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Summary 

Secular decreases in dissolved oxygen concentration have been observed within the tropical Oxygen 

Minimum Zones (OMZs) and at mid- to high latitudes over the last ~ 50 years. Earth System Model (ESM) 

projections indicate that a reduction in the oxygen inventory of the global ocean, termed ocean 

deoxygenation, is a likely consequence of on-going anthropogenic warming. Current models  are, 

however, unable to consistently reproduce the observed trends and variability of recent decades, 

particularly within the established tropical OMZs. Here we conduct a series of targeted hindcast model 

simulations using a state-of-the-art global ocean biogeochemistry model in order to explore and review 

biases in model distributions of oceanic oxygen. We show that the largest magnitude of uncertainty is 

entrained into ocean oxygen response patterns due to model parameterisation of pCO2-sensitive C:N ratios 

in carbon fixation and imposed atmospheric forcing data. Inclusion of a pCO2-sensitive C:N ratio drives 

historical oxygen depletion within the ocean interior due to increased organic carbon export and 

subsequent remineralisation. Atmospheric forcing is shown to influence simulated interannual variability 

in ocean oxygen, particularly due to differences in imposed variability of wind stress and heat fluxes. 
 

1. Introduction 

The representation of realistic oxygen fields is an important and active area for ocean biogeochemistry 

model development (e.g. the Fast Met Office UK Universities Simulator [FAMOUS]; [1]) owing to the 

ecological importance of dissolved oxygen concentration (hereafter [O2]) and its sensitivity to climatic 

perturbation on interannual to millennial timescales [2]. Moreover, despite occupying less than 10 % of the 

ocean by volume, low oxygen waters could account for up to 50 % of open ocean N2O production as a 

consequence of denitrification and increased N2O yields from nitrification under low-[O2] conditions [3]. 

ESMs consistently project a reduction in the oxygen content of the global ocean in response to future 

anthropogenic climate change [4, 5], but with significant uncertainty in the spatial pattern (or  

“fingerprint”) and magnitude [6, 7]. Therefore, the ability of current models to reproduce the observed 

dynamics and distribution of ocean [O2] needs to be scrutinised to understand uncertainties and improve 

projections [8, 9]. 

 

A number of persistent model biases have been identified in the [O2] fields of ocean biogeochemistry 

models of differing complexity [9, 10] integrated for the historical period. Most evident is the inability of 

current models to reproduce the observed distribution and variability of [O2] at low latitudes, particularly 

within OMZs such as the eastern tropical Pacific [11]. For example, Ocean Biogeochemistry General 

Circulation Models (OBGCMs) generally simulate historical [O2] increases within the tropical  thermocline 

 

1 



 

 

 

 
 

(e.g. [12, 13]) and an overall contraction of suboxic waters [7] in response to ocean warming. These model 

responses are contrary to time series data compiled for the eastern tropical OMZs [14], which show   

marked deoxygenation trends and expansion of low-[O2] waters over the last ~ 50 years. [15] and [11] also 

highlight the limited capacity of current ESMs to reproduce the observed climatological distribution of [O2] 

in the subsurface. This systematic model bias is entrained into the biogeochemically  significant  [16] 

volume censuses of low-[O2] waters, with models variously both underestimating (e.g. HadGEM2-ES [17]) 

and overestimating (e.g. MPI-ESM-LR [18]; GFDL-ESM2.1 [19]) hypoxic and suboxic extent within the 

ocean interior. A range of dynamical and biogeochemical model deficiencies have been invoked to explain 

the divergence between observed and simulated [O2] at low latitudes (e.g. [1, 9]). Chief among them is the 

inability of coarse resolution models to explicitly simulate the mesoscale structures which resupply O 2 into 

the eastern tropical OMZs (e.g. [20]). Eddy-resolving spatial resolution has been shown to improve 

representation of [O2] in the Arabian Sea [21] and eastern tropical Atlantic [10] OMZs via more realistic 

transport processes in the physical model. However, below eddy-resolving scales, improvements in the 

representation of [O2] fields with increasing spatial resolution have been shown to be small (e.g. MPI-ESM 

[18]). Uncertainties surrounding the parameterisation of lateral [22, 15] and  vertical [23] diffusion have 

also been shown to place important constraints on the extent of low-[O2] waters in coarse resolution ESMs. 

In addition, unforced variability in the equatorial trade winds has been shown to influence the simulated 

evolution of tropical OMZs on multidecadal timescales [24], further complicating model-data agreement in 

coupled models. 

 

The representation of biological processes and their response to physical and geochemical forcing has been 

suggested as an important limitation on O2 dynamics in ocean biogeochemistry models (e.g. [25, 26]). For 

example, [27] show, using an ensemble of ESM experiments, that the interactive effects of climate change 

and ocean acidification could drive significant alteration to biogeochemical cycles, suggesting that ocean 

warming should not be considered in isolation when considering future ocean deoxygenation. The 

potential impacts of ocean acidification on primary and export production are particularly important for 

oxygen cycling. Mesocosm experiments carried out using natural plankton communities [28, 29] suggest 

that the C:N uptake ratio in photosynthetic carbon fixation increases under elevated pCO2 due to DIC over- 

consumption, causing the composition of exported organic material to deviate from classical Redfield 

stoichiometry (e.g. C:N = 6.6 [30]). Specifically, [28] report higher C:N drawdown ratios in diatom and 

coccolithophore-dominated mesocosm enclosures exposed to increased partial pressures of CO2 (pCO2 = 

700 µatm, C:N = 7.1; pCO2 = 1050 µatm, C:N = 8.0), whilst N:P ratios remain unchanged from Redfield 

proportions. The effects of stoichiometric plasticity in marine ecosystems remain largely unaccounted for  

in current ocean biogeochemistry models [31], which generally rely on fixed elemental ratios in the 

formation of organic material. However, studies using configurations of the UVic [32] and PISCES [33] 

models which implement a pCO2 sensitive C:N ratio in primary production suggest that stoichiometric 

effects in response to ocean acidification could have a major impact on biogeochemical cycles. Model 

experiments with variable C:N stoichiometry simulate increases in cumulative carbon export of between   

70 and 100 Pg C by 2100 in response to future CO2 forcing. Moreover, the export of (relatively) more 

carbonaceous organic material from the surface in response to DIC over-consumption driven by 

acidification also causes biological oxygen demand to increase. As a result, these model experiments 

project elevated deoxygenation of the tropical thermocline (> 20 µmol L -1) and 36 – 50% increases in the 

volume of suboxic waters by 2100 [32, 33], compared to no change or a small [O2] increase as simulated by 

fixed stoichiometry ESMs [6]. [9] investigate the impact of variable C:N ratios on historical [O 2] trends  

using an intermediate complexity ESM, and find that this effect is small for zonal mean [O2] trends at 300 

dbar. However, the impact of accounting for variable stoichiometry on historical [O2] changes in more 

complex Plankton Functional Type (PFT) ocean biogeochemistry models (e.g. [34, 35]) remains uncertain. 

