

International Journal of Group Theory

ISSN (print): 2251-7650, ISSN (on-line): 2251-7669 Vol. 6 No. 3 (2017), pp. 12-19. © 2017 University of Isfahan

ONE-PRIME POWER HYPOTHESIS FOR CONJUGACY CLASS SIZES

ALAN R. CAMINA AND RACHEL D. CAMINA*

Communicated by Patrizia Longobardi

ABSTRACT. A finite group G satisfies the one-prime power hypothesis for conjugacy class sizes if any two conjugacy class sizes m and n are either equal or have common divisor a prime power. Taeri conjectured that an insoluble group satisfying this condition is isomorphic to $S \times A$ where A is abelian and $S \cong PSL_2(q)$ for $q \in \{4,8\}$. We confirm this conjecture.

1. Introduction

To determine structural information about a finite group G given the set of conjugacy class sizes of G is an ongoing line of research, see [4] for an overview. How the arithmetic data given by the set of conjugacy class sizes is encoded varies, but one representation is via the bipartite graph B(X). Let X be a set of positive integers and let $X^* = X \setminus 1$ (X may or may not contain the element 1). If $x \in X$ we denote the set of prime divisors of x by $\pi(x)$ and let $\rho(X) = \bigcup_{x \in X} \pi(x)$.

Definition 1.1. [7] The vertex set of B(X) is given by the disjoint union of X^* and $\rho(X)$. There is an edge between $p \in \rho(X)$ and $x \in X^*$ if p divides x, i.e. if $p \in \pi(x)$.

In our context we let X be the set of conjugacy class sizes of a finite group G, and in this case we denote B(X) by B(G). In [14] Taeri investigates the case when B(G) is a cycle, or contains no cycle of length 4. In particular, he proves the following.

Theorem 1.2. [14] Let G be a finite group and Z(G) the centre of G. Suppose G/Z(G) is simple, then B(G) has no cycle of length 4 if and only if $G \cong A \times S$, where A is abelian, and $S \cong PSL_2(q)$ for $q \in \{4, 8\}$.

MSC(2010): Primary: 20E45; Secondary: 20D05, 05C25.

Keywords: Conjugacy classes, finite groups, insoluble groups, bipartite graph.

Received: 14 May 2015, Accepted: 18 December 2015.

 $* Corresponding \ author.\\$

Taeri goes on to conjecture that the same conclusion holds if the assumption is just that G is finite and insoluble. In this paper we confirm Taeri's conjecture.

Main Theorem. If G is a finite insoluble group, then B(G) has no cycle of length 4 if and only if $G \cong A \times S$, where A is abelian and $S \cong PSL_2(q)$ for $q \in \{4, 8\}$.

As Taeri comments, B(G) having no cycle of length 4 is equivalent to G satisfying the *one-prime* power hypothesis, that is, if m and n are distinct non-trivial conjugacy class sizes of G then either m and n are coprime or their greatest common divisor is a prime power. This is similar to the one-prime hypothesis introduced by Lewis to study character degrees [11]. We use this terminology.

Throughout the paper G will be assumed to be a finite group. Most of the notation used will be standard. In particular, Z(G) is the centre of G, the maximal normal soluble subgroup of G is denoted by S(G), the maximal normal p-subgroup of G is denoted $O_p(G)$ and the Fitting and second Fitting subgroups are denoted by F(G) and $F_2(G)$ respectively. The conjugacy class size of an element $x \in G$ will be denoted by $|x^G|$ and shall be called the *index* of $x \in G$. We say an element has *mixed index* if its index is not a prime power. The greatest common divisor of two numbers m and n shall be denoted by (m, n) and p will always be prime.

2. Preliminary Remarks

We begin by making some preliminary remarks.

Lemma 2.1. Suppose N is a normal subgroup of a group G.

- (i) Let $x \in N$, then $|x^N|$ divides $|x^G|$.
- (ii) Let $\bar{x} \in G/N = \bar{G}$, then $|\bar{x}^{\bar{G}}|$ divides $|x^G|$.

Let $C_G(x)$ be the centraliser of an element x in G. Then $C_G(x)$ is said to be minimal if $C_G(y) \le C_G(x)$ for some $y \in G$ implies $C_G(y) = C_G(x)$. The following lemma is well-known.

