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Highlights 

 We investigate US Treasury market volatility. 

 We find substantial interest rate volatility risk for medium-term instruments 

 We show that it has a time-varying relationship with equity volatility risk.  

 It is affected by macroeconomic and monetary news. 

 It is only partially spanned by information contained in the yield curve. 

 

Abstract 

This paper investigates US Treasury market volatility and develops new ways of dealing with the 

underlying interest rate volatility risk. We adopt an innovative approach which is based on a class 

of model-free interest rate volatility (VXI) indices we derive from options traded on the CBOE. 

The empirical analysis indicates substantial interest rate volatility risk for medium-term 

instruments which declines to the levels of the equity market only as the tenor increases to 30 

years. We show that this risk appears to be priced in the market and has a significant time-varying 

relationship with equity volatility risk. US Treasury market volatility is appealing from an 

investment diversification perspective since the VXI indices are negatively correlated with the 

levels of interest rates and of equity market implied volatility indices, respectively. Although VXI 

indices are affected by macroeconomic and monetary news, they are only partially spanned by 

information contained in the yield curve. Motivated by our results on the magnitude and the nature 

of interest rate volatility risk and by the phenomenal recent growth of the equity volatility 

derivative market, we propose the use of our VXI indices as benchmarks for monitoring, 

securitizing, managing and trading interest rate volatility risk. As a first step in this direction, we 
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describe a framework of one-factor equilibrium models for pricing VXI futures and options on the 

basis of empirically favored mean-reverting jump-diffusions. 

 

Keywords: Interest rate volatility; Volatility indices; Volatility risk premium; Level effect; 

Unspanned stochastic volatility; Macroeconomic news. 

 

Classification codes: C51, E44, G12, G13, G14. 

1. Introduction 

The volatility of interest rates is of prime importance to monetary authorities, financial 

institutions, policy makers and journalists since interest rates have such a central position in 

economic theories, models and systems. Bond and foreign exchange market participants are also 

particularly concerned about the future evolution and variability of interest rates since volatility is 

a protagonist in the pricing, hedging and risk management of financial instruments involving 

interest rates (Chapman & Pearson 2001; Ederington & Lee 2007). Researchers have examined 

various hypotheses and uncovered stylized facts, but there is no strong consensus yet in the 

empirical literature on how interest volatility should be measured and modeled. More importantly, 

although we now understand well that interest rate volatility exhibits large swings (Ait-Sahalia 

1996; Andersen & Lund 1997; Amin & Ng, 1997), we know much less about how this particular 

risk should be monitored and dealt with (existing risk management practices are reviewed by Ho 

2007).  

Expanding on an idea originally mentioned in Brenner and Galai (1989), we take a fresh look 

at interest rate volatility by employing ideas and tools from the extensive recent research on 

volatility indices in equity markets. This allows us to make a number of significant extensions to 

the literature. Specifically, using a well-established model-free methodology, which was first used 

for the VIX equity market volatility index, we build a set of new metrics for interest rate volatility. 

These metrics are employed as proxies of expected volatility for Treasury market instruments on 

the basis of information contained in interest rate options traded on the Chicago Board Options 

Exchange (CBOE). We study the daily empirical behaviour of three VXI indices with maturities 

of 5 years, 10 years and 30 years, respectively, over a twelve year period. The results indicate that 

implied volatility is substantial in magnitude and variation. For example, in the case of the 5-year 

instrument, volatility is almost double that of the VIX equity volatility index (39.34% vs. 20.41%). 
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Over the recent credit crisis, levels of implied interest volatility of medium-term rates increase 

sharply, more than fourfold relative to the past. The negative premium which corresponds to 

interest rate volatility risk is found to be much higher in magnitude than estimates reported for the 

equity market. An important new result is that our estimates of interest rate volatility risk premia 

have a significant time varying-correlation with equity market volatility risk premia. Another 

interesting finding is that the VXI indices, as is the case with the VIX index, offer valuable 

diversification opportunities to bond and equity investors. Specifically, our measures of interest 

rate volatility have a strong negative correlation with interest rate levels (up to -85.8%) and equity 

market implied volatility index levels (up to -23.5%). In line with previous research, we show that 

macroeconomic and monetary announcements affect significantly implied interest rate volatility 

by decreasing (increasing) it the day before (after) an announcement. A new result is that this effect 

varies across the term structure and becomes more prominent at the longer maturities studied. We 

confirm previous findings in the literature that interest rate implied volatility is not fully spanned 

by the information which is contained in the underlying yield curve. Finally, motivated by our 

results and the rapid development of the equity volatility derivative market, we propose our VXI 

indices as vehicles for developing options and futures which can be used for managing and trading 

interest rate volatility risk. On the basis of a horserace amongst popular continuous time models 

for representing the VXI index empirical behavior, we describe a single-factor pricing framework 

using autonomous mean-reverting jump-diffusions. 

Our study is closely related to the recent studies of Claes, De Ceuster, Lópezc and Navarroc 

(2010), and of Choi, Mueller & Vedolin (2017), where both studies propose the construction of 

Treasury bond implied volatility indices. The first study uses data from the U.S. cap (floor) market, 

which are portfolios of options on interest rates traded in the over-the-counter (OTC) interest rate 

derivatives market, and the second study uses data from options on Treasury futures. The empirical 

results in our paper are based data from interest rate options traded on the CBOE (for more details 

on the specifications of these products see Longstaff, 1990; Christiansen & Hansen, 2002). 

Although this market may not be as large as the interest rate option markets used by Choi et al. 

(2017), these options are of particular interest because of two reasons. First, since they are written 

directly on the rates (yields), they allow the construction of indices that measure the model free 

implied volatility of treasury rates, rather than the implied volatility of Treasury Bonds (Claes et 

al., 2010; Choi et al., 2017). Second, they provide direct insight into the information context of the 
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interest rate, which is implicit in other contingent claims (e.g. treasury futures or Eurodollar 

futures).  

The rest of the paper is organized as follows. Section 2 describes the dataset and the 

methodology used to construct the interest rate implied volatility indices. Section 3 presents the 

results of our empirical study, Section 4 develops valuation formulae for futures and options 

written on interest rate implied volatility and discusses some of their key properties, and Section 

5 concludes. 

2. Methodology and Data: Interest Rate Implied Volatility Indices (VXI). 

Two main approaches are most popular amongst academics and practitioners for the 

estimation of interest rate volatility. The first resorts to historical time series of interest rates in 

order to derive estimates of “historical volatility” using unconditional moment estimators, 

exponential moving averages, ARCH models, stochastic volatility models, etc. (see Ederington & 

Lee, 2007). The second approach aims at calculating the “implied volatility” that equates actual 

prices of interest rate options with those given by some theoretical pricing model. Since this 

estimate reflects market data, it incorporates investor expectations, behaviors and risk attitudes 

about the future evolution of volatility. Although there is controversy in the empirical literature 

about which approach is superior, most researchers seem to agree that implied volatility is better 

than historical volatility in terms of forecasting power (Christensen & Prabhala, 1998; Poon & 

Granger, 2003; Szakmary, Ors, Kim & Davidson, 2003; Li & Yang, 2009). A third nonparametric 

approach employs intraday price data to derive so-called realized volatility measures (Andersen & 

Benzoni, 2010). Although this last approach is known now to be theoretically and empirically 

appealing, it is still not widely applied due to the significant data requirements it has. 

Turning now to interest rates in particular, previous empirical research on implied volatility is 

based on estimates derived by inverting observed option prices using a specific option pricing 

model. Amin and Morton (1994), and Amin and Ng (1997) are using the Heath, Jarrow and Morton 

(1992) model, while the studies by Christiansen and Hansen (2002), and Claes et al. (2010) 

estimate implied volatility via the LIBOR market model. Unfortunately, the implied volatility 

estimation approach used by the above studies comes with two important disadvantages. First, the 

accuracy of the estimates depends critically on the validity of the option pricing model assumed. 

Second, at any particular moment, there are as many implied volatility estimates as strike prices 

of the options. In order to overcome such problems, Britten-Jones and Neuberger (2000) and Jiang 
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and Tian (2005) propose a general model-free methodology that calculates implied volatility using 

the entire set of the option prices at a certain point of time. In both studies, the authors provide 

evidence that the model-free implied volatility is better than both historical volatility and model-

driven implied volatility.  

In recent years there has been a great deal of research also on the construction and the 

properties of equity implied volatility indices (Carr & Wu, 2006; Gio, 2005; Whaley 1993; 2009). 