 

Another potentially important impact of biological processes on [O2] changes relates to the well- 

established [36] effect of ocean acidification on the saturation state of seawater with respect to calcium 



 

 

 

carbonate (both calcite [Ωcal] and its less stable polymorph aragonite [Ωarag]). A decrease in Ω under 

elevated pCO2 has been shown by a number of laboratory and field studies to reduce biogenic calcification 

rates in some calcareous holoplankton (foraminifera, pteropods and some coccolithophores) and warm- 

water corals [37]. Extrapolating these results, [38] projects a ~ 50 % decline in global CaCO 3 export 

production by 2250 using an OBGCM which accounts for reduced biocalcification rates in response to 

ocean acidification (SRES A1B emissions scenario). Beyond direct effects, it has been suggested by [39] that 

changes in the “carbonate pump” may also impact upon the export of organic material, since fluxes of 

POC and PIC are highly correlated beneath ~ 1000 m depth (the so-called “PIC:POC rain ratio” [40, 41]). 

Specifically, export fluxes of dense calcareous (CaCO3) and siliceous (SiO2) biominerals provide ballast 

which increases the sinking speed and transfer efficiency of POC into the ocean  interior.  Therefore, 

reduced export production of CaCO3 in response to ocean acidification could impact upon the efficiency of 

the organic (“soft tissue”) biological pump, such that POC remineralises at shallower depths as mineral 

ballast fluxes weaken. This effect has been reproduced by OBGCMs which include simple ballasting sub- 

models [38], with implications for other biogeochemical cycles including oxygen. For example, [42] 

demonstrated, using idealised experiments with a [CO32-] dependency in calcification rates (RCAL), that 

shallower POC remineralisation depths in response to weakened ballasting exacerbates  O2  depletion 

within established subsurface [O2] minima. Specifically, reduced ballasting alone is shown in prognostic 

experiments under a SRES A1F1 emissions scenario until 2100 (with emissions declining to 0 at 2200) to 

reduce [O2] by 20 – 40 µmol L-1 between ~ 200 – 800 m depth by the year 3000, with the largest decreases 

within tropical OMZs (e.g. > 50 µmol L-1 at 500 m depth in the Arabian Sea). Thus, the effects of ocean 

acidification on carbon export have been shown to have a major impact on [O2] distributions and forced 

responses in model projections. However, no studies have so far addressed if these missing processes  

could reconcile the mismatch between observed and modelled [O2]. 

 

Current ocean biogeochemistry models also generally underestimate temporal variability in O2 on 

interannual to decadal timescales. For example, [43, 44] report decadal scale variability  in  Apparent 

Oxygen Utilisation (AOU) as simulated by an ensemble of ocean-only hindcast model experiments for the 

North Pacific region to be underestimated by a factor of ~ 3 relative to repeat hydrographic section data. 

Similarly, interannual variability in global Atmospheric Potential Oxygen fluxes have been shown to be 

underestimated by a factor of ~ 2 - 4 in hindcast ocean biogeochemistry models relative to those estimated 

using global atmospheric transport inversions [26]. These results are also consistent with the model-data 

comparison of [8], where optimal detection methods applied to Coupled Model Intercomparison Project 

Phase 5 (CMIP5) ESMs show that model [O2] responses need to be scaled up by a factor of ~ 2 – 4 to match 

observed changes. Recent work using hindcast models [45, 46, 47] demonstrate the sensitivity of simulated 

trends and variability in the ocean carbon cycle to imposed atmospheric forcing. For instance, [47] find 

significant differences in the interannual variability of CO2 outgassing fluxes from  the tropical Pacific 

using ocean-only OBGCM experiments forced with the JPL CCMP Ocean Surface Wind Product [48] 

compared to NCEP/NCAR reanalysis data [49]. Additionally, model representation of large scale physical 

transport processes such as the Atlantic Meridional Overturning Circulation (AMOC) have been shown to 

be sensitive to the choice of imposed atmospheric forcing. For example, [50] show model simulated long 

period variability in AMOC transport at 26.5°N to be significantly different between hindcast experiments 

which employ ECMWF ERAInterim reanalysis data [51] compared to those which calculate bulk fluxes 

using the Drakkar Forcing Set 3 (DFS3; [52]) blended meteorological and satellite forcing product. As a 

result, whilst it must be acknowledged that natural variability is also generated internally to the ocean 

system, ocean-only model configurations allow considerable “exogenous” variability to be directly related 

to the imposed atmospheric forcing.  Therefore, the use of high frequency, high quality atmospheric data 

to calculate turbulent fluxes of heat, freshwater and momentum in hindcast models (cf. [52, 53]) could 

provide a mechanism for improving interannual to decadal variability in simulated O2. 

 

The present study explores the source of systematic biases in model representation of [O 2] with a range of 

physical and biogeochemical perturbation experiments conducted using a state-of-the-art global ocean 

biogeochemistry  model. It  focuses  on  quantifying  the  impact  of  (a)  ocean  acidification  (variable  C:N  



 

 

 
 

 

stoichiometry and mineral ballasting) and (b) imposed atmospheric forcing on the spatiotemporal 

distribution of [O2] over the last ~ 50 years. 

 

2. Model description 

(a) Ocean biogeochemistry model 

PlankTOM10 is a global ocean biogeochemistry model which describes lower-trophic level ecosystem 

dynamics explicitly based on PFTs [35, 54, 55]. It includes ten PFTs: picophytoplankton, N2-fixers, 

coccolithophores, mixed phytoplankton, diatoms, colonial Phaeocystis, bacteria, protozooplankton, 

mesozooplankton and macrozooplankton. The present model version, fully documented  in  [35],  

comprises 39 biogeochemical tracers, and simulates the full marine cycles of Carbon (C), Phosphorous (P), 

Oxygen (O2), Silicon (Si), along with simplified cycles of Nitrogen (N) and Iron (Fe). Growth of PFTs is co- 

limited by temperature, light, macronutrients (N, P and Si) and Fe. PlankTOM10 includes 3 detrital pools 

(semi-labile dissolved organic material [DOM], and small and large POC), with a fixed Redfield 

stoichiometry (172O : 122C : 16N : 1P [56]) in the formation and remineralisation of organic material for the 

standard model configuration. Ratios for Fe : C, Chl : C and Si : C (for diatoms) of organic material are 

variable, calculated by the model based on PFT and abiotic factors [34]. N pools are also subject to 

denitrification and N2-fixation processes. PlankTOM10 also includes mineral ballasting, whereby  the 

sinking speed of large POC increases as a function of opal (SiO2) and calcite (CaCO3) content. This 

parameterisation applies the direct measurements of mineral ballasting by opal and calcite in copepod   

fecal pellets [57] to the drag equations [58]. The drag equations are solved offline by iteration in order to 

calculate gravitational sinking speeds of large POC (vsink) over the range of particle densities in the model. 

