calculating v̄c using equations (50)-(56). As ⌦ is

part of the calculation procedure.745

5.2. Example applications

5.2.1. OWC experiments in UWA [24]

The experimental tests were performed in a 50m long and 1.5m wide wave

flume at the University of Western Australia (UWA). The structure comprises

a caisson-shaped OWC with a rectangular opening at the o↵shore face and a750
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Variable Case 1 Case 2

ūm (m/s) 0.015 0.34

K (theoretical, Pa·s/m) 77200 675

⌦ (theoretical) 0.71 0.006

⌦ (unfiltered, using pc/ "̄ c) 0.71 0.012

⌦ (filtered, using pc/ "̄ c) 0.70 0.013

⌦ (using a! from peak frequency) 0.72 0.05

K calculated from ⌦ (unflitered, Pa·s/m ) 77200 1255

5 mm wide rectangular opening located at the top face, 5 cm away from the

back wall. Both openings practically extend at the full width of the flume, thus

making the configuration two-dimensional. The width of the chamber is b=0.64

m. Whilst the height of the air column is not explicitily mentioned in [24], based

on evidence from drawings and photographs, this is assumed to be 0.7 m.755

The authors in [24] present results for the energy e�ciency n and we can

therefore use equations (50), (53) and (54) to calculate v̄c and subsequently v̄m .

Combining the aforementioned equations and calculating the integral in (54)

gives:

ūc = 0.5' ūm = 3

1
3' EOW C

4K 2b
(89)

where K 2 is calculated from the [32] as760

K 2 = [1 ! (Sb)Cc]
2 1

(Sb)2(Cc)2
(90)

where Sb is the ratio of the width of the PTO opening to the OWC width and Cc

is 0.61. The wave energy captured at the PTO is calculated as EOW C = nEw ,

where n is taken from the derived e�ciency curve in [24] and Ew is calcu-

lated from the incident wave field using equation 50. The compression number

was calculated for H =0.1m and T =1, 1.5 and 4 s, and was found to be765

⌦ =0.013, 0.019 and 0.008 respectively, using n $ 0.1, 0.7 and 0.5, respectively

(results summarised in Table 1). This means that in the experiment of [24], the
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Table 1: Wave characteristics, K , v̄m and ⌦ for the OWC experiments in [24].

%(s�1) h (m) K 2 (kg· m �3) v̄m (m/s) K (Pa · s/m) ⌦

6.28 0.7 26167 0.015 400 0.013

4.19 0.7 26167 0.035 913 0.019

1.57 0.7 26167 0.039 1029 0.008

compressibility e↵ects were not significant. It is nevertheless stated that the

prototype structure is expected to be at 12.5 scale and in this case, we would

anticipate that ⌦P $ 0.1 ! 0.25, which suggests that the air compressibility770

e↵ects will be marginally significant at prototype scale, assuming that the PTO

orifice used in the laboratory is su�ciently representative of the prototype one.

5.2.2. Pico power plant [30, 31, 33]

The OWC structure from the Pico power plant in Azores, Portugal is used as

an example [30]. In this case, Wells turbine is used as PTO, therefore K = K 1.775

The linear damping coe�cient with respect to the air flow discharge was set

to 120 Pa · s/m3. The PTO resistance has to be therefore converted to match

the resistance layer assumption, as introduced in the current paper using the

following relation:

K = bKq (91)

where K q=120 Pa · s/m3 is the of proportionality between the volume flux and780

the pressure drop at the resistance layer and b is the horizontal cross-sectional

area of the OWC. According to equation (91), K = 17280 Pa·s/m. The cross-

sectional area of the chamber at mean sea level (MSL) is square with size 12

m + 12 m. Since the cross-sectional area varies along the OWC height, the

e↵ective height of the air column is calculated by dividing the total volume of785

the air above MSL Vo to the width of the OWC b. It is estimated from [30] that

Vo $ 1200 m3, therefore the e↵ective height is h = Vo/b $ 8 m. The design period

is set to 12 s [33]. It is calculated that ⌦=0.5, therefore in Pico powerplant,
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Table 2: Wave characteristics, K and ⌦ for the OWC-WEC at Pico, Azores