Lemma 2.2. Suppose x is a p-element with minimal centraliser. Then $C_G(x) = P_0 \times A$, where P_0 is a p-group and A is abelian.

We have the following lemma.

Lemma 2.3. Assume G satisfies the one-prime power hypothesis and there exists $x, y \in G$ with $C_G(x) < C_G(y)$. Then $|y^G|$ is a prime power.

Proof. Let $|x^G| = m$ and $|y^G| = n$, then (m, n) = n and hence n is a prime power, i.e. any non-minimal centraliser has prime power index.

The following result will prove useful.

Proposition 2.4. [3, Theorem 1] All elements of prime power index in G lie in $F_2(G)$.

Recall, G is called an F-group if whenever x and y are non-central elements of G satisfying $C_G(x) \le C_G(y)$, then $C_G(x) = C_G(y)$. Rebmann has classified F-groups [13].

Lemma 2.5. (i) Suppose G satisfies the one-prime power hypothesis and F(G), the Fitting subgroup of G, is central. Then G is an F-group.

(ii)[14] Suppose G is an insoluble F-group that satisfies the one-prime power hypothesis. Then $G \cong S \times A$ where $S \cong PSL_2(q)$ for $q \in \{4,8\}$ and A is abelian.

Proof. (i) As F(G) is central so is $F_2(G)$ and thus G has no elements of prime power index by Proposition 2.4. Applying Lemma 2.3 gives that G is an F-group.

(ii) This is a combination of [14, Lemma 4] and [14, Theorem 1].

Consider the following property. Let G be a finite non-abelian group with proper normal subgroup N and suppose all the conjugacy class sizes outside of N have equal sizes. Isaacs proved that in this situation then either G/N is cyclic, or else every non-identity element of G/N has prime order [8]. We combine this result with Proposition 2.4 and a result of Qian to give the following lemma.

Lemma 2.6. Suppose G is a finite group with at most one conjugacy class size that is not a prime power. Then either G is soluble or $G/F_2(G) \cong PSL_2(4)$.

Proof. By Proposition 2.4 all elements outside of $F_2(G)$ have the same conjugacy class size. Applying [8] gives that $G/F_2(G)$ is a non-soluble group with all elements of prime order. The result follows from [12].

This lemma leads us to ask the following question. Suppose G is a finite group with at most one conjugacy class that is not a prime power, does it follow that G is soluble?

Groups in which all elements have prime power order are well studied and are called CP-groups. Delgado and Wu have given a full description of locally finite CP-groups, the following considers the special case when the Fitting subgroup is trivial.

Theorem 2.7. [5] Let G be a finite CP-group with trivial Fitting subgroup. Then either G is simple and isomorphic to one of $PSL_2(q)$ where $q \in \{4, 7, 8, 9, 17\}$, $PSL_3(4)$, Sz(8), Sz(32) or G is isomorphic to M_{10} .

The following observation is useful.

Lemma 2.8. Suppose G satisfies the one-prime power hypothesis and that N is a normal subgroup of G. If $\bar{x} \in \bar{G} = G/N$ has mixed index in \bar{G} , then $|x^G| = |(xn)^G|$ for all $n \in N$.

Proof. Note that $|\bar{x}^{\bar{G}}|$ divides both $|x^{G}|$ and $|(xn)^{G}|$. So, by the one-prime power hypothesis, the result follows.

3. Main Result

The property of satisfying the one-prime power hypothesis does not (clearly) restrict to normal subgroups (however we know of no examples where this is not the case). We do have the following.

Lemma 3.1. Suppose G satisfies the one-prime power hypothesis and r is a prime dividing |G|. If N is a normal r-complement in G then N also satisfies the one-prime power hypothesis.

Proof. Suppose not, then there exist $x, y \in N$ with $|x^N| \neq |y^N|$ and distinct primes p and q with pq dividing both $|x^N|$ and $|y^N|$. As G satisfies the one-prime power hypothesis this forces $|x^G| = |y^G|$. However note that $\frac{|x^G|}{|x^N|}$ divides |G/N| and is thus a power of r, and similarly for y, so $|x^G| \neq |y^G|$, a contradiction.

We first consider the case where there is only one mixed index.

Proposition 3.2. Suppose G satisfies the one-prime power hypothesis and all elements of mixed index have index m. Then G is soluble.