These pairs of particle densities and sinking speeds could be well represented by the following equation 

(2.1). 
 

!!"#$  = ! × (!!"# −  !!")! (2.1) 
 

where a = 0.0303, b = 0.6923, ρsw is the density of seawater and ρpar is the density of the particle, calculated 

by: 
 

!!"#  = 
(!"#$ × !"# !!"# × !""!!"# × !") 

(2.2) 

 
where LPOC is large particulate organic carbon, CAL is sinking calcite, SIL is sinking opal, 240 is wet 

weight/mol POC, 100 is the molar mass of calcite, 60 is the molar mass of opal, and ρLPOC = 1.08 kg L-1, ρCAL= 

1.34 kg L-1, ρSIL = 1.2 kg L-1 (calculated based on the data of [57]). Small POC is set to sink at a constant rate  

of 3 m d-1, whereas LPOC has a maximum numerically stable sinking speed set to 150 m d-1. 

 

Biogeochemical fields are initialised from observations of the Global Ocean Data Analysis Project 

(GLODAP; [59]) data for Dissolved Inorganic Carbon (DIC) and alkalinity, and World Ocean Atlas 2005 for 

O2 [60] and nutrients [61]. Biological variables are initialised as in [62], with initial concentrations available 

at http://opendap.uea.ac.uk:8080/opendap/greenocean/Restart/. As described in [35], PFTs were not 

impacted by initialisation and equilibrated within 3 years of model integration.. The model is forced with 

atmospheric CO2 concentration at each timestep [63]. Dust fluxes are interpolated to daily values from the 

monthly fields of [64], providing surface Fe and Si inputs. 
 

(b) Physical model 
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PlankTOM10 is embedded within the Nucleus for European Modelling of the Ocean version 3.1 

(NEMOv3.1) physical model, which comprises the primitive equation Océan Parallélisé version 9 (OPA9; 

[65]) ocean GCM coupled to the Louvain–la–Neuve Ice version 2 (LIM2; [66]) dynamic-thermodynamic sea 

ice model. This study employs a global configuration (ORCA2; [67]) of NEMOv3.1 where the model is 

discretised on a tripolar curvilinear grid with a zonal resolution of 2°, and a meridional resolution of 2° × 

cos(latitude) increasing to ~ 0.5° at the equator and towards the poles. In the vertical, ORCA2 has 30 z- 

levels with a maximum resolution of 10 m for the upper 100 m, decreasing to ~ 500 m at 5 km depth.  

Vertical mixing is calculated using a turbulent kinetic energy model [68], with subgrid scale eddy-induced 

mixing processes accounted for using the parameterisation of [69]. Active tracers are initialised from  

World Ocean Atlas 2005 temperature [70] and salinity [71] observations. A range of atmospheric forcing 

data has been used to derive surface fluxes of momentum, heat and freshwater as boundary conditions to 

the hindcast model, as described in Section 3b. 

 

3. Simulation set-up 

As outlined in Table 1, ocean biogeochemistry (Sect. 3a) and atmospheric forcing (Sect. 3b) sensitivity 

experiments are carried out using the PlankTOM10-NEMOv3.1 model to explore and review impacts on 

simulated historical distributions of [O2]. In order to isolate the impact of perturbations, model fields are 

generally presented relative to a baseline reference configuration. This approach is consistent with other 

model studies which evaluate the impact of incorporating new processes [72] or anthropogenic impacts 

[73] via comparison with an unperturbed experiment. As a result, non-equilibrium artefacts and other 

dynamical processes are removed, such that this analysis focuses on understanding the impact of these 

imposed changes on hindcast biogeochemical tracers. This work therefore presents a synthesis of 

sensitivity experiments, and differs from other studies (e.g. [9]) focusing on model-data comparison of 

absolute changes in [O2] over the historical period. This established approach [e.g. 46] allows for 

representation of trends and variability in a “process-level” model study to be improved due to the 

relatively short hindcast period over which observed vertical gradients in [O2] are preserved. 

 

Results from ocean acidification experiments are presented averaged over the period 2003 – 2013 (Sect. 4a), 

allowing for the largest adjustments to initial conditions to occur over the first ~ 50 model years. De- 

trended results from the ensemble of atmospheric forcing experiments are presented over their common 

time period (1958 – 2005) to avoid sampling biases associated with differing temporal ranges (Sect. 4b).  

 

(a) Ocean acidification experiments 

Two biogeochemistry perturbation experiments are conducted over the historical period to investigate the 

impact of ocean acidification on the spatiotemporal distribution of [O2], alongside a baseline (REF) 

experiment following the standard model configuration. These comprise explicit representation within 

PlankTOM10 of (1) a pCO2 sensitive C:N ratio in primary production (STO10) and (2) a pCO2 sensitive 

calcification rate (RCAL) and associated impacts on the PIC:POC rain ratio (BAL10). Ocean biogeochemistry 

experiments are conducted using a common atmospheric forcing (REF; Sect. 3b). 

 

For the STO10 experiment, a change in the C:N ratio of organic matter via increased photosynthetic carbon 

fixation in response to ocean acidification is parameterised using the results of mesocosm experiments 

carried out on natural plankton communities under elevated pCO2 [28]. A non-dimensional “CO2- 

sensitivity” factor is used to provide a relationship between pCO2 model forcing and the C:N ratio in 

simulated organic carbon production and remineralisation.  Following the prognostic model study of [32],  

a linear relationship between imposed pCO2 and C:N is derived based upon the results of [28]  for  

measured C:N values provided at pCO2 values of 350 µatm, 700 µatm, and 1050 µatm. Also following [32], 

this CO2-sensitivity factor is re-scaled back to an assumed pre-industrial pCO2 of 280 ppm which increases 

the C:N for a given pCO2, therefore our estimate provides an upper bound for this overconsumption  effect 



 

 

 
 

 

over the historical period. In STO10 this factor is multiplied by the rate of net organic carbon production 

and used to calculate a variable (pCO2-sensitive) O:C ratio in organic material. Variable C:N ratios in 

organic material are linked to imposed atmospheric pCO2 rather than surface water pCO2, enabling direct 

comparison with a fixed C:N ratio REF experiment. In support of this, [32] show that simulated changes in 

[O2] over longer (centennial) timescales are insensitive to this distinction. 