%(s�1) h (m) K (s�1) ⌦

0.52 8 17280 0.5

compressible e↵ects are clearly of significance. Results are summarised in Table

2.790

According to these results and in combinations with the analysis in Section

3.2, the compressibility e↵ects will limit the of the available wave energy to

about 80% of the maximum theoretical, as part of the incident wave energy

will be associated with the cycle of the net air compression and expansion, thus

becoming unavailable for exploitation. Note that this percentage corresponds795

to wave energy concentrated aroung a period of 12 s, and the percentage will

change for di↵erent periods, i.e. for wave period of 6 s, this would reduce the

available wave energy for conversion to about 50% of the incident wave energy.

6. Discussion and recommendations for use

In this work, we propose the use of a (nondimensional) compression number800

⌦, for the air flow characterisation inside the OWC. The compression number

defined by equation (14), represents the relative importance of air compression

e↵ects and thus can be used to characterise the flow inside an OWC. This num-

ber is derived, through linear analysis, from the thermodynamic equations of

the air phase. We have shown that when the compression number is su�ciently805

small (e.g. ⌦ & 0.1) then the air flow can be considered as incompressible,

whereas when ⌦ >> 10�1, air compressibility is significant. These e↵ects are

manifested as changes between the magnitude and the phase di↵erence between

the volume fluxes at the air-water interface and the resistance layer.

These e↵ects can only be investigated by considering the coupled problem of810

wave interaction with the OWC structure and response of the PTO. Therefore,

the air compressibility is introduced to the potential flow equations for the water

phase through the air-water dynamic boundary condition inside the OWC. The
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latter is decomposed into scattering and radiation problems, following [5]. It

is shown that changing the scale a↵ects both the performance of the OWC815

(through the development of di↵erences between the fluxes in the resistance layer

and the free-surface elevation), and alters the OWC resonance characteristics.

Scaling e↵ects are further investigated by manipulating the equations to match

the incompressible form proposed in [5] and then applying Froude scaling to

the modified equations. This yields some scaling relations that, when applied820

to a small scale model, would ensure a consistent and predictable scaling of the

energy performance. Scaling e↵ects in relation to maximum wave loading have

yet to be resolved, as a full solution of the potential problem should be pursued.

The methodology for characterisation was applied to practical ap-

plications. First, the analysis is validated using experimental data825

from [26, 29, 23]. Key processes predicted by the analysis, such as

the free-surface motion compressing the air, and the development

of phase di↵erences, were also proved by analysing the experimental

data. Despite the linear nature of the methodology proposed, quan-

titative comparisons also yielded very good results. Consequently it830

was used to assess compressibility e↵ects in model scale [24] and in

prototype scale. It is confirmed that in experiments compressibility

e↵ects are generally negligible, except when the flow at the PTO is

highly restricted. By contrast, compressibility e↵ects are relatively

important in operational OWC configurations in prototype scale, and835

can lead to a reduction in e�ciency, especially in the conversion of

wave energy to pneumatic energy.

The importance of introducing these new concepts (and especially the com-

pression number) lies in the chance to assess the importance of the compression

e↵ects by performing a simple calculation, as shown in equation (14). The com-840

pression number is also useful to assess the quality of numerical and physical

modelling, and in particular:

• In physical modelling, the procedure developed in Section 4.2 can be used
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to estimate the influence of power take o↵ on the compressibility of air

and its scaling from model to prototype;845

• In computations, the simple 2D OWC geometry can be reproduced with

a numerical model that accounts for air compression, and the model can

be validated against the predictions developed in Section 2.

The methodology that we propose is subject to some limitations

due to the nature of the linear equations and the consideration of850

regular waves or narrow-band. Whilst initital comparison showed

that the theoretical analysis is in accordance with large scale phys-

ical modelling data, it will be useful if the predictions arising from

this methodology are further compared with large scale physical mod-

elling data that include random wave tests, such as the ones presented855

in [23], to quantify the extent that such a simple characterisation is

representative of a random wave field. In addition, a more extensive

investigation is required, using numerical modelling and small and

large scale experimental data as well as field measurements to at-

tain the range of validity of the theoretical considerations developed860

within this work.
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