The first volatility index (VIX) was introduced in 1993 by the CBOE. Soon after the introduction 

of the index, CBOE received strong criticism regarding the methodology used for the calculation 

of VIX. Originally the VIX was calculated as an average of the Black-Scholes at-the-money 

(ATM) option implied volatility, according to the methodology proposed by Whaley (1993). As a 

response, on September 22, 2003, the CBOE changed the Black-Scholes based methodology of 

VIX calculation. The new VIX methodology is model-free and allows VIX to be robustly 

replicated by a portfolio of options (see CBOE, White Paper, 2009 and Carr & Wu, 2006, for a 

detailed description of the “new” VIX methodology and for a comparison of the two 

methodologies).1 Specifically, the new VIX implied volatility index is constructed as the weighted 

sum of out-of-the-money (OTM) call and put option closing prices at two nearby maturities across 

all available strikes. The implied volatility index captures the implied volatility of a synthetically 

created ATM option with a constant maturity of 30 days. Several other equity implied volatility 

indices have also been developed. These include the VXN, the VXD and the RVX in the CBOE, 

which are the equivalent to VIX implied volatility indices for the NASDAQ, Dow Jones Industrial 

Average and Russell 2000 Index, respectively. Similarly, we have the DAX-30 volatility index 

(VDAX-NEW) in Germany, the CAC-40 volatility index (VCAC) in France and the Dow Jones 

EURO STOXX 50 volatility index (VSTOXX) in the Eurex. Given the great success of equity 

implied volatility indices and the rapidly expanding market for volatility futures and options, 

CBOE recently decided to launch three more implied volatility indices in different asset classes 

than equity: the Crude Oil Volatility Index (OVX), the EuroCurrency Volatility Index (FVX) and 

the Gold Volatility Index (GVX).  

Although the model-free methodology and index construction has been widely applied to 

equities, to the best of our knowledge our research is the first to be undertaken in the interest rate 

                                                           
1 CBOE still quotes the “old” VIX, which is calculated with the old methodology, under the ticker “VXO”. All volatility indices, 

apart from VXO, quoted in CBOE are calculated with the new model free methodology.  
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literature. The relevant studies of Claes et al. (2010) and of Choi et al. (2017) construct implied 

volatility indices written on bond prices. As such, they implicitly assume that the log-return of the 

bond equals the yield to maturity. In the present study, we closely follow the model-free 

methodology of VIX, in order to construct the interest rate implied volatility index (VXI). The 

VXI represents the risk-neutral expectation of the annualized volatility of the underlying interest 

rate over the next 30 calendar days. As in the case of equity implied volatility indices, where each 

implied volatility index corresponds to the implied volatility of a particular stock index, we can 

construct a different interest rate implied volatility index for each interest rate maturity available 

(e.g. 13 weeks, 5 years, 10 years, 30 years). Moreover, a similar encapsulation technique is 

applicable to all interest options, e.g., options on Eurodollar futures traded at CME, treasury option 

traded at CBOE or at CBOT, etc. 

We employ daily market prices for interest rate call and put options traded on the CBOE over 

the period 1/4/96 to 8/29/08, a total of 3,159 trading days. The sample covers over 12 years of data 

which allows statistical significance and a variety of market environments. The starting point 

corresponds to the earliest point for which we have available data. The cut-off date corresponds 

roughly to the beginning of the financial crisis which was followed by the zero interest-rate policy 

in the US. We do not use more recent data in order to avoid the effects this very unusual interest 

rate environment. One can argue that interest rate volatility is not a major concern in this period in 

comparison to systemic or equity risk. The introduction of unconventional monetary policies such 

as quantitative easing after 2008, means that the sample may not be homogeneous with respect to 

the past. We recognise this as a limitation of our study which can be addressed through future 

research which can look at the management of interest rate risk at very low interest rate 

environments.  

The options used are cash-settled European style and are written on the spot yield of U.S. 

Treasury securities. There are 4 different contracts available. The first is written on: the annualized 

discount rate of the most recently auctioned 13-week Treasury bill. The other three are written on 

the yield-to-maturity of the most recently auctioned 5-year Treasury note, the 10-year Treasury 

note and the 30-year Treasury bond, respectively. The ticker symbols of the underlying instruments 

are IRX, FVX, TNX and TYX, respectively. According to the construction of the IRX, FVX, TNX 

and TYX, each day the underlying asset of the options used is always the same. Say at issuance, 

the option is written on the yield-to-maturity of 30-year Treasury bond (TYX). Tomorrow, this 30-
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year Treasury bond, which now has a maturity of 30 years minus one day, will be replaced by the 

yield-to-maturity of a new Treasury bond with exactly 30 years maturity. So, the underlying asset 

is always the same (see the website of CBOE for more details). Other studies of interest rate 

implied volatility use data from swaptions (see, among others, Trolle & Schwartz 2009), option 

contracts written on Eurodollar futures (Amin & Ng 1997), options on Treasury futures (Choi et 

al. 2017), and OTC interest rate options (Claes et al. 2010). To the best of our knowledge there are 

only two studies that use similar data. Firstly, Christiansen and Hansen (2002) use interest rate 

options data from CBOE to analyse the IRX rate. Secondly, Heuson and Su (2003) use option data 

written on FVX, TNX and TYX, and examine the intra-day reaction of implied interest rate 

volatility around macroeconomic new announcements. However, since in both studies the implied 

volatilities are not model free (Christiansen & Hansen, 2002, use the LIBOR market model, and 

Heuson & Su, 2003, use Hull-White model to extract the implied volatilities), their estimates are 

subject to model misspecification. Our dataset offers four main advantages. First, it gives us the 

opportunity to provide empirical evidence on a relatively unexplored market. Second, the interest 

rate options we analyse are much simpler than options on Eurodollar futures, since the former are 

written directly on interest rates. In this manner, we deal directly with the quantity of interest and 

avoid any irrelevant effects. Third, since we are dealing with new volatility metrics and derivatives, 

it makes sense to base our study around the CBOE which is leader in the volatility securitisation 

and monitoring industry. Finally, since all the data are provided by the CBOE, we preserve 

homogeneity and minimize the errors that may result from asynchronous trading and variations in 

data quality.  

Using the model-free methodology of VIX we calculate the implied volatility from the option 

contracts on FVX, TNX and TYX and coin the corresponding indices as VXI-5Y, VXI-10Y and 

VXI-30Y, respectively. We choose not to construct an index written on the shortest rate (i.e. IRX) 

for two reasons. First, options written on IRX are the least liquid. Second, IRX is not directly 

comparable with the other three rates, since IRX is the discount yield of the most recently 

auctioned 13-week T-Bill, while the others are yield to maturities of T-Bonds. In the cases where 

the value of the implied volatility index cannot be computed due to low liquidity or missing values, 

that is around 5% of the sample, we use the value of the previous trading day as an approximation.2 

                                                           
2 However, a recent study of Andersen et al. (2011). proposes an alternative methodology for volatility index construction using a 

limited range of options, and develop a so-called corridor implied volatility index. 
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We estimate also simple logarithmic returns for these indices and denote them as: ΔVXI-5Y, 

ΔVXI-10Y and ΔVXI-30Y (hereafter these will be referred to as returns or changes).  

3. Empirical Results  

3.1 Descriptive Statistics 

Time series plots of the indices and underlying yields are presented in Figure 1. Descriptive 

statistics of index levels and returns are given in Table 1. We also include some results for the 

VIX, S&P500 and the Merrill Option Volatility Expectations (MOVE) indices in order to facilitate 

comparative inferences. The MOVE is calculated by Merrill Lynch as the weighted average of the 

normalized implied volatility from constant one-month at-the-money OTC Treasury options 

written on benchmark Treasury securities with maturity periods of 2 years, 5 years, 10 years and 

30 years, respectively. The yields of these maturity periods are equally weighted with 20% except 

for the 10 year which has a weight of 40%. Since the maturity of the options are constant up to one 

month, the MOVE measures implied volatility over a forecast horizon similar to VXI indices. 

However, in the case of the MOVE index, implied volatility is model depended, as it is calculated 

only from at-the-money options using the Black (1976) model.  

[Insert Table 1 and Figure 1 here] 

In line with previous studies (Ait-Sahalia, 1996; Amin & Ng, 1997; Andersen & Lund, 1997), 

the plots indicate that interest rate volatility is substantial and varies significantly across time. The 

averages and standard deviations are very different between the indices analysed. The index 

referring to the volatility of the shortest maturity interest rate (VXI-5Y) has the highest level of 

mean (MEANVXI-5Y = 39.34) and variability (CVVXI-5Y = 83.69%), much higher than the 

corresponding values for the VIX (MEANVIX = 20.41, CVVIX= 32.83%). The remaining two 

interest rate volatility indices (VXI-10Y, and VXI-30Y) have a similar average level and 

variability compared to the VIX. A significant shift took place in volatility as the credit crisis 

unfolded. As shown in Figure 1, the VXI-5Y increased more than fourfold since June 2008 and 

went from an average level of 33.56 and 37.02 to 135.71 and 177.86, respectively. The extreme 

positive and negative returns confirm what can be seen visually in the plots as violent and abrupt 

changes. The shift in volatility in 2008 reflects the drop in interest rates to almost zero and a period 

of very low volatility which last up to present. All VXI indices are non-normally distributed with 

a positive skewness and excess kurtosis. Again, these characteristics are more prominent for the 
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shortest term index studied. Finally, we see that the behavior of the VXI indices to the MOVE is 

quite different. The differences in magnitude are justified by the fact that MOVE is based on some 

unknown normalization scheme and this index may not have a direct correspondence to volatility. 

MOVE changes are far more smooth and closer to a Gaussian distribution. 