 

For the BAL10 experiment, the impact of a pCO2 sensitive biogenic calcification rate (RCAL) on marine 

biogeochemical cycles is parameterised using results from laboratory manipulations carried out with 

coccolithophore species, in which the PIC:POC rain ratio is measured to decrease under elevated [CO2(aq)] 

[74]. PlankTOM10 includes explicit representation of coccolithophores as a calcifying PFT with growth 

rates based on observations. Thus, the experimentally-derived parameterisation can be applied directly to 

coccolithophore responses rather than more generically. Following [74] and [38], the CaCO 3:CORG 

production ratio (RCaCO3/Corg) is parameterised in BAL10 as a function of pCO2: 
 !"!#!/!!"#  ∙   1 − ! ∙   !"#  !"# − !"#  !"#$%& 

!!"!#!/!!"#  = !!"#
 ! ! (3.1) 

 

where A = 4.4 x 10-4 (based on [74]), pCO2preind = 277.32 ppm and pCO2obs is prescribed from observations 

[63]. 

 

(b) Atmospheric forcing experiments 

Gridded atmospheric data are used to prescribe surface boundary conditions to ocean models. In this  

study, a series of model experiments are conducted using different atmospheric data to investigate the 

sensitivity of variability in simulated ocean [O2] to imposed forcing. Simulations are carried out using four 

different atmospheric forcing data products (Table 2). These experiments also differ in terms of the bulk 

formulae used to provide turbulent fluxes of momentum, heat and freshwater to the physical ocean model. 

 

As summarised in Table 2, the baseline REF experiment uses a CLIO bulk formulation [75] to calculate 

surface boundary conditions from daily frequency NCEP/NCAR 10 m air temperature (θ10), 10 m u and v 

wind components (U10, V10), total precipitation rate (pptn), 10 m specific humidity (q10) and total cloud  

cover (tcdc). Three other experiments (CORE2, DFS4, IPSL) are conducted, all of which employ a more 

recent bulk formulation (CORE; [53, 76]), which requires a slightly different set of surface variables, 

including downwelling shortwave (radsw) and longwave (radlw) radiation and precipitation as a total 

precipitation rate (precip) and solid fraction (snow). 

 

CORE2 is forced with Version 2 of the Common Ocean-Ice Reference Experiments Inter-annually Varying 

Forcing (COREv2-IAF) dataset [53, 76]. COREv2-IAF is a hybrid forcing product, which  applies 

corrections to known biases in NCEP/NCAR reanalysis state variables (U10, V10, θ10, q10) and utilises satellite 

derived radiative flux (ISCCP-FD [77]) and precipitation (merged GCGCS product [76]) estimates so as to 

limit the imbalance in model heat and freshwater budgets. 

 

DFS4 is forced with the DRAKKAR Atmospheric Forcing Set Version 4.3 (DFS4.3 [52]) data. Following the 

COREv2-IAF approach, DFS4.3 is also a hybrid forcing product using satellite radiation (ISCCP-FD) and 

precipitation (GCGCS). Surface atmospheric state variables are, however, provided from ERA-40 ECMWF 

reanalysis data [78], with adjustments as described in [52]. ERA-40 is considered a “second generation” 

reanalysis product, with improvements in terms of resolution, data assimilation methods, and atmospheric 

models. 

 

IPSL is forced with model data generated from the output of a CMIP5 ESM. Historical integrations of the 

IPSL-CM5A-LR ESM [79] were conducted under CMIP5 (1850 – 2005) with climatic forcings prescribed 



 

 

 

from observations [80]. Here, output from one ensemble member of the “historical” experiments (r1i1p1) 

was processed to extract atmospheric data according to the approach of DFS4 and CORE2, however  

temporal frequency was limited by the availability of model output. Thus, daily frequency U10, V10, θ2, q2, 

radsw and radlw were used along with monthly mean precip and snow, with modifications made to the 

physical model set-up to account for changes in temporal frequency. IPSL-CM5A-LR ESM was selected in 

order to limit the physical inconsistency with PlankTOM10-NEMOv3.1, since IPSL-CM5A-LR also utilises 

the NEMO physical model, whilst also reducing errors associated with spatial interpolation. Other studies 

have conducted prognostic ocean-only OBGCM experiments using CMIP5 atmospheric data (e.g. [81]), 

however the impact of an ESM-derived forcing in hindcast model configurations remains underanalysed. 

 
 

4. Results 

(a) Ocean acidification experiments 

For STO10, the effects of ocean acidification on the C:N ratio of organic carbon production drives changes 

to simulated POC export from the euphotic zone (Fig. 1a) and DIC distribution (Fig. 1b – 1c). Globally, 

POC export at 100 m is higher by more than 0.2 mol C m-2 y-1 relative to the fixed C:N  ratio  REF 

experiment, corresponding to a ~ 20 % area mean increase.  The higher POC export is most pronounced  (> 

0.3 mol C m-2 y-1) within established high-production regions of the global ocean, such as the eastern 

boundary upwelling system of the equatorial Pacific (Fig. 1a). Comparable increases in export are also 

found at mid- to high-latitudes (40 – 60o) within the subpolar North Pacific, North Atlantic and Southern 

Ocean, where existing high rates of annual primary production associated with the spring blooms are 

accentuated. In contrast, POC export fluxes show a smaller increase within the mid-latitude oligotrophic 

gyres, however this corresponds to a similar relative increase (15 – 20 %) when compared to more 

productive regions. Coeval historical decreases in DIC at 100 m depth across much of the tropical and mid-

latitude ocean (up to 3 µmol L-1) are consistent with carbon overconsumption within the euphotic zone in 

response to the CO2 fertilisation (Fig. 1b). Lower DIC concentrations ([DIC]) simulated within the euphotic 

zone are opposed by zonal mean [DIC] increases (> 5 µmol L-1) at depth, associated with a strengthened 

“soft tissue” pump as more exported POC is remineralised (Fig. 1c). Elevated  remineralisation driven 

alteration to the DIC profile at intermediate depths is associated with high POC sinking speeds and model 

underestimation of upper ocean bacterial biomass (0 – 200 m; [35]). 

