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Flow over bottom topography at critical Froude number is examined with a focus on
steady, forced solitary wave solutions with algebraic decay in the far-field, and their
stability. Using the forced Korteweg-de Vries (fKdV) equation the weakly-nonlinear
steady solution space is examined in detail for the particular case of a Gaussian dip using
a combination of asymptotic analysis and numerical computations. Non-uniqueness is
established and a seemingly infinite set of steady solutions is uncovered. Non-uniqueness
is also demonstrated for the fully nonlinear problem via boundary-integral calculations.
It is shown analytically that critical flow solutions have algebraic decay in the far-field
both for the fKdV equation and for the fully nonlinear problem and, moreover, that
the leading-order form of the decay is the same in both cases. The linear stability of the
steady fKdV solutions is examined via eigenvalue computations and by a numerical study
of the initial value fKdV problem. It is shown that there exists a linearly stable steady
solution in which the deflection from the otherwise uniform surface level is everywhere
negative.

1. Introduction

Two-dimensional critical free-surface flow over a bottom topography produces a wide-
range of interesting and complex wave behaviour. Critical flow occurs when the Froude
number based on the depth of water far upstream and dowstream of a localised topogra-
phy is equal to unity in both cases. The complex flow dynamics which are observed under
unsteady conditions are well known, and the generic features include the formation of
an undular bore and a periodic wavetrain downstream of a localised obstacle, as well as
the recurrent emission of solitons which appear above the obstacle and then propagate
upstream (see, for example, Wu 1987; Ee et al. 2010; Grimshaw & Smyth 1986; Smyth
1987; Grimshaw & Smyth 1986). Such features may be undesirable in certain situations
as the waves which are generated can damage and erode the banks of waterways (e.g.
Ellis et al. 2002; Bishop 2004; Bishop & Chapman 2004). This motivates the further
exploration and understanding of this important critical flow problem and, in particular,
a consideration of the possible steady solutions and their stability.
In this study we investigate critical free-surface flow over a Gaussian dip topography.

Both weakly nonlinear results computed as solutions to the forced Korteweg-de Vries
(fKdV) equation, and fully nonlinear results, obtained as solutions to the full water wave
problem, are presented. Flow over a rectilinear dip topography has been discussed by
Ee et al. (2010) and Keeler (2017) using phase-plane methods. However, such methods
are not available in the case of a smoothly-varying topography. We investigate steady
solutions, and in particular examine non-uniqueness of steady solutions, for the Gaussian
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Figure 1.1: Sketch of the non-dimensional flow problem.

topography under critical flow conditions using a combination of analytical and numerical
methods. In the context of the fKdV equation, we also discuss the stability of these
solutions via eigenvalue computations and by computing time-dependent solutions to
the initial value problem.
A sketch of the flow problem is shown in figure 1.1. It is assumed that the flow

approaches a uniform stream of constant depth H and speed U as x∗ → ±∞. The
flow is characterised by the dimensionless Froude number

F =
U√
gH

, (1.1)

which represents the ratio of the characteristic flow speed U to the maximum linear wave
speed

√
gH in a channel of finite depth; critical flow occurs when F = 1. The free surface

is located at y∗ = H + η∗(x∗, t∗), where η∗ is to be found as part of the solution to the
problem. In terms of non-dimensional variables based on the length scale H and time
scale

√

H/g, the fKdV equation takes the form (Akylas 1984; Wu 1987)

ηt + (F − 1)ηx − 3

2
ηηx − 1

6
ηxxx =

1

2
fx, (1.2)

where f(x) represents a general topographic forcing. We assume that this takes the form
of a Gaussian which is symmetric about x = 0, and, moreover, we seek steady solutions for
the free surface shape which possess the same symmetry. More generally, when discussing
the stability of these solutions, asymmetric free surface profiles must be allowed for, and
to this end we will assume far-field the boundary conditions

η, ηx, ηxx → 0 as |x| → ∞. (1.3)

As noted above, our focus is on the case F = 1 for (1.2). For a negative point-force
topography corresponding to a delta-function forcing, a phase plane analysis along the
lines of Dias & Vanden-Broeck (2002) can be used to establish a unique steady solution to
(1.2), (1.3) which decays algebraically in the far-field. However, in the case of a smoothly
varying topography, more than one steady solution is possible. This was demonstrated
numerically by Binder et al. (2014). We demonstrate analytically that our steady critical
flow solutions decay algebraically in the far-field. We note that in general when F 6= 1
exponential far-field decay is expected, as is discussed below.
It is worth emphasising that the results we present for the fKdV equation have wider

applicability than to free-surface flows. Indeed, the fKdV equation as been discussed
in the context of a wide range of physical scenarios. One application of particular
importance, and which is of direct relevance to the present work, concerns internal waves
in a stratified flow when the pycnocline, that is the interface between regions of different
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density, as may occur in atmospheric flow over ground relief (see, for example, Baines
1977, 1984; Malanotte-Rizzoli 1984; Grimshaw & Smyth 1986).

2. Flow over a Gaussian dip

A necessary condition for a steady solution at F = 1 can be found by integrating the
steady form of (1.2) and applying the boundary conditions (1.3) to obtain

∫

∞

−∞

f(x) dx 6 0. (2.1)

This shows that there are no steady solutions for non-trivial topography which is
everywhere non-negative with f(x) > 0 for all x. However, steady solutions may exist
for any topography satisfying (2.1) including a Gaussian dip. Henceforth we adopt this
form, taking f(x) = a exp(−b2x2) for real constants a < 0 and b.
We rewrite the problem in terms of a single parameter by making the change of

variables η = 2

9
b2u and ξ = xb. Then the steady form of (1.2), after one integration,

takes the form

uξξ + u2 − F̃ u = αe−ξ2 , (2.2)

where α = −27a/(2b4) > 0 and F̃ = (6/b2)(F − 1). We note that in the limit |ξ| → ∞,
wherein u → 0, there is a balance between the first and third terms on the left hand
side of (2.2) producing exponential far-field decay; however, when F = 1 the balance is
between the first and second terms yielding algebraic far-field decay. To summarise we
seek solutions to (2.2) in the specific case F = 1, namely

uξξ + u2 = αe−ξ2 , (2.3)

subject to the boundary conditions

uξ(0) = 0, lim
ξ→∞

u = 0. (2.4)

Note that by adopting the former boundary condition we seek only solutions which are
even in ξ. We begin by examining the extreme cases α≪ 1 and α≫ 1.