Similar to previous studies such as Chapman and Pearson (2001), and Litterman, Scheinkman 

and Weiss (1991), our results across the 3 maturities studied suggest that the implied volatility 

term structure is hump-shaped with a peak at the 5-year period. In addition to the level of volatility, 

we find that the variability of the indices also has a similar hump-shaped pattern. As in Ball and 

Torous (1999), the preliminary analysis for all series demonstrates that interest rate volatilities are 

highly persistent but stationary. A first indication for this is given by the time series plots and the 

fact that autocorrelation coefficients of levels at lag 1 are just below unity. These results are 

confirmed by both the augmented Dickey and Fuller and Phillips and Perron unit root tests (see 

results in Appendix, Table 10.).  

In contrast to Ball and Torous (1999), we find that interest rate volatility displays similar 

persistence to that of the equity market with the first lag autoregressive coefficients being just 

below unity. An exception is the VXI-30Y which has a considerably smaller coefficient. 

 

3.2 Interest Rate Volatility Risk Premium 

A crucial step in understanding interest rate volatility is to examine if it is priced by investors. In 

other words, if a volatility risk premium (VRP) is demanded as a compensation for assuming 

interest rate volatility risk. Following Almeida and Vicente (2009), Bollerslev, Tauchen, and Zhou 

(2009), Carr and Wu (2009), (2016), and Fornari (2010) the VRP over the next month can be 

defined as the difference between the realized volatility for the same period (RVt,t+30) and the risk 

neutral interest rate expected volatility (VXIt): 

 , 30t t t tVRP RV VXI    (1) 

RVt,t+30 is calculated from the following formula: 
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where rt denotes the time t treasury rate. In approximating the second term, we use volatility 

estimates based on the sum of squared interest rate daily returns over a period of one month. 3 

The method used for the calculation of the volatility risk premium, equation (1), directly uses 

the model-free realized and implied volatilities to extract the volatility risk premium. Both 

measures and in turn the premium are directly observable at time t in a completely model-free 

fashion. As such, it is easier to implement than other methods, which rely on the joint estimation 

of both the underlying asset return and the prices of one or more of its derivatives. The latter 

requires complicated modeling and estimation procedures (see, e.g., Pan, 2002; Jones, 2003; 

Eraker, 2004; Garcia, Lewis, Pastorello & Renault, 2011, among many others). There is clearly a 

trade-off between model-free and model-based approaches to recover implied volatilities. While a 

model-free approach is robust to misspecification it requires theoretically continuous strikes for 

option prices or practically a very liquid market like the S&P500 option market. On the contrast, 

model-based approaches are sensitive to misspecification but they require only a few option prices. 

Fortunately, however, even with relatively few different options, model-free approach tends to 

provide a fairly accurate approximation to the true (unobserved) risk-neutral expectation of the 

future return variation (Jiang & Tian, 2005) 

In addition, our use of the volatility difference as a simple proxy for the volatility risk premium 

implicitly assumes that the volatility follows a random walk, or equivalently that the best predictor 

of the expected realized volatility E(RVt,t+30) is the current realized volatility, RVt,t+30. Toward this 

end, Bollerslev et al. (2009) and Bollerslev, Marone, Xu and Zu (2014) also use the Expected or 

Forward VRP (FVRP), which is obtained by replacing the model-free monthly realized variances 

with forward looking model-based expectations, i.e.:  

  , 30t t t tFVRP E RV VXI    (3) 

Unfortunately, in contrast to the VRP defined in equation (1), FVRP necessitates the use of a model 

for generating the forward expectations E(RVt,t+30), and as such FRVP abolishes both the simplicity 

                                                           
3 Bollerslevet al. (2009). and Carr and Wu (2009). construct variance risk premia, which are defined as the difference 

between the implied variance and the risk neutral variance. However, some of their estimation procedures used in our 

study, can easily be extended to the case of volatility risk premia.  
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and the “model-free” nature of VRP4. Still, as shown in the Bollerslev et al. (2009) and Bollerslev, 

et al. (2014), perform fairly similar. 

A number of theoretical and practical implications of the VRP are discussed in the literature. 

Chernov (2007) emphasizes the role of the VRP for portfolio managers and policymakers in 

allowing them to form better forecasts of future volatility. Accordingly, Bollerslev et al. (2009) 

show that the VRP explains a significant portion of the variation in the post-1990 aggregate stock 

market returns. Bekaert and Hoerova (2014) present empirical evidence that the VRP predicts stock 

returns. Almeida and Vicente (2009) argue that the VRP is crucial in reconciling option market 

implied volatilities with spot market historical volatilities. Joslin (2007) discuss the importance of 

the market price of volatility risk for matching the option price dynamics. Bakshi and Kappadia 

(2003) point out that a negative VRP implies that option prices are higher than those that would be 

realized if volatility risk was not priced. A variety of option pricing models incorporate explicitly 

a volatility risk premium and account for its stylized facts (Christoffersen, Heston & Jacobs, 2013; 

Papantonis, 2016).  

Empirical studies in equity (Bakshi & Kappadia, 2003; Bollerslev et al. 2009; Carr & Wu, 

2009; Todorov, 2010), and fixed income markets (Almeida & Vicente, 2009; Fornari 2010; Joslin 

2007; Choi et al. 2017; Trolle & Schwartz, 2014) give evidence that the volatility risk premium is 

negative, time-varying and dependent on the level of volatility. Estimates of the VRP range 

between -2% to -3% and -4% to -5% for developed equity and fixed income markets, respectively. 

The negative sign of the premium suggests that investors are willing to pay large premiums to 

hedge volatility (Cieslak & Povala, 2016). More recently, Duyvesteyn and de Zwart (2015) has 

demonstrated that the volatility risk premium depends also on the maturity of the underlying 

interest rates. Specifically, the volatility risk premium is more negative for short-term maturities 

than for longer maturities. 

The estimated risk premia are depicted in Figure 2 while Table 2 gives some summary 

statistics. Interest rate volatility risk premia VRP.FVX-5Y, VRP.TNX-10Y and VRP.TYX-30Y 

denote the 5, 10 and 30 years volatility risk premium, respectively. In order to facilitate 

comparisons, we also include descriptive statistics for the volatility risk premium of the S&P500 

index VRP.SP500, which is calculated using the same methodology. In this calculation, the VIX 

                                                           
4 Numerous parametric and nonparametric volatility forecasting procedures are proposed in the literature (see, for 

example, Andersen et al. 2006) 
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index is used as a proxy of the S&P500 risk neutral expected volatility, while realized volatility is 

estimated over the next month using the sum of squared S&P500 index daily returns. The results 

indicate that the interest rate premia are time varying and subject to violent upward and downward 

shifts. The median values range between -5.52% for the 10-year maturity down to -6.31% for the 

5-year instrument. These estimates are higher than the -4% premium obtained for US interest rates 

by Fornari (2010) using a different methodology and dataset. The interest rate VRP are also clearly 

much higher than the -2.45% premium estimate obtained for the equity market using the VIX and 

S&P500 returns. Our premia estimates have high variability, especially for the two shortest tenors 

examined (5 and 10 years), while the distributions of premia and their changes are highly 

nonnormal with many violent upward and downward jumps. The plots also suggest that premia 

are increasing over the recent past. Specifically, since June 2008 median premia have increased in 

magnitude by a factor of 2.36, 1.3 and 1.15 when compared to the previous period for the case of 

the FVX, TNX and TYX, respectively. It is interesting to note that the VIX volatility risk premium 

decreased in magnitude by a factor of only 0.47 since June 2008. Comparable results are obtained 

if means are used rather than the outlier-robust median measures of central tendency.  

[Insert Table 2 and Figure 2 here] 

 

3.3 Correlation Analysis 

A correlation analysis of the VRP with respect to the underlying interest rates is shown at Table 3. 

The inspection of the table allows several interesting insights. First, interest rate VRP are 

interrelated between them, especially at the longer maturities considered (e.g.. the VRP.TNX-10Y 

and VRP.TYX-30Y have a correlation of 78.4%). Second, there is a positive “level effect” in that 

VXI-derived VRP are correlated to the levels of the underlying interest rates. In other words, risk 

premia are higher at higher levels of interest rates. Third, there appears to be a weak negative 

correlation between equity and interest rate volatility risk premia. The relationship between these 

two premia should be examined in the context of the voluminous literature on the association 

between bond and equity markets (see Jubinski & Lipton, 2012; Baele et al. 2010; Guidolin & 

Timmermann, 2006, inter alia). Volatility risk premia, as proxies of investor risk aversion and 

attitudes, should be equal between these two markets according to most asset pricing frameworks. 

However, the “flight to quality” and “flight from quality” phenomena predict an inverse 

relationship between the risk premia in the two markets. Specifically, when the stock market 
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crashes (rallies) then risk aversion towards equities (bonds) increases (decreases) and investors 

move to bonds (stocks). Empirical evidence with respect to the direction of the relationship 

between stocks and bonds has been conflicting. However, recent studies suggest that this 

relationship is time-varying and depends on a variety of macroeconomic and microeconomic 

variables (see Baele et al. 2010; Guidolin & Timmermann, 2006). In light of this evidence, a rolling 

correlation analysis is used with a window of 125 trading days which corresponds to a calendar 

period of 6 moths (for a similar approach see, for example, Connolly et al. 2005). The results for 

the VRP.TYX-30Y, depicted in Figure 3, suggest that the relationship is indeed time-varying with 

correlation being negative over most of the sample period under study5.  