Proof. By Lemma 2.6 we can assume $G/F_2(G)$ is isomorphic to $PSL_2(4)$. Furthermore, if there exists a prime power index, say r^a with r not dividing m then G is quasi-Frobenius and hence soluble by [10]. So we can assume otherwise.

Let $\bar{G} = G/F_2(G)$. Since \bar{G} has elements of index 12, 15 and 20 we see that m is divisible by 60. Let $x \in G$ with \bar{x} of order 2. Then $|\bar{x}^{\bar{G}}| = 15$. But in G the index of x has to be m, so we see that $F_2(G)$ has to have a non-central 2-subgroup. We can argue similarly to show $F_2(G)$ has to have non-central 3 and 5 subgroups.

Suppose $x, y \in F_2(G)$, that x and y commute and have coprime orders. Suppose further that $|x^G| = p^a$ and $|y^G| = q^b$. If $p \neq q$ then $|(xy)^G|$ is divisible by just two different primes and so cannot equal m, a contradiction.

So assume $x, y \in F_2(G)$ with $|x^G| = p^a$, $|y^G| = q^b$ and $p \neq q$. Given that the indices of x and y are prime powers we can assume that each of x and y have prime power orders. Assume first that the orders of x and y are coprime. $C_G(x)$ contains a Sylow r-subgroup of G for each prime $r \neq p$. If y is not a p-element it, or some conjugate of it, is in $C_G(x)$ which contradicts the above assertion. So y is a p-element and x is q-element. Let r be a prime distinct from p and q and dividing the order $G/F_2(G)$.

Both $C_G(x)$ and $C_G(y)$ can be assumed to contain a Sylow r-subgroup of G. Let u be an r-element of mixed index, there is one because r divides the order of $G/F_2(G)$. Taking conjugates we can assume $x, y \in C_G(u)$. By Lemma 2.2, $C_G(u) = R_0 \times A$ where A is an abelian r'-subgroup which must contain both x and y, a contradiction as x and y do not commute. So if $x, y \in F_2(G)$ with $|x^G| = p^a$ and $|y^G| = q^b$ with $p \neq q$ then x and y are both l-elements for some prime l. If there is an l'-element of prime power index then we can apply the previous argument. So every l'-element has mixed index. So G satisfies the hypothesis that every l'-element of G has the same index, using [2], we get G is

soluble. We end this paragraph by noting that if the proposition is not true then there is a prime p so that every element, x, of prime power index has $|x^G| = p^a$ for some a.

Note that if M is the subgroup generated by all the elements of prime power index then $M \subseteq F_2(G)$ and every element not in M has index m. As G/M is not soluble it is isomorphic to $PSL_2(4)$ and so $M = F_2(G)$.

Let t be a prime such that $t \neq p$. Any element of prime power index contains a Sylow t-subgroup of G in its centraliser and so centralises $O_t(G)$. Now $O_t(G) \subseteq Z(F_2(G))$. As $F_2(G)$ is metanilpotent if P is the Sylow p-subgroup of $F_2(G)$ then PF is normal in $F_2(G)$. But PF = PU where U is the product of O_t for all $t \neq p$. So U is central in $F_2(G)$ and hence $PF = P \times U$ and P is normal in G.

There exist p-elements of mixed index otherwise all p-elements of G have p-power index and $G = P \times H$ for H some p'-subgroup of G, by [3], but such a group cannot satisfy the conditions of the proposition. Assume that there exists a p-element x of mixed index in $F_2(G)$ so $x \in P$. Then $C_G(x) = P_0 \times A_0$ where P_0 is a p-group and P_0 is an abelian p'-group. Let $P_0 = P_0 = P_0$ where $P_0 = P_0 = P_0 = P_0$ for some f. Also $P_0 = P_0 = P_0 = P_0$ where would be no p'-elements of mixed index which is false. Then $P_0 = P_0 = P_0 = P_0$ has a application of Thompson's Lemma $P_0 = P_0 = P_0 = P_0$ has the Hall p'-subgroup of $P_0 = P_0 = P_0 = P_0$. So $P_0 = P_0 = P_0 = P_0$ has a normal abelian p'-subgroup of G. Furthermore, $P_0 = P_0 = P_0 = P_0 = P_0$ has a normal abelian p'-subgroup of G. Furthermore, $P_0 = P_0 = P_0 = P_0$ has a divisor of 60. So, there exists a p-element, say y, of mixed index not in $P_0 = P_0 = P_0 = P_0$ has a divisor of 60. So, there exists a p-element, say y, of mixed index not in $P_0 = P_0 = P_0 = P_0$ has a divisor of 60. So, there exists a p-element, say y, of mixed index not in $P_0 = P_0 = P_0$ have the same index. This implies that $P_0 = P_0 = P_0 = P_0$ has a contradiction.