2.1. The case α≪ 1

Working on the assumption that α is small, we seek an asymptotic solution to (2.3) in
the form

u(ξ) = α2/3u0(ξ) + αu1(ξ) + α4/3u2(ξ) + · · · (2.5)

Substituting (2.5) into (2.3) and solving at successive orders of approximation using the
first of the conditions in (2.4), we find

u0(ξ) = u0, u1(ξ) =

∫ ξ

0

µ(τ) dτ + u1, u2(ξ) = −1

2
u2
0
ξ2 + u2, (2.6)

where the ui are constants of integration, and µ(τ) =
∫ τ

0
exp(−τ ′2) dτ ′. In the far-field

we find that

u(ξ) ∼ α2/3u0 + α

(√
π

2
ξ + u1 −

1

2

)

+O(α4/3) (2.7)

as ξ → ∞, which indicates that the expansion will fail when ξ ∼ O(α−1/3). Accordingly
we introduce an outer region in which the new variable ζ = α1/3ξ = O(1) and posit the
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Figure 2.1: (a) Sketch of the four regions used in the matched asymptotics for large α.
The decay is exponential in region ii and algebraic in region iv. (b) Numerical solution
to the region iii problem (2.27) subject to (2.28) with the minus sign.

expansion u = α2/3ũ0(ζ)+ · · · inside this outer region. Substituting into (2.3) we find at
leading order and at first order,

ũ0ζζ + ũ20 = 0, ũ1ζζ + 2ũ0ũ1 = 0. (2.8)

The solutions which satisfy the second condition in (2.4) are

ũ0(ζ) = − 6

(ζ + d1)2
, ũ1(ζ) =

d2
(ζ + d1)3

, (2.9)

where d1, d2 are constants of integration. Matching to the inner region we find that

u0 = − 6

d2
1

, d1 = 2

(

3√
π

)1/3

, (2.10)

as well as d2 = 0 and u1 = 1/2. We conclude that for small α, there exists a solution
with negative elevation at the point of symmetry with u(0) < 0.

2.2. The case α≫ 1

In this case it will be convenient to rescale the problem by introducing the new
dependent variable u = α1/2U so that (2.3) takes the form

δUξξ + U2 = e−ξ2 (2.11)

where δ = α−1/2 and δ ≪ 1. Referring to figure 2.1 we see that the asymptotic solution
for small δ has four distinct regions. In the core region, labelled region ii in the figure,
we expand the solution by writing

U = U0 + δU1 + δ2U2 + δ3U3 + · · · (2.12)

Substituting into (2.11) we obtain algebraic equations for the Ui at successive orders of
approximation which are solved easily. At leading order we find

U0 = ±e−ξ2/2. (2.13)

Discussion of the choice of the sign in (2.13) will be given below. At O(δ) we have

U1 = −U0ξξ

2U0

=
1

2
(1− ξ2), (2.14)
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which is valid regardless of the sign taken for U0 in (2.13). From the next two orders, we
determine the forms

U2 = ±1

8
(ξ4 − 2ξ2 − 3)eξ

2/2, U3 =
5

8
(ξ4 − 1)eξ

2

. (2.15)

Although each of the Ui in (2.12) satisfies the symmetry condition Uiξ(0) = 0 required
by (2.4), the expansion must nonetheless break down as ξ → 0 since the first term on the
left hand side of (2.11) will become comparable to the second in this limit. Moreover,
(2.12) evidently breaks down as ξ increases since successive terms in the expansion grow
to become comparable in size to their predecessors. We address the first of these issues
first, and consider the solution in the boundary layer at ξ = 0, namely region i in figure
2.1.
In region i, we introduce the boundary-layer variable y = δ−1/2ξ and expand the

solution by writing

U = Ũ0(y) + δŨ1(y) + δ2Ũ2(y) + · · · . (2.16)

Substituting into (2.11), at leading order we find

Ũ0yy + Ũ2

0
= 1 (2.17)

subject to the symmetry condition Ũ0y(0) = 0 and the condition that Ũ0 ∼ ±1 as y → ∞
to match with region ii, the choice of sign in the latter condition being dictated by the
choice of sign taken in (2.13). This problem has three possible solutions given by

(i) Ũ0 = 1, (ii) Ũ0 = −1, (iii ) Ũ0 = −1 + 3 sech2(y/
√
2). (2.18)

Referring to the (Ũ0, Ũ0y) phase plane, these correspond respectively to fixed points at

Ũ0 = ±1, and a homoclinic orbit encircling Ũ0 = 1 which connects Ũ0 = −1 to itself.
We examine cases (i) and (ii) first. At O(δ) we have

Ũ1yy ± 2Ũ1 = −y2. (2.19)

The solution which satisfies Ũ1y(0) = 0, and which does not grow exponentially as y → ∞,
is given by

Ũ1 =
1

2
(1∓ y2). (2.20)

Since the expressions in (2.20) are forced directly by the solution in the core region ii,
the matching with that region is immediate. For case (iii), we have

Ũ1yy + 2
(

3 sech2(y/
√
2)− 1

)

Ũ1 = −y2. (2.21)

By making the change of variables t = tanh(y/
√
2), this can be transformed into the

associated Legendre equation

d

dt

(

(1− t2)
dŨ1

dt

)

+

(

12− 4

1− t2

)

Ũ1 = −4 arctanh2 t

1− t2
. (2.22)

The solution which satisfies the required symmetry condition Ũ1t(0) = 0 is given by

Ũ1(t) =
1

4
p1(t)

[

∫ t

0

arctanh2 s

s2 − 1
p2(s) ds−

15

2
π2

]

+
1

32
p2(t)

[

4 log(1− t2)

− log

(

1 + t

1− t

)

{

(1− t2) log

(

1 + t

1− t

)

− 4t
}

− 8 log 2
]

, (2.23)
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where

p1(t) = t(t2 − 1), p2(t) = 15t(t2 − 1) log

(

1 + t

1− t

)

+
50t2 − 30t4 − 16

t2 − 1
(2.24)

are the homogenous solutions to (2.22). We note that Ũ1(t) ∼ arctanh2 t as t→ 1 and so
Ũ1 ∼ −y2/2 ensuring a match with region ii.
We now turn our attention to region iii. Scrutinising the terms U0 and U1 in (2.13)

and (2.14), we see that the expansion (2.12) in region ii breaks down when exp(−ξ2/2) ∼
1

2
δ(ξ2 − 1). This occurs when ξ ∼ ξ0(δ), where

ξ0 = λ− λ−1 log
(

λ2/2
)

+ · · · , (2.25)

with λ = (−2 log δ)1/2. Inside this narrow region, we introduce the internal layer variable
z = λ(ξ − ξ0), and expand by writing

U = δλ2M0(z) + δM1(z) + · · · (2.26)

Substituting into equation (2.11), we obtain at leading order,

M0zz +M2

0 = e−2z. (2.27)

The boundary conditions are

lim
z→−∞

M0 = ±∞, lim
z→∞

M0 = 0. (2.28)

Here the +/− sign is required to match to the solution in region ii, namely (2.13) with
the +/− sign selected respectively. It is possible to compute a solution to this problem
numerically for either choice of sign; however, great care is needed when attempting to
match the solution with region ii, as will be discussed below. We discuss first the case of
the minus sign in (2.28). Figure 2.1 shows the result of a calculation using fourth-order
Runge-Kutta integration to solve the problem (2.27) with the minus sign chosen in the
boundary condition (2.28). An analysis for large negative z reveals that the solution takes
the form

M0(z) = −e−z − 1

2
+

1

8
ez + c1K2

(

2
√
2 e−z/2

)