 

For BAL10, the global mean ratio of CaCO3 to POC export production (EXPCaCO3/EXPPOC) at 100 m decreases 

by 4.9 % relative to REF, consistent with a reduced rate of biogenic calcification in response to ocean  

acidification. The largest decreases in EXPCaCO3/EXPPOC occur within the tropical Indian Ocean and eastern 

tropical Atlantic Ocean, and in mid- to high-latitude regions of the North Atlantic and North Pacific (Fig. 

2a). Reductions in EXPCaCO3/EXPPOC of up to ~ 0.01 are similar in magnitude to those reported by [42] in 

[CO32-]-sensitive RCAL experiments for 2003 – 2013. Within the North Pacific, marked decreases in 

EXPCaCO3/EXPPOC are centered on the North Pacific Current (NPC) region. The eastward flowing NPC is a 

major transverse surface current which bisects the subtropical and subarctic North Pacific and plays an 

important role in the resupply of nutrients and oxygen into the interior of the Alaskan gyre [82], where 

secular [O2] decreases have been observed [83]. Thus, EXPCaCO3/EXPPOC reductions in the NPC could have 

important downstream implications for biogeochemical cycles in the eastern subpolar North Pacific and 

California Current region [84]. 

 

In BAL10, reduced export of CaCO3 mineral ballast from the surface ocean causes a global mean reduction 

in model simulated gravitational sinking speeds for large POC (vsink) between 0 – 2000 m depth of 0.2 m d- 

1 (0.4 %). The spatial pattern of vsink reductions is most pronounced (> 0.5 m d-1) where EXPCaCO3/EXPPOC 

decreases are largest (Fig. 2b). As such, perturbation to the PIC : POC “rain ratio” can be invoked to  

explain coeval changes in sinking speeds of large POC. 



 

 

 
 

 

Changes in the carbon cycle impact upon the spatiotemporal distribution of [O2] in STO10 via changes to 

the rate of oxygen production and consumption. Mirroring the pattern of DIC concentration changes (Fig. 

1c), zonal mean [O2] in STO10 increases by up to 6 µmol L-1 within the more productive (sub)tropical 

euphotic zone (Fig. 3a). These near-surface [O2] increases are opposed by marked deoxygenation 

throughout much of the ocean interior, particularly at mid- to high- latitudes, where biological oxygen 

demand rises as more carbonaceous (> C:N ratio) organic material is remineralised at depth. Subsurface 

[O2] depletion reaches a zonal mean maximum of > 10 µmol L-1 within intermediate waters of the subpolar 

North Atlantic (~ 60oN). The signature of depth-averaged zonal mean [O2] change scales with latitude, 

such that the largest [O2] decreases (≥ 2 µmol L-1) occur poleward of 60o in regions of deep water renewal. 

As such, the inclusion of acidification effects in organic carbon production could act to augment the 

historical fingerprint of climate-driven ocean deoxygenation produced by fixed stoichiometry models [6]. 

 

The inclusion of a variable C:N ratio in carbon fixation in STO10 also impacts upon the characteristics of 

simulated low-[O2] waters. Decreases in minimum [O2] values are most pronounced (> 8 µmol L-1) within 

the subpolar North Atlantic, and for the Indian Ocean and eastern equatorial Pacific OMZs (not shown). 

Associated with this intensification of low-[O2] conditions, STO10 simulates an increase in the number of 

suboxic (+ 2 %, [O2] ≤ 5 µmol L-1) and hypoxic (13 %, [O2] ≤ 60 µmol L-1) grid cells, relative to REF. 

Expansion of low-[O2] waters also impacts upon nitrogen cycling, with the promotion of denitrification 

processes under suboxic conditions where nitrate is used as an oxidant in the remineralisation of organic 

material. Global area mean denitrification rates increase by 0.27 µmol N m-3 y-1 (34 %, 0 –  2000  m), 

associated with oxygen depletion in response to elevated POC export fluxes. 

 

Compared with STO10, changes in the carbon cycle associated with BAL10 cause almost no change in  

zonal mean [O2] relative to REF (Fig. 3b). However, in agreement with the prognostic model results of   

[42], BAL10 reproduces a small [O2] decrease relative to REF within the ventilated thermocline (100 – 1000 

m), which is likely to be exacerbated in response to future pCO2 forcing. Aside from imposed pCO2, the 

more muted magnitude of [O2] change simulated by BAL10 can also be attributed to the relatively small 

overall global export production which dampens the impact of any acidification driven reductions in 

EXPCaCO3 on EXPCaCO3/EXPPOC. However, generally the results of BAL10 suggest that the inclusion of a 

pCO2-sensitive biocalcification rate in an ocean biogeochemistry model does not impact significantly upon 

simulated O2 dynamics for the historical period, despite alteration to EXPCaCO3/EXPPOC and sinking speeds 

of large POC. 

 

(b) Atmospheric forcing experiments 

Simulated standard deviation in annual mean thermocline (300 m) [O2] is presented as a metric of 

interannual variability following other model studies which assess the bulk variability properties of upper 

ocean O2 using either a ~ 300 m depth interval [85] or surface fluxes [25, 86]. Variability differs between 

model experiments (Fig. 4), with DFS4 exhibiting the largest area mean variability (σ[O2] = 2.4 µmol L-1) 

when compared to CORE (σ[O2] = 1.9 µmol L-1) and IPSL (σ[O2] = 1.8 µmol L-1). Differences in temporal 

frequency of input forcing data used for the IPSL CORE experiment (Table 2) are found to have only a 

small impact on simulated σ[O2] (2 % change in area mean σ[O2]) in sensitivity analyses carried out with 

DFS4 at the temporal frequency of IPSL (Fig. S1). Elevated σ[O2] in the DFS4.3 experiment suggests that 

ERA-40 derived forcing products generate more exogenous variability in passive tracer fields of ocean- 

only models when compared to NCEP/NCAR (REF, CORE2) based atmospheric data. However, a number 

of other differences between forcing products (Table 2) could also contribute to the larger interannual 

variability in DFS4, for instance the alteration to surface fluxes caused by referencing of DFS4.3 surface air 

temperature and specific humidity at 2 m rather than 10 m. 