 [Insert Table 3 and Figure 3 here] 

It must be noted also that the level effect, positive or negative, has not been justified yet in the 

interest rate literature. A possible explanation of the negative level-effect could be derived by 

inverting the leverage-effect arguments from equity markets. Τhe leverage effect hypothesis 

proposed by Black (1976) and Christie (1982), postulates that negative returns will usually reduce 

the stock price and market value of the firm, which in turn means an increase in financial leverage, 

i.e., a higher debt to equity ratio. The latter will ultimately lead to an increase in risk and equity 

volatility (see Bae, Kim, & Nelson, 2007, inter alia, for recent advances on leverage effect). 

However, from a debt market perspective, higher levels of interest rates mean that the market value 

of debt decreases. As with the inverse link between bond prices and yields, this is because we are 

discounting with a higher rate. Financial leverage will decrease with the market value of debut 

which in turn suggests less interest rate risk and volatility. In practical terms, our results concerning 

the negative association of VXI indices with other variables have important practical implications. 

They suggest that interest rate volatility can act as significant hedge against variations in the 

underlying interest rate levels and equity market volatility. A similar picture to that painted above, 

although correlation coefficients are much smaller in magnitude, is drawn if changes rather than 

levels in volatility and interest rates are used in the analysis.  

In order to examine the static relationship between the VXI indices and other series, we 

undertake a correlation analysis. The results, shown in Table 4, demonstrate clearly that a strong 

positive relationship (all correlations above 75%) exists between the VXI indices at the three 

maturities studied. The MOVE index is positively related to VXI levels with correlation 

                                                           
5 Similar patterns observed for all maturities and for rolling windows size of 3 months or 1 year. 
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coefficients ranging between 29.7% and 49%. The negative correlation of -10.9% between the 

VIX and S&P500 returns confirms what is widely known in the financial industry with respect to 

the hedging benefits of implied equity volatility. Although we find that the VXI indices have no 

linear correlation with SP500 returns, they are negatively correlated with VIX levels, especially 

for the 5-year and 30-year maturity studied (-20.7% and -23.5, respectively). A strikingly 

significant result is the strong negative relationship between levels of VXI and interest rates with 

the correlation coefficients ranging between -52.3% (VXI-5Y with TYX-30Y) and -85.8% (VXI-

10Y with FVX-5Y). A graphical inspection, as shown for instance in the scatter-plot of Figure 4 

for the TYX-30Y, indicates that this relationship negative curvilinear. 

 [Insert Table 4 and Figure 4 here] 

A negative relationship is consistent with findings throughout the interest rate literature on the 

so-called “level effect” according to which interest rate volatility is sensitive to the level of interest 

rates. However, there is controversy with respect to the size and sign of this level effect. Earlier 

studies characterize this relationship as strongly positive, whereby high volatility is associated with 

high interest rate levels (see, for example Chan et al. 1992). Later studies, which account for 

properties of the series such as autocorrelation and heteroskedasticty, find a much weaker positive 

relationship (see, for example, Andersen & Lund, 1997; Ball & Torous, 1999). More recently, 

Trolle and Schwartz (2009) use interest rate implied volatility estimates from swaptions and caps, 

and report both positive and negative relationships between interest rate implied volatility and 

interest rate levels, depending on the model used to back-out implied volatilities. Our model-free 

estimates of volatility provide new empirical evidences in favor of a nonlinear negative 

relationship between volatility and interest rates.  

 

3.4 Granger Causality Analysis 

In order to assess the possible spillovers between the variables and markets under consideration 

we employ Granger-causality analysis. Both levels and changes of the volatility indices and 

interest rates are considered in order to capture possible dynamic level effects. The null hypothesis 

in the test is that “Variable A” does not cause “Variable B” and it is evaluated using an F-statistic. 

The statistically significant results using a single lag in the test specification are summarized in 

Table 5. The single lag was selected on the basis that most of the dynamics will be captured with 

this as we are dealing with daily data. We also used a longer five lag or weekly structure in the test 
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specification which produced comparable results (available upon request from the authors).  As an 

example in interpreting the results, we reject at the 99% level (F-statistic is 7.92**) the null 

hypothesis that ΔVXI-5Y causes ΔFVX-5Y (in the Granger causality sense). Two main 

conclusions can be drawn from the results. First, various intermarket spillovers exist in the 

Treasury market with interest rates Granger-causing volatility and vice versa. As Amin and Ng 

(1997) suggest, it appears that implied volatility is useful in predicting future interest rate implied 

volatilities. Second, the intermarket spillover effects that can be observed between the S&P500 

and the Treasury rates involve some of the volatility variables studied. Moreover, the VIX and 

ΔVIX appear to lead Treasury market rate variations, levels and volatilities. The only exception 

concerns the relationship of ΔVXI-30Y with ΔVIX. For the other significant intermarket dynamic 

relationships, we can see that ΔVIX (VIX). Granger-causes ΔFVX-5Y, ΔTNX-10Y, FVX-5Y and 

TNX-10Y (ΔVIX and VXI-30Y). 

[Insert Table 5 here] 

Our results are consistent with evidence of volatility spillover between equity and bond 

markets (see, for example, Fleming et al. 1998 for historical volatility spillover, and Wang 2009 

for implied volatility spillover). These spillovers can be justified on the basis of commonalities in 

the information set that simultaneously affects expectations in both markets, i.e., changes in the 

macroeconomic variables (see, for example Harvey & Huang 1991). Another explanation is based 

on cross-market hedging which dictates securing a position in one asset class by taking an 

offsetting position in another asset class with similar price movements. Portfolio managers often 

shift funds from stocks into bonds and vice versa due to new information arrival that alters their 

expectations about stock or bond returns. In this manner, a shock in one market is transferred to 

the other market due to trading activity and this is consistent with volatility spillover (see, for 

example, Fleming et al. 1998).  

 

3.5 Principal Component Analysis  

Another interesting issue that receives much attention in the empirical literature is if the volatility 

implied from interest rate derivatives contains important unspanned components. This is of great 

practical concern since it ultimately determines if bonds should be used to hedge interest rate 

volatility as is predicted by most ‘afine’ term structure models. Most of the previous studies use 

data on LIBOR, swap rates and Eurodollars with mixed results (Andersen & Benzoni, 2010). For 
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example, Collin-Dufresne and Goldstein (2002), and Li and Zhao (2006) report unspanned 

stochastic volatility factors which drive interest rate derivatives without affecting the term 

structure. Heidari and Wu (2003) demonstrate that three factors - the level, slope, and curvature 

term-structure - manage to explain only around 60% of the cross-sectional variability in option-

implied volatilities. This finding is puzzling since these same three factors explain over 95% of 

the variation in the underlying interest rates (see, for example, Litterman and Scheinkman 1991). 

Andersen and Benzoni (2010) also find unspanned factors in realized interest rate volatility. In an 

attempt to shed more light on this issue, we undertake a principal component analysis of the three 

interest rate series under consideration. The results, presented in Table 6a, indicate that the first 

two factors are able to explain almost all (>99%) of the variation in the three interest rate series. 

The next step is to test if these two factors are able to explain the variation in the implied volatility 

indices. As shown in Table 6b, although the first two yield curve principal components are always 

significant regressands of the VXI indices, they are able to explain only a portion of the variability 

in the volatility ranging from 37.2% in the case of the VXI-5Y up to 73.5% in the case of the VXI-

10Y. These results support to the hypothesis that interest rate volatility are not fully explained by 

information contained in the yield curve. The analysis is preliminary and could be extended using 

other approaches from the literature including GARCH and Kalman filter modelling, which is left 

for future research.  

[Insert Table 6a and Table 6b here] 

 

3.6 The effect of news announcements 

Finally, we examine the relationship between VXI and four types of news announcements over 

the period 1/4/96 to 8/29/08. Specifically, we studied CPI and PPI announcements (152 and 150 

events, respectively), Federal Open Market Committee (FOMC) meetings (137 events) and 

employment announcements (148 events). The meeting dates are downloaded from the website of 

the Federal Reserve. Since Goodhart and Smith (1985), several papers over the years present 

mixed evidence regarding the impact of such announcements on equity market returns and 

volatility (for a recent overview of this literature see Chen and Clements 2007). Three recent papers 

focus on implied volatility market and give more conclusive results. Kearney and Lombra (2004) 

show that the VIX increases along with the surprise element in employment announcements. 

Nikkinen and Sahlström (2004) find that the VIX rises prior to and falls after announcements 
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related to the CPI, PPI and FOMC meetings. Chen and Clements (2007) find that the VIX makes 

a significant drop only on the day of FOMC meetings6. Motivated by this research, we attempt to 

investigate if macroeconomic and monetary news constitute a significant factor in the fixed income 

market. Following Nikkinen and Sahlström (2004), we adopt the following regression framework 

in order to examine the impact of news on interest rate volatility: 

1 1 1 1

1 , , , ,

1 1 1 1

CPI PPI FOMC Empl

t t i i t i i t i i t i i t t

i i i i

VXI VXI D D D D      

   

             

 2 2
1 1 1 2 1 1 3 1log( ) log( )t t t t t t                  

Where 1,

CPI

tD  ( 1,

CPI

tD ) is a dummy variable which takes the value of 1 one day prior (after) to the 

employment report release day and zero otherwise. On the release day 0,

CPI

tD  assumes a value of 1 

and zero otherwise. The other dummies are defined accordingly. As Nikkinen and Sahlström 

(2004), a lagged tVXI  term is used in order to capture persistence in the dependent variable. 