+ · · · (2.29)

as z → −∞, where K2 is a modified Bessel function of the second kind, and c1 is a
constant which must be determined globally but is not required here. Since it is known
that K2(w) ∼

√

π/2z exp(−2z) · · · (e.g. Abramowitz & Stegun 1964), the final term in
(2.29) decays superexponentially and matching to region ii is possible. For large positive
z, the forcing term on the right hand side of (2.27) becomes negligible and the dominant
balance of the two terms on the left hand side requires the behaviourM0 ∼ −6/(z+c2)

2,
for constant c2, as z → ∞. In region iv, the expansion proceeds as

U(ξ) = δÛ0(w) + · · · (2.30)

where w = ξ − ξ0 = O(1). At leading order we have Û0ww + U2

0
= 0 and the solution

satisfying the far-field condition in (2.4), namely Û0 → 0 as w → ∞, is

Û0 = − 6

(w + c3)2
, (2.31)

for constant c3 which can in principle be found by matching to region iii.
As noted above, it is possible to numerically compute a solution to the problem (2.27)

subject to (2.28) with the plus sign selected in the boundary condition. However, the
numerical solution exhibits small decaying oscillations for large negative z. Indeed, in
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the limit z → −∞ it can be shown that

M0(z) ∼ e−z − 1

2
− 1

8
ez + α1J2

(

2
√
2e−z/2

)

+ α2Y2

(

2
√
2e−z/2

)

+ · · · , (2.32)

for constants α1, α2, where J2 and Y2 are Bessel functions of the first and second kind
respectively. As ξ → ∞, J2(ξ) ∼

√

2/πξ cos(ξ− 5π/4)+ · · · and Y2(ξ) ∼
√

2/πξ sin(ξ −
5π/4)+· · · (Abramowitz & Stegun 1964) and soM0 has decaying oscillations as z → −∞
in agreement with the numerical solution. Since the solution in region ii is non-oscillatory,
it is not possible to complete a match between regions ii and iii, and on this basis we
must reject the choice of the plus sign in (2.13) since it does not lead to a consistent
asymptotic solution.
We conclude that consistent asymptotic solutions may be constructed for cases (ii) and

(iii) in (2.18), but not for case (i). This means that there are two asymptotic solutions
consistent with the choice of a minus sign in (2.13), namely cases (ii) and (iii), but there
are no solutions consistent with the choice of a plus sign in (2.13), namely case (i).

2.3. Numerical results

In summary, we have found in section 2.2 that it is possible to construct a consistent
asymptotic solution using boundary-layer theory for cases (ii) and (iii) in (2.18), but
not for case (i). This together with the results of the small α asymptotic analysis in
section 2.1 suggests that there exist at least two distinct branches of steady solutions. To
carry out a full investigation of the solution space, we solved the steady problem (2.3)
numerically employing a shooting technique based on the 4th order Runge-Kutta method.
The problem was first reformulated as a first order system in the form xξ = F(x), where
x = (u, uξ)

T and F = (uξ, αs − u2)T . Following the assumed symmetry of the solution,
the system was integrated forward from the starting point x(ξ = 0) = (u0, 0)

T for a
chosen u0. The correct value of u0 was determined iteratively until the trajectory of the
solution in the (u, uξ) phase plane approaches the origin. Formally this should happen
in infinite time as ξ → ∞ but in computational practice the value of u0 was refined
so that an increasingly large value of ξ was required to reach the origin. There are two
qualitatively different ways in which this can happen as follows:

(a)
uξ
u

∼ −2

ξ
or (b)

uξ
u

∼ −2ξ (2.33)

as ξ → ∞. Option (a) represents a balance between the two terms on the left hand side of
(2.3) and constitutes algebraic decay of the solution as −6ξ−2 for large ξ. In this case the
slope of the trajectory tends to 0− as the origin is approached. Option (b) represents a
balance between the first term on the left hand side of (2.3) and the topographic forcing
term on the right hand side. In this case the trajectory enters the origin from below with
an infinitely negative slope. The computed solution was checked against an independent
calculation in which the boundary value problem was solved using a finite difference
method on a uniform grid over the truncated domain [−L,L] with L taken to be suitably
large. Approximating the second derivative in (2.3) with a centred-difference furnishes a
set of nonlinear algebraic equations at each grid point, which were solved using Newton’s
method.
Figure 2.2 (panels a, b and c) show numerical computations of the two solution types

predicted by the asymptotic analysis. We refer to the depression wave in figure 2.2a as a
type i solution and the elevation waves in figure 2.2(b, c) as type ii solutions. The solution
space, characterised by the value u(0), is shown in figures 2.2(h) and (i). The predictions
of the asymptotic analysis are included in figure 2.2(h) and (i). Numerically, we find that
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Figure 2.2: (a-g) Free surface profiles: (a) type i at α = 50; (b) type ii at α = 100; (c)
type ii at α = 35.2, close to the branch termination point; (d) type iia at α = 300; (e)
type iib at α = 1500; (f) type iic at α = 3000; (g) type iid at α = 5000. (h) Solution
space. The large α behaviour u(0) ∼ −α1/2 + 1/2, case (ii) in (2.18), is shown with
a broken curve overlaid on the lower branch. The broken curve overlaid on the upper
branch is the large α behaviour for the type ii solution u(0) ∼ 2α1/2 − 4 log(2), case (iii)
in (2.18). The inset shows behaviour for small α. The broken curve illustrates the small α
behaviour u(0) ∼ −(6/d2

1
)α2/3 +(1/2)α, with d1 as given in (2.10). (i) Extended view of

the solution space including type iia, b, c and d solutions. The latter solutions terminate
at α ≈ 214.0, 699.1, 1709.0 and 3508.0 respectively.

the far-field behaviour (a) in (2.33) is obtained on the lower branch of type i solutions and
also on almost all of the upper branch except at the point α ≈ 35.14, where this branch
terminates and where the numerical evidence appears to suggest that behaviour (b)
occurs. Further experimentation revealed the existence of a seemingly infinite sequence
of new solutions iia,b,c,d etc., which are not predicted by our asymptotic analysis, and
which have oscillations on the free surface localised around the origin. Examples are
shown in figure 2.2 (panels d-g). We note the similarity with the solution space over a
rectangular trench (Keeler 2017).