 

 

 

[O2] fields are also taken from biogeochemical output of the IPSL-CM5A-LR CMIP5  “historical” 

experiment (ESM; Fig. 4e) used to derive the atmospheric forcing for IPSL. As a result, direct comparison 

can be drawn between variability in the coupled IPSL-CM5A-LR ESM configuration and the ocean-only 

PlankTOM10-NEMOv3.1 experiment conducted using atmospheric fields from this integration. The 

coupled IPSL-CM5A-LR model (ESM) simulates more variability in thermocline [O2] (area mean σ[O2] =  2.7 

µmol L-1) relative to the ensemble mean of all ocean-only atmospheric forcing experiments (σ[O2] = 2.1 µmol 

L-1). Since IPSL and ESM experiments include identical atmospheric forcings along with similar physical 

and biogeochemical model components (IPSL = PlankTOM10-NEMOv3.1; ESM = PISCES-NEMOv3.2 [79]) 

the residual interannual variability between experiments (σ [O2]ESM – IPSL = ~ 1 µmol L-1) can plausibly be 

attributed to that which is generated internally to the ocean-atmosphere system under a coupled 

formulation. 

 

Simulated interannual variability scales with latitude for all model experiments, such that σ[O2] is most 

pronounced (σ ≥ 4 µmol L-1) poleward of 40o in both hemispheres. All model experiments exhibit an 

elevated σ[O2] signal of up to 10 µmol L-1 within the north-western subpolar gyre of the North Atlantic and 

subpolar central and western North Pacific (Fig. 4). These regional patterns have been identified in other  

O2 modelling studies (e.g. [25, 85]) and are associated with the NAO and PDO, respectively, which provide 

the dominant source of Northern Hemisphere climate variability on interannual to decadal timescales. All 

experiments converge on a maximum σ[O2] of ~ 6 µmol L-1 at ~ 60oN consistent with variability associated 

with the dominant climate modes, whereas the signal of interannual variability in the Southern Ocean is 

less certain – with zonal mean σ[O2] ranging from 1 – 7 µmol L-1 for different atmospheric forcings south of 

60oS (Fig. 4f). Particularly, the CORE2 and IPSL experiments simulate σ[O2] ≤ 2 µmol L-1 across much of the 

Southern Ocean whereas zonal mean σ[O2] exceeds 4 µmol L-1 for REF, DFS4 and ESM (Fig. 4f). 

 

Interannual variability in windspeed (σwspd; Fig. 5a) and near-surface air temperature (σθ; Fig. 5b) also differ 

between imposed atmospheric forcing products. DFS4.3 exhibits the largest zonal mean variability in 

windspeed and near-surface air temperature, consistent with the largest simulated σ[O2] of all ocean-only 

experiments (Fig. 4c). However, DFS4.3 windspeed and near-surface air temperature data do  not 

reproduce the meridional structure of σwspd and σθ exhibited by all other forcing fields. Excluding DFS4.3, 

the largest inter-forcing divergence in σwspd occurs in the tropics (20oS – 20oN) where elevated interannual 

variability in COREv2-IAF tropical windspeeds (~ 0.5 m s-1) relative to IPSL-CM5A-LR derived winds (~ 

0.25 m s-1) can be invoked to explain the more muted tropical variability in thermocline [O2] (σ[O2]) of IPSL 

compared to CORE2 (Fig. 4f). In contrast, larger interannual variability in σwspd does not generate a first- 

order response in σ[O2] at mid- to high-latitudes, with, for example, elevated variance in the westerlies over 

the Southern Ocean for IPSL not being associated with a coeval increase in σ[O2] (Fig. 4d). 

 

The largest deviation in zonal mean σθ between atmospheric datasets occurs poleward of 60oS, where 

COREv2-IAF exhibits lower interannual variability (σθ  = ~ 0.4 K) when compared to IPSL-CM5A-LR (σθ  = 

~ 0.8 K) and NCEP/NCAR reanalysis (σθ = ~ 1.2 K) derived near-surface air temperatures. These σθ 

differences track the inter-experiment divergence in σ[O2] for the Southern Ocean, such that model biases in 

the simulation of thermocline [O2] variability agree with differences in the magnitude of imposed σθ. 

Specifically, reduced interannual variability in near-surface air temperature in CORE2 and IPSL can be 

related to lower σ[O2] relative to REF, which exhibits elevated σθ and, therefore, σ[O2] poleward of 60oS. This 

modulation of tropical O2 variability by windspeed and extratropical (subpolar) O2 variability by surface 

heat flux has been reproduced by other forced ocean biogeochemistry models investigating variability in 

North Atlantic O2 fluxes [86]. 

 

5. Discussion and summary 

To date, much research has focused on understanding the impact of biogeochemical [27, 32, 33] and 

physical [6, 7] processes in OBGCMs on simulated future climate-driven perturbation to the global oxygen 

inventory.    This  work,  rather,  aims  to  better  constrain  the  implications  of  the  interrelated   physical- 



 

 

 
 

 

biogeochemical drivers for [O2] dynamics over the historical period, towards reconciling the well- 

documented [9] discrepancies between model-simulated and observed [O2] changes. As highlighted by 

[2], a “critical first step” in our understanding of oxygen dynamics in a warming world is the development 

of models at regional and global scales with the capacity to reproduce observed trends and variability. 

Accordingly, continued efforts to improve model-data agreement in [O2] at the process level are required, 

in order to gain a mechanistic understanding of observed changes in oceanic oxygen towards improved 

predictions of future change. To this end, model experiments conducted here reveal that the sign and 

magnitude of [O2] change over the last ~ 50 years depend critically on ocean acidification feedbacks and 

prescribed air-sea fluxes of heat, water and momentum. 

 

Our results suggest that explicit representation of observationally-based ocean acidification impacts on 

photosynthetic carbon drawdown yields major changes to the spatiotemporal distribution of simulated 

POC export and, consequently, subsurface O2 utilisation. Historical POC export changes associated with 

the inclusion of a pCO2-sensitive C:N ratio are similar in magnitude but differ in sign to the absolute  

historical changes predicted by current fixed stoichiometry models as a result of secular ocean warming. 

For example, [87] report POC export at 100 m decreases by ~ 0.5 mol C m -2 y-1 for much of the extrapolar 

ocean between 1960 and 2006 in hindcast simulations of the CCSM3-BEC model. With the inclusion of a 

pCO2-sensitive C:N ratio, POC export at 100 m increases by > 0.3 mol C m-2 y-1, suggesting that 

stoichiometric effects could act to compensate a significant component of the “direct” climate-driven 

reduction in export production. Thus, as highlighted by [33] the inclusion of stoichiometric plasticity in 

the next generation of ESMs could alter the classical view that historical [87] and future [88] anthropogenic 

forcing drives a simulated reduction in global marine production, the observational basis for  which 

remains contested [89, 90]. Equally, [87] report increases in POC export of up to 0.6 mol C m-2 y-1 in  

subpolar (light-limited) regimes, associated with historical density stratification increases in their hindcast 

model. In this case, the inclusion of ocean acidification effects on organic carbon drawdown could act to 

amplify secular increases in POC export change associated with ocean warming. Development of high 

complexity ocean biogeochemistry models which dynamically resolve stoichiometry (e.g. ERSEM [91]) 

provide a framework for investigating diverse ecosystem responses to changes in environmental 

conditions. 