However, rather than using the GARCH(1,1) specification with normally distributed errors, which 

Nikkinen and Sahlström (2004) and Chen and Clements (2007) use, we adopt the more flexible 

EGARCH(1,1) with errors following a Generalized Error Distribution (GED).  

The estimation results are presented in Table 7. In general, the announcements studied have a 

significant effect on the volatility of all the series. In most cases for the CPI and FOCM, this effect 

is negative on both the day of the announcement and the day before. In most instances for the PPI 

and EMPL, the effect is positive for the day before the announcement and positive on the day. 

Implied volatility tends to increase following the announcement day for the CPI, PPI and FOCM. 

These results are broadly in line with those reported by previous researchers for implied equity 

volatility and suggest that derivative market investors consider the meetings studied as significant 

for fixed income pricing. For example, Chen and Clements (2007) report a 2% drop in the VIX on 

the day of FOCM meetings. Here we find a somewhat milder effect with the VXI-10Y and VXI-

30Y falling by 1.18%and 0.92% on the FOCM meeting day. The estimation results in Table 7 offer 

some further insights on the dynamics of the VXI series. The GED parameter is statistically 

                                                           
6 There are also the studies of Heuson and Su (2003), and Arnold and Vrugt (2010) that examines the effect of such 

announcements to the intra-day interest rate volatility and Treasury bond volatility, respectively. Although our 

results are in line with their results, they are not directly comparable. The first study used a model depended implied 

volatility and examines the intra-day effect. The second study uses Treasury bond volatility (which is backward 

looking, in contrast to the model free and forward looking VXI) in order to show that monetary policy is the most 

significant predictor of the uncertainty in Treasury markets.  

http://onlinelibrary.wiley.com/doi/10.1111/j.1540-6288.2012.00328.x/full#b1
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significant and equal or less than 2 in all cases suggesting that the errors have a fat-tailed 

distribution. Implied volatility is highly persistent since all the 3  GARCH coefficients in the 

conditional variance equation are well above zero. The effect of news is asymmetric for all series 

( 2 0  ) and in all cases there is a leverage effect ( 2 0  ). 

[Insert Table 7 here] 

4. Interest Rate Volatility Risk Management 

Following the large success of equity implied volatility indices, CBOE introduced volatility 

futures and options written on the VIX (March 2004 and February 2006, respectively). Futures on 

the VXD were introduced in April 2005 and European options followed soon. According to a 

recent CBOE Futures Exchange press release (December 3, 2009), year-to-date through November 

2009, almost 29 million VIX options have changed hands, making VIX options the second most-

actively traded index option at the exchange. Motivated by the success of the VIX market and the 

relative magnitude of interest rate volatility risk demonstrated in the present study, we believe that 

it is useful to discuss relevant solutions for trading and managing interest rate volatility risk. 

A first step in the direction of building pricing and risk management models is to understand 

and approximate empirically the continuous time dynamics of the volatility processes considered. 

The models under consideration are nested in the following stochastic differential equation, under 

the real probability measure P: 

      , , ,t t t t t tdV V t dt V t dW y V t dq     (4) 

where, tV  is the value of VXI at time t, tW is a standard Wiener process, and  ,tV t ,  ,tV t  

and  ,ty V t
 
are the drift, the diffusion and the jump amplitude coefficients, respectively. The jump 

component is driven by a Poisson process tq  with constant arrival parameter λ, i.e. 

Pr{ 1}tdq dt  and Pr{ 0} 1tdq dt   . tdW , tdq  and y are assumed to be mutually 

independent. We allow  ,tV t ,  ,tV t  and  ,ty V t  to be general functions of time and the 

interest rate volatility. Hence, by changing the specification of the above coefficients we come up 

with the following five models: 

Mean Reverting Square-Root process (MRSRP)  t t t tdV V dt V dW      (5) 

Mean Reverting Logarithmic process (MRLP)     ln lnt t td V V dt dW      (6) 
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Constant Elasticity of Variance (CEV)  t t t tdV V dt V dW      (7) 

MRSRP with Jumps (MRSRPJ)    1t t t t t tdS V dt V dW y V dq        (8) 

MRLP with Jumps (MRLPJ)       ln ln 1t t t t td V V dt dW y V dq        (9) 

The choice of models is based on four criteria: economic intuition, stationarity, mathematical 

tractability, and popularity among the researchers. Random walk processes make no economic 

sense, as they imply that volatility can drift off to arbitrarily high levels. The inclusion of jump 

diffusions is motivated by our empirical findings concerning abrupt upward and downward 

changes in the VXI indices. All jump-diffusion processes are the natural extensions to their 

diffusion analogues, so as to facilitate a direct comparison. The jump size distribution is assumed 

exponential, which allows for the derivation of the characteristic function of the examined 

processes (see Duffie et al., 2000; Psychoyios et al., 2010 for more details on the specifications of 

the jump-diffusions processes under consideration).7 Without bounded lower support on the jump 

size distribution, it is possible that in some of the models the volatility becomes negative. We could 

restrict the jump sizes to be positive to avoid such problems (for similar assumptions see Broadie 

et al., 2007; Eraker, 2004). However, we deliberately use “unrestricted” jump-diffusion models in 

order to account for the empirically observed negative jumps in implied volatility. The models 

under consideration are widely used to model the dynamics of the instantaneous and implied 

volatility and variance for equities in continuous time setting (see, among others, Brenner et al, 

2006; Chan et al., 1992; Eraker, 2004; Jones, 2003). 

Estimation is done in MATLAB using a Maximum Likelihood (ML) approach (see 

Psychoyios et al. 2010 for details on the estimation methodology). The ML results for the three 

indices under study are given in Table 8. The table also provides two performance measures: the 

likelihood ratio test and the Bayes Information Criterion (BIC). The likelihood ratio test can be 

used only for comparisons between nested models, i.e., between MRLP/MRLPJ, CEV/MRSRP/ 

MRSRPJ, respectively.8 Comparison of the non-nested models can be made using the BIC 

                                                           
7 The derivation of the characteristic functions can be provided by the authors upon request. 
8 The likelihood ratio test statistic for comparing the nested models is given by:   22 ( )R ULR df      , where df is the 

number of parameter restrictions and ,R U   are the log-likelihoods of the restricted and unrestricted model, respectively. The 

5% level critical values are:  2 ( ) 3.84( 1),7.82( 3),9.49( 4) `df df df df     . In order to facilitate the direct comparison of the 
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criterion. The results provide several interesting insights. First, the MRSRPJ is the best performing 

model. Second, the jump-diffusion processes significantly outperform their diffusion counterparts. 

Third, although MRSRPJ is the best performing process, its diffusion counterpart (MRSRP) is one 

the worst performing models among the diffusion processes. In this case, CEV process dominates 

all the other models, closely followed by the MRLP process. The only exception occurs in the case 

of the VXI-5Y, where MRSRP performs better than CEV. A further investigation of the results, 

regarding the diffusion processes, reveals that the higher the dependence of the volatility of 

volatility parameter (σ) on the current level of interest rate implied volatility (i.e., MRLP and 

CEV), the higher the fitting performance.9 In general, the findings indicate that interest rate implied 

volatility has a proportional, mean reverting structure with jumps, i.e., they are subject to large 

movements that cannot be explained by standard diffusion processes. These three main 

conclusions are supported by all the performance criteria used and hold for all interest rate implied 

volatility indices. Moreover, they are consistent with the descriptive analysis findings from the 

previous section, namely: the existence of jumps, the nonormality of returns and the stationarity 

of the interest rate implied volatility processes.  

 [Insert Table 8 here] 

Apart from improving the fitting performance, the introduction of the jump component also 

has two more effects. First, it significantly reduces the diffusion volatility parameter (σ), 

suggesting that jumps account for a substantial component of volatility and help to capture 

additional skewness. For example, in Table 8, in all three volatility indices the diffusion volatility 

drops on average to one-third its prior level (see also Das, 2002 for similar results regarding interest 

rate levels). Second, it significantly reduces the speed of the mean reversion parameter. This is 

caused by the fact that many jumps, as it can be seen also in Figure 1, have a persistent effect and 

the process does not pull back to its long run mean. The latter may imply that models with non-

linear long run mean, or regime-switching jump diffusion models, may be more appropriate to 

                                                           
logarithmic processes (i.e., MRLPJ and MRLP). with the rest of the processes, we apply the following change of variable to 

the log-likelihoods of the MRLP and MRLPJ: '

1

ln( )
T

R t R

t

V 


   . 