2.4. Fully nonlinear calculations

We now compare the results obtained for the weakly-nonlinear model to those found
for the fully non-linear problem. In the non-dimensionalised steady water-wave equations
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Figure 2.3: Fully nonlinear results for the Gaussian topography (solid curves), b = 0.3.
The broken curves are for the weakly nonlinear solutions. (a) Type i solution, a =
−0.0017. (b) Type ii solution, a = −0.039. (c) Type iia solution, a = −0.134. (d)
Solution space for the type i and ii solutions. (e) Solution space for the type iia solution.
(f) Reduced surface angle θ/θc, where θc = π/6, for the highest computed type ii wave
at a = −0.06484. In (f) the inset shows a close-up near to x = 0.

the velocity potential φ(x, y) satisfies Laplace’s equation throughout the flow domain,

∇2φ = 0 in −∞ < x <∞, f(x) < y < 1 + η(x). (2.34)

On the free-surface the dynamic and kinematic boundary conditions need to be satisfied,

1

2
|∇φ|2 + 1

F 2
y =

1

2
+

1

F 2

ηxφx = φy







on y = 1 + η(x), (2.35)

along with the no-penetration condition on the bottom,

fxφx = φy on y = f(x). (2.36)

We solved this system of equations for the unknown functions φ(x, y) and η(x) at
F = 1 numerically for the Gaussian forcing f(x) = a exp(−b2x2) with the aim of
computing solitary wave solutions. Based on the weakly-nonlinear analysis we would
expect the tails of the solitary waves to decay algebraically, and indeed we establish
analytically in Appendix A that the full nonlinear solutions decay like −(4/3)x−2 as
x → ±∞, which is precisely the far-field behaviour found for the fKdV equation (2.3).
Consequently a large truncation length for the computational domain is required for
the computations. The numerical computations were performed first using the boundary
integral method described by Tam et al. (2015) over the truncated domain [−L,L] for
chosen L. Anticipating an inverse square algebraic decay in the far-field, the boundary
conditions ηx/(1 + η) = ∓ 2/L were applied at x = ±L respectively. Second, the fully
nonlinear system is first reformulated as a single PDE with a non-local term in terms
of surface variables alone, as described in Appendix A. The resulting equation (A 11)
together with (A 5) is solved with spectral accuracy over the truncated domain [−L′, L′],
for large L′ in the mapped domain, assuming periodic boundary conditions, by employing
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Figure 2.4: Far-field decay of fully nonlinear solutions for a Gaussian topography, a =
−0.03 and b = 0.3, computed on domain [−L′, L′] with 2048 collocation points using
the method described in Appendix A. Profiles for type i (panel a) and type ii (panel b)
shown on a log-log plot. In both (a) and (b) the asymptote log(−η) = log(4/3)− 2 logx
is shown with a dashed line.

the fast Fourier transform. In the results presented here the computations were done
with the first of the numerical approaches, except for the type II branch solutions, where
the second approach proved more expeditious particularly in obtaining the steep wave
profiles.
The comparison with the weakly nonlinear solutions for the steady fKdV equation (2.3)

is shown in figure 2.3(a-e). The type i solution demonstrates a very good agreement with
a small discrepancy at the wave minimum. Note that only a portion of the wave is shown
around the origin since the two solutions are visually indistinguishable over the remainder
of the range. There is very good agreement on the type i solution branch for small |a| as
expected. The fully nonlinear type ii solution branch exhibits similar behaviour to the
weakly nonlinear prediction but while the latter branch continues indefinitely through
negative values of a, the former terminates at a finite value of a. We note that the fully
nonlinear branch cannot possibly follow the weakly nonlinear branch for large a since it
is clear from the Bernoulli equation in (2.35) that the surface elevation is bounded above
with η 6 1/2 in the case F = 1; equality is obtained at a stagnation-point where the
first term in the Bernoulli equation vanishes. Such an eventuality is expected at the crest
of a Stokes limiting-configuration, as is found for unforced solitary waves (e.g. Hunter &
Vanden-Broeck 1983). We computed the branch up to a = −0.06484 (see figure 2.3d) at
which point a very large number of mesh points are required to obtain an accurate solution
as the wave profile does indeed seem to be approaching a Stokes-limiting configuration
with an interior angle of 120◦, and a stagnation point, at the crest. The surface angle θ,
defined as the angle between the tangent to the surface and the horizontal, is shown in
figure 2.3f for the type ii profile obtained at a = −0.06484. This particular calculation
was performed using the numerical method discussed above with 214 = 16, 384 points
equally-spaced in the mapped domain with L′ = 100. Given the very high resolution
required, we did not attempt to move further along the branch toward the Stokes-limiting
configuration. Wade et al. (2014) experienced similar numerical difficulties close to the
Stokes-limiting configuration for an imposed distribution of pressure on the free surface.
In the current work the algebraic far-field decay presents an added difficulty.
As was discussed in section 2.3, the weakly nonlinear branch terminates at its right-

hand end at a negative value of a, as can be seen in figure 2.3d. We find that the fully
nonlinear branch also appears to terminate at its right-hand end. Generally solutions
along this fully nonlinear branch decay algebraically as −(4/3)x−2 and this is confirmed
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in figure 2.4, which demonstrates excellent agreement between the analytic prediction
and the numerical computation for a sample case along this branch. It is numerically
extremely difficult to identify the shift from algebraic decay to exponential decay (be-
haviour (b) in (2.33)) which we anticipate will herald the end of the branch as it does
for the weakly-nonlinear theory.
The solution type iia also exists in the fully non-linear solution space but there is a large

difference between the fKdV and fully-non-linear solution branches (see figures 2.3c,e)
as might be expected since the amplitude a is here rather large. It seems reasonable to
suppose that the type iib,c,. . . branches are also present in the fully nonlinear regime
but since they would likely be quantitatively quite different to their weakly- nonlinear
counterparts it may not be straightforward to find them, and we have not attempted to
do so. We also note in common with the weakly-nonlinear theory, the type iia branch
terminates at its right-hand end; however as with the type ii solutions it appears also to
terminate at its other end.

3. Stability and time-dependent behaviour of solutions

To conclude our study we examine the stability properties of the steady solutions. We
construct conditions for the solutions to be stable using the Hamiltonian argument of
Camassa & Wu (1991) and complement these analytical results with careful numerical
computations.

3.1. Stability Analysis

The aim is to classify the steady solutions we have computed as being neutrally,
spectrally, linearly or formally stable. For a definition of these terms, see for example,
Holm et al. (1985); however we will remind the reader of their precise meaning as the
analysis proceeds.
Our starting point is the time-dependent fKdV equation (1.2) at the critical condition

F = 1, which is repeated here for convenience,

ηt −
3

2
ηηx − 1

6
ηxxx =

1

2
fx(x). (3.1)

To investigate the stability we write η(x, t) = ηs(x) + ǫζ(x, t), where ηs is a steady
solution of (3.1) and ζ is a time-dependent perturbation, and where ǫ≪ 1. We demand
that the perturbation ζ satisfies the same far-field conditions as η, namely equation (1.3).
Substituting into (3.1) and retaining terms at O(ǫ) we obtain

ζt = Mζ = − ∂

∂x
(Kζ), K = −1

6
∂xx − 3

2
ηs. (3.2)

The general solution to (3.2) may be written in the form (e.g. Chang & Demekhin
2002, section 7.3)

ζ(x, t) =

Np
∑

k=1

akgk(x) e
skt +

∫

Γ

a(s)g(x, s) est ds, (3.3)

where the ak and a(s) are expansion coefficients corresponding respectively to the Np

values of s in the point spectrum and to the continuous spectrum of the operator M.
These satisfy the relation

Mg = sg (3.4)

(with k subscripts appended in the case of the point spectrum). The integral in the second
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term in (3.3) is taken over the contour Γ which delineates the continuous spectrum in the
complex s plane. The eigenfunctions in the point spectrum, gk(x), reside in L2(−∞,∞).
Furthermore, they satisfy the integral constraint,