The last case to consider is that there are no elements of mixed index in P. That means that all the p-elements of $F_2(G)$ have index a power of p. By [3] it follows that $F_2(G) = P \times A$ where A has order prime to p and A is normal in G and central in $F_2(G)$. As A is not central we see that p = 5. Let p be a p-element of mixed index not in $F_2(G)$. Then $C_G(p) = P_1 \times A_1$ and A_1 centralises P by [6, 5.3.4]. As A_1 is a subgroup of A it centralises P and P but P and P generate the Sylow P-subgroup of P and P and P and P are index which is false as there are both 2 and 3 elements of mixed index.

We are now ready to prove the main theorem.

Theorem 3.3. Suppose G is insoluble and satisfies the one-prime power hypothesis. Then $G \cong PSL_2(q) \times A$ for $q \in \{4,8\}$ where A is abelian.

Proof. We suppose the result is not true and take G to be a counterexample of minimal order.

(i) Case 1: Suppose $\bar{G} = G/F_2(G)$ has elements of mixed order.

Let such an element be \bar{u} . Then we can assume \bar{u} has order divisible by precisely two primes, p and q say, and further we can assume u similarly has order divisible by two primes p and q. We write u = xy where x and y commute and x has p-power order and y has q-power order. As u is not an element of $F_2(G)$ it follows that u has mixed index, and as \bar{u} has mixed order we also know that both x and y do not lie in $F_2(G)$ and thus also have mixed index. As $C_G(x)$ is minimal it follows from

Lemma 2.2 that $C_G(x) = P_0 \times A$ where P_0 is a p-group and A is abelian. A similar statement holds for $C_G(y)$ and thus we obtain that $C_G(u) = C_G(x) = C_G(y)$ and is abelian. Now there exists z an element of mixed index different to $|u^G|$ otherwise all elements of $G/F_2(G)$ would be of prime power order [8]. If $|z^G|$ is coprime to p then z centralises a Sylow p-subgroup and a conjugate of z lies in $C_G(x)$, but then the index of z divides the index of x, a contradiction. Thus both p and q divide $|z^G|$. So we have shown that there are only two mixed indices of elements of G and these are given by $|x^G|$ and $|z^G|$. Thus, by the one-prime power hypothesis there exist a pair of primes r and s say with r dividing $|x^G|$ and s dividing $|z^G|$ but the product rs does not divide any conjugacy class size in G. Thus, by [9, Prop. 5.1], G has a normal r-complement (say), call this complement N. Then N satisfies the one-prime power hypothesis by Lemma 3.1. If N is soluble so is G, so we can assume N is insoluble. Thus, by induction, $N \cong S \times A$ where A is abelian and S is one of the simple groups $PSL_2(q)$ for q equal to 4 or 8. Note A must be central in G as otherwise G does not satisfy the one-prime power hypothesis. However, if A is central in G all r-elements have r-power index as the outer automorphism groups of these two simple groups have no elements of order r. Thus the Sylow r-subgroup is a direct factor of G by [3, Theorem A]. As G satisfies the one-prime power hypothesis, this forces the Sylow r-subgroup to be central. Thus, $G/Z(G) \cong S$, and all elements of the quotient are of prime power order, a contradiction.

ii) Case 2: Assume all elements of $G/F_2(G)$ have prime power order.

We can assume we have at least one mixed index by Proposition 2.4. If we have precisely one then G is soluble by Proposition 3.2. So we can assume there exist elements of mixed index which are not equal.

Let $\bar{G} = G/F_2(G)$. Let \bar{x} be a p-element in \bar{G} . As $C_{\bar{G}}(\bar{x})$ is a p-group it follows that $|\bar{G}|/|\bar{G}|_p$ divides $|\bar{x}|^{\bar{G}}$ where $|\bar{G}|_p$ denotes the p-part of $|\bar{G}|$. A similar statement holds for all elements of \bar{G} .