9 Two additional specifications are also examined:  t t tdV V dt dW     , and its counterpart augmented by jumps 

   1t t t t tdS V dt dW y V dq       . However, the subsequent analysis indicates that the processes are misspecified 

and their performance is inferior in relation to the other models. Due to space limitations neither the processes nor the 

results are presented. 
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capture the characteristics of the interest rate implied volatility (see, for example, Bakshi et al., 

2006). However, these models are beyond the scope of this research since they require too many 

parameters to be estimated and are accompanied by substantial mathematical complexity, both of 

which make derivative pricing challenging. In order to check for the stability of the above general 

results we estimate all the all the processes again over the period from 1/4/96 to 31/12/07. We 

eliminate all 2008 data, which correspond to the latest credit crash and could bias the results in 

favor of finding jumps. The ranking of the processes as well as the main conclusions remain the 

same (due to space limitations we do not include the table with the estimated parameters; however, 

the results are available from the authors upon request). 

We have to note that the estimated parameters of the processes that are used to model the 

dynamics of the interest rate implied volatility index cannot be used as a proxy for the parameters 

of the instantaneous volatility process. This is because implied and instantaneous volatility 

processes do not share the same structure. However, for the processes and assumptions underhand 

it can be proved that under the risk-adjusted probability measure the parameters of the implied 

variance process (i.e., VXI2) are related to those of the instantaneous variance (see also Wu, 

2010).10  

To test the out-of-sample performance of the estimated models, we use the time period from 

Oct/2006 to Aug/2008 (about 470 observations or 15% of the total sample). Table 9 shows the 

unconditional mean square error of each process (MSE). We can see that the results are similar to 

those obtained from the MLE (Table 8). In general, the processes augmented by jumps perform 

better than their continuous counterparts. In particular, MRSRPJ performs best in all of the cases, 

while MRSRP and CEV perform equally well along the diffusion processes. Surprisingly enough, 

the of MRLP and MRLPJ has by far the worst performance. A closest inspection of the Table 9 

reveals that the differences in the out-of-sample performance between jump-diffusion and 

diffusion declines as the “maturity” of the index increases. The latter is expected, since the indices 

with the highest maturity (VXI-30Y and VXI-10Y) are less volatile than the VXI 5Y (Figure 1 

and Table 8), as such the comparative advantage of the jump-diffusion processes is less important. 

[Insert Table 9 here] 

Before proceeding to futures valuation, we must rewrite equation (8) under the risk neutral 

probability measure Q. Following Pan (2002) we assume that the volatility risk is proportional to 

                                                           
10 The proofs of these statements are available from the authors upon request 
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the current level of interest rate implied volatility, i.e., ζVt. We also assume that there is no 

“volatility of volatility”, “jump” risk, and model risk.11 So, the volatility process under the risk 

neutral measure is given by: 

    ( ) 1t t t tdV k V V dt V dz y dq         (10) 

or, equivalently, 

  ( ) 1t t tdV k V V dz y dq        (11) 

where k k     and 
k

k






 


. 

Denote Ft(V,T) the price of a futures contract on Vt at time t with maturity T. Under the risk-

adjusted equivalent martingale measure Q, Ft(V,T) equals the conditional on the information up to 

time t expectation of VT at time T, or:  

 ( )Q

t t TF E V  (12) 

Since the MRSRPJ process does not have a known density, ( )Q

t TE V is derived by differentiating 

the characteristic function once with respect to s and then evaluating the derivative at s= -i (see 

Psychoyios et al., 2010 for the derivation of the characteristic function): 

    ( ) ( ) ( ) 1
(1 ) (1 )Q k T t k T t k T t

t T tE V V e e e
k






        


      (13) 

In order to obtain the valuation formula for a European volatility call, we follow the approach of 

Bakshi and Madan (2000). The price ( , ; )tC V K of the call option with strike price K and τ time to 

maturity is given by: 

 1 2( , ; ) ( , ) ( , ) ( , )r

t tC V K W V t e K t        (14) 

where 
 

( , ) ( , ) (1 )
r k r k

t tW V e V t e e
k

   
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


    



 
    

 
 

The Π1 and Π2 probabilities are given by the equation 13 at Bakshi and Madan (2000), and the 

characteristic function of Vt is given by the equation 26 at Psychoyios et. al 2010. 

                                                           
11 We cannot use no-arbitrage arguments to price interest rate volatility derivatives since the market is not complete. 

Only for the case of VXI-futures we can derive arbitrage free bounds, following the same methodology as in the case 

of VIX-futures of Carr and Wu (2006). However, in order to do so, Carr and Wu assume a very liquid market of plain 

vanilla options and exotic OTC derivatives, such as forward-start at-the-money forward call options, written on the 

underlying of each VXI index. 
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5. Summary 

This paper concentrates on how to measure and manage interest rate volatility risk. We use 

model-free estimators in order to analyze the implied volatility of the US treasury rates using data 

from CBOE on interest rate options. Over a 12-year period, we constructed three daily interest rate 

implied volatility indices with 5 years, 10 years and 30 years maturities. The results suggest that 

interest rate volatility is substantial in magnitude and variation, and comparable to equity implied 

volatility as measured by VIX. We derive negative interest rate volatility risk premium, which is 

priced in the market and significantly related to equity volatility risk. An important new result is 

that our estimates of interest rate volatility risk premia have a significant time varying-correlation 

with equity market volatility risk premia. Another interesting finding is that the interest rate 

implied volatility indices, as is the case with the VIX index, offer valuable diversification 

opportunities to bond and equity investors. This is because the proposed indices have a strong 

negative correlation with both interest rate levels and equity market implied volatility index levels. 

We also show that interest rate volatility is linked to macroeconomic and monetary news 

announcements although it is only partially spanned by information contained in the yield curve. 

In particular, macroeconomic and monetary announcements decrease (increases) the implied 

interest rate volatility the day before (after) an announcement. A new result is that this effect varies 

across the term structure and becomes more prominent at the longer maturities studied. Finally, 

our VXI model-free estimators of interest rate volatility allow investment diversification potential 

and used as market indicators and benchmarks in order to develop equilibrium models for pricing 

futures and options derivative assets. 
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Figure 1. VXI Indices and their corresponding treasury rates 

This figure plots the time-series of the VXI-5Y, VXI-10Y and VXI-30Y interest rate implied volatility indices, 

respectively, (1st column), and their corresponding treasury rates, FVX, TNX, TYX, respectively (2nd column). 

Data is daily and the sample spans the period 1/4/96 to 8/29/08. 
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Figure 2. Interest rate volatility risk premia. 
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This figure plots the time-series of the interest rate volatility risk premia. VRP.FVX-5Y, VRP.TNX-10Y and 

VRP.TYX-30Y denotes the 5, 10 and 30 years volatility risk premium, respectively.Each volatility risk premium is 

calculated as the difference between the realized volatility (RV) and the risk neutral interest rate expected volatility 

(VXI). Data is daily and the sample spans the period from 1/4/96 to 8/29/08 
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Figure 3. Correlation window between VRP.TYX-30Y and VRP.SP500 

The figure plots the correlation coefficient between VRP.TYX-30Y and VRP.SP500 using a rolling window of 125 

trading days (6 months). Data is daily and the sample spans the period from 1/4/96 to 8/29/08. The two-tailed 5% and 

1% critical values for the absolute value of the correlation coefficient are 17.5% and 22.87%, respectively. 
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Figure 4. VXI-30Y against underlying TYX-30Y Treasury rates. 

The figure plots VXI-30Y with respect to TYX-30Y. VXI-30Y is expressed in percent, while TYX-30Y is 

expressed in absolute numbers. Data is daily and the sample spans the period from 1/4/96 to 8/29/08. 
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Table 1: Descriptive statistics of volatility indices. 

Columns 2, 3 and 4 report descriptive statistics of the proposed interest rate volatility indices. VXI-5Y denotes the 

model free implied volatility of the yield to maturity of the 5 year Treasury note (FVX), VXI-10Y and VXI-30Y 

denote the model free implied volatility of the yield to maturity of the 10 year and 30Y Treasury bond, respectively 

(TNX and TYX, respectively). Columns 5 and 6 report the descriptive statistics of MOVE and VIX, respectively. The 

MOVE is obtained from Bloomberg, while the VIX is obtained from CBOE. MOVE index is quoted in basis points 

whereas all the other indices are expressed in percent. All data is daily and the sample spans the period from 1/4/96 to 

8/29/08. Jarque-Bera is a test of normality. ρ(1) is the coefficient of an AR(1) model with a constant.  