∫

∞

−∞

gk(x) dx = 0 (s 6= 0), (3.5)

which is obtained by integrating (3.4) over the real line and using the fact that gk → 0
as |x| → ∞ (Camassa & Wu 1991). Consequently the eigenfunctions gk carry zero excess
mass. The functions g(x, s) associated with the continuous spectrum Γ are bounded as
|x| → ∞. The continuous spectrum itself is determined by examining the behaviour as
|x| → ∞ (e.g. Sandstede 2002). In this limit, the second term in K defined in (3.2) can be
neglected and (3.2) reduces to ζt − (1/6)ζxxx = 0; adopting the form ζ = exp(st)g(x, s),
we find g = exp(ikx) and s = −ik3/6 for k ∈ R so that the continuous spectrum occupies
the imaginary axis: Γ = {iq : q ∈ R}.
In the case of type i steady solutions, which have the property that ηs(x) < 0 for all x,

it is straightforward to show that the point spectrum of M does not include the origin
(Keeler 2017). In the case of type ii steady solutions, numerically computed spectra are
found to not include the origin, as will be discussed below.
If there is no eigenvalue in the spectrum in the right-half complex plane, that is with

a positive real part, then ηs(x) is spectrally stable. If the spectrum is contained along
the imaginary axis, then the solution is neutrally stable. The solution is linearly stable if
for every ǫ > 0 there exists a δ > 0 such that if in a suitable norm ‖ζ(x, 0)‖ < δ then
‖ζ(x, t)‖ < ǫ for t > 0. While linear stability clearly implies spectral stability, the converse
is not necessarily true (see Holm et al. (1985) for some examples). As was pointed out by
Camassa & Wu (1991), for a steady solution ηs(x) which is even in x (resulting from an
even topography), the operator M is odd in x, i.e. Mg(−x) = −Mg(x), which means
that for each eigenvalue s satisfying equation (3.4), −s, s∗ and −s∗ are also eigenvalues,
so that the spectrum has a four-fold symmetry in the complex plane. As a consequence,
spectral stability can only occur if all of the eigenvalues lie on the imaginary axis, in
which case the solution is neutrally stable. Therefore for the fKdV equation with even
topography, neutral stability for even solutions is a necessary and sufficient condition for
spectral stability.
We have computed the spectrum of the M operator numerically on a truncated

domain [−L,L] with periodic boundary conditions using a spectral method. Sandstede
& Scheel (2000) showed that calculations performed on a periodic domain faithfully
reproduce the point and continuous spectra provided the size of the domain is large
enough. Bridges et al. (2002) and Barashenkov & Zemlyanaya (2000) have noted that
numerical algorithms for computing eigenvalues in KdV-type problems can lead to
spurious eigenvalues leaving/entering the imaginary axis and posing as unstable/stable
modes. With this in mind, we have performed careful convergence tests on our results
and, furthermore, we confirm our results by comparison with time-dependent simulations
to be discussed in the next subsection. For type i solutions the spectrum is found to be
contained on the imaginary axis indicating that the flow is spectrally stable in this
case. This conclusion will be confirmed via a formal argument to be presented below. In
contrast type ii solutions are found numerically to be linearly unstable. In all cases we
examined we found that the operator M has just one unstable eigenvalue s in the right-
half plane (excluding s∗). In fact, this was found to be true for all of the type ii and type
iia solutions shown in figure 2.2(h). Table 1 illustrates the convergence of the unstable
eigenvalue for a sample type ii case as the discretisation level N and the truncation
length of the computational domain L are varied (similar results are found for a typical



On the critical free-surface flow over topography 13

N L dx s

1024 100 0.195 1.9068 × 10−3 + 0.09881i

2048 200 0.195 3.5399 × 10−3 − 0.09955i

4096 400 0.195 3.5612 × 10−3 − 0.09968i

8192 800 0.195 3.5591 × 10−3 − 0.09967i

8192 400 0.098 3.5612 × 10−3 − 0.09968i

Table 1: Type ii solution at a = −0.1357, b = 0.3 (α = 226.1). Convergence of the
eigenvalues in the discrete M spectrum computed on a computational domain [−L,L]
with N equally-spaced points. One value of s in the (s,−s, s∗,−s∗) quartet is shown for
various N and L (and grid size dx = 2L/N).
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Figure 3.1: Stability properties of the type ii solution at a = −0.1357, b = 0.3 (α = 226.1): (a)
Spectrum of the M operator and (b) the real and imaginary parts of the unstable eigenfunction
for s = 0.0036+0.0997i. In (b) the inset shows a close-up of the eigenfunction near to the origin.

iia case). Evidently convergence is achieved with a rather large number of discretisation
points. The spectrum for this case is shown in figure 3.1(a). The unstable eigenfunction
is shown in figure 3.1(b). The large x behaviour of the eigenfunction is controlled by the
balance (1/6)g′′′k ∼ sgk in (3.4). Therefore the decay is exponential with gk ∼ exp(µx)
as |x| → ∞, where µ = (6s)1/3 + 2ikπ/3 for k = 0, 1, 2. For the unstable eigenvalue
given in table 1, we obtain the dominant decay rate µ = 0.73 − 0.41i for x → −∞ and
µ = −0.01 + 0.84i as x → ∞. The latter value indicates a very slow decay downstream
requiring a large computational domain. This explains the large value of L required to
achieve numerical convergence (see table 1).

As noted above, in the case of a neutrally stable steady solution to the present problem,
all of the eigenvalues in the spectrum are necessarily located on the imaginary axis.
Linear instability remains a possibility, however. For example, it may be the case that
there exist non-simple point-spectrum eigenvalues embedded in the continuous spectrum
on the imaginary axis which may lead to algebraic growth in time (Holm et al. 1985). To
proceed we adopt an alternative approach suggested by Camassa & Wu (1991), Chardard
et al. (2011) and others, which exploits the fact that (3.1) has a Hamiltonian structure.
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In fact we can write it as

ηt = −1

6

∂

∂x

(

δH
δη

)

, H(η, ηx) =
1

2

∫

∞

−∞

η2x − 3η3 − 6fη dx, (3.6)

where H is the Hamiltonian. Consequently a steady solution ηs of (3.1) corresponds to
a solution of the equation δH/δη = 0. With a general perturbation ζ as defined above,
i.e. as η = ηs + ǫζ(x, t), the second variation of H at ηs is given by

δ2H =
1

2

∫

∞

−∞

ζ2x − 9ηsζ
2 dx =

1

3
〈ζ,Kζ〉, 〈f, g〉 =

∫

∞

−∞

fg∗ dx. (3.7)