 

A strengthened “soft tissue” pump associated with the inclusion of a pCO2-sensitive C:N ratio also drives 

major changes to simulated remineralisation within the ocean interior, as evidenced by stronger gradients 

in [DIC] and [O2]. Coeval subsurface [O2] decreases and a reduction to the global inventory of O2 are 

consistent with model projections which include pCO2-sensitive C:N ratios in carbon fixation (e.g. [32, 33]). 

However, counter to published model experiments, the spatial pattern of [O2] decrease associated with 

carbon overconsumption in this study follows the absolute fingerprint of (observed) ventilation-driven 

deoxygenation (see [92]), with the most pronounced O2 depletion occurring at mid- to high- latitudes,  

rather than focused within the tropical OMZs. This result does not, therefore, support the suggestion (e.g. 

[4]) that inclusion of a pCO2-sensitive C:N ratio in carbon fixation could invoke a net deoxygenation of the 

tropical thermocline for the historical period, in agreement with recent hindcast [9] and prognostic [27] 

ESM experiments which include variable stoichiometry. Rather, stoichiometric effects in response to 

historical ocean acidification are shown here to bring about elevated oxygen depletion in mid- to high 

latitude regions of water renewal, thus providing a biogeochemical amplifier for  (chiefly)  physically 

driven simulated [O2] changes (e.g. [6]).  Accordingly, the inclusion of these effects in the next generation 

of ESMs could act to reduce the discrepancy between observed [91] and more muted ESM simulated 

historical deoxygenation trends. Additionally, consistent with prognostic model studies, the inclusion of a 

pCO2-sensitive C:N ratio here produces an increase in the modelled volume of low-O2 waters. Although, 

due to the smaller imposed pCO2 forcing, increases in suboxic volume simulated for the historical period (+ 

2 % for 2013) are smaller than that projected for 2100 in variable stoichiometry models (+ 36 – 50 % [32,   

33]).          Further expansion of suboxic and hypoxic water bodies in response to anthropogenic forcing has  



 

 

 

important implications for the global marine nitrogen cycle, with a coeval increase in simulated 

denitrification rates (34 %; 0 – 2000 m) associated with the elevated consumption of nitrate (NO32-) in 

microbial decomposition of organic material under suboxic conditions. A series of parallel PlankTOM10- 

NEMOv3.1 sensitivity experiments carried out using a diagnostic N2O model [73] also indicate that pCO2- 

sensitive C:N ratios drive enhanced historical marine N2O production via promotion of high-yield low-O2 

processes (e.g. denitrification, nitrifier-denitrification). 

 

As noted by [93], however, caution is required when extrapolating the results of mesocosm experiments 

carried out with one natural plankton assemblage [28] to the global scale for all phytoplankton taxa and 

biogeographical provinces. Therefore, whilst model parameterisations based around the results of [28] 

comprise an aggregation of data points across nine large mesocosm enclosures at varying pCO2, further 

experimental evidence from diverse marine systems under different environmental conditions is required 

to better constrain this potentially significant ocean carbon cycle feedback in models. To this end, [94] 

highlight that, despite good agreement within unialgal cultures towards elevated C:N ratios in response to 

acidification, reported stoichiometric changes within CO2 manipulation experiments carried out on natural 

plankton communities are much more variable. Differences between results are attributed in part to 

changing experimental practice, such as “batch-mode” versus continuous culture incubation methods. 

However, a number of external biological factors are also invoked to explain the inconsistent response of 

natural assemblages to elevated pCO2, including differing zooplankton grazing rates or community 

composition between oceanographic regimes. For instance, [95] demonstrate for the Arctic pelagic 

ecosystem that elemental stoichiometry changes within phytoplankton biomass depend critically on the 

nature of growth-limiting factors within the heterotrophic community. Additional uncertainties are 

entrained into biogeochemical model experiments which include variable C:N ratios due to the lack of a 

process-level understanding for the excess carbon uptake reported by [28] in response to rising pCO2. For 

instance, as suggested by [96], additional fixed DIC could be released as Dissolved Organic Carbon (DOC), 

and contribute to carbon export through the formation of transparent exopolymer particles (TEPs, [97]) via 

increased aggregation and particle sinking. 

 

Our results also suggest that accounting for pCO2-driven perturbation to biogenic calcification rates has 

only a negligible impact on model simulated [O2] dynamics for the historical period. However, as 

highlighted by [98] unresolved questions regarding the observed “form and sensitivity” of ocean 

acidification impacts on calcification introduce uncertainties into the parameterisations adopted in global 

models such as PlankTOM10. Moreover, the impact of ocean acidification on the “PIC:POC rain ratio” 

must be considered alongside other external influences on the biological pump, particularly changes in 

export production in response to ocean warming [88, 6]. For instance, model simulated historical [87] and 

future [88, 6] reductions in overall export production associated with increased density stratification may 

act to moderate the impact of any acidification driven reductions in CaCO3 production on 

EXPCaCO3/EXPPOC. Although, whilst this study suggests that pCO2-calcification effects may be  less 

important for biogeochemical cycles over the historical period, these processes may remain relevant on 

centennial [38] and millennial [42] timescales. 

 

Finally, our results suggest that imposed atmospheric forcing plays a major role in modulating interannual 

variability in subsurface [O2]. Particularly, in agreement with forced ocean biogeochemistry model results 

of [86] for the North Atlantic, simulated interannual variability in [O2] is shown here to be primarily 

associated with heat fluxes (σθ) in extratropical (mainly subpolar) regions and wind stress (σwspd) in the 

tropics. Large uncertainties between prescribed meteorological datasets in these regions propagate into 

simulated thermocline [O2], consistent with a recent inter-comparison of surface reanalysis data, which 

attributes elevated multiproduct inconsistency in the tropics and extratropics chiefly to wind stress and 

heat flux uncertainties, respectively [99]. The important role of tropical zonal wind stress in controlling 

variations in model simulated low-O2 water bodies has been demonstrated in recent work [100, 24] 

providing further motivation for the provision of appropriate wind forcing to ocean-only models 

investigating O2 dynamics. 