If $|\bar{G}|$ were divisible by more that 3 primes this would force all elements outside of $F_2(G)$ to have the same conjugacy class size in G, a contradiction. Thus we can assume $|\bar{G}|$ is divisible by exactly 3 primes. Assume that p, q, r are the primes that divide the order of $G/F_2(G)$ and there is an element of index divisible by pqr. But every element not in $F_2(G)$ has index divisible by at least two of p, q or r so all elements would have the same index which we are assuming is not the case. So we must have that $|x|^G$ is coprime to p and likewise for other elements.

Now, consider $O_t(G) \neq 1$, there exists an element $x \in G \setminus F_2(G)$ such that $|x^G|$ and t are coprime. This follows from the argument above if t divides the order of $|\bar{G}|$. If not, note that the indices of any two elements $y, z \in G \setminus F_2(G)$ already have a prime in common that also divides $|\bar{G}|$. Thus $O_t(G) \leq C_G(x)$. Let $n \in F_2(G)$, then by Lemma 2.8, it follows that $O_t(G) \leq C_G(x)$ and thus $O_t(G) \leq C_G(n)$. So, $C_G(O_t(G))$ is a normal subgroup of G containing $F_2(G)$. Since F(G) is a direct product of $O_t(G)$ for all t, F(G) is central in $F_2(G)$. It follows that $F(G) = F_2(G) = S(G)$.

As \bar{G} has trivial Fitting subgroup it follows from Theorem 2.7 that \bar{G} is a simple group which comes from a known list or is isomorphic to M_{10} . However M_{10} has order 720 and an element with index 90, see [1], which contradicts the discussion above. Thus we can assume that \bar{G} is simple. Note that $O_t(G)$, for any t, centralises some element not in S(G) so $C_G(O_t(G))$ is a normal subgroup of

G strictly containing $F_2(G)$. But as \overline{G} is simple, $O_t(G)$ is central but then so is F(G). But then, by Lemma 2.5, we have that $G \cong PSL_2(q) \times A$ for $q \in \{4, 8\}$ and A abelian, as required.

Acknowledgments

The authors wish to thank the referee for identifying an error in an earlier version of this paper.

References

- [1] R. Abbott et al., Atlas of Finite Group Representations Version 3, brauer.maths.qmul.ac.uk/Atlas/v3/
- [2] A. R. Camina, Finite groups of conjugate rank 2, Nagoya Math. J., 53 (1974) 47-57.
- [3] A. R. Camina and R. D. Camina, Implications of conjugacy class size, J. Group Theory, 1 (1998) 257–269.
- [4] A. R. Camina and R. D. Camina, The influence of conjugacy class sizes on the structure of finite groups: a survey, *Asian-Eur. J. Math.*, 4 (2011) 559–588.
- [5] A. L. Delgado and Y.-F. Wu, On locally finite groups in which every element has prime power order, *Illinois J. Math.*, 46 (2002) 885-891.
- [6] D. Gorenstein, Finite Groups, Harper Row, Publishers, New York-London 1968.
- [7] M. A. Iranmanesh and C. E. Praeger, Bipartite divisor graphs for integer subsets, *Graphs Combin.*, **26** (2010) 95–105.
- [8] I. M. Isaacs, Groups with many equal classes, Duke Math. J., 37 (1970) 501-506.
- [9] N. Itô, On finite groups with given conjugate types. I, Nagoya Math. J., 6 (1953) 17–28.
- [10] L. S. Kazarin, On groups with isolated conjugacy classes, Izv. Vyssh. Uchebn. Zaved. Mat., 7 (1981) 40–45.
- [11] M. L. Lewis, Solvable groups having almost relatively prime distinct irreducible character degrees, J. Algebra, 174 (1995) 197–216.
- [12] G. H. Qian, Finite groups with many elements of prime order, J. Math. (Wuhan), 25 (2005) 115–118.
- [13] J. Rebmann, F-Gruppen, Arch. Math. (Basel), 22 (1971) 225–230.
- [14] B. Taeri, Cycles and bipartite graph on conjugacy class of groups, Rend. Semin. Mat. Univ. Padova, 123 (2010) 233–247.

Alan R. Camina

School of Mathematics, University of East Anglia, Norwich, UK

Email: a.camina@uea.ac.uk

Rachel D. Camina

Fitzwilliam College, Cambridge, UK

Email: rdc26@dpmms.cam.ac.uk