If the second variation δ2H is positive (or negative) definite then the steady solution ηs is
said to be formally stable. Formal stability implies linear stability, although the converse
is not necessarily true (see Holm et al. 1985). Linear instability can therefore be ruled
out if δ2H is definite.
Since K is a self-adjoint Schrödinger operator, computing its eigenvalue spectrum

constitutes a singular Sturm-Louiville problem on the real line (e.g. Titchmarsh 1962;
Coddington & Levinson 1955) and is a well-studied problem in quantum mechanics
and inverse scattering theory (e.g. Landau & Lifshitz 1977; Drazin & Johnson 1989).
Restricting the admissible perturbations ζ to the class of L2(−∞,∞) square-integrable
functions, we obtain the lower bound (Camassa & Wu 1991; Keeler 2017),

δ2H >
1

3
ν0〈ζ, ζ〉. (3.8)

Since ν0 > 0, we can conclude from (3.8) that δ2H is positive definite. This means type
i solutions (for the trench and Gaussian dip), which are negative definite, are formally
stable and hence linearly stable. For our other solution types, δ2H is difficult to calculate
analytically and instead we used the numerical pseudo-spectral method to determine the
K spectrum and, hence, to calculate ν0. (It should be emphasised that if for a given
solution it is found that ν0 < 0, so that the solution is formally unstable, this does not
imply that it is linearly unstable and further investigation is needed.) For the type i

solutions we confirmed numerically that ν0 > 0 implying linear stability in agreement
with the calculations of the M spectrum discussed above. For the type ii and iia solutions
we found that ν0 < 0; as we have already discussed, these solutions are found to be
unstable when considering the spectrum of the M operator.
In the next subsection we perform time-dependent simulations of the unsteady fKdV

equation with the goals of confirming the stability properties of the type i and ii solutions,
and of following the development of the free surface in each case to large time.

3.2. Time-dependent simulations

We carried out time-dependent simulations of (1.2) on a truncated spatial domain
[−L,L], for a specified value of L, assuming periodic boundary conditions and using a
method similar to that adopted by Chardard et al. (2011) and Wade et al. (2014). The
method computes spatial derivatives spectrally using a discrete Fourier transform and
integrates forward in time using the fourth-order Runge-Kutta algorithm. Further details
of the method can be found in (Trefethen 2000). In numerical practice, we may obtain
solutions that satisfy the boundary conditions in the far-field by taking L sufficiently
large. In practice we found that taking ∆t ∼ 10−2 and 512 Fourier modes is sufficient to
ensure the accuracy of the computations.
Since we assume periodicity in the computations, any disturbance leaving the domain

will appear at the opposite end, and such behaviour is clearly unphysical. To prevent
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this in our computations we introduce a so-called sponge layer (see, for example, Boyd
2000; Alias et al. 2013; Grimshaw & Maleewong 2016) and in fact solve the equation

ηt −
3

2
ηηx − 1

6
ηxxx +A(x)η =

1

2
fx, (3.9)

where A(x) = D {1 + tanh (b0 [x− b1])} for positive parametersD, b0 and b1. If we choose
b1 to be close to L, then A is non-zero over a narrow region at the left-hand end of the
domain. This has the effect of preventing disturbances leaving the upstream end from
entering the downstream end (due to the assumed periodicity) and vice versa.
Multiplying (1.2) by η and integrating, after making use of (1.3) we obtain

dP

dt
=

∫

∞

−∞

ηfx dx ≡W (η), (3.10)

where P =
∫

∞

−∞
η2 dx is the momentum (see Camassa & Wu (1991) Appendix C). The

expression W is termed the wave resistance coefficient by Camassa & Wu (1991) and
is interpreted physically as a measure of the power being supplied by the forcing (see
also Wu 1987). In the absence of forcing, P is a conserved quantity. In general P = P (t)
and so W 6= 0; it follows from the integral on the right hand side of (3.10) that for
a topography which is even in x, as will be assumed in this paper, η(x, t) will have a
left-right asymmetry about x = 0. In the presence of forcing it is straightforward to show
that the excess mass Q =

∫

∞

−∞
η dx is a conserved quantity. The Hamiltonian defined

in (3.6) provides a second conserved quantity, corresponding to the energy, and both of
these can be used as a check on the fidelity of numerical time-dependent simulations of
(1.2). A further check can be made by computing W using either of the two alternative
expressions given in (3.10) and confirming that the same result is obtained in either case.
In the numerical results to be discussed in the next section, both Q andH were performed
in the absence of the sponge layer and it was confirmed that they are conserved.
In the results to be presented below a time-dependent calculation is started using the

initial condition η(x, 0) = ηs+ǫζ̂ where ηs is a chosen steady solution, ζ̂ is a perturbation
and ǫ is taken to be a small number. In all of the calculations to be presented below we
took ǫ = 0.025. If the numerically computed eigenspectrum of the operator M revealed
a positive largest growth rate, the initial perturbation ζ̂ = (gk + g∗k)/2, with gk the
corresponding eigenfunction, was used. Otherwise if the numerically computed spectrum
was found to contain only purely imaginary eigenvalues, the initial perturbation ζ̂ = ηs
was used.
We note that for a given initial condition and a particular choice of the topographic

forcing f(x), the solution to the fKdV equation (1.2) is known to be unique (Wu 1987).
Also, we remark that when presenting unsteady simulations of the fKdV equation for
topographic forcing similar to that considered here Wu (1987) and Camassa & Wu (1991)
both solved the so-called regularised form of the fKdV equation (see Benjamin et al.

1972), whose equivalence is assured only in the limit of long-waves.
We focus on the case of Gaussian topography with f(x) = a exp(−b2x2). Our first goal

is to confirm the stability results of section 3.1. Figure 3.2 shows the results of a numerical
simulation starting from a small perturbation of the unique type i steady solution ηs at
α = 141 (a = −0.085, b = 0.3). The free-surface profile η(x, t) is shown at different times
over a portion of the computational domain [−L,L]. We note that the solution in the left
side of the domain, which is not shown, remains uniformly zero over the duration of the
simulation and that no disturbances are observed to propagate upstream. Also shown in
the figure are the time signals of the momentum P and the wave resistance coefficient
W . The initial condition η(x, 0) = 1.025ηs has momentum P (0) = 5.53×10−3 which is in
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Figure 3.2: Numerical simulation of equation (3.9) with Gaussian forcing for α = 141, (a =
−0.085, b = 0.3) with L = 200 and N = 512. The initial condition is η(0, t) = 1.025ηs, where
ηs is the unique type i solution at this α (see figure 2.2h). Panels (a-d) show the solution over
a portion of the domain at times t = 40, 200, 2000 and 10,000. Panels (e) and (f) show the
momentum P and W respectively against time. The broken line in panel (e) is the momentum
of the type i steady state, P = 5.26 × 10−3.