 

 

 
 

 

 

Whilst all atmospheric forcing products used here provide surface fluxes which are a priori representative 

of observed changes in meteorological variables (aside from IPSL), data choices still place major 

constraints on simulated changes in ocean properties. Further work is required to better understand the 

biases in atmospheric forcing datasets, both in terms of comparing meteorological fields (e.g. [99]) and 

assessing how uncertainties in these prescribed forcings (and bulk formulae) impact upon the evolution of 

hindcast variables. Towards this objective, the Coordinated Ocean-ice Reference Experiments (COREs) 

project proposes a standard protocol for running hindcast ocean-ice models, emphasising the need for 

models to be integrated using different atmospheric forcings in order to “assess implications on the ocean 

and sea ice climate of various atmospheric reanalysis or observational products” [101]. However, the 

majority of recent physical [102] and biogeochemical [103] multi-model hindcast studies remain focused on 

investigating the implications of a common atmospheric forcing for a range of ocean models.  This 

approach assumes that all data products provide an equally appropriate representation of historical 

changes in observed air-sea fluxes. Rather, as argued here, a multifaceted approach is required in order to 

better evaluate surface meteorological data products, involving both multi-model inter-comparison under  

a common atmospheric forcing (e.g. COREv2-IAF; [102]) and ensembles of different atmospheric forcing 

experiments using a common ocean model. 

 

In this study we have presented an analysis of processes using a relatively coarse global ocean 

biogeochemistry model, which shares some of the shortcomings on the representation of [O2] as similar 

models noted in Section 1. To ensure the model shortcomings had a limited effect on the process-based 

results presented here, we initialized the model with observations and removed the ensuing drift by 

isolating processes using the REF reference simulation. This methodology is unlikely to influence the main 

conclusions of our analysis on the potential influence of specific processes and the large role of  

atmospheric forcing for variability, but it could have a larger influence on N2O fluxes which are more 

regulated by narrow ranges in low [O2]. Further work could examine the interactions between physical 

and biogeochemical factors using a higher-resolution model, particularly to better quantify processes that 

influence oceanic N2O emissions. 
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Fig. 1. Differences in modelled ocean carbon cycle variables (STO10 simulation minus REF) averaged over 

2003 – 2013. (A) POC export (mol C m-2 y-1) at 100 m depth, (B) Concentration of DIC (µmol L-1) at 100 m 

depth, (C) zonal mean DIC concentration. 
 



 

 

Fig. 2. Differences in modelled ocean carbon cycle variables (BAL10 simulation minus REF) averaged over 

2003 – 2013. (A) EXPCaCO3/EXPPOC at 100 m depth and (B) gravitational sinking speeds for large POC vsink (m 

d-1) between 0 - 2000 m. 

 
 

 

Fig. 3. Difference in modelled zonal mean [O2] (µmol L-1) compared with simulation REF for (A) STO10, (B) 

BAL10 averaged over 2003 – 2013 (blue colours indicate historical deoxygenation relative to REF). 
 

 

Fig. 4.  Interannual variability (σ) in modelled annual mean [O2] (µmol L-1) at 300 m depth for a range of  

model experiments.  (A) REF (black in Panel F), (B) CORE2 (red), (C) DFS4 (green), (D) IPSL (blue) and (E) 

ESM (turquoise). [O2] contours are overlain in black for σ[O2] = 4 µmol L-1.  Zonal mean inter-annual variability 

in [O2] at 300 m for all model experiments is presented in Panel F.  A boxcar (low-pass) filter is applied in  

order to diagnose secular trends in subsurface [O2], with the 10-year running mean being removed at each  

grid point in order to retain only an estimate of inter-annual (unforced) variability. The interannual variability 

is computed over the 1958 – 2005 time period, common to all forcing products. 
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Fig. 5. Interannual variability (σ) in de-trended zonal mean (A) windspeed (m s-1) and (B) near-surface air 

temperature (θ; K) for NCEP/NCAR reanalysis (black), COREv2-IAF (red) and DFS4.3 (green) products, and 

IPSL-CM5A-LR derived atmospheric fields (blue). Following [45] windspeed is plotted as a measure of 

momentum flux rather than wind stress since the latter has a strong dependency on the choice of drag co- 

efficient. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

 

Tables 
 

Table 1.  Summary of the model configurations used in each ocean-only model experiment. 

Model 

experiment 

Time period Atmospheric Forcing pCO2-sensitive 

C:N ratio 

pCO2-sensitive 

RCAL 

 

REF 1948 - 2013 NCEP/NCAR No No  
STO10 1948 - 2013 NCEP/NCAR Yes No  
BAL10 1948 - 2013 NCEP/NCAR No Yes  
CORE2 1948 - 2007 COREv2-IAF No No  
DFS4 1958 - 2006 DFS4.3 No No  
IPSL 1948 - 2005 IPSL-CM5A-LR No No  

 
Table 2. Summary of atmospheric forcing datasets used in model experiments. The temporal frequency of 

meteorological surface variables is provided in parentheses (di = 6 hourly [diurnal]; d = daily, m = monthly). 

 

EXP Dataset Time period Bulk formulation U10, V10, θ, q radsw, radlw precip, snow 

REF1 NCEP/NCAR 1948 - 2013 CLIO NCEP/NCAR (d) N/A2 NCEP/NCAR (d)6 

CORE2 COREv2-IAF 1948 - 2007 CORE NCEP/NCAR3 (di) ISCCP-FD3, 5(d) GCGCS7 (m) 

 

DFS4 

 

DFS4.3 

 

1958 - 2006 

 

CORE 

 

ERA-404 (di) 

 

ISCCP-FD4,  5 (d) 

 

GCGCS7 (m) 

 

IPSL 

 

IPSL-CM5A- 

 

1948 - 2005 

 

CORE 

 

CMIP5 (d) 

 

CMIP5 (d) 

 

CMIP5 (m) 

  LR  
1 The baseline REF atmospheric forcing configuration is used for all ocean biogeochemistry experiments  
2 Radiative fluxes calculated from total cloud cover (tcdc) following [49] 
3 Bias corrections applied as described in [53, 76] 
4 Bias corrections applied as described in [52] 
5 Forcing provided as a climatological mean annual cycle for prior to 1984 
6 Total precipitation rate used without solid fraction (snow) 
7 Forcing provided as a climatological mean annual cycle for prior to 1979 
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Fig. S1. Interannual variability (σ) in modeled annual mean [O2] (µmol L
-1

) at 300 m depth for (A) 
DFS4 (green), (B) DFS4 (dotted black) using daily frequency input atmospheric forcing for U10, V10, θ 
and q. Expressed as zonal mean σ[O2] at 300 m in panel (C). 
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