 VXI-5Y VXI-10Y VXI-30Y MOVE VIX 

Observations 3,159 3,159 3,159 3,159 3,159 

Mean 39.3429 27.0728 22.9346 99.3071 20.4110 

Median 29.7287 25.3819 22.4687 99.6800 19.7800 

Max 183.6313 114.4094 94.9674 195.0000 45.7400 

Min 5.9831 6.4852 13.9961 51.2000 9.8900 

St. Deviation 32.9273 8.3109 5.3406 22.8868 6.7018 

CV 0.8369 0.3070 0.2329 0.2305 0.3283 

Skewness 3.0927 1.0918 2.2918 0.3165 0.7741 

Kurtosis 12.5641 6.7058 23.7647 2.9542 3.4807 

Jarque-Bera 17076.00 2435.30 59518.00 53.01 345.92 

ρ(1) 0.9891 0.9624 0.8897 0.9834 0.9832 

 ΔVXI-5Y ΔVXI-10Y ΔVXI-30Y ΔMOVE ΔVIX 

Mean 0.0028 0.0019 0.0018 0.0009 0.0016 

Median 0.0000 0.0000 0.0011 -0.0009 0.0000 

Max 1.8604 1.5804 1.9344 0.2875 0.6422 

Min -0.7241 -0.6800 -0.6755 -0.1653 -0.2591 

St. Deviation 0.0729 0.0623 0.0665 0.0413 0.0550 

Skewness 9.8764 7.8762 16.3295 0.9183 1.1050 

Kurtosis 212.8932 193.5014 467.8288 8.2960 11.1054 

Jarque-Bera 5848300.00 4807900.00 28571000.00 53.01 9287.30 

ρ(1) -0.1698 -0.2293 -0.2745 0.0312 -0.0482 
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Table 2: Descriptive statistics of volatility risk premia 

The first three columns report descriptive statistics of the interest rate volatility risk premia. VRP.FVX-5Y, 

VRP.TNX-10Y and VRP.TYX-30Y denotes the 5, 10 and 30 years volatility risk premium, respectively. The last 

column reports the descriptive statistics of the S&P500 volatility risk premium (VRP.SP500). VRP.SP500 is 

calculated as the difference between S&P500 realized volatility and the VIX index, which is used as a proxy of the 

S&P500 risk neutral expected volatility. S&P500 realized volatility is estimated over the next month using the sum of 

squared S&P500 index daily returns. All data is daily and the sample spans the period from 1/4/96 to 8/29/08. Jarque-

Bera is a test of normality. ρ(1) is the coefficient of an AR(1) model with a constant. 

 VRP.FVX-5Y VRP.TNX-10Y VRP.TYX-30Y VRP.SP500 

Mean -0.1029 -0.0477 -0.0571 -0.0194 

Median -0.0631 -0.0552 -0.0601 -0.0245 

Max 0.4114 0.3468 0.1944 0.2386 

Min -1.3833 -0.8336 -0.7588 -0.2045 

St. Deviation 0.2300 0.0661 0.0522 0.0543 

Skewness -3.3782 0.2354 -0.8980 0.9781 

Kurtosis 16.7485 11.9236 24.3514 6.0989 

Jarque-Bera 31292.00 10503.00 59352.00 1784.60 

ρ(1) 0.9866 0.9232 0.8668 0.9564 

 ΔVRP.FVX-5Y ΔVRP.TNX-10Y ΔVRP.TYX-30Y ΔVRP.SP500 

Mean -0.0714 0.0445 -0.0681 0.3869 

Median -0.0013 -0.0074 0.0002 -0.0254 

Max 22.7400 197.4842 77.6308 1973.2390 

Min -117.1709 -114.1927 -83.1226 -1951.7070 

St. Deviation 3.1409 5.4068 2.7911 52.5937 

Skewness -27.9670 21.8505 -5.4509 1.6669 

Kurtosis 962.1677 930.5794 510.7815 1252.4380 

Jarque-Bera 121000000.00 113000000.00 33707000.00 204000000.00 
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Table 3. Correlation analysis of the VRP with respect to the underlying interest rates. 

The table reports the correlation coefficients (%) of volatility risk premia with respect to underlying interest rates. 

Data is daily and the sample spans the period from 1/4/96 to 8/29/08. The two-tailed 5% and 1% critical values for the 

absolute value of the correlation coefficient are 3.49% and 4.59%, respectively. 

 VRP.FVX-5Y VRP.TNX-10Y VRP.TYX-30Y VRP.SP500 FVX TNX 

VRP.FVX-5Y 100.0 51.2 46.4 -5.9 32.1 35.1 

VRP.TNX-10Y 51.2 100.0 78.4 -2.8 18.0 22.3 

VRP.TYX-30Y 46.4 78.4 100.0 -7.7 17.6 25.4 

VRP.SP500 -5.9 -2.8 -7.7 100.0 -7.9 -8.7 

FVX 32.1 18.0 17.6 -7.9 100.0 96.9 

TNX 35.1 22.3 25.4 -8.7 96.9 100.0 

TYX 37.6 28.0 34.5 -10.1 85.1 95.0 
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Table 4. Correlation analysis of VXI levels and changes with other variables. 

The table reports the correlation coefficients (%) of the VXI indices with respect to underlying interest rates, the 

MOVE and the S&P500 index. Panel A reports the correlation coefficients of the levels, while Panel B reports the 

correlation coefficients of the changes. Data is daily and the sample spans the period from 1/4/96 to 8/29/08. The two-

tailed 5% and 1% critical values for the absolute value of the correlation coefficient are 3.49% and 4.59%, respectively. 

PANEL a 

 VXI-5Y VXI-10Y VXI-30Y MOVE FVX-5Y TNX-10Y TYX-30Y SP500 VIX 

VXI-5Y 100.0 80.3 75.0 44.4 -61.3 -58.7 -52.3 -1.0 -20.7 

VXI-10Y 80.3 100.0 86.2 49.0 -85.8 -80.3 -68.9 -2.2 -3.7 

VXI-30Y 75.0 86.2 100.0 29.7 -71.8 -74.8 -74.4 -1.5 -23.5 

MOVE 44.4 49.0 29.7 100.0 -27.2 -11.2 7.7 -1.8 21.6 

FVX-5Y -61.3 -85.8 -71.8 -27.2 100.0 96.9 85.1 2.5 -2.3 

TNX-10Y -58.7 -80.3 -74.8 -11.2 96.9 100.0 95.0 2.2 6.3 

TYX-30Y -52.3 -68.9 -74.4 7.7 85.1 95.0 100.0 2.0 19.1 

SP500 -0.9 -2.0 -1.2 -1.9 2.2 1.8 1.6 100.0 -10.9 

VIX -20.7 -3.7 -23.5 21.6 -2.3 6.3 19.1 -10.2 100.0 

 

PANEL B 

 ΔVXI-5Y ΔVXI-10Y ΔVXI-30Y ΔMOVE ΔFVX-5Y ΔTNX-10Y ΔTYX-30Y ΔSP500 ΔVIX 

ΔVXI-5Y 100.0 38.8 19.1 4.7 0.3 0.6 -1.0 0.1 -1.8 

ΔVXI-10Y 38.8 100.0 57.1 11.9 3.5 4.0 2.7 0.7 -2.3 

ΔVXI-30Y 19.1 57.1 100.0 8.3 1.5 0.5 -0.4 1.6 -3.2 

ΔMOVE 4.7 11.9 8.3 100.0 10.2 13.5 15.4 0.2 -0.5 

ΔFVX-5Y 0.3 3.5 1.5 10.2 100.0 94.6 82.5 0.3 -2.0 

ΔTNX-10Y 0.6 4.0 0.5 13.5 94.6 100.0 93.1 0.4 -2.0 

ΔTYX-30Y -1.0 2.7 -0.4 15.4 82.5 93.1 100.0 0.3 -1.3 

ΔSP500 0.1 0.7 1.6 0.2 0.3 0.4 0.3 100.0 -71.6 

ΔVIX -1.8 -2.3 -3.2 -0.5 -2.0 -2.0 -1.3 -71.6 100.0 
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Table 5. Granger-causality analysis. 

The table reports the results of Granger-causality tests for 1 lag of the null hypothesis that “Variable A” does not cause 

“Variable B”. Both levels and changes of the volatility indices and interest rates are considered in order to capture 

possible dynamic level effects. One (two) stars denote statistical significance at the 95% (99%) level. 