excess of the momentum of the steady state type i solution momentum Ps = 5.26×10−3.
The simulation shows that ultimately the system returns to the steady state ηs as time
increases. The wave resistance coefficient W approaches zero at large time, which is a
necessary condition for the steady state to be recovered. Also W is negative during the
simulation and so, according to (3.10), the momentum P must decrease monotonically.
In particular we see that P → Ps as t → ∞. A log-log plot of the W signal indicates
that W ∼ O(t−2) for large t, and so P is expected to approach Ps algebraically in time;
this explains the very long integration time required to recover the steady state.
We emphasise again that momentum cannot be released from the free surface as long

as it is symmetric about x = 0 since W is zero in this case. Since the initial condition is
symmetric, and moreover has a greater momentum than the steady state ηs, it follows
that an asymmetric free-surface disturbance must develop in t > 0 if the steady state
is to be recovered in the long term. As can be seen in figure 3.2(a-d), small amplitude
waves appear on the leeward side of the free surface. These waves propagate downstream
carrying momentum with them. Eventually these waves evanesce and the steady state is
recovered. Close inspection of these figures reveals that the free surface, shown with a
solid line, overlaps with the steady state ηs, shown with a broken line, over an increasingly
wide region as time goes on.
Figure 3.3 shows the results of a numerical simulation starting from a small perturba-

tion of the type ii steady solutions ηs at α = 226.1 (a = −0.1357, b = 0.3) respectively.
Very similar results are found for a simulation started from a small perturbation of a
type iia steady solution. The free-surface profile η(x, t) is shown at different times over
a portion of the computational domain [−L,L]. The calculated unstable eigenmode is
used as an initial condition for the linearised time-dependent equation (3.2) and excellent
agreement is found with the calculated unstable eigenvalue Keeler (2017). The agreement
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Figure 3.3: Numerical simulation of equation (3.9) with Gaussian forcing for α = 226.1, (a =
−0.1357, b = 0.3) with L = 400 and N = 2048 (note not all of the domain is displayed). The
initial condition is η(0, t) = 1.025ηs, where ηs is the unique type ii solution at this α (see panel
2.2h). Panels (a-d) show the solution over a portion of the domain at times t = 100, t = 500,
t = 1000, 1100 and 1500. Panel (f) shows W respectively against time. The dotted curve is the
steady solution ηs.

for the non-linear time-dependent equation is also good for small times when the initial
condition is given by η(x, 0) = ηs +

1

2
ǫ(gk + g∗k), with g the unstable eigenmode. The

initial condition for the calculations in figure 3.3 is η(x, 0) = 1.025ηs and the different
panels show the free-surface profile at different times together with the steady solution,
which is shown as a dashed curve. These snapshots show waves travelling downstream in
an irregular manner. Additionally, the solution in x < 0 does not remain uniformly zero
over the duration of the simulation and after a finite interval soliton-like disturbances
emerge and propagate upstream. To conserve Q, the excess mass created by these soliton-
like disturbances is balanced by a non- uniform depression region which appears directly
downstream of the topography. The time signal of the wave resistance coefficient W
is also shown in the figure and is seen to oscillate with increasing amplitude as time
increases. We conclude the solution does not return to the steady state as t increases.
We also carried out simulations with the initial condition η(x, 0) = 0. Although a

stable steady solution exists in this case, this is not approached at large time. Instead
unsteady behaviour is observed whose features are in line with those described by Wu
(1987), Camassa & Wu (1991), Grimshaw & Smyth (1986) (see in particular section 6
and figure 11), and Grimshaw et al. (2007).

4. Discussion

We have examined critical free-surface flow over a localised bottom topography using
a weakly-nonlinear forced Korteweg-de Vries model and by way of numerical solutions
of the fully nonlinear problem. Critical flow conditions occur when the Froude number
is equal to unity both far upstream and far downstream of the localised topography. In
the first part of the paper we considered the steady solutions which are found when the
topography takes the form of a Gaussian dip (a simple argument dictates that no steady
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solutions are possible in the case of a positive-definite topography). For this topography
we studied steady solutions via very carefully conducted numerical calculations. The
solution space depends on a single parameter, α. For small α there is a unique steady
solution, which is negative-definite and which we have termed a type i solution. At
a critical value of α a second solution, termed type ii, appears which is not single-
signed. At larger values of α, further branches of steady solutions appear. In general the
steady solutions have algebraic decay in the far-field such that the free surface elevation
decays as −(4/3)x−2 as x → ∞. Similar algebraic decay can occur for gravity-capillary
waves in infinite depth (Akylas et al. 1998) and for gravity-capillary waves in two-layer
flow (Sun 1997). To corroborate the numerical solutions, we also constructed asymptotic
solutions valid in the limit of small and large α. For large α we successfully constructed
an asymptotic solution which captures the negative-definite type i solution as well as the
type ii solution. However, an asymptotic description of the apparently infinite sequence of
solution branches, types ii a,b,c..., for which an increasing number of ripples are trapped
on the free surface around the origin, lies beyond the scope of the present analysis. On
this point it is illuminating to highlight the similarity between the presently considered
problem and the celebrated Carrier problem discussed at length in, for example, Bender &
Orszag (1999) (p. 464), wherein an increasing number of interior oscillations appear in the
solution as the pertinent dimensionless parameter approaches zero. These solutions are
not fully captured by a traditional boundary-layer analysis. Determining the asymptotic
structure of the type iia,b,c... solutions in the current work is the subject of our current
investigations.
Numerical solutions performed using the boundary integral method and using a con-

formal mapping technique confirmed the existence of type i, ii and iia solutions in the
fully nonlinear regime. However, these solutions do not extend indefinitely to large α.
Rather, as α is increased, the free surface profiles approach a limiting configuration which
is locally similar to that found for a classical Stokes wave with an interior angle of 120◦

at the wave maximum.
In the second part of our investigation, we studied the stability of the steady solutions

obtained for a Gaussian dip topography first by computing eigenvalues of the linearised
system, and then by numerical computation of the full fKdV initial value problem. For
type i solutions all of the eigenvalues were found to lie on the imaginary axis, suggesting
linear stability, and this was corroborated by the time-dependent simulations. In fact
a simulation initiated with a free-surface which is only a small deviation from a type i

solution is seen to slowly relax back to this steady state as time increases; the momentum
associated with the initial perturbation is leaked downstream in the form of a wave-train
which appears on the downstream side of the free-surface shortly after the start of the
simulation. The stability calculations for type ii and type iia steady solutions revealed
complex eigenvalues which indicate that these solutions are linearly unstable and this was
confirmed by time-dependent simulations initiated using the unstable eigenfunction as
the form of perturbation. During these simulations, solitary waves are emitted upstream
at regular intervals similar to what has been observed by previous workers. Interestingly,
a simulation started from a flat free-surface does not approach the stable type i solution
but instead behaviour somewhat similar to that found by Wu (1987) for critical flow over
a positive obstacle is observed: key differences, however, are that the solitary waves
which are emitted upstream have different heights and the depression region which
appears downstream of the topography is undular rather than flat. The case of a positive
topography is well studied (e.g. Wu 1987; Grimshaw& Smyth 1986; Grimshaw et al. 2007)
and analytic results have been obtained; however, to our knowledge no such results are
available for a negative topography.



On the critical free-surface flow over topography 19

When reaching our conclusions on the stability properties of the steady solutions for a
Gaussian topography/free surface, in addition to numerical eigenvalue calculations and
time-dependent simulations, we also applied the Hamiltonian theory of Camassa & Wu
(1991) to show analytically that negative-definite type i solutions are linearly stable. This
was done by demonstrating that the K operator has no negative eigenvalues and hence
the second variation of the relevant Hamiltonian is positive-definite. Unfortunately for the
type ii solutions, which are not single-signed, the results of this analysis are inconclusive.
Analytic eigenvalue counts which might be used to deduce stability properties in this
case have been discussed at some length in the literature. Notably Pelinovsky (2012)
and Kapitula & Stefanov (2014) (see also the earlier work by Chugunova & Pelinovsky
2010) independently proved a theorem for linearised systems of the form ∂xLu = λu,
which relates the number of potentially unstable eigenvalues λ to the number of negative
eigenvalues of the self-adjoint operator L. Chardard et al. (2011) used these ideas to
infer stability properties of steady, table-top solitary wave solutions for supercritical
flow. Unfortunately, the theorem cannot be applied in the present case of critical flow,
since it requires that the essential spectrum of the L operator be bounded away from
the origin. Here we have L = −K = (1/6)∂xx + (3/2)ηs with essential spectrum [0,∞),
which violates this requirement. We have not been able to identify in the literature an
eigenvalue count which applies in this case, and this remains an interesting topic for
future work.
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Appendix A. Algebraic decay of a solitary wave for critical flow

In this appendix we demonstrate that a solitary wave solution for critical flow, F = 1,
must decay algebraically in the far-field and we determine the leading order form of this
decay. To establish this result we start from the formulation of the problem (2.34)-(2.36).
It is convenient then to make a conformal transformation (x, y) 7→ (ξ, ζ) mapping the
physical domain into the infinite strip −H 6 ζ 6 0 in the mapped plane, for some chosen
H .
Working in a manner similar to that adopted by Choi & Camassa (1999) in their

discussion of periodic water waves, we write down the problem determining the conformal
mapping as

yζζ + yξξ = 0, in −H 6 ζ 6 0, (A 1)

y = 1 + s(ξ) on ζ = 0, (A 2)

y = b(ξ) on ζ = −H, (A 3)

where s(ξ) = η(x(ξ)) and b(ξ) = f(x(ξ)) describe the free surface elevation and the
bottom topography in the mapped plane respectively. The solution is easily obtained by
taking a Fourier transform in ξ with wavenumber k, and is given by

y = 1 +
ζ

H
+

1

2π

∫

∞

−∞

(

ŝ
sinh(k[ζ +H ])

sinh(kH)
− b̂

sinh(kζ)

sinh(kH)

)

eikξ dk, (A 4)

where a hat denotes a transformed variable, and δ(k) is the Dirac delta function. Differ-
entiating (A 4) and noting that xξ = yζ according to the Cauchy-Riemann equations, we
find that (see also Viotti et al. 2014; Blyth & Părău 2016)

xξ|ζ=0 = 1/H − T (sξ) + S(bξ), (A 5)

where T and S are non-local operators defined by

T [f(ξ)] =
1

2H
−
∫

∞

−∞

f(ξ′) coth
( π

2H
(ξ′ − ξ)

)

dξ′, (A 6)

and

S[f(ξ)] =
1

2H
−
∫

∞

−∞

f(ξ′) tanh
( π

2H
(ξ′ − ξ)

)

dξ′. (A 7)

We formulate the flow problem in the mapped plane in terms of the mapped stream-
function Ψ(ξ, ζ), where Ψ = ψ(x(ξ, ζ), y(ξ, ζ)), and the streamfunction in the physical
plane, ψ, is defined in the usual way so that u = ψy and v = −ψx. The problem is

Ψζζ + Ψξξ = 0, in −H 6 ζ 6 0, (A 8)

Ψ = 1 on ζ = 0, (A 9)

Ψ = 0 on ζ = −H, (A 10)
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where we have assumed a unit flux in the streamwise direction in keeping with the
nondimensionalisation introduced in the main part of the paper. The solution is simply
Ψ = ζ/H . The Cauchy-Riemann equations immediately yield the relation Φξ = 1/H,
where Φ(ξ, ζ) is the velocity potential in the mapped plane.
At this stage we have satisfied the kinematic conditions on both the bottom topography

and on the free surface. The Bernoulli condition on the free surface in the mapped plane
demands that

F 2

2J
(Φ2

ξ + Ψ2

ξ ) + s =
F 2

2
, J = x2ξ + y2ξ , (A 11)

where all terms are evaluated at ζ = 0. Taking into account the fact that s(ξ) is a real
function, and considering its Taylor series expansion in Fourier space for both positive
and negative values of k, we may write down the general small k expansion for the surface
elevation in Fourier space as

ŝ(k) ∼ (a00 + ia01sgn(k)) + (a10|k|+ ia11k) + (a20k
2 + ia21k|k|) + · · · , (A 12)

where the aij are all real. A similar expansion can be written down for the bottom
topography function; since this function is prescribed the precise form of its expansion
coefficients are known in advance.
Keeping in mind the application to a Gaussian topographic forcing f(x) in the physical

plane, as is considered in the main part of the paper, we now assume that b(ξ) decays
at least exponentially as ξ → ∞. By examining the form of the small k expansion of the
term in large brackets in the integrand of (A 4), and using (A 5), we find that

xξ|ζ=0 ∼ 1

H
+

(

ia01
H

)

ξ−1 −
( a10
πH

)

ξ−2 + · · · (A 13)

as ξ → ∞. The asymptotic form (A 13) has been obtained by making use of Theorem 19
on page 52 of Lighthill (1958).
Substituting our previous results into the Bernoulli equation (A 11), and considering

the limit of large ξ, we obtain

0 = ia01(1− F 2)ξ−1 +

[

(F 2 − 1)
a10
π

− 3

2
F 2a201

]

ξ−2 + (A14)

[

6(1− F 2)a21 + 6iπF 2a3
01

− F 2(9ia10 − 2H2)a01
]

ξ3 + · · ·
as ξ → ∞. If F 6= 1, as is the case for either subcritical flow or for supercritical flow,
we are forced to conclude that a01 = a10 = a21 = · · · = 0; in this case the decay is
known to be exponential, as is discussed by Longuet-Higgins & Fox (1977), Hunter &
Vanden-Broeck (1983) and Wade et al. (2014), for example. If F = 1, however, it is clear
from (A14) that a01 = a21 = 0; moreover at O(ξ−4) we determine that a10 = (4/3)πH2.
Applying Lighthill’s Theorem 19 to (A 12) we conclude that

s ∼ −4

3
(ξ/H)−2 + · · · (A 15)

as ξ → ∞. We note from (A13) that x ∼ ξ/H + o(ξ) as ξ → ∞ and hence we find
that in the case of critical flow, F = 1, the free surface elevation decays algebraically as
−(4/3)x−2 for large x. Interestingly, this is precisely the form of the far-field behaviour
predicted by the steady fKdV equation (2.3). We note that the same inverse square rate
of algebraic decay has been demonstrated for gravity-capillary waves in infinite depth
by Akylas et al. (1998), and for gravity-capillary waves in two-layer flow by Sun (1997),
who established the decay rate rigorously using analytical methods.