Variable A Variable B F-Statistic Variable A Variable B F-Statistic 

ΔVXI-5Y ΔFVX-5Y 7.92** ΔVIX ΔTNX-10Y 6.76** 

ΔVXI-5Y ΔTNX-10Y 10.72** ΔVIX FVX-5Y 5.06* 

ΔVXI-5Y ΔTYX-30Y 7.74** ΔVIX TNX-10Y 5.36* 

ΔVXI-5Y FVX-5Y 6.99** VIX ΔVIX 19.53** 

ΔVXI-5Y VXI-10Y 5.55* VIX VXI-30Y 11.61** 

ΔVXI-5Y VXI-5Y 14.69** ΔFVX-5Y ΔVXI-10Y 20.45** 

ΔVXI-5Y TNX-10Y 9.67** ΔFVX-5Y ΔVXI-30Y 9.60** 

ΔVXI-5Y TYX-30Y 8.04** ΔFVX-5Y ΔTNX-10Y 4.17* 

VXI-5Y ΔVXI-30Y 9.86** ΔFVX-5Y ΔTYX-30Y 9.81** 

VXI-5Y VXI-10Y 90.48** ΔFVX-5Y VXI-10Y 14.19** 

VXI-5Y VXI-30Y 229.26** ΔFVX-5Y VXI-30Y 6.28* 

VXI-10Y VXI-30Y 154.98** FVX-5Y VXI-10Y 188.57** 

VXI-10Y MOVE 8.17** FVX-5Y VXI-30Y 210.97** 

ΔVXI-30Y ΔVIX 4.98* FVX-5Y MOVE 5.24* 

ΔVXI-30Y VXI-10Y 387.4** ΔTNX-10Y ΔVXI-10Y 14.30** 

ΔVXI-30Y VXI-30Y 1130.28** ΔTNX-10Y ΔVXI-30Y 6.21* 

VXI-30Y VXI-10Y 14.30** ΔTNX-10Y VXI-10Y 7.55** 

VXI-30Y MOVE 5.13* ΔTNX-10Y TNX-10Y 4.16* 

ΔMOVE ΔVXI-10Y 31.21** TNX-10Y VXI-10Y 125.39** 

ΔMOVE ΔVXI-30Y 5.50* TNX-10Y VXI-30Y 255.74** 

ΔMOVE ΔVXI-5Y 50.38** TNX-10Y MOVE 5.96* 

ΔMOVE VXI-5Y 12.4** ΔTYX-30Y ΔVXI-10Y 12.69** 

ΔMOVE MOVE 7.58** ΔTYX-30Y ΔVXI-30Y 6.46* 

MOVE ΔVXI-10Y 6.89** ΔTYX-30Y VXI-10Y 4.82* 

MOVE ΔVXI-5Y 10.76** ΔTYX-30Y TNX-10Y 6.04* 

MOVE VXI-30Y 5.92* TYX-30Y VXI-10Y 62.90** 

MOVE ΔMOVE 34.66** TYX-30Y VXI-30Y 250.64** 

ΔVIX ΔFVX-5Y 7.97** TYX-30Y MOVE 6.15* 
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Table 6a. Principal Components Analysis of interest rate levels. 

The first three rows report the eigenvector of each variable with respect to the three components, PC1, PC2 and PC3 

The last three rows report the eigenvalue, the percentage of the explained variation and the cumulative explained 

variation, respectively. Data is daily and the sample spans the period from 1/4/96 to 8/29/08. 

 PC1 PC2 PC3 

FVX-5Y -0.572 0.672 0.470 

TNX-10Y -0.592 0.058 -0.804 

TYX-30Y -0.568 -0.738 0.365 

Eigenvalue 2.848 0.150 0.002 

Variance Explained (%) 94.917 5.004 0.079 

Cumulative Variance Explained (%) 94.917 99.921 100.000 
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Table 6b. Regression of the VXI indices against the yield curve principal components  

We run the following regression for the VXI indices: VXI=b1PC1+ b2PC2+ε. Data is daily and the sample spans the 

period from 1/4/96 to 8/29/08. One (two) stars denote statistical significance at the 95% (99%) level. 

Heteroskedasticity and autocorrelation consistent covariances and standard errors are estimated using the Newey and 

West (1987) approach.  

 VXI-5Y VXI-10Y VXI-30Y 

PC1 11.510** 3.959** 2.392** 

PC2 -13.228** -6.369** 0.814** 

Constant  39.343** 27.073** 22.935** 

R-squared 0.372 0.735 0.575 
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Table 7. Relationship between VXI indices and macroeconomic news announcements. 

The table reports the coefficients of regression between the changes of the VXI indices and the dummies for four types 

of macroeconomic news announcements over the period from 1/4/96 to 8/29/08. One (two) stars denote statistical 

significance at the 95% (99%) level. 

 ΔVXI-5Y ΔVXI-10Y ΔVXI-30Y 

  9.75E-09 0.0010** 0.0016** 

  0.0090 -0.0324** -0.0867** 

1  
-0.0022** -0.0021** -0.0010 

0  
-0.0017** -0.0059** -0.0083** 

1  
4.07E-04 0.0023* 0.0032** 

1   
0.0027** 0.0051** 0.0009 

0  
0.0006 -0.0081** -0.0053** 

1   
0.0015 0.0055** 0.0013 

1  
0.0004 -0.0074** -0.0028** 

0  
-0.0032** -0.0044** -0.0064** 

1  
0.0080** 0.0022* 0.0108** 

1   
0.0063** 0.0074** 0.0034** 

0  
-0.0121** -0.0117** -0.0065** 

1   
0.0001 -0.0010 -0.0019 

  -0.6282** -2.5272** -1.7718** 

1  
0.2338** 0.3372** 0.1400** 

2  
-0.0763** -0.1294** -0.0486* 

3  
0.9295** 0.6616** 0.7637** 

GED paremeter 0.6251** 0.7012** 0.7449** 
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Table 8. Estimation results of diffusion and jump diffusion processes over the period from 1/4/96 to 8/29/08 for the 

three interest rate implied volatility indices.  

 

 VXI-5Y VXI-10Y VXI-30Y 

Paramet

er 

MRS

RP 

MRL

P 

CEV  MRSR

PJ 

MRL

PJ 

MRS

RP 

MRL

P 

CEV  MRSR

PJ 

MRL

PJ 

MRS

RP 

MRL

P 

CEV  MRSR

PJ 

MRL

PJ 

k 
3.7186 5.3604 4.0004  1.3520 2.0751 6.0155 4.9855 4.5465  1.0961 2.0642 5.6594 4.5085 2.6467  1.3444 2.0643 

(1.981

8) 

(2.575

8) 

(3.851

3) 

 (17.988

4) 

(2.869

0) 

(5.973

7) 

(5.462

1) 

(1.882

5) 

 (19.967

4) 

(2.1909

) 

(5.853

6) 

(5.246

2) 

1.4347  (0.8349) (8.281

1) 

θ 
56.705

0 

3.6057 33.262

8 

 21.7440 3.8925 27.330

5 

3.2644 24.663

0 

 19.5048 3.7099 23.047

1 

3.1165 25.279

3 

 22.0672 3.9128 

(2.571

6) 

(16.75

77) 

(6.614

8) 

 (10.881

5) 

(23.46

22) 

(20.99

57) 

(61.17

47) 

(28.12

20) 

 (16.418

0) 

(15.016

1) 

(28.39

15) 

(78.29

40) 

0.6939  (3.4991) (85.57

82) 

σ 
5.5099 1.0109 1.0831  1.3841 0.2680 5.2769 0.9411 0.4000  1.6389 0.3258 3.3725 0.6345 0.8208  1.2561 0.2812 

(79.19

78) 

(79.17

56) 

(75.50

51) 

 (156.05

8) 

(51.75

34) 

(78.46

12) 

(78.64

74) 

(76.16

75) 

 (120.39

1) 

(44.481

2) 

(78.51

96) 

(78.69

92) 

2.4081  (90.560

5) 

(55.20

48) 

γ 
0.5 1.0 0.9857  0.5 1.0 

0.5 1.0 

1.1104  

0.5 1.0 0.5 1.0 

0.9105  

0.5 1.0 

  (1.275

2) 

   (1.741

1) 

 (1.848

9) 

 

λ 
- - -  33.1044 39.176

8 - - - 

 46.8874 44.484

2 - - - 

 90.3816 39.445

9 
    (4.0786

) 

(10.79

43) 

 (3.4737) (5.4977

) 

 (2.8870) (6.165

0) 

1/η 
- - -  2.0315 11.454

4 - - - 

 2.2845 10.484

3 - - - 

 3.3237 11.571

1 
    (3.6637

) 

(4.806

9) 

 (2.0673) (3.4654

) 

 (2.2993) (9.823

7) 
BIC 13,295 13,584 13,560  6,700 8,302 12,231 11,635 11,628  6,266 7,033 8,940 8,220 8,188  4,672 5,270 

  

 
 

-6,636 -6,780 -6,764  -3,330 -4,131 -6,103 -5,805 -5,798  -3,105 -3,3513 -4,458 -4,098 -4,078  -2,315 -2,550 

Numbers in brackets denote t-statistics. The table also gives the Log-Likelihood value ( ) and the Bayes 

Information Criterion (BIC) 

 

 


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Table 9: Out of sample performance. 

To test the out-of-sample performance of the estimated models, the following approach is adopted. 

For a given implied volatility index, every estimated model is used to generate 5,000 simulation paths 

of implied volatility over the period Oct/2006 to Aug/2008. To eliminate the dependence on the 

simulated path, an average path is calculated over the 5,000 ones. The average path is compared with 

the actual implied volatility path. The squared percentage error 2( )
S A

t t

A

t

VXI VXI

VXI

  is recorded for any point 

in time t where  S

tVXI , A

tVXI ,  are the average simulated implied volatility and the actual implied 

volatility, respectively. Then, the average squared percentage error is calculated. 

  
MRSRP MRLP CEV  MRSRPJ MRLPJ 

VXI-5Y 0.368 0.452 0.369  0.249 0.398 

VXI-10Y 0.174 0.287 0.196  0.148 0.269 

VXI-30Y 0.158 0.261 0.140  0.069 0.268 
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Appendix: Unit Root tests 

 

 

Table 10: Unit Root tests of Interest rate volatility indices 

The null hypothesis assumes a unit root with individual unit root processes. Tests were performed 

assuming a constant and a deterministic trend. The probabilities reflect Fisher tests computed using an 

asymptotic Chi-square distribution. Lag length selection for the tests was based on the SIC while the 

bandwidth for the spectral estimation was selected using a Newey-West approach and a Bartlett kernel. 

For a description of the Augmented Dickey Fuller test (ADF) and the Phillips-Perron (PP), see Mills and 

Markellos (2008). 

Test Statistic Probability 

ADF   18.7924 0.0045 

PP   326.335 0.0000 

 

 


